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Abstract

This thesis argues the case for the use of a pattern language based on the ba-

sic features of the programming language used in instruction for the teaching of

programming. We believe that the difficulties that novices are known to have

encountered with the task of learning to program ever since the inception of com-

puters derive from a basic misfit between the language used to communicate with

a computer, the programming language, and the way that humans think. The

thrust of the pattern language idea is that patterns are the essential element in

understanding how the mind words in that they are the source of that relation-

ship that we call ‘meaning’. What an entity or event ‘means’ to us derives from

the effect that it has on us as living biological beings, a relationship that exists

in the ‘real world’, not from any linguistic relationship at the symbolic level.

Meaning, as a real world relationship, derives from the patterns of interactions

that constitute being. The meaning that an entity has for an individual is more

than can be expressed in a formal definition, definitions are matters of agree-

ment, convention, not the pattern of experience that the individual has acquired

through living. What is missing for a novice in any skill acquisition process is

meaning, the pattern of experience. All that we can give them using a formal lin-

guistic system like a programming language is definitions, not meaning. Pattern

language is the way that we think because it exists at that fundamental level of

experience as living beings. The patterns of experience become the patterns of

thought through recurrence, not through definition. But this takes time, so in

presenting new material to a person trying to learn, we have to present it in the

form of a pattern language, the “cognitive map” that drives the problem soving

process. Creativity is always a function of combining ideas, what is really being

created is new meaning, not a program, or a house, or a poem, or a sculpture

- these things are mere implementations of meaning. Ultimately meaning can

derive only from experience, the pattern of life around us, so creativity is the

language of experience, pattern language. The mind is the product of experience,

creativity its modus operandi.
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Preface - Scope and Outline

The thrust of this dissertation is that learning to program, indeed learning any

skill, involves the use of a pattern language either explicitly or implicitly. This

is because any skill depends on the conceptual structure in the mind, a cognitive

map, as this is the only way that creative potential can be expressed. However,

there is actually nothing new in this, as humans we spend our lives from day

one building such knowledge structures in our mind in every field of endeavour, a

process that can only be based on patterns of experience, the things that are the

same for all of us, and the connections between them, in short, a pattern language.

The trouble is that we do this in a largely unconscious fashion, such as in the way

that we ‘pick up’ the grammar of our first spoken language. This unconscious

development of cognitive structure, however, becomes inefficient in fields of great

complexity or where practice is difficult without a reasonably developed cognitive

structure already in place. Programming is such a field because it is based on

the strict symbolic logic of the machine which is not familiar from the everyday

cut and thrust of life experience that drives many other disciplines, and so there

is no obvious pre-existing relevant knowledge structure.

In other words, we cannot rely on the ‘natural’ resonance of experience in the

programming field with everyday experience as can be done, to some extent, in

other fields. Therefore the aim of this thesis is to demonstrate how an evolving

pattern language can provide the sort of resonances that take advantage of the

connections that already exist in the mind, missing in instruction based on pure

logic. This is not an entirely unique problem, many fields such as mathematics,

philosophy, science and so on, indeed reasoning in general, involve elements of

logical thinking. So, it is possible to find, in other areas, methods of driving the

acquisition of creative skill that illustrate the power of the pattern process that

we are advocating. Therefore, we touch on many strands which may appear at

first to be only loosely connected. This is true, in some respects, but the factor

common to all of them is that they demonstrate, in some way, the fundamental

correspondence between evolution as design for life through patterns of experience

and learning as design for life through patterns of experience. Just as evolution

involves a codification of experience in the strict ‘logic’ of DNA sequence, so

too does programming involve a codification of experience in the strict ‘logic’ of

machine instruction sequence. It follows, therefore, that cognitive development,

learning in short, as design for life through patterns of experience, should provide

1



2 Preface - Scope and Outline

the means to enable people to learn to program.

So what we are attempting to show here is that pattern language, as an ex-

plicit rather than implicit factor in instruction, is the way forward in crossing the

gap between general thinking based on everyday experience and that required for

dealing with a strict symbolic logic. This attempt necessarily involves exploring

many areas of knowledge to illustrate our argument, and from this exploration

it is clear that the cognitive structure involved in any task must reflect the ob-

jective conceptual structure (the pattern language) of the field concerned, and

this applies in every human skill. While we concentrate our attention in the

programming domain on the imperative-procedural-OO paradigm, we do this for

the sake of clarity, not because the pattern process applies only here. Ours is a

philosophical task, an exploration of the issues involved in acquiring a skill, not

a technical one, so, inevitably, the dissertation involves a conceptual (philosoph-

ical), even a narrative, flow rather than a logical (technical) one. That such a

non-technical and non-reductionist approach is necessary is shown by the moral

core of the pattern language idea, the proposition that order and coherence are

properties of the whole, not the parts of which it is made.

In Chapter 1 we establish the scope of the issue dealt with in this disserta-

tion - the use of pattern languages to address the problems that novices exhibit

in learning to program - and the thrust of our argument is that it is the dif-

ference between how humans think and the logical rigor and mechanical nature

of programming languages that lies at the heart of the matter. As Christopher

Alexander’s pattern language concept is directed at the process of designing so-

lutions to problems in the ‘real world’, we introduce it as a means of providing a

cognitive map for novices in the programming domain.

Chapter 2 provides an overview of prior work in the fields opened up for

discussion in the introduction in an attempt to provide a broad philosophical

basis for the project. Although the idea of a language of patterns is relatively

new, patterns themselves have long been recognised as a significant factor in

human thinking processes. We examine their use in terms of the learning process

and educational practice, and, more particularly, in introductory programming

where we find that ideas such as ”chunks” and ”schemas” which resonate with the

pattern concept predate the explicit use of patterns in programming pedagogy.

The main aim of this chapter is to introduce pattern theory in both its classical

and Alexandrian forms so that we can set the context for its place in pedagogical

theory.

As designing any artefact, including a program, is a creative act, we explore,

in Chapter 3, the roots of creativity in everyday human experience. Again we

are attempting to establish the problem in its widest context, so the discussion

here is mostly philosophical in spirit, leaving the psychological and educational

aspects to be dealt with elsewhere.

Chapter 4 argues that the source of the difficulties exhibited by novices stems

from the fact that instead of attempting to adjust our pedagogies to better fit
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how the mind actually works, we have persisted in trying to modify the mind to

fit the programming system, to ‘make people think like computers’, in effect.

A designed artefact of any complexity requires generativity, the combination

of multiple concepts to a unity of purpose, and Chapter 5 attempts to demon-

strate that the fundamental function of language is generation not communica-

tion. Before we can communicate any complex idea, we have to have generated it

out of the simpler ideas that constitute its components. Language-as-conceptual-

understanding, therefore, is the factor that underlies the human condition, that

drives all creativity.

Having explored the role of patterns and of language in human thinking sep-

arately, we attempt, in Chapter 6, a synthesis based on the pattern language

concept developed by Christopher Alexander. Here we are concerned with the

use of pattern languages in education, so our examination is mainly confined

to the pedagogical implications of Alexander’s theory, which means that there

are significant differences with pattern practice as it has developed in software

engineering.

In particular, we emphasise the use of pattern language diagrams, an aspect

of Alexander’s thinking that has not caught on in the software field, and Chapter

7 uses a simple programming exercise as a work-through to demonstrate how the

language generates the solution. This is not a logical or mechanical process, the

programmer still needs to make creative decisions along the way, but the pattern

language diagram clarifies the points at which such decisions are needed and the

arrows between the nodes in the network point to the various options available

at each of these junctures. As the purpose of our example is to illuminate the

actual process involved in using a pattern language to generate the design of a

program, we have, of necessity, had to simplify - almost to the point of absurdity

in terms of their own domains - all aspects, the patterns, the language, and the

programming example itself. But our purpose is not to analyse these aspects,

but to illuminate the complex interaction between them. So everything in this

chapter is constrained by the necessity for clarity in exposing the dynamics of

process, an undertaking that we found to be almost impossible in fact.

Because programming is an activity that occurs in the human mind there are

psychological implications, and these are the subject of Chapter 8. Here we are

concerned with how novices acquire meaning, so our examination is mainly con-

cerned with the problem of meaning, what it means for an element of thought to

mean something, as this, we believe, is the major implication of Alexander’s ideas

- it is always meaning, conceptual order, that is being designed, no matter which

‘material’ domain is involved. This is somewhat of a divergence from the more

conventional psychological investigations of programming undertaken elsewhere

in the literature, particularly by the Psychology of Programming Interest Group,

but our investigation, as always, is coloured by its concentration on the devel-

opment of what might be termed the ‘programming mind.’ Most psychological

research is driven by empirical concerns that fail to address our fundamentally
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philosophical approach.

Again, in Chapter 9, our investigation of the psychology of learning to pro-

gram, we diverge somewhat from more conventional treatments, as we base our

analysis on the process of developing expertise in general. The case study of

the apparently ‘trivial pursuit’ of reciting large sequences of digits from memory

demonstrates how a pattern language is developed and used to drive expert, even

world record, performance of a task.

Chapter 10 outlines the three attempts we made to measure the effectiveness

of using pattern languages in teaching people how to program. Although our

experiments foundered on the difficulty of balancing the motivation of attendance

at ‘special’ pattern sessions and the need of students to maintain progress in

their normal non-pattern programming coursework, we felt that our efforts were

of value, both in directing any future attempts, and in illustrating the difficulties

involved in measuring performance in any mental activity such as programming.

Any investigation that attempts to cover as much ground as we do in this

dissertation, inevitably leaves many loose ends dangling in the breeze. The main

task of the conclusion is therefore to gather as many of the threads together as

possible, and to demonstrate that the unifying principle is the correspondence

between pattern language as a basis for programming-as-design and the function-

ing of evolution in the derivation of complex natural form, evolution-as-design.

Like evolution, programming proceeds on the basis of patterns of experience, not

the logical progression of formal symbolic systems such as DNA or programming

languages, and it is pattern language rather than logical rigor that drives it.



Chapter 1

Introduction

As teachers of programming we should try to blend the technology of

the scientist with the pretence of the craftsman. Sticking to the tech-

nology of the scientist means being as explicit as we possibly can about

as many aspects of our trade as we can. Now the teaching of program-

ming comprises the teaching of facts - facts about systems, machines,

programming languages etc. - and it is very easy to be explicit about

them, but the trouble is that these facts represent about 10 percent of

what has to be taught: the remaining 90 percent is problem solving

and how to avoid unmastered complexity, in short: it is the teaching

of thinking, no more and no less. The explicit teaching of thinking is

no trivial task, but who said that the teaching of programming is? In

our terminology, the more explicitly thinking is taught, the more of a

scientist the programmer will become.

Edsger W. Dijkstra (Dijkstra 1982, p. 107)

Meaningful (as opposed to rote) human learning occurs when new

knowledge is consciously and purposively linked to an existing frame-

work of prior knowledge in a non-arbitrary, substantive fashion. In

rote (or memorized) learning, new concepts are added to the learner’s

framework in an arbitrary and verbatim way, producing a weak and

unstable structure that quickly degenerates. The result of meaningful

learning is a change in the way individuals experience the world; a

conceptual change.

Michael Zeilik (Zeilik n.d.)

1.1 Why is Programming Difficult?

The problem addressed by this dissertation is the difficulty that people encounter

in the task of learning to program a computer. In the current environment, the

task of “teaching” people programming falls mainly to three instructional settings.

5
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Some programming instruction takes place at the level of secondary education,

and there have been some experimental forays into presenting it at the primary

level as well. Nevertheless, it would be reasonably safe to say that most people

who learn to program do so after they have left school, that is, they are adults, or

close to it. So most instruction takes place at either the tertiary level of education

or within the information industry itself. What this tells us is that most, if not all,

novice programmers are reasonably highly educated in terms of the population

as a whole, and if a major goal of education is to produce individuals who are

ready to engage in a productive life in a modern society, rational agents, then

it is not unreasonable to expect them to be able to be trained for virtually any

middle-level career in that society, such as programmer.

The usual explanation for the difficulty we have in training these people is the

supposed inherent complexity of the programming task, but this tells us nothing

if we don’t understand the source and nature of its complexity. So the first aspect

we need to analyse here is the machine that is being programmed, to see if the

complexity resides there. Any such analysis quickly reveals that although modern

computers are wickedly complex in terms of electrical engineering, data paths,

logic circuits, and the like, at the level at which they are programmed - basically

‘told’ what to do - they are, if anything, amazingly simple. A computer has about

the same order of complexity at its basic instruction level as the genetic system

does in biology.

It is now known that even humans are produced by the interactions

of certain genetic systems and that the generative rules are relatively

simple in comparison to the complexity of the end product. This

is now accepted as a part of biology, but for most people it is not

emotionally real. It’s just too incredible. And I think the reason is

that we have not yet succeeded in simulating the process.

(Alexander quoted in (Grabow) 1983, p. 47)

Moreover, the biological analogy provides us with a vital clue. The complexity in

both systems lies in what is produced by the code, or rather, in the programming

case, what can be produced, not the coding system itself. So if it is true that

the programming task is complex, then the complexity involved is a function of

the procedures we attempt to automate, the artefacts we try to build with the

system, not the programming system itself.

There is an interesting paradox here, in terms of the complexity of the pro-

gramming task, and that is that the evolution of programming has, in fact, made

the substrate more, rather than less complex. By this we mean that modern pro-

gramming languages make many more operations available to the programmer

than those provided by the base machine on which they run - complexity has

been added to the programming system via the compiler. Indeed, this is a case

of complexity produced by the code - but deliberately in order to make the con-

cepts used in programming closer to those used in everyday thinking. Moreover,

this points to the danger of making a direct connection between complexity and
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difficulty, the two words refer to different aspects of reality. Complexity, properly

considered, is a lack of symmetry or symmetry breaking, it means that there is, in

principle, no way that a single aspect of a complex entity can be used to predict,

actually or statistically, the properties of other parts - it says, in effect, that there

are no real patterns in the entity (Heylighen 1996). Difficulty can be the result

of complexity, of course, but more usually it is the result of failing to perceive

patterns in an entity that actually does have some symmetry. So in our case the

programming system is more complex than its base, only in the sense that it has

more features. But, supposedly at least, it is less difficult to use, because those

features map more closely to human experience than the base operations do.

This implies that there is something of a dichotomy involved in the develop-

ment of programming systems. When the designers of a programming language

are enjoined to make them as “simple” as possible, “so that a programmer can

readily learn and remember all its features, can select the best facility for each of

his purposes, can fully understand the effects and consequences of each decision

and can then concentrate the major part of his intellectual effort to understand-

ing his problem and his programs rather than his tool” (Hoare 1973, p. 5) they

are being asked to fulfill two somewhat contradictory aims. Simplicity in terms

of the feature set does not, in itself, make the task of understanding the problem,

that is, modelling the problem domain, easier, and it is not even entirely clear

that it makes understanding programs easier, although this is intuitively more

likely. However, even if, as Backus suggests, most modern programming lan-

guages have become so baroque that no simple conceptual model of them exists

(Backus 1978), this is not a problem unless you believe that programming and

coding are synonymous.

The real force of Hoare’s, and Backus’ comments is, surely, that the program-

ming system, as a whole, is more than the “language” used for implementing a

solution. As Peter Naur indicates, “programming properly should be regarded

as an activity by which programmers form or achieve a certain kind of insight,

a theory, of the matters at hand ... in contrast to what appears to be a more

common notion, that programming should be regarded as the production of a

program” (Naur 1985, p. 253). Programming then, in this view, consists of two

phases, designing a conceptual solution and translating the conceptual solution

into code form. It should not be surprising, therefore, that a “language” that

is supposed to inform both tasks becomes somewhat “baroque” over time. If

anything, it is the fact that modern programming languages are being used to

perform on these two, quite contradictory, levels that causes them to tend to

ornateness. Modern programming languages are a product of the realisation that

bare machine operations do not map onto real world activities naturally, which is

why it can be said that “the mode of thinking [emphasis added] a programming

language induces, its paradigm, is more important and has more lasing value than

the language itself” (Bal & Grune 1994, p. 1). It might be argued, therefore,

that the real power of computing lies in reducing the difficulty of doing the tasks
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that are automated, by making the process of doing them more complex - at least

when the underlying, and unseen by the user, programming level is included.

More correctly, of course, the real power of computing derives from harnessing

the electrical states of the various electrical components to carry out tasks that are

useful in human terms. We say, for example, that a computer does calculations.

In fact, it does nothing of the kind, all that has happened is that the electrical

potentials of some of its circuits have been altered in a systematic fashion. When

we say that a computer has multipled two numbers we are speaking entirely in a

metaphorical sense, it was the humans who set up the circuits of the computer

that created the potential for the electrical circuits to simulate multiplication,

and the computer user who actually did the multiplication. The circuits were

used as an aid in performing the calculation instead of the more usual pencil and

paper. Like a slide rule or its precursor, the abacus (or the pen and paper for

that matter) a computer is just a tool, a means of carrying out tasks that exist

in the real world, not in the electrical circuits of a machine or the beads of an

abacus, and taken in its entirity - including the design and manufacture of the

hardware and software - one would have to conclude that using a computer to do

our sums is a massive complication overall (Harth 1993, p. 157), despite the fact

that, from the point of view of the person doing the sums, it seems easier and

more reliable, and a lot faster.

The point we are making is that a programming system exists only in the

form of a metaphor. As with the calculation, the compilation process is a just

matter of electrons moving around the circuits. Programming is just thinking

about setting up a metaphor for some task in the real world in terms of electrical

potentials, using another metaphor, the programming system itself - the human

doesn’t do the task, she sets up the electrical circuits to simulate it. But if most

of the complexity in programming derives from what we cause our programming

systems to do, then teaching programming is just a matter of addressing novices

at the correct level in terms of the complexity of the material presented to them.

As with life, the simple forms are coded first, and more complex forms build on

what has gone before. However, this model of instruction is so blatantly obvious,

that it could not be missed, and the real point is that it simply doesn’t work. No

matter how simple the code artefacts are kept at the introductory level, novices

still struggle to learn how to program!

Clearly our analysis of the system in which programming takes place has

failed to reveal the source of the difficulty of the learning experience, although,

in fact, this could be argued two ways. If the programming system is seen as

entirely embodied in the “programming language”, then, yes, the system is the

source of the difficulties. But our point is that it is a mistake to consider the

language as the programming system, and that the difficulties stem from this

mistake. Programming is thinking, designing a solution, not just coding, and the

programming language is about coding not conceptual design. So it is not the

programming system, taken as a two stage process, that is causing the difficulty,
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and if this is true then it has to be something else, and there are only two

possibilities left, the ‘learning system’ and the ‘teaching system’, basically the

psychology of the learner and the pedagogical environment.

Of course, the actual situation is likely to be caused by a mix of these two

factors, as it is impossible to separate the teaching from the learning at any

fundamental level of understanding. Moreover the ‘programming system’ does

inevitably, as the artefact being studied, have some influence, but our point here

is that it cannot be a major factor as it is not inherently complex within itself.

Something about the way that we approach programming, both as a task to

be done, and as a skill to be acquired, is causing it to appear difficult. This

means that we are looking at two interfaces, that between the human mind and

the domain of programming, and that between the programming system and the

domain of education. Unfortunately perhaps, for an activity that has come to be

fairly ubiquitous in modern societies, the history of programming is that it arose

within the Computer Science domain, and it is the requirements of this domain

that have dominated its progression over time.

One can say, ‘unfortunately’, here, for two reasons. Firstly, programming is

essentially a human activity, and just as one does not look to engineers, in the

form of bicycle manufacturers, “bicycle scientists”, so to speak, for advice on the

skill of riding bicycles, so one should not leave the development of programming

systems (bike riding systems) entirely to people who are experts in the science

of computers (the bike making system). And this points to the second reason,

the creative, and therefore artistic, nature of programming. It is a recurring

theme of our culture that, insofar as science is technical in nature, it does not

cope well with human creativity. The requirements of any ‘physical’ system at

a technical level are entirely ‘logical’ - a mechanical system runs according to

the laws of mechanics, the ‘logic’ of mechanics if you like, an electrical one to

electromagnetic principles, and so on. As Wittgenstein pointed out “logic is not

a theory, but a reflection of the world” (Wittgenstein 1955, 6.13), it’s about what

follows “automatically” from what. Any abstract symbolic ‘logic’, therefore, is

merely a representation of ‘mechanical’ action in a symbolic rather than a material

domain. Calling a symbolic system ‘logical’ is making the claim that it functions

only in accordance with a set of laws or rules just as a material mechanical system

does. But any system, material or symbolic, that is driven by a set of laws, in

other words, a logic, does not relate closely to the way that technical systems

interact with human creativity.

Indeed Plato would have banished “the poets” from his “Republic” because

he saw it as having a “technical” system of politics with a “technical” logic of

its own, a true “political science”, that would be disrupted by the participation

of creative individuals in its political functioning. Any technical system that is

meant to operate mechanically or at some level, automatically, by definition, does

not require, or even maybe easily accept, human input - it is designed to be as

automatic as possible. In a sense it has its own modus operandi, its own inherent
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logic. And this, indeed, is what is really meant by the term ‘logic’ - it is the means

by which a mechanical or automatic operation proceeds, no matter what its status

in terms of actual physical existence is. Such systems are not ‘rational’ in the

sense of taking account of their environment, just ‘logical’, and that is precisely

why they have to be ‘programmed’ or directed by a ‘rational agent’ if they are

to result in activity that is ‘rational’, or meaningful in human terms. The very

essence of Alexander’s position is that any human process involves using a method

that although it “is precise, ... cannot be used mechanically” (Alexander 1979,

p. 12).

1.2 Rational versus Logical

The point at issue here is the ‘intent’, or lack of it, in a system. A mechanical

system functions on the basis of a set of laws or rules only, in its own terms there

is no ‘intent’ being expressed in its functioning. It simply functions according to

the ‘logic’ of its mechanics. But this is not the way that human thinking functions

because thinking arises from the requirements of a biological system in terms of

survival. Biological being implies an intent, a purpose, that does not exist at

the level of physical existence. There is no set of rules that can be expressed

mechanically, no ‘logic’, that can guarantee survival as a biological being, this is

a domain with a completely different set of forces that can only be dealt with

contingently.

What is required by a system that ‘intends’ to survive is the capacity to

react rationally to a situation, not logically in the sense of a fixed “automatic”

response. Situations are measured against previous experience to guide reaction

with the ‘intent’ of maximising survival potential, hence the rational status of

action in such systems - the root of ‘rational’ is ‘ratio’ or ‘measure’. This is why

biological systems are rational rather than logical because no logic can account for

context, at least not where context is essentially unpredictable. Any system which

functions according to some ‘intention’ of its own must, perforce, be context-

driven, not law-driven. The word ‘intent’ here does not necessarily imply any

conscious purpose, just the necessity for a system to function in response to the

current state of its immediate surroundings. That is, it functions in accordance

with its ‘intent’, usually expressed as a set of needs of some kind, rather than

functioning mechanically regardless of context.

The intent to survive is most clearly expressed as the making of decisions.

This is so thoroughly embedded in the thinking process, probably deep down

in the almost pre-conscious level (Luriia 1973) that Narciss Ach has called ‘im-

ageless knowing’ (Association GREX n.d., p. 14), that we hardly realize that

we are doing it, and even less do we notice how vital it is in terms of everyday

living. Only when it is missing do we notice the dearth of creativity that results.

There is a form of epilepsy that induces attacks of the kind known as ‘petit mal’
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that result in human “automatism”1, that is, the person undergoing an attack is

unable to make decisions. Complex behaviour of the kind that does not require

making decisions, for example, playing a musical instrument, continues during

an attack, but the decision-making, and, interestingly, the memory2, functions,

are switched off (Penfield 1975, pp. 37-9). In a sense then, thinking, if indeed

it can even be called by that name, has been reduced to the processing of pre-

programmed behaviour, in effect, the execution of a program, and programs are

purely syntactical (Searle 1990). There is no real meaning, no “intent”, being

expressed in purely automatic behaviour, what happens just happens because it

is preprogrammed to happen.

We suggest that this means that the creative power of thinking lies in ‘mean-

ing’ and that it derives from the ability, and the freedom, to make decisions. In

fact Bertrand Russell has defined rationality in terms of making decisions based

on available evidence (Russell 1961, p. 14). Most situations encompass a degree

of uncertainty, so being rational requires subscribing to the most probable expla-

nation based on the currently available evidence while keeping one’s mind open

to new evidence and new interpretations of old evidence (Rubinstein 1975), in

other words, new meaning. Forced to work on purely programmed lines the brain

becomes totally uncreative, and indeed, loses the facility of ‘understanding’. In

fact the ‘mind’ ceases to exist, the epileptic becomes “a mindless automaton”

(Penfield 1975, p. 37). Moreover the lack of a memory trace (engram) dur-

ing a ‘petit mal’ type epileptic attack corroborates that it is ‘higher level’ brain

functioning related to being ‘conscious’, the ‘mind’ in other words, that is be-

ing affected by the attack (Penfield 1975, pp. 40-1). The pure neuronal logic

being expressed by the pre-programmed behaviour, does not allow thinking in

the normal ‘conscious’ human fashion to occur. So forcing the mind to use just

computer logic is probably equivalent to forcing the brain to use just neuronal

logic as in the petit mal situation, and it is most likely this restriction that causes

programming to be so hard. Thinking involves non logical relationships as well

as the logical ones. As Niels Bohr once said to a student, “you are not thinking,

you are just being logical” (quoted in (Harth) 1993, p. xv).

The very point about a problem is that there is a degree of uncertainty in a

situation - you don’t know how to proceed, you are overwhelmed, in a sense, by

the number of possibilities. So trying to make a strictly logical progression is not

always the appropriate response, often you first have to ‘discover’ the premises

or ‘first principles’ on which to base your logic. This means that you have to

1Note that this involuntary form of automatism is not to be confused with the automatism

that drives expertise which is discussed at some length in Chapter 9, although it is interesting to

speculate about how they might be related at the psychological level. That both the expert and

the subject of a petit mal attack are, or can be in the case of the petit mal subject, involved in

what appears to be complex behaviour, that is, exercising a high-level skill, cannot be entirely

coincidental. Some fraction, at least, of skilled behaviour is programmed behaviour.
2This is another synergy with the “automatism” of skilled behaviour, given that skill au-

tomatism is based in memory (see Chapter 9).
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apprehend the form or structure in the situation even if it is not immediately

apparent, and it turns out that, even in the most seemingly chaotic and purely

probabilistic systems, there are causal chains at work, which is saying little more,

in actual fact, than that everything in the real world has a history, that nothing is

free of context of some kind. This contextual “background” underlies the patterns

we see in nature, and sets up the pattern languages that we use to make sense of

the world, as much as it drives the causal chains of events.

In the early 1960s, MIT researcher Edward Lorenz studied the weather’s

unpredictability. To his amazement as he was poring over his com-

puter simulation, Lorenz discovered order amid the chaos. This seem-

ingly disordered planet has remarkable patterns in its weather, geol-

ogy, and chemistry. Computers, mathematical equations, and pho-

tographs have now verified these orderly forms. James Gleick’s Chaos:

Making a New Science tells a fascinating tale of this new field of study.

(Fabian 1990, pp. 30-1)

The point is that there are patterns in nature, that is, order, even in seemingly

disordered states. It is the major premise of this dissertation that solving almost

any problem will involve dealing with the order inherent in a situation and that

it is repeating form, pattern, that tells you about order.

In the activity of programming there is a duality involved that crystallizes

around the two foci that we might call the ‘science’ and the ‘art’ of programming.

If the calculus of probability has a place in programming it is in the ‘space’

between the ‘science’ and the ‘art’ of programming as a partial formalisation of

a personal act. The ‘science’ is embodied in the machine logic and is completely

formal, but the ‘art’ involves the personal expression of the formal rules, and the

act of selecting among them, scientific hypothesising, is subject only to the laws

of probability. The art of programming, then, is the skill in using the science, the

logic, but it cannot be reduced to just those rules of logic, there are a set of ‘rules of

art’ or maxims, as Polanyi calls them, that derive from probability (Polanyi 1958,

pp. 49-50). These are not the same as the strict rules of formal logic expressed

by the program, as “interpreting degrees of probability as degrees of truth is

unintelligible” (Levi 2004, p. 461). Ultimately programming, like living, is about

dealing with the probabilities inherent in a real situation, deciding what you

believe to be the case, it is based on hypotheticals - partial beliefs, perhaps, not

truth-values.

This, then, is the problem of meaning which we discuss at some length in

Section 8.3. The very notion of ‘concept’ is built on ‘intent’ in this sense. So

while concepts are, by their nature, abstractions, there is no sense in which this

abstractedness expresses an essential disassociation from reality. While the initial

association of an abstract token to a particular aspect of reality can be seen as

arbitrary, the token can only function in terms of that association, that is, as a

concept, as long as the association holds. Therefore, a concept is an expression

of the intent to associate an abstract form with a real form, it is intended, if you
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like, to play a causal role in mental life. Any tiger-token is abstract only insofar

that it is a mental artefact, not in its expression in terms of reality, its effect

on behaviour. Any notion of creativity, therefore, exists because of the abstract

nature of a system of tokens; in fact the tokens themselves are, or were, acts of

creation. Tokens, on their own, don’t mean anything, there was an act of creation

in giving them meaning and and it was the ‘intent’ to bestow meaning that drove

the act. Creativity is a particular form of the expression of intent.

As the human mental system is a product of evolution, it must reflect ‘in-

tention’ in this sense. The very notion of ‘symbol’ rests on it “standing” for

something in the real world, carrying a message, and, as Howard Pattee says

about molecules, a sign “becomes a message only in the context of a larger sys-

tem ... called a ‘language”’ (Pattee 1969, p. 8). A symbol is a “mental rep-

resentation”, and representation can be seen as nothing else but the expression

of intention in the sense of carrying some meaning in terms of behaviour. As

Fodor puts it, “‘mental representations’ are the primitive bearers of intentional

content” (Fodor 1998, p. 7). In the end, a system that reflects reality only makes

sense in the context of reality. Its ultimate “purpose” is to enable an organism to

exist in the reality, nothing else, therefore it has to be contextual and it has to

express intention because it drives the organism’s behaviour in the real world, its

organismic “Umwelt” in Jacob Von Uexküll’s term. It is the powerhouse of ratio-

nality, of doing whatever is necessary in given circumstances. And here lies the

conjunction with creativity, because a ‘rational action’ is, by definition, created

to fit the context in a way that no logically decreed (programmed) action ever

can be. Creativity is simply the result of the tension between intent and context.

The result of the development of programming having taken place within the

confines of a technical domain, therefore, is that its nature as a creative activity

has been, if not entirely overlooked, at least given only cursory attention. It’s as

if the activity of painting had been left to the “chemical scientists” who develop

the paint, or literature to qualified grammarians. Realistically, the only input

that should be expected of the experts who design a system that is to be used to

express human creativity, is that they make the technical details as unobtrusive

on the creative process, as invisible to the artist if you like, as possible. It is

almost, if not entirely, a truism, that creative thinking has always to go outside

of the established ‘logic’ of the domain in which it occurs. The really great

breakthroughs, even in science itself, the big creative leaps, are made by people,

like Copernicus, Galileo, Newton, Darwin, and Einstein, who are prepared to

think outside of the strict confines, the ‘logic’, of their domain of interest, who, in

fact, create the foundation for a new ‘logic’. A point, often missed by scientists,

and particularly, I must say, by computer scientists, is that the practice of any

science is always an art.

So the trouble is that, as computer scientists, we have allowed the development

of the art of programming to be driven by the way that the machine proceeds,

its internal, or should that be, infernal, logic, rather than the way that human
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potential, at its most fundamental level, is expressed, creative thinking. If we are

going to succeed better at teaching people to program we are going to have to see

programming as less of a science than an art. A program expresses, most often,

some need in terms of some human or ‘real world’ organisational system, not a

need that exists in the computer system itself, the computer is just the means

of executing the program. This is most clearly apparent when one comes to

judge the “success” of a particular program, and here it is clear that a successful

program is one that meets the needs of the system that commissioned it, not

the system in which it happens to be represented. As perfectly as a program is

designed in terms of the technical aspects of the computing system, it is worse

than a complete failure, in terms of wasted resources, if it fails to do what the

system for which it was designed required of it.

Moreover the confusion about what constitutes quality in a program surfaces

in the nonsense notion of elegance in code. But it is interesting to note that

it is impossible to define ‘elegance’ in terms of the execution of the code - a

supposedly ‘elegant’ program will perform in the same manner as an equivalent

‘inelegant’ version, given, of course, that they are both ‘correct’ implementations

of the specification. This suggests that ‘elegance’ is another informal rather than

formal concept. When a program is said to be elegant what the adjective refers to

is the solution expressed in the code, not the code itself. Elegance can live, surely,

only at a conceptual level, code expresses concepts in terms of the operation of a

computer, nothing more. So the key to programming is conceptual understanding,

and the internal logic of the machine, on its own, can tell us very little about the

creative process that produced it, nor yet, about its quality.

Experience in counseling novices makes it clear that there is only a tenuous

relationship at best between the ability to ‘understand’ an already existing code

artefact, and the ability to program. Moreover, this points to the use of examples

in teaching material. The use of such examples is predicated on the basis that

the code in the example will help novices develop conceptual understanding, and

insofar as this is probably true in terms of the understanding required to read

code, it is patently not true in terms of the understanding required to write code

because the use of code examples in teaching material has been ubiquitous from

day one of instruction in how to program.

The point here is that the code example is written in the logic of the machine,

so the translation off the printed page is from logic form into concept form.

But writing a program from scratch requires translation in the opposite direction

and before one can even translate from concept form, the conceptual form has

to be created. Hence the tenuous relationship between understanding written

code and writing a program from scratch, the two processes are based on quite

different ‘understandings’. One is based on revealing the intent expressed by the

programmer and the other on creating intent.
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1.3 Logic and Creativity

Of course the troubled nature of the relationship between human creativity and

the ‘logics’ of the various systems that we interact with has not gone unno-

ticed, and it is this dichotomy that has driven much of what we used to know as

‘progress’. There is a sense in which much of history is a recounting of the steps

involved in freeing human potential, that is, creativity, first from the immedi-

ate needs of survival, and then from the constraints implied by the systems that

flowed from the previous step - in science this is expressed in the necessity for the

periodic “scientific revolutions”, identified by Thomas Kuhn (Kuhn 1962), where

the previous paradigm (logic) is replaced by a new one.

The first great human tool, was communicative language, but, while it freed

up the potential involved in co-operative action, it introduced the constraints

involved in making meaning communicable. Insofar as language is an extension

of thinking, it formalised the thinking process by introduction of the laws of

discourse, the logic of communication if you like. Thus, in order to communicate,

meanings have to be agreed - conventionally defined, in effect. But more than this,

meanings larger than those that can be encompassed in a single symbol, at first

auditory and later written, need a means of being expressed in a systematic and

predictable way, so the various combinatorial systems - the rules for combining

letters, spelling, the rules for combining single syllables, compounding, and the

rules for combining words, grammar - evolve out of this need. In a sense, syntax,

in all these forms, is the logic of a communicative system.

Fortunately, syntax is not too constraining of human creativity in thought,

despite the best efforts of grammarians and pedants at linguistic engineering, be-

cause the language, as the system to which syntax is the logic, cannot be entirely

externalised; it retains, of necessity, an internal and personal component. Nev-

ertheless, the tension between language as dynamic meaning, and language as a

means of communicating meaning, is a feature of our history. A feature that gives

rise, no less, to the great human tradition that we know as literature - linguistic

art - where expression breaks through the constraints to create meaning that did

not exist before. There is an important sense in which meaning is always and en-

tirely something that belongs to a particular individual, which is why it has to be

conventionally defined in order to enable transmission, and, indeed, this notion

of a sort of personal belonging gives rise, eventually, to the laws that attempt

to confer ownership of sizable chunks of meaning on individuals, to protect, in

effect, the personal component of meaning from the act of communication.

But even here there is an inevitable tension because no individual can commu-

nicate any idea except by means of the communicating system which, by definition

belongs to, or can be credited to, no single individual. In a sense, no idea can be

communicated except through the public domain, so the copyrighting of a par-

ticular collection of ideas violates the public nature of the act of communication.

Thus what the copyright laws represent is the same essential misfit between the
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subjective and objective natures of the communicative act, between meaning and

the system of communicating it. Language, as an enabler of the act of commu-

nication, is an attempt to bridge the gap between individual subjectivities, and

the only way to do this is to, as much as possible, objectify it - that is make it

external, just like a material object is, to both of the communicating subjective

agents. Copyright law juggles the need of an individual to make a living out

of one’s thinking, with the essentially communal nature of so doing. And the

interesting fact is that it accomplishes this paradoxical feat by reusing the laws

of property, which apply to objects, and therefore it repeats and reinforces the

objectification process involved in symbolising meaning.

But this objectification of meaning is a big problem, because meaning is a re-

lationship between things, not a thing in itself. The meaning, mythos, has become

the word, logos, and lost its essential place in the ‘relatedness’ of everything, its

part in the wholeness of the world. If creativity is anything, it is the essential flu-

idity of relationship. By its nature, relationship is not fixed, indeed it may be that

the very notion of time, almost our archetype of fluidity3, is merely an expression

of relationship between objects, the feature exposed by Einstein as Relativity. So

what the systemisation of meaning to accommodate communication does is to

restrict, to a large extent, the freedom, or fluidity, of meaning.

Any system of logic, by its very nature, rests on detailed analysis. If a domain

is essentially predictable then one is saying that everything that occurs in it

follows logically, or is deducible, from a set of premises. But this means that

one needs to be sure that one’s set of premises is complete, that one has detailed

knowledge of the domain. The very force of industrialisation is the power of

making a process predictable, indeed as automatic (un-manual?) as possible

(Francois 1964, p. 30). But there is a commensurate issue of control. In order to

make industrial systems safe, they have to be micro-managed at virtually every

level of detail. This is why faults (bugs?) in large complex systems can be so hard

to diagnose, they can be embedded at a level of detail that is not immediately

apparent.

But the human system, like all biological systems, operates in ecological terms

where goals are achieved by “making the most of robust, reliable sources of rel-

evant order in the bodily or wordly environment” (Clark 2004) of the organism,

not by micromanaging the system at every level of detail. This is not a world of

precision and tolerances, of fine detail, one would would hardly ever inadvertently

cause injury to oneself if this were true, but one of judgement (leaving open the

possibility of misjudgement) and creative action. When one is doing something,

washing up, for example, one is just doing it without any sense of controlling

every aspect of muscular action involved in the task. The human, from infancy,

has learned “by trial and error and practice, which neural commands bring about

3Most of the things that we refer to as ‘flow’ involve a change of some relationship between

objects - time is, in effect our measure of the change in relationship between objects. This idea

is elaborated in Section 5.4



1.4. PROGRAMMING AS RATIONAL ACTION 17

which bodily effects” (Clark 2004) and has practiced them to the extent that they

have become tools for the expression of creative activity. The essence of organism

is behaviour. Organisms are opportunistic not logical systems, they create rather

than execute behaviour.

If it is anything, a particular act of creation is, at its most fundamental level,

a change in the representation of reality within some system that purports to

order it, either physically or symbolically. Any building activity is changing the

environment to better represent some need of human occupancy at a material

level, while any building code is a way of representing the same needs symbolically,

in terms of the goals, implicit and explicit, of the whole of society. By definition

any act of creation cannot be logical in terms of the prior representation as it is

a novel premise in terms of the logic of the representing system. It is a premise

in the new logic that simply was not present in the old one, hence its creative

status.

1.4 Programming as Rational Action

The canker at the very heart of Computer Science, then, the factor that makes

programming, as an extension of the human facility of thinking, so difficult, is the

nature of the machine. In terms of its actual functioning at the level of machine

operation, a computer can be made to do nothing that is truly novel, the inherent

‘logic’ of its operation is fixed. But every program represents novelty in achieving

action at some level of human organisation that was not possible previously. The

creativeness exists in using the fixed logic of the machine to complete a task that

was formerly done in some other fashion, or that was not done at all because it

was too complex, time consuming, or difficult. In an important sense, the creative

force in terms of programming is one that we are familiar with from language -

metaphor. What a program really does is to express meaning in some domain

of interest - if it is accounting software then it is the domain of finance, if it is

typesetting then the domain is publishing, and so forth. But it expresses this

meaning in terms of the larger system utilising the fixed operations of a machine

that in themselves have no meaning in terms of the larger system.

Computing as a science is about the operation of the machine. As a domain

it is about organising activity in virtually every field of human endeavour. In

these other fields the actual details of the machine and its operation, the science

of computing, are irrelevant, yet it is these operations that are used to express

the meaning in the other fields. If it is anything, then, programming is the

art of expressing meaning in systems that have less than nothing to do with

computer science except to use the product of that science, computer systems, to

drive productive purpose in their own terms. In other words a program is pure

metaphor.

Where Computer Science can contribute, and indeed has contributed, is in
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making the creative use of the operations of the machine in these other fields as

easy as possible, and this goal translates into the task of fitting the activity of

programming to the way that humans think. This task has taken the form of

developing ever higher levels of programming languages where higher level means

abstraction from the actual details of machine operation. Moreover, in terms of

easing the task of programming at a professional level, there is no doubt that these

developments have been highly successful. It is not likely that computers would

have achieved the scope of penetration into general human activity, nor the scale

of the tasks automated that they have today, if programming had remained at

machine language level. Nevertheless, developments in programming languages,

basically the way that machine operations are represented to the programmer,

seem not to have eased the task of teaching programming as much as would have

been expected.

In other words, programming systems do not provide an easy mapping from

real world thinking to machine operation, the algorithm that the average person

would use in calculating, say, the average of a set of numbers does not translate

easily into programming language form for a programming novice. Experts de-

velop a programming model that takes account of “ the mismatch between the

subject’s intuitive approach and the rather artificial constraints imposed by the

behaviour” (Mulholland & Eisenstadt 2002, p. 1) of the programming system,

but developing this is the reason for learning to program. This is therefore one of

those classic “catch 22” situations that occur in education - how to help students

leap across these “islands of understanding” (Mulholland & Eisenstadt 2002, p.

3).

[We] found that although the fundamentals of iteration were not prob-

lematic to novices, the contorted mapping to specific language con-

structs was problematic: novices seemed to prefer to apply nested

functions to aggregate data objects rather than cycling through indi-

vidually-indexed objects. All of these studies confirmed our view that

novices employed quite sensible models of the world, but that pro-

gramming language instructors in general (including ourselves) con-

sistently failed in helping novices to map their pre-existing models

onto the specific ones required to deal with programming.

(Mulholland & Eisenstadt 2002, p. 3)

As with other domains, notably mathematics, where the representing notation

is formal and strictly logical in operation, learning to use them is seen as diffi-

cult. It is said that curriculum is essentially that which is taught in schools, both

intentionally and unintentionally (Groundwater-Smith et al 2001). But it fol-

lows from this extended notion that the certainly unintended outcome that most

students come to believe that programming is difficult is an aspect of the pro-

gramming curriculum, the “hidden curriculum” in Groundwater-Smith’s sense.

Moreover, representing the intended component as the ‘official curriculum’, and

the unintended effects as the ‘hidden curriculum’, is thus a way of counterposing
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the ‘expected’ results of instruction with what actually happens. In effect, the

‘hidden’ and ‘official’ curricula are in a dynamic inverse relationship to each other

and the relationship is telling us something significant about our pedagogy. The

fact that many universities feel that they “have to ‘hide’ the maths components of

courses, in case it puts potential students off” (Sheffield Hallam University 2002)

demonstrates the pedagogical significance of this relationship as most students of

mathematics similarly come to believe, learn, that maths is difficult.

The hidden curriculum, as “an experiential rather than physical phenomenon”

(Arizona State University 2000) is thus, to some extent, an expression of the ‘psy-

chological field’ of students. Goals, expressed in and by the official curriculum,

are modified during the learning experience (hidden curriculum) to become the

actual outcomes achieved by means of the ‘psychological field’4 of the students.

This is an important idea in educational thinking because it converts the notion

of the curriculum as a whole from a static document conveying information about

what is to be taught in the classroom to a dynamic element in the overall edu-

cational process. It explicates the students’ state of readiness, a product of their

‘psychological field’, to absorb the teaching material and methods that have been

applied to them. In effect, it ‘measures’ the effectiveness of the curriculum as a

whole, and in so doing presents us with a view of the students’ status as learners.

The fact that both of these areas, programming and mathematics, involve

using a formal system of logic to express meaning, that is, to create new meaning,

and that both are seen to be difficult to use, and more particularly, difficult to

learn, cannot be entirely coincidental. From this it appears that the job of the

official curriculum is to attempt to counter the belief that these activities are

difficult that derives from their nature as logical systems. It would seem that

the effort to disguise the strict logic of the machine behind programming systems

4The ability to acquire a skill like programming relates more to the possession of a complex

nervous system than to any particular features of it. Any event or process in a person’s life

is guided by a multitude of factors that form a sort of psychological field, where a ‘field’ is

a totality of coexisting mutually interdepedant elements, in which her life takes place. This

‘life space’ is the psychological environment and is what we mean when we refer to a persons

‘psyche’, that complex web of needs, desires, motivation, mood, goals, anxiety, ideals, and so

forth. The topology of this space is the result of personal history and determines how the

person will react to new experiences. “Any behaviour or any other change in a psychological

field depends only upon the psychological field at that time” [emphasis in original] (Lewin 1951,

p. 44-5). In understanding human behaviour this ‘psychological field’ is more important than

the more physically or materially ‘real’ biological and physiological factors. This implies that

social setting is just as ‘real’ as the empirical ‘physical’ factors of a person’s environment. From

the first day of life we are objectively part of a social ‘mileu’ and would die in quick order

if we were to be removed from it. So the ‘subjective’ psychological world of the individual,

the ‘psychological field’, is influenced by social relationships right from the start. This is why

children are extremely good at picking up fine nuances of mood, and in particular of emotion

in adult speech. Preverbal children can discern and discriminate between sounds expressing

approval, disapproval, happiness, and anger ((Fernald 1993) (Haviland & Lelwica 1987)) in

their environment from a very early age, and are capable of producing sounds with these

characteristics (Joseph 1982).
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that are closer to natural languages has failed in curriculum terms, even though

it seems to have been highly successful at the professional or industry level. This

tells us that, as a metaphor for representing the relationship between thinking

and the operations of a machine, ‘language’ has taken us as far as it is going to

in making programming easier to learn.

It is interesting, however, that the recent transition from procedural to object-

oriented programming languages was, at the very least, an attempt to take a par-

tial step away from the ‘language’ metaphor. The idea that the task of program-

ming can be seen in terms of objects, characteristics of objects, and relationships

between them, is saying more than “programming is communicating”, it is saying

that “programming is thinking” because the object-oriented view of the world is

simple metaphysics. That is, it is an attempt to implement the way that we relate

to reality rather than the way that we communicate, it is based on the sort of

thinking one would do in solving a problem in the ‘real world’ rather than that

involved in communicating.

One often hears it said that Simula was the first object-oriented programming

language, but this is, as a matter of historical fact, an oversimplification. It is

true that Simula introduced the concept of class but the entire language was not

built around the class concept in the way that Smalltalk is, and, strictly speaking,

Simula is thereby an ancestor of object-oriented programming language not itself

one (Horowitz 1983, p. 409). What is significant about this is the conjunction

of the object-based nature of Smalltalk with its pedagogical intent, and, in this

respect, it is interesting how the developers of Smalltalk discuss what it is that

they thought they were doing in designing a programming system for children.

The first line of Alan Kay’s abstract of a paper outlining the early history of

Smalltalk actually states that they saw themselves as applying a pattern from the

real world - the pattern of biological organisation.

Most ideas come from previous ideas. The sixties, particularly in

the ARPA community, gave rise to a host of notions about “human-

computer symbiosis” through interactive time-shared computers, graph-

ics screens and pointing devices. Advanced computer languages were

invented to simulate complex systems such as oil refineries and semi-

intelligent behavior. The soon-to-follow paradigm shift of modern per-

sonal computing, overlapping window interfaces, and object-oriented

design came from seeing the work of the sixties as something more

than a “better old thing”. This is, more than a better way: to do

mainframe computing; for end-users to invoke functionality; to make

data structures more abstract. Instead the promise of exponential

growth in computing /$/ volume demanded that the sixties be re-

garded as “almost a new thing” and to find out what the actual “new

things” might be. For example, one would compute with a handheld

“Dynabook” in a way that would not be possible on a shared main-

frame; millions of potential users meant that the user interface would
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have to become a learning environment along the lines of Montessori

and Bruner; and needs for large scope, reduction in complexity, and

end-user literacy would require that data and control structures be

done away with in favor of a more biological scheme of protected uni-

versal cells interacting only through messages [emphasis added] that

could mimic any desired behavior.

Early Smalltalk was the first complete realization of these new points

of view as parented by its many predecessors in hardware, language

and user interface design. It became the exemplar of the new com-

puting, in part, because we were actually trying for a qualitative shift

in belief structures - a new Kuhnian paradigm in the same spirit as

the invention of the printing press - and thus took highly extreme

positions which almost forced these new styles to be invented.

(Kay 1993, p. 69)

This is almost saying that a programming system needs to be more than a

compiler. Its pedagogical flavour is only to be expected in a system designed

explicitly for children, but the fact that there are are major Platonic overtones

as well, as Kay goes on to elaborate, comes as something of a surprise.

Smalltalk’s design - and existence - is due to the insight that every-

thing we can describe can be represented by the recursive composition

of a single kind of behavioral building block that hides its combination

of state and process inside itself and can be dealt with only through the

exchange of messages. Philosophically, Smalltalk’s objects have much

in common with the monads of Leibniz and the notions of 20th cen-

tury physics and biology. Its way of making objects is quite Platonic

in that some of them act as idealisations of concepts - Ideas - from

which manifestations can be created. That the Ideas are themselves

manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of

Manifestation-Idea - which is a-kind-of itself, so that the system is

completely self-describing - would have been appreciated by Plato as

an extremely practical joke.

(Kay 1993, p. 70)

Unfortunately, implementing, in a compiler, the way that we see the world is

almost certainly impossible, just as our attempts to implement natural languages

in compiler form have proven difficult. Moreover it is probably true to say that

getting close to natural forms of linguistic expression in a compiler interface is

likely to be a lot easier than getting close to expressing a metaphysic. We hardly

do that well even in natural language! In the end a computer operates according

to the logic of the computer system, not according to its relationship to the world

as a rational agent does.

Nevertheless the underlying idea, that “programming is thinking”, has to be

fundamentally correct. As teachers of programming we are closer to being educa-

tors in Arts rather than Science. After all, if the attempt to teach the higher level
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programming languages made us more like natural language teachers than science

teachers, then the attempt to separate the thinking from the coding should make

us more like teachers of philosophy than teachers of (software) engineering. For

that is what the introduction of the pattern language idea into computing re-

ally represents, an attempt to separate programming into two distinct activities -

thinking about the problem and its solution in conceptual terms, design, and cod-

ing the conceptual solution in the logic system of the machine, implementation.

In teaching programming we are essentially teaching humans to solve problems

that exist in the real world with a particular tool, not to understand how the tool

works. This makes us philosophers, not scientists or engineers, nor even logicians

- we are teaching people how to think. The job of solving a problem in the real

world is the job of a rational agent not a computer scientist, we are generalists

not specialists.

But, if anything, this generalist nature of programming, problem solving, is

a huge advantage because the essential nature of human beings is itself general-

ist in flavour. Our lifestyle is based on solving problems, on adapting to novel

situations, on expressing creativity. Given the correct approach, an appeal to

our native “intelligence”, the problem of teaching people to program is not in-

surmountable. Of course, this does not mean that it will ever be easy, but the

real problem is not the teaching, but finding the optimum way to teach, the right

way to address the mind. So the core problem is identifying those features that

make us, as a species, successful generalists, experts at solving problems, creative

in spirit, and, here, there is only one possible candidate - the way that we think.

From the difficulties we see in the current pedagogy it is clear that humans

do not think logically, we are not programmed automata, we are organic beings

living in a real world. The striking thing about life is that it is full of patterns in

the sense that patterns are collections of generalised features. By this we mean

that, given a particular concept to think about, say “tree”, one is very unlikely to

think of a particular example of the concept, a particular tree; rather the mental

“image” will be short on particular features and strong on those features that

are general, common to all the objects we would classify as “trees” - features

like trunk, branches, leaves, bark and roots. This is hardly surprising, because

a particular tree is rigidly defined by its features just as a computer program is

rigidly defined by its code. In other words, an actual tree is, in fact, a sort of a

program, specified genetically. Reproducing it abstractly, in the brain, is quite

beyond our means. Even when prompted to think of a particular tree, we will

still only be able to represent it in the most general way - the tree with the broken

branch, the one near the lake, and so on.

Patterns are important as the basis for concepts because they free the mind

from any detail that is irrelevant to our current purpose, that does not figure as

significant in the immediate context. Because our concept for ‘tree’ has to encom-

pass entities as diverse as palm trees and Araucarias it needs to be generalised.

Indeed, for most purposes, it does not even matter that we are able to correctly,
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or should that be, conventionally, define every type of tree under our concept.

And this point relates to what is a fair question arising from the first sentence in

this paragraph: aren’t then patterns the same thing as concepts? Patterns are

not the same thing as concepts because the concept that a person has about a

particular aspect of experience will depend on the needs of that person in terms

of relating to that aspect of the world.

So, to revert to our ‘tree’ example, for most people the concept of ‘tree’ will be

based on few patterns, maybe even just a single pattern. This is because they do

not require the ability to use the concept in a precise way. The ability to identify

an object as being a tree, rather than a shrub, say, to any degree of precision, is

not an important factor in their ordinary lives. However, if there is some purpose

for them in being able to identify trees to some level of botanical classification,

then their concept of tree will need to be capable of dynamic refinement, that is,

it will need, in fact, to consist of a pattern language. For that is the very purpose

of a pattern language - to empower the process of refinement of a concept to

greater and greater degrees of precision, in terms of the task at hand. That is,

“there are levels [of abstraction] which are more significant in the problem space,

and useful to the solution design than others” (Fincher 1999b). And, one might

add, useful at different stages in the design process.

In pattern language terms we say that each pattern in a language adds struc-

ture to the pattern above it in the language and thereby refines our ability to

use the concept for the purpose for which we need it by ‘adding structure’ to it.

This refinement aspect of pattern language is the subject of Chapter 7, where the

concept that is being refined, the pattern to which structure is being added is

‘program’. In writing a program to do a particular job one is simply, at a concep-

tual level, redefining the ‘program’ concept to encompass the particular features

required by the program that does the job. So the reason that a particular person

needs a more structured understanding, a pattern language rather than a single

pattern, of the concept ‘program’, which, after all, is a concept that virtually

everybody in a modern society has in some form, is that the person is learning

to write programs, not just to use them5.

Our use of concepts is so fundamental that we usually overlook the fact that

they were ‘created’ out of some situation where current knowledge was no longer

adequate to explain it. So, for example, we commonly use the concept ‘dinosaur’,

and can hardly envision not having it (Colbert 1971, p. 34). But there was a

time when no such idea existed - the concept of ‘dinosaur’ had to be invented

(Colbert 1971, p. 43). The significance of this ‘creativity’ at the very basis of

5So, for a casual ‘user’ of computers the concept ‘program’ probably consists of a simple tree,

with arcs leading from the root node, ‘program’, to a few common applications, ‘spreadsheet’,

‘word processor’, ‘web browser’, ‘calendar’, ‘calculator’, and so forth. Most such casual users

probably have only the haziest idea that the operating system that they interface with is itself a

series of programs, let alone that a programming language is, in fact, a program that translates

the programming language into machine code and that using one involves a dynamic refinement

of the ‘program’ concept.
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thought cannot be overstated. It demonstrates that ‘creativity’ is a function of

thought, not simply an attribute of the individual thinker. We were, in effect,

‘forced’ by the situation to create the concept by the new patterns of experience

arising from the discovery of extremely large fossilised bones and footprints that

quickly outgrew the explanations of the bones of giant humans (Colbert 1971, p.

17) and the footprints of “Noah’s raven” initially given to them (Colbert 1971,

p. 52). If the ‘stuff’ of which our thinking process is made is itself a product of

a problem arising out of discovery (a pattern) like this then it is impossible to

explain the human condition in terms other than pattern language. Without the

means to assemble the facts of experience into conceptual form, nothing of the

human condition would be possible.

So perhaps the most significant thing to say about patterns is that they are

so much a part of the very way that we think that we are genuinely unaware

of their presence. Who is aware, to continue with the ‘tree’ example, that the

ability to distinguish one type of tree from another involves the use of a pattern

language? Indeed we often react with surprise when patterns are pointed out to

us. For example, the approximately spherical shape of stars is just something that

we assume, even though, in fact, we have no direct evidence that any star, apart

from our own Sun, is actually a spherical approximate. This is quite striking when

you think about it. Here we are, given one solitary example, populating a whole

universe with “spherical” star objects when we cannot even resolve them in our

observing instruments as anything other than points of light in the darkness. Why

does no-one expect to eventually discover hemispherical, rectangular, conical, or

even single point stars elsewhere?

The point is that “sphere” is simply a pattern in our experience of three

dimensional fluidity. Freed, even partially and temporarily, from the effects of

the gravity of our planet and of contact with solid surface, as in a free-falling

drop of water, a quantity of fluid material will resolve the various forces acting

on it by forming a number of “spheres”6. Even before we knew of all these forces

in any detail, molecular cohesion, surface tension, gravity, exclusion and the like,

sphere was simply a pattern of our experience of fluid substance. This pattern

even came to explain the “spherical” shape of the planets, including our own,

as we discovered the planetary origin in gaseous and liquid form. So “sphere” is

simply our pattern for realising “natural” form in substance that is, or has, at

some stage, been in, a fluid state in a ‘neutral’ gravity context. The discovery

of a cube-shaped object in another stellar system would scream “consciously

manufactured” at us! It does not fit our pattern for ‘planet’. Rather it fits our

‘artefact’ pattern.

Considered carefully all knowledge is structural in nature. A sequence of

events in any causal sense is purely linear in the temporal dimension, but a

straight sequence of cause-event pairs, each event acting as the cause of a subse-

6Another example of this pattern is “bubble”, where a fluid, usually a gas in this case, is

“contained” by a membrane of some kind.
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quent event and so on, is rarely, if ever, indeed, sufficient in terms of explanation.

There are effects other than the direct cause that impact on the unfolding of each

event and these arise from the connections between entities in the world, that is

the structure of the system as a whole. Therefore, there is no understanding of

the world, no knowledge, that is anything other than structural in nature. Even

a sequence of bits derives its ‘information’ content through the relationships be-

tween subsets that are not apparent in a simple linear reading of the sequence - it

is patterns in the sequence that carry any ‘information’, not the bits themselves.

The essential difference between the way that a computer works and the way

that the human mind works lies in the means by which sequence is treated. To

a human, experience, that is, a sequence of impressions, is ‘read’, processed, if

you like, at the pattern level rather than at the level of the individual events

that contribute to the the impressions. Most real world situations are simply too

complex, there are too many things happening either simultaneously, or so close

to it as to be effectively simultaneous, for us to be able to function as strictly

sequential processors. Meaning is not how we interpret reality, it is how we

experience it, the patterns are fundamental, not the strict sequence of objective

‘events’ that constitutes experience. Given the need to reconstruct the strict

temporal order of an experience, we struggle - the experience, more often than

otherwise, makes sense because of the various ‘meanings’ it carries, its ‘structural’

order, not its sequential order.

Therefore the task of programming a computer is to set up structural rela-

tionships in a device that processes sequentially. That is, unlike the human, the

patterns are not ‘read’ directly, the individual bits are ‘read’ as a simple sequence

and then stored as subsets, and it is from the collection of these subset units, that

patterns meaningful to humans are derived. That is, meaning and structure arise

from a direct ‘reading’ of the sequence by the machine, this is an entirely mechan-

ical and logical process. The job of programmer is therefore to put the patterns

into the sequence, to ‘order’ the mechanical functioning of the machine so that

it fulfills a task that is meaningful to the user. This is the equivalent of having

to deal with real life experience at the individual event level, it is just not what

we do as functioning human beings. Our whole existence revolves around the

experiencing and comprehending of meaningful patterns, of structuring reality in

our mind as it happens, not just experiencing it raw.

So pattern is the absolute basis of our thinking. Before we can even work out

the details of the various systems that cause the patterns we see in life, the logic,

if you like, behind them - the forces that are “resolved”, and the rules and laws

that drive the “resolution” - we can detect and use them in structuring our lives.

We detected, for example, metal, as a pattern of material substance long before

we knew anything about the details of atomic structure, and, indeed, for most

of us, our everyday experience of metals occurs at this level to this day. Our

thinking is built on pattern, not detail. One doesn’t have to know why metals are

mostly ‘cold’, ‘hard’, and ‘unyielding’, and even knowledge of the exceptions to
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that ‘rule’ do not throw our mental picture. For that is the strength of a pattern.

It doesn’t have to be logically consistent, or even definable in complete detail, it

just has to work in helping us cope with the contingencies of life, in patterning our

behaviour, in structuring our thinking. Patterns are how we think! It is patterns

that give concepts the dynamic nature that static symbolic form struggles to keep

abreast of, and it is patterns which drive the creative aspects of thought.

1.5 The Pattern of this Thesis

The pattern for the rest of this thesis is an examination of pattern language in

the context of learning to program. This examination is attempted mainly at a

theoretical level because it is not clear that the potential benefits of the pattern

language idea can be fully realised until the full import of Christopher Alexander’s

ideas are assimilated, as he himself has pointed out (Alexander 1999). We have

avoided, as much as possible, giving examples of particular patterns, and where

we have presented pattern languages we have kept them as general and as simple

as possible. Our intention is to expose the pattern process as much as possible,

and the particular examples that we use are directed to this end. So, for example,

the material used in the step-through of the pattern process in Chapter 7 is not

meant to be construed as an exemplar of pedagogical presentation, it is merely

there to drive the process of deriving the solution. In any realistic pedagogical

context, the patterns, pattern languages, and example problems presented to

students would need to be developed to that context. This, after all, is the main

argument that we present here, that, in the end, everything is context - the

creative power of mind is relationship, not detail.

It is in this sense that the difficulties that people encounter in leaning to

program are precisely an expression of the mismatch between the way that normal

human thinking proceeds and the logical rigor of computer programming. If this

impasse is to be avoided then it will be done by bringing programming closer to

normal human thinking patterns. Chapter 2 is an overview of prior work that

relates to the use of pattern languages in learning to program. The third chapter

attempts an examination of the roots of creativity in experience, and Chapter 4

proposes that ignoring the basic fact that the practice of any science is, in fact, an

art, is the source of the difficulties in teaching all scientific disciplines. Generating

novel insight is the font of all creativity, and Chapter 5 argues that language is

the means of doing this, and that, therefore, language is fundamentally about

understanding, not communication. This is why pattern language is so vital in

informing any creative activity, and Chapter 6 examines this connection. Chapter

7 works through a simple programming problem to demonstrate how a pattern

language drives the process of building the solution at the conceptual level, and

how it contributes to programming pedagogy in the wider sense. In the early

chapters, the notion of the “epistemic disjunction” between subject and object

was introduced, and Chapter 8 relates how the problem of meaning impacts on
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the psychology of symbolic behaviours like programming. Crossing the epistemic

gap, creating meaning, is the fundamental psychological issue in terms of learning

to program and Chapter 9 examines the use of ‘semantic memory’ in addressing

the cognitive overload caused by many creative activities. Although the main

thrust of this project has been in developing a theoretical basis for the use of

pattern languages in programming instruction, we did attempt three trials of the

theory, and these are discussed in Chapter 10.

So the essence of our argument is this. Life is experienced - even perception

itself is finally an artefact, constructed from, not just a copy of, ‘reality’ (Piaget

1972, p. 27). After all, “reality and world ... are just titles for certain valid unities

of meaning” (Edmund Husserl quoted in (Crosson) 1967, p. 127). It is out of

experience that the human property of meaning arises through the apprehension

of the recurring features we perceive, the common patterns of life.

[No one can] deal in the unique fact, because facts and events require

reference to common experience, to conventional frameworks, to (in

short) the general before they acquire meaning. The unique event is

a freak and a frustration: if it is really unique - can never recur in

meaning or in implication - it lacks every measurable dimension and

cannot be assessed. ... Facts and events (and people) must be indi-

vidual and particular: like other entities of a similar kind, but never

entirely identical with them. That is to say, they are to be treated as

peculiar to themselves and not as indistinguishable statistical units

or elements in an equation; but they are linked and rendered com-

prehensible by kinship, by common possessions, by universal qualities

present in differing proportions and arrangements.

(Elton 1969, p. 23)

It is from this fundamental aspect of life, the meaning that is derived from

relationship, from patterns of experience - pattern language - that the commu-

nicative form of language develops. but in order to make this transition meaning

has to be artificially, and therefore conventionally, tied to signs. In a sense the hu-

man species has created a new world, a world of symbols, a virtual world in which

life is not experienced but symbolised. So there is a true gap here between the

living form, represented by mind and imagination, and the symbolic form of sign

and syntax - Howard Pattee calls this split the “epistemic cut” (Pattee 2001b).

Coding uses the second of these, symbolic form, and it therefore resides in the

second virtual world, not the real world of life, there are no meanings, acquired

from experience, for the novice here. Ultimately there is only one way to acquire

meaning, and that is through experience, and only one form in which it can be

directly represented, pattern language.

Of course, the epistemic split between syntax and semantics, symbol and

referent, observer and observed, real and virtual is essential, it is the source of

the power of abstraction - without it symbolisation is vacuous, “abstractions do

not designate phenomena at all, but serve to describe them” (Langer 1962, p. 5).
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When physicists (or other scientists) use mathematics to describe

events, they tacitly assume that the formal syntactic manipulation of

the mathematical symbols they are using are not in any way causally

influenced or restricted by physical laws (’Semiotic interactions do

not take the place of physical necessity’). On the other hand, when

measuring the initial conditions for a particular system, the symbolic

results (the semantics) of the measurement must be assumed to be

directly caused by the physical state of the system and not in any

way influenced by the formal syntax of the mathematics.

(Pattee 2001a, p. 350)

But this epistemic irreducibility leaves us with the real difficulty of what might

be called the “rational relation” between symbolic and real form, the problem

of ‘meaning’. Indeed, it is perhaps, the cost of the process of abstraction, the

cognitive overhead involved in establishing and maintaining meaning (Blackwell

et al 2002) that lies behind the pedagogical problem in programming as we discuss

further in Chapter 8.

The novice struggles with the symbolic form, programming language, because,

to the person with no experience, the symbols are mere signs, they carry no mean-

ing. The operations of the symbolic system are, in effect, reduced to syntacti-

cal combination, but there is no scope for creativity in non-semantic operations.

What the process of learning to program is, then, is the struggle to acquire mean-

ing from experience, to develop pattern language from using the purely symbolic

form. Learning to program is a struggle because this is a reversal of the usual

human progression, from pattern language, meaning, to symbolic system, com-

municative form - we understand before we communicate. Many of the negative

phenomena that we observe in the programming situation derive from this re-

versal. Firstly, programming bugs are a manifestation of trying to communicate

with the compiler on the basis of a ‘misunderstanding’. Secondly, the failure of

many programming projects is caused by the failure to ‘understand’ the users’

requirements before the coding process starts. And, finally and most pertinently,

expert programmers rely on knowledge, understanding, that they find difficult to

transmit to others, precisely because they have acquired the pattern language of

programming without ever using it consciously, or even being aware that they

have it.

In other words the expert has constructed “meaning” out of experience, the

only way that “meaning” can be acquired, to be sure, but she has done it through

learning to communicate with a compiler rather than by learning to understand

directly. Learning to understand first has to be easier, and this means that

learning should be based on pattern language not programming language. All

true understanding is conceptual in nature, so the novice should be presented

with the required knowledge in conceptual form, not just its symbolic form. What

we combine when we create are meanings, not symbols, the symbolic form merely

represents the new meaning that has been created, it is post facto, and, as Dijkstra



1.5. THE PATTERN OF THIS THESIS 29

points out this often leads to the need to invent a new language to talk about a new

concept (Dijkstra 1982, p. 342). And just as it is difficult to create new meaning

purely by manipulating signs, so it is with the creation of new understanding.

Learning is the creation in the learner of new understanding, so, as programming

without understanding is difficult, so is learning anything without understanding,

in fact, if anything, doubly so in the case of learning programming. The creation

of meaning out of experience, that is, understanding, is the very essence of the

human condition, and, as we attempt to show in Chapter 3, it is driven by pattern

language.

So, in many respects this dissertation is a plea for a theory of programming.

We believe that such a theory is required in order to provide a firm foundation for

the development of a comprehensive philosophy around the activity of computing.

Any attempt to develop a theory of programming must begin with the pedagogy of

programming because it is in this context that the difficulties that programming

causes the human mind are thrown into sharpest relief. The development of

the modern computer has given us an unparalleled opportunity to explore the

interface between mind and logic but the opportunity is currently being missed

by the insistence that programming remain a component of Computer Science.

Programming is a fundamentally creative activity, it takes place in the mind,

not in a computer. The manifestation of the activity that concerns the machine,

the execution of the program, is merely the end result of the activity, and what

the difficulties thrown up by programming tell us is that “it is not only the result

which is important, but the process too. Not only the form of the results, but

the form of the path that led to them” (Alexander 1964, p. 133). It is clear that

the path, the activity of programming, has very little to do with the science of

computers because the problems that it causes all occur in the mind and in the

classroom.

So, although everyone involved in education agrees that “much of what we

do as educators is devoted to conveying to the student the cognitive maps that

we use for problem solving in a discipline” (Hiltz & Turoff 2005, p. 62) this

is simply not reflected in everyday teaching practice. One can search high and

low through most of the material used in instruction for the presence of any such

structured representations of the basic knowledge involved and rarely find it. This

means that the conveyance “to the student of the cognitive map” is not being

done explicitly and the educator, therefore, must be relying on some principle of

‘osmosis’.

The implication is that from the experience of learning to code students “will

learn complex, transferable skills (analysis, design, problemsolving)” (Fincher

1999a, p. 5) rather than regarding “the acquisition of [these] skills as the ul-

timate objective” (Fincher 1999a, p. 5) of instruction. Somehow the correct

representation for solving problems, the “cognitive map”, is developing, “magi-

cally”, in the students’ heads from the linear presentation of largely unstructured

knowledge that we use in instruction. We happen to believe that this is not only
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unlikely, but that it is the lack of such explicit representations of the structure of

knowledge that makes the creative application of knowledge nigh on impossible

for most students. The almost casual acceptance of the ‘osmosis theory’ of skill

acquisition is one of the main arguments for a philosophical examination of the

bases of programming education on the basis that “what seems commonsensical

and unquestionable, and cannot for practical reasons be seriously doubted, may

nevertheless be worth doubting” (Gellner 1968, p. 99).

Of course the appropriate cognitive map will develop over time, but this is

a slow and laborious process. The trouble is that, ultimately, any view of the

way that humans function in the world depends on memory. Everything that

happens occurs in the present, so nothing that happens to us can project into the

future except through the agency of memory. Without such storage of some kind

of a representation of experience no learning of any kind is possible. Therefore

we depend entirely on the way that experience is translated into useful knowl-

edge through the use of memory. It would seem to be a given that, initially,

experience is handled linearly, that is, stored as “episodic memory” in Tulving’s

sense (Tulving & Thompson 1973). The trouble with episodic or linear storage

of experience is that, as a driver of future behaviour it can be seen to be capable

only of reproducing the same sequence of events. That is, it would be entirely

mechanical in functioning because the form of an episode is a sequence of events,

one following, apparently logically, from the previous event.

But we know that this is not how humans behave, so the episodic memory

which is useful only in terms of a mechanical or almost automatic response to

novel situations must be transformed into a form useful in terms of the type of

behaviour that we observe in humans. There is really only one way that we can

envisage this transformation occurring, and that is the structure of the memory

must change from the straight linear representation of experience to some other

form that makes it more general and thereby more flexible. In other words we

create meaning out of experience, and the change in the structure of the knowledge

in memory must reflect this, must make the brain a processor of meanings rather

than a processor of raw memory events. Episodic memory is converted into

semantic memory, a concept that is explored in Chapter 9, and this is a change

in form, a structural change that makes memory non-specific, that is generic.

These so-called “Generic Knowledge Structures” (Graesser & Clark 1985, p. 32-

3) are the cognitive maps of problem solving behaviour. All the generalising

power of human thought comes out of this semantic structure. I can never know

from direct experience, for example, that the Moon has another side, but I can

infer it from my accumulated general experience of spherical objects. It is this

generalising factor that converts memory into knowledge, that makes memory

useful. Without it memory would be little more than a mechanism for replicating

past experience exactly.

And, as we have seen, there is almost no explicit acknowledgement in peda-

gogical material of this essential structuring of knowledge. Students are left to
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their own devices in developing it. There just has to be a better way of assist-

ing the development of cognitive structure, and such a way is suggested by the

pattern language concept. Left to their own devices novices will concentrate on

code-level information in lieu of the higher level conceptual structure that experts

possess (Davies 1993). But this is a qualitative difference that will be difficult

to bridge as is demonstrated by the fact that there is a stage in the develop-

ment of expertise where the number of errors made temporarily increases as the

restructuring of the knowledge base occurs (Lesgold et al 1988) (Davies 1994).

Therefore providing novices with a representation of the knowledge structure, an

evolving pattern language, right from the start should be a way of minimising

this qualitative difference.

In fact, if one examines the very idea expressed in the phrase “cognitive maps

that we use for problem solving” closely, it is apparent that something important

is being indicated here. The purpose of a map is to give direction, to find one’s

way around, in this case, in a domain where a problem exists. But go back

one step in the construction of this metaphor, that is, to the idea of a map of

physical terrain, and consider that mental versions of maps of physical locations

(‘mental physical locality maps’) take a great deal of effort and time to build.

Moreover, even given that sufficient time has been invested in one’s mental image

of one’s normal ‘haunts’, it is clear that such models are limited in the detail and

reliability of their representation of physical space. As soon as any fine detail

or non-routine travel is required we invariably resort to an external, that is, a

non-mental map.

But even more telling is what we do when we are asked, off the cuff, to give

directions to some stranger to our district. Initially we attempt to give our advice

verbally, but if the instructions are at all complicated we either end up confusing

ourselves to the extent that we realize that we are not helping our lost visitors or

realise from the start that this is the likely outcome of what we are attempting.

So we respond by resort to an external representation of the locality, a physical

map - if necessary one drawn from memory, the proverbial ‘mud map’. In other

words, our experience of the very source of the ‘cognitive map’ metaphor tells us

two things - that maps inform a process, and that maps are best communicated in

written, that is external, visible, form. It is clear that when you are instructing

some other person’s travel (a process) through territory that is unfamiliar to them

an external representation of your own knowledge is virtually indispensable. And

if this is so for traveling in physical space then it should be obvious that providing

directions for any process through any conceptual domain similarly requires the

map to be drawn.

Yet, in programming instruction we never draw the map. By its very nature,

programming compounds this issue because the knowledge involved in instruction

is entirely pointless apart from its use in the activity of programming, one only

learns this stuff in order to write programs, it carries no other possible benefit

as knowledge in its own right. So programming is particularly difficult because
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it depends always on that vital ability to apply, rather than to just have, knowl-

edge. In the end, the difficulty of programming is likely to be illuminated more

thoroughly by philosophical rather than empirical methodology because there is

little in the way of measurable factors involved.

Even the questions about the execution of a program come down, ultimately,

to a subjective judgement. So, for example, measuring the quality of a program

devolves to the question “does it meet the specification of requirements?” But

this, in turn, just raises the question about whose interpretation of the require-

ments is to be used as the standard for measurement. Most of the so-called

“crisis” in software engineering turns exactly on this question, because the prob-

lem can only be expressed in informal terms, but its solution will be expressed

in formal terms - that is, precisely defined. The point is that the translation

from the actual real world problem in the domain of interest to its solution in

the form of a computer program is the creation of a metaphor, a journey from

the actual to the ideal, the concrete to the abstract, the writing of the actual

code is merely the final stage translation from the subjective understanding to

an objective realisation. Like all journeys this is better understood as a process

of becoming rather than a state of being, and as with all journeys one needs a

map showing the relationship between the topographical features, not just the

context-free knowledge that they exist.



Chapter 2

Prior Art

Out of intense complexities, intense simplicities emerge.

Winston Churchill

Concept maps are visual graphs, consisting of nodes, which represent

concepts, and arcs, which represent relationships between the concepts.

Concept maps are used in a wide variety of disciplines because of their

ability to make complex information structures explicit. There are a

wide variety of concept mapping languages ranging from informal to

formal; all share the same fundamental structure (nodes and arcs),

but they vary in many ways, including degree of formality (typing),

allowable component types, component graphical attributes, inclusion

of contexts, and miscellaneous constraints.

(Kremer 1997, p. iii)

2.1 The Philosophy of this Project

The idea of considering the potential for the use of the software design pattern

concept in introductory programming courses necessarily involves consideration of

issues in three broad areas, computers and computing, education, and psychology.

Therefore research has ranged widely over issues in these three disciplines. But,

more significantly perhaps, it is the nature of a project that encompasses many

diverse areas of interest, to become highly philosophical in spirit. It is simply

impossible to talk about the difficulties that students encounter when attempting

to develop a skill that requires thinking in abstract terms without dealing with

aspects of knowledge from many domains. Attempting to understand how people

acquire a complex skill like programming implies taking a position on questions

like how people see the world, how their particular viewpoint impacts on their

ability to solve problems successfully, what the relationship between reality and

knowledge is, and so on. So, in our case, as well as the core disciplines of computer

33
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science, education, and psychology, issues in science generally, epistemology, and

even metaphysics come into the equation.

Some of this might seem to be irrelevant, even perverse, in terms of ‘hard’

science, but the truth is that everyone, even the most formal mathematician

is, in reality, working within some philosophical framework even if they don’t

realize that they are so doing. The claim that some people make to a ‘formalist

philosophy’, if such a thing can even be said to exist, leaves unanswered the

question as to why it should be that their particular ‘formal game’ invariably

appears to ‘explain’ aspects of the world in a way that most formal games, such

as Chess, for example, don’t.

At heart, on a day-to-day basis, practically all mathematicians work

in a highly intuitive fashion built on an out-and-out Platonist philos-

ophy. Abstract mathematical entities such as numbers (natural, inte-

ger, rational, real, complex, infinite cardinal and ordinal) and spaces

(geometric, metric, topological, linear, normed, etc.) are regarded as

‘real objects’ in a world that the mathematician sets out to discover.

They are a part of a mental world that the mathematician learns to

live in and become highly familiar with. Indeed, it is this intimate

familiarity with an idealized, highly-ordered, abstract world of great

simplicity that makes mathematics such an incredibly powerful tool

with which to study certain aspects of the world.

(Devlin 1995, p. 65)

While it is true that a good deal of computer science is founded in formal systems

(hardware design, compiler grammars, etc.), and this is appropriate in strictly

deterministic domains, it is also true that it exists, and deals with problems, in

the real world. Any formal syntax, no matter how comprehensive or sophisticated

it is within its own compass, must ultimately fail to capture the semantics of the

real world, because “the Natural World is chaotic, its patterns stochastic rather

than algebraic” (West 1997).

With Alfred Whitehead we see the role of philosophy as mainly contextual - to

set each of the various pieces of knowledge that have been derived by reductionist

analysis into the context of the others. Given that it is the case that each scientific

enterprise necessarily selects and abstracts a particular set of relations from the

world’s complexity, it is the main job of philosophy to reintegrate them into a

view of the world as a whole. “The task of philosophy is to recover the totality

obscured by the selection” (Whitehead 1929, p. 20). This effort is inspired by the

historic role of philosophy in questioning the accepted canons of the time, canons

being a view of the world frozen in time. A steady unwavering gaze is important

in terms of the particular but the whole consists of an infinity of particulars so

understanding requires a Socratic style dialogue between the details (the science)

and their interpretation (the whole).

Both rhetoric and the transmission of scientific knowledge are mono-
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logical in form; both need the counterbalance of hermeneutical ap-

propriation, which works in the form of dialogue. And precisely and

especially practical and political reason can only be realized and trans-

mitted dialogically. I think, then, that the chief task of philosophy

is to justify this way of reason and to defend practical and politi-

cal reason against the domination of technology based upon science

... it vindicates the noblest task of the citizen ... decision-making,

according to ones own responsibility

(Gadamer, quoted in (Blacker) 1994)

In a sense, it is the fate of the concept of ‘universe’ to become watered down by

the flow of immediate experience. The implication of the idea is that there is one

unified basis for experience, that every single thing and event is fundamentally

related, is a part of the ‘universe.’ But it is in the nature of subjective experience

that one has to deal with those parts of the whole that are immediately apparent

to the senses, William James’ ‘buzzing world’ (Whitehead 1929, p. 68) of the

present, overlooking the fact that the present is merely the past becoming the

future.

It lies in the nature of things that the many enter into complex unity.

‘Creativity’ is the principle of novelty. An actual occasion is a novel

entity diverse from any entity in the ‘many’ which it unifies. Thus

‘creativity’ introduces novelty into the content of the many, which are

the universe disjunctively. ... In their natures, entities are disjunc-

tively ‘many’ in the process of passage into conjunctive unity.

(Whitehead 1929, pp. 28-9)

The universe is a process, and process is, by definition, changing circumstance.

Creativity is thus the mark of the universe, nothing remains the same for long

- “it is inherent in the constitution of the immediate, present actuality that a

future will supersede it” (Whitehead 1929, p. 305). So all the many different

forms and interactions that we see are just passing glimpses of continuing and

continuous creation.

The fundamental inescapable fact is the creativity in virtue of which

there can be no ‘many things’ which are not subordinated in a con-

crete unity. Thus a set of all actual occasions is by the nature of

things a standpoint for another concrescence which illicits a concrete

unity from those many actual occasions. Thus we can never survey

the actual world except from the standpoint of an immediate concres-

cence which is falsifying the presupposed completion. The creativity

in virtue of which any relatively complete actual world is, by the

nature of things, the datum for a new concrescence, is termed ‘tran-

sition.’ Thus, by reason of transition, ‘the actual world’ is always a

relative term, and refers to that basis of presupposed actual occasions

which is a datum for the novel concrescence. An actual occasion is
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analysable. The analysis discloses operations transforming entities

which are individually alien, into components of a complex which is

concretely one. The term ‘feeling’ will be used as the generic descrip-

tion of such operations. We thus say that an actual occasion is a

concrescence effected by a process of feelings.

(Whitehead 1929, pp. 299-300)

This essential conjunction of ‘the universe’ and creative process is the source

of the power of the pattern language idea. Here are all the elements of Alexander’s

formulation - patterns, process, wholeness and even the concern for aesthetics.

“Experience involves a becoming, that becoming means that something becomes,

and that what becomes involves repetition transformed into novel immediacy [em-

phasis in original]” (Whitehead 1929, p. 191). Patterns (‘repetitions’) are what

we experience and the fact that they are all related in the unity of the universe

(wholeness) means that they represent the ‘datum’ on which process (‘becom-

ing’) occurs, producing the context (‘novel immediacy’) for the next ‘experience’

of ‘becoming’. Understanding experience is therefore aesthetic appreciation (feel-

ing) based on the ‘logic’ (details) of the interaction of the patterns of experience,

pattern language.

The human mind is the joiner, fitting together the disparate elements

of the world to make objects, systems, sceneries. It can bridge dis-

tances from the size of an atom’s nucleus to the space between galax-

ies, and leap over time spans of millennia as nimbly as over seconds.

Contemplating the myriad isolated existences in the world of objects,

my mind fits them all together into a universe. I remember or recon-

struct what no longer exists and call it the past. I project or guess at

what has not yet happened and call it the future. I connect the past

with the present and invent purpose, a kind of nonlocal causality. I

do the same with present and future, and create intentionality, also

hope and fear. All of these are constructs of the mind, because neither

past nor future exists in the world of objects. It is I who makes the

waterfall. I gather up a hundred billion suns and make a galaxy. I link

galaxies across vast spaces and plot their past and plot their past and

future to the beginning and the end of time, and then wonder at the

meaning of these limits. I perceive the juxtaposition of myriad atoms

in a pebble and create its roundness, its colour, texture, its gestalt.

In the language of quantum mechanics, I observe and measure, and

cause the system I observe to fall into a definite state.

(Harth 1993, pp. 9-10)

This is pure reason in the original sense of apprehending the reasons for expe-

rience being as it is. In this regard the philosophical impulse for coherence, surely

a representation of wholeness, means that ultimately nothing rests on canonical

authority - intrinsic reasonableness is the only test (Whitehead 1929, p. 53).
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2.2 Pattern Theory in Learning to Program

We feel, then, that there is a conjunction between the activity of programming

and Alexander’s notion of “Pattern Language” in the idea of process. Doing

anything involves a process and because it requires understanding, and under-

standing is itself a process, doing something is, at its most fundamental level,

understanding something. So this is, also, the conjunction of philosophic and

scientific endeavour, because scientific endeavour, at its most basic, is the reveal-

ing of detail, the collection of data, and, as Alexander points out, “the data of

scientific method never go further than to display regularities. We put struc-

ture into them only by inference and interpretation” (Alexander 1964, p. 109).

Strictly speaking, then, a lot of what goes on in scientific endeavour is actu-

ally philosophy, and this is probably why Einstein often referred to himself as a

philosopher-scientist, insisting that “all religions, arts and sciences are branches

of the same tree” (Einstein 1974, p. 9). He was, himself, never involved in the

actual collection of the data, but in the process of understanding it. The fact of

the constancy of the speed of light was established by the experimental work of

Gauss, Ampère and Faraday, and was formalised in Maxwell’s electromagnetism

equations, what Einstein did was to consider the implications that flowed from

that fact.

In programming, and in novice programming in particular, process is the criti-

cal factor. A major impetus of the present work is, thus, to examine the potential,

on theoretical grounds, for basing a problem solving process, suitable for the first

programming course, on a pattern language developed for that purpose. We feel

that, in the migration of the pattern language concept into the computer science

field, the emphasis has been on the reuse of proven solutions. Proven solutions,

in programming terms, are previous experience packaged in pattern form. This

seems, on the surface, to be the main power of the pattern idea for the novice

programming situation. After all, what novices lack is exactly that, experience.

However it has always been Alexander’s contention that the concept of a pattern

language offers much more than ‘packaged’ experience. His idea is that a pattern

language is more than a simple collection of patterns in a particular domain.

What transforms the collection into a language, is the relationships between the

patterns. It is from this network of relationships that the process derives, and it

is the process that reveals the fundamental properties that give order to designs,

“order as becoming” as Alexander says (Alexander 2002a).

These elements have always been an important part of Alexander’s thinking,

but so far, as mentioned, the software pattern movement has concentrated on the

problem-solution pairing of the pattern itself, and on the potential it provides for

reusing solutions. So, in terms of patterns, and the use of patterns in the novice

programming field, then, there is nothing particularly novel about this work.

What is new here is the exploration and development of the pattern language

concept in order to attempt to directly address some of the difficulties encountered
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in the learning to program situation. Other work has demonstrated that patterns

are a useful way of presenting low level Java features to novice programmers by

creating the patterns and using them in programming courses. In particular

the work of Joe Bergin (Bergin 2005), Eugene Wallingford (Wallingford 1998),

and others, with their ‘Elementary Patterns’ project has shown that the pattern

idea can be extended down from the level of the advanced object relationship

patterns that are the domain of the patterns introduced in the book “Design

Patterns: Elements of Reusable Object-Oriented Software” by Gamma, Helm,

Johnson and Vlissides (otherwise known as the Gang of Four, or GoF) (Gamma

et al 1995), into the realm of basic programming language features.

It was on this basis that the current project began. In 2002, the first pro-

gramming course, Computer Programming 1 (CP1) at this institution, Flinders

Univerity of South Australia, was reorganised on the basis of using patterns.

We had, some years previously, switched to Object-Oriented programming using

Java, so the use of patterns in instruction was seen as a progression along the

path of abstraction from the strictures of the machine environment. At the stage

of introducing patterns into the first course, we had not yet developed the lan-

guage notion fully in terms of pedagogical practice, so the patterns introduced

in 2002 are merely a collection. In developing the patterns for the course, the

topic co-ordinator, Dr Paul Calder, made extensive use of the resources of the

‘Elementary Patterns’ project mentioned above, and those in the textbook chosen

for the topic, David Riley’s “The Object of Java” (Riley 2002). He also chose to

base the practical work on the BlueJ teaching environment (Kölling 2005) and to

introduce pair programming (Williams & Kessler 2001) as an option in the prac-

tical sessions on the basis of research done in the Honours project that preceded

this project. The assessment regime was based mainly on testing the student’s

knowledge of Java (70%), rather than programming ability as such, and this is

discussed further in Chapter 10 where our attempts to measure the effectiveness

of pattern languages in pedagogy are described.

The main thrust of this project has been in the development of pattern the-

ory. Although the main element in this work is the incorporation of the pattern

concept in the teaching of programming, it was clear from the start that the em-

phasis on process, in our case, the process of learning to program, has much wider

implications in the use of patterns generally. The work at Flinders University in

the pattern area has, through the exposure of an earlier project at the first two

Australasian Conferences on Pattern Languages of Programs, come to the notice

of Dr Jim Coplien, an early advocate of the spread of Alexander’s ideas into the

field of software development. It is through his involvement that we had access to

early draft versions of Alexander’s four volume work, “The Nature of Order” be-

fore publication. This has provided us with confirmation of the early emphasis on

pattern process, because that is one of the directions in which Alexander is him-

self moving in the latest work, an exploration of what he calls, “the fundamental

process”.
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It was the fact that this project was, for all intents and purposes, a continu-

ation of an Honours project, that has meant that we have been able to build on

a body of existing work, the core emphasis of which was the notion of a problem

solving process based on the use of patterns. However, as the patterns developed

for the earlier work were not organised into a fully fledged pattern language form,

we found that this was inhibiting the development of the problem solving process.

As the pattern language structure took firmer form, several issues that have been

problematic in the software pattern idea have been made much clearer.

The pattern form is built around a name, a description of a problem, the con-

text in which it occurs and the forces involved in causing it to be a problem, and

a proven solution that solves the problem. It was found, when writing patterns

during the earlier project, that the pattern components, “Context” and “Forces”,

were particularly difficult to compose. An early discovery of the current work,

then, was that the difficulties in this area arose mainly from the fact that the

patterns were developed in isolation from any notion of organisation into pat-

tern language form. Once the work on organising the patterns into the pattern

language structure began in earnest, many of the difficulties became less prob-

lematic. It turns out that the pattern language, the relationships between the

patterns, is, in fact, the context of the patterns, and this is clearly demonstrated

in the diagrammatic form of the language. The significance of the language for

the content of the patterns themselves is the subject of Chapter 6.

Because the emphasis in the software pattern movement has been on the

writing and using of patterns in the practical work situation, the power of the

language idea has rarely been fully realised. Most pattern practitioners claim

nothing more than that their work is a collection, or catalogue of patterns (see,

for example, (Gamma et al 1995, p. 357)). This has resulted in descriptions

of context and forces that are more general and ambiguous than is desirable, as

we indeed found was true in the patterns developed for our earlier project. The

drive to develop a process for the use of patterns, rather than just using them

as individual design solutions, forced us to take the pattern language notion

seriously, and doing this cleared up the problems we were having in actually

writing the patterns themselves. Setting the patterns in the pattern language

structure also makes it easier to organise the whole system in terms of the specific

purpose for which it is being designed. In our case this has meant that imperatives

of simplicity, clarity, and unambiguous process, that arise from the pedagogical

purpose of the project can be reflected in the final form of the pattern language

structure.

For example, while working on the patterns in isolation from the language

structure we overlooked the flexibility in respect of the granularity of the system

that the structure gives us. This caused us to expend effort on developing patterns

at a far lower level than is desirable in the teaching situation. One of the big

advantages of the pattern approach is the abstractive power that it provides.

You are designing a solution in terms of the concepts that the pattern represents,
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rather than having to deal with the details directly. The structure imposed by the

language form makes it clear that the point at which your system stops dealing

with detail at the language level and begins to present it (hide it) within the

pattern structure itself is a matter open to decision by the pattern language writer.

Thus a lot of the lower level features of the Java language that were represented

as patterns in our first pass over the system turned out to be material that is best

presented within the pattern form. This means that the whole pattern system

can be much smaller and simpler, and hence better suited to the pedagogical task

for which it is designed. The detail is still all there, it is just more appropriately

situated in terms of using the patterns in the novice problem solving situation. It

turns up when the programmer needs it - in the final stage of the design procedure,

the translation of the design into program code.

In essence, the pattern idea is just a way of looking at a system and because

a system is a collection of related concepts organised in a way that is useful in

terms of some purpose, it is driven by structure (order) and purpose (process).

Therefore the design of the pattern view of a system needs to begin with a pretty

clear view of the system in terms of its order and the process that gives rise to

that order and enables the expression of its purpose. The patterns should flow

from this structural analysis, and not, as is usually the case, the reverse. In

our case the inherent order of the system we wish to build is the best possible

organisation of Java resources for the solving of problems by novice programmers.

Considering the project from this point of view enables the patterns to be designed

to the purpose, rather than the purpose being retro-fitted to the patterns. This

would seem to be a major shortcoming of current pattern practice in the software

development field. In looking at Alexander’s work it is clear that the purpose of

his system, the design of living space with real human quality, is always at the

forefront. The patterns are built around that purpose, never in isolation. But this

does not seem to be generally true of the pattern thrust in the software arena.

As Alexander, himself, said, while addressing a gathering of several thousand

software development people at a conference in 1996:

I think that insofar as patterns have become useful tools in the design

of software, it helps the task of programming in that way. It is a nice

neat format and that is fine. However, that is not all that pattern lan-

guages are supposed to do. The pattern language we began creating

in the 1970s had other essential features. First, it has a moral com-

ponent. Second, it has the aim of creating coherence, morphological

coherence in the things that are made with it. And third, it is gen-

erative: it allows people to create coherence, morally sound objects,

and encourages and enables this process because of its emphasis on

the created whole.

(Alexander 1999)

What the early stages of this project did was to demonstrate to us the force

of Alexander’s words. It was not until we began to see the patterns in terms
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of the whole system and its purpose, in our case, the teaching of programming,

that the pattern view that we were trying to build began to come together.

Alexander’s message is that the order displayed in a system doesn’t just happen,

it is a result of the purpose of the system. The pattern concept reflects both the

order and the process, and therefore is a mechanism for building, understanding,

maintaining and using the order that is the system. It is a unique way of viewing

a system because it doesn’t just break the system down into its constituent parts,

it provides a view based on the system in total, the inherent order that gives it

coherence, makes it a system, rather than just a collection of related ideas, in

fact.

In terms of programming, this manifests as a set of patterns based, not only

on the features of the programming system (language), but on what might be

termed the patterns of interaction with a real world system that is undergoing

automation. Programming involves solving a problem that exists, not in the pro-

gramming system itself, but in some other real world activity such as accounting,

writing, building a compiler and so forth, so many of the design decisions to be

made will turn on questions of a general nature such as repetition, swapping,

choosing between several options and the like. So while the core patterns of a

language for learning how to program will be, naturally enough, the features of

the programming language being used, most of the connections between them

involve general real world concepts, and some of these will manifest as patterns

in the language.

Furthermore, code artefacts themselves often represent real world concepts,

the program generated in Chapter 7, for example, produces a multiplication table,

a common representation often found on the back cover of school exercise books,

and, indeed, the GoF patterns can be regarded as real world concepts in this

sense. This means that a program built using the constructs of a programming

language, can itself, be a pattern in programming terms. As Salingaros says,

“a coherent combination of patterns will form a new, higher-level pattern that

possesses additional properties” (Salingaros 1998, p. 9). In this sense the code

produced by the process delineated in Chapter 7 could be used in the Code Ex-

ample section of a pattern for handling two-dimensional data as input or output,

for example.

This “patterns made up of combinations of patterns” idea is a representation

of the real world concept of “growth”, and is itself, a pointer to the power of

pattern languages in learning. If learning is anything it is the process of un-

derstanding - the growth of knowledge based on lower level concepts that you

already ‘know’ - and the thrust of this dissertation is that learning is the classic

pattern process; the design of one’s mind, one could say, albeit design in a virtu-

ally unconscious sense. But, in fact, as we attempt to show in Chapter 9, most

of learning, as with all other expressions of human ‘expertise’, is largely uncon-

scious even though, at the conceptual level, knowledge is entirely self-referential

in structural terms, one concept is almost always dependent on a connected web
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of other concepts, a concept map or pattern language, in other words. The hu-

man is, by nature, an “expert” at learning, it is what we spend our lives doing -

generalising from specific experience, patterning life.

2.3 Patterns in Learning

Given the significance of learning in the human condition, it comes as no surprise

that there are resonances in almost every field of intellectual endeavour, the fact

of the genesis of the pattern language idea in Architecture being a case in point.

But, although Christopher Alexander is the originator of Design Pattern Theory

in the terms in which we understand it, it is important to notice that the idea

of patterns in human existence is much older, and reference to this pre-design

theory concern with patterns are made throughout this dissertation. The pre-

design-theory literature, in essence, sees “patterns [as] those arrangements of

internal relationship which give to any culture its coherence or plan, and keep it

from being a mere accumulation of random bits. They are therefore of primary

importance” (Kroeber 1923, p. 119).

Here we can detect all the features that Alexander ascribes to patterns, their

primary role in how people live (culture), in creating wholeness (coherence or

plan), in giving meaning to what would otherwise be “a mere accumulation of

random bits”, and the “arrangements of internal relationship” that make patterns

out of collections of smaller patterns, a process to which we have previously

alluded and which is the basis of the ‘pattern language’ idea. Kroeber even goes

on to examine the correlation at the organic level. “What the present type of

cultural pattern system shares with the fundamental organic patterns is that

they both embody a definable system, in the repeated expressions of which, no

matter how varied, there nevertheless is traceable a part-for-part correspondence,

which allows each form or expression to be recognized as related to the others

and derived from the plan as it gradually took shape” (Kroeber 1923, p. 123).

Alexander was trained in Mathematics and Architecture, and it is in this

latter field that his work on patterns and pattern languages began. It seems to

have been a response to the increasingly impersonal and dehumanised nature of

buildings and the process of building design and construction. The notion of

‘the quality without a name’ would appear to be directed at making the human

condition a consideration to be taken seriously in these fields.

There is a central quality which is the root criterion of life and spirit

in (all things). ... The search which we make for this quality in our

own lives, is the central search of any person, ... it is the search for

those moments and situations when we are most alive.

(Alexander quoted in (Rising) 1997)

Something about the human sense of scale and feeling seemed to Alexander

to be missing from the modern architectural practices and the buildings they
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produce. He argues that by failing to generate products that have human needs

as their driving force, contemporary methods of design ultimately fail to improve

the human condition and therefore to advance the art, and even the science, of

design. The Alexandrian notion of patterns and, in particular pattern languages

has, therefore, a sense of the place of the human in nature.

Yet, changing as it is, each language is a living picture of a culture,

and a way of life, The patterns it contains, widely shared, reflect a

common understanding about the ways that people want to live, the

way they want to rear their children, the way they want to eat their

meals, the way they want to live in families, the way they want to

move from place to place, the way they make their buildings look

towards the light, their feelings about water, above all, their attitudes

to themselves. It is a tapestry of life, which shows, in the relationships

among the patterns, how the various parts of life can fit together, and

how they can make sense, concretely in space. And, above all, it is not

just a passive picture. It has a power in it. It is a language, active,

powerful, which has the power to let people transform themselves,

and their surroundings.

(Alexander 1979, pp. 347-8)

The big pattern, then, is this relationship between the patterns in nature and

the way that human beings think, and therefore, act - what might be called the

human pattern. Alexander continues to work on developing his theories in terms

of their application in understanding and improving the human condition. The

interesting thing here is the centrality of the pattern language idea in Alexander’s

design philosophy. In itself, too, the idea of a language of patterns is quite novel,

even unusual. Normally we think about a language in terms of expressing meaning

by means of a vocabulary and a set of rules, the language grammar, for putting the

words that make up the vocabulary together. Alexander’s idea is that the patterns

which represent the problem-solution pairings in a domain form a structure by

way of the relationships between them, and that this structural coherence implies

a sort of meaning. This web of ‘meaning’ allows the concepts embodied in the

patterns to be put together in sequences to express larger and more complex

concepts just as the words in a language do. In fact, what Alexander is proposing

in the quote above is patterns as a “language of thinking” by which we create

“understanding”, an idea that we examine in detail in Chapter 5.

The volume, “A Pattern Language” is the presentation of Alexander’s think-

ing about the built environment in the form of a pattern language containing 253

patterns. This form enables him to explicate the pattern idea from within and

beyond the patterns themselves. This is important because the pattern has two

aspects, it is powerful in two ways. Firstly, internally, it encapsulates previous

experience through discussion of the problem, its context and the forces applying

in the situation that are causing it, and the solution. Secondly and most im-

portantly, the book examines the relationships between the patterns that make
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the collection a coherent whole, a form which Alexander calls a language. Like

a word, each pattern only expresses a single simple concept. Being part of a

larger entity, the language, enables the smaller concepts to express any concept,

no matter how large, by combining concepts together in sequences.

In Alexander’s case this involves demonstrating not only how the patterns

work in a single building project, but how the same ideas can be used on a larger

scale in town or district planning, to give coherence to an otherwise disjointed sys-

tem. Alexander’s whole point is that the current methods fail in a holistic sense

because they ignore the human dimension in designing living spaces. Unfortu-

nately the holistic aspect, which Alexander expresses in terms such as wholeness

and ‘the quality without a name’, has become, somewhat controversial, and has

been used to deride his thinking as un-scientific. But all he is saying is that any

process which concentrates only on the physical aspects of the built environment,

and ignores the fact that this is a place where humans are to live, misses the

point that a built environment has biological, psychological, social, and spiritual

implications as well as the physical ones. No building, or town, exists in and of

itself. Its purpose is, or should be, to fulfill human needs, and its design, there-

fore, needs to be cognizant of all facets of the human condition. It is the counter

argument, that buildings etc. can be designed in terms of physical space only,

ignoring human space, that is un-scientific, because these things are human living

spaces not mere physical monuments to some designer or owner.

In terms of design pattern theory “A Pattern Language” (Alexander 1977) is

the foundation. The basic elements are all here, the patterns themselves, the com-

ponents that make up the internal form of the pattern, the relationship between

the patterns that form the network that Alexander terms language, the gener-

ative process that enables sequences of patterns to be formed, and the human

framework that supplies the moral and spiritual direction that enables whole-

ness. Because the theory is being explained in terms of the patterns presented

in the book, there is a practical down-to-earth feel to the presentation of theory.

The patterns are the focus, and the theory is built around them. This means

that some things, like the details of process and the working out of the language

idea, are left for later consideration. As Alexander himself has said there seemed

to be something more fundamental that was missing from the pattern language

(Alexander 1999, p. 81). These considerations however are more about why

the theory works, and how it works. In terms of applying the theory, “A Pat-

tern Language” is the fundamental guide to practice. Of course, it is written in

terms of designing the human living environment, and its application is directed

at architectural practice. Therefore migrating design pattern theory to other

domains will necessarily involve adapting the basic elements, the patterns, the

pattern language, the generative process, and the human framework to the new

context. Because the theory works, the software community has tended, perhaps

like Alexander in his field, to take the theory aspect for granted. Nevertheless, in

practical terms, “A Pattern Language” is the basic primer for all design pattern
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practitioners, no matter what field they are in.

“The Timeless Way of Building” (Alexander 1979) is the theoretical back-

ground for patterns. It takes the theory from the first book and elaborates and

extends it. In terms of the theory there is very little that is new, but rather

its purpose is to explain the material that was in the first book. It attempts

to remove the theory from the overwhelming presence of the 253 patterns, and

while this makes for a more condensed and concentrated exposition of the theory,

it loses most of the practical immediacy that “A Pattern Language” has. This

probably means that, despite the fact that this work is labelled as Volume 1, it

is important to read these two works in the order that they were produced, as,

on its own, the second book is likely to be somewhat obscure without the full

force of the pattern background. Having said that, this work is important for

the migration of the theory into other domains, precisely for those reasons. The

theory, here, is partly isolated from the particular context in which it arose, and

it is therefore easier to begin the transition.

The central thesis of this book is that, until modern times, the design of the

human environment has always been in the hands of those who lived in it. There

was a direct relationship between people and the structures they built and lived

in.

The order of a building or a town grows out directly from the inner

nature of the people, and the animals, and plants, and matter which

are in it. It is a process which allows the life inside a person, or a

family, or a town, to flourish, openly, in freedom, so vividly that it

gives birth of its own accord to the natural order which is needed to

sustain this life.

(Alexander 1979, p. 7)

By directly reflecting the life of its designers the built environment achieves

the timeless quality which Alexander refers to as ‘wholeness’. It was in studying

the structures built in this way that he discovered the patterns and formulated

his pattern language theory.

The people can shape buildings for themselves, and have done it for

centuries, by using languages which I call pattern languages. A pat-

tern language gives each person who uses it, the power to create an

infinite variety of new and unique buildings, just as is ordinary lan-

guage gives him the power to create an infinite variety of sentences.

(Alexander 1979, p. xi)

The implication of this idea is that the patterns are a repository of design

solutions proven over time. They are not just a reflection of a passing series of

fashions, or of changes in building technology, because they have endured. The

architectural pattern language of a particular society represents the accumulated

‘wisdom’, in the full sense of the word, of a way of life in relation to its environ-

ment, just as the genome represents the accumulated ‘wisdom’ of a way of life for
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biological organisms in relation to their environment. And, again like the DNA,

being a language, it is also a way of expressing that knowledge into the future.

“The Nature of Order” (Alexander 2002b) is a vast four volume work to which

we have had access to early draft versions of the first two volumes thanks to the

agency of Dr Jim Coplien. This work is an attempt to build the framework for an

understanding of the properties and processes that underlie order in nature. It

grew out of the earlier work on patterns because Alexander saw that, in practice,

the techniques that he had advocated were not fulfilling his expectation of them.

I began to notice a deeper level of structure and a small number (15)

of geometric properties that appeared to exist recursively in space

whenever buildings had life. The 15 properties seem to define a more

fundamental kind of stuff; similar to the patterns we had defined

earlier, but more condensed, more essential - some kind of stuff that

all good patterns were made of.

(Alexander 1999, pp. 75-6)

Therefore this work is more of an explanation of why patterns work than

how they are applied. Nevertheless it is important to pattern practice because

it expands and clarifies aspects of the earlier work. For example, whereas the

generative process was a constant theme of pattern theory in the earlier works,

here it is examined much more deeply, with the purpose of helping to set pattern

theory into the larger context. This context is how the 15 properties give rise

to geometric centres in space. It is these centres that underlie the symmetries

of patterns that we see. But more importantly it enables us to understand how

symmetry breaking is a structure preserving process which allows the unfolding

of design that enhances the order we see in nature rather than working against it.

Patterns are seen here as a reflection of the underlying order. Like Plato’s shadows

on the cave wall, the patterns are a view of reality, rather than reality itself. And

like Plato’s shadows, they enable us to begin to understand reality. The scope of

“The Nature of Order” is, thus, an attempt to clarify our understanding of order,

to show that, in essence, it is ultimately the order that we discern in nature that

gets expressed as the quality of ‘wholeness’ in human structures.

For I believe it is the nature of order itself, which has soaked through

with I. The essence of my argument .... is that the I, the thing I call I,

which lies at the core of our experience is a real thing, existing in all

matter, beyond ourselves, and that we must understand it this way

in order to make sense of living structure, of buildings, of art, and of

our place in the world.

(Alexander quoted in (Salingaros) 2002a)

Patterns have been a continuing theme of Alexander’s life. His PhD thesis,

published as “Notes on the Synthesis of Form” in 1964 (Alexander 1964), began

the journey that led to pattern theory. His argument here, was that our means

of handling problems does not scale up well with the increasing complexity of the
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situations in which problems must be solved. For example as residential areas

grow they increase the demand for heavy transportation which tends to overrun

the ability of the transport system. The simple solution to increase the size of

the transport arteries conflicts with the demand for calm and safety in residential

areas and interferes with other established service routes, such as those for water,

gas, electricity and lines of communication. But more complex solutions raise

issues of cost and environmental concerns. But worse still is the fact that the

complexity causes the problem to cut across domain boundaries, meaning that

the expertise needed to consider solution designs cannot be found in one place,

and the need to consult across areas of expertise only adds further complications

to the design process. The answer that Alexander posits is a design revolution,

analogous to the earlier industrial one. Just as machinery was used to magnify

the human physical capacity, so now we need a means of magnifying our design

inventiveness. Science has over the years developed a way of thinking of shape

(form) in abstract terms called mathematics.

The shapes of mathematics are abstract, of course, and the shapes of

architecture concrete and human. But that difference is inessential.

The crucial quality of shape, no matter of what kind, lies in its organi-

zation, and when we think of it this way we call it form. Man’s feeling

for mathematical form was able to develop only from his feelings for

the processes of proof. I believe that our feeling for architectural form

can never reach a comparable order of development, until we too have

first leaned a comparable feeling for the process of design.

(Alexander 1964)

The ideas that culminate in “The Nature of Order” are all present in this

early work. The history of the subsequent years shows that they have not, by

and large, been adopted in design circles, and, in particular, in Alexander’s own

field of Architecture. In some ways, his ideas have fallen on more fertile ground

in Computer Science, probably because here, the complexity of systems has even

further outstripped the abilities of the human mind to comprehend them in to-

tality. Some of the best pieces about what might be called the philosophy of

patterns, have been written by James Coplien. His “Space: The Final Frontier”

(Coplien 1996b) starts with Alexander’s theories, particularly the theory of cen-

tres, and tackles the issue of aesthetics, an aspect of Alexander’s thinking that

is avoided by most authors in the software domain. In “The Geometry of C++

Objects” (Coplien 1998), he explores the relationship between Alexander’s the-

ory of centres and the pattern language idea to begin to grapple with the idea of

geometries in software. This is an important issue because the idea of centres and

symmetries are major themes in Alexander’s current thinking. Translating them

across from the physical world to software is turning out to be a difficult task,

and one that will assume greater significance now that “The Nature of Order” is

more widely available.

It seems to us that one of the areas that was neglected during the transfer of
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the pattern concept is the difference between the design spaces involved. Forces

and geometry, for example, are much clearer ideas in the physical space of build-

ing design than they are in the metaphorical ‘space’ of software. In “Close the

Window and Put it On the Desktop”, Coplien examines the place of metaphor

in understanding, learning and design, and concludes that “learning is not a

separable, detached element of design. It is intrinsic to design. It may be funda-

mental to design” (Coplien 2000a). Although this is written in relation to using

and learning to use software, his point about “experientially based learning” ap-

plies in learning to develop software as well. The report of a 1997 address by

Coplien “On the Nature of The Nature of Order”, written by Brad Appleton

(Appleton 2000a), brings us back to Alexander, and stresses the importance for

software pattern practitioners to go back to the roots of the concept.

Of the works specifically about Alexander, Linda Rising’s “The Road, Christo-

pher Alexander, and Good Software Design” (Rising 1997), and “Some Notes on

Christopher Alexander” by Nikos Salingaros (Salingaros 2002b), are good in-

troductions. Doug Lea’s “Christopher Alexander: An Introduction for Object-

Oriented Designers” (Lea 1993) is another good piece in this mould. But probably

the best exploration of Alexander’s ideas is the biography by Stephen Grabow,

built largely around hundreds of hours of discussion with the architect, and which

contains long quotations taken from these discussions. In the technical aspects

of patterns in software design, all of Jim Coplien’s many works, particularly, the

comprehensive treatment in his 1996 book, now out of print but available on the

Web, “Software Patterns” (Coplien 1996a), are well worth reading. He manages

to cover a breadth of detail in the field matched by few others, including his for-

ays into the area of symmetry and symmetry breaking (Coplien 2001) (Coplien

& Zhao 2000). Another article by Salingaros, “The Structure of Pattern Lan-

guages” (Salingaros 1998), provides a good overview of the connective power of

patterns - Alexander’s pattern language concept.

In terms of particular patterns, the patterns in the original Gamma book are

widely covered elsewhere in the literature. James Cooper’s book on the Java

version of these patterns, “Java Design Patterns: a Tutorial” (Cooper 2000), is

particularly useful for programmers in this language. The best quick introduction

on the web to these patterns is in the Object Design Workshop by Bill Venners,

“Designing with Patterns” (Venners 2002). In terms of a general introduction to

the pattern concept, Brad Appleton’s web pages “Patterns and Software: Essen-

tial Concepts and Terminology” (Appleton 2000b) and “Patterns in a Nutshell:

The ‘bare essentials’ of Software Patterns” (Appleton 1999), are excellent places

to start. However because of the ubiquity of the pattern concept these days,

many books about other aspects of software engineering and programming con-

tain short introductions to patterns. Jeff Nelson’s “Programming Mobile Objects

with Java” (Nelson 1999) is a good example of a work about something else

entirely that has a good general overview of the pattern idea, and, of course,

most contemporary software engineering texts would be similarly endowed, the
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classic Pressman (Pressman 1997) being a case in point. The Patterns Home

Page (Hillside 2005) contains a multitude of links to pattern material, as does

Brad Appleton’s Software Patterns links (Appleton 1998), and Wiki Wiki Web’s

repository (WikiWikiWeb 2005).

2.4 Patterns in Education

As Locke pointed out almost all knowledge is gained by an interaction between

experience and reason (Locke 1910). Education is therefore a process directed at

imparting knowledge, but as it becomes institutionalised the tendency is more and

more towards rote learning, it tends to become one experience rather than a wide

variety of experiences. John Dewey, who was one of the foremost influences on

education during the last century, based his philosophy on providing the student

with as wide a variety of experiences as possible. From democratic principles

Dewey drew the notion of the student having control over the learning experience.

It follows from this that knowledge is active, it arises from the discovery and

testing of ideas rather than their static presentation. If, in dealing with a problem,

the student “cannot find his own way out he will not learn, not even if he can

recite some correct answer with one hundred percent accuracy” (Dewey 1966, p.

160). Two conclusions important for education follow.

(1) Experience is primarily an active-passive affair; it is not primarily

cognitive. But (2) the measure of the value of an experience lies in

the perception of relationships or continuities to which it leads up. It

includes cognition in the degree in which it is cumulative or amounts

to something, or has meaning. In schools, those under instruction are

too customarily looked upon as acquiring knowledge as theoretical

spectators, minds which appropriate knowledge by direct energy of

intellect. The very word pupil has almost come to mean one who is

engaged not in having fruitful experiences but in absorbing knowledge

directly.

(Dewey 1966, p. 140)

This is extremely pertinent to the learning of programming, of course, because

programming is inherently a practical skill. But this epistemological focus on the

importance of combining different perspectives, of having multiple learning expe-

riences, is used, by Gregory Bateson, as the basis for examining parallels between

learning and evolution as stochastic processes, and for constructing a general

purpose epistemological schema consisting of a switching back and forth between

form and process (Bateson 1979), reminiscent of the iteration between the prob-

lem solving process and the pattern language structure outlined in Chapter 7.

The concentration on learning as an active task-based phenomena, also leads to

the idea of minimalist instruction. This idea, that concentration on specific tasks

within a field produces learning outcomes that are more effective in a shorter
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time, which emerged during the 1980s, is an attempt to bring theory, research,

and practical design experience together in order to elucidate design practice

(Carroll 1996).

All this focus on practical knowledge bears on the problems that arise when

teaching programming. What we see constantly, as educators, is the lack of a

sense of process (what am I supposed to do?) in students when faced with a

problem. We don’t really care about the actual ‘knowledge’ that a pattern en-

capsulates, what we are interested in are the handles it provides on the problem-

solving process itself. That’s also why we don’t care about the technical issues

concerning the definition of these things. Patterns or idioms or thing-a-me-bobs

doesn’t matter. We are using these things as patterns, therefore they are pat-

terns, as far as we are concerned. The philosophy is; give students the tools

(the patterns, the language and the process), point out the features that pat-

terns add to the problem-solving situation, and let the learning start. We can’t

‘teach’ them how to solve problems using patterns directly because there is no

consistent method to the process, each solution-process is going to be different!

But the pattern language concept provides an overarching meta-process based on

the building up of a sequence of patterns, and it is this meta-process that is the

source of its power in educational terms.

This meta-process, described in Chapter 7, drives the actual process by which

a particular problem is solved. The actual process derives from applying the meta-

process of identifying the patterns required and building the sequence that solves

the problem. Our description probably looks rigid and mechanistic, most, if not

all, descriptions of process look thus, which is precisely why maps, rather than

descriptions, are more instructive. But the chapter is about demonstrating that

the pattern idea should have some usefulness at this level, not as a description of

how patterns will be used in general. If we were describing the process of solving

a different problem it would look quite different! Patterns are, by nature, a

minimalist approach to ‘teaching’. Nobody sets out to explicitly ‘teach’ patterns,

as such, what is required of patterns in the novice programmer’s design space is

the release of natural creativity by providing a place to start thinking about the

problem to be solved.

This fits with Bloom’s notion of cognitive levels of learning, the idea of a

taxonomy of what educators want students to know encompassed in statements

of educational objectives (Bloom 1971). Patterns, using the term in the general

sense, can be seen to be important at all levels in the cognitive process, but in

the programming context, and in the area of the software pattern concept itself,

clearly the analysis and synthesis processes are critical. The aim of the analysis of

a problem situation is to discover the patterns revealed in the distribution of the

forces and constraints within the situation. Of course this needs to be done on the

basis of a knowledge and comprehension of the programming resources available

in the domain. The creative part of programming involves matching the results

of the analysis of the problem with the appropriate resources to build the new
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synthesis of the forces that solves the problem. Because this is a pattern matching

process, identifying the patterns in the situation with the patterns of syntax

available in the programming environment, the idea of presenting the resources

in a specialised format to assist the matching process arises. And because of the

association with pattern matching, this specialised format has come to be known

as a pattern, in the specialised sense of design or software pattern.

Another way of looking at the results of applying Bloom’s taxonomy to the

programming domain is that it points to the practical aspect of the field. The

design patterns show up in the categories that are most clearly involved in the

programming activity itself. In learning this activity, patterns then will be mainly

useful in that they can be seen as a way of encapsulating knowledge in a form

useful to the activity. This is, probably, the most powerful aspect of design

patterns in the purely pedagogical sense. It is doubtful that patterns have much

pedagogical power in themselves in terms of driving a problem solving process,

this is the role provided by the relationships between the patterns, the language.

But for the practical aspect of solving programming problems, one would probably

not bother to write programming language constructs into the design pattern

form.

So, insofar as a pattern language is to be used in the teaching context, it is

pedagogical in nature. However, I don’t think we see its main use as a teaching

tool or methodology. Our view is that you simply present the patterns in the

teaching material in the places where examples are normally used. One of the

‘discoveries’ made in this project, is that all the elements of a pattern are there

in the examples used in course material already. They are just not presented

in a systematic way. An example from the past CP1 lecture notes at Flinders

University that illustrates this is presented below. The various elements of the

pattern form are highlighted in bold text, and identified.

Therefore, the idea of systemizing the examples in pattern format is to provide

the extra benefits of the pattern form in the problem solving situation, not just

to help students learn the material. The skill of solving problems grows out of

practice, and patterns are directly useful at this level. Examples are important

here, but novices mostly fail to pick up their ‘essence’.

This is a bone of some contention in the wider patterns community

(that is, wider than a single domain). There are those who staunchly

uphold that abstraction is at best a meaningless aim and at worst a

dangerous one; that complex things are complex and that abstract-

ing away from that complexity makes a false goal of simplification.

(Gabriel 1996b) But, as pedagogues, we know that abstraction is a

very difficult step to take (Bloom 1956); that learners find it difficult

to grasp the principles embodied in a single example (or a series of

single examples) then isolate it as the common referent they all share

(that is, abstract from the details to the principle) and apply that

principle in novel situations. In equal fashion, novices appear to have
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Figure 2.1. Extract from CP1 lecture notes, Semester 2, 2000

(Roberts 2000)

a poor grasp of detail and little appreciation of what is (and is not)

important in a given situation. Both of these extremes are addressed

in a good pattern, which must abstract to a quality from a set of

examples and at a level which is immediately graspable. If it is too

abstract, then it will not be apparent; if it is too concrete, then it will

not be perceived as separate from the detail of the examples them-

selves. Finding the correct level of abstraction is a teaching skill; it is

also a goal of the best patterns.

(Fincher & Utting 2002)

One of the main difficulties of examples for novices is they attempt to apply

them in a rigid manner, failing to grasp the general principle that lies at the

heart of the example. Patterns would appear to express the general nature of the

problem-solution nexus much more clearly, and, moreover, they provide ‘slipper-

iness’, that is they make the example more easily exportable from one context to

another, so that it can move across domains like analogies do in natural language.

Design patterns are, to all intents and purposes, analogies in the programming

domain. In a sense they are attempting to highlight the general nature of the

example - to hide the code in effect. Seeing ‘the code’ as ‘the example’ is a

large part of the difficulty in applying it in similar, but different, situations. The

pattern form sets ‘the code’ in a more realistic context - generalizes it, in effect.
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There are many discussions about the difficulties involved in learning to pro-

gram, and the possible causes and cures. This literature predates patterns and

has been one of the circumstances behind the continual changes in the Computer

Science curriculum. Of course, the rapid pace of change in the computing en-

vironment has itself been the principle force. It has caused the continued and

continuing need for the computer science curriculum to attempt to reflect the

changing environment. This need for the curricula to keep up has long been

recognised, and in order to provide a set of standards for considering the issues

involved in meeting the needs of industry in computer science education, the

IEEE and the ACM both have produced a series of computer science curriculum

reports over the years. The ACM series began in 1968 and the original report was

updated in 1978 and 1991, and the IEEE produced reports in 1983 and 1986 and

joint reports with the ACM in 1991 and 2001. All of these reports consisted of a

general discussion of the issues involved in the contemporary situation and rec-

ommend various changes to the computer science curriculum. And the difficulty

with the teaching of programming is a recurring theme.

The 1989 publication, “Studying the Novice Programmer” (Soloway & Spohrer

1989), is a collection of articles on the learning to program issue. Some of these

are along the lines of using programming to teach problem solving in mathemat-

ics and the like, an interesting reversal of the idea behind this project. However

many of the rest focus on the psychological aspects of programming, and discuss

things like concept acquisition and use, which resonate with the pattern idea. The

discussion, “The Tasks of Programming”, moderated by J. Herbert, concentrates

on the problem solving aspect, and states that “expert programmers understand

the problem by drawing on past experience, but novice programmers have very

little”, and must therefore start from scratch each time (Herbert 1997).

Understanding code written by others is an activity that is recommended for

novices, and this is studied in Brooks, “Towards a theory of the comprehension

of computer programs” (Brooks 1983) and in Wiedenbeck, “The initial stage of

comprehension” (Wiedenbeck 1991). Program comprehension is another one of

those activities that relates closely to the pattern idea of reusing expertise. One

of the motivations for the introduction of OO programming was the idea that

it is a better environment in which to model real world entities and activities.

It was expected that this would be an advantage in the novice situation but a

comparative study of program comprehension in novices in the OO and procedural

paradigms, concluded that the trade off between the increased complexity of the

programming language and the intuitive fit of the OO paradigm with the real

world, was not clear cut (Ramalingam & Weidenbeck 1997).

Given the success of software patterns in advanced programming in industry,

it is not surprising that they have had considerable impact on Computer Sci-

ence Education. The pattern idea was quickly adopted in Software Engineering

type courses due to the obvious reuse implications, but the use of patterns in

programming type courses has been slower to develop. The motivation for the
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Software Engineering discipline has always been to develop a set of methods for

developing software to a consistent standard of performance and reliability, and

the reuse of code and experience has always been a factor in these considerations.

However the early experience with software reuse was not completely successful.

In 1992, a survey on software reuse found that it was “not living up to its original

expectations”, and concluded that “abstraction plays a central role in software

reuse. Concise and expressive abstractions are essential if software artefacts are

to be effectively reused” (Krueger 1992).

The design pattern concept fitted into this need for abstraction in the reuse

technique, and patterns emerged as a “software engineering problem-solving dis-

cipline” (Coplien n.d.). As Pfleeger says in one of the discipline’s standard texts,

a design pattern “names, abstracts, and identifies the key aspects of a com-

mon design structure that make it useful for creating a reusable ... design”

(Pfleeger 1998). However the significant implication of the reuse idea as expressed

in design patterns is the reuse of expertise. What a design pattern represents is a

proven solution to a common problem. This is reusing ideas rather than elements,

artefacts, or even principles, in the engineering sense of reuse. And the reuse of

expert experience is an educational process in itself.

The initial enthusiasm of the Software Engineering community for patterns

seems to have faded recently, with many authors pointing out perceived short-

comings in Software Engineering terms. Some of these, like worries about pattern

language ‘completeness’ (Mattson 1996) and patterns carrying bad ideas as well

as good ones (Crawford 1996), are due to the incomplete understanding of pattern

theory caused by the too casual transition into the software field. Other criti-

cisms like the finding that “integrating patterns into the software development

process is a human-intensive activity”(Mattson 1996) are caused by unrealistic

expectations. The most interesting critique is that patterns are only a learning

aid - “when designers become experts they discard patterns”(Mattson 1996) -

which is, of course, the feature that is of most interest to educators.

Many instructors have noticed the pedagogical implications of the pattern

language idea, but a lot of the articles that deal directly with the use of patterns

in programming courses seem to imply that introducing patterns should be left to

the second programming course, normally a data structures based topic. Probably

this is because these articles are based on the idea of using existing patterns at the

level of those in the (GoF) book (Gamma et al. 1995), rather than on patterns

for lower level programming language constructs. Gelfand (Gelfand et al. 1998)

discusses the use of GoF level patterns such as adapter, comparator, decorator,

iterator and locator, and demonstrates the use of these patterns to, for example,

adapt a dequeue class so that it can be used to implement the stack abstract class

using the adapter pattern, and to generalise the implementation of an algorithm

that uses, say, a simple tree traversal, using the template pattern so that it can

be used for several different purposes. This approach is based on the idea of

introducing the design principles inherent in the patterns as early as possible
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in the computer science curriculum. However, there is no discussion, or even

acknowledgement of, patterns for programming language constructs below the

level of classes or objects, the two specification items used in the article, hence

this article does not much enlighten the task being undertaken in this project.

In this regard the 1999 paper, “Design Patterns for the Data Structures and

Algorithm Course” by Preiss (Preiss 1999) is similar. It too deals with the use of

patterns from the GoF book and is therefore not directly relevant to the idea of

using patterns at a lower level. However, although based on ideas used in the CS2

course at Waterloo University, it is more of a theoretical piece than the Gelfand

article, which is predominantly a discussion of the patterns used in a particular

course. Preiss discusses concepts like the relationship between the abstraction

aspect of patterns and design.

Design patterns are emerging as the abstractions that are appropri-

ate for talking about designs. They provide a framework for thinking

about and for comparing design decisions and trade-offs. More im-

portantly they provide a common vocabulary for describing software

designs.

(Preiss 1999)

Preiss believes that patterns provide a way of linking apparently unrelated ideas

and are thus powerful as design and problem solving tools in the teaching of

programming.

The lecture notes for the introductory programming course in C++ at Brown

University, CS1, explicitly introduce four patterns. These are the state, proxy,

chain of responsibility, and factory patterns from the catalog of patterns in the

GoF book. While these are useful patterns to be presented early in a novice

programmer’s career there is nothing in this material to suggest that patterns

for lower level programming language constructs even exist. That is, this course

follows the line that “patterns identify and specify abstractions that are above the

level of single classes and instances, or of components [emphasis added]” (Gamma

et al. 1993, quoted in (Cooper) 2000, p. 5), and doesn’t attempt to develop or

present patterns below this level. The four patterns presented in this course are

clearly some of the easiest of the set in the GoF book, and are therefore the most

appropriate of these patterns to be used in this context. However the fact is that

the opportunity to develop and use patterns at a lower level than these is missed.

2.5 Patterns In Introductory Programming

There is a great deal of literature on the problems encountered in acquiring pro-

gramming skills (Denning 1989), far too much to cover adequately here, so this

section is meant more as an overview of some interesting ideas that relate to the

objectives of this project, than as a comprehensive review. Many papers point to
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the lack of explicit material dealing with design issues at an early stage in pro-

gramming courses as a contributing factor to difficulties with solving program-

ming problems (McKeown et al. 1999). Object design, in particular, is mentioned

by several authors as a skill that should be inculcated early in a novice program-

mer’s career (Biddle & Mercer 1997) (Northrop 1992). Most of these articles

do not relate these concerns specifically to the use of patterns in the program-

ming curriculum, as many were written before the pattern concept entered the

software development field. And, of course, the real issue here is not a lack of

the requisite knowledge, per se, but rather the difficulty in applying it in novel

situations, “the ability to isolate concepts from any of the examples that give rise

to them” (Skemp 1971). So even in these works written before the pattern idea

arose, it is possible to discern the pattern concept in form if not in name. Thus

in Robert Floyd’s 1979 article about his ‘paradigms of programming’ concept, it

is clear that he is talking about something, “a general rule for attacking similar

problems”, that is very similar to patterns.

After solving a challenging problem, I solve it again from scratch,

retracing only the insights of the earlier solution. I repeat this until

the solution is as clear and direct as I can hope for. Then I look for

a general rule for attacking similar problems.

(Floyd 1979)

Similarly in 1986, Elliot Soloway was talking about “breaking down a prob-

lem on the basis of sub-problems for which you have canned (or almost canned)

solutions” (Soloway 1986). The breadth of this material indicates that the lack

of early exposure to design principles is widely seen as a problem in introductory

programming courses. From this depth of concern it would seem that the idea

of investigating the usefulness of using patterns in the learning process warrants

some attention in terms of providing the “relevant schema for solving problems”

(Wallingford 1996, p. 28) that students have “traditionally ... been left to con-

struct” (Wallingford 1996, p. 28) implicitly. And especially so given the close

relationship that already exists between the design pattern movement and object

oriented design that is cited as a particular problem in many papers.

The most comprehensive and most interesting of the work about patterns

at the level dealt with in this project is the material that appears on, or is

linked to, the web site of Joseph Bergin of Pace University and the “Elementary

Patterns” Home page of Eugene Wallingford at the University of Northern Iowa

(Wallingford 2001). It is difficult to characterise this material as some of it is

not explicitly course material, but neither is it all in the form of academic papers

in the normal sense. Many of the pages are presented as groups of patterns,

organized around a single programming concept, such as “Patterns for Selection”

or “Loop Patterns”, or around a level of programming skill, for example, “Coding

at the Lowest Level: Coding Patterns for Java Beginners” (Bergin 2002) and

“Simple Design Patterns”(Bergin n.d.). However some of the pages represent

papers about patterns, or about using patterns such as“Moving towards Object-
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Oriented Programming and Patterns” and “Patterns of Object-Oriented Design

for Novices”. And there is even some material that Bergin calls“Pedagogical

Patterns for Teaching Computer Science”, pages such as “A pattern for Teaching

Patterns” and “Teaching Objects with Elementary Patterns”(Bergin 2005).

Thus the mass of material on these sites contains much that relates directly

to this project, and was consulted regularly during the setting up of the new CP1

course here. Some of Bergin’s patterns equate directly to patterns used here and

some of his thinking has been incorporated into these. Perhaps the main weakness

of the site, as it relates to using patterns for introductory programming, is the

lack of a sense of organization. The patterns are probably all here, but finding a

particular pattern or patterns that relate(s) to a particular programming situation

could be rather problematic, unless you were fairly familiar with the site already.

Bergin himself does not claim this material to be anything other than a work

in progress, so the above statement is not meant as criticism, but rather as an

observation about incorporating aspects of it into the introductory programming

course situation. That said, this site should be given a link in the resource section

of any programming or software design course. There are many insights here that

are too useful to students who are thinking deeply about programming and design

issues to wait for them to be formally incorporated into programming courses.

Given the ubiquity of pattern methodology in software development these days,

the exposing of students to pattern thinking early in their programming careers

has to be an advantage.

But the most powerful aspect of this material is the light it casts on the diffi-

culties that novice programmers have in learning to program. It is obvious from

reading the programs produced by many students that, despite the fact that the

courses are organized around an OO language, Java, they are learning procedu-

ral programming still, as others have pointed out (Weber-Wulff 2000, p. 85).

Bergin’s material might help to explain why this is so. His contention is that

although the paradigm being taught has changed, the methods of presenting it

have not. The patterns appropriate to the old paradigm are still being used. “In

top-down programming you conceive of the program as a whole as a process to

be discovered. You think of the problem as a whole as a process to be decom-

posed” (Bergin 2000). Whereas in the OO context the approach required is quite

different, involving a completely different mindset.

The methodology for constructing an object-oriented program is to

discover the objects first via a process of simulation. But note that

what the programmer does is very different here. As an OOP designer,

you are looking for elements to model, not procedures to decompose.

... A procedural program is like a tree of functions and an object

program is like a web of clients and servers. These are very different

of course, and to be an effective programmer of one kind or the other,

you need to be comfortable with the basic job you are trying to do.

The view of the nature of the computation (tree vs. web) needs to
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be natural to your thinking processes so that your typical thought

processes lead you to one set of solutions rather than to the other.

(Bergin 2000)

This has obvious implications for this project’s objective of exploring the potential

of patterns for the problem solving process. Clearly, Bergin’s view is that the

problem solving technique that students are learning during the first programming

course is not reflecting the object-oriented nature of the course.

On the difficulties of learning to program there is a vast body of literature

(Sleeman 1986) (Denning 1989) (Ayen & Grier 1983) (Maj et al 2000) (Bergin

et al. 1999) (Harrison & Magel 1981), and because the observation of this phe-

nomenon is ubiquitous, there are beginning to be many voices joining the “use of

patterns in introductory programming” chorus. There are, naturally, many fac-

tors which impinge on this problem, such as a lack of any real interest in program-

ming (Sheard & Hagan 1998) that educators can do little about. From our per-

spective, the main difficulty seems to be the non-acquisition of an ability to solve

programming problems. Of course the teaching of problem solving skills is an issue

that long predates computers and programming (Mayer n.d.) (Lockheed 1979),

and there are many studies into the relationship between programming and prob-

lem solving ability (Mayer et al 1986) (VanLengen & Maddux 1990) (Reed 1998)

(East & Wallingford 1997) (Haverty et al. 2000).

Most of the authors advocating the use of patterns in introductory program-

ming courses seem to approach the idea from a cognitive perspective, and concen-

trate on the problem-solution pair aspect. For example, in the paper, “Patterns

and Pedagogy”, the authors attempt to assess the use of patterns in introductory

programming courses from a knowledge integration perspective.

Much psychological research ... suggests that programming exper-

tise is partly represented by a knowledge base of pattern-like chunks,

variously named plans, templates, schemas, or idioms. ... Compo-

nents of such a chunk resemble those described in Design Patterns.

... Additional research suggests that students gain expertise in pro-

gramming and other disciplines from a process of knowledge integra-

tion. Students integrate their knowledge by adding new pattern-like

chunks, sorting out these chunks, creating new chunks, and restruc-

turing promising chunks. ... Patterns can potentially help to organize

the examples and code they see as they learn to program.

(Clancy & Linn 1999)

The suggestion, here is that patterns are useful in the integration of knowl-

edge, in the task of putting disparate concepts and ideas into a coherent, or more

coherent form. Investigation of the cognitive processes involved in inductive rea-

soning has shown that the three fundamental areas of inductive activity are “Data

Gathering, Pattern Finding, and Hypothesis Generation” (Haverty, Koedinger,
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Klahr & Alibali 2000). Inductive reasoning, the process of generalizing experi-

ence into concepts, is clearly an element of knowledge integration, and therefore

patterns and their discovery are implicated as well. But the cognitive research

that points to this connection between patterns and inductive reasoning, was

based on studying the solving of inductive reasoning problems in Mathematics

(Haverty et al. 2000). So it suggests a connection between patterns and problem

solving, not just patterns and inductive reasoning as such. Nevertheless patterns

are shown to be important in forming, or integrating knowledge in Clancy and

Linn’s terms, as well as in using knowledge in problem solving activities.

The paper goes on to address “the process by which patterns are inferred

from examples and the mechanics for linking or connecting patterns.” From their

review of the research literature, the authors draw a number of conclusions.

Novices don’t infer patterns naturally (Linn).

Instruction can’t focus only on patterns (Mann).

Expert patterns may be inaccessible to novices (Shackelford and Bake).

Abstract understanding is needed for pattern application, as is a be-

lief that reuse is appropriate (Hoadley).

The context of a pattern’s use in case studies can help (Linn and

Clancy, Schank).

Environmental support and control of the program design and imple-

mentation process can help (Hohmann et al.).

(Clancy & Linn 1999)

These results are indicative of an important role for patterns in the acquiring of

knowledge, as well of in developing problem solving skills, but, for our purpose,

the most significant finding is the first in the list. This reinforces our own point

about the misplaced reliance that educators tend to put on the principle of osmosis

(see Section 1.5).

Some of the organizational issues involved in moving to patterns are discussed

by Proulx, who also concentrates on cognitive issues (Proulx 2000). Harrison

takes the organization line even further, suggesting “patterns for teaching pat-

terns in a classroom setting”. An interesting idea among these patterns is that

students be taught “about the structure of a pattern by leading them through

the process of writing a pattern as a group exercise” (Harrison 2001). If the

course is about patterns specifically, this is probably appropriate, however we see

patterns as a guide to programming, not as a subject in themselves. Another

problem that we notice in many papers, is that they are still concentrating on

patterns at too high a level for novices. For example, the Kaleidoscope project,

advocated by Wick(Wick 2001) seems rather ambitious even if treated in a stage

by stage manner. And, like the proposal by Astrachan for “Elementary Patterns”

(Astrachan n.d.) it uses GoF level patterns, which are probably more appropriate

in a second course.
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Because of the obvious synergies between the pattern concept and problems

this is the aspect emphasised by most advocates of the idea of using patterns in

introductory programming courses. But if the indications of our own work in this

project are correct, the obvious correspondences are not enough, problem solving

is more than matching a problem with its solution, it’s a creative process that

derives from many such matchings, any complex problem cannot be solved by

simple matching. Fortunately, these factors are not the only benefits offered by

the pattern notion, full development of the language idea and the process idea be-

ing two that have been largely overlooked in the literature. Therefore, the fuller

investigation of pattern theory from an introductory programming perspective

that we are attempting in this dissertation promises to elucidate some of the less

obvious benefits. Alexander’s thinking revolves around patterns, language, and

process, it is his contention that it is life (process) that gives form to the patterns

we see all around us, not analysis based on logical and decompositional method-

ologies1, and it is process (creativity) deriving from pattern language (conceptual

order), that underlies the human condition.

1Analysis “may be a poor tool if used to prescribe the physical nature of forms, it can become

a very powerful tool indeed if it is used to explore the conceptual order and pattern which a

problem presents to its designer” (Alexander 1964, p. 7).



Chapter 3

The Mythos (Mystic

Intelligibility) of Experience

Imagination is more important than knowledge.

(Albert Einstein, On Science (1954))

If we are to avoid the morass of metaphysics, we must reduce as many

concepts as possible to numerical terms. On the other hand we must

face the fact that the most important aspects of human life are intrinsi-

cally nonnumerical. Any attempt to ignore this is highly unscientific.

In a true intellectual approach one accepts this fact and copes with it.

(R. Bellman 1962 (Massey) 1967, p. 67)

3.1 Creating the Mind out of Experience

Imagine a world in which nothing that happens bears any relation to that which

has gone before, an existence where nothing is ever the same twice, where there are

no recurrences, where experience is just a continuous stream of sense impressions

flashing past. Well the point is that you can’t. Not only because such an existence

isn’t possible - what is life if it is not a series of cycles, regularities and rituals;

beating heart, breathing, waking-sleeping, drinking, eating and so on? - but also

because it is impossible to imagine. Even the most fantastic of imaginings is

infested with concepts like ‘mirrors’, ‘rabbits’, ‘hatters’, and ‘little girls’ called

Alice, all of which must be familiar concepts before the fantasy can even begin.

The doors of perception are opened not as Aldous Huxley contends by LSD, but

only by the ghosts of happenings past. This is because imagination is an integral

part of the development of mind, not the product of “random mind expansion”,

and it explains why one can’t imagine what it is like to, for example, feel like a

bat - one doesn’t have the conceptual structure on which to base the imaginary

experience, and no drug is going to alter that fact, because one doesn’t possess

the perceptual apparatus to develop it from real experience.

61
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Imagination is fundamentally conceptual in nature, ‘to conceive’ is virtually

synonymous with ‘to imagine’, after all - there is no ‘tabula rasa’. You can’t

imagine anything that isn’t based on concepts that you already have in your head

- “creativity is an automatic consequence of having the proper representation of

concepts in a mind” (Hofstadter 1985, p. 528). Indeed, you can’t even imagine

‘nothing’. Nothing is no mind, another ‘tabula rasa’, and you need a mind to

imagine anything, even ‘nothing’ - ‘nothing’ being a concept after all - no mind,

no imagination. In the end it is concepts that we think with (Novak 1977, p. 18),

not the brain, the point being that imagination is an important factor in human

intelligence. Making decisions implies the need to assess the consequences of

each of the possible options, and projecting one’s mind into the future requires

imagination (Popper 1966, p. 233).

Maybe, just maybe, it is possible for the brain to be free of any conceptual

structure within the first few minutes of being born, but even this is doubtful. The

feeling for space, for time, for colour, for sensation itself - these are all built from

recurring experience from the very moment that the sensations begin to flood in,

so, at the very least, the potential for these concepts to form must exist in the

brain. “Our senses are activated before we are born, and we begin accumulating

experiences that structure our brains quite early. And ‘as the twig is bent ...’

according to the old expression, our competences develop” (Greenberg 2004a). If

the flow of sensation was entirely random - as if, indeed there could be any such

thing as random sensation - imagination would, in fact, could, never arise.

So the key to understanding, to the very soul of the way that the mind works, is

the way that experience reveals the world in a process of unfolding potential. This

unfolding of experience, a form of Alexander’s “fundamental process” by which

the existing relationships between objects in the world transform themselves into

the potentialities hidden as the seeds of the future in the current relationships,

constitutes the dynamic “order of nature”, and accounts for the ordering power

of mind.

The natural world as a whole remains real for us, according to Husserl,

precisely inasmuch as the process of the coincidence of predelineated

aspects and actual subsequent perceptions continues. “The existence

of a world is the correlate of certain experience-patterns marked out

by certain essential formulations” [Husserl p.136]. The existence of

each real thing and of the world as “the totality of objects that can

be known through experience” [Husserl p.46] is thus presumptive or

contingent in the sense that no complete fulfillment of the system

of implicit references is possible. The “reality-status” of any and

every physical object is always subject to modification in the light of

subsequent experiences.

Suppose now that in fact none of the “potential” aspects of current

experience (aspects which, as we have seen, constitute the meaning

of the perceptual object) were fulfilled from moment to moment. The
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world - the regular unrolling of ordered patterns - would exist no

longer. ...

Such a process would cease to make sense as the uncertainty about

subsequent moments increased. Information-content would be max-

imal because it would be impossible to predict what would follow.

Experience would be meaningless since “Reality and world ... are just

the titles for certain valid unities of meaning [Husserl p.153], namely

the Markoffian perceptual processes

(Crosson 1967, pp. 126-7)

What we call “logical inference” is simply the extension of of “perceptual

inference”. In their state of existence in the world, mountains have aspects that

we cannot perceive from any one particular viewpoint - the other side of the

mountain. But it is only through experience that we learn the perceptual inferring

of the other side, the perceptual order then is just a product of the unfolding

experience of a mountain as we travel through various viewpoints. Its actual

order, the structure of mountain, in the real world accounts for the conceptual

order, “mountain”, in our mind even though at any particular moment we cannot

actually perceive the totality. The wholeness of the mountain we perceive, the very

concept “mountain”, is a product of the patterns of experience, not something

that we can apprehend in a single moment. In other words the mind is ordered

by the experience of order, the ability to infer unperceivable aspects of reality

derives from two basic facts - the unperceived aspects are part of the structural

order of reality, and conceptual order is as much a product of previous experience

as it is of current perception.

In fact, the conceptual order of the mind consistently overrides those aspects

of experience that don’t make logical sense. That is, despite the experiential

orderliness, there are many aspects of reality that, seem inherently ‘weird’ in

terms of being conceptually inconsistent with other parts of reality. But we just

accept them as normal without really considering how conceptually ‘unusual’ they

are because this is, in fact, the power of the pattern, we don’t have to think about

it, or even notice its inherent ‘weirdness’, because it just keeps happening over

and over again. Being a pattern means that it has lost the power to surprise us,

in fact its power is the exact opposite, the power of normalcy. If you stop to think

about the phenomenon of rain, for example, water falling out of the sky, this is

quite ‘weird’ in a conceptual sense in terms of our other experiences of water.

The point is that the fact that rain is, in most places, quite common, obscures

this ‘strangeness’, and the fact that we accept it as quite ‘normal’ derives from

its status as a pattern in our lives, not that it makes obvious sense. Water in

its everyday manifestation in our lives simply does not float around in the air,

RAIN1 is in fact inconsistent with our other patterns concerning water, LAKE,

DAM, STREAM, SEAect., and one has to have a quite sophisticated understanding

to ‘make sense’ of the phenomenon of rain at any level of logical analysis. But

1In this text pattern names will be indicated by appearing in this font - RAIN.
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we don’t analyse it, the basis of our ready acceptance derives from experience

not analysis. The pattern phenomenon demonstrates that it is experience, not

analysis, that gives rise to most of those concepts that are fundamental to our

lives. Analysis, in fact, is dependent on concepts, not the reverse, just as synthesis

is. I must have some concepts before I can analyse anything.

So the conceptual structure that develops in the human brain, beginning from

day one - the mind - isn’t a matter of pure chance, or even just an expression

of the individual’s genetic heritage, it is the result of the interplay between that

heritage and experience, most of which is not only common to all of us, but

consists largely of repeating form.

We live in a universe of patterns.

Every night the stars move in circles across the sky. The seasons cycle

at yearly intervals. No two snowflakes are ever exactly the same, but

they all have sixfold symmetry. Tigers and zebras are covered in

patterns of stripes, leopards and hyenas are covered in patterns of

spots. Intricate trains of waves march across the oceans; very similar

trains of sand dunes march across the desert. Colored arcs of light

adorn the sky in the form of rainbows, and a bright circular halo

sometimes surrounds the moon on winter nights. Spherical drops of

water fall from clouds.

Human mind and culture have developed a formal system of thought

for recognizing, classifying, and exploiting patterns. We call it math-

ematics. By using mathematics to organize and systematize our ideas

about patterns, we have discovered a great secret: nature’s patterns

are not just there to be admired, they are vital clues to the rules that

govern natural processes.

(Stewart 1995, p. 1)

Anything that occurs in our mind is a part of a whole, that grand system that

we know as the universe. As Kant pointed out, everything is either coexistent

in time or follows from something that happened previously. “All substances, in

the world of phenomena, in so far as they are coexistent, stand in complete com-

munity, that is, reciprocity one to another” (Kant 1881, p. 184). This “complete

community” is both spatial and temporal in extent. “Every action, as a phe-

nomenon, so far as it produces an event, is itself an event, presupposing another

state, in which its cause can be discovered; and thus everything that happens is

only a continuation of a series, and no beginning, happening by itself, is possible

in it” (Kant 1881, p. 469). These two principles constitute the idea of “causality

of nature” (Kant 1881, p. 460), often expressed as “the same events take place if

the same conditions apply” (Weyl 1959, p. 192) and together with the “causality

of freedom” (Kant 1881, p. 460), “a faculty of determination, independent of the

necessitation through sensuous impulses” (Kant 1881, p. 461), form a dynamic

community expressed in the “idea with regard to the totality of the derivation of

cosmical events from their cause” (Kant 1881, p. 460), what we might call the
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‘human view’ of the universe.

The unity of the universe, in which all phenomena are supposed to

be connected, is evidently a mere deduction of the quietly adopted

principle of the communion of all substances as coexistent; for if they

were isolated, they would not form parts of a whole, and if their

connection (the reciprocity of the manifold) were not necessary for

the sake of their coexistence, it would be impossible to use the latter,

which is a purely ideal relation, as proof of the former, which is real.

We have shown, however, that communion is really the ground of the

possibility of empirical knowledge of coexistence, and that we can only

conclude from this the existence of the former, as its condition.

(Kant 1881, p. 190)

Whatever theory holds sway for the beginning of the universe what we do

know is that it leads ultimately to this world in our head, to mind and all its

properties. “Nothing can be born of nothing, for if it were otherwise, anything

could be born at will from anything” (Yukawa 1973, p. 81). Like imagination,

the universe cannot begin from a ‘tabula rasa’ because it ends up as something,

indeed everything, even if it all turns out to exist only in our minds. Whatever

the starting point was, it contained the initial conditions for the process, loosely

called ‘cosmic evolution.’ Strictly speaking, of course, the process is not evolu-

tionary in the modern sense because it does not involve a dynamic relationship of

adaptation, it is simply a process of systematic change over time (Thorpe 1962,

p. 2), that generates effects that recur time and time again. We know that much

about our genesis. Universal natural laws are merely expressions of repetition,

experience made predictable, and they must flow from the original conditions,

from genesis. Everything, even the sense of self that is central to the human

condition is made possible by the eruption into being that occurs at the very

beginning of time. If this were not so then there would be no sense of self, no

subject, to contemplate the universe, to think, to imagine and to dream. In some

vital sense we are the mind of the universe - its imagination and its conscience.

We know more than Descartes’ ‘I exist’, we know ‘I exist in contra-distinction to

everything else.’

The fact that everything that we know comes ultimately from experience tells

us that knowledge is mystic, that is, in principle, a mystery. This is not to say

that it is ‘magical’ or ‘supernatural’ in any way, just buried deeply in the very

structure of thought, at the interface of experience and behaviour. It is an aspect

of mythos rather than logos, those features of the way that we live our lives that

come under the heading, spiritual, in the sense that one lives one’s life with spirit.

Natural science knows nothing of the relation between behaviour and

experience. The nature of this relation is mysterious - in Marcel’s

sense. That is to say, it is not an objective problem. There is no

traditional logic to express it. There is no developed method of un-

derstanding its nature. But this relation is the copula of our science
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- if science means a form of knowledge adequate to its subject. [Em-

phasis in original].

(Laing 1973, p. 16)

As human beings, our fundamental drive is to create understanding, and,

as understanding one thing is a factor in coming to understand other things,

the creative thread, buried deep in the almost instinctive side of our nature, is

impossible to untangle - “creativeness is entirely irrational, a mystical faculty”

(Popper 1966, p. 228) - just as the chain of cause and effect is impossible to

unravel in a throw of the dice. To call an event random, or creative, is to state

that it is unfathomable, mystic, but not because it is inherently indeterminate,

just indeterminable in practice2. Just as the foundation of the individual mind

and understanding is laid in the very early experience of the child, so the bases for

our rational methods of reasoning, of creating understanding in the large, were

established long ago and on the basis of the insight derived from those very same

childhood experiences.

To the Greeks we owe the insight that the structure of space, which

manifests itself in the relations between spatial configurations and

their mutual lawful dependences, is something entirely rational. Where-

as in examining a real object we have to rely continually on our sense

perception in order to bring to light ever new features, capable of

description in concepts of vague extent only, the structure of space

can be exhaustively characterized with the help of a few exact con-

cepts and in a few statements, the axioms, in such a manner that all

geometrical concepts can be defined in terms of those basic concepts

and every true geometrical statement follows as a logical consequence

from the axioms. Thereby geometry has become the prototype of a

deductive science. And in view of this its character, mathematics is

eminently interested in the methods by which concepts are defined in

terms of others and statements are inferred from others. (Aristotelian

logic, too, was essentially a product of abstraction from mathematics.)

(Weyl 1959, p. 3)

So the defining characteristic of the human is creativity in the strongest sense

possible, the human condition is itself a product of human creative potential,

which is, in turn, an element of the human condition. Even our rational, scien-

tific methodologies derive from the mystery of the creation of mind. The essential

interaction between human and environment is creative in spirit, not determinis-

tic.

2It was Poincaré who pointed out that we are limited always by our instruments. Mea-

surements are always approximations no matter how precise. Reality is exact, it takes its

measurements, in effect, to an infinite number of decimal places, not to a finite one like we

necessarily do. Therefore the problem of determinism and the problem of predictability are

distinct problems.
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For according to determinism, any theories - such as, say, determin-

ism - are held because of a certain physical structure of the holder

(perhaps of his brain). Accordingly we are deceiving ourselves (and

are physically so determined as to deceive ourselves) whenever we be-

lieve that there are such things as arguments or reasons which make

us accept determinism. Or, in other words, physical determinism is

a theory which, if it is true, is not arguable, since it must explain all

our reactions, including what appear to us as beliefs based on argu-

ments, as due to purely physical conditions. ... This means that if

we believe that we have accepted a theory like determinism because

we were swayed by the logical force of certain arguments, then we are

deceiving ourselves, according to physical determinism; or more pre-

cisely, we are in a physical condition which determines us to deceive

ourselves. (Emphasis in original.)

(Popper 1972, pp. 223-4)

3.2 The Pattern of Experience

As conscious purposeful beings we stand on ground that we may never be able

to precisely delimit. Yet this should not worry us because we do things every

day, which, but for the fact that we accomplish them every day, should astound

and amaze that. Think of unexpectedly meeting someone who you once knew

well after an absence of twenty or thirty years. Recognition is done unconsciously

with complete certitude.3 Any momentary hesitation is only due to the conscious

realisation that this feat should be impossible. To appreciate its impossibility,

attempt to explain in rational terms how this recognition process works, how you

succeed “in separating essential from unessential features” (Weyl 1959, p. 286)

given that many changes have occurred in the appearance of your acquaintance

in the meantime. The foundations of mind, set in the time before language had

gathered its communicative power, in the time before the mythos had become the

logos, before words had taken over from raw meanings and feelings as the building

blocks of consciousness, must remain ever mysterious. Here even memory is but

3Two of the most striking capabilities of human memory are those pointed out by Pribram.

“The first is our ability to recognize a person we know, when he appears in our field of view,

which may contain a hundred more people. The sudden flash of recognition we may feel, this

absolute certainty of ”this is him and it can be nobody else”, is not just a subjective emotion,

but is apparently evoked only by an extremely reliable and fast form of information processing

in our brain. This function of recognizing is also performed by the two-dimensional hologram,

as the appearance of a bright light point in the image plane of the optical arrangement, and the

brightness and sharpness of the light point are a scientific measure of the degree of recognition.

The second capability is our ability, after recognizing a person, to recall quickly a considerable

amount of the information we have about this person. In an optical arrangement, the recognition

signal given by the twodimensional hologram provides the instruction for generating total recall

of the relevant information from a three-dimensional hologram (Pribram 1971, p. 156)
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the raw engram, the ‘neuronal-association-level’4 recording of direct experience

not yet organised into a conceptual model of the past, and therefore hardly worthy

of the designation. Yet this undifferentiated and largely unstructured mist of

experience provides the material out of which both the adult and the modern

mind emerge.

No wonder that we feel that much of what we do and who we are is intuitive

and instinctive, even virtually innate. We live in a sort of ‘twilight zone’ between

‘making sense’ and ‘sensing’, between conceiving and perceiving, where the con-

nection between ideas and reality is fundamentally obscure. But this essential

obscurity does not diminish its fundamental role in making us what we are. The

idea of ‘human nature’ has largely fallen from favour, or at least mention, in

recent times, and mostly for good reason. But consider the vast experiment in

delineating ‘human nature’ that was conducted between neolithic times and 1492.

From the time that rising sea levels separated America from Europe, neolithic

humankind began two lines of cultural development in isolation from each other.

At the time of separation these societies were village-based systems that had de-

veloped out of the transition from the hunter-gatherer to early farming lifestyles.

Yet when these two separately developed cultures came into contact with each

other again, during the 15th and 16th Centuries, each was able to recognise essen-

tially identical forms of social and cultural organisation in the other. Although

different in detail, the elements of social, political, religious and intellectual life

all took the same basic shape, and formed a similar ‘social landscape’ in both the

European and Aztec ‘civilizations’.

This tells us about the power of the basic human pattern language in shaping

human cultural development. ‘Human nature’ is just that dynamic interaction

between the human biological form and the environment. Everywhere we face

the same basic conditions, have the same needs and problems. It should not be

surprising that we develop the same ‘mind’ in response, that we operate with

the same basic pattern language. We are essentially animals, our intelligence

is a product of evolution, just as any other attribute of an animal is, and the

basic difference between plant and animal life is behaviour - the ability and the

need to make decisions about what behaviour to perform, what ‘to do’ in a given

situation - derived from the possession of a system of coordination based on

electrical impulses (nervous system) as well as the much slower chemical-based

(hormonal system) dynamics inherited from plant life.

So almost as soon as you have behaviour you have a requirement for learning

because it is a dynamic attribute. Animals ‘learn’ by observing the patterns of

behaviour of their elders, and it is from this behavioural pattern language that

4“The unit of analysis for brain function has classically been the neuron. The present

proposal for a two-process mechanism recognizes an additional unit: the neural junction, whose

activity can become part of an organization (the slow potential microstructure) temporarily

unrelated to the receptive field of any single neuron. Neural junctions are thus much more than

just way stations in the transmission of nerve impulses” (Pribram 1971, p. 25).
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our mental forms develop. Human behaviour is fundamentally the ability to

make decisions and there is really only one way to do this, to build on what you

know. In the end “people make decisions based on their recognition of similarities

between past experiences and current situations” (Hopkins & DuBois 2005).

The primary fact about being human is the drive to create mind from ex-

perience, so it is, in principle, impossible to separate this motivation to know

from knowledge itself. What we call ‘mind’ is a continuous ongoing process, a

work-in-progress, never a completed stand-alone artefact. We learn to trust the

regularities of experience, the order in what we perceive, and from this we build

the ability to organize perception, to conceptualize. The initial state in which

we find ourselves is cognition without the cognitive power of narrative and un-

derstanding, we are sensing without ‘making sense’. Yet, like a story in which

some vital information is withheld until close to the end, we are building the

basis on which, eventually, sense will be made. ‘Making sense’ of our experi-

ence is the ultimate creative act, “the art of understanding” in Heidegger’s sense

(Heidegger 1962, p. 194), and this is why the “creative spark is not the exclu-

sive property of just a few rare individuals down the centuries, but quite to the

contrary, it is an intrinsic ingredient of the everyday mental activity of everyone”

(Hofstadter 1985, p. 527).

The true power of the metaphor underlying cognitive science, the brain as a

computer, is not that it is true in any metaphysical sense, just that it provides a

way of thinking about what goes on inside the head5, so as the researchers at the

Sony Computer Science Laboratory (SCSL) in Paris say, the aim of research like

their own should be, not to build artificial intelligence, but to help “understand

how children learn” (Frederic Kaplan quoted in IDG News Service (14th June

2005)). Because, as Wilder Penfield, one of the pioneers of neurological research,

says, there is “no suggestion of action by a brain-mechanism that accounts for

mind-action” (Penfield 1975), this is the ultimate ‘black box’ - one can never deal

directly with the brain-mind interface. It is not even clear that psychology is

reducible to neurology let alone to digital logic.

If psychology is reducible to neurology, then for every psychological

kind predicate there is coextensive neurological kind predicate, and

the generalization which states this coextension is a law. ... [But]

there are no firm data for any but the grossest correspondence be-

tween types of psychological states and types of neurological states.

... The present point is that the reductionist program in psychology

is clearly not to be defended on ontological grounds. Even if (token)

psychological events are (token) neurological events, it does not fol-

5This is not to imply that people can’t be ‘programmed’, that, after all, is the very pur-

pose of propaganda (the word ‘propaganda’ coming originally from from Mediaeval Latin for

‘propagating the faith’). But we tend not to associate purely ‘programmed’ behaviour with

intelligence when it is exhibited by humans so it is somewhat surprising that we can imagine

attributing intelligence to a ‘programmable machine’.
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low that the kind predicates of psychology are coextensive with the

kind predicates of any other discipline (including physics). That is,

the assumption that every psychological event is a physical event does

not guarantee that physics (or, a fortiori, any other discipline more

general than psychology) can provide an appropriate vocabulary for

psychological theories. I emphasize this point because I am convinced

that the make-or-break commitment of many physiological psycholo-

gists to the reductionist program stems precisely from having confused

that program with (token) physicalism.

(Fodor 1975, p. 17)

The point is that every computational state, by definition, depends on prior

computations, on a computational cause, but we know, as an established empirical

fact that mental states do not necessarily have purely mental causes. A radical

state of ennui can be due to the state of the oysters that one ate yesterday

rather than resulting from general dissatisfaction with the state of the world. So,

at least “some mental states are, as it were, the consequence of brute incursions

from the physiological level” (Fodor 1975, p. 200), and there are even suggestions,

admittedly controversial (Khamsi 2004), that stimulating the temporal lobe of the

brain can induce feelings of religious fervour (Ramachandran & Blakeslee 1999,

p. 175) and out-of-body type feelings (Blackmore 1994, p. 29), suggesting that

it is not even true that every mental state can be defined by mental relations, let

alone computational ones.

The similarities in function between the brain and computer enable us to draw

some cautious parallels (Winograd 1983, p. 13), provided that the clear differ-

ences are also kept in mind. So, for instance, the brain as computer idea reduces

the brain’s function to cognition. But it is clear that “as humans, we experience

the world in aesthetic, affective, and emotional terms as well” (Winograd 1996,

p. xix) as cognitively. We process experience in all its facets, not just as in-

formation. Moreover, “whereas computers still perform calculations in a linear

order, the human brain can make a continuous series of computations at the same

time, passing information back and forth in a non-linear, self-organizing manner”

(Chabria 2005).

But the fundamental difference lies in that property of experience that we call

meaning that derives from biological ‘being’. As we discuss further in Chapter

5, the case of the young deaf and blind girl, Helen Keller, demonstrates the

essential ‘emptiness’ of her symbol for ‘water’ before the moment of revelation

when she discovers meaning. “I knew then that w-a-t-e-r meant [emphasis added]

the wonderful cool something that was flowing over my hand. That living word

awakened my soul, gave it light, hope, joy, set it free!” (Helen Keller quoted in

(Langer) 1976, pp. 62-3) . Before her moment of enlightenment Helen Keller was

processing signs, not meanings or even symbols, she was computing not thinking

because she did not have the web of associations that normally sense endowed

people acquire through direct experience. For there is a logical fallacy involved



3.2. THE PATTERN OF EXPERIENCE 71

in the notion of a computer processing symbols as Fodor points out.

Following Turing, I’ve introduced the notion of computation by refer-

ence to such semantic notions as content and representation; a com-

putation is some kind of content-respecting causal relation among

symbols. However, this order of explication is OK only if the notion

of a symbol doesn’t itself presuppose the notion of a computation. In

particular, it’s OK only if you don’t need the notion of a computation

to explain what it is for something to have semantic properties.

... Suppose, however, it’s your metaphysical view that the semantic

properties of a mental representation depend, wholly or in part, upon

the computational relations that it enters into; hence that the notion

of computation is prior to the notion of a symbol. You will then

need some other way of saying what it is for a causal relation among

mental representations to be a computation; some way that does not

presuppose such notions as symbol and content. It may be possible to

find such a notion of computation, but I don’t know where. (Certainly

not in Turing, who simply takes it for granted that the expressions

that computing machines crunch are symbols; e.g. that they denote

numbers, functions, and the like.) The attempts I’ve seen invariably

end up suggesting (or proclaiming) that every causal process is a kind

of computation, thereby trivializing Turing’s nice idea that thought is.

[Emphases in original].

(Fodor 1998, pp. 11-12)

The computer processes ‘empty’ symbols, mere signs, and the mind deals

with meanings, the web of associations acquired through experience of the actual

entity to which the sign acts as symbol. Although there is an association between

the two it is not the case that the symbol is the same thing as its meaning, it is

an essentially arbitrary, that is, conventional, not experiential, representation of

the meaning, and this is the difference between a formal definition and a pattern,

or a pure abstraction and a real entity. Life is a continuous dynamic process

in a physically continuous ‘space’ out of which meaning emerges, whereas the

expression of meaning relies on the use of a system of discrete symbols, and

these are fundamentally different processes occurring in fundamentally different

‘worlds’. If the mind is a ‘machine’ at all, then it is a mythos machine, while the

computer is a logos machine. More properly, of course, mythos implies organism,

not organisation.

We consider it plausible to argue that there is a fundamental disjunct between

definition (logos) and meaning (mythos) and that the pattern concept provides

the means to cross the gap, because pattern is an expression of some aspect of

real world process in terms of at least some of the associations that form the web

of meaning of direct experience, the ‘context’ in pattern terminology. Indeed,

in an attempt to escape the circularity of the idea that concepts are definitions,

cognitive science has spent the last decade defining concepts as prototypes on the
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statistical basis that “everybody who has a concept is highly likely to have its

prototype as well” (Fodor 1998, p. 93). That is, “ask a subject to tell you the first

— that comes into his head, and it’s good odds he’ll report the prototype for the

category —: cars for vehicles, red for colours, diamonds for jewels, sparrows for

birds, and so on, Ask which vehicle-word a child is likely to learn first, and pro-

totypicality is a better predictor than even very good predictors like the relative

frequency of a word in the adult corpus” (Fodor 1998, p. 93). It seems to us that

substituting the idea of a pattern for ‘prototype’ retains the circularity-escaping

aspect while avoiding the problem of compositionality.

In a nutshell, the trouble with prototypes is this. Concepts are pro-

ductive and systematic. Since compositionality is what explains sys-

tematicity and productivity, it must be that concepts are composi-

tional. But it’s as certain as anything ever gets in cognitive science

that prototypes don’t compose. So it’s as certain as anything ever

gets in cognitive science that concepts can’t be prototypes and that

the glue that holds concepts together can’t be statistical. [Emphases

in original].

(Fodor 1998, p. 94)

Patterns have more combinatorial potential than prototypes precisely because of

what they are - they occur during the functioning of a system, that is, dynamically,

and they form a language. So, the person who ‘has’ the appropriate patterns

from experience will automatically have the concept in a way that the person

who tries to acquire it through a dictionary definition will not. Moreover the

compositionality of patterns cannot be doubted because most, if not all, concepts,

are themselves made up of several patterns. Just think of all the patterns from

the various senses that make up the concept ‘water’ that were missing from the

young Helen Keller’s universe.

So there would seem to be a qualitative difference between the meaning that

arises from real life experience and the operational semantics of a ‘symbol’ pro-

cessing system, because, in actual fact, operational semantics is nothing more

than logical syntax.

For the user, the computer function can be operationally described as

a physics-free machine, or alternatively as a symbolically controlled,

rule-based (syntactic) machine. Its behavior is usually interpreted

as manipulating meaningful symbols, but that is another issue. The

computer is a prime example of how the apparently physics-free func-

tion or manipulation of memory-based discrete symbol systems can

easily give the illusion of strict isolation from physical dynamics.

(Pattee 2001b)

It is this “physics-free”, that is, “real-world-context-free”, aspect of computing

systems that is the both the source of their power, and the font of the difficulties

humans have in using, and especially, programming, them. One of the major
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influences on the development of modern software is the quest to make it more

suitable for human consumption, so to speak.

This is because the computer requires a strictly non-negotiable context for the

symbols it processes, made up of a strictly defined operational ‘meaning’, if it can

even be called that, for symbols and the logical syntax for their manipulation,

whereas the mind seems not to be syntax driven at all. Rather it is almost entirely

context-flexible; what matters for the use of a symbol is semantic context, not the

rigid syntactic one, that’s why it is a pattern, not simply a symbol - it carries a web

of associations not just a dictionary definition. Mostly we don’t need a definition

to ‘know’ what a word means, we have derived its meaning from experience which

is always contextual, never abstract. The word, in this case, is essentially

a pattern because it is embedded in the web of experience that constitutes our

personal pattern language, and it is this factor that explains why we often find it

difficult to expound upon the meaning of a word, we live its meaning, we don’t

define it - meaning is dynamic whereas definition is static. Definition and syntax

only become important in the act of communication between minds, and even

then it is infinitely less formal than a programming logic needs to be because it

needs to impart meaning not to formally establish a conclusion from fundamental

principles.

But there is a fascinating contrast here, caused by the fact that we have a

tendency to see what the computer does as ‘solving problems’ as if it were an

active participant in the design of the solution, as if it were ‘thinking’, as if it were

‘creative’. The point is that problems exist only in human terms, no computer

ever had a problem in the way that humans have them. Even if it fails to switch

on, fails to boot as we say, this is a problem for the human, not the computer,

and likewise the solution has to be discovered by the human - problems and

their solution exist only in human conceptual space. What the analogy overlooks

is that this is a logical system. Logic cannot create, it can only be used to

discover solutions that are inherent in the situation that is causing the problem,

to deduce them from first premises. As Alexander explains, physical form can

only be logically determined from original state to the extent that the original

state requires it, and this is true for conceptual form as well.

Logic, like mathematics, is regarded by many designers with suspi-

cion. Much of it is based on various superstitions about the kind of

force logic has in telling us what to do. First of all, the word “logic”

has some currency among designers as a reference to a particularly

unpleasing and functionally unprofitable kind of formalism. The so-

called logic of Jacques Frangois Blondel or Vignola, for instance, re-

ferred to rules according to which the elements of architectural style

could be combined. As rules they may be logical. But this gives

them no special force unless there is also a legitimate relation be-

tween the system of logic and the needs and forces we accept in the

real world. Again, the cold visual “logic” of the steel-skeleton office
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building seems horribly constrained, and if we take it seriously as an

intimation of what logic is likely to do, it “is certain to frighten us

away from analytical methods.” But no one shape can any more be

a consequence of the use of logic than any other, and it is nonsense

to blame rigid physical form on the rigidity of logic. It is not possible

to set up premises, trace through a series of deductions, and arrive

at a form which is logically determined by the premises, unless the

premises already have the seeds of a particular plastic emphasis built

into them. There is no legitimate sense in which deductive logic can

prescribe physical form for us.

(Alexander 1964, pp. 7–8)

And so it is with the computer. The machine provides the logic, the system

of rules by which it operates. So there is no sense in which it can derive solutions

that are not inherent in the premises of the logic. It runs our solutions - solutions

to problems that exist outside of the strict limits of machine logic. Just as there

is “no legitimate sense in which deductive logic can prescribe physical form for

us”, there is no way that a computer can itself solve a real world problem. The

statement that Turing’s “results entail ... that a standard digital computer, given

only the right program, a large enough memory and sufficient time, can ... display

any systematic pattern of responses to the environment whatsoever” (Churchland

& Churchland 1990, p. 26) is not a correct interpretation of the Church-Turing

thesis. Even in purely logical terms there are functions that cannot be “solved”

on a Turing machine.

Any device or organ whose internal processes can be described com-

pletely by means of effectively calculable functions can be simulated

exactly by a Turing machine program (provided that the input into

the device or organ is itself Turing-machine-computable, which is to

say, is either finite or expressible as a computable number, in Tur-

ing’s sense ... ; but any device or organ whose mathematical descrip-

tion involves functions that are not effectively calculable cannot be

so simulated. As Turing showed, there are uncountably many such

functions. (Examples from logic are Turing’s famous halting func-

tion ... and the function D whose domain is the set of well-formed

formulae of the predicate calculus and whose values, D(x), are 1 or

0 according to whether x is, or is not, derivable from the Bernays-

Hilbert-Ackermann axioms for predicate logic.) It is an open question

whether a completed neuroscience will employ functions that are not

effectively calculable.

(Copeland 2002)

Logic, like mathematics, is a means to an end, not the ‘space’ in which the end

exists. The end, the solution, can only exist in the ‘problem space’, not the ‘logic

space’ of the machine, so it cannot be derived by logic alone. Design problems

are ‘human problems’, ‘human ends’, they require ‘human solutions’. Reasoning
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is how we solve problems and how we convince ourselves. Convincing someone

requires more than logic it requires reasoning, an appeal to the whole person, the

mind, not just the logical or computational aspect of their brain. The holistic

nature of the working of the mind is most evident in the way that we ‘appreciate’

a cultural experience such as a film. Most films are totally unconvincing at any

level of logical analysis, yet one can be swept along, ‘convinced’ at the emotional

level, to such an extent the that the logical inconsistencies and even the rational

absurdities are ignored. Clearly, the mind is prepared to “suspend disbelief” as

we say, if it is engaged at some level of mental activity, and this is important for

the creative impulse.

Education can be regarded, albeit simplistically, as a form of persuasion, one

is trying to ‘convince’ people about a ‘discipline’, a way of thinking about some

aspect of existence. Logic is important in this regard, but it is not all that is

happening in learning. Even the idea of ‘cognition’ where it stands “for any kind

of mental operation or structure that can be studied in precise terms” (Lakoff

& Nunez 2000) does not cover the case as is shown by the attempt to set up a

taxonomy of educational objectives where examination of the cognitive domain

was followed by an examination of the affective domain. Even Benjamin Bloom,

the organiser of the report on the cognitive domain, recognised that “education

as a process was an effort to realize human potential, indeed, even more, it was

an effort designed to make potential possible” (Eisner 2000). Creating potential

is, more or less, what we mean here by creating meaning or ‘mind’, and it encom-

passes more than those mental operations that can be “studied in precise terms”,

it is, in fact, a feature of all aspects of life whether or not they can be precisely

delineated. If this were not so then we would surely not still be casting around in

the attempt to find ways to teach things as ‘limited’, as ‘precise’, and as ‘logical’

as instructing a machine.

3.3 Programming is just Thinking

But this is the root of the problem, the very precision and logicality of the ma-

chine. The basic cause of the problem is that the student of programming is being

forced to deal with a system of strict logic and this is just not the normal way

in which humans think. We are not good at handling strict logic, and this shows

up in other areas where one has to deal with systems of this kind. One sees the

same sort of difficulties when one is teaching basic unix, and even mathematics.

It is an interesting historical fact that the way that the difficulties that novices

have in dealing with a command line system of the unix type was to hide the

logic behind a language of visual symbols. The modern operating system of a

computer is a metaphor for office life with ‘desktops’, ‘files’, ‘folders’, ‘text pads’,

‘archiving’, ‘scheduling’, ‘mailers’, ‘memos’, ‘rubbish bins’ and the like. Even the

internet had to come to be presented in a form, the web, more like the familiar

directory style services, a sort of truly ‘universal’ business directory, before it
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achieved widespread acceptance. These metaphors all act to disguise the digital

and logical reality of the basic computer system, so that, for example, when you

place a file in the rubbish bin you are really deleting a string of binary digits from

the storage medium, usually a hard drive6, of the computer, and when you send

a message on the email system you are generating ‘packets’ of such digits to be

sent over the telephone system.

But the really interesting aspect of all this from our point of view is that

the visual metaphor is based on the familiar patterns of life in an office, this is

essentially a graphical representation of the pattern language of the office, the

purpose of which is to hide from unfamiliar minds the rigid realities of binary

arithmetic and symbolic logic. Like all metaphors, this one is a way of making

the unfamiliar seem familiar in order to promote understanding, to enable us

to deal with it using our normal modes of thinking, the patterns of mind that

we have developed out of normal everyday experience. That this should take the

form of a pattern language should not therefore be surprising, because, on its own,

metaphor imports meaning, and an operating system requires more than static

definition it requires ‘operational understanding’. What the graphical operating

system really imports is the ‘operational semantics’ of the office because the real

life ‘meaning’ of binary symbols and logic is non-existent for most people, it is

not a pattern of everyday human experience, whereas the office experience, to

some extent at least, is.

Clearly the difficulties we face in teaching programming are of the same kind,

there is no ‘operational semantic’ inherent in making a machine perform a task

to our requirements that derives from the patterns of everyday life. The closest

analogy we can think of is natural language, it has the same sort of creative

combinatorial potential, the trouble is that the communicative relationship is

different. Natural language, as a means of communication, is based on both

nodes of the interaction being conscious beings capable of flexible interpretation

of the symbolic system in use, on apprehending what is meant rather than what

is actually said. However this is not true of the programming situation; here, one

of the entities involved is a rigid system of logic, it has no means to ‘interpret’

what is being said, to apprehend what is actually meant from its own experience

as a human does. This is, in fact, the source of bugs in programming. A bug

is simply a manifestation of the inability of a computer to infer meaning from

context as humans constantly do, and it is a direct result of seeing the machine

as a ‘communicative’ rather than a purely ‘computational’ entity.

So programming is, if it can be called by that name even, ‘communication’

of a restricted kind. In a sense, the computer has no pattern language, just a

6Of course, even this level of understanding turns out to be fairly metaphorical in practice

as the sequence of binary digits carrying the information is not actually magnetically erased,

just dereferenced in the space allocation (indexing) system of the storage medium, and is still

accessible to a person with digital level nous. So a näıve user can actually be misled by the

modern operating system if the idea of putting a file in the rubbish bin is taken too literally -

as equivalent to shredding a paper file, for example.
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system of symbolic logic, precisely because it has no context in real life, the only

place where meaning exists. The ‘humanness’ of a person derives from life, from

the fact that this is an organism set in a context - all meaning derives from this

contextual relationship, so if a computer is to be considered in any way analogous

to a human, that is, as a sort of ‘being’, then it is a peculiarly context-free

being. Its only ‘context’ is symbolic logic. This makes ‘communicating’ with it a

total nightmare for the human inexperienced in logic, but ‘driven’ by the pattern

language of everyday life. One can’t rely on the machine ‘knowing’ anything, of

having the patterns of everyday thinking of a human. Its ‘operational semantics’

is that of an automaton, not a being. Even when implementing an algorithm,

a human will apply the instructions creatively, varying a recipe according to

personal taste, for example.

The move, then, to make programming languages the same as natural lan-

guage, founders on the shoals of reality - it is simply impossible. Communicating

with a machine is a problem of a different order to human communication. The

thrust of the underlying idea is correct, we do need to be using the same sort of

thinking in devising a program that we use in real life, because that’s the sort of

thinking that we are ‘naturally’ good at - we’ve spent our lives getting good at it -

but we can’t use it in communicating with the machine. Ergo we have to separate

the thinking about a program, the design, from the medium of communication

with the computer, the programming language. “The failure of information sys-

tems stems not from activities during their implementation but usually because

of poor planning in the early stages of systems development” (Kaiser 1985, p. 2),

and the poor planning comes about because, in using programming languages, we

are forced to concentrate on the contingencies of the formal system rather than

whatever it is that we are trying to build.

The need to separate design and implementation has been long recognized

but the implementation of the separation, software engineering, was flawed from

the start. It separates program design from the logic matrix, certainly, but engi-

neering is the wrong metaphor, firstly because engineering techniques are almost

as unfamiliar to most of us as is the system that we are trying to hide, and, more

importantly, because it is almost as formal and logical. You don’t implement the

sort of free-thinking creativity that people display in everyday life by imposing

engineering principles on them. Engineering is an appropriate metaphor for large

scale programming projects where one can rely on the already developed creative

skill of an experienced programming team, but it adds nothing to the process of

acquiring the skill.

And it is in this context, acquiring the skill, that the difficulties caused by the

strict logical and syntactic rigidity of programming languages really come home

to roost. The model for any language acquisition task is, or should be, the method

by which we learn to speak. So although grammar can be seen as a set of formal

syntactic rules that underlie the use of language, we absolutely do not learn to

speak by learning the rules and applying them. Rather we learn to speak with no
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regard to the formal system at all, in fact we are totally unconscious of it until, at

a much later stage, our English teachers use it as an instrument of torture (Porter

et al 2005, p. 237). So the model that we mostly use to teach programming is

the instrument of torture model, not the natural language acquisition model. We

teach the programming process as the use of a formal syntax, not a means of

expressing ideas. Ideas drive expression, not syntax. The formal rules are the

structure involved in organising communication, the ‘scaffolding’ in which the

organising process takes place, not the force that does the organising.

In this regard the move to Object Oriented programming can be seen as a

move in the right direction, but it, too, founders on the fact of it being imple-

mented in programming language form. It recognises that we need to use familiar

concepts from our normal experience in thinking about a program, but it still ties

the thinking process to the communication process. In a sense it implements Aris-

totlean logic rather than machine logic (Rayside & Campbell 2000), but this just

changes the notational form - in operational terms it is just as strictly formal and

deductive. Everyday thinking is based on the objects and events that occur in

the real world, but we deal with them as patterns of life rather than logical for-

malisms - deduction is an element of reasoning, not its totality. What the object

oriented approach failed to do was to separate thinking from coding, and what

you are left with when you do actually make the separation is object oriented

thinking, that is, pattern thinking, not object oriented language.

So it is no coincidence that Alexander’s idea surfaced in object oriented pro-

gramming circles. Look at Alexander’s pattern language - what you see are the

objects and events of the built environment presented in a form that makes com-

bining them a matter of normal style thinking rather than formal architectural

training. This is a language for building, not an architectural prescription, it

derives from everyday experience, not training. It recognises that creativity is a

function of thinking, not of applying architectural or engineering principles. You

need to have an idea first, before you begin thinking in terms of implementing it

in architectural form, or in any real world form, for that matter.

The transformation of any field of human endeavour into a ‘discipline’ to

be studied in the abstract has something of this tendency to formalisation of

technique, to ‘discipline’ thinking about it. Discipline is certainly required in

thinking about a subject of any difficulty, but taken to extremes, as is the case

with logic, it must tend to stifle free ranging thought, and therefore, creativity, at

least until such time as the system of logic has been comprehensively internalised.

So the basic premise proposed here, ‘programming as thinking’, is essentially that

of Peter Naur’s “programming as theory building” (Cockburn 2000) as most of

what serious thinking is about is building an understanding of the world, that is,

constructing or modifying a theory about some aspect of experience.
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3.4 Learning to Program

The basic thesis of this dissertation is that the ability to learn a skill like computer

programming derives from the fact of our existence as human beings, and that,

therefore, it is, in principle, just an extension of our problem solving capabilities

(Bergin et al 1997, p. vii). Yet, in practice, it would seem from the experience of

educators in this field that many apparently ‘intelligent’ students find learning to

program a difficult and even traumatic experience, raising the question about why

this should be so. Is it something about the activity of programming itself that

makes it apparently so difficult to learn, or is it a failure in teaching practice? On

the answers to these questions turns the response to the question ‘what is to be

done?’ We attempt to demonstrate here that the main source of the difficulties

lies in the pedagogical approach to programming and suggest that the way to

address the problem is to bring it closer to the way that we learn to speak. This

is not to suggest that teaching any activity that requires problems to be solved

is easy. We recognise, indeed, that all creative endeavour is difficult to teach. So

our basic premise is that while creativity is massively difficult to teach, it is, or

at least on the evidence of the ease with which we learn to speak, it should be,

easy to learn.

Going by the struggle that many endure, it is clear that to the beginner the

programming domain must appear to be like the world that we discussed at

the beginning of this chapter, a world in which everything that happens is new,

where nothing ever repeats, where total confusion reigns and where imagination

is frozen into inactivity. So the question is what is causing the experience to be

so disorienting?

People commonly start their programming career by learning a pro-

gramming language, usually through an introductory course. In-

evitably, in the early stages their dominant concern is with mastering

the language constructs and the fundamentals of breaking down and

reorganizing a problem into a form to which those constructs can be

applied. Some introductory courses concentrate so much on the lan-

guage and how to use it to express the solutions to problems, that

virtually everything else is excluded, though the better ones do stress

principles, such as structured programming techniques, which are not

language specific or problem specific. It is usually only later, when one

has started programming seriously (either through becoming a profes-

sional programmer, or because programming is an important adjunct

to other work) that the realization gradually dawns that there is a

good deal more to being a programmer (whether a professional or a

serious amateur) than simply coding. Indeed, for some the realization

seems never to dawn at all.

(Meek et al 1983, p. 12)

The authors’ point here is that an introductory programming course is, most



80 THE MYTHOS (MYSTIC INTELLIGIBILITY) OF EXPERIENCE

often, an introduction to a programming language, not programming. Could it

be that this early concentration on the language, and therefore, code, is not the

right way to introduce programming?

To illuminate this proposition we examine the various factors involved - the

activities of programming, of learning, of creating, of thinking - to find what the

differences and similarities are. For although programming encompasses much

that is amongst the most complex tasks that we undertake, at its most basic

level, it really is fairly simple.

Given the diversity of tasks that computers can do today, people nat-

urally find it very surprising that the computer’s built-in abilities are

so primitive. When a computer comes off the assembly line it will

be able to do only arithmetic and logical operations, input and out-

put, and some “control” functions. These capabilities comprise the

machine language of the computer.

(Horowitz 1983, p. 1)

So if the number of operations that a machine can perform is actually ex-

tremely small, then there has to be an explanation, other than machine language

complexity, for the difficulty of programming. The difficulty, it would seem, arises

mainly from the sheer audacity of the activities that we attempt to automate -

the complexity is a function of the system being produced not the programming

environment being used to produce it, or, as we try to argue here, it doesn’t have

to be.

Many authors have convincingly demonstrated that computer soft-

ware belongs among the most complex products of human endeav-

our, chiefly because it encompasses phenomena covering a very wide

spectrum of specific times. For example, a banking house software

is influenced by phenomena whose specific time is measured in years

(loans, mortgages) and in microseconds (conflicts of concurrent ac-

cesses to a particular record field), which gives a span of some 13 - 14

orders of magnitude. Only when investigating natural objects, such

as the Universe or the human body, has mankind ever encountered so

complex systems, and never before has it constructed one.

(Turski 1979, p. 450)

So programming is like composing music - the tool, musical notation or ma-

chine instruction set, is, inter se, quite simple. It is the ramifications of the

combinatorial process, of creativity, that introduce the complexity we see in both

programs and musical pieces. The notion that some entity can be ‘inherently’

complex implies that complexity is something that exists in its own right, rather

than being a result of the entity’s composition. Complexity is nothing more than

the result of combining many smaller, less complex, and, at base level, simple

elements, it is little more than an expression of multiplicity, indeed creativity. In

fact complexity is just order, “hidden order” (Holland 1996) one might say, and
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it is simply the result of some process that is creating order. The real source of

complexity in systems can be discerned in the remarkably similar case of DNA.

Here we have a code consisting, like the computer’s base operations, of very few

fundamental elements (four to be exact), yet in its expression we see the truly

amazing diversity of form that we call life, showing that it is the creative im-

pulse, the ‘purpose’ if you like, of the code system rather than the code system

itself that gives rise to the complexity of life on Earth. Complexity in software

is the result of the creative expression of our need for order, that is, what we

desire the machine to do, rather than any ‘native’ complexity of programming or

programming systems.

But creativity is the mark of the human, we spend our lives ‘creating’ mean-

ing, or understanding, uncovering the “hidden order” in the world around us.

Most of what is most distinctively human is ‘creative’ at least in terms of the

individual, if not the collective whole of humanity. Johnson-Laird has framed a

working definition that covers “both highly original productions and the imagina-

tive thoughts of daily life” (Johnson-Laird 1993, p. 117) where an act of creation

is defined as a process that yields a result with the following properties.

1. The result is formed from existing elements, but in a combination

that is novel for the individual and perhaps for society as a whole.

It is not merely perceived or remembered.

2. It satisfies pre-existing criteria.

3. It is not constructed by rote or derived by some other simple de-

terministic procedure. The process allows for freedom of choice.

(Johnson-Laird 1993, p. 117)

A computer program is clearly “novel for the individual” who produces it even

when it addresses a previously solved problem and producing it is therefore an

act of creation at the individual level. But if creativity is the mark of the human

then something about the mix of programming and creativity is not working. If

programming is an expression of creativity and creativity is our principle charac-

teristic, we should, on the face of it, find learning to program at the basic level

easy. No educator expects a novice to write a compiler (or a symphony) first up,

the complexity of novice-level tasks is deliberately set low. Yet even this level of

task is beyond many beginners, which suggests that something about program-

ming, or the way we teach it, is stifling the native creativity that humans express

in their everyday existence. Mind is an “aggregate of ideas” (Bateson 1973, p.

21) organised as a system for the purpose of contributing to the maintenance of

the organism of which it is a part. It’s difficult to see how we could have such a

construct at birth - and that’s the point. As a construct it has been created out

of the raw perceptions of human experience. The mind is self-generated, both

the product and the source of human creativity.

So the activity of teaching programming would seem to overwhelm the native

capacity of the mind to create, suggesting that either programming itself, or
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the teaching effort, is structured in a way that does not address the way that

the mind creates. Given that creativity is a process of organising information in

novel ways, we should look to the information processing aspect. One of the main

tasks of the mind is to structure the information that the organism has about the

world in such a way as to facilitate the incorporation of new information as this

is the only way that it can adapt to changing circumstances. Even narrative is

important in this sense in that it endows a sequence of events with a significance,

an ordering principle, that the simple sequence does not itself possess (White

1987, p. 14). The brain is a limited resource and would be severely overloaded

if every experience had to be dealt with in a serial fashion, the system would

simply break down. Structuring the information is important, then, not only in

terms of storage capacity, but also in terms of retrieving it when needed. In this

case most of structure is about context and significance, so mind can be seen as

a filter or selective screen between the brain and reality.

Closely related to the high-low-context continuum is the degree to

which one is aware of the selective screen that one places between

himself and the outside world. As one moves from the low to the high

side of the scale, awareness of the selective process increases. There-

fore, what one pays attention to, context, and information overload

are all functionally related.

(Hall 1976, p. 85)

3.5 Language

In everyday living, for a social animal like us, the way that we think becomes

intimately tied up with the means we use to communicate - human cultural form,

and particularly language. But it is a mistake to see culture and language as

‘things’, they are relationships, hence the critical importance of context.

It makes no sense to talk about words or sentences unless the words

and sentences mean something. For sentences to mean something,

their components must be linked together in an orderly way. A lin-

guistic expression must be encoded in some medium - such as speech

or writing - for us to know that it is there. And there must be people

involved in all this to produce and receive linguistic messages.

(Baron 1986, p. 10)

Human language is therefore the web of relations constituted by meaning, syntax

(linkage), medium, expression, and participants. Other factors, such as purpose

and experience, come into the mix, but these can be seen as sub-factors. For

example, the purpose of a message is a part of its meaning, and experience is

usually what is being expressed by or represented in the message.
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Given the communicative aspect of language it is not surprising the ‘language’

became the metaphor for the means used to ‘communicate’ our designs to ma-

chines. However the communicative aspect of programming is probably not the

basis of the difficulty that many people have in learning to program.

The hardest part of programming languages isn’t learning the pro-

gramming languages themselves. It is figuring out how to recast your

problem into programming language syntax. (Remember how the

hardest part of algebra was putting “word problems” into equations,

not solving the equations themselves?) ... There are several ways

of doing this formulation. The most tempting (but usually the most

disastrous) is to stare at the problem and then start writing lines of

computer code. This strategy is like deciding to film a movie without

first having a complete script. A few directors such as Federico Fellini

can pull off this feat - and so can some experienced programmers. For

most of us, though, the cost overruns of plan-as-you-go are enormous.

(Baron 1986, p. 24)

The process of “figuring out how to recast your problem” is classic creativ-

ity, problem solving, not just the using of language for communication. In a

sense at least, communication with others, or even the computer at this stage,

is irrelevant to the actual solving of a problem, the only factor that is relevant

here is meaning - you must know what the problem specification means before

you can even begin to see the possible solution, let alone communicate it. Pro-

gramming is mostly creating a solution to a problem not communicating it to

the computer. So although ‘language’ is still the correct metaphor, seeing it as a

thing, a system of communication, obscures the fact that, programming is mostly

a process, creation. The purely linguistic nature of the solution, its formal rep-

resentation, is irrelevant to the process of finding it except insofar as it assists

rather than hinders the process. Linguistically, as an “interpreted formal system”

(Haugeland 1985, p. 106), a computer does nothing but literally implement the

syntax, that is, automatically make the formal moves. This makes a computer

functionally equivalent to mathematics because it fits the following prescription;

“If the formal (syntactical) rules specify the relevant texts and if the (semantic)

interpretation must make sense of all those texts, then simply playing by the rules

is itself a surefire way to make sense” (Haugeland 1985, p. 106). This is why

obeying the rules of arithmetic guarantees a correct answer - ‘one makes sense’ in

the limited means of the language, not in the wider sense of ‘understanding’ an

aspect of the world. So the rules of the language themselves offer no assistance

to the creative act of finding the solution.

Creation is different from calculation or computation in that the latter is fully

deterministic while the former is not. The steps in creation are made by the

human author applying the rules arbitrarily, so the order in the solution has two

sources, the rules and the author’s choices (Haugeland 1985, p. 107). This is a way

of saying that the language system, particularly the syntax, does not contribute
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to the creative process, it just represents the product of the creative process

in a, more or less, formal notation. Natural language, even in communicative

terms, is a largely informal system because it is a relationship between several

components, not just a set of rules, a syntax. Moreover the participant component

is a largely non-deterministic system, that is, undefinable by syntax. The result

is that natural language is fundamentally a product of the need for humans to

create meaning; the syntactic element in it is a byproduct of the communicative

need for a congruence of meaning between participants.

Syntax, then, in natural language, supports the communicative not the cre-

ative process. Moreover, any language that is described entirely by syntax, as

programming languages are, reverses the order of significance demonstrated by

the elements of natural language - meaning before communication (syntax). Syn-

tax is an emergent characteristic of the communication of meaning (Schoenemann

1999), so a ‘language’ that is entirely defined by syntax automatically disbars the

most creative uses of natural language, metaphor, ‘coining a phrase’ and so on,

and thereby causes “unnecessary confusion in the way we think about programs”

(Backus 1978, p. 614). This is because normal thinking is always creative in

some sense - either it is entirely new in content, or it is a new form (version) of

content that you’ve considered previously, it’s difficult to see how thinking could

recur exactly, it is, by nature, ephemeral. If the ‘meaning’ of a statement is de-

termined entirely by syntax (operational semantics) then it is entirely derivative,

it can never be original7. Mental ‘meaning’, on the other hand is always original

(Haugeland 1985, p. 87), the syntactic structure is added only as a means of

making it communicable.

If the human condition can be captured in one idea then it is a search for

meaning. Mind, as the web of meaning in the brain, is the source of human

creativity, so it is the ‘language of the mind’ that we need to be concerned about

in the consideration of the learning of programming, not the ‘language of the

machine’. Hence the creative aspect of programming forces us to consider many

of the classic philosophical problems. Meaning, in the mental sense, arises from

consciousness, I can hardly have a meaningful mental relationship with an aspect

of the real world without being conscious of it. So the idea that consciousness

is just an accidental side effect of computation, ‘an epiphenomenon’, denies the

existence of ‘meaning’, and says, in effect, that the means by which the universe

is made known is itself essentially purposeless (Penrose 1989, p. 580).

What we have is a biological-psychological continuum similar to Einstein’s

space-time continuum with the direct mapping of physical morphology to DNA

at one end and the less direct, but no less powerful interaction between mind and

reality at the other. The whole complex arises out of the drive for meaning. In a

sense, life is just the expression of meaning at several levels. Being alive implies

7One would certainly be disconcerted, to say the least, if a programming language statement

acted “creatively”, that is, did not always cause the same basic operation to be performed.

Maybe “Intercal” is the exception to this.
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biological individuality, a radical separation of organism from environment, the

‘intention’ to be ‘separate’ from everything else. So what is meant by ‘intention’

here does not imply any conscious intent, just the ‘intention’ of process, of bio-

logical being. It is that self-defining process involved in being a system that is

‘whole’ in its own right. So, although a rock can be said to be ‘whole’ in some

sense it is not the ‘wholeness’ implied by ‘intent’. It does not encompass a process

that works towards the goal of keeping it going, that guarantees its separateness,

its ‘wholeness’. A rock’s wholeness is the simple totality of aggregation, there is

no coherence provided by an internal self-defining system, no sense in which the

rock as a whole is more than the sum of its parts. The meaning of life derives

from this wholeness of being, of system coherence. It is more than any sense of

meaning that can be imparted by aggregation, as is demonstrated by the fact that

an organism can lose some of its ‘aggregated wholeness’, a limb for example, and

still function as a whole system, albeit with some modification of its capabilities.

Wholeness is a property of systematic organisation. This is an obvious truism

in the case of lving systems, but it also true of other systems in a more subtle

sense and it is in this sense that Alexander defines ‘organic order’ as the role that

the parts play in making something whole. “We define organic order as the kind

of order that is achieved when there is a perfect balance between the needs of the

parts, and the needs of the whole” (Alexander et al, 1975, p. 14). A system, any

system, can be said to be a system only because it demonstrates this property

of wholeness - it consists not only of all the parts that constitute it structurally,

but some sense of being organised that is more than just its static ‘structural

organisation’. This functional organisation is a sort of ‘purpose’ or ‘intention’

that makes it a unit unto itself, apart from everything else. Such ‘organisation

for function’ consists of the relationships between the parts. This is an important

point because this is where ‘meaning’ comes into the picture - these relationships

are the ‘meaning’ that each part has in terms of the whole system. Meaning is

not inherent in any entity, it exists only in the relationships that make it part of

a system seen as a functioning unit, so, for example, the inherently meaningless

aggregation that is the rock discussed above, gathers meaning in terms of a larger

system when it is utilised as a tool or a weapon. However that is not the end of

the story because any system exists within a still larger system and this multiple

layering is the source of complexity - a radical intertwining of multiple meanings.

This is why classification is so fundamental to understanding. It’s only when

we have separated the layers, illuminated the hierarchy, that we can begin to

understand, to see the forest for the trees.

This is how meaning is created in human terms, through relationships. Mean-

ing is not a simple product of the thinking process, it arises from living, not

thinking. The primary fact about being human is that it is a living system, an

interaction between the human object and the environment. It is not possible to

see a biological being in any sense other than this, as an ecological relationship -

individual ↔ environment, where the ‘↔’ symbol indicates two-way interaction.
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Everything about a biological being, its ‘beinghood’ in effect, derives directly

from this relationship. Its morphological form is an expression of its evolution-

ary history encoded in its DNA, and its everyday behaviour is an expression of

its individual history encoded in its nervous system. But on their own, DNA

and nervous systems are formal means. If that’s as far as it went then behaviour

would be a simple case of innate response (instinct) modified by experience (learn-

ing). In other words creativity would be restricted to some simple modification of

the stimulus-response relationship. However survival is the ultimate arbiter and

driver of behaviour. It does not follow that the correct response in survival terms

is always that derived by formal means, survival is not logic, it is contingency, and

this requires adaptation, that is, in behavioural terms, learning, and ultimately

creativity.

Both genetic change and the process called learning (including the

somatic changes induced by habit and environment) are stochastic

processes. In each case there is a stream of events that is random

in certain aspects and in each case there is a nonrandom selection

process which cause certain of the random components to “survive”

longer than others. Without the random, there can be no new thing.

(Bateson in (Heims) 1991, p. 254)

The physical environment can be seen as an aggregation of substance with no

meaning, it carries no information as such. Whatever happens in cosmic terms,

just happens, it is a simple playing out of the physical rules established by the

existence of the universe. But once you have organic life you bring into being

‘meaning’, where ‘meaning’ is the ‘informing’ of life. It is difficult to see life in any

terms other than this - the ‘intention’ to embody the separation from everything

else that exists. DNA ‘informs’ the separation at the physical level, it supplies the

‘information’ needed to define ‘being a cat’, or ‘being a tree’ in distinction from

everything else. Being ‘something’ implies that ‘something’ is not just a part of

the whole physical aggregation of matter, and that whatever it is that defines

its separate identity, spirit or life-force, is the meaning of that ‘something’, its

‘intention’ to be different, to be an ‘individual’. Information can’t exist before

the ‘intention’ to define difference. If things just happen without any effect on

an ‘organism’ then they cannot be said to mean anything. Meaning requires

a ‘receiver’, it is a relationship between separate entities, things that are more

than just parts of the total aggregation (the cosmos), that have a ‘wholeness’

(being) that is complete in its own right and that can relate to the environment

in ‘meaningful’ ways.

I find the contemporary notion of information as existing in pure material

existence a rather strange one, if the term is meant to imply an association with

‘meaning’ - “objects can be used to store and transmit data, but information is

not meaning” (Freeman 1999, p. 201). It is always system that gives meaning,

that supplies the ‘information’ contained in a situation. The only ‘information’

that can be associated with a rock, for example, is that supplied by its involve-
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ment in a larger system. In other words, information is a product of a system,

it is provided by the relationships between components of a system, not those

between parts of a totality. Patterns can be seen in these terms as recurrences

in the functioning of a system. So the rock, if it has crystalline structure, can

contain ‘information’ derived from the magmatic, metamorphic or sedimentary

system that produced it because the crystalline structure implies more than the

simple aggregation through coincidental association, it says something about the

chemical composition of the material that became the rock.

Meaning at this level, if it can even be called that, is purely structural, it is, in

effect, the ‘fossilised’ patterns of system dynamics. In terms of the system which

produced it, this is syntax, a structural pattern, not semantics. Real meaning

involves a functional relationship based on some process, it “has a focus at some

point in the dynamic structure of an entire life” (Freeman 1999, p. 18) where

life in this context, I would add, is a wider concept than “biological life”, indeed

more like the sense in which Alexander uses it in attempting to explain his quality

without a name (see Alexander (1979), p. 30). The meaning of an object or

event is largely a reflection of its impact on the functioning of the larger system,

of utility. If the system has no purpose, no ‘intention’ then it’s difficult to see

that the idea of ‘meaning’, or even ‘information’ is really applicable. These ideas

imply a commitment on the part of the system to the relationship that carries

the information or meaning, the utility of the object in the system’s ‘intention’.

In other words, a relationship that creates ‘meaning’ is useful in some sense.

I have said that a tool is only one example of the merging of a thing

in a whole (or a gestalt) in which it is assigned a subsidiary function

and a meaning in respect to something that has our focal attention. I

generalized this structural analysis to include the recognition of signs

as indications of subsequent events and the process of establishing

symbols for things which they shall signify. We may apply to these

cases also what has just been said about a tool. Like the tool, the sign

or the symbol can be conceived as such only in the eyes of a person

who relies on them to achieve or to signify something. This reliance

is a personal commitment which is involved in all acts of intelligence

by which we integrate some things subsidiarily to the centre of our

focal attention. Every act of personal assimilation by which we make a

thing form an extension of ourselves through our subsidiary awareness

of it, is a commitment of ourselves; a manner of disposing of ourselves.

(Polanyi 1958, p. 61)

The real point of consciousness is that adds another layer of relationships to

the layer expressed in biological evolution. Evolution is the interplay between

DNA and the environment and it allows lines of development that are simply not

possible in a purely physical system. Similarly moving from the biological to the

mental layer allows the emergence of relationships like conscious awareness that

are not possible at the former level. So just as the relationship between DNA and
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morphological form is more than a direct causal one - there would be no room for

evolutionary adaptation of morphological form to the environment if form was

the product only of the DNA pattern - so the mental relationship level must be

based on more than just neuronal patterns, there has to be feedback mechanism

to relate neural organisation to what’s going on in the world, hence consciousness

and mind are emergent from the interaction between brain and environment just

as morphological structure is emergent from the interaction between DNA and

environment.

3.6 On Creativity

There are some ideas, some effects, that can only be explained by creative means

rather than by purely scientific deduction. One can think of no possible experi-

ment, other than Einsteinian type gedankenexperiment, or thought experiments,

to explain the implications of, for example, time dilation effects, or the rewinding

of time to discover the singularity. Many discoveries are only possible via the use

of imagination. Someone had to think of the ‘Big Bang’ before we could begin to

understand its effect on the current state of the universe. Similarly, the precon-

dition for the discovery of the New World in the 16th Century was the ability to

imagine the possibility that the earth is round rather than flat.

If the essence of creativity is not a fundamental freedom to express oneself,

then it is hard to imagine what it is. The operative word in terms of creativity is

surely freedom. Furthermore, this insight is backed up by the obvious fact that

creativity, in terms of play, decreases as children approach maturity. That is,

children are essentially free from the strictures of convention and responsibility,

and this freedom is expressed in creative play. The mark of creativity is freedom

to imagine - think for a moment about those situations in which, as an average

person, you feel most free to express yourself. Surely this is those occasions when

one is casually mulling over ideas in one’s head. Experience tells us that the

most freely creative situation in our lives is mental play, those times when we

are engaged in what I wish to call ‘free form thinking’. I do not mean to imply

that this type of thinking does not have a goal or purpose, that it is not directed

at a definite end. Rather, the notion of ‘formlessness’ refers literally to a lack of

‘form’ in the sense of a formal syntactic structure. This lack of form comes about,

not because an absence of rigour in terms of purpose or direction but because

of freedom from the need to communicate. At least in the early stages of such

a process, the goal is to ‘create’ meaning in one’s own mind, not in the mind

of others, that can be taken care of later - for the moment we are engaged in

thinking about something that concerns us just for the sake of thinking about it

and for no other reason.

The outstanding feature of such moments is the complete lack of attention

that we give to the formal structure of language, the point being that this formal
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aspect derives from the need for convention in the interaction between two com-

municating entities, the requirement to make what we say, or write, intelligible

to others. When we indulge in free form thinking - thinking just for the sake

of it - the communicative requirements of language are the furthest thing from

our mind. We just go for it. Ideas are free to float into our field of thought, the

connections are those between the meaning of the ideas concerned, semantics,

not the syntax of word combination, so it is the patterns of experience, pattern

language, that sets up the ‘creative field’. Because we are not concerned with

making our thoughts communicable we are unconstrained by the conventional

rules, the syntactic structure, so this is language at its most creative - literally a

free association of ideas.

This points to the reason for the difficulty we have in expressing creativity

in programming - “too much of the computer has been used, and designed, as

an exclusive extension of the formalistic capabilities of humans” (Waisvisz 2004).

Thinking in terms of the code constrains us because the code is about ‘communi-

cating’ with the machine, this is a formal language in the strictest sense possible

- it is thinking like an automaton. And as Dijkstra says “the tools we use have a

profound (and devious!) influence on our thinking habits, and, therefore, on our

thinking abilities” (Dijkstra 1982, p. 129), suggesting that the coding environ-

ment is not one in which the free association of ideas is appropriate.

In fact such free-thinking in the coding situation is nothing other than that

phenomenon generally known as ‘hacking’. But the point about ‘hacking’ is

that it is not a problem if it occurs in an environment of free flowing thought

unconcerned with formal communicative requirements. Hacking, in this situation,

is just pure creativity. Children, when they first start to learn a language, use

words in exactly this way, as meanings, not formal symbols. Because they are

unaware of the formal structure of language they effectively ignore it and just

express whatever ideas pop into their head. Draft versions of a piece of writing,

especially early ones, are more like this too, the polishing process is, partly at

least, the application of the filter of the formal requirements of the language

being used. So it is not even the impulse to communicate that is the problem,

both the child and the writer are ultimately motivated by that, it is the formal

nature of communicative media, syntactic structure, that is restrictive of the free

flow of thought that underlies creativity. What we want in creative situations

is semantic, not formal, syntactic, structure - we want meaning. No wonder

hacking in code doesn’t work! As Polya said, talking about solving problems

generally, way back in 1945, “the worst may happen if the student embarks upon

computations or constructions without having understood the problem” [emphasis

in original] (Polya 1948, p. 5).

But if it is true that a programming language performs as a straitjacket for cre-

ativity then the fact that most programmers usually work directly at the coding

level would seem to contradict this. However, such practice is normally indictive

of experience. The experienced programmer, like the experienced driver, has ‘in-
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ternalised’ the conceptual processing, so that it might look as though no abstract

thinking is occurring and it’s all just a flow of ‘doing’, writing the code, or driving,

virtually unconsciously. Of course, this has to be an illusion, one way or another

the program is being ‘designed’, either consciously or by default, just as the car

is being driven whether or not the driver is consciously concentrating on the act

of driving.

Many contemporary methods view design as a phase intermediate to

architecture and coding, instead of viewing architecture and coding

as products of design. But from a more practical point of view, we

can’t separate design from either architecture or implementation. If

design is the activity that gives structure to the solution, and if archi-

tecture is about structure, isn’t “design” a good term for the activity

that produces it? And much of the code is about structure as well.

Why shouldn’t that be “design” as well? If you look at how real pro-

grammers work, you’ll find they really don’t delineate architecture,

design, and implementation in most application domains, regardless

of whether the official house method says they should or not. (How

many times have you completed the coding before holding the review

for your design document?) Object-oriented designers gain insight

into the allocation of responsibilities to classes by coding them up.

Empirical research on the software design process reveals that most

developers have at least partially coded solutions in hand at the time

of their design review and thus design decisions continue into the last

throes of coding.

(Coplien 2000b, p. 35)

So if it is true that one way or another the program is being ‘designed’ then

the problem is not that there is no design being done, but that the design that

is being done by default produces poor software. This observation is backed up,

moreover, by ample evidence of the continuing crisis in software development.

Most people involved in software development are experienced programmers, yet

many projects get into difficulty as creativity is essential at several levels simply

because of the nature of large systems. Firstly, the need for automation usually

arises in large and complex organisations. Expressing what is required is itself a

creative act. Secondly, and most pertinent to the programmer, the requirement

specification needs to be translated into a plan of the system that meets the

requirements, another creative act. All this creative activity needs to happen

before coding even begins, the point being that it is part of the development

of the program considered as a whole. Not only is the experienced programmer

working with a higher level of understanding of the programming language, but

starts with a preconceived notion, a plan, of the project that, at least in part,

informs the writing of the code. It’s no wonder that, to the casual observer, it

looks like coding without thinking, without conscious design.

In a sense, too, the fact of the crisis in software development confirms the
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disjoint between creativity and communication. Both the specification of the sys-

tem and the plan for building it are communicative in spirit because the people

who require the system are different from those who are to build it, and those

who do the planning are, more often than not, not the same people who do the

actual coding. Therefore the need to communicate precisely is paramount in

these situations. In this case the trouble is that natural languages are not formal

enough, leading to ambiguity and lack of clarity. As Dijkstra points out we simply

don’t yet “know how to manage the design (or should we say ‘the discovery’?)

of software” (Dijkstra 1982, p. 222), ‘discovery’ being the operative word here.

Again it is the mismatch between creativity (discovery) and formal methodology

(management of the design process) that lies at the root of the problem of devel-

oping software successfully. “In spite of its name, software engineering requires

(cruelly) hard science for its support” (Dijkstra 1982, p. 130). Dijkstra here is

calling for support for the notion of what he calls the “intellectual individual”.

“With their stress on the supposed virtues of group activity (and on the need

for “communication skills”!) they [Computer Science faculties] seem to regard

minimization - or possibly even elimination - of his role as an ideal worth to be

pursued. I regard that as a threat to our civilization” (Dijkstra 1982, p. 220).

Mind is a product of social interaction, so communication is an important

factor, but this is a two way street. As much as mind is a product of interac-

tion, interaction is a product of mind. Djikstra’s point is that you can’t use one

to eliminate the other as they are interdependent, a group is made up of com-

municating individuals, it’s a collection of minds - ‘intellectual individuals’ in

Dijkstra’s terms. At least part of the problem is caused by the fact that engineer-

ing is probably the wrong metaphor for software development as it suggests the

idea of support type activities such as the calculation of stress values and the like

that are ancillary to design in other fields, not central. Such factors are ancillary

because they deal with characteristics of the domain concerned, materials science

for example, rather than being characteristics of design (Sargent 1994).

Furthermore, designing anything “is not so much a process of careful plan-

ning and execution as it is a conversation, in which the conversing partner - the

designed object itself - can generate unexpected interruptions and contributions”

(Winograd 1996, p. xxi). Engineering is closer to the process of using formal logic

than it is to writing creatively - it’s like using natural language to write a technical

manual rather than a poem. The means are the same but the end qualifies and

formalizes the means. The fundamental issue underlying all the problems facing

software developers is conceptual not technical (Tekinerdogan & Aksit 1999, p.

1). Even patterns, applied in the spirit of engineering - that is, X tells me to do

this (where X is a principle, a rule, a template, or even a pattern) - are dangerous.

Using patterns does not imply that “you no longer have to think. It just helps

you decide what to think about [emphasis in original] (Shalloway 2003, p. 15).

Design is the primary issue in software development - how do we assimi-

late human creativity with mechanical automatism? As Blum says, design is
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a “contingent process” requiring “perpetual discovery” (Blum 1996) and this is

not addressed by the application of any sort of engineering principles, even the

recipes of “knowledge engineering” (Hofstadter 1985, p. 637). Understanding is

the key, not knowledge alone, and understanding comes more from doing than

from knowing. The idea that understanding can be built by a process of ‘engi-

neering’ knowledge seems a very strange one given that ‘engineering’ is largely

the application of known principles in a given situation - engineers “make new

things and make old things better” (Discover Engineering 2005), turn ideas into

reality, if you like. Putting a human on the Moon, for example, was an engi-

neering problem, not a problem of ‘understanding’. Understanding implies the

ability to create new ideas, to use knowledge to comprehend novel situations not

just to apply it to well-defined cases. “The payoff for understanding comes not

in direct application of the newly learned material, but rather in transfer to new

situations” (Mayer 1981). Programming is more about ‘understanding’, creating

meaning - one designs a solution more than one engineers software. Knowing the

rules of chess does not make you master player, the engineering or superstructure

of the game and the skill of playing it lie in separate domains.

Perhaps it is the case that a lot of the current problems with software devel-

opment in general are due to the fact that software is “not designed at all, but

merely engineered” (Kapor 1996). Software, strictly speaking, is the experience

of using the artefact, its ‘design’, not just its ‘engineered’ aspect, its raw struc-

ture. As developers we seem to miss the holistic nature of the artefact in the

rush to build it - it is something that is built to be used by humans not some-

thing that is just built. As Winograd puts it, we tend to overlook the fact that

“the designer stands with one foot in the technology and one foot in the domain

of human concerns” (Winograd 1996, p. xx). This means that the process of

designing something is more negotiation than rule-application, more dialog than

program. In the end “it could be that the only thing common to all design is the

intention to produce something useful. That does not mean that design theory

and methodology research ends - it means that it is unending” (Sargent 1994).



Chapter 4

The Source of the Difficulties

Those who have attributed the preeminence to logic, and have thought

that it afforded the safest support to learning, have seen very cor-

rectly and properly that man’s understanding, when left to itself, is

deservedly to be suspected. Yet the remedy is even weaker than the

disease; nay, it is not itself free from disease. For the common system

of logic, although most properly applied to civil matters, and such arts

as lie in discussion and opinion, is far from reaching the subtility of

nature, and, by catching at that which it cannot grasp, has done more

to confirm, and, as it were, fasten errors upon us, than to open the

way to truth.

(Francis Bacon 1561-1626)

We face, then, two great stochastic systems that are partly in inter-

action and partly isolated from each other. One system is within the

individual and is called learning, the other is immanent in heredity

and in populations and is called evolution. One is a matter of the

single lifetime, the other is a matter of multiple generations of many

individuals. The task is to show how these two stochastic systems,

working at different levels of logical typing, fit together into a single

ongoing biosphere ...

(Bateson in (Heims) 1991, p. 254)

4.1 Art and Science

We presume, in the modern age, that we are caught on the horns of a dilemma

peculiar to our time. But, in fact, Plato has Socrates state the dimensions of the

problem in “Phaedrus”.

If one could obtain by art, the power or capacity of these two kinds of

operations, which in this instance we have performed by mere chance,

93
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it would be not unpleasant. ... To collect together a multitude of

scattered particulars, and, viewing them collectively, bring them all

under one single idea, and thereby be enabled to define, and so make it

clear what the thing is which is the subject of our inquiry. ... [And] to

be able again to subdivide this idea into species, according to nature,

and so as not to break any part of it in the cutting, like a bad cook. ...

Being a lover of these compositions and decompositions, in order that

I may be able to speak and to think; if I find any one whom I think

capable of apprehending things as one and many, I run after him and

follow his footsteps as I would those of a god. Those who can do this,

whether I call them rightly or not God knows, but at present I call

them dialecticians.

(Plato as translated by John Stuart Mill (Mill) 1946, pp. 92-3)

One of the major blindspots of modern thought is the neglect of the unifying

impulse expressed in the idea of philosophy. For what is “love of knowledge” but

‘understanding’? The original philosophers did not envision the chasms in the

edifice of knowledge that were to come. But this is not even as simple as the split

between Science and Art, or Science and Philosophy, it is reflected in the very

way that we see the world, the split between ‘intention’ and ‘knowledge’, the ideal

and the real, morality and pragmatism. The idea that understanding grows out

of a discourse with the current state of understanding, Plato’s dialectic, implies

creativity as well as analysis, ideas as well as reality, spirit as much as reason. It

shows an appreciation of “the importance of ideas - of ‘culture’, to use a modern

term - for the forming of our minds” (Popper 1977, p. 166), where ‘mind’ is taken

to be the result of ‘purpose’. “Mind, or thought, or reason, he [Socrates] decided,

always pursued an aim, or an end: it always pursued a purpose, doing what was

best” (Popper 1977, pp. 169-70). As Socrates goes on to say in “Phaedo” about

the excitement that was aroused in him by the announcement of a book which

taught that the mind (nous) “orders and causes all things” (Popper 1977, p. 170),

one’s path through life is as much a matter of choice as of structure.

What expectations I had formed, and how grievously was I disap-

pointed! As I proceeded, I found my philosopher altogether forsaking

mind or any other principle of order, but having recourse to air, and

ether, and water, and other eccentricities. I might compare him to a

person who began by maintaining generally that mind is the cause of

the actions of Socrates, but who, when he endeavoured to explain the

causes of my several actions in detail, went on to show that I sit here

because my body is made up of bones and muscles; and the bones,

as he would say, are hard and have joints which divide them, and the

muscles are elastic, and they cover the bones, which have also a cover-

ing or environment of flesh and skin which contains them; and as the

bones are lifted at their joints by the contraction or relaxation of the

muscles, I am able to bend my limbs, and this is why I am sitting here
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in a curved posture - that is what he would say, and he would have a

similar explanation of my talking to you, which he would attribute to

sound, and air, and hearing, and he would assign ten thousand other

causes of the same sort, forgetting to mention the true cause, which is,

that the Athenians have thought fit to condemn me, and accordingly

I have thought it better and more right to remain here and undergo

my sentence.

(Plato 1999)

From this it is clear that the loss of Plato’s unified notion of art as “the power

or capacity of these two kinds of operations”, analysis and synthesis, this dis-

astrous separation of his “one and many”, the parts from the whole, results in

rigidities of both mind and culture. It lies at the heart of many of the move-

ments that have bedevilled us, materialism, the various flavours of determinism,

relativism, subjectivism, modernism, post-modernism, and so on. These are all

merely points along the course of the journey, stages in the evolution of under-

standing, not final positions. If we insist on seeing the word as the concept, the

image as the subject, the book as the argument, the brain as the mind, the code

as the program, then we are prevented from moving forward. Concept, subject,

mind, argument and program are all expressions of fluid, creative, thinking, of

art. We need word, image, book, brain and code as markers, representations of

creative process, but they are not creative in and of themselves; they are artefacts

not art.

He then who thinks that he can leave behind him an art in a book,

and he who learns it out of a book, and thinks he has got something

clear and solid, are extremely simple, and do not know the saying

of Ammon, or they would not suppose that a written book could

do anything more than remind one who knows already. Writing is

something like painting: the creatures of the latter art look very like

living beings; but, if you ask them a question, they preserve a solemn

silence. Written discourses do the same: you would fancy, by what

they say, that they had some sense in them; but, if you wish to learn,

and therefore interrogate them, they have only their first answer to

return to all questions. ... There is another sort of discourse, which

is far better and more potent than this. ... That which is written

scientifically in the learner’s mind. This is capable of defending itself;

and it can speak itself, or be silent, as it sees fit ... the real and

living discourse of the person who understands the subject; of which

discourse the written one may be called the picture.

(Plato translated by John Stuart Mill (Mill 1946))

Nowhere is the tendency to mistake the product for the process more pro-

nounced than in science. Symbols necessarily have a characteristic that is not

manifested in the entities for which they stand, an essential abstraction from the

objects they represent. They thereby become amenable to mental operations that



96 THE SOURCE OF THE DIFFICULTIES

are independent of the physical existence of their subjects. This is the first step

in the process that leads both to idealism and formal methodology. Mathematics

and logic are games with symbols played according to fixed rules, but where, and

this is the critical point, the symbols are not even really symbolic in the sense of

standing for something (Weyl 1959, p. 55). The trouble is that since Gödel we

are aware that in any non-trivial formal system there are elementary statements

that are evidently true but which cannot be deduced within the system - “the

fields of propositions accessible to insight on the one hand and to deduction on

the other overlap, neither of the two being contained in the other” (Weyl 1959,

p. 219).

If the logico-deductive basis of the scientific method is put in doubt in this

way, so that there is no Hilbertian assurance of internal consistency1, then we are

left to justify science by means other than the power of deduction.

The ultimate foundations and the ultimate meaning of mathematics

remain an open problem; we do not know in what direction it will

find its solution, nor even whether a final objective answer can be

expected at all. “Mathematizing” may well be a creative activity of

man, like music, the products of which not only in form but also in

substance are conditioned by the decisions of history and therefore

defy complete objective rationalization.

(Weyl 1959, p. 3)

Ultimately it seems that the grand attempt to distinguish science from art

by means of formal methodology is doomed, a victim of the “epistemic cut”, the

split between the observer and what is observed. The point of Kuhn’s view is that

“science [is] characterized more by the paradigms employed by scientists than by

their methods of enquiry” (Novak 1977, p. 43). It is part of the pantheon of

human creative endeavour, an exploratory, explanatory art, a mythology, in the

original sense of a defining narrative, in other words.

Man tries to make for himself in the fashion that suits him best a

simplified and intelligible picture of the world: he then tries to some

extent to substitute this cosmos of his for the world of experience,

and thus to overcome it. This is what the painter, the poet, the

speculative philosopher, and the natural scientist do, each in his own

fashion. Each makes the cosmos and its construction the pivot of his

emotional life, in order to find in this way the peace and security that

1“Hilbert’s dreams of reformulating classical mathematics as a formal axiomatic system

equipped with absolute proofs of consistency and completeness were dealt a cruel blow by

Gödel’s findings in 1931.

In his famous paper, Gödel proved that it was impossible to find a metamathematical proof

of such a system’s consistency without employing rules of inference inexpressible within the

formal system under consideration. (More precisely, Gödel proved his results of any axiomatic

system comprehensive enough to contain the whole of arithmetic.)”(jt 2000)



4.1. ART AND SCIENCE 97

he cannot find within the all-too-narrow realm of swirling personal

experience.

(Einstein quoted in (Hoffmann) 1972, pp. 221-2)

The keys to scientific exploration, then, are simplicity, intelligibility and emo-

tional satisfaction - an attempt to make experience accessible to explanation.

Einstein put his finger on the real epistemological situation when he said:

The historical development has shown that among the imaginable

theoretical constructions there is invariably one that proves to be un-

questionably superior to all others. Nobody who really goes into the

matter will deny that the world of perceptions determines the theo-

retical system in a virtually unambiguous manner, although no logical

way leads to the principles of the theory.

(Einstein quoted in (Weyl) 1959, p. 153)

Scientific method is thus shown to be an aspect of the standard human drive

to create the mental world that we know as the mind. It hardly needs any

justification beyond that it contributes to understanding in the way that other

human activities do. And if this means that it is once again seen as a branch of

philosophy then this does not make it any the less significant. Indeed it might lead

to a greater awareness of the need for synthesis, for a view of the whole sweep of

that which is human, amongst those who consider themselves scientists. “Perhaps

the philosophically most relevant feature of modern science is the emergence of

abstract symbolic structures as the hard core of objectivity behind - as Eddington

puts it - the colorful tale of the subjective storyteller mind” (Weyl 1959, p. 237).

Traditionally there are two ways in which science can be justified,

the Platonic and the pragmatic one. In the Platonic way - “l’art pour

l’art” - science justifies itself by its beauty and internal consistency, in

the pragmatic way science is justified by the usefulness of its products.

My overall impression is that along this scale - which is not entirely

independent of the Buxton Index - Europe, for better or for worse,

is more Platonic, whereas the USA, and Canada to a lesser extent,

are more pragmatic. ... But the answer is quite simple: in computing

science the conflict need not exist - and that is what makes the subject

so fascinating! - To quote C.A.R. Hoare - from memory - : “In no

engineering discipline does the successful pursuit of academic ideals

pay more material dividends than in software engineering.” I could

not agree more.

(Dijkstra 1982, p. 271)

In the final analysis science is no different from art, both enterprises are about

making sense of experience, and both therefore encounter the main paradox ad-

dressed by this dissertation, the problem of meaning, the “epistemic cut”. It is

true that “meaning emerges from context” and that “without a context, nothing
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makes sense” (Ferguson 1980, p. 303), yet we can only deal with the input of the

senses subjectively.

The basic claim of science is objectivity: it attempts, through the ap-

plication of a well defined methodology, to make statements about the

universe. At the very root of this claim, however, lies its weakness:

the a priori assumption that objective knowledge constitutes a de-

scription of that which is known. Such assumption begs the questions

‘What is it to know?’ and ‘How do we know?’.

(Maturana 1970, p. 5)

4.2 Programming as an Art

If it is true that scientific objectivity is largely a façade, a mask obscuring the

‘subjective storyteller mind’, then it should not be surprising that it is difficult to

teach as this is true of every creative medium. Even professors of literature fear to

tread in the teaching of creative writing classes. In more scientific fields, objective

facts and logical systems are, on their own terms, relatively easy to get to grips

with at a basic level. Most of us, for example, can fairly easily learn the basic

concepts of physics without ever becoming competent in the art of generating

novel insight from them - we know enough to be able to read a story in physics,

but we do not have the conceptual structure to ‘free’ our imagination enough to

create a new story.

Even those students with top marks in applied areas like physics and

biology find they have the proclivity to pass tests, but experience diffi-

culty putting their classroom knowledge to use in solving any practical

problems in the real world.

“What stands in the way is what I call the ‘fact fetish’,” explains

James Paul Gee, author of What Video Games Have To Teach Us

About Learning and Literacy. “For me, learning an area like biology

should be about learning how to ‘play the game’ of biology, that is,

learning to think, act, and value like a biologist.”

(Krotoski 2005)

A computer system is a much less complex entity, and the facts about it far less

numerous, after all, than is the case with physics or biology, yet it still requires

a deeper level of understanding to program it than one would initially suspect.

Programming involves more than just the computer system itself, it is not entirely

encompassed by the idea of ‘computer science’. Engaging the ‘storyteller mind’

requires tapping into the whole of the psyche, to ‘conceive’ as well as to ‘perceive’.

Yet the language that we use to teach programming is totally unforgiving, it

demands perfection.
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The computer resembles the magic of legend. ... If one character,

one pause, of the incantation is not strictly in proper form, the magic

doesn’t work. Human beings are not accustomed to being perfect, and

few areas of human activity demand it. Adjusting to the requirement

for perfection is, I think, the most difficult part of learning to program.

(Brooks 1983)

The programmer is a conscious agent, an organism with a mind, yet at its

most basic level the language we give her to program with is the language of an

unconscious automaton. No wonder it is a struggle to become proficient as a

programmer. This is the language of determinism, not creative originality. There

is no scope in the language itself for choice, for Kant’s ‘causality of freedom’ or

his ‘faculty of determination’. This is not simply an engine of cognitive func-

tion, human mental performance is simply not constrained to formal means, it

depends at least as much on emotional factors as on cognitive capacity. This is

most noticeable in children - ask a child to demonstrate, for example, her skill at

counting, and, if the whim takes her, she will deny the ability even though she

has previously demonstrated it. We don’t yet know how the emotional compo-

nent of the whole personality works in terms of motivation of cognitive function

but it clearly does affect performance. A language that addresses the compu-

tational performance of a machine is not likely to be effective in terms of the

functioning of the emotional system, it is bound, indeed, to be entirely dumb in

emotional expressiveness. This is a significant factor in considering the activity of

programming because it seems highly likely that the ability to make choices and

emotional state are closely connected. As creativity is mostly ‘making choices’,

it is obviously conditional on, or at the very least, related to, emotional factors.

Choice, in composing a program, is always made by the agent using the language,

not the mechanism that implements it.2 Because the language is implemented

mechanically it cannot express freedom in the way that free flowing thought does.

Of course, freedom is a two edged sword - it is just as likely to lead to frustra-

tion as it is to satisfaction, and this would seem to be the problem for novices in

particular. So although the programming language provides the means for making

choices, it cannot, by its very nature - it implements a deterministic mechanism

- provide assistance as to choosing the option that addresses a particular situa-

tion. In other words, it is an inherently uncreative form of language because the

‘meaning’ it gives expression to is the functioning of a machine - in the computer

system, syntax is structure and semantics is function. This mechanistic aspect

makes it the exact opposite of normal thinking because in human terms meaning

is connection not direction. The task that a program is addressing, moreover,

exists in the real world of human and organisational issues, not just the elec-

tronic system. So even if it addresses the virtual world of the computer perfectly

it can fail miserably to meet the requirements of the situation it was contracted

2In fact, natural language is itself, to some extent, a mechanism - one that implements

‘meaning’ (more will be said about this later, see Section 4.5).
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for. Using a language based only on the electronic pathways is like addressing a

multi-dimensional physical system using Euclidean geometry, some connections

are never going to be made. The language of formal logic, like the language of

Euclidean space, expresses only a part of the whole system, human experience in

the case of the former, and spatial relations in the latter. Designing a program is

more about understanding what needs to be done in terms of the commissioning

system as a whole, not just the mechanical component of it.

But this failure to express the totality of the situation is only a side effect of

using a language based on mechanical means. Meaning is fundamentally emo-

tional rather than simply functional in human terms, therefore using the word to

denote what a machine does is highly misleading. Consider where meaning comes

from - it comes from the reaction of the nervous system of a living organism to

an event in its immediate environment, that is, it is a subjective response. The

feeling of fear is what danger ‘means’ to an organism. But its subjective nature

means that it is, strictly speaking, uncommunicable. I can no more ‘feel’ your

fear than I can fly to the moon. You can tell me about, for example, your fear of

heights, try to explain it to me, but I can never apprehend it directly. Meaning,

at the objective level, is based on reason, it is definitional and explanatory. Yet

even here it would be a mistake to discount its roots in the emotional system.

Take the example of a person having an interest in a particular field, who finds,

for example, pottery shards endlessly interesting. How else can one explain why

a person is interested in one domain of information rather than another, other

than by positing a personal, subjective and fundamentally emotional reason? -

it is all ostensibly the same, just information. The big evolutionary step taken

in the human case is the transfer of the idea of ‘meaning’ from the emotional

to the intellectual system, to make it, eventually, the basis of reasoning not just

automatic response.

In the evolution of communicative behaviour, it is a common observa-

tion that the “raw material” of the behavior is a fragment of a motor

pattern or an autonomic reflex which developed under selection pres-

sures to serve needs that might be quite unlike communication. That

is, these progenitors exist (or once existed) to serve more fundamen-

tal needs of the organism and were only secondarily adapted in the

course of the evolutionary process to serve this communicative func-

tion. ... In that spirit, the original function for the externalizations or

corporealizations of the psyche that we recognize as art (or artefacts

of the creative process within) was to serve the individual, commonly

to explore one’s own thoughts and capabilities, to define one’s self!

(Greenberg 2004b)

The ability to reason is the means by which organic life goes beyond the possi-

bilities available to an automatic nervous system, beyond the limits of ‘instinct’3.

3“Our genetic blueprint enables our brains and societies to live creatively in an uncertain

world . . . As the ability to use language is ingrained in us, so to is our sensitivity to novel
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It marks the border between the animal and the human mind. Without it most

of the potentials that we think of as human would not be realised, even those

that are ostensibly unreasoning. We don’t normally think of love, for example,

as being reason-based, and as the product itself of a direct line of reasoning a

particular ‘love relationship’ probably isn’t. Yet it’s hard to envision how love

could exist in a purely instinctive system because the capacity to put another’s

life before your own is entirely contrary to the instinctive response to danger4.

Insofar as love can be said to override instinct it must be indicative of some higher

order of brain activity than pure instinct.

It’s difficult to believe that the two systems, instinct and reason, arose inde-

pendently in the same biological system, the nervous system. Clearly one emerges

from the other, or, more probably, they both emerge from a common ancestor,

and this is suggested by their respective points of occurrence in the evolutionary

tree. But the point here is that the connection between the two is the idea, and

the power, of ‘meaning’. At the most basic level of animal life there probably is

no phenomena that can be labelled as ‘meaning’ in the abstract. The organism

simply responds on cue. But this makes for a highly inflexible system, which is

great if the environment in which the organism lives never changes, but deadly

in an ever changing world. So the next step is to impose a flexible medium be-

tween stimulus and response, a means of making decisions. At first this is purely

emotional, that is the decision-making is based purely on perception, the animal

reacts ‘emotionally’ to the perception, but anything other than an automatic re-

action is not possible without it. Once there is a layer of neural process rather

than a simple link between the stimulus and response the potential to modify

that process arises, and this leads, eventually, to human reason.

Reason is more than computation because it uses inductive process as well as

deduction. The deductive process is automatic and mechanical - program-driven

- whereas the inductive process is responsive to super-neural data (thoughts).

Because reality never appears in perception as a coherent whole, the ability to

construct a representation of it from both the current input from perception and

memory of previous perception, to ‘conceive’ or ‘create’, is critical to reason. If

knowledge was confined to what was currently available to the senses it would

not be possible to ‘reason’ out a response, you would just have to do, more or

less, what you’ve always done given similar perceptual input. This is often the

right thing to do, in terms of survival, but not always, hence the evolutionary

advantage. The ability to generate data (conceive), as well as to receive it as

input (perceive) is vital for handling complexity without overloading the neuronal

conditions, without specifying the actual response [we should make]” (Richard Potts quoted in

(Bower) 1997)
4Attempts to bypass this apparent impasse have been postulated on the basis of an instinctive

‘loyalty’ to the continuation of one’s genetic heritage, rather than one’s own personal life, but

if the apparent indifference to personal danger is seen to include the ‘protection’ of individuals

other than close relatives, then the argument reduces to ‘loyalty’ to species, or race maybe, and

I doubt that most people would take altruism that far if it were simply based on ”selfish genes”.
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system. The mind is the means by which the brain can make arbitrary, data-

driven, connections rather than programmed, instinctive, ones. It can create

stories to act out (simulations) as well as live out a prescribed script. As such it

is an empirical discoverer through “subjective simulation”(Monod 1974, p. 145)

as much as it is deductive. Real novelty emerges from the combination of concepts

into new form not deduction which simply uncovers pre-existing information.

In most lives insight has been accidental. We wait for it as primitive

man awaited lightning for a fire. But making mental connections is

our most crucial learning tool, the essence of human intelligence: to

forge links; to go beyond the given; to see patterns, relationships,

context.

(Ferguson 1980, p. 32)

“Patterns, relationships, context” are the essential elements in the generation of

new form, the ability to “go beyond the given”.

Going beyond the given is the essence of solving a problem. The ‘given’ in any

programming situation is the initial representation of what the program is meant

to do, that is, the problem to be solved by the program. So the first, and most

important task of the programmer is to literally create the conceptual ‘problem

space’ in which the solution will be generated.

First, the programmer must have a clear analysis of just what consti-

tutes the task and the potential set of actions for the program. The

task cannot be described with some vague generality like “diagnose

illnesses” or “understand newspaper stories” but must be precisely

stated in terms of the relevant objects of the environment and the

particular properties that are to be considered. As we will discuss

at length later, this task is the most critical. It results in the gen-

eration of a systematic domain, which embodies the programmer’s

interpretation of the situation in which the program will function.

(Winograd 1983, p. 96)

This setting up of the ‘problem space’ in all its conceptual richness, is the task that

Alexander characterises as “the task of making up the language from which you

can later generate the one particular design” (Alexander 1979, p. 324), the point

being that it is the programmer’s understanding of the conceptual space in which

the problem is situated that allows a solution to be generated. The understanding

that is being sort here, the meaning being generated, is not, in any sense, that

which is expressed by the execution of the program, the operational semantics,

but the semantics of the larger situation in which the execution occurs. It is this

fundamental fact that makes the programming language the wrong language in

which to think about the generation of the solution because the program is merely

a particular implementation of the solution. In any sensible reading, the solution

is conceptual in nature. After all, the same solution can be implemented in many
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programming languages, so any particular program cannot be the solution, just

an implementation, a particular representation, of it.

4.3 Learning to Program

A programming language statement has an operational semantics formally defined

by the compiler. So any sequence of such statements, and therefore, any program,

has only one possible outcome given the same input of data or user interaction.

The difficulty with this is that it means that, given any level of complexity, the

only ways to discover what a program ‘means’ is to compile and execute it, or

to carefully hand simulate it statement by tedious statement. But this is like

having to look up the dictionary definition of every word you encounter during a

conversation, and presumes exactly one ‘standard’ definition for every word. Fur-

thermore, despite the fallacious impression imparted by strict grammarians that

there is a well-defined set of parts of speech and that every English word can be

straightforwardly assigned to one or more of them, natural languages differ from

programming languages in precisely this property. The grouping of words into the

grammatical categories of natural language is highly dependent on the purposes

of classification, and the word ‘laughing’, for example, can operate, at different

times, as a verb, a noun or an adjective (Winograd 1983, pp. 49-50). Strictly

speaking, syntax is about the act of communicating, not meaning as such - the

structuring is important in communicating meaning. The essential relationship

is syntax-facilitates-communication rather than syntax-defines-meaning.

Moreover the syntax-gives-semantics formula fits only the passive act of un-

derstanding, not active creation. It can only help you understand an already

written program, so it is useless in terms of writing one from scratch. Creat-

ing meaning on the fly, so to speak, is infinitely harder than apprehending that

which is already created, even given a strict correspondence between syntax and

meaning. Operational semantics is just not a good fit with the way that the

human mind works. Attribute grammars and the like may be useful in under-

standing operational semantics but they are hardly less obscure than the the

compiler itself. Furthermore, they are themselves, formal systems, and therefore

fit human-style thinking, particularly its creative aspect, just as badly as the

programming language does itself. “Unfortunately, all the formal approaches to

semantic definition [of programming languages] require a great deal of sophisti-

cated effort and produce a result which is impossible to read without extensive

study” (Horowitz 1983, p. 36).

Creativity is a necessary response to the existence of infinite possibility in

experience. For the human, unlike the robot on a production line, the corporeal

nature, and the spatial and temporal location of the objects it has to deal with

are not precisely delimited - the human has to be able to locate and handle all

types of objects and events wherever and whenever they appear. “The brain
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doesn’t control the trajectory of the joints; rather, it initiates that trajectory and

controls the material properties of the muscles” (Rolf Pfeifer quoted in (Spinney)

2005 p. 18). Clearly if the brain had to ‘compute’ all the precise values of

distances, angles, weights, textures and solidity involved in locating and handling

objects, nothing would ever get done (Pinker 1997, p. 11). As humans we ‘create’

the response to a given situation by means of previous experience, that is, our

particular behaviour is ‘patterned’ on what has worked for us in the past.

It is in this sense that one can claim that a pattern language underlies all

of our activities, we are organisms dealing with the essentially unpredictable

guided by experience, not precision mechanisms in closely defined, and therefore

predictable, situations, propelled by precise computation. Even in the case of the

robot, the need for exact computation of every single value has to be avoided. We

pattern the input as much as possible - that’s what production-lining a process

does - so that the computations can be done in advance of the activity. In some

sense, then, even robots use a pattern language of sorts. But, strictly speaking,

a machine has to be presented with a program, a formally defined operational

semantics, precisely because it doesn’t ‘understand’, it creates no ‘meaning’ of

its own. ‘Understanding’ can be regarded as a means of avoiding direct ‘real

time’ processing of input data, and it does this by basing all activity on a pattern

language. The mark of an organism is a pattern language, that of a machine, a

formal one.

There is a difference between causation and strict determinism and it lies in

the fact that no real system is entirely closed, the point about closed systems is

that they are formal and abstract. So all real systems interact in some way with

all other systems, the universe would not be universal otherwise. But this lim-

its the effectiveness of analysis as even the strictest analysis of a system cannot

predict some unexpected interaction with another system. As carefully as I plan

out my day’s activities, I cannot say that my actions are determined in advance.

Strictly speaking, causation sets up the conditions for an event, rather than di-

rectly causing it. Causation is context-setting rather than event-directing - the

mass of the sun sets up the conditions for the Solar System, warps space-time

locally, rather than determining any particular configuration of planets. Strictly

speaking, there are no forces causing action, but fields setting up the potential

for action to occur.

What instinct means is that the connection between perception and behaviour

is ‘hardwired’ into the brain, it is strictly determined, hardly adaptable at all.

If the mark of intelligence is adaptability, then this is both an advantage and a

disadvantage in terms of survival. Often, instinct is the right way to go. After

all, evolution has invested a lot of hard won experience into the genome, and

this might help to explain effects such as the possible prescience of earthquake

activity that many animals seem to exhibit5.

5This is mostly conjectural because it is difficult to assign a particular ‘cause’ to any animal

behaviour because the animal can’t tell you what it is that is ‘disturbing’ it. Nevertheless
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Of course, generally speaking, the big advantage of individual adaptability, as

opposed to adaptation at the species level, lies in responding more flexibly, and

therefore usually more effectively, to experiences that lie outside of the species’

‘normal’ range of experience where biological selection has not had time to adjust

the hardware, so to speak. This is the explanation for those features that Hofs-

tadter identifies as “defects” of the mind (Hofstadter 1979, p. 302). Individual

adaptability can only work within the confines of the material that biological

adaptation has provided, the mind can only use those structures and capabilities

that the brain has evolved. And if this greater flexibility has made intelligence

‘noisier’ in terms of direct survival-specific information, this might explain why

some basic instinctive drives for food, security, sex and so on, are so insistent in

humans, to the point of pathology in some cases - they have to be in order to

get their fair slice of the easily diverted attention of an organism that has highly

‘specialised’ (or should that be ‘generalised’?) in creative curiosity.

Living is a process, a way of being in the world. At heart it is the creative

interplay between an organism and environment. So your mind is literally your

way of being in the world. Most humans in the same, or similar, cultural set-

ting will approach a pretty standard model, that is, they will see the world and

act within it in an extremely similar, although individually unique way - they

will follow the same patterns. Notice that patterns are not in the same vein as

‘rules’, ‘pathways’, or even ‘principles’, as is shown by the fact that one can be

individually unique within the common substrate of patterns. This is because

life, being stochastic and therefore informal, is a much less rigid process than any

mechanical, and therefore formal, one. The fact that one’s patterns of living are

tied inexorably to mind can be observed in those cases where a person’s way of

being in the world is not close to the ‘standard model’. Because all the means

of measuring intellectual ability derive from the cultural norm of western society,

patterns of behaviour that are, to the people concerned and those close to them,

“completely natural and creative and, in fact, quite inspired ways of perceiving

the world, [are] rendered bizarre and meaningless” (Klotz 2004). But notice that

this mismatch is caused by the lack of meaning imposed by seeing the ‘normal’

as rule-based (formal) rather than pattern-based (informal).

So the heart of the difficulty in learning to program is the difference between

the way that a computer works and the way that the human mind works, and one

can’t even approach this difference without reference to various issues raised in

philosophical and psychological discourse. The very word, ’psychology’, expresses

the split between mind and machine, though probably unwittingly. ‘Psyche’

means spirit, freedom expressed through intent and purpose, and ‘logos’ is logic,

the ‘immanent’, a strict flow of cause and effect, often seen as divine. But the

spirit, the life-force, is not logical. It emerges from the so-called ‘logic of survival’6

Chinese authorities claim that observations of unusual behaviour in animals contributed to the

decision to order an evacuation of the city of Haicheng, population approximately one million,

just prior to a 7.3 magnitude earthquake in 1975 (Mott 2003)
6Strictly speaking survival is clearly not a matter of logic. It is not possible to ‘logically



106 THE SOURCE OF THE DIFFICULTIES

through biological evolution, but it gives rise to a new stream of development,

the ‘evolution’, loosely speaking, of the individual personality - psychological or

spiritual evolution - which can, and often does, run counter to the strict ‘logic of

survival’.

Programming is therefore the construction of a logical system using a creative

system, the mind - quite a disjoint when considered carefully. The mind works

by weaving together threads from many diverse strands, rather than following a

single logical strand, so forcing it to be strictly logical is not its natural bent.

Pattern is the basis of mind, not logic. We are essentially social animals not

Minsky’s “meat machines”. The crux of the matter, for an animal, is biological

survival, and that for a social entity is social interaction. Both of these involve

participation in informal milieu rather than formal systems, so the mind that

has evolved in this evolutionary matrix needs to deal with probabilities rather

than known certainties. The “patterns of feeling” (Langer 1962, p. 98) that we

use to deal with uncertainty and complexity are simply not reducible to logic.

The ancient Greeks were right: “there is no order in a purely chance event.

To find order in chance - to discover a mathematical pattern - you have to see

what happens when the same kind of chance event is repeated many times”

(Delvin 2000). Dealing with uncertainty, then, is a matter of discovering the

patterns of experience.

People perceive patterns anywhere and everywhere, without knowing

in advance where to look. People learn automatically in all aspects

of life. These are just facets of common sense. Common sense is not

an “area of expertise”, but a general - that is, domain-independent -

capacity that has to do with fluidity in representation of concepts, an

ability to sift what is important from what is not, an ability to find

unanticipated analogical similarities between totally different concepts

(“reminding”, as Schank calls it).

(Hofstadter 1985, p. 640)

In the end, the brain is just the biological device that makes experience mean-

ingful, that makes the experiential history of the organism available to its current

state of being. As the sage said, “those who forget their history are bound to

repeat their mistakes”, except, one might add, the fatal ones.

There is no such thing as a computational person, whose mind is

like computer software, able to work on any suitable computer or

neural hardware - whose mind somehow derives meaning from tak-

ing meaningless symbols as input, manipulating them by rule, and

prove’ by formal means that a particular response will result in survival. The only way to

‘prove’ that a particular response will result in survival is to try it and succeed in surviving,

but it is important to note that this is a not a general ‘proof’, it applies only to the particular

circumstances in which it was tried. This is why pattern languages are more effective at this

game, they inform response (that is they are ‘informal’) rather than dictate (formalise) it. They

operate outside of Gödel’s limit to what can be proved using formal language.
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giving meaningless symbols as output. Real people have embodied

minds whose conceptual systems arise from, are shaped by, and are

given meaning through living human bodies. The neural structures

of our brains produce conceptual systems and linguistic structures

that cannot be adequately accounted for by formal systems that only

manipulate symbols.

(Lakoff & Johnson 1999, p. 6)

Of course, the idea that a computer is a formal system that manipulates

symbols, leads also to the equally common fallacy that it can be considered an

unbiased, impartial observer. Somehow, it is seen as a brain minus emotions,

a ‘brain’ that deals in facts alone. A “computer, lacking emotions, hunches

and prejudices, would consider and generate only the stark facts of the matter”

(quoted in (Winograd) 1987, p. 156). It has even been said that computers

should replace judges because, “unless programmed to be biased, [they] will have

no bias” (quoted in (Winograd) 1987, p. 156). These ideas show how far the

brain-computer confusion has spread. The fallacy lies in the notion of a computer

as equivalent to a human observer - but freed from any personal view. Of course,

a computer observes, considers, and decides nothing, it does not even ‘generate

the stark facts of the matter’ - these are not functions of formal systems, they

are functions of ‘understanding’ systems.

The reason that the brain is not just a computer is precisely because what a

computer implements is formal means while a brain implements meaning. The

driving force in one case is syntax, in the other it is the balance between freedom

and necessity, choice and survival. So the language involved in each case is quite

different. The language of a computer is formal logic, it implements a program,

that of a brain is pattern language, it implements life, and life is about learning.

If learning could be programmed then education would not be problematic, we

could just implement the appropriate program - it’s called ‘rote learning’. But

what we know from history is that it doesn’t work. Even in the case of computer

programming itself, experience tells us that you can’t ‘program’ a human to

program. Humans are thinking beings, not programmable machines, they run on

patterns, not instructions. No computer ever solved a problem that cannot be

solved by the application of fixed rules because such “a problem cannot be solved

at the same level of consciousness as it was created” (Einstein). Yet the essence

of being human is the growth of consciousness, the solving of problems that one

has never encountered before, and that is why programming is so difficult.

A programming system is always a limited description of the domain in which

the problem to be solved exists. It expresses only a limited number of the poten-

tialities, the entities and relations, that exist within the problem domain. The

surprising thing is that, given these limitations, programming has proved to be as

powerful as it has. What this formula is really saying, of course, is that the use of

the programming system by people has been amazingly creative, and has made it

easy to forget that this is a limited system that is being used. Douglas Hofstadter
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makes the point in “Gödel, Escher, Bach” that these limitations might not apply

to a computer system that allows multiple levels of knowledge that include a level

of description that applies to itself. But he does admit that his contention is un-

supported intuition (Hofstadter 1979, p. 152) and, in any case, this is not true of

programming environments. The programming language constrains our thinking

to only those mechanisms that it provides - a fixed level of consciousness in Ein-

stein’s terms. However understanding is not just a fixed relationship between the

representation and the entity being represented, it is dynamic ever-changing one

that permits new levels of consciousness to arise, and this is why ‘understanding

systems’ (human beings) are capable of solving problems.

As biological beings we are forced to act in many situations regardless of our

own individual propensity to do so. Heidegger calls this property ‘throwness’, we

are ‘thrown’ into situations which force us to act, and it is this necessity to be

ready for the unexpected that lies at the heart of our intelligence, not the fact

that we can manipulate symbols. So phenomenon like reflection and abstraction

are important in, but do not constitute the basis of, everyday action. Whenever

we use abstraction, that is, build a representation of a situation using an analysis

of the objects and relations within it, we also create a corresponding ‘blindness’

- our thinking is limited to what can be expressed in terms our representation.

Reflective thought is impossible without abstraction but its limitations, the as-

sociated ‘blindness’, must be kept in mind.

The essence of our intelligence is in our ‘thrownness’, not our reflec-

tion. Similarly, Maturana shows that biological cognitive systems do

not operate by manipulating representations of an external world. It

is the observer who describes an activity as representing something

else. Human cognition includes the use of representations, but is not

based on representation. [Emphasis added] When we accept (know-

ingly or unknowingly) the limitations imposed by a particular char-

acterization of the world in terms of objects and properties, we do so

only provisionally. There always remains the possibility of rejecting,

restructuring, and transcending that particular blindness. This pos-

sibility is not under our control - the breakdown of a representation

and jump to a new one happens independently of our will, as part of

our coupling to the world we inhabit.

(Winograd & Flores 1987, p. 99)

Logic, and therefore programming languages, limit our thinking to the fixed

syntactic relationships of the representing system, in a sense we are forced not to

think, at least not to think in the way in which that word is normally understood.

But for true understanding we need the creative potential implicit in the idea of

language as a dialog that permits new relations to emerge, for consciousness to

grow. So programming is difficult because it limits our intelligence, makes us

partially ‘blind’ so to speak, not because it is the use of a system that is, in itself,

inherently difficult.
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The essence of intelligence is to act appropriately when there is no

simple pre-definition of the problem or the space of states in which

to search for a solution. Rational search within a problem space is

not possible until the space itself has been created, and is useful only

to the extent that the formal structure corresponds effectively to the

situation. ... It has long been recognized that it is much easier to write

a program to carry out abstruse formal operations than to capture the

common sense of a dog. This is an obvious consequence of Heidegger’s

realization that it is precisely in our ‘ordinary everydayness’ that we

are immersed in readiness-to-hand. A methodology by which formally

defined tasks can be performed with carefully designed representations

(making things present-at-hand) does not touch on the problem of

blindness. We accuse people of lacking common sense precisely when

some representation of the situation has blinded them to a space of

potentially relevant actions.

(Winograd & Flores 1987, p. 98)

4.4 Programming equals Designing a Program

So a programming system constrains our imagination by reducing us to using only

those concepts that it provides. But you can’t imagine anything that isn’t based

on concepts that you already have in your head and solving a problem requires

‘imagining’ the solution. So the fundamental difficulty caused by trying to learn

how to program using a programming language is that you have to ‘unlearn’

how to think, to become a logic machine rather than a thinking being. A being

has to survive, not just continue to exist, and this implies autonomous rather

than automatic behaviour. You just can’t just do what you’ve always done in

a given situation in a programmed way, you have to do it in an intelligent way,

and this is the difference between a program of set instructions and a language of

tried options from which you create a strategy. In the end meaning derives from

living, from experiencing life. A machine has no meaningful relationships with its

environmental substrate because it has no being, no élan vital - it doesn’t care.

Intelligence derives from a being’s attachment to life, so meaning is fundamentally

an emotional relationship. The mind is built on patterns of meaning not on

neuronal circuits directly, and it is this extra layer that makes it richer than

simple instinct.

It is often said that design is domain specific7 and that this means that one

7This proposition would seem to be in the same spirit as the idea that reasoning, or, in con-

temporary terms, critical thinking, only occurs in context and can therefore “only be taught as

part of a specific subject and never in isolation” (McPeck 1981, p. 158). Intuitively this seems

unlikely, for an implicit assumption of any education system is that transfer across subject

domains will occur. “ For a very long time, it has been common practice for mathematics de-

partments to teach the quantitative models of reasoning (e.g., algebra, calculus, etc.) assumed
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can’t teach programming in general, it needs to be presented always in the con-

text of a specific domain - network programming, or systems programming, for

example. Even if it is true that design is domain specific, I can’t see how that

makes any difference to the teaching of programming. The point about ‘design’

is that you are teaching it whatever you do - even if you think that you’re not.

Any program is ‘designed’. You might think that you are just ‘hacking code’,

but, in fact, your program still has the elements that constitute ‘a design’. It’s a

consciously, intentionally produced artefact. You might not have explicitly ‘de-

signed’ it in a conscious sense, but whatever, it has a ‘design’ and you put it

there, it didn’t just happen.

The point about hacking is not that it doesn’t produce a designed artefact, but

that it produces a design that is not based on understanding, “the programmer’s

understanding of the problem to which he is trying to program a solution usually

develops only with the program” (Brady 1977, p. 13), that is, after the fact. It

is important to notice that this is not a problem in itself given a high degree

of internalised programming skill. Like the musician who improvises a piece

of music, it is experience, lots of it, which allows the design (composition) and

implementation (playing) to occur simultaneously in the expert’s performance.

But the level of understanding that is required for this to be successful is far

beyond the novice performer in either field, it comes only after years of practice.

In fact, it is this conjunction between experience and programming skill that

has caused the two contrasting meanings of the term ‘to hack’. Initially the term

‘hacker’ was used to denote a highly proficient programmer who could ‘hack’ up

a code solution in no time. The term, in this case, probably derived from the

expert’s proficiency in reusing code - previously written code was ‘hacked’ (in the

sense of being altered) to produce the new program. But this ability was based

on a highly developed understanding arising from years of “blood, sweat and

tears” that meant that the design process that was most certainly occurring was

not visible to the admiring observers. The trouble came about when others who

did not posses the same degree of understanding tried to emulate the expert’s

performance with generally disastrous results. In this case it was the solution

that ended up being ‘hacked’ - but ‘hacked’ in the sense that a piece of wood is

‘hacked’ to useless pieces by an inexpert carpenter trying to design on the fly.

So whatever you might think that you are doing when you teach people pro-

gramming you are implicitly teaching them to ‘design’ programs. I don’t see how

you can avoid it. All that the pattern idea says in this regard is that if I’m teach-

ing design then it is better to do it upfront, to make it explicit. This surely is the

thrust of the pedagogical patterns movement. Because we don’t tell the students

necessary for acquiring and applying concepts in other disciplines. We do not assume that the

disciplines utilizing these models (i.e., chemistry, physics, psychology, etc.) should themselves

be responsible for teaching algebra, for example. Indeed, we find it efficient to require mathe-

matics courses as prerequisites to the study of a variety of complex subject matter domains”

(Nummedal 1987).
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that we are teaching them, or rather, trying to teach them, design, they miss

many important issues completely. This is why they struggle with it. We make

them ‘hackers’ - programmers who design by default while coding - without the

necessary background to be able to do this successfully. Pedagogically, it must

be advantageous to explicitly teach novices to design their programs, before they

begin coding, because, at the very least, it will cause some attention to be given

consciously to thinking about the problem and its solution at a conceptual level.

In a sense, teaching design explicitly is merely implementing Bloom’s taxonomy,

one is addressing analysis before synthesis.

The difficulty with the basic premise under discussion is that if design is

domain specific then this has to be true in every field not just programming, so

the statement comes down to ‘we can never teach design except in the context of a

particular domain’. But what then is a domain? It’s probably not possible to go

anywhere else but to a definition that says, in effect, that ‘a domain is a collection

of related systems’. In our case, patterns are problem based so I guess that a

more specific definition for us is - a set of related problems and the mechanisms

for solving them. But aren’t we then just talking about the level, or scope, of

concepts when we use the term ‘domain’?

So how do we decide that problems are related? This is purely a pragmatic

issue. What is really being said is that there are a number of concepts that all

contribute to a certain level of order that we are interested in achieving. What we

are doing is building a system in the sense that a system is a collection of entities

and concepts about some sort of organisation. The problems arise in creating,

extending or maintaining the conceptual system. That is, they are system level

organisational problems. The difficulty of the domain idea is that it is merely

another system, but a system that can contain many systems. So deciding what

constitutes a domain is simply a matter of choice, it is whatever set of entities,

including systems, that it proves useful to regard as constituting a larger system

to be known as a domain. The thrust of Alexander’s “Nature of Order” is that

moral order is reflected in everything. In a sense, everything ultimately relates

to the same overall order. But when dealing with particular issues it just adds

complexity to relate them to everything, so the first thing we do is to simplify

everything by breaking it down into a number of smaller categories. Ultimately,

a category is merely a convenience. It is helpful to think of a set of related ideas

in this way, so we do it. And deciding if a particular category is a domain is

similarly a matter of convenience.

What the contention boils down to, then, is the statement that ‘we can

NEVER teach design’ because domains are ultimately just conveniences. The

only way to escape this is to modify the contention to something like ‘we can

NEVER teach design EXCEPT by recognising that every design principle that we

teach has a context’. But this is the fundamental crux of the pedagogical pattern

language idea. Instead of pretending that programming is design-context-free we

base our teaching program on the context of concepts and, moreover, use context
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as the driving force of the process of design.

The point about pattern languages is that they exist at all levels. You can

think of them as existing at the level of individual projects within a category of

systems, at system level within the category, and at the overall category level.

All these levels of categorisation are merely convenient ways of relating a set of

concepts. There is nothing fixed or permanent about any category. It is merely

a way of expressing a level of order. Any single person cannot know everything,

so we break it down into broad areas of related ideas such as Physics, Chemistry,

History, and so on. In turn each of these broad categories quickly grows beyond

the power of one mind to encompass so we specialise even further European

History, American History, Medieval History, etc. Because a pattern language

is a reflection of order it can be useful at all levels. A pattern language is built

whenever order is being created or maintained. This is why Alexander always

stresses the idea of process. If you are thinking about doing something, you are

considering order in some sense. The level or scope of the activity that is being

considered determines the scope of the pattern language that you need to use. If

it makes sense to think of a set of related concepts as a category, or some other

sort of level of order, like project or system, then it makes sense to think of a

pattern language at that level.

All the pedagogical pattern language idea is saying is that ‘basic programming’

is the domain for our purposes. Whatever the task to be accomplished is, the first

problem we face is that of writing a program to carry it out. This is saying nothing

else but that the first or topmost pattern in our pattern language, whether this is

made explicit or not, is PROGRAM, that is, consider the implications of carrying

out the specified task by means of a computer program. In order to program a

specific task we need to understand it in terms of the facilities that a computer

provides. The primary order involved in the field is the use of computers to

automate tasks. This is done by programming a general-purpose machine, the

computer, to carry out a specific task. So the first requirement of any person

designing programs in any specific domain is that they understand the facilities

provided by the toolkit they are using, the programming language. Any program

design in any specific domain will require this base level of design nous. So our

approach, at least, acknowledges design and teaches that it is grounded in context.

Any task arises in a particular context in a domain, for example, accounting,

which has many features, already existent, that are used in solving problems,

completing tasks, in the domain. It has, in other words, a pattern language

specific to that domain. The problem to be solved exists in that domain and it

will be specified in the language of that domain. Importing into the domain in

which it arises, the initial pattern, PROGRAM, is therefore a way of considering

solving the initial problem by automating the task - doing it on a computer. It

is the power of the pattern language idea that doing this imports the language

attached to PROGRAMso that it is now clear that the way forward, if automation

is deemed appropriate as a solution to the initial problem, is to work through the



4.4. PROGRAMMING EQUALS DESIGNING A PROGRAM 113

rest of the language linked to PROGRAM.

This is important. In fact it is the breakthrough idea in terms of applying

Alexander’s thinking to programming practice. Suddenly, a whole new way of

thinking about the initial problem is opened up - with a whole new set of features

and ways to proceed. Applying a pattern always does this. It transforms the

context of the problem into the context of the pattern. We go into this in further

detail in Chapter 6, but in outline context is everything in establishing meaning

and it is only on the basis of meaning that problems can be understood and

solved.

Figure 4.1. The applied pattern brings its context with it.

So the thrust here is that the pattern approach does not fundamentally chal-

lenge the premise. Yes, design is domain specific. But any domain is just a

category. It is whatever is convenient for your purposes. Our purpose is to teach

people programming. Any program embodies a design, implicitly or explicitly.

We claim that making the design process explicit is advantageous in writing any

program not just a program in a particular context. So yes, we admit that we

cannot teach the domain specific design principles for every single context in

which a program will be written, but there are some program design issues that

are relevant in EVERY specific domain in which programming is done. Thus, for

our purposes, we define our domain as ‘basic programming’, and present design

in that context. So the contention that ‘design is domain specific’ boils down

to the statement that programming can NEVER be taught EXCEPT through
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pattern languages.

1. every program constitutes a design

2. design is domain specific

3. a domain is just a convenient set of contexts

4. a pattern language is a convenient set of contexts (problems in contexts)

It follows from 3 and 4 that

5. every domain has a pattern language

Therefore, because

6. the ‘fundamental process’ is design - “There is something essentially dy-

namic about order. ... Indeed the nature of order is interwoven in its fun-

damental character with the nature of the processes which create the order.

(Alexander 2002a, p. 2)

every design involves the use of a pattern language, like it or not.

But

7. teaching programming involves writing programs and every program con-

stitutes a design (see point 1)

Therefore

8. we are teaching the ‘fundamental process’.

We are teaching a pattern language.

Giving this fact due recognition is the main point of this thesis and as Alan

Perlis once said: ”A language that doesn’t affect the way you think about pro-

gramming, is not worth knowing” (Perlis 1982). Programming languages are for

writing code, not designing programs, so it is not surprising that we have expe-

rienced great difficulties in teaching people when the languages we use are not

really about thinking about programming. The creative aspect of programming

occurs at the design level not the code level. There is nothing that is particularly

new in all this. Design is fundamentally creative, it is simply the nature of the

beast. As an activity it only occurs because purpose or need overruns current

circumstance, we respond to a problem by ‘designing’ a solution. Creativity and

design are responses to uncertainty, and in this sense are virtually synonymous.

Were it possible to know every fact about a situation then it would be possible

to deal with it using formal logic. But the life of a ‘social animal’ involves fac-

tors that are almost infinitely variable so we simply have to rely on patterns of

probability.
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Nature’s patterns are “emergent phenomena.” They emerge from an

ocean of complexity like Botticelli’s Venus from her half shell - unher-

alded, transcending their origins. They are not direct consequences of

the deep simplicities of natural law; those laws operate at the wrong

level for that. They are without doubt indirect consequences of the

deep simplicities of nature, but the route from cause to effect becomes

so complicated that no one can follow it [Emphasis in original].

(Stewart 1995, p. 146)

The basis of this project is the paradox between the simplicity of the programming

environment and the massive difficulty that many people encounter in trying to

learn to program. Paradox, as a misalignment of meanings, always points to

a philosophical issue, because philosophy is the systematic study of meanings

(Langer 1962, p. 97).

At the base of our pedagogical problem lies a conceptual dissonance of some

kind. This is sharply demonstrated in the various social anomalies, like the dis-

inclination of women to enter fields of endeavour like Computer Science that

are perceived to too heavily involve mathematic or engineering methodology. Re-

searchers have been investigating cognitive differences between people in different

areas for some time.

One of the areas that they have been researching with respect to gen-

der is the area of cognitive differences between males and females. The

results have been reproduced several times by different researchers in

different areas of the United States, and so it seems fairly sure that

there is a definite difference in the way that boys and girls think in the

math classroom. This cognitive difference has definite repercussions

to those students’ achievement as they progress through the system.

Do women really lack the ability to do math? Certainly not. How-

ever, gender differences in mathematical achievement in the classroom

are a very real phenomenon. This is due to several factors, once of

which is the difference in cognitive style between males and females at

a young age. These cognitive differences are reflected in the different

achievement that males and females reach using standard, traditional

assessment methods. In essence, boys and girls think and solve prob-

lems in different ways, and standard assessment techniques do not

address the effects of these cognitive differences.

(Mahood & Richards 2000)

But these differences in the way that people see the world is even more pow-

erfully illustrated by the stories told by many of their personal experiences of

learning to program. Turkle and Papert discuss a couple of these histories in

several articles published in the early 1990s.

Consider Lisa, 18, a first-year Harvard student in an introductory

programming course. Lisa had feared that she would find the course
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difficult because she is a poet, “good with words, not numbers.” But

after years of scorning teachers who had insisted that mathematics

is a language, the computer has made Lisa ready to reconsider the

proposition, and with it her characterization of herself as someone

“bad at math.” Lisa started well, surprised to find herself easily in

command of the course material. But as the term progressed she

reluctantly decided that she “had to be a different kind of person

with the machine.” She could no longer resist a pressure to think in

ways that were not her own. She was in trouble, but her difficulty

expressed a strength, not a weakness. Her growing sense of alienation

did not stem from an inability to cope with programming but from her

ability to handle it in a way that came into conflict with the computer

culture she had entered.

(Turkle & Papert 1992)

What is being expressed here is a clear, almost shocking, dissonance between

the way that the subject is, and the way that she feels programming, or at least

the culture that surrounds it, is forcing her to be. As educators we have all come

across the phenomena of really intelligent people, people who go on to excel in

other fields, often, curiously enough, biology, who fail to cope with learning to

program. It is too easy to see this as a personal disinclination for the ‘hard’

sciences, but, I think, the basis of the problem is rather the inclination of those

who teach Computer Science to view it as a ‘hard’ science. In fact, if by ‘hard’ we

mean the rigidity of mathematical and logical thinking then we are wrong, at least

as far as programming is concerned. Designing a solution to a problem is almost

totally an act of developing a theory about the problem space, just like thinking

in ‘softer’ sciences, like biology in fact. When one is theorising, one is partaking in

a creative activity and in this mode one’s thinking needs to be as free and flexible

as possible. If students could be given more of this flavour of the programming

realm, and the corresponding fact that successfully translating your design into

code constitutes a formal proof of your theory, then maybe programming would

be regarded in a more favourable light by those who are made to feel ‘alien’ in

the Computer Science culture by the mathematical and logical rigidity of coding.

This paradox between the basic simplicity of the programming environment

in terms of the very small number of concepts it encompasses, and the perceived

mathematical and engineering rigor of the conceptual field as a whole, is the prob-

able source of the difficulties in teaching programming. Resolving conceptual dif-

ficulties is not simply a matter of science, usually the basic facts are well known,

what is missing is ‘understanding’. Unfortunately scientists, and in particular,

computer scientists, are generally impatient with philosophical discussions8 and

8This is part of a wider problem, namely the fact that practice has outpaced theory in

many fields. It is clear that as a society we have not yet come to terms with the philosophical

implications of advances in medical, genetic and military sciences either. “The current doping

agony [on the sports field] ... is a kind of very confused referendum on the future of human
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this has led to an almost complete dearth of consideration of what Edward Your-

don calls the “philosophies of programming” [emphasis in original] (Yourdon 1975,

p. 2). We believe that most of the difficulties in this area stem from the basic

misconception that programming is writing code when, in fact, “representation

is the essence of programming” [emphasis in original] (Brooks 1982, p. 103),

not coding, and representation is an issue of much wider compass than computer

science.

To use the military analogy, coding is tactical level thinking not strategy, and

no war was ever won in the absence of a comprehensive design for victory, that

is, a strategy. In fact the overemphasis of the tactical is notorious in military

theory as the genesis of major disasters like the second battle of the Somme or

the whole Gallipoli campaign in the first war, and Hitler’s hands-on conduct of

the second. Although the thinking behind these policies was considered strategic,

it is clear that the main effect was tactical paralysis, which is surely always bad

strategy. Hitler’s general order for no retreat under any circumstances contradicts

the essential need for strategic flexibility, it precludes the possibility of regrouping

in the face of a setback. The point about the decision to stand and fight or

retreat is that it is a tactical not a strategic one. Sometimes standing ground is

the right thing to do but more often than not it isn’t, so to issue such an order

as part of overall strategy is to hamstring tactics and therefore to blind strategic

thinking. In programming language terms these are local variables rather than

global ones. But the really surprising thing is how often we seem to have to

learn, and relearn, the absolute primacy of having an holistic appreciation of

any problematic situation. Details are ultimately important only in terms of

the whole, allowed to dominate one’s thinking they dictate overall direction by

default, rather than being considered in the light of an overall view. Before we

can significantly improve the pedagogical situation in programming we have to

better understand programming as a mental activity, that is, how to more closely

fit the task to the way that the mind works (a philosophical undertaking), rather

than simply trying to modify the way that the mind works to fit the way that

we, as computer specialists, see programming.

enhancement” (John Hoberman quoted in (Garreau) 2005), for example. Already there are

research programs aimed at “modifying the metabolisms of soldiers so as to allow them to

function without sleep or even food for as much as a week ... [and] for shorter periods ...

without oxygen”(Garreau 2005), yet we are still mired in the drugs in sport debate. The

reason that the convergence of medical, genetic and military science is being debated in this

indirect and ad hoc way is precisely because, as a society, we don’t have the philosophical,

or social, mental infrastructure on which to base the discussion. In short there needs to be a

more interdisciplinary approach to look at new ideas in a wider context generally, and this is

starting to be recognised - see the April 14 2005 draft report of “The President’s Information

Technology Advisory Panel” which recommended the restructuring of universities and federal

agencies to promote multidisciplinary research. (reported in (Chronicle of Higher Education)

April 15 2005) . Of course, given the context of the panel, one can suspect that this push is

driven more by the necessity to justify government policy in the minds of the general public

than to genuinely inform a real debate.
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Paradoxically, becoming an expert involves increasing skill by decreasing the

potentials. Faced with a problem the beginner is overwhelmed by the possibilities,

there are too many choices, too many avenues to explore. Creativity is more than

just coming up with the novel. Stringing together, willy nilly, any sequence of

musical notes does not make a tune. A tune requires, at the very least, musical

structure, so musical creativity needs to be directed towards forming structure.

Before one can be an expert composer, one must develop a musician’s mind.

Everybody starts with a brain but no mind. Mind is the product of experience

in a way that the brain is not - or not, at least, in any significant measure. The

relationship between the two is not ‘mind is brain’, it is ‘mind requires brain’.

Human development, as described by Piaget and others, is simply the unfolding

development of mind. What it results in is the general mind that all adult humans

need to ‘get on’ in their world. They have become experts in the social milieu and

physical environment into which they were born. In a sense they have created

themselves and their world, their mind, in a dynamic relationship with their

environment.

Mind is not simply brain - it requires a brain in which to be based in a

physical sense, like a life needs a body - but to think of mind in terms of its

physical manifestation is just too restrictive. A concept is mind stuff, not brain

stuff. As one of the pioneers of neuro-surgery, Wilder Penfield, explains, it is not

possible to conjure mind-mechanism by means of electrical stimulation of part of

the brain.

I have been alert to the importance of studying the results of electrode

stimulation of the brain of a conscious man, and have recorded the

results as accurately and completely as I could. The electrode can

present to the patient various crude sensations. It can cause him to

turn head and eyes, or to move the limbs, or to vocalize and swallow.

It may recall vivid re-experience of the past, or present to him an

illusion that present experience is familiar, or that the things he sees

are growing large and coming near. But he remains aloof. He passes

judgment on it all. He says “things seem familiar,” not “I have been

through this before.” He says, “things are growing larger,” but he

does not move for fear of being run over. If the electrode moves his

right hand, he does not say, “I wanted to move it.” He may, however,

reach over with the left hand and oppose his action. There is no place

in the cerebral cortex where electrical stimulation will cause a patient

to believe or to decide.

(Penfield 1975, pp. 76-7)

Expertise is based on the mind, not the brain directly. If one had to replay

every event memory that contributes to one’s understanding of a particular con-

cept every time one needed to use it, then nothing would ever get done. “People

are good at recognition, but tend to be poor at recall” (Liddle 1996, p. 21).

Concepts are more than just memories, brain stuff, they are mind stuff, patterns.
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The notion of abstraction is not just conceptual in nature, it is actual - an idea

is not neuronal, it ‘really is’ abstract, and the mind is the total collection of the

abstractions that enable it to function as a unit, a ‘whole’. So, just as becoming

an independent human is to create, from the raw material of neuronal structure,

the mind of a human in a particular environmental and cultural context, becom-

ing an expert in a particular field of endeavour is similarly to create the mind of

an expert of that field. But this time you start with a mind already developed,

not just a brain still awaiting the development of mind, in other words, a brain

already habituated to dealing in pattern language.

4.5 The Programming Experience

It is in this sense that we argue that there is no “special” characteristic or “trait”

involved in the task of programming, save the ability to use a language. In a

sense, the fact of having learned to speak demonstrates both the possession of the

required facilities, and the ability to develop them fully. Programming is basically

the task of “so analysing and paraphrasing a problem as to cause its solution to

organize itself into steps which a machine can be made to take” (Quine 1966, p.

40). One could define the use of natural language in similar terms, that is, as

the task of “so analysing and paraphrasing a situation as to cause its expression

in words to organize itself into steps which the language can be made to take”.

However, this correspondence between natural language and programming occurs,

not because, as is usually supposed, programming is just another language, but

because both the use of a natural language, and programming, are developments

of thinking skill - they both descend from the same ancestor, rather than one from

the other. The implications of this are quite profound because it would seem

from the history of programming that the language metaphor has been taken

too literally - we have treated programming as if it were a direct descendant of

natural language rather than as a close cousin, missing the fact that it has more

in common with thinking than it has with speech or writing.

Natural language stands in the same relationship in the human communica-

tive system as the machine does in the computational system (although one has

to be careful with this idea as it leads to the classic “information processing”

confusion9). This similarity is demonstrated by the fact that in the following

equation the language component is interchangeable.

human - language −→ communication

Language, here, can be any device that processes linguistic relationships - sounds,

written symbols, or even hand or finger/touch signs - just as a machine in the

9Unfortunately, the phrase ‘information processing’ has come to carry a connotation of

computing which is entirely inappropriate to describe human mental processes (Devlin 1995, p.

6). Strictly speaking, computers do not ‘process information’ at all, they manipulate symbols

that, because they have no ‘meaning’ for the machine, only carry ‘information’ as such for the

human operators.
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next equation can be any device capable of processing logical relationships.

human - machine −→ computation

In the case of the machine, it can take forms based on beads, digits on paper,

and so on, as well as the more conventional voltages in electronic components.

Strictly speaking, a natural language is a system to enable communication just

as a computer is a system to enable computation, and both require ‘programming’

to accomplish their ends. In this regard the so-called ‘natural language’ is as much

a human artefact as any ‘physical’ machine, but we miss this fact because of its

lack of material form10. Both are tools that are used by humans to manipulate the

relations between symbols to generate new meaning, so setting up the linguistic

system to produce communicative meaning is as much the task of ‘programming’

as setting up the computing system to produce computational meaning. Another

way of saying this is that programming a computer to compute is equivalent to

thinking of what to say. So the two equations mentioned above are, in reality, just

different forms of the following relationship, where ‘system’ can be communicative

or computational. After all, the ‘mind’ does both sorts of processing, it can fit

into ‘machine’ in the second equation just as it can fit into ‘language’ in the first.

�
�

�
�Human

thinking- system processing- meaning

Figure 4.2. The general form of the communication/computation relationship

Thinking of the situation like this should help us see the source of the difficul-

ties that people have with programming a computer. If thinking about what to

say is, generally, so easy, why should programming a computer be so problematic?

Something about the way we program a computer makes it much more difficult

than programming our linguistic system. We feel that the source of the problem

is the tight correlation that has been made between the computing system and

the method of programming it. Because we have failed to see that language is

equivalent to machine in the two systems, we have stood the programming pro-

cess in the wrong place in the computational system. By this we mean that we

have tied the language used in computer programming too tightly to the logic

of the machine. The real correspondence is between thinking and programming,

so if the ‘language’ used in programming is restricted to logic this makes it very

unlike the freeflowing form that is thinking. Thinking is not even restricted to

just those symbols that exist in the linguistic system, but makes use of concepts

that are more like images (Bohm 1980, p. xiv), and relationships that are not

strictly grammatical11.

10Of course this is not strictly true, the material manifestation of the language system, is

the brain, or at least those parts of the brain that give rise to the ‘mind’. The brain - mind -

language relationship is discussed further in this work.
11This is true even of speech, where some elements of written grammar, e.g. the use of
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What this implies is that there are probably several levels involved in the pro-

cess of thinking, each level being more ‘logically organised’, or perhaps one should

say ‘linguistically organised’, than the one before it. It seems that there is some

evidence for a preliminary stage to conscious thought (Luriia 1973) that has little

or no explicit organization. The task of the brain is to build this diffuse mass into

the structural form that we call ‘mind’. Narciss Ach called this pre-organizational

mass ‘imageless knowing’ (Association GREX n.d., p. 14). What we experience

as the conscious and symbolic organization of everyday thought is derived from

this initial state of ‘imageless knowing’, which therefore underlies imaginal expe-

rience, conscious thought, language usage, and eventually behaviour. In a sense

then, that entity that we know as mind is itself a product of creativity - it derives

“from an indefinite non-organized state that is prior to consciousness to one of

increasing distinctiveness which achieves form and organization characteristic of

thought and consciousness” (Joseph 1980).

Linguistic form, or communication, is not only the end product of this devel-

opment process, but contributes to it. In fact each level of thought flows from

and feeds back into the preceding levels so that it becomes virtually impossible to

consciously disentangle them. It can almost seem as if one is ‘talking’ to oneself

which raises some interesting philosophical issues.

Directed, reflexive or spontaneous, the verbal thoughts always unfold

before an observer and are heard within the minds ear. It is a se-

ries of pseudo-auditory transactions which are experienced as well as

produced sometimes as a purposeful means of explanation. Think-

ing sometimes is experienced as a form of self-explanation through

which ideas, impulses, desires, or thing-in-the-world may be under-

stood, comprehended and possibly acted upon. Paradoxically, it is

often a process by which one explains things to oneself. Indeed, as a

means of deduction or explanation, and as a form of internal language,

it is almost as if one is talking to oneself inside one’s head.

Nevertheless, the fact that one acts as both audience and orator, raises

a curious question:“who is explaining what to whom?” A functional

duality and in fact a functional multiplicity is thus implied in the

production and reception of thought.

(Joseph n.d.)

It would be, of course, altogether two simplistic to equate this apparent duality

of mind to different areas of the brain, nevertheless the principle of ‘form following

function’ probably does apply to the neural structure. There is clear evidence of

functional specialization in the brain, that “the differentiation of neural structures

sentences, can be largely discarded. A lot of the rules of grammar (syntax) are concerned with

structuring written language and are therefore applied only loosely to spoken language and

hardly at all to thought. After all, if you are thinking, you are the only person who needs to

understand what you are thinking. Grammar is a function of the need to communicate, not

strictly the need to understand.
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may be shaped and patterned through the ontogenetic and phylogenetic evolution

of consciousness, and physically mirror the two types of consciousness necessary

for adaptation” (Cooperstein n.d.). This development does not just occur through

the process of biological evolution, the development of the individual builds on

the basic structure provided by the expression of the genetic inheritance.

Metaphorically, consider the fetal brain a gelatinous mass of undiffer-

entiated, unspecialized cellular materials. Further, let us assume that

embedded in this matrix are myriad hereditary neural pathways, all

possible avenues for the transmission of energy to specific areas. The

priorities of the pathways chosen, and the areas they service, are as-

signed by the genetic code, providing the anlage for maximal survival

potential in the majority of our species. A remarkable consistency

in laying down these potentials for later differentiation encompasses

certain “universals” for adaptation, prepotencies for collective per-

ception and action, or, what some have called instincts. ... In this

way, the primitive nervous system is guided to establish prepotencies

for adaption as rudimentary, pre-systemic configurations already sub-

jected to activation concurrent with their appearance. Many theorists

have identified as archaic forms or potentials (e.g., Jung’s archetypes,

Kant’s priori categories, Jaynes’ aptic structures, and Arieti’s endo-

cepts) [that] may well be common recognition of the biological sub-

strate as it evolves into being, arising from humankind’s common his-

tory of adjustment to this planet, now part of a genetic record encoded

in which is the past, present and, perhaps, the future of humanity’s

adaptation.

(Cooperstein n.d.)

But the main issue here is process. At a fundamental level all process is cre-

ative, a new state has developed out of a previous state, “wherever development

occurs, it proceeds from a state of relative globality and lack of differentiation

to a state of increasing differentiation, articulation, and hierarchic integration”

(Werner 1957, p. 127). Thought is thus inherently a form of creation and, in

the end it is probably impossible to say which is primary in the development of

mind, a process, just as it is difficult to define the brain-mind relationship, which

is also the product of a process. Any thinking organism is therefore creative

at a fundamental level. Maybe many of the nature-nurture type controversies

derive from this fundamental conjunction of thought and creativity. In a sense,

all humans have an ‘aptitude’ for thinking, so many of the apparent aptitudes

for particular skills that involve creativity are probably just expressions of this

general aptitude. What looks like an aptitude for programming is, in essence, the

aptitude for thought directed by an interest in programming. If this is true then

motivation is the key to learning how to program, in the end “interest” might be

more important than any cognitive “aptitude”, might indeed be the source of the

“aptitude” phenomenon.
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That’s why ... the work of Silvan Tomkins [is] just so useful because

he said, ‘you know, with affects anything can matter and without

affects nothing does’. Like if I’m in a sort of curious, interested and

excited affective state then I might find absolutely everything about

the world fascinating and I’ll be noticing the branches on the trees

and, you know, the shape of the furrows and fields and everything. In

other words it renders salient in so many different parts of the world.

If you’re in a sort of deflated depressed or low affective state where

there’s not really any affects, sort of moving and inspiring you, the

world feels quite flat and grey and not very much matters to you at

all.

(McIllwain 2005)

If affects are primary then one of the main factors in helping someone learn

anything is the attempt to inculcate and maintain interest in whatever it is that

is being learned. So a pedagogy that produces great difficulty in students is

something that needs to be avoided because perceived difficulty is bound to re-

sult in flagging interest in many people. Unfortunately, with the ascendancy of

cognitive psychology, affect has come to be seen almost as “a regrettable flaw

in an otherwise perfect cognitive machine” (Scherer 1984, p. 293) presumably

because it does not fit in with the brain-as-computer model. However, it is clear

from any sensible contemplation of the human condition that emphasizing only

affect or only cognition is just silly. As Vygotskii said, the separation of affect

from cognition “is a major weakness of traditional psychology since it makes the

thought process appear as an autonomous flow of ‘thoughts thinking themselves,’

segregated from the fullness of life, from the personal needs and interests, the in-

clinations and impulses, of the thinker. Such segregated thought must be viewed

either as a meaningless epiphenomenon incapable of changing anything in the life

or conduct of a person or else as some kind of primeval force exerting an influ-

ence on personal life in an inexplicable, mysterious way” (Vygotskii 1962, p. 10).

In order to understand the whole person, rather than just discrete phenomena

associated with them, cognition must be viewed in concert with affect.
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Chapter 5

Language as Understanding

Man looks at his world through transparent patterns or templates which

he creates and then attempts to fit over the realities of which the world

is composed. The fit is not always very good. Yet without such patterns

the world appears to be such an undifferentiated homogeneity that man

is unable to make any sense out of it. Even a poor fit is more helpful

to him than nothing at all.

(George Kelly, 1963 quoted in (Britton) 1970, p. 17)

With the exception of music, we have been trained to think of patterns

as fixed affairs. It’s easier and lazier that way, but, of course, all non-

sense. The right way to begin to think of the pattern which connects is

to think of a dance of interacting parts, pegged down by various sorts

of limits.

Gregory Bateson - Cultural Anthropologist

5.1 Programming and Problem Solving

Most of the difficulty with programming seems to lie in the general problem

solving aspect rather than the specific details of the programming language. That

is, before you can write a program that solves a problem expressed in normal

language you first have to solve it in general terms. There is a stage that involves

coming to an understanding of the problem and its solution in conceptual terms

that precedes solving it in programming terms. The programming stage, in its

narrowest sense, is merely the process of translating the conceptual solution into

a sequence of programming language constructs (Deek & Friedman 2002) and

there is little or no creativity at this level. Specifying a problem to which a

computer program solution is required involves a natural language description.

Therefore the largest and most difficult part of the programming task is deriving

the required conceptual understanding from the natural language specification to

produce the solution at the conceptual level rather than the code level, and what

125
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Alan Perlis said about programming levels, “a programming language is low level

when its programs require attention to the irrelevant” (Perlis 1982) is true about

all programming languages in relation to conceptual understanding because they

express code not concept and the code is irrelevant in conceptual terms.

One of the main challenges is that of transforming an ill-stated prob-

lem to one acceptable to the computer. ... The programmer has

to select a methodology by which he can take an ill-stated problem

and restate it in such a way that it can be developed into a set of

procedures and expressed in a language that is acceptable and under-

stood by the machine. Once a problem is well-stated, communication

becomes relatively simple.

(Martin & Badre 1977)

A pattern language is primarily a way of understanding complexity. Any

system is a set of entities with some level of organisation. If a system is completely

disordered then it can be described statistically using the law of large numbers

(Brownian motion, for example). If it is in a completely ordered state then it can

be described using traditional deterministic methods (crystalline structure). But

most systems are not in either of these two states. These two states represent the

ends of the organisational continuum. In most real world systems there is some

level of organisation that is more than complete disorder, but less than complete

order. Patterns are a means of discerning what level of organisation there is in a

particular system, they are telling you about existing order. They are important

in organisational terms because of this.

Understanding a domain is more than just knowledge of the elements in that

domain, it is mostly about structure. When a person is said to have an un-

derstanding of a domain it means that she can ‘stand’ the elements of which it

consists into a structure that is both coherent and correct. It is based on the con-

cepts ‘standing under’ each other in a structural (hierarchical) form that reflects

the relationships between the real elements, the order of the system. It is only

with this appreciation of structure, ‘understanding’ or concepts ‘standing under’

each other, that the functioning of a system can be approached in any sensible

manner.

A software pattern is an expression of some aspect of the existing order of a

system. It says, in effect, that in this context, this solution is known to solve this

problem. Order in a system can be increased by understanding what currently

works in it, (the patterns), and using that knowledge to develop new processes

and improve old ones. Software patterns tell you what works in a programming

context, the language structure, the hierarchical relationships between them, pro-

vides the means of combining them to increase system organisation. In other

words a pattern language for a programming domain provides a methodology by

which an ill-stated problem “can be developed into a set of procedures and ex-

pressed in a language that is acceptable and understood by the machine”(Martin

& Badre 1977).
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This work argues that programming is based on the use of a pattern language

whether this is conscious or not. We say that it is plausible to argue this because

all human activity is so based. Language has often been seen as the core attribute

of the human condition and this is true, but the normal usage of the word lan-

guage obscures the fact that it is language at a lower level than the usual meaning

of the word, language-as-communication. The primary function of language in

terms of being human is not communication but in providing the means of un-

derstanding, the means by which we make sense of the world. In essence, pattern

and language skill form a functioning isomorphism, called ‘meaning’, which al-

lows us to understand complex systems. Language, in the sense in which we

are using the term here, is the system by which humans organise their thinking

about experience, a semantic system. “The real structure of language lies in the

relationships between words - the semantic connections. The semantic network -

which connects the word ‘fire’ with ‘burn,’ ‘red,’ and ‘passion’ - is the real stuff

of language” (Alexander quoted in (Grabow) 1983, p. 50).

However this idea pushes back, in terms of human development, the concept of

language. “That language in which information is communicated [in the brain]...

neither needs to be nor is apt to be built on the plan of those languages men use

toward one another” (McCullock 1965, p. 56). We have tended to use the word

language to denote that capacity that surrounds the conscious use of words, that

is, it is seen primarily as a means of human communication rather than the basis of

the way that an individual understands the world. This normal usage of the term

exaggerates the communicative aspect (Edward Sapir quoted in (Langer) 1976,

pp. 109-10) and obscures the primacy of mental function over the communicative

aspect of language, and the two threads require some untangling. One might even

say, as Steven Pinker suggests, that thought is based on metaphysics (“concepts

and relations”) rather than language in its communicative sense, and hence the

appropriateness of object-oriented thinking in the design of programs.

Many cognitive scientists (including me) have concluded from their

research on language that a handful of concepts about places, paths,

motions, agency, and causation underlie the literal or figurative mean-

ings of tens of thousands of words and constructions, not only in En-

glish but in every other language that has been studied. ... These

concepts and relations appear to be the vocabulary and syntax of

mentalese, the language of thought. ... And the discovery that the

elements of mentalese are based on places and projectiles has impli-

cations for both where the language of thought came from and how

we put it to use in modern times.

(Pinker 1997)

What is important, here, is the primacy of thought in terms of combining,

and even, indeed, having, ideas, and the famous case of Helen Keller, blind and

deaf from very early childhood, well illuminates the almost miraculous nature

of language-as-understanding. For her the sequence of development was, to all
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intents and purposes, reversed from that experienced by normally sensed people.

She had learned to communicate at a basic level using touch signs but the real

power of thinking, “understanding,” awaited the arrival of “meaning.” It is worth

quoting at some length Susanne Langer’s description of the dawning of “meaning”

for the young Helen.

There is a famous passage in the autobiography of Helen Keller, in

which this remarkable woman describes the dawn of Language upon

her mind. Of course she had used signs before, formed associations,

learned to expect things and identify people or places; but there was

a great day when all sign-meaning was eclipsed and dwarfed by the

discovery that a certain datum in her limited sense-world had a de-

notation, that a particular act of her fingers constituted a word. This

event had required a long preparation; the child had learned many fin-

ger acts, but they were as yet a meaningless play. Then, one day, her

teacher took her out to walk - and there the great advent of Language

occurred.

“She brought me my hat,” the memoir reads, “and I knew I was going

out into the warm sunshine. This thought, if a wordless sensation may

be called a thought, made me hop and skip with pleasure.

“We walked down the path to the well-house, attracted by the fra-

grance of the honeysuckle with which it was covered. Some one was

drawing water and my teacher placed my hand under the spout. As

the cool stream gushed over my hand she spelled into the other the

word water, first slowly, then rapidly. I stood still, my whole at-

tention fixed upon the motion of her fingers. Suddenly I felt a misty

consciousness as of something forgotten - a thrill of returning thought;

and somehow the mystery of language was revealed to me. I knew then

that w-a-t-e-r meant the wonderful cool something that was flowing

over my hand. That living word awakened my soul, gave it light,

hope, joy, set it free! There were barriers still, it is true, but barriers

that in time could be swept away.

“I left the well-house eager to learn. Everything had a name, and each

name gave birth to a new thought. As we returned to the house every

object which I touched seemed to quiver with life. That was because

I saw everything with the strange, new sight that had come to me.

This passage is the best affidavit we could hope to find for the gen-

uine difference between sign and symbol. The sign is something to

act upon, or a means to command action; the symbol is an instru-

ment of thought. Note how Miss Keller qualifies the mental process

just preceding her discovery of words - “This thought, if a wordless

sensation may be called a thought” [Langer’s emphasis]. Real thinking

is possible only in the light of genuine language, no matter how lim-

ited, how primitive; in her case, it became possible with the discovery

that “w-a-t-e-r” was not necessarily a sign that water was wanted or
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expected, but was the name of this substance, by which it could be

mentioned, conceived, remembered.

(Langer 1976, pp. 62-3)

For the child with normal sense facilities, the connection between symbol and

concept is much easier to make. But, more than that, the essential generativity

of language is assimilated with no formal knowledge of grammar, showing the

ordinary linguistic creativity of everyday speech derives from the semantic con-

nectivity between concepts (pattern language), not the formal syntactic language

structure. In fact, syntax is acquired almost entirely (there is some corrective

input from adults) as a ‘side effect’ of the expression of meaning, that is semantic

creativity. Despite being massively incompetent at most adult capabilities, for

example, being “flummoxed by no-brainer tasks like sorting beads in order of

size” (Pinker 1994, p. 276), the average three-year-old “is a grammatical genius

- master of most constructions, obeying rules far more often than flouting them,

respecting language universals, erring in sensible, adultlike ways, and avoiding

many kinds of error altogether” (Pinker 1994, p. 276). And all this, let it be

remembered, with NO overt instruction in the syntax, the logic, in effect, of the

language, this is the assimilation of patterns in the child’s hearing environment,

and it is driven by the need to understand the world, by the semantic impulse.

What Helen Keller’s case illustrates is the essential symbiosis of language and

mental organisation. Although she had learned many “finger acts” (words), they

were essentially meaningless (“wordless sensation”) until the ability to organise

her thinking in a language-like manner arose. Mental organisation is best seen

as the primary formulation of language, and it derives from sensing ability. No

wonder then that the task of learning to speak comes so easily to the normally

sense-endowed child. The language pathways are built up in the mind by the

child’s previous non-verbal thought, Piaget’s “sensorimotor stage,” that precedes

speech, and not only does this ease the acquisition of spoken language, it obscures

the mental activity underlying speech, pattern language.

Language forms carry very little information per se, but can latch on

to rich preexistent networks in the subjects’ brains and trigger mas-

sive sequential and parallel activations. Those activated networks are

of course themselves in the appropriate state by virtue of general or-

ganization due to cognition and culture, and local organization due to

physical and mental context. Crucially, we have no awareness of this

amazing chain of cognitive events that takes place as we talk and lis-

ten, except for the external manifestation of language (sounds, words,

sentences) and the internal manifestation of meaning: with lightning

speed, we experience meaning. This is very similar to perception,

which is also instantaneous and immediate with no awareness of the

extraordinarily complex intervening neural events.

(Fauconnier 1999)
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Indeed it has been said of natural languages that they have no semantics in

terms of themselves, and that it is only the almost accidental existence of a ‘key’

containing coincidental resonances with a known language, such as the Rosetta

Stone, that enables the unlocking of a language that has remained unused for

many centuries.

English inherits its semantics from the content of the beliefs, desires,

intentions, and so forth that it’s used to express, as per Grice and

his followers. Or, if you prefer (as I think, on balance, I do), English

has no semantics. Learning English isn’t learning a theory about

what its sentences mean, It’s learning to associate its sentences with

the corresponding thoughts. To know English is to know, for example,

that the form of words ‘there are cats’ is standardly used to express the

thought that there are cats; and that the form of words ‘it’s raining’

is standardly used to express the thought that it’s raining; ... and so

on for in(de)finitely many other such cases. [Emphasis in original].

(Fodor 1998, p. 9)

So the communication aspect of language comes after its use in understanding

in the sequence of human development, and is, in fact, a formalisation of thinking.

“I can only communicate with you to the degree that you and I make sense of

the world in the same way” (Boyle 1971, p. 38). All human expressiveness, even

rituals that seem impractical and useless to us, must, as Franz Boas has pointed

out, have their origin in the need to “explain” the world (Boas 1963, pp. 198-

9). There is no doubting the fact that these forms are functionally expressive,

that is, linguistic in intent. Unfortunately, once the verbal capacity kicked in, it

has tended to obscure the conceptual aspect of singing, dancing and other ritual

forms, and in modern times we lean toward seeing only the verbal as conceptual

in nature. Most communication is, to say the least of it, banal, and it’s a pity

that all the empty noise obscures the fundamental role of language in the ordering

of our mental life.

Education and society have greatly advanced the prestige of verbal

skills. ...Let us call the characteristic verbalizing man, homo jabber.

Now homo jabber has had everything his own way for a long time –

it is not possible to read a newspaper without realizing his sovereign

sway in human affairs, and a fine mess he has made of them. But it

is at least a tenable argument that the highest forms of thought are

not verbal at all, or, at least only insignificantly verbal.

(French 1994)

And this sequence in the history of human development, thought before verbal

communication, is reflected in the development of the individual. Long before we

have begun to talk or write we have learned to make sense of the world, at least

in a partial way, as it manifests immediately around us1.
1“One particularly important quality of the human baby is its ability to learn. Endowed

with its good range of sensory capacities - hearing, vision, taste, touch, smell, balance and
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5.2 Making Sense of the World

This can be seen in much of the common behaviour exhibited by human infants. A

newborn baby demonstrates behaviour that indicates a strong affinity for ‘human

face shape’. Very soon after birth infants are able to discriminate this ‘form’ in

amongst what must otherwise be, to them, a pretty good imitation of visual

chaos, especially given their limited ability to focus the lens of their eye. But

even more than this, they associate this visual form that appears in their visual

field with their own face, which has no existence in their own visual field. Savour

that last sentence again. Here is a being, a newborn being, that is associating a

form with the same form in its own anatomy, without any possibility of visual

comparison - it is pure metaphor. Why does this not amaze us? This is a truly

staggering ability when you think about the issue carefully. Yet the observation is

commonplace. If you come into the field of vision of an infant and poke out your

tongue or grimace, the baby will respond in kind, so, not only is it ‘associating’

similar form from the visual to an inherent component of itself that it can’t see,

it is motor co-ordinating the correct imitative behaviour without any training at

all.

Even new born literally new born, 42 minute old babies, can imitate

the facial expression of another person. So if you stick your tongue

out at the baby that baby will stick its tongue out at you and we could

use that behaviour to find out something quite deep and intense about

what the child knew. Namely that they already knew that there was

a relationship between their own faces as they felt them inside and

the picture they saw, the face they saw on another person.

(Gopnik 2003)

The baby has constructed the following understanding where that face is the

face shape that is present in its field of vision and my face is its own face which it

cannot see - my face equals that face. This demonstrates that it has some sort of

concept for face that is not embedded in visual form, or even, presumably, in sym-

bolic form, and that it can put concepts together to form a larger understanding.

It’s just as if it had spoken the sentence, “that object that I see protruding from

that face over there is the same as this (poking its own tongue out)”. By imi-

tating the behaviour that it sees it is clearly putting abstract concepts together

in a very language-like manner without the abstractive power of language. This

suggests that abstraction, like metaphor, is primarily a factor in cognition, not

linguistic form. To be able to perform this feat at such an early age shows that

it cannot have been simply ‘taught’ to appreciate a certain visual form. In other

words babies show us that they understand far more than we have been used to

giving them credit for.

temperature detection - the baby can start to monitor the world and learn how it is organised”

(Morris 1991, p. 121).
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The type of thinking, conceptual thought, that underlies this basic understand-

ing is built on a language based, not on words, but on the mental concepts that

we form around the objects and activities in our environment. It is not a co-

incidence that the word we use for our means of experiencing the world, sense,

turns up in our concept for understanding. The phrase, ‘understanding is making

sense’ of the world, underlines the recursive nature of the two concepts. Simple

unfiltered sensory experience on its own is not enough for understanding, it is

sensory experience shaped and guided by understanding that drives the human

adventure - sensory experience given meaning.

Unlike the filing cabinet, the brain is a self-patterning system. As

soon as it comes across new information, it seeks ways in which it

has come across such data before. It looks for similarities, parallels

and metaphors. How active[ly] it seeks these is rather dependent on

the skills and learning habits of the learner, but even the most un-

practiced and slovenly thinker subconsciously has access to a vast and

complex system of patterns, with immediate and elegant handling of

the incoming information stream. The more patterns that have been,

the easier it is to match yet more information. Moreover, the more

diverse the types of patterns stored, and the greater the familiarity

and frequency of access to them, the greater the learning potential.

That is why adding a new pattern type is so critical to future learning;

by doing so, we add not merely yet another fact, but a whole new way

of seeing things. Future data could be transformed by such pattern.

In this way, creating a new pattern is an investment in the future,

even though at the time it cannot be predicted that the pattern will

be ever used again.

(Kaipa & Johnson 1999)

The process of learning to speak then builds on this fundamental level of

language-as-conceptual-understanding. We conceptualise, understand the con-

cept, before we verbalise, talk about it. To use a linguistic structure a child must

understand the concept. As Piaget demonstrates with his set of dolls and sticks

of various sizes a child cannot use comparison of size if the child does not under-

stand the concept of size (Piaget & Szeminska 1952, p. 97). So it is not words

that are the basis of language, but concepts; and concept is meaning.

Meaning is an inalienable part of word as such, and thus it belongs

in the realm of language as much as in the realm of thought. A word

without meaning is an empty sound, no longer a part of human speech.

... Word meaning is both thought and speech.

(Vygotskii 1962, p. 6)

The symbolic aspect that underlies language as a means-of-communication is

secondary to semantics because the fundamental purpose of communication is to

impart meaning. It is meaning, our understanding of a situation, that we are
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trying to communicate by the use of our language symbols and we must have

the meaning first, before we can know what words or symbols to use. “Human

language is much more than speech, it is a system for representing knowledge that

lies at the very core of human thought (Beatty 1995). Language is fundamentally

a system for expressing meaning internally within the individual’s mental system

on which the external spoken and written forms is built. The progression is from

patterns of experience to generalisation and only then is communication possible.

The world of our experience must be enormously simplified and gen-

eralized before it is possible to make a symbolic inventory of all our

experiences of things and relations, and this inventory is imperative

before we can convey ideas. The elements of language, the symbols

that ticket off experience, must therefore be associated with whole

groups, delimited classes, of experience rather than with the single

experiences themselves. Only so is communication possible, for the

single experience lodges in an individual consciousness and is, strictly

speaking, incommunicable.

(Sapir 1971)

We talk of language-as-communication as being a symbolic system but fail

to consider the question ‘what is it that a word symbolises?’ This question can

only be answered widely by ‘meaning’, as most words do not embody a direct

relationship between the word and a particular object.

A word does not refer to a single object, but to a group or to a class

of objects. Each word is therefore already a generalization. General-

ization is a verbal act of thought and reflects reality in quite another

way than sensation and perception reflect it. Such a qualitative differ-

ence is implied in the proposition that there is a dialectical leap not

only between total absence of consciousness (in inanimate matter)

and sensation but also between sensation and thought. There is every

reason to suppose that the qualitative distinction between sensation

and thought is the presence in the latter of a generalized reflection of

reality, which is also the essence of word meaning; and consequently

that meaning is an act of thought in the full sense of the term.

(Vygotskii 1962)

The relationship between word and meaning, when considered carefully, is

much more diffuse than a direct one between word and object. In fact, we usually

have to point, even if only verbally, when we want to talk about a particular object

- the house, or that car - because the word itself is more about the concept, the

meaning, than acting as a “sign” or “signifier of” a particular object or entity.

Symbols are not proxy for their objects, but are vehicles for the con-

ception of objects. To conceive a thing or a situation is not the same

thing as to “react” toward it overtly, or to be aware of its presence.

In talking about things we have conceptions of them, not the things
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themselves; and it is the conceptions, not the things, that symbols di-

rectly “mean.” Behavior toward conceptions is what words normally

evoke; this is the typical process of thinking [emphasis added]. Of

course a word may be used as a sign, but that is not its primary role.

Its signific character has to be indicated by some special modification

- by a tone of voice, a gesture (such as pointing or staring), or the loca-

tion of a placard bearing the word. In itself it is a symbol, associated

with a conception, not directly with a public object or event. The

fundamental difference between signs and symbols is this difference of

association, and consequently of their use by the third party to the

meaning function, the subject; signs announce their objects to him,

whereas symbols lead him to conceive their objects. The fact that

the same item - say, the little mouthy noise we call a “word” - may

serve in either capacity, does not obliterate the cardinal distinction

between the two functions it may assume.

(Langer 1976, pp. 60-1)

So the symbols used in language-as-communication are almost totally about

semantic purpose, the symbolic aspect is merely a means to the semantic end.

We humans are generators of meaning, systems for understanding the world if

you will, and in this regard we are completely different from computers, which

are pure symbol manipulators. So, although on the surface it looks as though we

do the same thing, process symbols, the results are startlingly different.

In the human case you end up with an understanding, whereas the computer’s

product is still just a symbolic representation of some kind. The result of the com-

puter’s prognostications can only jump the chasm to meaning through the agency

of being understood by a human. The means might look similar in both cases

but really humans are processing meanings, not symbols. This is totally unlike

the computer’s situation as the symbols carry no meaning except for the human

one. It is a mistake, therefore, to call these things symbols, as in terms of the

computer system itself they are just meaningless marks, as alien hieroglyphics

are for us. The computer is manipulating marks that happen to be symbolic for

our purposes, but completely meaningless to the computer itself. A computer

is a tool to aid human understanding, and as such, it bears the same semantic

relationship to the marks it uses as a piece of paper does to the marks that it

carries - none. Moreover it can never develop a semantic connection because we

humans start with meaning and develop symbolic form from that base, whereas

computers start from symbolic form. The baby has no symbols, but it under-

stands. Only later does it extend its means of understanding into symbolic form.

There is no evidence that the reverse process, symbolic form to understanding,

is possible, except by a living organism that has made the journey from under-

standing to symbolic language first. Indeed, it could be said that Helen Keller is

one of the few exceptions that prove the general principle.
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5.3 Patterns and Concepts

Syntax is an important aspect of any symbolic system, of course, but it is sub-

sidiary to semantics. It allows us to generate strings of concepts, yes, but it is

semantics that generates meaning larger than that that can be expressed in single

concepts. Here again is that fundamental connection with patterns, the ground-

ing of ideas, which exist in the mind, with patterns of real world experience. A

generated string of concepts will only make sense if it fits a pattern of experience.

But what do we mean by this? It turns out that making sense of something is

almost entirely contextual. What we are really saying when we state that some-

thing ‘doesn’t make sense’ is that it ‘doesn’t make sense in the context of our

everyday experience of the real world.’ For example, the syntactic rules of our

spoken language allow us to generate the sentence “the cat sat on the mat” and

our semantic checker will pass this because it makes sense as a string of concepts,

it has meaning in terms of the real world. However the sentence “the mat sat on

the cat”, although syntactically correct, would normally be rejected as a string

of concepts as it has no meaning based on real world experience.

But this rejection is entirely contextual. What we are basing the rejection on

is the fact that in the context of everyday experience, mats do not sit on cats,

there simply isn’t a real world pattern for this. Given a different context, however,

a fantasy or dream-like experience such as “Alice in Wonderland”, for example,

where rabbits speak English, a pattern like this would possibly be acceptable. In

other words, patterns are all context. Calling something a pattern is just saying

that given a certain set of conditions, a context, this experience is likely. And

anything that is likely under certain circumstances is bound to recur when the

circumstances are the same. It’s hard to imagine a better definition than this of

the pattern idea! So in the sense that understanding is a type of meaning, it too

is contextual through the concept-pattern nexus.

Even spoken language, then, is based on concepts not words as such. It is the

meaning of a word, the concept it symbolises, that is the important aspect. But

concepts are not themselves part of the external reality that we experience, they

are mental artefacts that we construct in order to build up the mental model of

reality that is our means of understanding the world. The question then is, ‘from

whence cometh the concept?’ and the answer is from repetition in our experience

of the world. Repeating form is pattern, and so concepts derive from patterns in

reality. “Without such patterns the world appears to be such an undifferentiated

homogeneity that man is unable to make any sense out of it.” (George Kelly,

1963 quoted in (Britton) 1970, p. 17) Language-as-conceptual-understanding,

then, is essentially a pattern language. “When we were born, the world, fresh,

contained no repetitions. An infant first smiles at his mother’s return not because

it is her but because her presence repeats; later he smiles because the she who

returns is the same she” (Gabriel 1996a, p. ix).

It is the simple repetition that gives rise, over time, to the concept of ‘she.’
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Without the pattern there would be no possibility of the abstract concept.

Recurrence works because actions, characteristics, and relations that

are noticeable repeat. Every act - every thing - contains not only the

noticed parts but also attendant, variable portions. The recurrent

parts stand out because our minds (our brains?) are constructed that

way ... Repetition is power. What is important repeats and reveals

commonality. What isn’t repeated is variable and can be highlighted

or hidden. ... Abstraction reveals and revels in what is common, the

repetition, and what is abstract is defined by the repeated.

(Gabriel 1996a, p. ix-x)

What we are doing, then, from the moment we are born, is understanding the

world2. This is the continuous process by which we make sense of our changing

circumstances. The way we put this is English is instructive. Both understand-

ing and making sense are primarily verbs, which indicates that we are talking

about a process. Living can be seen as a lifelong problem solving process, the

problem being to make sense of our current situation - “learning is a lifelong

enterprise”(D’Arcangelo 2000). As animals the primary driving force is survival,

but as humans we have extended our capabilities for understanding things far

beyond that required for simple survival and this extension is the basis of the

human condition. All animals have to make sense of the world to some extent.

We humans have made it our defining characteristic, it is essentially this feature

that distinguishes us from other species. Understanding is not merely a means of

survival, it is our work, our pleasure, our raison d’être, the very stuff of our being.

The ‘need’ to understand, to build a conceptual image of the world in which we

live is the motif of human life, and concept is the basis of the recognition of what

is the same and what is different, that is differentiation, the precondition for any

ability to relate things, and therefore the basis of any combinatorial process be

it understanding, communication or manual creativity.

Concepts are the building blocks of thought. Without them, induc-

tion would be impossible because everything would be unique. Dif-

ferent things have to be treated as the same for some purposes, and

similar things have to be treated as different for other purposes. Con-

cepts provide the system for classifying, subdividing, and interrelating

things.

(Johnson-Laird 1993, p. 87)

The processes that build on this basic “system for classifying, subdividing,

and interrelating things” (meaning system) - cognitive, affective and emotional -

2“Cognitive developmental psychologists are now actually looking into the crib to study the

development of the mind early on, even before children develop language. And what we find

there is very interesting. We find a little scientist peering back at us - a child who is desperately

interested in making sense of the people, the objects, and the language around him or her, a

child doing mini-experiments to try to sort everything out” (D’Arcangelo 2000).
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are really just expressions of the power of concept formation. This fundamental

correspondence between the various features of the human mind, is obscured over

time as they emerge as systems in their own right.

In studying man’s earliest history, when the evocative qualities of

certain forms and the power of symbolism in non-random shapes and

sounds was being discovered, it is difficult to separate things done for

“pure” aesthetic enjoyment from those done for some real or imagined

“practical” purpose. The man who selected for admiration a beau-

tifully shaped and textured stone was yielding to a purely aesthetic

motivation, but the man who molded clay into a fertility figurine was

simultaneously an artist, a scientist learning to understand the prop-

erties of matter, and a technologist using these properties to achieve a

definite purpose. ... [The fact is] that in the earlier stage of discovery,

first of form and later of materials that, once shaped, would retain

desirable form, the motive can hardly have been other than simply

curiosity, a desire to discover some of the properties of matter for

the purpose of internal satisfaction. Paradoxically man’s capacity for

aesthetic enjoyment may have been his most practical characteristic,

for it is at the root of his discovery of the world about him, and it

makes him want to live. It may even have made man himself, for, to

elaborate a remark by the poet Nabokov, it seems likely that verbal

language (to which anthropologists now assign vast evolutionary ad-

vantage) was simply a refined use of the form-appreciating capabilities

first made manifest in singing and dancing.

(Smith 1981, p. 194)

If understanding really is based on this idea of language in the widest sense

then it seems necessary to explain this. The connecting point, we believe, is

meaning. Essentially a concept is a concept because it encapsulates meaning.

Whatever it is that is being conceptualised has significance in terms of our ex-

istence. Without such significance there would be no point in expending mental

energy on it. If a concept was just pure thought, if it had none of that corre-

spondence to something in reality that we associate with the notion of concept,

then it would be meaningless. Meaning is the essential connection between the

mental world in our heads and the real world, it is meaning that makes a partic-

ular thought a concept - “the missing relationship between thought and reality is

‘meaning” (Vygotskii 1962, p. 10).

The power of concept derives from its two-sided nature. A concept arises from

a pattern in a particular context but because it exists only in the mind - that is,

it is fundamentally abstract - it can move into other domains where this is useful

in terms of building understanding.

The power of understanding symbols, i.e. of regarding everything

about a sense-datum as irrelevant except a certain form that it em-

bodies, is the most characteristic mental trait of mankind. It issues
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in an unconscious, spontaneous process of abstraction, which goes on

all the time in the human mind: a process of recognizing the concept

in any configuration given to experience, and forming a conception

accordingly. That is the real sense of Aristotle’s definition of man

as “the rational animal.”Abstractive seeing is the foundation of our

rationality, and is its definite guarantee long before the dawn of any

conscious generalization or syllogism. It is the function which no other

animal shares. Beasts do not read symbols; that is why they do not

see pictures. We are sometimes told that dogs do not react even to the

best portraits because they live more by smell than by sight; but the

behavior of a dog who spies a motionless real cat through the window

glass belies this explanation. Dogs scorn our paintings because they

see colored canvases, not pictures. A representation of a cat does not

make them conceive one.

(Langer 1976, p. 72)

So a concept is an idea that captures information about a situation that is

partly, at least, independent of context. For example the term ‘underdog’ is

context-free in the sense that it is routinely applied to situations in which no

dogs exist, such as the David and Goliath story. Indeed, the very ‘power’ of this

story is that the obvious “underdog”, David, prevails. So the concept applies

in any situation involving actors of any kind where a success-or-failure result is

expected to arise from the situation. It is a concept involving the relative ap-

parent status, in terms of the competition activity, of two competing entities. It

requires a situation involving competition and an obvious discrepancy in ability

in the competition activity, but it does not require the discrepancy to be real,

only apparent, and it specifies nothing about the type of entities or competition

involved. In other words it is a concept precisely because of its general appli-

cability to many different situations, because it is, to some extent, context free.

And this makes it widely useful. It can be used to partially describe a complex

situation - an apparently one-sided competitive one, in this case - in a concise

and precise manner.

Thus a concept is more about relating things than describing them directly

- the understanding of a situation arises through the analogy with another, not

a direct description. With the ‘underdog’ concept we understand that here is a

situation that is analogous to a fight between two dogs of grossly uneven size,

even though the words ‘fight’, ‘dogs’, ‘size’ and ‘under’ are irrelevant in a literal

sense. So the context for the use of a conceptual term is general, except in terms

of the factors that make it a concept, the meaningful ones. It is specifying those

attributes that are contextually important in the system being conceptualised,

that have ‘meaning’ in terms of the system. For example, there is no inherent

reason that the term ‘underdog’ could not stand for ‘one dog being physically

underneath another one’, but we know that it doesn’t carry that meaning in

terms of the English language seen as a communication system. Its power derives
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from what it means in a system-contextual, not a literal, sense. Concepts help us

“interpret our experience by organising it in terms of distinctions”(Smith 2003).

Conceptual meaning, then, is not necessarily literal, but system-related. The

difficulty with concepts is that we are using words, elements of a communication

system, to symbolise, that is, stand for, them. So the concept of an ‘underdog’

is being symbolised by the combination of two words, neither of which, in com-

bination, is being taken literally. It embodies a meaning relationship in terms

other that the language system itself. The meaning of the combination is coming

from somewhere other than the literal meaning of the constituent parts, and that

somewhere is the analogy with the uneven-appearing dogfight situation. Thus

the important aspect of the conceptualising process is the relationship of the part

to the whole. It is the power of abstraction - the making of the decision about

what is an important aspect of a situation in a particular context. The concept

tells me what aspects of an entity are meaningful in terms of the system, and

therefore what relationship it holds to other aspects of the system.

In particular, this essential relationship between a particular concept and the

“system” of which it is an element is illustrated by the different response to

similar “natural” phenomena exhibited by different cultures. People who live in

“advanced” societies tend to see such phenomena according to the “scientific”

framework that provides the “atmosphere” of modern thinking - the existence

of “matter and force”. But this is not the case with societies in a prescientific

relationship with their environment.

It is vain to try to understand primitive science without an intel-

ligent knowledge of primitive mythology. “Mythology,” “theology”

and “philosophy” are different terms for the same influences which

shape the current of human thought, and which determine the char-

acter of the attempts of man to explain the phenomena of nature. To

primitive man - who has been taught to consider the heavenly orbs

as animate beings; who sees in every animal a being more powerful

than man; to whom the mountains, trees and stones are endowed with

life or with special virtues - explanations of phenomena will suggest

themselves entirely different from those to which we are accustomed,

since we still base our conclusions upon the existence of matter and

force as bringing about the observed results.

(Boas 1963, p. 200)

Concepts, then, are not simply elements of understanding that stand isolated

from the context in which they arise. Rather they are part of a complex web of

‘meaning’ relationships.

From an analysis of a significant fragment of the English lexicon,

George Miller and I concluded that lexical meanings are organized

into semantic fields. Underlying such a semantic field is a conceptual

core, a theory-like structure that integrates the different concepts in
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the semantic field around one or two core concepts, such as color,

kinship, motion, possession, and perception. These concepts are in-

terrelated by concepts that occur in many fields, including concepts

of space, time, possibility, and permissibility. The theory of a concep-

tual core underlies the paramount fact that concepts are not isolated

mental tokens. They are organized taxonomically by the conceptual

relations into which they enter. These taxonomies enable us to cat-

egorize things without having to be equipped with precise concepts.

Analytic concepts are precise, but natural kinds and constructed en-

tities are not, so the boundaries between their instances cannot be

mapped with absolute precision.

(Johnson-Laird 1993)

This “original” or “primary” contextual aspect, the “proto-meaning” in effect,

is the important factor in the building of subsequent understanding, and it is the

ability of concepts to float across domains that underlies the notion of metaphor.

But notice that it is the ‘meaning’ that is mobile rather than the symbol, the

meaning, the “contextual understanding” if you will, carries the symbol along

with it. So, for example, the “underdog” concept that we discussed earlier carries

the meaning “appears likely to lose” from the dog fight context, to one in which

neither the word ‘dog’, ‘fight’ nor ‘under’ are literally appropriate. It is the

meaning that is appropriate, the pattern. Metaphor is thus not, primarily, a

linguistic phenomenon but a cognitive process.

Metaphor [is] a pervasive mode of understanding by which we project

patterns from one domain of experience in order to structure another

domain of a different kind. So conceived metaphor is not merely a

linguistic mode of expression; rather, it is one of the chief cognitive

structures by which we are able to have coherent, ordered experiences

that we can reason about and make sense of. Through metaphor, we

make use of patterns that obtain in our physical experience to organise

our more abstract understanding. Understanding via metaphorical

projection from the concrete to the abstract makes use of physical

experience.

(Johnson 1987, pp. xiv-xv)

Metaphor, because of its abstractive power, can thus be seen as underlying

“much of out complex thinking, reasoning, and language” (Smith 2003), that is,

in fact, our mental world. Moreover, advances in the study of neurology have

meant that it is now possible to make at least some connections between neural

and mental activity. Work in this field backs up the notion of language being

fundamentally about understanding rather than communication. For example,

it now appears to be very likely that processes like abstraction, metaphor and

creativity that were previously regarded as features of language can be related to

particular components of the brain (the angular gyrus in this case).
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The various senses report their information to a central area for cor-

relation and the creation of a central image of the particular object in

question. The location of this “neo-cortical crossroads” was suggested

by Harvard’s Geschwind: “In man, the cortical association areas of

the brain, each responsible for interpreting the senses of vision, touch

and hearing, are clustered round and plugged into a structure known

as the angular gyrus”(Desmond, p. 111). ... The angular gyrus ...

makes a mess out of nominalism - because the word is no longer neces-

sary as the origin and support of the universal. It appears to support

Furth’s remark that the “internal organization of intelligence is not

dependent on language.”

(Plank 1998)

This reinforces the idea that abstraction, metaphor and creativity are not

emergent properties of speech, but rather these “cross-modal” associations are

the precursors of speech (Geschwind 1974). Associating and combining ideas,

then, is the key to apprehending the source of human intelligence. Before one

can go beyond the contemplation of concrete objects one must have abstracted

their essence in mental form from the concrete reality of which they are a part.

This is more than classification and the simple operations, such as counting, which

go along with it, this is the very basis of reasoning.

The exercise of logical reason is always concerned with these abso-

lutely general conditions. In its broadest sense, the discovery of math-

ematics is the discovery that the totality of these general abstract con-

ditions, which are concurrently applicable to the relationships among

the entities of any one concrete occasion, are themselves intercon-

nected in the manner of a pattern with a key to fit. This pattern

of relationships among general abstract conditions is imposed alike

on external reality, and on our abstract representations to it, by the

general necessity that every thing must be just its own individual self,

with its own individual way of differing from everything else. This is

nothing else than the necessity of abstract logic, which is the presup-

position involved in the very fact of interrelated existence as disclosed

in each immediate occasion of experience.

The key to the patterns means this fact:- that from a select set of

those general conditions, exemplified in any one and same occasion, a

pattern involving an infinite variety of other such conditions, also ex-

emplified in the same occasion, can be developed by the pure exercise

of abstract logic. Any such select set is called the set of postulates, or

premises, from which the reasoning proceeds. The reasoning is noth-

ing less than the exhibition of the whole pattern of general conditions

involved in the pattern derived from the selected postulates.

(Whitehead 1964b, pp. 13-4)

This notion of reasoning as the “exhibition of the whole pattern of general
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conditions involved in the pattern derived from the selected postulates” illustrates

that most of creativity in thinking is an extension of what is already known. When

Einstein made his famous breakthrough to understanding relativity, it occurred

not in developing any new information but in taking the existing configuration of

seemingly contradictory information and making sense out of it. What was new

was the particular combination of the various pieces not the basic information

itself. Einstein once explained how he saw his achievement in a letter to Jacques

Hadamard, a famous contemporary mathematician, in these terms.

The psychical entities which seem to serve as elements in thought are

certain signs and more or less clear images which can be “voluntar-

ily” reproduced and combined. ... But taken from the psychological

viewpoint this combinatory [emphasis added] play seems to be the es-

sential feature in productive thought - before there is any connection

with logical construction in words or other kinds of signs which can

be communicated to others. The above mentioned elements are, in

my case, of visual, and some of muscular type.

(quoted in (French) 1988 p. 283)

It is clear that the activity being described, “this combinatory [emphasis added]

play”, is that of language but the elements that are involved in the activity are,

equally clearly, not of a type, that is, words, “which can be communicated to oth-

ers.” This is language-as-conceptual-understanding that Einstein is describing.

5.4 Why is Experience Rational, Ordered and

Repetitive?

If knowledge consisted only of that which we experience through our senses then

we would have to explain why our senses are continually recording the same

sensory events. Given no underlying substrate to experience it should be the case

that anything could happen. But our experience tells us that this is not the case,

that there are well defined sensory events that keep occurring over and over again

with differences in detail but otherwise essentially the same. Some factor must

underlie this repetitiveness in sensory experience and the simplest explanation is

that experience is located in an objective world rather than a purely subjective

one. The fact is there are many possibilities, pigs flying, for example, that never

occur in my experiential system. If my experience of pigs is purely subjective

then there is no reason, in principle, why I could not experience them flying; all

of life, not just the dreaming component, would be as a dream where nothing

is inherently impossible. So the subjectivist argument must come up with an

explanation for the fundamental limitedness of sensory experience in order to be

taken seriously.

Moreover we could not talk, or even think, about our sensory experience given

the absence of such repetition. A concept, and therefore a word, is nothing but a
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mental representation of a common factor of sensory experience, and if experience

was purely arbitrary rather than ordered and repetitive then we could have no

concepts. If I only ever had the experience of seeing a tree once then I would

be very unlikely to retain any notion of having had the experience, let alone

have a concept of ‘tree’ in my consciousness. This is because even our memory

is based on concepts and words, and again there is a parallel in dream states.

Often we have dreams that are very clear in their ‘logical’ temporal flow while

we are dreaming but which fall apart when we try to remember the flow after

waking, they no longer make the sense that they seemed to make while they were

happening3 (Gallagher 2000). This suggests that there are things that happen in

dreams that fit no pattern, there is no previous experience in our memory that

we can use to associate them with. Essentially they have no meaning. We cannot

fit them into our ‘understanding’ in the widest sense, so the ‘understanding’ of

the dream that we had while it was occurring fades once we are awake. Without

the ‘missing’ bits the temporal flow is impossible to reconstitute and it all gets

jumbled up in our memory.

Patterns, then, are the building blocks of that continuum that we know as

intelligence. They lie at the very foundation of classification, discrimination and

abstraction, the bases of the ability to conceptualise.

All higher organisms display an ability to deal with variability in

sensory stimulation. That is, they can assign nonidentical stimuli to

classes, the members of which are more or less equivalent in terms of

their implications for the organism’s behavior. This ability is basic to

human thought and communication. Indeed, it is doubtful whether

anything worthy of the name of either thought or communication

could exist without conceptual categories. Suppose that there were

no such concept as “chair,” and that each one of those patterns of

sensory experience that we now classify as instances of “chair” had to

he treated as a unique thing. Whenever one had occasion to refer to

such a thing, one would have to describe it in terms of its features.

But now we find ourselves thinking in terms of backs, and seats, and

legs, which is to say in terms of other conceptual categories. If we

disallow these, we push ourselves back to other categories that are

perhaps somewhat closer to the sensory data - contours, colors, sizes,

textures - but are conceptual categories still. To divest ourselves of

the use of categories is to divest ourselves of thought.

(Nickerson et al 1985, p. 9)

So despite the fact that experience is personal and subjective it is conditioned

by the patterns of experience, and these patterns define the objective world of

reality. Every person has a unique view of the world that derives from their

individual experience of it and this factor is made quite complex by the fact

3This is why it is important in any psychological research on dreaming states for the subject

to immediately write down their impressions upon awakening.
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that there is a feedback loop involved - experience of the world is affected in

many ways by the particular view of the world held by the perceiver. Having

an interest in a particular field, for example, means that one is likely to actively

colour one’s own experience with that interest. But the subjective viewpoint

is, at its fundamental level, based on two simple concepts, objects and events.

The world is just ‘objective reality’, a collection of real objects that exist. By

means of simply being in existence, objects will have relationships between them.

For example the location of an object is defined, most commonly, by its ‘spatial’

relationship to other objects. So the very fact that there are a number of objects

creates the concept of ‘space’. Without any objects with location relationships

between them, there would be no need to invent the idea of space. But once

you have the idea of space you have the basis for a process, movement. The

movement of objects can then be seen as an expression of change in this spatial

relativity to each other. But considering movement has added another factor to

our description of the objective world, and that is time, or rather the flow of time.

So time and space are relations, “it is impossible to express spatio-temporal truths

without having recourse to relations involving relata other than bits of matter”

(Whitehead 1964a, p. 21).

At its base level, existence in space requires no notion of time. If some object,

and the nucleus of a hydrogen atom is a prime example, simply exists, that is,

partakes in no activity, then, it is, in principle, timeless. It is activity that creates

the factor that we know as time - as Whitehead says, “time is known to me as

an abstraction from the passage of events” (Whitehead 1964a, p. 34). Without

a process, time is not dimensional. It is process that makes time a dimension,

that adds quantity, gives it its measurability. And the most fundamental of all

processes is movement - a change in the location of an object relative to other

objects. For one object to alter its spatial relationship to other objects requires

something additional to the three basic measurable spatial dimensions. You can

never define the movement of an object in terms of the three spatial quantities

alone, you need a fourth, and this is time4. So, in a sense, time is basically just

change in location in space. It can be seen as spatial in the sense that it is spatial

difference, and as extra-spatial, in that it is change in spatial difference over some

other measure, time itself. So time only makes sense as a measure of difference in

state, it is not time itself that flows, it is the state of the “material” of the system

that changes. “Time is always the present. There is no other” (Harth 1993, p.

8).

This was the real import of Einstein’s notion of relativity. Space and time are

defined by the matter contained in the universe, and this is quite different from

the classical Newtonian notion of ‘empty space’ as a sort of ‘receptacle’ in which

matter ‘occurs’5.

4In a sense, time, like temperature, “is an emergent quality of nature defined only for large

enough systems ... ... having no real existence in the quantum world of individual particles and

systems” (Odenwald 2004).
5It is interesting to note that the Einsteinian conception harks back to the pre-Newtonian
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Einstein took some trouble to explain why his kind of space is so dif-

ferent from Euclid’s and Newton’s. He said that you could imagine a

universe in which space was not warped, but it would be completely

devoid of matter. Empty space has no practical meaning: space can-

not exist separately from ‘what fills space’ and the geometry of space

is determined by the matter it contains. For some readers, the expla-

nations of the master should be sufficient; for others, I shall attempt

a modern elaboration. The way in which time, space and the speed of

light are linked together is not mysterious in principle, even though

its consequences are weird. Any speed is defined as a certain distance

travelled through space in a certain time. But in Einstein’s universe

the speed of light is more fundamental than space or time. Space is

what light moves in; time is how long it takes to move.

(Calder 1979, pp. 92-3)

As concepts, then, space and time are not in the least abstract. As soon as

you have material existence, that is objective reality, or saying it another way,

real objects, you have space and time, which are just the measurable relation-

ships between objects. But the fourth dimension necessarily involves change, it

derives from a process, an event. If there were no events there would be no time.

Existence now involves more than just simply existing in space, the existence

of multiple objects implies relationships between them, and spatial relationships

create the potential for change, for movement in space. Or as Einstein said,

“spacetime does not claim existence on its own but only as a structural quality

of the [gravitational] field” (Einstein 1962, p. 155). Therefore objective reality

is just the real world as it is defined by the existence of ‘material’ things. The

concepts that arise in thinking about it are tied, pretty tightly, to objects and

relationships, and are hardly at all abstract in the sense of being separate from

material instance. There could be no concepts of space and time without the

‘material’ existence of multiple objects to be perceived by our mental system.

“Time and space are modes by which we think and not conditions in which we

live” (Einstein quoted in (Forsee) 1963).

Field theory, or “local causality,” is the clearest principle that arises from

Einstein’s prognostications. It addresses the great metaphysical issues that arise

in any contemplation of the cosmos, ‘time’ and ‘force.’

The world of objects may be said to lack both past and future. Only

the present exists, but it is an existence of total isolation in space and

one that derives from the common sense experience of the world.“The most general notions

underlying the words ‘space’ and ‘time’ are those ... aimed at expressing ... their true connection

with the actual world. The alternative doctrine, which is the Newtonian cosmology, emphasized

the ‘receptacle’ theory of space-time, and minimized the factor of potentiality. Thus bits of

space and time were conceived as being as actual as anything else, and as being ‘occupied’

by other actualities which were the bits of matter. This is the Newtonian ‘absolute’ theory of

space-time, which philosophers have never accepted, though at times some have acquiesced”

(Whitehead 1929, p. 97).
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time for every speck of dust, for every atom in the universe. The condi-

tions of this moment cease to exist a moment later, and no future event

exists before it becomes the present. No influence is exerted across

finite time gaps, just as, in space, there is no action-at-a-distance.

Present events result from present conditions, that is, conditions that

are contiguous in space and time. The past has dropped out of exis-

tence. It is only the equations of physics, or our less rigid memories

and intuitions, that allow us to extrapolate over an infinity of such

infinitesimal contiguities and to make statements about past or future

events.

(Harth 1993, pp. 8-9)

It might be pointed out here that there is a flaw in the non-abstract nature

of objects because even the concept of ‘material’ itself is ‘fuzzy’. As David Bohm

points out, the implication of quantum phenomena is that matter at the sub-

atomic level is not matter-like (particulate) in the normal classical sense, but more

like a process (a wave) taking place in a general medium (a field) (Bohm 1962, p.

65). However this realisation only impacts on the representation or understand-

ing of reality. Pragmatically the situation is, as Niels Bohr pointed out through

his ‘correspondence principle’, exactly as it was before we discovered quantum

indeterminacy. The assumption is that there exists in nature a wave function, or

state vector, that represents, or corresponds to, the matter-like aspect of reality -

that is, not just a mental representation but a ‘real’, independent of mind, effect.

So these things are not abstract in the real meaning of that word, it’s just that

“instead of beginning with space and time, as if they were fully in existence, and

then placing various objects in it, we first begin with the whole process as it is

and then try to discuss the order of things in space [and time] ... since I am

discussing the topology of process.”(Bohm 1962, p. 77) In other words, objects,

space and time are all aspects of a whole system, ‘objective reality’ - these things

can’t be separated from each other in any real sense. We mistake the process of

breaking things into smaller parts as an aid to understanding as a reflection of

actual fragmentation rather than a product of mental representation (Bohm 1980,

pp. 2-5).

This is not meant to imply that the decomposition process has progressed on

the basis of purely arbitrary divisions, that there is no basis in reality for the

method we employ in understanding the world. Probably the central notion of

pattern language is that form is the product of context. “If the world were totally

regular and homogeneous, there would be no forces, and no forms. Everything

would be amorphous. But an irregular world tries to compensate for its own

irregularities by fitting itself to them, and thereby takes on form” (Alexander

1964, pp. 15). Ultimately it is different form, the expression of forces in different

contexts that sets up further irregularities and therefore more complex contexts

in which forces are again resolved by form, setting up further irregularities that

result in new forces in new contexts, and so on, ad infinitum. So, it would seem
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to be a property of reality to create complexity, and that therefore “there are

special sciences not because of our epistemic relation to the world, but because

of the way that the world is put together” (Fodor 1975, p. 24). This is the force

of Bohm’s “topology of process”. If it is anything at all, the universe is a process

that creates time and space, it designs reality in Alexander’s sense of deriving

form from the resolution of forces in a context.

5.5 Subjectivity - A View of the Objective

So, in terms of the objective base of reality, then, what is this ‘subjective’ thing?

In essence it is nothing more than awareness of objective reality, a view of objects

and the relationships between them. Just as it is the relationships between objects

in space that creates the potential for change, and therefore the concept of time,

so the relationship between time and space creates the potential for awareness.

This is because it is not just spatially that the relationships between objects can

now change. Given that time exists as a dimension, factors other than spatial ones

can also change. At the atomic level the potential to change location brings with

it possibilities like aggregation, which allows things like the exchange of electrons

between atoms to occur, and for gravity to become a factor in super-atomic as

well as subatomic space. And once the relationship between objects is more than

just spatial, the basis for evolutionary change is laid. The dynamics of a system

of objects is now chemical as well as physical and spatial. In turn, this chemical

base provides other potentials for change through process, and the type of events

that can occur in a system. So material existence is the basis of space, space is

the basis of time, time is the basis of chemistry, chemistry is the basis of biology,

and biology is the basis of awareness.

Thus a basically simple system, consisting of a set of material objects, is the

source of all the complexity that we see around us. But more than that, it is

the very basis of the process of awareness of the complexity around us. In a

vital sense, awareness, and therefore the subjective experience of the world, is

merely an extension of the relationships between objects. In order to explore this

idea, consider a simple world that consists of multiple objects and one type of

relationship between objects, based on the occurrence of an event called, in the

example, event type 1, ‘e1’. So a relationship between two objects consists of

occurrences, single or multiple, of this one kind of event. Table 5.1 lists all the

events that have occurred in this system up to the current time, by linking the

two objects involved in each event. Objects are represented by letters and linked

by a dash symbol. The flow of time from the beginning of the system to the

present is represented by the sequence of table elements a1 to c5.

In the sequence given there are only two objects that have relationships that

consist of more than one event occurring between them, A and B, so we will

consider just these two relationships. The relationship list for object A consists of
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a b c

1 A - B A - F A - I

2 A - C A - G A - B

3 A - D A - B A - J

4 A - B A - B A - K

5 A - E A - H A - B

Table 5.1. Sequence of events between objects through time from a1 to c5.

the entire list, whereas that for B consists only of the events involving both A and

B. So these two relationships form the basis for two different views of the system.

From the table it can be seen that B has a multiple event relationship with A, and

A has a multiple event relationship with B, and single event relationships with

C, D, E, F, G, H, I, J and K. If awareness in this system was to be built up from

multiple events for an object, then it would be based on these two relationships, as

all the other objects have only single event relationships, there are no repetitions,

no patterns of behaviour on which to build awareness.

In other words, there are only two possible views of this simple world, the

view of A, which is based on multiple occurrences of event e1 with several other

objects, and the view of B, which consists of multiple e1 events with object A.

So A could be said to be involved in an object-promiscuous relationship of type

e1 events, and B in a single-object e1 event relationship, and any ‘awareness’

would reflect these - the world, for B would consist only of A, whereas A’s world

contains multiple objects. The same ‘objective reality’ can be seen, then, to

provide scope for multiple subjective views simply on the basis of the existence

of different objects.

Think about a family relationship. The view of a particular family for an

outsider will be quite different to the view of it held by the various family mem-

bers themselves. The outsider does not partake in any of the relationships that

constitute the family ties, and can therefore be ‘objective’ about the family in

a way that insiders can’t. The relationships are almost entirely subjective for

the insiders. Moreover, to the insiders, the family circumstances will appear as

normal because it is the family that they know best, and so it provides the main

input to their measure of normalcy. However this is not true of the outsider, who

can therefore form a quite different view that is not affected by involvement in

any of the relationships that make up the family. The outsider view is coloured by

the differences between the family and her view of family normalcy, in a way that

the insider view cannot. And this effect is magnified at larger levels of group rela-

tionships, forming the basis for cultural suspicion and misunderstanding between

communities.

At base level then, subjective awareness within a system, is still just the

fundamental differentiation of objects. All that has happened, really, is that

objects that have awareness, subjects, see the world through their relationships
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with other objects. Nothing that is fundamental to the system of objects has

changed. Before A and B acquired ‘awareness’, there was only one possible ‘view’

of this world, the god’s eye view, so to speak, given in Table 5.1. But this is just

the objective reality itself, a map of the material existence of the objects and the

interactions between them, nothing more. So the subjectification of the system

involves the arising of viewpoints internally to the system - the ‘subjective’ is just

an object’s view of the system, rather than a godlike view. It is only different

from objective reality by means of viewpoint. So we are back to the spatial

relationship again, a ‘subjective view’ can be primarily based on nothing more

than differentiation in space. We still haven’t moved from the spatial implications

of a system of existing material objects, we have just started looking from within

the object space rather than from without. Big deal!

What is happening is that at some point in the development of life, awareness

arises, information and meaning are created so to speak, and this involves the

primeval ‘epistemic cut’, the distinction between subject and object.

The cut itself is an epistemic necessity, not an ontological condition.

That is, we must make a sharp cut, a disjunction, just in order to

speak of knowledge as being “about” something or “standing for”

whatever it refers to. What is going on ontologically at the cut (or

what we see if we choose to look at the most detailed physics) is a very

complex process. The apparent arbitrariness of the placement of the

epistemic cut arises in part because the process cannot be completely

or unambiguously described by the objective dynamical laws, since in

order to perform a measurement the subject must have control of the

construction of the measuring device. Only the subject side of the cut

can measure or control.

(Pattee 2001b)

As von Neumann demonstrated the distinction between subject and object

requires a functional description of the execution of control and measurement

processes that is, in principle, not reducible to the elements of the system being

controlled or measured. In simple terms, life entails a disjoint that is not distin-

guishable at the level of physical law, it requires the storage and transmission of

‘information’, a semiotic system - that is, a heritable generic memory is a pre-

requisite of life, “information must be acquired and used for survival. Otherwise

it is entirely gratuitous to attribute function, fitness and meaning to biological

structure” [emphasis in original] (Pattee 1996).

Physical laws and semiotic controls require disjoint, complementary

modes of conceptualization and description. Laws are global and in-

exorable. Controls are local and conditional. Life originated with

semiotic controls. Semiotic controls require measurement, memory,

and selection, none of which are functionally describable by phys-

ical laws that, unlike semiotic systems, are based on energy, time,
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and rates of change. However, they are structurally describable in

the language of physics in terms of nonintegrable constraints, energy

degenerate states, temporal incoherence, and irreversible dissipative

events.

A fundamental issue in physics, biology, and cognitive science is where

to draw the necessary epistemic cut between the coherent physical

dynamics and its rate-independent semiotic description. To function

efficiently, semiotic controls at all levels must provide simple descrip-

tions of the complex dynamical behavior of the input/output systems

we call sensors, feature detectors, pattern recognizers, measuring de-

vices, transducers, constructors, and actuators.

For sufficiently complex temporally incoherent semiotic control behav-

iors (e.g., designing, forecasting, choosing strategies, policy making,

coevolution) there is at present no known procedure for finding those

input patterns whose recognition provides the most efficient control

for long-range survival other than by an evolutionary process of search

and selection.

(Pattee 1996)

So the ‘epistemic cut’ is significant in terms of the notion of ‘objective knowl-

edge’ as well. Although in some sense all knowledge is subjective, the descrip-

tion/construction or genotype/phenotype relation must exist as physical reality

if biological evolution is to occur - a semiotic description of physical construction

is logically necessary for systems that can indefinitely increase functional com-

plexity, that is, that display evolutionary processes. There is some sense, then,

in which semiotic form precedes subjective awareness and it is the same relation

between information and reality exposed in biology that provides Eddington’s

“hard core of objectivity behind the colorful tale of the subjective storyteller

mind” (quoted in (Pattee) 2001). Making sense might be a subjective process,

but what is being made sense of is objectively real, or there is no way that sense

can be made.

But there is an important side issue here as well. The basic physical nature

of the transmission of ‘genetic’ information through protein molecules forms the

foundation of the holistic nature of a living organism. “A single folded protein has

no function unless it is a component of a larger unit that maintains its individ-

uality by means of a genetic memory. We speak of the genes controlling protein

synthesis, but to accomplish this they must rely on previously synthesized and

organized enzymes and RNAs” (Pattee 2001b). The concept of ‘information’ sim-

ilarly implies a holistic relation between mind and the environment in which the

organism that hosts it exists - information is grounded in reality or it is essentially

meaningless, that is, it is not information.

This is why the subjective - objective split is epistemic rather than ontological

or even metaphysical. The point is that there are different levels of informational

awareness being expressed by living form and even occurring simultaneously in
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the human brain, but the only level that we can talk about is the level that we call

’consciousness’. This level is the subjective level, the ’I know’ sense of knowledge,

that belongs to what Popper calls the ’second world’, the world of subjects, as

opposed to the ’first world’, the world of objects.

[Thus Poppers’] thesis involves the existence of two different senses

of knowledge or of thought: (1) knowledge or thought in the sub-

jective sense, consisting of a state of mind or of consciousness or a

disposition to behave or to react, and (2) knowledge or thought in

an objective sense, consisting of problems, theories, and arguments

as such. Knowledge in this objective sense is totally independent of

anybody’s claim to know; it is also independent of anybody’s belief,

or disposition to assent; or to assert, or to act. Knowledge in the ob-

jective sense is knowledge without a knower: it is knowledge without

a knowing subject.

(Popper 1972, pp. 108-9)

Popper’s realm of ’objective knowledge’, which he says is ’totally independent of

anybody’s claim to know’ is therefore analogous to Plato’s world of ideas, at least

in that respect.

Subjective knowledge is a dynamic relationship that exists between a mind

and the world around it, and is in a continual state of development. It lives or

dies with the organism in which the mind resides. Objective knowledge is quite

different. It survives the death of a single organism precisely because it is not tied

to a single subject; it is not subjective. Once knowledge of natural numbers exists,

the existence of odd and even numbers follows. But there is nothing subjective

here, even though a number system is completely abstract in itself. The various

characteristics that numbers display, like oddness and evenness, are properties

of sequence, an inherent characteristic of order, not something that is tied to

any particular mind, or state of mind, or even number theory. An innumerate

shepherd might imagine that he has put as many of his flock in one field, as

another, by directing them, one through the left gate, and the next through the

right, and so on, as they pass by him, but if his flock consists of an odd number of

sheep then it is simply an objective fact that he cannot do this, and his subjective

lack of knowledge about numbers makes not a whit of difference. Numbers follow

sequence, not the other way around. The subjective understanding arises out of

the objective reality

Alfred North Whitehead’s comment, that “human life is driven forward by

its dim apprehension of notions too general for its existing language” goes to the

crux of the objective-subjective split. It is only now that we can know anything

untenuous and certain about that knowledge that we have that we do not know

that we have. Since the beginning of recorded time there have been these claims

about ‘hidden knowledge’, about some ‘mystical awareness of the connectedness

of nature’. But for the fact that some of the claimants have impeccable scientific

pedigrees it would be easy to dismiss this material as unsubstantiated nonsense.
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However there are people6 here, of whom it would be hard to accuse of undis-

ciplined ranting. The nub of the problem, then, is the claim that some things

about reality, some facts, are simply unknowable in terms of my subjective view

of the world. These are the things, like ‘truth’, ‘beauty’ and ‘virtue’, that, in

classical Greek thought, were seen as absolute values, but more than that, as the

“threefold order of the universe” (Watts 1982, p. 9).

So is it possible to know something and at the same time be unaware that

I know it? This sounds like a vicious circle - how can I not know that which I

know? This has been the core problem for claims of mysticism all along. To say

that there is some fact that it is, in principle, impossible to know, seems to fly in

the face of the whole human project. After all this is a much stronger claim than

the claim for magic, which is mere illusion - you are experiencing something for

which you don’t have enough information to explain at this time. The claim for

the mystical is that, by definition, you can never have enough information - here

is something that you know, but that you can never explain. However the trick is

not that we don’t ‘know’ about these things it’s just that we can’t communicate

them. Talking is a function of the conscious mind. I can only talk about that of

which I am consciously aware. So the knowledge is there, the information exists

in my brain, but I am not conscious of it. It exists in that part of my brain that

is not involved in the process of consciousness.

And, at last, science is uncovering hard evidence for the mystical. One exam-

ple of this evidence is the neurological phenomenon called blindsight, discovered

by Larry Weiscrantz and Alan Cowey at Oxford. If the part of the brain known

as the visual cortex is damaged, you become blind. For example if the right

visual cortex is damaged you become blind on the left side. So, if I pointed a

small torch into your left eye and asked you if you could see anything then your

answer would have to be ‘no’. And if I then asked you to point at it you would

ask me the obvious question “how can I point at something that I can’t see?”

But if I insist, and ask you to just take a guess, then 99% of the time you will

‘guess’ correctly. That is, you can point to an object that you say you can’t see

- in fact, you deny all knowledge of it! So the mystics are right, you do ‘know’

something that you are completely unaware of knowing. The point is that there

are different levels of awareness occurring simultaneously in the human brain, fed

by different neural pathways from common sensory devices, but the only level

that we can talk about is the level that we call ‘consciousness’ (Ramachandran

& Blakeslee 1999, p. 76).

In a sense consciousness is just our interface with the world. There is a lot

about us that is, at the very least, a-conscious, if not subconscious. But all the

things that make up the particular ‘psychological field’ of an individual necessarily

exist in the individual’s mind at some level, they form her “subjective fields of

ecological interaction” Uexküll’s Umwelt (Conesa 2005). The ‘mystical’ is simply

6Heisenberg, Schroedinger, Einstein, Planck, Pauli, Eddington, De Broglie, Jeans, and the

like.
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those parts of our make-up, the source of our deepest feelings, emotions, and

motivations over which we have little conscious control, but which, nevertheless,

are critical to our existence as rational agents.

There’s a whole tradition in the west, going back to Plato; two and

a half thousand years of thinking, in which philosophers and later

psychologists have regarded emotions as, at best, harmless luxuries

and at worst outright obstacles to intelligent action - they get in the

way of making intelligent decisions. To use Jon Elster’s evocative

phrase they’re sand in the machinery of action, they just grit things

up. And I think one of the most interesting things about the way

psychologists and philosophers and neuroscientists are changing their

views about emotion over the last, just the last ten years, is that

they’re realising that this negative view of emotion is fundamentally

wrong, and that emotions do sometimes cause us to do things we

regret, of course. But if we didn’t have them we wouldn’t be more

rational than we are today, we’d actually be less rational. We need

these sort of gut feelings to guide our rationality.

(Evans 2005)

An interesting example of such a-conscious activity is the mysterious workings

of the phenomenon we call ‘conscience’, which, despite our best efforts to ‘ratio-

nalise’ morally dubious behaviour, remains indifferent to conscious manipulation.

Yet, despite the lack of conscious access to much of what makes us who we are,

we are nevertheless quite aware that we are whole, we construct our conscious

awareness of ourselves out of everything that has meaning for us, whether or not

we can give conscious expression to all of it.

The human mind is the joiner, fitting together the disparate elements

of the world to make objects, systems, sceneries. ...

What is it about the stuff that temporarily makes up my body, my

brain, that places it outside the world of objects and yet gives it the

power to draw together objects that are worlds apart? What strange

faculty allows me to provide unity and connectedness to objects, where

otherwise there would be only timelessness and isolation? How do

thoughts, feelings, and our sense of selfhood arise from the machinery

in our heads? How does the brain make a mind? And how does the

joiner mind link us to the rest of the universe?

(Harth 1993, pp. 9-10)

5.6 Understanding

In a sense this idea that the subjective is just an internal view of the objective

world, is the basis of the Theory of Relativity at a lower level. The implications
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of there being no absolute inertial frame of reference for measuring movement is

that there is also no absolute co-ordinate system for the location of objects in

space. In thinking about any particular portion of the world I have implicitly

set up an arbitrary frame of reference. So, for example, if I am talking about

the location of one of the nine planets, then, ultimately, my frame of reference

derives from the sun, it being the main determining factor in the structure of the

Solar System. The ‘order’ of the whole system is derived from the gravitational

field created by the sun’s mass, it drives “local causality” in this part of the

cosmos. But a human view of the solar system is conditioned by the fact that

humans live on the component of the system called Earth. We therefore have an

Earth-centered visual view of the system, a sort of Earth subjective view. Our

“difficulty is that we are inside the Solar System, moving along with it, and things

that look simple from the outside often look much more complicated from the

inside” (Stewart 1995, p. 3). Without some conceptual shift in our viewpoint we

can never see the Solar system except in this way. If you go outdoors and watch

the movements of the other components of the system over time, it will be your

belief that the Earth is the center of the Solar System, and, in fact, of the whole

Universe, because what you can only ever perceive with your senses is the fact

that everything in the sky revolves around the Earth. The conceptual shift in

viewpoint that enables us to see the fact that the sun is the centre, not the Earth,

is a shift from a type of subjectivity to a more objective view. It becomes clear,

for example, that the apparent motion of everything around the Earth is purely

an illusion caused by the viewpoint being within the system. Once you have an

outside view the illusion can be seen for what it is.

And the event that triggers the conceptual shift to the different view is under-

standing. If you look at the world through eyes that have no built in concepts, you

just see complexity, a mass of apparently unconnected objects that are all differ-

ent. Given just this mass of complex detail you can’t really understand anything.

The first step in understanding is to see beyond the appearance of complexity to

the simplicity that underlies it (Stewart 1995, p. 146). So, for example, Ptolemy’s

explanation of the motion of the planets reflects the observed complexity of the

view from the Earth, and Copernicus had to see beyond this complexity, caused

by the particular viewpoint that we have on Earth, to understand the underlying

simplicity that forms the objective view. The pattern for all the planets, despite

the many differences between them, is that they are bodies orbiting the same

star, and having the pattern enables you to see beyond the confusion of detail,

to understand what is really going on - “The laws of planetary motion become

much simpler if this motion is described as relative to the sun instead of relative

to the earth” (Weyl 1959, p. 99).

But understanding is, itself, a sort of a trap. After all, the Ptolemists thought

that they understood the world. The need for an occasional shift of conceptual

viewpoint, or a Kuhnian type “scientific revolution”, arises because of the very

power of concepts. They are powerful in enabling us to understand the world and
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we are reluctant to let a particular concept go because the very need to do so

says that in some sense our understanding is faulty. We know that relinquishing

it will require a lot of hard work to reorient ourselves in the new environment,

because accepting it initially reduced complexity, and relinquishing it will take

us back, at least temporarily, into a more complex view. But even worse is the

fact that our current understanding is a sort of blindness7. We can’t even see the

new way of thinking that is required because the old way colours our view. So,

for example, it took us 3000 years to ‘discover’ non-Euclidean geometry, precisely

because Euclidean geometry is a very useful tool in understanding the world

(Odenwald 2002). It had helped us deal with complexity in a very fruitful way,

and it was only as it began to obscure further progress in this respect that the

need to go beyond it arose.

Complexity, the mass of detail that we observe around us, is mainly an ex-

pression of differentiation in appearance, and a good deal of scientific method

involves classification. The sheer ingenuity of the great 19th Century naturalists

who managed to identify a finite number of anatomical archetypes amongst the

bewildering variety expressed in different life forms is truly astounding.

It was from this immense research into basic anatomical types that

classical zoology and palaeontology were built - a monument whose

structure both evokes and, justifies the theory of evolution. Even so,

the diversity of types remained, and it had to be recognized that a

great many macroscopic structural patterns radically unlike one an-

other, coexisted in the biosphere. A blue alga, an infusorian, an octo-

pus, and a human being - what had they in common? With the dis-

covery of the cell and the advent of cellular, theory a new unity could

be seen under this diversity. But it was some time before advances

in biochemistry, mainly during the second quarter of the twentieth

century, revealed the profound and strict unity, on the microscopic

level, of the whole of the living world. Today we know that from the

bacterium to man the chemical machinery is essentially the same, in

both its structure and its functioning.

(Monod 1974, pp. 100-1)

This immense effort to classify biological form was paralleled by similar devel-

opments at the level of physical material, and again the patterns of form revealed

in the periodic table of elements were discovered long before the reason for them

could be discerned in atomic structure. It turns out that most of the difference

that we see expressed in the world really is just apparent because all the different

objects are made from the same basic material, atoms. This was Democritus’

great insight8 - the underlying sameness of everything in the world, despite the

7The famous physicist Enrico Fermi achieved nuclear fission in his laboratory four years

before it was officially ‘discovered’ but failed to recognise it because many of his peers, including

Einstein, had proclaimed it to be impossible (Shukla n.d.).
8Although not the first to conceive of the idea, his was the first attempt at a comprehensive
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apparent complexity. So whatever the ordering principle at the atomic level is,

it lies behind every single thing in the universe. Let’s call it, here, the ‘cosmic

principle’. In simplistic terms it is ultimately the order that results from the

reactivity of nuclei, atoms exchanging electrons9.

This means that the complexity that we see is just the result of 15 billion

years worth of cosmic evolution, of atoms exchanging electrons. It is just different

levels of order, physical, biological, social and so on, but levels of order that are

themselves based ultimately on the same ‘cosmic principle’ of subatomic order,

atoms exchanging electrons. So ‘understanding’ is, in a way, just the discovery

of the ‘cosmic principle’. The result of the 15 billion years worth of cosmic

evolution is that the cosmos comes to understand, through that part of itself

which is human, the basic ‘cosmic principle’. It is order understanding order. If

atoms go on exchanging electrons for long enough, it seems, they will become

aware of atoms exchanging electrons. The subjective is just the means by which

this awareness called ‘attention’ happens, of making it ‘conscious experience’.

It is the objective understanding the objective. To see the lion hiding in the

bush I have to make ‘order’ out of a mass of detail10. At base, that’s all that

understanding is - mental order.

The key to the way that humans think is meaning, so the core question of

life is ‘what does this experience mean in terms of my life?’ Meaning derives

from reality. It is the underlying order of reality that causes the repetitions

that we experience, and therefore order is the basis of the pattern language that

we use to understand the world. When you stop to think about it the concept

of understanding the world is a very interesting idea. It is what defines us as

independent adult human beings. The understanding of the world that we inhabit

enables us to make our way, to stand alone, in large part, as individuals, in life.

Yet this is not something that anyone gives us, or can give us, directly. It is

the product of experience - we acquire the skill bit by bit, in an extremely fits

and starts sort of way. What we are given directly by others is knowledge, not

understanding, because understanding is mostly a process. Each of us has to

fit the bits of knowledge with which we are presented into our own subjective

understanding of the world, it cannot come pre-packaged as understanding as

such.

and systematic view of the physical world based on atoms.
9There are complicating factors, such as the subatomic realm, but they don’t alter the overall

situation in terms of the reactivity between atoms in this context. It just takes the ordering

principle to another level. Whatever the order being expressed at the subatomic level is, it is

the basis for the atomic level reactions.
10Because vision evolved mainly to differentiate between significance and insignificance in

detail, detecting the lion hiding in the bushes, handling visual form is critical. The scene, in

detail, is just a vast mixture of irregular green and yellow bits. What our vision has to do is to

put the yellow bits together despite all the green ‘noise’. The form behind all the apparently

unconnected yellow bits is ‘lion’, and that’s what we need to see. We ‘order’ the scene to

discover the significance of the yellow bits, to understand the danger. Without a pre-existing

concept for ‘lion’ seeing the danger would be impossible.
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Yet although the process and its result can be seen as being entirely subjec-

tive, the understanding involves, indeed implies, a correspondence with the real

world. An attribute of understanding is that it enables one to deal with reality

successfully and usefully, otherwise it is its opposite, misunderstanding. That is,

if the process produces an understanding that is too strongly based on subjec-

tive opinion, wishful thinking, then it will hinder rather than help a person make

their way through life. So although understanding is, in part, a process that takes

place in an individual mental subject, it is conditioned by having to contribute

to the subject’s survival. So this is the equivalent, in terms of the individual, to

biological evolution, with the added complexity that the environment to which

the subject is being fitted contains a large component that is mental rather than

physical in nature. We are biological beings and as such we have to survive in

the physical environment. The human mental component is, first and foremost,

a factor in our continuing survival.

This implies, as Piaget points out, that, just as biological acts are acts of

adaptation to the physical environment and organizations of the environment,

so too are cognitive acts. The overall process by which an organism adapts to

the environment and organizes experience consists of both mental and biological

activity. Intellectual functioning is a special form of biological activity (Piaget

1952, 42). The intellectual development of an individual can be seen as a series

of acts of organization of and adaptation to the perceived environment. This

doesn’t mean that there is a direct relationship between mental and biological

functioning, only that these concepts from biology are applicable to studying

intellectual development. It is this continuing project to understand reality that

drives the human condition, which can be seen both as the internal mental world

and the physical world as modified by our mental activity. The two aspects go

together to define the human condition. As we accumulate experience the initial

pattern language that we learn as children differentiates into many different, but

overlapping, pattern languages, one for each discrete category of experience.

In this sense programming is no different from any other aspect of human

effort - as an attempt to ‘make sense’ of an environment in which problems are

solved by means of computer programs, it will be based on a pattern language.

The process of leaning to program is simply the process of learning the appropri-

ate pattern language. We believe that the reason that many people have trouble

in learning to program is because this essential point is missed by most instruc-

tors. Instruction is presently based on an artefact that is called a ‘programming

language’, but which is not, in fact, a true language at the lowest level in the

way that a pattern language is. It is designed basically for communication, in

this case, communication with a compiler, not, primarily, to provide conceptual

understanding in the human using it. Basing instruction purely on such a lan-

guage is highly dangerous because of its inherent inflexibility. Natural language

is highly flexible, we don’t normally misunderstand people simply because they

use a badly formed sentence - meaning overrides syntax. At least part of the
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difficulty that novices have with learning to program is due to the inflexibility of

the programming language. It fits the way that the compiler works not the way

that humans think about problems.

In this regard there has been an ongoing saga surrounding the activity of

programming ever since the beginning of the computer age. From the start it has

been seen as a difficult art and a lot of the subsequent development of computers

has been driven by the desire to make using computers easier. The first stage

was the breaking of the nexus between using and programming that existed in

the beginning.

When Weinberg wrote his early monograph “The Psychology of Com-

puter Programming”, it was assumed that every serious user of a com-

puter would be a programmer. He used the term ‘programmer’ almost

as a synonym for user (some people performed mundane operations,

such as data entry or job control - but these existed solely to serve

the programmers). It was the development of standardized packaged

software ... that led to classes of professional computer user who were

not programmers.

(Blackwell 2002, p. iii)

In terms of the programming strand, the continual thrust for higher level pro-

gramming languages can be seen as a quest to bring the cognitive tasks involved

in programming closer to our normal ways of thinking. “Programming ... is ba-

sically a process of translating from the language convenient to human beings to

the language convenient to computers”(Blackwell 2002, p. i). This convergence

was the stated goal of the developers of Simula, in 1967, the first attempt at an

object-oriented programming language.

The basic philosophy underlying the Object-oriented programming is

to make the programs as far as possible reflect the part of reality which

they are going to treat. ... The closer it is possible to use this way

of thinking in programming, the easier it is to write and understand

programs.

(Holmboe 1999)

In a sense, the move to Object Oriented programming is a step in the di-

rection of rationality from formal logic predicated on the basis that “a purely

logico-deductive attitude is not natural to the human mind” (Weyl 1959, p. 19).

Rationality is often, if only implicitly, taken to be equivalent to formal logic but

this is not the case.

The trouble with identifying rationality with the formal canons of

logic simpliciter is that rationality is a broader and more complex

notion than logicality. Rationality is tied up with issues related to

the meaning and quality of our individual lives in a way logicality is

not.

(Flanagan 1991, p. 209)
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Simula and its descendants are thereby an attempt to address the difficulty

that talking directly to a computer system requires thinking in formal logic rather

than thinking in the normal human sense of the word. There is a direct map-

ping between the formal logic that underlies assembly languages and the physical

circuitry of the computer that doesn’t exist in ordinary human thinking.

As the book, “Psychology of Programming” suggests, programming has evolv-

ed from “describing calculations”, through “defining functions”, to “defining and

treating objects” (Blackwell 2002). All this activity in programming language

development is predicated on an implied correspondence between programming

and problem solving (Bergin et al. 1997, p. vii). A programming paradigm is

equivalent to a different problem-solving philosophy, one applies one’s ‘native’

skill in solving problems to the design of classes that describe objects, in the

case of Java or C++, instead of procedures, as in Pascal, or functions, as in

Haskell. But, despite these attempts to bring programming languages closer to

normal thinking, there still remains the basic difficulty of teaching people how

to perform this seemingly esoteric art. And a lot of the difficulty does, in fact,

seem to derive from the fact that programming is indeed an art, in the sense

of requiring a degree of creativity. At the fundamental level, “discovery is art,

not logic” (Smith 1981, p. 347). So the difficulties that arise in the learning

to program situation are a continuation of those expressed by educators in other

fields where thinking in creative ways is required. It might be that trying to think

in too logical a way inhibits the free flow of imagination that underlies creativity.

5.7 Creativity

One of the main problems in dealing with creativity is the tendency to see it

as an innate factor, not something that can be explicitly taught. This attitude

leads to a radical neglect in training for creative expression. But it is clear from

the playful creativity of children that we all have a measure of it. As Picasso

once said, “every child is an artist. The problem is how to remain an artist once

we grow up.” This suggests that maturity brings with it an inhibitory impulse

that stifles the spark of creativity that lies within us all. Some of this is just

the pressure of time and responsibility but it is likely that the loss of the lack

of the fear of failure that children exhibit is also a factor here. Children have a

complete indifference to failure that is demonstrated, for example, in their efforts

to learn to walk. Despite failing many times it never causes them to stop trying.

Somewhere along the road to adulthood we teach them to fear failure.

As a general rule adults give up trying new things after the first or

second attempt, and it is a rare individual who continues again and

again after repeated failure. Yet we are all aware of those rare people

who practice something over and over again, in such diverse fields

as sports, music, literature or business; and they sometimes achieve
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greatness. In their case they simply adopted the drive of the child

they once were and avoided the trap of fearing failure.

(Kaipa & Johnson 1999)

It is made easy to believe that creativity springs from some individual trait

because of the situation that pertains in our society. When you think about

poetry, for example, it looks like poetic ability in an individual springs from

nowhere, as, at the educational level, there is very little in the way of explicit

training in poetic skills, in fact, for all intents and purposes, none at all. About

the only exposure that most people have to poetry is those poems that they are

induced to read as part of the school curriculum. And, indeed, for most of us this

limited exposure is seen as a negative experience, so that if, indeed, we had any

‘innate’ poetic ability, the ‘force-feeding’ aspect of our school experience would

very likely tend to dull rather than nurture it. Given this complete absence of

training or motivation it is amazing that poets still do arise from such infertile

ground. So the general social situation surrounding poetry in our society virtually

forces us to see it as something in the nature of the individual personality of the

poet rather than a ‘skill’ that has to be acquired through practice.

But it is clear that any creative activity occurs in a material context; it deals

with real entities, activities and relationships, even though they might be, as in

the case of poetry, completely abstract. So although there is undoubtedly an

element of individual talent or aptitude involved this can’t be the whole story.

When one looks at the process of creation itself it is clear that, mostly, one is using

aspects of everyday thinking like classification, generalisation, abstraction, and so

on. The most outstanding feature of the creative process is that it is multi-faceted,

which suggests that the real problem in addressing it in educational situations is

the logistical complexity of the situation in which it is occurring rather than any

subjective qualities that might or might not be innate.

Many creative products in the real world - a poem, a scientific theory,

an innovative business - are extended products, involving many parts

and aspects. Also ... defining the problem initially is an important

part of the effort, and problem finding abilities seem to bear a close

relation to creativity. Notable creative efforts appear to involve an

element of abstraction: one constructs a product based on general

and far-reaching considerations. And, of course, there is no guarantee

of a satisfactory solution when one addresses a real world problem.

Finally, most often there is no guide through the complexities of a

realistic creative challenge. One is on one’s own, or working with a

group equally in the dark.

(Nickerson et al. 1985, p. 213)

Although problem solving is a creative activity, it still involves thinking logi-

cally, and this too, is often regarded as a characteristic of the individual. However,

John Stuart Mill, who is generally considered to be one of the keenest minds the
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world has produced ((Nickerson, Perkins & Smith 1985, p. 37) and Ruth Bor-

chardt in (Mill 1946, p. 7)), attributes his abilities entirely to the training he

received as a child through the efforts of his father. In his autobiography he

describes his experience as an experiment which “proved how much more than is

commonly supposed may be taught, and well taught” (Mill 1981, p. 5), and goes

on to discuss his own case in some detail.

The result of the experiment shows the ease with which this may be

done ... If I had been by nature extremely quick of apprehension,

or had possessed a very accurate and retentive memory or were of

a remarkably active and energetic character, the trial would not be

conclusive; but in all these natural gifts I am rather below than above

par; what I could do, could assuredly be done by any boy or girl of

average capacity and healthy physical constitution: and if I have ac-

complished anything, I owe it, among other fortunate circumstances,

to the fact that through the early training bestowed on me by my

father, I started, I may fairly say, with an advantage of a quarter of

a century over my contemporaries. ... Mine ... was not an educa-

tion of cram. My father never permitted anything which I learnt to

degenerate into a mere exercise of memory. He strove to make the

understanding not only go along with every step of the teaching, but,

if possible, precede it. Anything which could be found out by thinking

I never was told, until I had exhausted my efforts to find it out for

myself.

(Mill 1981, pp. 33 and 35)

Mill’s testimony suggests that the abilities like understanding and thinking

logically are acquired through training rather than being a characteristic endowed

on the individual. The goal of disciplined and logical thinking is essentially that

of philosophy, and the Socratic method explicitly aims at developing the style of

thinking used in analysing and solving problems (Tekinerdogan & Aksit 1999).

Aristotle developed the idea of logic from the Socratic dialogue. It is based on

three levels or stages (Rayside & Campbell 2000). The first stage is based on

defining the entities in the area of interest. It mainly involves identifying and

categorising objects according to their independent existence. Stage two is the

characterisation of the entities in terms of the attributes or properties that they

display. These first two stages set the scene for the real action, the discourse,

or argument, by which further knowledge is derived from that which is already

established. Basically this is, coming to know the reason for the system under

study being the way that it is and the causes behind its current state; it is this

factor that gives this stage its name, reasoning. In a sense, then, logic, as it

was outlined by Aristotle, is the mental mechanism that underlies the Socratic

method by which we come to understanding.

Aristotelian logic is a thereby a formalisation of rational thought and is un-

fortunate in some respects, particularly in the separation of the ‘rational’ and
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‘poetic’ sides of language that it implies. In this connection it is interesting to

consider the roots of these two words. The word, ‘rational’, derives from the root,

‘ratio’ and suggests a correspondence, ‘a ratio’, between the entities in our men-

tal representation and the entities in the real world that they represent. In other

words rational thought is the type of thinking that preserves, or, at the very least,

tries to preserve order across the subjective-objective divide. The order that we

perceive in the world is reflected in the way that we think about it - objective

order becomes conceptual order, understanding.

The root of the word ‘poetry’ is the Greek ‘poiein’, meaning ‘to make’ or

‘to create’, and this is interesting in that it applies to creativity generally, not

specifically to creative expression in language. So the essential difference, in

terms of these two styles of thinking, is creativity, and the fact that only one

of these styles has ever been formalised, suggests that their separation carries

disadvantages as well as the obvious advantages in pragmatic and even survival

terms. C.P. Snow’s famous ‘two cultures’ division derives from this divergence,

but the consequences of the split at the individual level might be even more

profound. If, as we are arguing here, understanding is a sort of creative act,

the separation of rational from poetic thinking implied by the formalisation of

the former into logic obscures this essential point. Of course, the point that the

philosophers were making was that analysis underlies understanding, not that

analysis is understanding, but this point is easily lost in the flow of formal logic.

The proper order of operation of the mind requires an overall grasp

of what is generally known, not only in formal, logical, mathematical

terms, but also intuitively, in images, feelings, poetic usage of lan-

guage, etc. (Perhaps we could say that this is what is involved in

harmony between the ‘left brain’ and the ‘right brain’.) This kind of

overall way of thinking is not only a fertile source of new theoretical

ideas: it is needed for the human mind to function in a generally har-

monious way, which could in turn help to make possible an orderly

and stable society.

(Bohm 1980, p. xiv)

5.8 Logic and Understanding

Thinking clearly requires logical progression, but its end is understanding, which

involves novelty, and, therefore, creative thinking. So this is a very old theme, and

the main difficulty has been in discovering ways to orient educational programmes

towards the fostering of the skill of thinking in its totality rather than the mere

installation of knowledge through the straight presentation of facts. As Edsger

Dijkstra has said “one of the main objects of education is the insight that makes

quite a lot of knowledge superfluous” (Dijkstra 1982, p. 38). This idea that

education is mainly about the fostering of thinking skills reaches back to the
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beginnings of the modern mass education system. In fact it was the professed

aim of the Latin School movement, which continued in the use of Latin long after

it had ceased to be the language of commerce and even the principle language of

religion11, to inculcate proper “habits of mind” (Rippa 1967). So the justification

for this concentration on Latin was that learning it was thought to ‘train the

mind’, that is, that it was useful in terms of developing thinking skills rather

than in knowledge of the language per se.

As the scientific revolution unfolded, mathematics and physics came to the

fore as prime candidates for the role of training in the art of solving problems.

But educators in these fields have long reported on the difficulties involved in

teaching the art. And, of course, this raises the issue about what it is that is

actually being taught. It has been said of the education system that it doesn’t

teach students how to think, that it requires them to think without ever teaching

them how (Halpern 1987, p. 75), that they are presented with the material on

the assumption that they already know how to think. This points to the notion

of different types, or levels, of ‘thinking’, and the suggestion is that the fact that

people can demonstrate facility in one type of thinking, that involved in everyday

activity, does not mean that they will be able to handle the more abstract problem

solving involved in these specialised fields without explicit training.

However, in order to deal with this issue, we need to know in what ways

the thinking involved is different in character to that of the everyday thought

processes that everyone exhibits. Everyday activity revolves around the process

of living, of organising the things that need to be done. On the face of it, the

creative thinking required to solve a problem in the abstract would not appear to

be all that much different, you still just have to figure out what needs to be done,

and how to do it. But it is clear from all the reports that the normal type facility

of everyday thought does not transfer directly into thinking in more abstract

fields. Education cannot simply devolve to providing the knowledge required to

think creatively in a field, it is clear that there also needs to be explicit training

in its use in solving problems, more than just presenting examples.

The classic model for the training of a particular skill is the apprenticeship

model, whereby the novice works directly with the expert. This seems to work

well for skills that require manual procedures, where all the aspects of an activity

can be directly observed, but mental activity is not visible for inspection in the

way that manual activity is. Nevertheless it would appear that the fundamental

premise of the Socratic method is that the teaching of thinking skills can be

done in this way by exposing the thought processes involved through discussion.

The expert presents the novice with a problem and by continually questioning

the student causes her to justify every mental move made along the way to the

solution. Plato’s dialogues clearly illustrate this mode of mental training, and

11“For nearly a thousand years after the fall of the empire, Latin continued to be the language

spoken in commerce, public service, education, and the Roman Catholic church. Most books

written in Europe until about the year 1200 were written in Latin.” (Guisepi n.d.)
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the question becomes how can it be incorporated into an educational system that

has to deal with large numbers of students where the one-on-one apprenticeship

model seems hardly possible?

The default approach seems to have been the one that Halpern points out - you

assume that students already have the skill of ‘thought’ and that it will transfer

automatically to the new material (Halpern 1987, p. 75). A second common

strategy based on the assumption of a transfer of skill in one area to another is

the teaching of a particular subject or subjects in the belief that they will give

students general thinking skills - the theory behind the Latin School movement,

and more latterly the teaching of mathematics. These methods are leavened

by the adding of practice sessions whereby novices solve given problems under

supervision. What becomes critical in all such approaches are the assumptions

being made. These are things like the idea that mental skill does ‘transfer’ across

fields and that knowledge is sufficient condition for this, that thinking can be

treated generally, both in terms of how individuals think and how it applies in

different areas, and even that it is something that can be explicitly taught.

These assumptions all come together in the push to introduce general ‘critical

thinking’ type courses into the education system. This raises the thorny issue

about what ‘critical thinking’ actually is, so that you can teach and assess it.

Critical thinking and problem-solving courses are predicated on two

basic assumptions: (1) that there are clearly identifiable and defin-

able thinking skills that students can be taught to recognize and apply

appropriately, and (2) that if these skills are recognized and applied,

the students will be more effective thinkers. A list of such skills typi-

cally would include understanding how cause is determined, recogniz-

ing and criticizing assumptions, analyzing means-goals relationships,

reducing complex problems to simpler ones, making appropriate in-

ferences, and ... using analogies as an aid to comprehension, memory,

and problem solving.

(Halpern 1987, p. 75)

But the fundamental assumption here is still the generalisation of thinking issue,

the notion that problem solving can be treated in isolation in this way, that it is

not something that is dependent on a particular context. So we need to be clear

about what we think the problem solving process really is before we even think

about how to teach it to novices.

As stated earlier, the tendency has been to bring the programming environ-

ment closer to the way it is assumed we think normally, on the basis that we

have great difficulty in handling the pure logic of the computer. In other words,

we have tried to move towards the less rigid human style of logic. At the pro-

gramming language level this is constrained by the fact that a program still has

to be translatable into pure logic, so the trend has concentrated, in the main, on

representational factors, the treatment of the problem domain, and on facilitat-

ing comprehension through the use of more natural language mechanisms. This
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would all seem to be predicated on the assumption that writing a program is

largely analogous to general problem solving.

Traditional logic is a way of reasoning about reality. It requires a fundamental

correspondence between the symbols being used in the mind, and the aspect of

reality that they represent. But this is not the logic that is being used inside of

a computer. Computer logic, as pure symbolic logic, requires, indeed, no such

correspondence with reality, its power derives from the fact that it is totally ab-

stract. A ‘truth’ is simply a value in symbolic logic, a product of logical sequence,

not a literal truth in the sense that it represents a fact about the real world. So

the task of programming can be seen as the act of translation between the human

and symbolic forms of logic. Symbolic logic is how the computer operates, but

not how the programmer thinks (Rayside & Campbell 2000). Fortunately, most

of the work that is done by computers involves aspects of the real world, the prob-

lems being solved are ‘real world’ in origin, so the fact that they are ultimately

being dealt with in a process that is purely symbolic is a nuisance not a criti-

cal stumbling block. The push to move programming practice closer to human

thinking patterns would therefore seem to be soundly based. What is needed is

an appreciation of reasoning as ‘systematic’ thinking (Hauck & Freehill 1972, p.

4), thinking directed at building an understanding of whole systems rather than

thinking based on proving concepts formally.

It seems that in the development of programming we have repeated the mis-

takes of traditional psychology whereby process is separated from context.

The missing relationship between thought and reality is ‘meaning’.

Thinking is dissociated from the environment in which it is taking

place. When we approach the problem of the interrelation between

thought and language and other aspects of mind, the first question

that arises is that of intellect and affect. Their separation as sub-

jects of study is a major weakness of traditional psychology, since it

makes the thought process appear as an autonomous flow of “thoughts

thinking themselves,” segregated from the fullness of life, from the

personal needs and interests, the inclinations and impulses, of the

thinker. Such segregated thought must be viewed either as a mean-

ingless epiphenomenon incapable of changing anything in the life or

conduct of a person or else as some kind of primeval force exerting an

influence on personal life in an inexplicable, mysterious way. The door

is closed on the issue of the causation and origin of our thoughts, since

deterministic analysis would require clarification of the motive forces

that direct thought into this or that channel. By the same token, the

old approach precludes any fruitful study of the reverse process, the

influence of thought on affect and volition.

(Vygotskii 1962, p. 10)

A similar context-shifting phenomenon is apparent in programming. The only

way that a programming language construct can be understood, at the level of
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the programming language, is by apprehending its effect during execution, as that

is the ‘meaning’ that it has at this level12. “Suggestions for making a program

more reliable implicitly embody, or define, notions of meaning. Thus, in order to

prove that a program always behaves as it should, it is first necessary to define

‘behaviour’, and this is essentially a commitment to a definition of meaning”

(Brady 1977, p. 218).

But appreciating the effect of a machine instruction means simulating in the

mind the activity of the machine. This is simply an endeavour in which normal

everyday experience has not given the human mind much instruction or practice

and it is this fact that causes bugs in programs and which makes debugging such

a difficult exercise, so much so that we use automated execution tools, ‘debuggers’

or ‘simulators’, to help us find them, suggesting that analysing logical expression

for correctness (Brooks 1983, p. 65) is best done by machine rather than mind.

We are simply not used to analysing a situation in terms of strict logic13. The fact

is that we are more used to thinking in terms of language than logic. So, although

the means of communication between programmer and machine is called a ‘lan-

guage’, it is, in fact a system of logic. We are misled if we take the ‘programming

language’ metaphor too literally - “the metaphor is more misleading than illu-

minating” (Dijkstra 1982, p. 290) - this is an altogether more rigid environment

than normal language. In thinking about programming purely in programming

logic terms we separate it, to some degree, from the real life problem we are try-

ing to solve. Pattern language, that is, the language we use in dealing with real

life, the “effective ordering of one’s thoughts” (Dijkstra 1982, p. 62), is our pri-

mary skill-set so there are advantages in attempting to make the medium of our

problem solving in programming closer to pattern language than machine logic.

As Stephan Somogyi has said “programming is never going to be easy, since it

forces otherwise sane people to think like computers.” (Somogyi 1999). We need

to enable programmers to think like humans, not machines.

The trouble is that we are not yet clear about the process of human thinking

itself, let alone how to apply it to the task of writing programs. Moreover our

concern here is with yet another level of mind activity, learning.

When we refer to learning, we usually relate only to our conscious

mind. Our consciousness is the familiar part of our thinking that
12“In Departments of Computing Science, one of the most common confusions is the one

between a program and its execution, between a programming language and its implementation.

I always find this very amazing: the whole vocabulary to make the distinction is generally

available” (Dijkstra 1982, p. 64).
13The same problem occurs when comparing two computers for software compatibility. It is

simply too difficult to do it by comparing the manuals of both, the only way to tell if a new

machine ‘matches’ an existing one turns out to be to “ask the machine”. Test programs are

written to determine the behaviour of the existing machine, and the new machine built to match

(Kidder 1981, pp. 64–65). This procedure is extensively outlined in Tracy Kidder’s “The Soul of

a New Machine” describing the construction of Eagle, a new 32-bit mini computer that would

be “fully compatible” with Data General’s previous machine, the 16-bit Eclipse (Kidder 1981,

p. 46)
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we use all day long, and because of this it is easy to assume it is

our only information storage device. However, our subconscious mind

learns much more than our consciousness, and it does so seemingly

effortlessly. ... For example, its lightning-fast ability to recognize

the potential for metaphor in a totally new stream of information, by

comparing it with a single experience of perhaps thirty years previous,

probably means that it may actually think in metaphor and profound

patterning in the first place. This is then interpreted by the conscious

mind and translated into our language as needed. Such concepts

as the English Language, arithmetic, philosophy and logic may be

mere intellectual devices created by the conscious mind to improve

functioning and to better feed new pattern sources down into the ever

hungry unconsciousness, where deeper and more potent thoughts can

simmer and evolve in order to send waves, trends and hints upwards

again.

(Kaipa & Johnson 1999)

So before we can even think about teaching people how to write computer

programs we have to understand the program writing process itself. To do this

we have to match the skills required for the programming task with the cognitive

resources available to the human mind14. Which aspects of human thought come

into play during the design of a program and, in particular, in learning how to

program?

5.9 Language and Understanding

It seems to us that the answer is clearly based on the idea of a pattern language.

The skill that we demonstrate in understanding the world, and the ease with

which we develop that skill, indicate that here lies the answer to the dilemma of

the teaching of programming. Conceptual understanding is our core competency.

So the truth is that programming skill should derive from general thinking skill;

the fact that it doesn’t tells us that, as educators, we are not presenting the

material in a way that addresses our primary skill.

When study after study, regardless of the methodology, reaches the

same conclusion, there must be some common, underlying phenome-

non that is being measured. An example in point is the large number

of studies concluding that novice programmers know the syntax and

semantics of individual statements but they do not know how to com-

bine these features into valid programs.

(Winslow 1996)

The phenomenon that is being measured here, we believe, is the disjoint be-

tween the way that the human mind normally works and the formal logic that
14This is discussed in Chapters 8 and 9
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underlies the programming language. Knowing the rules of logic, in this case the

programming language statements, is not enough to guarantee skill in applying

them.

[We know that this is so from studies that show] that even trained

logicians sometimes have trouble applying such standard rules of in-

ference as modus ponens (if A implies B and if A is true, then B

is true) and modus tollens (if A implies B and B is false, then A is

false). They get confused by quantifiers (“all,” “some,” “each”) and

they have trouble processing negative sentences. These data under-

mine any näıve platonic confidence that all people need is a gentle

academic reminder of the deductive logical principles that they al-

ready, in some sense, “know.”

(Flanagan 1991, pp. 210-11)

Novices know the programming language but this is patently not enough to

make them competent in its use. What we need to base our teaching on is

language in the widest sense, language-as-understanding, not a language primarily

designed for communication with a compiler. Studies of learning strategies from

experiments on the learning of artificial languages (Carroll 1995) suggest that the

semantic content of a message is more important in learning than formal aspects

of language. So it is conceptual understanding that underlies programming skill,

not simply the knowledge and näıve use of programming concepts.

[As instructors we] often fall into the trap of jumping into code ex-

amples far too quickly. These are primarily concerned with the way

the language is actually written, its syntax. ... [Compilers and] in-

terpreters are already very good at determining when a programmer

has mis-spoken in their program. Syntax errors cannot be bypassed;

programmers new to the language will eventually learn through ex-

perience what the right thing is in terms of syntax through trial and

error, but the concepts are usually what really bites someone.

(Lee 2003)

Of course these elements of syntax will be present in the pattern language for the

teaching of programming but it is a language designed for understanding not just

communication and is therefore not constrained by syntactic absolutes.

Programming languages are, in essence, pure syntax - they consist of the build-

ing blocks of expression only. This fragmentary approach is, of course, necessary

for the process of programming, but it leaves the creative aspect of expressive-

ness as something that is fundamentally mysterious. Our field is not unique in

this respect, this tendency to fragment knowledge and to leave creativity as an

‘aptitude’ of each individual is a feature of all scientific endeavour.

The prevailing tendency in science [is] to think and perceive in terms

of a fragmentary self-world view ... Such a way of thinking and look-

ing in scientific research tends very strongly to re-enforce the general
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fragmentary approach because it gives men a picture of the whole

world as constituted of nothing but an aggregate of separately ex-

istent ‘atomic building blocks’, and provides experimental evidence

from which is drawn the conclusion that this view is necessary and

inevitable. In this way, people are led to feel that fragmentation is

nothing but an expression of ‘the way everything really is’ and that

anything else is impossible. ... One might in fact go so far as to say

that in the present state of society, and in the present general mode

of teaching science, which is a manifestation of this state of society,

a kind of prejudice in favour of a fragmentary self-world view is fos-

tered and transmitted (to some extent explicitly and consciously but

mainly in an implicit and unconscious manner).

(Bohm 1980, p. 15)

In terms of providing manageable sized chunks of information this is a powerful

and essential tool. However designing a program requires putting the pieces

together and programming languages, in themselves, provide little in the way of

assistance in this regard.

The differences between language-as-conceptual-understanding and language-

as-communication seem to lie at a very fundamental level similar to the distinction

that David Bohm makes between the flow of meaning and the rigidities imposed

by language structure. In order for meaning to be expressed completely freely any

imposed division is likely to be counterproductive. That is, there are rigidities

imposed by the use of words. Ideally, meaning should just flow. But words

demand a degree of ‘atomisation’ of ideas. In order for communication to work

there needs to be a conventional aspect - units of ‘agreed’ meaning - and this

causes problems.

[The flow of meaning] is rather similar to that of field theory in physics,

in which ‘particles’ are only convenient abstractions from the whole

movement. Similarly, we may say that language is an undivided field

of movement, involving sound, meaning, attention-calling, emotional

and muscular reflexes, etc. It is somewhat arbitrary to give the present

excessive significance to the breaks between words. Actually, the re-

lationships between parts of a word may, in general, be of much the

same sort as those between different words. So the word ceases to be

taken as an ‘indivisible atom of meaning’ and instead it is seen as no

more than a convenient marker in the whole movement of language,

neither more nor less fundamental than the clause, the sentence, the

paragraph, the system of paragraphs, etc.

(Bohm 1980, p. 41)

If anything, programming languages are even more rigid, in this respect, than

natural spoken languages. Conventional aspects are even more tightly enforced.

The style of language that is most ‘free’ in this regard is thinking because there is



170 LANGUAGE AS UNDERSTANDING

none of the ‘common denominator’ aspect of communication involved. It doesn’t

matter if I have an idiosyncratic understanding of a particular concept, until,

that is, I attempt to communicate with others. In this sense pattern languages

are constrained only by the ‘meaning’ relationship between a recurring form and

its representation in the mind. This is probably the closest that one can get to a

‘free flow of ideas’, as it is basically a flow of associations, where the association

is between the mental representation and recurring form. It doesn’t matter at

what level of order or understanding that a repetition occurs, if it repeats then I

need an appropriate mental representation - a pattern. So the fragmentation into

units of meaning is not constrained by convention, the need for agreed meaning,

but by the recurrent experience directly.

Learning to program is, in some ways, similar to learning to speak, and yet

in other ways quite different. As educators we need to be clear about these simi-

larities and differences in order to make the process as easy as possible. Speech

occurs in a manner that obscures the fact that there are at least two levels of

activity occurring, deciding what you mean, and translating that meaning into

words - conceptual design and implementation. These two stages appear to oc-

cur simultaneously and the ease with which it happens in speech has probably

contributed to us tending to overlook the fact that there are these two stages in

language use when we come to thinking about programming.

A child acquires its first spoken language one word at a time, first by simple

mimicry of what it hears and later by explicitly asking for the word that represents

various items in its world. Mostly, though, the learner comes to pick up new

concepts merely by hearing them used several times, that is, they are ‘discovered

patterns’. Meaning is the key to learning the use of a new concept and the critical

factor for the learner in discovering meaning is context. The way that the concept

is used in speech gives the listener most of the information needed to ascertain

its meaning. Often that is all the learner needs to assimilate a new word, but

it can always be checked by asking a person more experienced in speaking the

language, or later in life, of course, by checking it in a dictionary.

When a child speaks its first sentence its useable vocabulary, if ‘usable’ is

defined in terms of what it is capable of putting into sentence form, is, most

probably, only those words actually used in the first sentence. It will, of course,

have a larger vocabulary consisting of other words and phrases that it has learned,

but mostly these are, as yet, single uncombinable concepts for the child. One

could say, then, that natural language acquisition is a staged process of linguistic

organisation driven by context. A pattern language for programming needs to

be presented to novices in a way that mimics this natural language acquisition

process as closely as possible, that avoids setting up in the novice a vocabulary of

single uncombinable concepts. What the novice needs most is a useable language

- what we give them is a list of dictionary definitions, and, not surprisingly,

confusion reigns.
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For the first program presented to a novice, a pattern language encompassing

the bare minimum of concepts needed for that program should be used. As further

programs are developed any new concepts needed for a particular program are

added as patterns to the language. This way, the novice programmer, like the

child learning to speak, has only to deal with new ideas as they are needed, that is,

entirely in context. Concepts are ‘discovered’ through use, not just presented in

isolation as ‘facts’ to be learned. Language is acquired ‘actively’, not ‘passively’,

it is learned by using it. This process is illustrated in Section 9.4.

No child learns to speak through a process of being presented with a ‘complete’

vocabulary separate from use, that is, largely isolated from context, yet that is

how, more or less, we expect novice programmers to learn. We present them with

the set of programming language constructs in the abstract and expect them

to derive the most important aspect of their use, context, from a few forlorn

examples sprinkled throughout the teaching material. This is about as far from

normal language acquisition as it is possible to get. In terms of novices a pattern

needs to be written in a way that encompasses all the information needed to use

the programming language concept that it is dealing with except context. Context

should be dealt with in the pattern language diagram. This is important because

in designing a program you should, ideally, be dealing only with the concept, not

the details of its code form. The pattern form, in other words, hides the coding

details while you are working on the conceptual design of the solution, that is,

while you are using the pattern language diagram. A lot of the difficulty that

people experience comes from trying to do the conceptual design of a program at

the same time that they are wrestling with the implementation details.

This is where learning to program differs from learning to speak. When you are

speaking, conceptual design, that is, the meaning that you are trying to express,

will more often than not override implementation factors. People will understand

you even if you mess up the syntax, or express your ideas ambiguously. This is not

the case with a computer program, the conceptual design has to be perfect. So the

best way to facilitate the use of patterns in the conceptual design stage is by means

of a diagram of the contextual relationships between them - a semantic diagram

of the language. Thus when you are designing, all the information you need for

construction of the conceptual framework is encompassed in the diagram. As

with a new word you might occasionally need to confirm your understanding of a

particular concept by checking with a dictionary, in this case the detail contained

in the pattern form, but this will probably be rare, especially if the programs

presented to the novice are wisely chosen so that each successive version of the

developing pattern language contains few concepts new to the programmer.

The idea of basing the learning of programming on a pattern language, there-

fore, provides advantages in the following ways. Firstly the patterns act to sep-

arate the coding process from the activity of design. The coding details are still

all there, but they are hidden inside the pattern form. Secondly, the pattern lan-

guage is a map of the contextual relationships between the patterns and this gives
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the novice much closer direction than is provided by raw programming language

syntax15. Thirdly, the pattern language provides the basis for an evolutionary

understanding. New concepts are not just presented in isolation, but are fitted

into an existing context in the language diagram. This explicitly mirrors the

way that we normally acquire new information as we progress through levels of

understanding. New concepts, as they are learned, are fitted into the existing

mental picture, the cognitive structure in Piaget’s terms16, and complex concepts

will usually cause a shuffling of the current understanding. Complex concepts

form small pattern languages in their own right, so incorporating them involves

a merging of two pattern languages17, which usually causes changes in the struc-

ture of the original language. But the main advantage of a pedagogy based on a

pattern language is that it is built on our primary competency as human beings,

understanding the world.

Fortunately for us, the way that the world is makes understanding it a feasible

proposition. It is an ordered system and it is this factor that underlies the patterns

that we perceive. The relationship between the pattern and the way that we

represent it in our minds is meaning - meaning is just the significance of real world

phenomena to us. So this is a semantic system - a language. It is a language that

is used to build understanding of the real world in the human mental system. The

human project can be seen as the evolution of a mental system to understand

an ordered system, reality. Programming is just a means of dealing with another

ordered system so it too needs to be based on a language for understanding - a

pattern language. Teaching people to program would be a lot easier if it used an

approach that directly addresses the primary human competency, understanding

things.

The most important outcome for ... instruction is the student’s learn-

ing with understanding. If something is not taught so that it can be

learned with understanding, then instruction should be changed so

that understanding can take place; or teaching that content should

be postponed; or, if that content can’t be taught meaningfully, then

it shouldn’t be taught at all. ... Understanding means more than

that students simply display what they have just been taught. ... Un-

derstanding means that students can link what they are learning to

previous knowledge that they already (should) have. Understanding

means that students can explain why they believe something is true

in a way that is sensible to someone else.

(Secada & Carey 1990)

It is often forgotten that programming is a mixture of science and art. The

programmer is dealing with concepts at the level of science but combining them

15This sequencing process is discussed in Chapter 7
16“Every schema is ... coordinated with all other schemata and itself constitutes a totality

with differentiated parts.”(Piaget 1952)
17This merging process is discussed in Section 7.6, and further in (Porter et al. 2005).
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to achieve novel goals - each program is, in a sense, a new creation. Of course

this duality has always been true of the scientist in general but scientists have

tended to downplay the artistic and even playful aspects of their work. “It is high

time that scientists admit that their experience in the laboratory is an aesthetic

one, at times acutely so: the arid form of presenting their results has disguised

this, and their respectable logical front often makes it invisible even to a student”

(Smith 1981, p. 234).

Any human activity is both scientific, in the sense that it is building on what

is known, and creative, in that it is directed towards achieving something new.

Even the sudden flash of insight that we call inspiration must be preceded by

thought of some kind, unconscious though it may be. It is unlikely to be the case

that it has arisen entirely spontaneously in the mind.

Consider a musician who faces an impasse while composing a score.

Sometimes, the solution will come as if from ‘nowhere’. But clearly,

the unconscious mind accessed the relevant representations to solve

the problem. Here, there is presumably attentional access to sensory

representations, and cognitive access to musical theory and aesthetic

standards. But the representations were unconscious while the prob-

lem was being solved.

(Weisberg n.d., p. 91)

Some language-like process involving the combination of concepts into new form

is occurring somewhere in the brain, and is springing unbidden into consciousness

as a flash of sudden understanding18. Language’s end is meaning, and it is only

in terms of meaning that it can be creative.

18“To see the reason for something is not a mechanical activity ... Rather, one is aware of

each aspect as assimilated within a single whole, all of whose parts are inwardly related (as

are, for example, the organs of the body). Here, one has to emphasize that the act of reason is

essentially a kind of perception through the mind, similar in certain ways to artistic perception,

and not merely the associative repetition of reasons that are already known. Thus, one may

be puzzled by a wide range of factors, things that do not fit together, until suddenly there is

a flash of understanding, and therefore one sees how all these factors are related as aspects of

one totality (e.g. consider Newton’s insight into universal gravitation). Such acts of perception

cannot properly be given a detailed analysis or description. Rather, they are to be considered

as aspects of the forming activity of the mind. A particular structure of concepts is then the

product of this activity, and these products are what are linked by the series of efficient causes

that operate in ordinary associative thinking” (Bohm 1980, p. 13).
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Chapter 6

Pattern Language Fundamentals

Repetition is the only form of permanence that nature can achieve.

George Santayana

It will not now be necessary to prove, that those perceptions, which

are simple, and exist no where, are incapable of any conjunction in

place with matter or body, which is extended and divisible; since it is

impossible to found a relation but on some common quality.

(Hume 1740)

6.1 Connectivity and Creativity

The combination of concepts into new form, creativity, is the process that is

driven by pattern language. To see how this works we need to understand the

connections between the recurring features that exist in the real world and the

conceptual process. In essence, the pattern language idea boils down to a way

of looking at a system. A system is a collection of related concepts organised

in a way that is useful in terms of some purpose. By definition, then, a system

consists of both structure (order) and purpose (process), and it is this dynamic

relationship that lies behind the emergence of patterns.

A pattern emerges between two entities if it is present in the combi-

nation of the two entities, but not in either of the entities separately.

And the structural complexity of an entity is defined as the “total

amount” of pattern in it.

(Goertzel 1993)

The pattern view is thus a meta-system built on top of a system. However this

meta-system is not an add-on, it derives from the functioning of the system. The

patterns are just those factors that keep occurring in the expression of system

order in function. The patterns are representations of particular details within

175
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the system, and the pattern language reflects the order in the system by means

of the relationships between the patterns.

The real power of the pattern concept derives from the fact that the patterns

are a fundamental aspect of the system, rather than being a view imposed from

the outside. Patterns are discovered in a system, not created through analysis.

Most systems are simply too complex to understand without breaking them down

into their constituent parts. But this means that you are never dealing with the

system as a whole. Moreover, the interaction of many parts causes difficulties

in linear or reductionist analysis due to the non-linearity or circularity of causa-

tion and feedback effects. In situations with complex interactions of these sorts,

however, patterns are ubiquitous. For example, in many diverse and otherwise

chaotic appearing systems, the same pattern in growth and decline of the system

as a whole, the logistic or S-shaped curve, occurs. So the dynamics of phenomena

as diverse as animal populations, stock market behaviour, the volume of world

airline traffic, Mozart’s output of music, the construction of Gothic cathedrals in

Europe, and so on, all display the same pattern in terms of their development

over time (Monod 1974, p. 37). This pattern was found by Cesaré Marchetti

and it derives from the fact that many factors interact in ‘growth’ situations such

that where F represents a fraction of the final size of the system the ratio F/(1 -

F) pertains.

Marchetti’s work strongly suggests that there is some kind of universal

principle governing a large number of human and natural phenomena,

and that the form of this principle is the simple logistic rule outlined

above. In Marchetti’s setting, the logistic rule enables us to find

structure in what initially appears to be a more or less random scatter

of data.

(Monod 1974, p. 40)

The point illustrated by this logistic principle is that wholeness of a system is

expressed in its functioning, and it is at this level that the patterns are expressed.

The implications of this in terms of understanding the system concerned are

profound because what it indicates is that patterns are not simply components

or parts of the system, they are expressions of the nature of the system as

a whole, they speak to system synthesis or productive energy, not just to some

structural partioning on the basis of some kind of logical analysis, and what we

want to do here is to explore these implications for programming. We feel that

the major contribution that Alexander’s notion of pattern language makes to

programming, and, indeed, any creative endeavour, is the ability to allow one

to deal with the elements of a system in a way that does not destroy the

system’s existence as a whole entity in its own right and on its own

terms.

The greatest hindrance in the understanding of the living organiza-

tion lies in the impossibility of accounting for it by the enumeration of
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its properties; it must be understood as a unity. But if the organism

is a unity, in what sense are its component properties its parts? The

organismic approach does not answer this question, it merely restates

it by insisting that there are elements of organization that subordi-

nate each part to the whole and make the organism a unity. The

questions ‘How does this unity arise?’ and ‘To what extent must it be

considered a property of the organization of the organism, as opposed

to a property emerging from its mode of life?’ remain open. A similar

difficulty exists for the understanding of the functional organization

of the nervous system, particularly if one considers the higher func-

tions of man. Enumeration of the transfer functions of all nerve cells

would leave us with a list, but not with a system capable of abstract

thinking, description, and self-description. Such an approach would

beg the question, ‘How does the living organization give rise to cog-

nition in general and to self-cognition in particular?’. [Emphases in

original]

(Maturana 1970, pp. 5-6)

In Alexander’s thinking, process is the key to both patterns and the language

they form. So, for example, the features of a garden are there mainly to contribute

to a process, life1. They are essentially concerned with enhancing the human

relationship with the environment, Connection to the Earth in Figure 6.1,

so their context is the ‘human living environment’, they balance human concerns

such as the need for peace, tranquillity, recreation in the widest sense, social

activity and so on, with the topology, climate and other elements of the built

environment of the site. But the design of a garden is another process, that of

using those features (living patterns) from the experience of gardens that have

shown themselves to contribute to the first process. This second “generative

process” is driven by the relationship between the ‘living patterns’, so the web of

relationships form a language.

Therefore, a pattern language is a collection of features of a whole system

called patterns, along with a description, usually in graphical form, of how to

combine them into meaningful compositions. A pattern language prescribes only

those configurations among patterns that contribute to system wholeness; it can

be thought of as a way of describing dependencies between patterns. So, in a

pattern language diagram, such as the one adapted from Alexander (Alexander

1979, p. 314) shown in Figure 6.1, the arrows show a refinement relationship

between patterns. Patterns nearer the bottom of the figure refine patterns above

them. We say that Garden Growing Wild is smaller than Half-Hidden

Garden. Intuitively, this means that Garden Growing Wild is applied as a

1It should not be forgotten that gardens were originally important contributors to life at

the fundamental level of providing food, and the “Garden of Eden” story is a reflection of this

former centrality in human affairs, and, indeed, a reminder of the continuing significance of our

relationship to the ground on which we live. Everything we eat derives, to some extent, from

the productivity of the mineral composition of soil, even fish.
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structural refinement inside the structure created by the pattern Half-Hidden

Garden, that is, the garden as a whole. The essential fact about a pattern

language is that all the patterns relate back to the topmost pattern in a refinement

relationship. It is this fact that makes a collection of patterns a language, and,

indeed, makes the patterns patterns rather than simple components. (Porter,

Coplien & Winn 2005, p. 233 ).

HALF−−HIDDEN GARDEN

COURTYARDS WHICH L IVE

GARDEN GROWING WILD

ENTRANCE TRANSITION

TERRACED SLOPE

TREE PLACES

FRUIT TREES GREENHOUSE

GARDEN SEAT SUNNY PLACE

BUILDING EDGE

OUTDOOR ROOM

PRIVATE TERRACE ON THE STREET

SIX−−FOOT BALCONY

CONNECTION TO THE EARTH

Figure 6.1. A Language for a Garden. Adapted from (Alexander 1979, p. 314)

The important point here is that the very existence of those elements that

Alexander calls patterns, and the structure (pattern language) that they form,

are contingent on the system functioning as a whole. The patterns are only

‘discovered’ in the system as it functions, that is, as it is expressing its ‘wholeness’.

If the system is being conceptually ‘decomposed’ by the pattern process in any

sense at all, then the decomposition is being done on the basis of system dynamics

rather than some engineering or knowledge principles that exist independently

of the system. We would argue, in fact, that this is not really a conceptual

decomposition process at all, because it is being driven by system process, not

a conceptual process. It is in this sense that Alexander uses the terms ‘life’ and

‘living’. Like a biological system, a ‘living system’ is one in which its ‘wholeness’

is expressed in its functioning, a condition that cannot be guaranteed in a system

produced in a mechanical and piecemeal way, as is most often the case in modern

architectural design methodologies.

Laymen like to charge sometimes that these designers have sacrificed

function for the sake of clarity, because they are out of touch with

the practical details of the housewife’s world, and preoccupied with
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their own interests. This is a misleading charge. What is true is that

designers do often develop one part of a functional program at the

expense of another. But they do it because the only way they seem

able to organize form clearly is to design under the driving force of

some comparatively simple concept. On the other hand, if designers

do not aim principally at clear organization, but do try to consider

all the requirements equally, we find a kind of anomaly at the other

extreme. Take the average developer-built house; it is built with an

eye for the market, and in a sense, therefore, fits its context well, even

if superficially. But in this case the various demands made on the

form are met piecemeal, without any sense of the overall organization

the form needs in order to contribute as a whole to the working order

of the ensemble.

(Alexander 1964, p. 29)

This would seem to condemn patterns as well, for are not they piecemeal in

nature too, one is dealing with a whole system one part (pattern) at a time? The

factor that sets patterns apart is that they are not simple products of conceptual

decomposition. Consider an aeroplane. Here is a collection of parts that forms

a whole. The whole is more than just a simple aggregation of its parts because

of its function, flight. No single part, or even incomplete aggregation of some of

the parts, will enable this function in a completely safe way, which is why the

failure of any part that is involved in keeping a plane in flight will give the flight

crew cause to reconsider their flight plan, and to make adjustments as considered

necessary to ensure safety.

Therefore, the patterns that are present in modern aircraft are those that

are left from the various experimentations around the principles of safe flight and

from the normal operations of aircraft over time. That is, the patterns express the

functioning of flight from experience, not just from conceptual theorising. Parts

or subsystems that are found to contribute negatively, or even ambiguously, to

safe operation will be eliminated, not through theorising, but through actual

experience of function. Patterns are the product of experience, not pure theory.

They are present because they have stood the test of function - they contribute

to the wholeness of the overall plane-as-a-flying-system not just the plane-as-

a-structural-entity. Patterns in programming are like that. They are not just

structural elements of the programming system but patterns in the expression of

the function of the system being produced.

It is the nature of the problems of explicit design to be different from everyday

problems to the extent that the patterns of everyday experience may not be

the most appropriate because the design space is not as well understood, one’s

experience of it is not as deep as the general experience of life. Of course, some

“design spaces” are less complex than everyday life to the extent that they can

be dealt with mechanically or logically, and these enable us to discover what it

is that makes complex systems difficult for designers, what distinguishes design
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from logic, in effect.

There are certain kinds of problems, like some of those that occur in

economics, checkers, logic, or administration, which can be clarified

and solved mechanically. They can be solved mechanically, because

they are well enough understood for us to turn them into selection

problems.

To solve a problem by selection, two things are necessary.

1. It must be possible to generate a wide enough range of possible

alternative solutions symbolically.

2. It must be possible to express all the criteria for solution in terms

of the same symbolism.

Whenever these two conditions are met, we may compare symbolically

generated alternatives with one another by testing them against the

criteria, until we find one which is satisfactory, or the one which is

the best. It is at once obvious that wherever this kind of process is

possible, we do not need to “design” a solution. Indeed, we might

almost claim that a problem only calls for design (in the widest sense

of that word) when selection cannot be used to solve it. Whether

we accept this or not, the converse anyway is true. Those problems

of creating form that are traditionally called “design problems” all

demand invention.

Let us see why this is so. First of all, for physical forms, we know

no general symbolic way of generating new alternatives - or rather,

those alternatives which we can generate by varying the existing types

do not exhibit the radically new organization that solutions to new

design problems demand. These can only be created by invention.

Second, what is perhaps more important, we do not know how to

express the criteria for success in terms of any symbolic description

of a form. In other words, given a new design, there is often no me-

chanical way of telling, purely from the drawings which describe it,

whether or not it meets its requirements. Either we must put the real

thing in the actual world, and see whether it works or not, or we must

use our imagination and experience of the world to predict from the

drawings whether it will work or not. But there is no general sym-

bolic connection between the requirements and the form’s description

which provide criteria; and so there is no way of testing the form

symbolically. Third, even if these first two objections could be over-

come somehow, there is a much more conclusive difficulty. This is the

same difficulty, precisely, that we come across in trying to construct

scientific hypotheses from a given body of data. The data alone are

not enough to define a hypothesis; the construction of hypotheses de-

mands the further introduction of principles like simplicity (Occam’s
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razor), non-arbitrariness, and clear organization. The construction of

form, too, requires these principles. There is at present no prospect of

introducing these principles mechanically, either into science or into

design. Again, they require invention.

It is therefore not possible to replace the actions of a trained designer

by mechanically computed decisions. Yet at the same time the in-

dividual designer’s inventive capacity is too limited for him to solve

design problems successfully entirely by himself. If theory cannot be

expected to invent form, how is it likely to be useful to a designer?

(Alexander 1964, pp. 73–75)

Alexander’s answer to this question is, ultimately, “that there is a deep and

important underlying structural correspondence between the pattern of a prob-

lem and the process of designing a physical form which answers that problem”

(Alexander 1964, p. 132) because shape, be it physical or conceptual, is the ex-

pression of some hierarchy of order in function. The human form, in conceptual

terms, derives its ultimate power from the transmission of experience through

the use of abstract symbolic form. No newborn infant has to develop a pattern

language for life, she is, in effect, born into it - we call it culture. What is pow-

erful about the pattern idea, then, is not that the patterns are the same in every

situation, that there is one simple pattern language for the whole of life, but that

there will be, in every domain, features that are patterns, that function in the

same manner that patterns function in everyday living. What crosses over from

everyday life is not the patterns themselves, but the way that patterns function

in ordering our lives, in ‘designing’ our living style, our ‘life as a whole’ in effect.

But there was an important issue that Alexander mentioned in the previous

quote which cannot be allowed to pass unnoticed, and that is the “measurement

problem” which we discuss in Section 8.4. As Alexander points out, “we do not

know how to express the criteria for success in terms of any symbolic description

of a form” because the degree of success is a function of process not structure,

it is a form of “meaning” not a quantifiable property. The ‘measurement prob-

lem’ arises from the fundamental difference between discrete entities (elemental

form) and the continuous and wholistic, not to say subjective, nature of expe-

rience (experiential form). Some aspects of higher level form are impossible to

represent at lower levels, of organisation because they are emergent properties.

Representing a musical piece in terms of air pressure, for example, will not give

one a sense of the piece in musical terms (Einstein, quoted in (Born) 1969), there

is an epistemic disjunction involved, a “loss” of information (or, more properly,

a loss of “meaning”), in the translation. Meaning is a matter of patterns, of

prior experience, think of the television drama that is a notable experience for

the mother but which remains “for the infant ‘an undifferentiated homogeneity’

of flickering lights and persistent noises” (Britton 1970, p. 17).
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6.2 Dealing with System Complexity

Ultimately, everything that we do is a product of input from the world. Input

from the world enters our mind through our senses, our perceptual apparatus.

But this apparatus does not function as a simple data collection mechanism as,

say, a video camera connected to a computer system does. The process that

we call perception is much more sophisticated than a simple input of data to

an information processing device. What enters is not raw data as such, but

meanings. In effect, the data has been ‘preprocessed’ at the perceptual level.

That is, “perception might be conceived of as a set of preliminary ‘data-reduction’

operations, whereby sensory information is described, or encoded, in a form more

economical than that in which it impinges on the receptors” (Attneave 1959,

p. 82). What is occurring is that the human understanding system is fitting

the enormous amount of data that impinges on it into a form that relates to its

current needs and interests so as to best utilise its information handling system.

It does this by generating meaning from the raw data, by applying a filter to it as

it enters. In other words the data enters as patterns of significance, meanings in

short. The only way that patterns of perception can be generated in this way is

through the use of a system that identifies patterns in the raw data, and combines

small units into larger ones through a hierarchy of relationships.

The pattern language idea is based on the patterns of recurring activity that

occur in systems. Any system is about two main things, order and process -

structure and function. Much of the process in a system is based on maintaining

and creating the order that lies behind system structure. Any system, natural

or artificial, is made up of a lot of detail. Assimilating large masses of detail is

not something that humans do easily, rather we understand things by relating

them. One way of doing this is categorisation - putting similar concepts into a

category. Another way is analogy. We come to ‘understand’ something that we

previously did not understand by relating it to a different concept that we already

do understand. And a third way is the sensing of pattern hierarchy, the pattern

language, within the larger categories. This is the phenomenon that Gregory

Bateson calls metapattern, derived from the fact that, in Alexander’s terms,

a simpler pattern ‘refines’, or ‘adds structure to’ the more complex pattern to

which it is related, thereby building, or ‘creating’, the larger ‘structure’ that we

call understanding.

What is meant intuitively by a “pattern” is, essentially, a representa-

tion as something simpler. When one represents x in terms of some-

thing simpler than x, one has obtained a pattern in x. A represen-

tation is a kind of relation, between the representer and the thing

represented. So, as one would expect, the Metapattern reduces self-

organization to certain relations between entities. It contends that

everything is made of relationship.

(Goertzel 1993, p. 2)
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These three ways of handling detail involve patterns in the sense of ‘recurring

form’. Consider, for example, what is actually happening when you see a horse.

The outside appearance of a particular horse is made up of a large, but finite,

number of molecules that define the detail of its appearance as the particular horse

that it is. However within this mass of detail occur points of change that show up

in all horses. These recurring forms in the mass of detail are the ‘patterns’ that

enable us to match what we are seeing with the image of ‘horse’ that we possess

from previous experience. In any particular horse, then, there is just continuous

detail. I can only discern the patterns that tell me that this is a horse because

they are common to all horses. The patterns transform the mass of detail into

‘horse’, separate the particular section of the overall scene into the horse that I

see within it. Patterns then are the fundamental basis of category or ‘form’. And

‘understanding’ derives from form not detail. I don’t have to apprehend every

single detail of the individual in recognizing the form, ‘horse’. All I need is to

apprehend the patterns that make up the form ‘horse’.

Of course, there are other ‘patterns’ of detail that show up in only one partic-

ular horse, or in only some particular horses and not all horses. These patterns

of detail form individual or group characteristics. They ‘define’ at those levels of

order rather than at the fundamental level of the form ‘horse’. These are things

like ‘palomino’ and ‘pinto’, smaller categories within the larger one. Note that

we keep referring to the fundamentals of ‘understanding’ here. Categories are

critical to reason, they differentiate detail, provide structure, and are the source

of order. They form the basis of ‘understanding. Undifferentiated, unstructured

detail is impossible to understand. We could only begin to understand atomic

theory, for example, once we could discern the regularities, the pattern of form

that is expressed in the periodic table by the atomic level detail. Understand-

ing comes from the patterns, the recurrences, in detail, rather than the details

themselves. So a horse is a mass of detail, but at some point the mass nature

of detail ‘breaks’, giving us a framework on which to base our understanding of

‘horse’, of ‘pinto’, and even of features that are unique. We recognize a particular

horse by the unique features that do not recur in other horses. So these features

are not ‘patterns’ in the sense that they recur in reality, but they are ‘patterns’

nevertheless, the recurrence being in our memory of that horse.

We are using the similarities between concepts (commonality) to increase

order. Categorising things based on the similarities and the differences between

them allows us to ‘see’ the patterns in the system. We have differentiated the

mass; added coherence to the detail. However the need for this view of a system,

this understanding, arises from process. The necessity to have reliable processes

of identification and the like leads us to discover the patterns.

Let’s go back to the horse example for a minute. It is important to see

that the patterns have not only differentiated detail, they have done it in a way

that forms a hierarchy that carries meaning. In other words the ‘pinto’ pattern

is a refinement of the ‘horse’ pattern, it tells me that a horse is a particular
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type of horse. And my knowledge of individual characteristics enables me to

distinguish between different individual horses. So, in any scene, the mass of

detail is made coherent by my ability to recognize the patterns within it because

my knowledge is based on a hierarchy of patterns, a pattern language. This

pattern language empowers those processes like identification and recognition that

underlie knowledge, that give meaning to the world. And although the patterns

in Figure 6.2 are named, this is not necessary in terms of using a pattern language

in the head. For example, in this case I might not be aware that the dogs called

“Bluey”, “Fido” and “George” are members of the same breed, in this case “Blue

Heeler”, but I will have placed them in the same category on the basis of their

appearance nevertheless. In effect the pattern called “heeler” would be “unknown

breed”, but it would still connect to the other patterns in the same way.

scene

horse

����������9
dog

XXXXXXXXXXz

pinto

������
palomino

?
grey

HHHHHj
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?
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HHHHHj
Silver

?
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������
alsation

?
setter

HHHHHj

Bluey

������
Fido

?
George

HHHHHj
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?

Figure 6.2. The patterns within a scene differentiate the raw detail.

Everything that we do as humans involves using a pattern language. We make

sense of a situation on the basis of previous experience. In a classic study, three

people, a chess master, a good player, and a novice were given 5 seconds to view

a board from the middle of a chess game. After 5 seconds the board was covered,

and each participant was asked to reconstruct the board position on another

board. The master correctly placed many more pieces than the good player,

who in turn placed more than the novice: 16, 8, and 4, respectively. However,

these results depended on the chess pieces being arranged in configurations that

conformed to meaningful games of chess - in other words the patterns carried

meaning. If the chess pieces were arranged in random order, that is the ‘patterns’

had no meaning in terms of chess, all three participants correctly placed from 2 to

3 positions only (See Figure 6.3). This shows that expertise in a domain is based

on knowledge of the patterns of meaning, in other words, “understanding” that

exist within it. The master is an expert because she ‘has’ the pattern language

that enables her to ‘play’ chess to a very high level.

This relationship between patterns and process is the critical one in terms of

programming. A large part of the ‘order’ that exists in a programming system
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Figure 6.3: Patterns in Chess carry meaning for the expert that they don’t for

the novice. (Figure from (Bransford) 2000)

is derived from the syntactic structure of the programming language, or, at a

deeper level, the way that the syntax sets up the patterns of electron flow. A

program is an artefact of the programming environment, therefore it necessarily

reflects the ‘order’ of this system, the syntactic structure of the language. Solving

any Java programming problem, for example, will involve applying the elements

of Java syntax, so the process of design is, at least in part, syntax driven. The

ramifications of this are that when a system of any kind is computerised, the

programming language system used becomes the means of development for that

system. You can only interact with system order, in the sense of changing or

maintaining it, through the programming language system from that point on.

So what you have now is a real-world system that includes a programming

language system. Any holistic view, therefore, must take account of that fact.

Whatever the system is in terms of the service it provides is now conditioned

by the fact that it runs on a computer. So what you are really doing is adding

a programming tool as a means of addressing the order and functioning of the
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system. You are deciding that it is more efficient to deal with problems in this

system using computers. Ipso facto you are now going to have to view all the

problems in those terms. The patterns and the pattern language will now be

those of the programming system.

6.3 Coherence and Balance

At this point in documenting a pattern we hit a major difficulty, an epistemic

disjunction, in fact, because the person who is documenting the pattern can only,

in some sense, guess at what was in the mind of those who originally established

the element of practice that is being documented as a pattern. What a pattern

author sees is the actual artefact as it recurs in her experience of the world, not

the circumstances, the whole context, behind its production. All that one can

know about a pattern from its existence as a pattern is that for it to have become

a factor that recurs it must be, in some manner, balancing the forces that led to

it coming into being. We have a similar difficulty in defining evolutionary fitness

- saying that a species is ‘fit’ because it survives is almost circular in terms of

our definition of evolution as the survival of the fittest and a species continued

existence can tell us little about the complex of factors involved in its continuing

survival.

This is also one of the points where we touch on the element of moral coherence

that Alexander places great emphasis on and which is mostly avoided by pattern

practitioners precisely because morality, for the modern mind, exists at the same

intersection of the subjective and the objective. We come back to the moral order

question later (see Section 11.4), but at this point it is the practical consequences

for a pattern author of the subjective-objective gap that interests us. The artefact

that is causing the pattern to be written down is a factor in the objective world,

but the thinking that produced it lies in a subjective world about which we

can only surmise. This is why, to Alexander, the notion of patterns existing

as elements in a language is so crucial. Achieving a good fit between form and

context is the very purpose of design, and therefore can be assumed to be a factor

in the thinking of the designer. The fact that the pattern is a pattern, that is,

that it recurs over time, says that the purpose of the designer, a good fit between

form and context, has been achieved. But in order to have accomplished this feat

the designer must have had what Alexander terms a ”field description” of the

problem domain.

Let us suppose that we did try to write down a list of all possible

relations between a form and its context which were required by good

fit. (Such a list would in fact be just the list of requirements which

designers often do try to write down.) In theory, we could then use

each requirement on the list as an independent criterion, and accept a

form as well fitting only if it satisfied all these criteria simultaneously.
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However, thought of in this way, such a list of requirements is po-

tentially endless, and still really needs a “field” description to tie it

together. Think, for instance, of trying to specify all the properties a

button had to have in order to match another. Apart from the kinds of

thing we have already mentioned, size, color, number of holes, and so

on, we should also have to specify its specific gravity, its electrostatic

charge, its viscosity, its rigidity, the fact that it should be round, that

it should not be made of paper, etc., etc. In other words, we should

not only have to specify the qualities which distinguish it from all

other buttons, but we should also have to specify all the characteris-

tics which actually made it a button at all.

Unfortunately, the list of distinguishable characteristics we can write

down for the button is infinite. It remains infinite for all practical

purposes until we discover a field description of the button. Without

the field description of the button, there is no way of reducing the

list of required attributes to finite terms. We are therefore forced to

economize when we try to specify the nature of a matching button,

because we can only grasp a finite list (and rather a short one at that).

(Alexander 1964, pp. 24-5)

At the time that he wrote this, the pattern language idea had not yet firmed

in Alexander’s thinking. Nevertheless, it is clear from the example used in the

quotation that what he is referring to here as a “field description” is, in fact, a

pattern language. The way around the impossibility of handling the infinite list

of possible criteria in the matching process, is to set the context for the matching

process to ever narrower terms, just as a pattern language for keying biological

specimens does (see Section 10.4). Of course, in a simple matching process, there

is a ‘natural’ congruence between force and context, called here a “requirement” or

a “criterion” for the match which does not occur in the more complicated process

of design, and to that extent the example is a bad one. Nevertheless, even though

the forces cannot be dealt with one at a time as they can be in a matching process

- eliminate all buttons of the wrong colour, eliminate all buttons with the wrong

number of holes, etc. - the principle is the same, a pattern language is refining

the design by setting the context to an ever finer level of detail. The form, or

shape, that a particular pattern language displays, is a reflection of the “field

description”, the contextual structure, of the task at hand. “You need to have

some global awareness of how the thing has got to be laid out before you start

attempting to go into detail. And that of course the pattern language [has] to

deal with” (Alexander quoted in (Grabow) 1983, pp. 94-5).

In the foregoing, we have skipped over an important concept that seems to be

widely misunderstood in pattern practice. In the statement that design is the act

of fitting form to context, the term ‘context’ is being used in a particular way.

Form is dealing with that part of the environment, seen as a whole, that is being

manipulated by the designer, in other words, the elements of environment that
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we can directly control. So ‘context’ cannot simply be synonymous with the term

‘environment’ as it normally is, because form is as much a part of the environment

as context is. Context, in this scheme, is that part of the environment which puts

demands on the form (Grabow 1983, p. 36). That is, it is the full constellation

of forces, acting holistically, that the form needs to balance in order to achieve

a good fit. But the critical point here is that the balance is achieved by the

whole artefact (“form and context are in frictionless coexistence” (Grabow 1983,

p. 36)), not by the individual components - it’s the plane that flies, not the

parts of which it is made and this is why it is the pattern language that has to

balance the forces, fit form to context, not the individual patterns. In fact, each

pattern, as it is applied, can only deal with the context as it exists at the time of

application in the whole design process, that is, the context that was set up by

the previous pattern, not the context as a whole that the form has to fit.

So context is , in fact, nothing more than the total effect of all the forces on

the form, and the pattern language, the diagram, puts as much of the original

contextual structure back into the design process as is likely possible. This is the

main reason why Alexander insists that “the real work of any process of design lies

in this task of making up the language, from which you can later generate the one

particular design. You must make the language first, because it is the structure

and the content of the language which determine the design” (Alexander 1979, p.

324). It is the relationships between the patterns in the language that provides

most of the information required to unlock the generative potential involved in

the conceptual structure of the objective domain. What Alexander says about

this is that it is the objective contextual backbone of the domain, “the structure

of the network which makes sense of [the] individual patterns because it anchors

them and helps make them complete [emphasis added]” (Alexander 1979, p. 315).

This notion of patterns being anchored in and made complete by their placement

in the pattern language is important in another sense, the tendency of the modern

mind to make a radical separation of patterns from the past from their historical

context. It is exactly this tendency that leads to many of the confusions and

uncertainties that we see all around us because it posits a sort of individual

absolutism - beauty lies in the eyes of the beholder - or, at best, a form of

cultural relativism - slavery was morally correct in earlier times because most

people agreed that it was.

The trouble with this separating tendency is the complete loss of context

involved. Patterns like aesthetic appreciation and slavery were anchored in the

pattern language of the time, and did not necessarily speak to any objective

notion of beauty or moral order. They derived more from the social structure,

the particular groups that controlled the formation of the prevailing cultural

norms, for example, than from genuine community feeling. If I have a major

criticism of Alexander, it is in regard to his idea that the Quality Without a

Name springs automatically from community. Community is not an absolute

good. It can be controlled and manipulated, one has only to think back to the
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Nazi period in Europe, so the idea that a pattern language automatically reflects

real underlying community values, let alone any absolute human values, has to

be treated cautiously. But even in the case where a pattern is separated from a

pattern language that is assessed to be free from corrupt influence, the pattern

becomes incomplete, essentially meaningless, and even dangerous. This is why

the “making up the language” is so critical. It is only safe to use patterns from

the past if their context is properly readjusted to the modern situation because

their position in the pattern language of their time does not guarantee their

appropriateness in the new context - the new demands that the environment is

making on form.

There are many examples of the danger involved of lifting patterns out of their

historic context in this way but a particularly disastrous case has become appar-

ent on the Indian sub-continent in recent times. In response to the deteriorating

quality of surface water in Bangladesh and other parts of the Indian subcon-

tinent due to biological pollution, overseas aid and local government agencies

drilled hundreds of thousands of tube wells to tap biologically uncontaminated

underground sources. This pattern had, of course, been used for millennia in

drier parts of the world where surface supplies are few, or even non-existent.

However, applying it in India and Bangladesh involves lifting it from a context

where historical practice had shown it to deliver water suitable for human con-

sumption. Given the completely different context, the novel configuration of the

forces involved, the pattern should have been applied with extreme caution, that

is, it should have been embedded in a pattern language developed specifically

for the new situation rather than being applied in isolation. The mere fact of

changing the context meant that the balance of forces achieved by the historical

usage could no longer be guaranteed. Unfortunately, nobody undertook the task

of “making up the pattern language” for the new context and the biologically un-

polluted underground water turned out to be contaminated with a geo-chemical

pollutant, arsenic, chronically poisoning millions of people.

After all, the main thrust of Alexander’s thinking is that only by the use of a

pattern language can morally coherent outcomes be produced. Patterns applied

in isolation cannot do this, and I would say that this is precisely because a single

pattern cannot list all the possible ‘forces’ at play in the situation, that some

of them need to have been ‘eliminated’, in effect, by the application of prior

patterns in the language, and, indeed, some of them will become apparent only

after the application of the pattern currently under consideration. The moral

force of pattern language, its expression of wholeness, comes from the fact that it

puts the problem in the wider context in a way that the single pattern never can.

It deals with all the forces involved by putting every pattern in its correct context

in the language. Indeed, what I would say about context and forces is that these

are issues that derive from the problem that is being dealt with, they are not just

a feature of a pattern. In the India/Bangladesh case the problem, supplying safe

water to a community, exits in a different context from the historical precedents,
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and the pattern language used has to deal with the problem in its context exactly

as Alexander says.

It seems to me that the whole point of the pattern language diagram is that it

is based on context, the total effect of all forces, a concept much more general in

scope than individual forces, and this is what gives it its power. In some sense it

allows the user to ignore the details, including any forces, in the actual situation,

at least temporarily, while the conceptual outline of a solution, its design, is

constructed. The whole thrust of this dissertation is that there is a fundamental

difference between an entity or a process as it occurs in the ‘real world’ and any

representation in the abstract, in that the representation is formal or ‘ideal’ -

‘ideal’ in the sense that it exists as a set of ideas, not that it is perfect in the

modern sense of ‘ideal’. As an example take a university PhD program. In one

sense, this ‘exists’ as a formal process, an ‘idealised’ version if you like. But this

version is abstract in a way that the actual process as it works through in practice

in any particular PhD project simply cannot be, and this is what makes it formal

or ‘ideal’ rather than ‘real’. So, for example, in the official policy sense, the formal

version, it can be stipulated that the candidate should not be aware of the identity

of the examiners of her thesis. But, in ‘real’ terms, as a formal requirement, this

founders on the fact of the particular relationship between a particular candidate

and her particular supervisor. Their personal natures are ‘forces’ in the actual

candidate-supervisor relationship as it exists in reality in a way that cannot be

encompassed in the formal representation of the process. The academic ‘ivory

towers’ that concoct and administer the ‘formal’ PhD process necessarily have a

representation of the candidate-supervisor relationship that is ‘ideal’ in nature,

not ‘real’, and therefore they simply can’t be cognisant of all possible forces in

terms of an actual human relationship on the ground.

The central thesis of our dissertation is that any ‘real world’ process has

to deal with all the forces that pertain in the actual situation on the ground,

so to speak, but that no representation in any formal system can do this, it is

simply impossible, which is why the programming language (machine logic) is not

sufficient means in learning to program. In terms of this project, then, it follows

that the pattern writer, insofar as she is formalising a real world reoccurrence,

cannot anticipate all the factors that will ever be involved in situations where

her pattern will be applied. Patterns might be identified by their recurrence in

the ‘real world’, but in documenting them one is converting real world entities

into conceptual (‘ideal’) form and this always involves abstraction, that is, a loss

of some of the information inherent in the actual occurrences that led to the

identification of the pattern. One is necessarily taking them out of their original

context in the real world and this loss of context is dealt with, in Alexander’s

scheme, by embedding them in a pattern language being made up for the new

context.

So, in our field, what is the pattern practitioner to do? Unfortunately, in

adopting Alexander’s ideas we have largely ignored the language half of the ’pat-
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tern language’ formulation. The consequence that flows from this is that we have

had to deal with forces directly in the pattern form in a way that is not done

in Alexander’s patterns2. His method is to rely on the forces being balanced

by the whole of the generative process that derives from working through the

pattern language formulated for the particular situation. In a sense, the pattern

language is dealing with the forces automatically, although one has to appreciate

that this is a ‘natural’ rather than a mechanical automaticity (it derives from

the context, the non-controllable part of the environment in which the pattern

is being applied - see Section 11.4), so that the pattern author (formaliser) does

not have to explicitly deal with them at the individual pattern level, they are

elements of context that can be safely ignored (abstracted away) by the pattern

author3. However, given the lack of language in pattern practice in the software

field, the pattern user, as the agent who has to “make up the pattern language”

applicable to her particular context, is therefore reliant on the pattern author

correctly identifying all the forces involved because the pattern author has not

supplied the contextual information provided by the relationships between the

patterns.

By abrogating the task of making up the language for the context in which

the patterns were discovered, the pattern author is implicitly depending upon the

pattern user to make up the language for the user’s context without any guidance

from the patterns’ original context. In a highly technical field like programming,

and given users who are experienced in doing this, it works. But, as the water

supply example demonstrates, it is only safe to do this if the pattern author can

rely on her pattern being applied by a community of pattern practitioners who

are experienced in making up a pattern language from scratch. As pattern usage

in programming has been conducted in the main by experienced programmers,

pattern authors have been able to get away without pattern languages because

they can rely on the users having a pattern language for programming, at least

of sorts, from their general programming experience. However, it is the very

point of our argument that programming novices cannot be expected to have

this acquired-by-default pattern language for programming. Indeed, it is the

instructor’s job to facilitate the development of same in the learner’s mind. So, it

is important that the pattern author keeps this salient fact in mind at all times.

What the novice needs is a sense of structure, the context, or that part of the

environment that is placing demands (forces) on the form, and structure is simply

not exposed by a linear list of forces presented in the pattern form.

This is not meant to imply that such a list should not be given, just that, as

2Where he does talk about forces within the pattern form it takes place in the form of a

discussion which is more of an exploration of context, a “field description”, in his terms (see

(Alexander 1964, pp. 24-5)).
3It should be noted, of course, that this is decidedly not true of the pattern user and it is for

this reason that Alexander insists that the user must make up the pattern language first because

it is only the user who can be aware of the particular context - and therefore the particular

configuration of forces pertaining) - to her problem.
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matters stand in our field we have come to rely on it almost entirely - but the

point is that this is an accident of history, a result of the failure to adopt the

pattern language concept fully. Individual patterns, in themselves, can convey no

sense of structure, so without the language diagram, the novice is being forced

to create it for herself, we are back to relying completely on the innate creativity

of the individual. All that the list of forces can do is suggest the sort of factors

that the pattern user should be looking for, it does not, and cannot, illuminate

how the forces interact to provide the context. Again, it is that same confusion

that Alexander’s ideas were meant to address, the difference between a piecemeal

and a holistic approach. Context is the whole balance of forces that is currently

causing the problem, the balance of forces that is being reformed by the design

process. Creating new form is nothing more than reforming the environment as

a whole, and the factor that tells you how to address the problem, how to achieve

the needed fit between form and context, can only be the context, the particular

configuration of forces that needs to be rebalanced.

The balancing act performed by the language half of the equation is probably

best illustrated by a common everyday task such as facial recognition. If I asked

you to list the features of the face of someone that you know really well (forces),

you would, almost certainly, struggle, and, moreover, the description that resulted

would, anyway, prove utterly useless in enabling recognition of the person by

its readers. Yet present people with a photograph, or even just a realistically

rendered drawing of the face, and the situation changes dramatically. So what

is it that the likeness does that the list of characteristics fails to do? I would

say that the difference is encompassed by the word ‘balance’4. The likeness does

not just present the features (forces) one by one, it balances them to produce

a representation of the face as a whole. It is the holistic nature of the visual

representation that empowers recognition not the individual characteristics of the

face as the embodiment of the forces that give rise to the form it takes. Indeed,

the art of drawing or painting, surely, is the attempt to attain this balance. Even

in those cases, such as caricature, where one particular feature is exaggerated

beyond all reality, the artist’s task is, nevertheless, still to render the balance of

the other features in terms of the deliberate distortion of the one such that the

whole is still recognizably the subject of the caricature.

So how does recognition work? Is there some list of features stored in the

brain against which one ‘measures’ real faces that come into one’s vision? Most

certainly not! For all our almost total lack of knowledge of the neuronal processes

involved we can be certain that it is not a mechanical ticking off of features

in a list. If anything is, facial recognition is a classic pattern process, where

the features function as a whole, not as individual forces - it’s the pattern that

matters. Moreover, facial recognition is one of those cases where the pattern (the

4For example, listing a characteristic such as ’large nose’ is meaningless unless you know

something about the rest of the face, the context for the nose. A nose is large only in relation

to the other features of the face, that is, it is relative.
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face in this case) can most clearly be seen to be made up of smaller patterns (the

particular features are themselves patterns in terms of other faces), that, in fact,

form a pattern language in the mind. I would go so far as to say that a system of

facial recognition based purely on a straight verbal list of features is impossible.

Written systems that do act as recognition aids (in police work, for example)

have to be rendered in hierarchic (pattern language) form. So, even here, it is the

organization, the implicate order in David Bohm’s term (Bohm 1980), that arises

out of the interaction of the forces that empowers the recognition process, just

as it is in the normal visual system. Looking for order in the individual forces is

looking in the wrong place.

But there is still a dilemma here because the pattern field as a whole en-

compasses two separate processes, or three if one persists in regarding pattern

languages separately from patterns. Before any process of design can be explic-

itly based on patterns rather than the more usual implicit dependence that gets

represented as individual creative genius, the patterns have to be identified and

documented. So, at this point, the objective-subjective gap has to be breeched

in some manner even though it is, in principle, impossible to go back to the state

of mind that produced the artefact being documented in pattern form. And here

lies the import of the moral dimension in Alexander’s thinking because coherence

exists at this point in the wholeness of the artefact(s) being mined for patterns

and can only be propagated into the future from here5. The patterns are be-

ing documented because the pattern author has appreciated the artefact as a

coherent, “morally sound object” (Alexander 1999) in the particular setting in

which it exists. That is, the form balances the context. Of course, it is still the

case that the balance being apprehended is that which exists at the time that

the pattern author is making the assessment, not that which existed at the time

of the creation of the artefact. Nevertheless, even though some extrapolation is

involved, it can be assumed that the passage of time has not altered the essential

objective relationships too much or else the form would have ceased to function

holistically.

To me, the situation at this point is quite clear, the pattern of the artefact as

a whole, the house-garden, cathedral-ground, program-application, or whatever,

can only be rendered in pattern language form as this is the only way that any

semblance of the balance can be documented. However, given either that the

artefact is documented as a single pattern, or that the sub-patterns within it

are presented in isolation, there is no way to represent or describe the balance of

forces - remember the pattern language is most often presented diagrammatically.

Therefore, the only way that forces can be considered at all is by means of a

list, or, at best, an attempt at a verbal description, because context, as the

constellation of demands put on the form by the environment cannot easily be

rendered verbally. Of course, Alexander’s formulation ‘breaks’ at this point, the

individual pattern can no longer be guaranteed to produce “coherence, morally

5The point about moral coherence is elaborated further in Section 11.4.
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sound objects” (Alexander 1999). This is now the responsibility of the pattern

user, and the list of forces is the only means of giving the user any notion of the

factors that will need to be balanced in order to achieve the “coherence” exhibited

by the “morally sound object” undergoing documentation.

The ultimate consequence of all this is that if it turns out to be true that it is

not possible, because of the highly technical or complex nature of programming,

for the pattern language form to function in software development generally, that

only individual patterns have a place, then some of the claims that Alexander

makes for his formulation are not achievable, and we just have to live with that.

However, whatever the case turns out to be in advanced programming, we do

not believe that this can be said of the situation in novice programming, and

it is the purpose of our project to establish that, indeed, pattern languages are

not only possible, but necessary, in order to break the impasse caused by the

difficulty that novices currently encounter. But the pedagogical sector also has

a big advantage in terms of pattern language usage and that is that the knowl-

edge base being represented is in a constant state of flux, such that elements

that need to be explicitly depicted at an early stage (SWAPis an example) can

be dropped as a sub-language of the full pattern language for later stages as

students become used to the particular demands that the programming context

makes on operations that are familiar from everyday experience (such as swap-

ping things around). Because the full pattern language ‘evolves’ over time the

complexities of balance can be managed pictorially without blowing the diagram

out to unmanageable proportions. Furthermore, it means that the presentation

of forces within the pattern form can be restricted to those that are absolutely

necessary to inform a choice between different means of achieving the same end,

loop-recursion for repetition, for example, and which cannot be easily rendered

pictorially. In the ‘psychological field’ that everyone brings with them into the

classroom, the ‘field description’ of many operations common to everyday life,

such as making choices, swapping, sorting and repetition, already exists. It is the

context in Alexander’s sense, the extra demands (Grabow 1983, p. 36) that the

programming environment puts on these common operations, that causes the dif-

ficulty that novices have with them in the programming classroom, the particular

form that they take here, not the general form they present in everyday life. So

the answer can only lie in new form, form that reflects the contextual background

of the programming domain.

6.4 A Pattern Language for Novice Program-

ming

The first thing that needs to be noticed about any such pattern language that it

is, in essence, ultimately about programming. Therefore it must cover the same

ground as the programming language used in instruction. We have chosen Java
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as our example in this chapter as it is the language used in the first programming

course here at Flinders University at this time. So, in a way, what is happening is

that, as pattern authors, we are choosing Java as the artefact from which we are

‘mining’ our patterns and therefore our language will to a large extent reflect the

syntax of Java. In fact, what such a pattern language does is to represent the pro-

gramming language syntax in the structure of the pattern language. For example,

in a Java program, a class must be defined first, before any other programming

statements are used. This fact of Java syntax means that in a pattern language for

Java programming, the pattern CLASSmust appear in the diagram immediately

below PROGRAMand before any other patterns - CLASSrefines PROGRAMand all

other patterns refine CLASS. So what is a syntactic relationship in Java is repre-

sented as a semantic relationship in the pattern language diagram, because, after

all, syntax is mostly context, it specifies where a particular construct is allowable,

and where it is not allowed. A large part of the need to assess context and forces

in the problem domain is therefore obviated - reduced to a choice between the

patterns pointed to by the the pattern last applied, and this “balance of forces”

has been derived from the artefact in which the patterns were identified, Java

itself in this case. All that is left to decide is which of the patterns applies to

the part of the problem currently under consideration as illustrated in Chapter

7, that is to match the current state of the solution, the remaining problem, with

the patterns that the language diagram indicates are currently available.
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Service Provider
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Action Object
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Callback
?

XXXXXXXXXXz

Figure 6.4. The Pattern Language for Object Identification.

So if we start our language with patterns based on those Java constructs that a

novice is going to need early on in the course we will end up with a tree that shows

the patterns in the context in which they will occur, that is, their programming

language syntactic context, modified to some extent by the inclusion of patterns

for more general concepts like repetition, making choices, swapping values and

the like. These non-Java concepts provide a clearer match with the contextual

relationships expressed in the problem space than the patterns based directly on

the programming language. But there is another consideration to be taken into

account before we get to programming language features, and that is that most
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programs of more than trivial importance will be made up of more than one class.

Accordingly there are grounds for providing a pattern language for designing a

program at this level, based on thinking about the objects required. The artefact

produced by the use of such a pattern language, an example of which is provided

in Figure 6.4, is a class diagram. (Note: Two examples of patterns from this

language, and two from that illustrated in Figure 6.6 are included in Appendix

A).

However, for our purposes here, this is mostly a diversion, as what we are

trying to do is to explain how the pattern process is driven by a pattern language.

So the exact details of the pattern language, or languages, used are not significant

- the simpler the relationship can be kept, the better. Indeed, in order to avoid

complicating the discussion of process in Chapter 7 we have chosen to present

it using a pattern language based on the syntax of C rather than Java, because

this thesis is ultimately about describing how novices can be provided with the

means for generating the sense of process that they mostly lack, not providing an

actual ‘real world’ pedagogical tool.

Class

Declaration

MethodInstance Variable

Local Variable

I f Statement

Expression

Loop CallAssignment

Figure 6.5. Simplified Pattern Language for Class detail.

In Figure 6.5 the arrows mostly represent Java grammar, that is, this is the

‘raw’ pattern language derived directly from the artefact being mined. So you

would start with the topmost pattern which tells you that any Java solution must

involve the defining of a class. The arrows from CLASS indicate that the next

patterns to be considered are INSTANCE VARIABLEand METHODand the fact

that they are solid says that they are compulsory. This does not mean that any
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particular class has to have any instance variables but that the pattern must be

consulted and the need for such variables assessed. Normally one would assess

the need for the class to have any instance variables first, but one can always

backtrack through the ‘tree’ if such a need is discovered later, the position of the

pattern in the language diagram reminding one where the declaration will appear

in the class definition. If any instance variables are needed the arrow from CLASS
to INSTANCE VARIABLEtells you that they must be declared in the class but

outside of any method. The only arrow from DECLARATIONis optional at this

stage of the development process and there are some grounds for indicating the

optional status of a link by making it a dashed rather than a solid arrow. As our

purpose here is to illustrate the generalising of the pattern language based on a

programming system, not to develop an actual pedagogical system, we have kept

the diagrams as simple as possible. Having dealt with the need for any instance

variables, either in the positive or the negative, you revert back to that point in

the diagram where the line of development that led you to DECLARATIONbegan,

in this case, CLASS, and the diagram then suggests that you need to consider

METHOD. From there the arrows point to the options available when writing a

method.

Thus the methodology is to start at the topmost pattern and follow the arrows.

So the diagram is a means of setting the context for the next Java construct to be

considered. The arrows from a pattern tell you that the patterns they lead to are

considered next. Unless two patterns are either directly connected themselves, or

connected to the same pattern above themselves, the Java constructs that they

represent cannot appear in the same coding context, that is, next to each other in

the code. If the connection between them is direct then the levels of each in the

pattern language determine in what order the Java constructs can appear, that

is the higher before the lower. Being connected to the same pattern means that

either that order is not relevant or that the one furthest to the left is considered

first, and so on.

However this initial diagram considers only those constructs that occur in Java

syntax and is therefore not much more flexible than the raw syntax. Its main

benefit is that it does, at least, draw the “cognitive map that we use for solving

problems” (Hiltz & Turoff 2005, p. 62), something that is not normally presented

to novices. One of the values of the pattern language idea is to reduce the rigidity

caused by designing in terms of code. Therefore the first thing to do is to make

this initial diagram more flexible in terms of its use by novices by adding concepts,

like ‘repetition’ that are not strictly constructs in the programming language, but

are useful in design terms. The point is that the language then becomes a flexible

representation of Java syntax directed specifically at the design process for those

who do not yet have a developed ‘feel’ for it. The flexibility comes about because

we can make explicit those relationships that are implicit in Java itself. We can

define “patterns which specify connections between patterns” (Alexander 1979,

p. 187). For example, we can add the pattern called ‘repetition that has no
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direct counterpart in Java, but is implicit in the sense of being a meta-concept.

That is, both of the Java constructs, loop and methods, can be seen as means of

repeating actions. In the case of methods this might be slightly obscure because

the primary purpose of methods is to define a group of actions not to repeat

them. Nevertheless a method can be used for the purpose of defining a repeating

activity. In this case it is fulfilling the role that the construct, subprogram, fulfils

in other languages, so we can use that name for the pattern here, even though in

Java terms it will be realised as a method.

Class

Declaration

MethodInstance Variable

Local Variable

Dependent Value LoopCall

Assignment

Swap

Choice Repetition

I f StatementSwitch

Precedence Random Number Circular Counting

Figure 6.6. Adding Flexibility to the basic Class Detail Language.

This flexibility is important in terms of both the pattern language idea, and

the use of this particular language for teaching programming. A pattern language

is about designing solutions not implementing them. It can, and should, provide

guidance in terms of both design and implementation. The addition of a meta-

concept pattern like ‘repetition’ can thus be seen as adding a design principle to

the basic Java syntax. You are designing for repetition, even though in Java itself

you cannot implement it directly. The connections below the ‘repetition’ pattern

direct you to the implementation details. This is what Alexander means when he

says that “each pattern is itself a pattern of smaller patterns” (Alexander 1979,

p. 185). In our case the pattern language representation of Java can identify the
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identity pattern “repetition” between the two Java constructs even though Java

does not do this itself. A pattern language based purely on the syntax of Java

would hardly be more flexible in design terms than the programming language

itself - you might as well just implement the solution without worrying about

design.

What has been identified in considering repetition as a meta-concept of the

programming language is the true context of loop and subprogram in terms of the

problem. Seen purely in terms of Java syntax the context of loop is a block, and

the context of a subprogram is a class, but these factors tell us nothing about the

structure of the problem domain, just the conceptual structure of Java. Adding

a pattern for repetition is thereby a way of representing the problem context for

the subsidiary patterns in the model of the programming language that is being

used for design - extending the basic language to include concepts that speak to

the problem specification. Of course, this could be said another way. Identifying

a force for repetition in the problem specification indicates that the following

patterns are applicable.

We have a discussion here about the precision with which context and forces

should be specified in patterns. I think it is important to identify the issues on

which this discussion turns. If preciseness is required for pedagogical reasons then

it indicates that we probably need a different pattern language. The point about

the pattern language is that it provides, in itself, the contextual details. It tells me

that, at this point in the design process, I need to look for the concepts pointed to

by these arrows in the problem specification. Thus, for example, if I wish to more

precisely define the patterns available in the STATEMENT SEQUENCEpattern,

then I need to specify that in the language, not the pattern.

As an example, consider calculation. Calculations often involve repetition,

but this might not be obvious to a novice. I can make it more explicit by adding

a pattern called CALCULATIONto those pointed to by STATEMENT SEQUENCE.

CALCULATIONwould then point to REPETITION. This is a much clearer rep-

resentation of the context than trying to specify it in the REPETITION pattern

itself. It is the pattern language that should be encoding the relationships between

the patterns, that is, the context of each, not the pattern form. An arrow in a

diagram is a much clearer representation of context than any verbal construct. It

is why we have maps rather than descriptions for the location of physical objects

in space. Let the pattern language provide the pointing, the context, because

that is what it does best. Unless there are good reasons, in pattern terms, for

trying to precisely specify context in the pattern form, this job should be done

by the pattern language.

Another factor here is that information about context is itself contextual. In

talking about a context you are going to have to refer to other factors in the total

context - “Australia is in the Asia-Pacific region” does not make much sense as a

description of Australia’s geographical context unless you already know the con-

text of the latter. A map, or a language diagram, avoids the need for contextually
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recursive verbal descriptions, and should be preferred unless there are compelling

reasons for the information to be in the pattern. In purely pattern terms the

purpose of the contextual information is clearly to aid in pattern selection. If

the pattern language is about the relationships between patterns then it, not the

patterns, is the right place for contextual information. It is difficult to see how

placing it inside the patterns is helpful in terms of using them.

Yet another factor is the ease of assimilation. An important aspect of pattern

theory is the notion of internalisation of the patterns. You are an expert when

you no longer have to constantly refer to the pattern documentation because the

information is encoded in your brain. The cognitive process is itself heavily based

on patterns. Information that can be fitted into an existing structural form is

much easier to assimilate than isolated ‘facts’. That is, all the information in our

brain is organised in terms of the relationships between the individual ideas. It

forms pattern languages in fact. Thus having the information about programming

organised in pattern language form is clearly advantageous to the assimilation

process. It comes pre-digested in some sense - organised in the way that the

brain organises information itself, that is, in contextual form.

6.5 Context - problem or pattern?

There is still a decision about which of the two possible meanings of the word

‘context’ is appropriate here. Which ‘context’ is being addressed in any com-

ponent with this name in the pattern form - the context of the problem or the

context of the pattern? This is probably not a real question at all because it is

difficult to see how these two can be different except in very fine detail. The con-

text in which the current state of the problem exists is created by the application

of the previous pattern - the particular problem now being dealt with is the result

of the interaction between the pattern language and the original specification, as

illustrated in Chapter 7. Patterns can only generate solutions by generating new

problems - subproblems in effect. If the application of a pattern does not gener-

ate a new problem (subproblem) to be solved then the original specification has

obviously been met. Thus the context of a particular problem is in large part

created by the previously applied pattern having resolved some of the forces and

thereby set up the new context - the intermediate configuration of forces that

now needs to be dealt with. This suggests that the context of the pattern in

the pattern language is the most pertinent aspect in the process of generating a

solution.

Ultimately, this is the justification for concentrating on context. Trying to

analyse the forces in a given situation at the pattern writing stage is both difficult

and dangerous, because the forces exist in the problem space and it is not always

the case that the artefact(s) inspiring the pattern author contains a resolution of

all the forces in the user’s problem space, as in the water supply case outlined
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above. But Alexander’s idea is that the patterns provide the resolution of the

forces in the problem space and exist, therefore, in a different conceptual space,

that elucidated by the Pattern Language that is “made up” by the user.

Alexander’s descriptions of patterns includes the idea that a pattern

should represent a kind of equilibrium of forces. ... This is the same

notion as optimality as seen for example in the analysis of algorithms

in computer science, but applied to the kinds of harder-to-measure

forces described in the previous question. It is usually impossible to

analytically “prove” that a solution optimally resolves forces. (In fact,

it is hard to define the notion of “proof” here, or even to see what use

such a proof would have.)

(Appleton 2000b)

The very point about the Pattern Language idea is to shift the task of solving a

problem from the conceptual domain in which it actually exists because solving it

there requires detailed analysis of the whole domain and this is extremely difficult

without a “field description”. The pattern language provides the field description

of the actual problem domain by means of the correspondence between the context

of each pattern in the language (the relationships between the patterns) with the

context of the problem in Alexander’s sense, the full configuration of all the forces.

The difference between the two conceptual domains here, the ‘problem space’

and the ‘pattern space’, is analogous to that between an actual physical space

and a map of it. The problems that exist for a person in terms of location in

a physical space are caused by the inability to see, from within the space, the

relationships between the topographical features that exist in it. A map of the

physical space replaces the need to make a detailed analysis, a thorough explo-

ration of the whole space, in other words, by resolving the forces - representing

the relationships between the features, the context in fact. In a vital way, having

the contextual relationships of the features of the whole space set out in an ab-

stract form resolves the forces that make finding one’s way around in the space

problematic. But the actual representations of the features, the patterns, and the

contextual relationships between them, the pattern language, exist in a different

conceptual domain to that in which the forces exist, a map is not the same thing

as the ‘space’ it represents.

So the advantage that concentrating on context gives you is that it can be

represented in the pattern language easily and accurately, and forces can’t. More-

over it enables you to see that the real dynamics provided by the application of a

pattern is not in building the solution, but in providing the context for the appli-

cation of the next pattern. It does this by specifying the problem anew, restating

the current constellation of forces. What you are working on is a problem in a

context not a problem in the abstract. Using the context of the pattern in pattern

language is a powerful way of sidestepping the need to understand the forces in

the problem situation, or even the exact context of the problem. The pattern

language is telling you that, at this point in the process, you really only have
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these options available to you. Thinking about anything else here is pointless.

This means that you can analyse the situation in terms of the options that are

actually pertinent. Most of the context of the problem, most of the forces at play

can be ignored, because the important aspect of understanding the current stage

of the process is provided by the pattern language. Applying one of the options

alters the situation in a way that changes the problem.

If the context needs to be more closely specified then that should be done in

the pattern language rather than in the patterns. This situation actually does

arise in the novice programming situation. One of the main difficulties that novice

programmers face is deciding what to do next. Part of the power of the pattern

concept derives from the specification of context. A pattern says that faced with

this situation, this is known to be a way of proceeding. But, in general terms,

the proposition holds - a good part of the decision about which pattern to apply

next is programming language dependent, so, as an example, it is not possible

to apply a loop in any other Java context than a method. This implies that

most of context is above the level of pattern detail, it would be a mistake to try

to specify such choices in the patterns themselves. A much more natural way

to illuminate context is to provide a map. This is what the pattern language

does. Thus if there is a lot of contextual description appearing in a pattern then

it probably indicates that extra patterns are needed on the map, that it is not

detailed enough to make choosing a route obvious. A novice shouldn’t have to

read the pattern to make a choice except in the case where there is no dramatic

difference in terms of the final artefact between the choices. The pattern form is

about solving the problem, implementing the solution, not about discovering the

context - you need a map for that.

6.6 The Dynamics of the Pattern-Problem Sit-

uation

The relationships in a system between the problem and the pattern language are

a result of the need to carry out a task. You start with the system in a certain

state (‘Original State’ in Figure 6.7), and the initial problem, and therefore, its

context, is created by the need or the desire to do something. The forces that

now pertain in the situation are the result of the impetus created by the need to

change the state of the system in some way.

That is, the situation has been transformed into the initial problem and its

context by the forces set up by the requirement for change. But, as Alexander

points out, this is just too complex to analyse in terms of its forces (see (Alexander

1964, pp. 24-5)). The factor that makes design problematic is that the elements

of a design are not independent - a simple list of the forces does not capture the

dynamics of the relationships between them. Changing one aspect of a design



6.6. THE DYNAMICS OF THE PATTERN-PROBLEM SITUATION 203

Original State

-

���9

����:
HHHHj

balance of forces

�
�

�
�initial problem

HHHHj ����

����*

@
@

@
@I

Initial Context

Figure 6.7. The initial problem sets up the context for the first pattern

will affect many others because the parts, and therefore, the forces, interact in

complex ways.

We know that we shall never find requirements which are totally inde-

pendent. If we could, we could satisfy them one after the other, with-

out ever running into conflicts. The very problem of design springs

from the fact that this is not possible because of the field character

of the form-context interaction.

(See note 23 in (Alexander) 1964, p. 213)

What the pattern language brings to the complex is a view of the system that

derives from prior experience in changing it. It says that these patterns have

now come into play as a means of avoiding the need to closely analyse the forces

pertaining in the context of the problem.

As a pattern is applied it changes the dynamics of the situation. The problem,

its context, and the forces in it, are transformed by the pattern because, not only

has the problem itself been modified, but the context of the problem has been

altered by the interaction with the context of the pattern, that is, its location

in the pattern language. Applying one pattern has brought the patterns below

it into play. In other words the pattern has brought its context with it and

thereby transformed the context of the problem. This is because the context of

the pattern is a reflection of prior experience. In dealing with situations in the

system people have discovered this particular structure of relationships between

the patterns. So the pattern language structure is encoding the underlying order

in a powerful way. It is, in a sense, a map of the common problems in the

system. Any problem currently being dealt with will have its context in the

system revealed by the pattern to which it is related. Prior experience relates

problems to known solutions in the pattern form, and problems to their context

in the web of relationships that forms the structure of the pattern language. “The

language not only connects the patterns to each other, but helps them to come to

life, by giving each one a realistic context, and encouraging imagination to give
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Figure 6.8. The applied pattern brings its context with it.

life to the combinations which the connected patterns generate” (Alexander 1979,

p. 315). The pattern language process is an unfolding of the solution to the

original problem through the dynamics of changing the problem and its context.

In Alexander’s terms, the context of a problem is the configuration of the forces

in the situation. But it is simply too difficult to deal with the forces directly.

Applying the patterns is thereby a way of avoiding this difficulty.

The advantage of the pattern language is that by illuminating the context

of the pattern, its location in the pattern language, it locates the position of

the problem in the overall structure of the system as well. Prior experience has

located this pattern in this context, so the context and the forces involved in the

situation currently being dealt with are likely to be similar. But you don’t have

to analyse the forces or understand the context of the problem situation itself,

because the context of the pattern tells you which patterns have been found to

be useful in dealing with this situation before, that have resolved these forces.

The pattern language directs you to solutions without the need for close analysis

of the problem context because in a vital way the problem context is the pattern

context. The pattern is really just the problem with an exposition of its solution.

The other patterns in the pattern language are similarly just the other problems

common in the system. So it is only natural that the position of the pattern in

the language tells you about the context of the problem. The pattern language

is not just some artificial structure imposed on the system from the outside, it is
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an encapsulation of prior experience in the dealing with problems in the system.

By deciding to deal with the current situation by writing a program, you have

implicitly added the programming language to the system in which the situation

exists. The programming environment has necessarily become a part of the way

that you now view the situation. And this is why the pattern language derived

from the syntax of the programming language is relevant. It comes with the

toolkit. Any situation has to be dealt with using programming tools, so the

larger system is now constrained by what is possible and available in the chosen

programming language. At its base level a programming language is just logic.

So what you are really doing by bringing a programming tool to the system is to

provide a means to logically analyse it. You are deciding that it is more efficient

to deal with problems in this system using computers. Ipso facto you are now

going to have to view all the problems in those terms. The pattern language of

the programming syntax is now a part of the context of problems in this system.

This is advantageous because the toolkit has a history. Others have been using

it to solve problems in other systems. But, more to the point, it was designed

with solving programming problems in mind. This is why the particular paradigm

of a programming language makes a difference. As we saw earlier, thinking of

a program in object-oriented terms is quite different to thinking in procedural

terms (Bergin 2000). So you are importing the prior experience of other people,

including the language experts who designed it, and adding it to your own. This

is all that a pattern language based on the syntax of the programming language

is - a history of using these tools. There is nothing particularly modern in all

this, of course. Thinking about any system in terms of a new technology changes

the way that you think about it. Every advance in weapons technology changes

the way that the conduct of battles is thought about because the new technology

brings new patterns of use that can’t be ignored in terms of overall strategy. The

system now incorporates the patterns of use built into the new technology. And

the experience of others becomes relevant because of this too.

6.7 Patterns and ‘Wholeness’

The dependencies between the elements of a system are an expression of its

‘wholeness’, and the problematic nature of a ‘design process’ is caused by the

fact that it is linear in nature - it is a ‘program’ in the general sense of that word.

“The process of development is, in essence, a sequence of operations, each one

of which differentiates the structure which has been laid down by the previous

actions” (Alexander 1979, p. 371). So there is a fundamental conflict between the

needs of the product (“wholeness”) and the nature of the process that produces

it.

The designer as a form-maker is looking for integrity (in the sense of

singleness); he wishes to form a unit, to synthesize, to bring elements



206 PATTERN LANGUAGE FUNDAMENTALS

together. A design program’s origin, on the other hand, is analytical,

and its effect is to fragment the problem. The opposition between

these two aims, analysis and synthesis, has sometimes led people to

maintain that in design intellect and art are incompatible, and that

no analytical process can help a designer form unified well-organized

designs.

(Alexander 1964, p. 116)

If this conclusion, that “no analytical process can help a designer form unified

well-organized designs” were to be true, then history tells us that there must

be some non-analytical process that does work. It’s difficult to accept that the

examples of well designed ‘artefacts’ that we see all around us are all the product

of pure chance. Moreover, the notion of design, considered widely, encompasses

natural systems even though there is no ‘conscious’ process of design involved. In

fact, it is ‘natural’ order that provides the clue to the mystery of the occurrence

of good design in human affairs. Natural form is the product of processes that

are, by definition, non-analytical - there is no ‘conscious design’ involved. This

implies that nature is the model for good design, as Plato insisted. The order

that we see in nature depends upon generality, the persistence of general features,

Plato’s forms, in spite of the everchanging flux that is process. These regularities

are the factors in the universe that we call “the laws of nature” and represent

Plato’s statement of a theory of universal patterns (Watts 1982, p. 33).

What the pattern language gives us is a process that is fundamentally non-

analytical in nature. In a sense the “analysis” has been done in advance, it

is embodied by the order reflected in the language structure, which is itself,

in turn, an expression of previous experience with the system. But remember,

this structure is derived itself from process, the functioning of the system, and

therefore reflects the “wholeness” of the system in a way that no analysis can

accomplish. This is a very old idea, in fact it lies behind all attempts to explain

the world whether they be religious or rational in spirit.

According to Herakleitos, the one rational world-order is both unwill-

ing and willing to be called by the name of Zeus ... i.e., we may speak

of the orderly processes of nature in purely secular terms, or we may,

if we wish, apply religious terms to them. But the important thing is

to recognize their objectivity: the fact that they exist independently

of our attempts to impose our own patterns upon them. The fire of

the kosmos is both physical and metaphysical: it is not just change,

but ordered change: the continuity of the general features of processes

throughout unceasing change. The order is produced by the Logos or

metron, which, in the last analysis, is physical or observable, and is

“common to all things”.

(Watts 1982, p. 11)

In an important sense analysis is a sort of post facto approximation of reality.

Analysis happens after the event. It aids “understanding” in that it provides the
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basis for predicting future events because of the fact that systems are ordered and

therefore repetitive in nature, not through any inherent power of its own. Nothing

is as thoroughly deterministic as the throw of dice, yet no amount of analysis or

measurement of the details of the interactions will provide a means of predicting

the result. The interactions occur, in a sense, without analysis or measurement

of detail, so although the result is “determined” by the forces involved, mass,

momentum, angles, velocities, and so on, these cannot be analysed in advance.

Even if they could be “measured” this would still not be useful because the system

functions, in effect, with the exact parameters involved, and any measurement,

no matter how precise, remains an approximation. So even given measurements

with an accuracy of a hundred million decimal points, this would not enable an

accurate prediction because the system functions with an ‘effective’ accuracy to

an infinite number of decimal points, that is, without any measurement as such

occurring. Measurement lies on the semiotic side of the epistemic cut, functioning

on the physical side (see Section 5.5).

Another way of saying this is that “understanding” is based on the order of

the system, not the details themselves, because the system is expressed in the

“continuity of the general features of processes throughout unceasing change”

(Watts 1982, p. 11). All of our intellectual systems are built on general rules.

The details are just data en mass, not information on which we can build under-

standing, or at least not the level of understanding that underlies the practice of

a skill. Consider the difference between the ‘art’ and ‘science’ of riding a bicycle.

The ‘art’ is exemplified by actually riding a bicycle while the ‘science’ is just

an analysis of the various forces involved. The rider is doing the riding without

ever having done the analysis, that is without understanding the ‘science’ in any

intellectual way. The ‘art’ is based on practice of the skill, repetition, not just

intellectual understanding, or even computation of the actual numbers involved.

The principle by which the cyclist keeps his balance is not generally

known. The rule observed by the cyclist is this. When he starts

falling to the right he turns the handlebars to the right, so that the

course of the bicycle is deflected along a curve towards the right.

This results in a centrifugal force pushing the cyclist to the left and

offsets the gravitational force dragging him down to the right. This

manoeuvre presently throws the cyclist out of balance to the left,

which he counteracts by turning the handlebars to the left; and so

he continues to keep himself in balance by winding along a series of

appropriate curvatures. A simple analysis shows that for a given angle

of unbalance the curvature of each winding is inversely proportional

to the square of the speed at which the cyclist is proceeding. But does

this tell us exactly how to ride a bicycle? No. You obviously cannot

adjust the curvature of your bicycle’s path in proportion to the ratio

of your unbalance over the square of your speed; and if you could you

would fall off the machine, for there are a number of other factors to
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be taken into account in practice which are left out in the formulation

of this rule. Rules of art can be useful, but they do not determine the

practice of an art; they are maxims, which can serve as a guide to an

art only if they can be integrated into the practical knowledge of the

art. They cannot replace this knowledge.

(Polanyi 1958, pp. 49-50)

Another example that Polanyi discusses is the ‘touch’ that pianists sweat blood

to attain. Fame and fortune rest on this ‘touch’, which according to the science of

the process of sounding a note on a piano, cannot exist (Polanyi 1958, pp. 50-1).

6.8 So what is a Pattern?

The description that best fits the pattern idea is that it is a feature of some system

that forms a node in the concept hierarchy of a conceptual space. It is the fact

that it is a node in the conceptual map, the pattern language, for that space that

makes it useful in addressing the organisation of the system, not the simple fact of

recurrence. Some recurrences are things to be avoided - mistakes, or anti-patterns

perhaps - they do not contribute to the organisation or structure of the space.

Or they even contribute negatively. It is all too easy to forget that a system is

more than just structural form, that it is important because it contributes to a

process, it lives, it exists as a ‘whole’ in its own right. So a pattern is a pattern

because it contributes to a process that structures a conceptual space, it could

hardly recur if that were not the case. So, in architectural design, “each pattern

is an operator which differentiates space: that is, it creates distinctions where

there were no distinctions before” (Alexander 1979, p. 373).

But on its own this is not enough. Buildings are only meaningful insofar

as they are ‘living space’. If patterns really are just about differentiating space

then it’s difficult to see how they generate the Quality Without a Name. It is

entirely possible to envision space being differentiated in ways that do not feel

good. And, indeed, isn’t that the basis of Alexander’s criticism of much modern

architecture? “To me, this core fact about buildings in traditional societies being

beautiful ... had to be accounted for, and the idea that buildings of our time,

by comparison, were so oppressive and ugly, even the best of them, gradually

emerged in my mind” (Alexander quoted in (Grabow) 1983, p. 37). There must

be something else to be added to this definition. ‘Each pattern is an operator

which differentiates space in ways which create quality/feel good/contribute to

the wholeness of life.’ Patterns are about structuring the whole way of life of a

community, about a process not an artefact. The built artefact is merely a factor

in the larger process, a part of the superstructure of communal life. Just as a

human skeleton is not an entity entirely in its own right, so a building is more than

just a means of differentiating space. The skeleton provides the superstructure

for human life. The built environment provides the superstructure for communal
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life.

Seen in this way the role of the architect/builder is more clearly analogous to

that of the programmer. Both are dealing with systems - the architect/builder

with the system of communal life, and the programmer, at a particular time,

with a particular system that contributes to the functioning of a social or personal

purpose of some kind, which is why the program is not the same as the application

to which it is put, just as the physical building is not the “social function” it fulfils,

or attempts to fulfil. In both cases the structural aspect is just a means to an

end, the functioning of the system. The structure thus sits between two processes.

The process of building it and the process that it helps sustain. Its ‘wholeness’

can only be defined in terms of the latter, not in structural terms alone. Pattern

languages are a way of bridging the gap between the two processes. For a new

structure to ‘fit’ into the already existing system, the way of life of the community,

or the existing social or personal system, it must reflect, in some way, the pre-

existing order. It is difficult to see how a new artefact can contribute to the

‘wholeness’ of a system unless this is true.

As an explanation of what patterns do, ‘differentiating space’ is too simple. In

architectural terms, patterns transfer information about differentiating space in

ways appropriate to the community system as a whole. They reflect social func-

tional order more than they differentiate or structure space. This is important

because it clarifies the role of patterns in programming. Patterns in program-

ming are about the functioning of the system as a whole, not just its structure.

A program is defined by what it does, not what it is. You don’t care, in a sense,

what the program is, as long as it contributes to the functioning of the system

in which it is designed to be useful. The real symmetries lie in the two processes

on either side of the program. This is, in fact, analogous to the situation with

architectural/building patterns, but the analogy is obscured by the ‘differenti-

ating space’ idea. The symmetries, the problems, the centres, the wholes, even

the patterns, exist in terms of the system not just spatially. Of course, space

is differentiated in the building process, so the spatial symmetries are a factor

in architectural patterns. But the main thing being differentiated is the living

organism, the community, the social relationships in fact.

Alexander’s words about the role of patterns in ‘wholeness of life’ can only

make sense if he is referring to more than just the structural aspects of building.

Any building can only relate to life in terms of the organisation of living beings

to which it relates in the larger communal system. Given this the analogy with

software patterns is again clarified. The only life to which these patterns can

contribute is seen, in these terms, as the larger system of which the software is

a part. The software itself does not ‘live’. Its ‘life’ is expressed in its interaction

with the system seen as a whole community. Thus any analogies drawn between

Alexander’s discussion of aspects of pattern function must work at this level.

Aesthetic considerations, for example, must be about the impact of the program

in its expression, not just it’s code form. The scale and impact of a building on
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human consciousness, the aesthetics in short, derives as much from its place in

the human culture, as it does from its place in the physical environment. Even

‘abandoned’ buildings have a place in human culture, they relate to us through

the continuous record of community that we call history.

So why are these things that we call patterns, patterns? What is it that is

the same about all these varied constructs that we dare place them in the same

category? In their physical reality or conceptual form they are all different. Some

are doors, some are window sills, some are benches. Yet we refer to them all as

‘patterns’. The ‘pattern’ aspect is the role they play in the larger organism of

which they are superstructural elements. Repetition is one node of this ‘pattern’

relationship, and it gives the relationship its name. But the other aspect of a

pattern is in its functioning, the way in which it resolves forces, relates structure

to function. In physics, forces are uniquely a dynamic relationship in space. Some

physical entity with size, shape and mass is changing in some way, or tending to

change. Resisting change is as much a force as whatever it is that is being resisted.

But it is important to see even simple existence as change. Time itself is a sort of

force, part of the dynamics of existence. So each pattern is a resolution of forces.

But there are not that many different kinds of forces in the world. Therefore

there will necessarily be a repetitive aspect in every manifestation of the reso-

lution of the same forms in different circumstances. In the interaction of high

frequency light with the normally functioning retina the resolution involves the

universal that we call ‘blueness’. No two circumstances that cause this ‘blueness’

are the same yet the essential nature of the reaction, the ‘blueness’, is always the

same. The ‘blueness’ derives from the interaction, the playing out of the forces.

The ‘pattern-ness’ of something is therefore a property of the interaction, not

of any of the structural, physical entities involved in it. “The patterns repeat

themselves because, under a given set of circumstances, there are always certain

fields of relationships which are most nearly well adapted to the forces that exist”

(Alexander 1979, p. 146) The patterns express themselves in structural entities,

the physical and visible manifestation of the fields of relationships, but they are

always essentially a dynamics of some kind, a resolution of forces.

This understanding of pattern-ness as ‘resolution of forces’ is fundamental to

the idea of ‘wholeness’, of patterns being ‘alive’ or ‘dead’. Any situation is more

than just a collection of ‘physical’ forces. The physical environment is merely the

superstructure of this mystery we call life. Life is a process. Think of a water-

fall. It too is a process. The physical drop over the rocks, the water molecules

themselves, these are all just superstructure. The waterfall is a visible manifes-

tation of the process of resolving the forces of gravity and exclusion. The water

molecules must move under the force of gravity but they cannot move to space

that is occupied by rock, so the two forces resolve in the form of a waterfall. Any

waterfall, no matter how different in appearance from other waterfalls we have

seen, is the same in its resolution of forces - always. WATERFALLis the pattern

that expresses the relationship between vertical-ness in physical topography and
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a fluid, water.

Every detail of a system can be seen as a force in that system in that it af-

fects the functioning of the system. To exactly specify the flow of a waterfall at

any moment I would have to know the position and velocity of every molecule in

the entire system, in other words, I would have to deal with all the forces. But

understanding a system at a fundamental level does not require it to be exactly

specified. This is fortunate because the state of any real system can never be

exactly specified, as, being based on measurement, specification resides on the

subject side of the epistemic cut, and is therefore not properly a part of the onto-

logical status of the system. Understanding is based, not on exact specification,

but on the hierarchies of meaning that details form, patterns. If a level of detail

is significant in terms of the functioning of a system then it will recur. There is

a threshold in the configuration of forces that changes detail into pattern. All

I have to know about the forces at work in the waterfall situation is derived

from my previous experience - the pattern is obvious. Given any configuration

of details, WATERFALLwill always recur if the context of the situation is RAIN-
FALL and UNEVEN TOPOGRAPHY. The pattern language of a system is simply

the hierarchy of meaning within it, expressed during its functioning, it is a map

of experience.

Life is the pattern of being alive. It is a resolution of the forces brought into

play by self-organisation. A living form is distinguished from a non-living form

by the presence of this force for self-organisation. The context of the pattern

is physical reality, and the problem that the pattern solves, life, is the dynamic

interaction between the drive for self-organisation and physical reality. One col-

lection of molecules has formed into a larger entity that is self-organising, and

in this way has differentiated itself from other collections of molecules that are

either self-organising themselves, or not. But, like the waterfall, it is the pro-

cess that defines the collection, makes it whole. It is an entity only because it

self-organises. It’s ‘wholeness’ is the resolution of the force for self-organisation

against the forces of the physical nature of reality including the force that any

molecule has to just exist, that is, to just be a molecule. When the force for

self-organisation is gone all the molecules in the entity cease to be organised by

the whole and revert to simple existence.

In a sense, life is the relationship between physical reality, time, and the ten-

dency for self-organisation. A pattern in the built environment is a resolution of

forces in this whole complex - but even more than this because there is another

factor here. The environment is no longer just defined by the interplay of physical

and biological forces but by mental ones as well. Some of these self-organising

entities extend their organising ability into changing the environment in inten-

tional ways. So there is now a larger self-organising entity, human community

(society and culture). The patterns in a built environment are a resolution of

forces in this whole complex, and will only be alive, or contribute to ‘wholeness’

to the extent that they do this successfully. Resolving forces, even successfully,
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that are just physical, forces that are just biological, or even forces that are from

the combination of these two fields, is no longer going to be sufficient. Patterns

in the built environment are about community, the life of the larger entity, and

therefore resolve forces that are the result of relationships between all these fields.

Our human perception is approximating in the sense that it deals with rep-

resentations of things (images, concepts, theories, etc.) rather than the things

themselves. Thus it is in principle impossible for us to distinguish between our

representation and the thing being represented - for our own cognitive purposes

the representation is the thing. This is why it is not possible to compare quali-

tative experiences, not because the system that is giving rise to the experiences

is different, but because the internal representations of the system are different.

Presented with an automaton that fitted my representation of a sentient being I

can do no more than compare it with my representation, and say that the two

are, or are not, identical. This means that I can never say that an automaton

that fits my representation is a sentient being. All I can ever say is that it fits

my representation of such. This does not preclude making an assumption to that

effect. As a working hypothesis we do this all the time. We assume from the fact

that other people fit our representation of sentient beings that they actually are

such, when in fact we have no real notion of their qualitative experience at all

- we simply assume, based on our own experience, that it is similar to our own.

Part of our everyday metaphysics is the assumption that our perception reflects

reality. We are dualists from practical necessity - life just gets too complicated if

you try to stick too rigorously to either realism or idealism.

We understand things by relating them. One way of doing this is categorisa-

tion - the relating of similar concepts. Another way is analogy. We ‘understand’

something by relating it to a different concept that we do understand. Both of

these involve pattern languages. We are using the similarities between concepts

(commonality) to increase order. Before we began to place plants into categories

based on similar features, our view of the plant kingdom was a largely undif-

ferentiated mass of detail, complicating even basic processes like identification

of plants - the same plant species ending up with different names, or different

species with the same name. Our understanding of the plant kingdom depends

largely on our view of it reflecting the ‘natural order’ within it. The order of the

whole system is based on the relationships between the structural order of differ-

ent species. (Is the fact that one of the categories in the classification system is

actually named ‘order’ a pure coincidence?). So, without a system of categories,

the living world is just a vast complex undifferentiated mass of detail that is al-

most impossible to understand. Categorising things based on the similarities and

the differences between them allows us to ‘see’ the patterns in the system. We

have differentiated the mass; added coherence to the detail.

But an important aspect of patterns is their usefulness, not only in terms of

understanding a complex system, but in maintaining and developing it, and it

is at this point that the notion of a pattern as a tool for practical action be-
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comes significant. So far we have discussed patterns primarily in terms of their

effectiveness as metaphors, a means of bridging quite disparate systems, and, as

shown in Table 6.1 there is an exact fit between pattern and metaphor at most

levels. However practical action is not often considered in metaphorical terms,

more usual are notions like templates and moulds, so the question arises about

the fit between these concepts, mould and template, and pattern. Despite the su-

perficial similarity, Table 6.1 demonstrates that there are fundamental differences

at most levels of analysis.

Pattern Metaphor Mould/Template

Is a form of Repetition Repetition Repetition

Methodology Generation Generation Replication

Works by Prior experience Prior experience Strict definition

Produces Understanding Understanding Exact copy

Transfers Meaning Meaning Form

Process is Informal Informal Formal

Table 6.1. Analysis of Patterns as Metaphors and Moulds or Templates

This analysis, in fact, highlights the power of the pattern idea, that it generates

on the basis of the very essence of experience, that it is at the same time unique

and yet familiar. Patterns are closer to metaphor in that they deal with meaning,

not just form, as templates and moulds do.

6.9 Mind and Patterns

Patterns are the essence of mind and are the basis for its fundamental role in

any form of creativity. But creativity can only happen through combination of

existing entities, even if those entities are only ideas, so the real driving force

of creation is pattern language. Faced with any situation in which new form is

required, one first has to develop the ‘language’ of ideas that describes it. What

makes a novel situation extraordinarily difficult is the fact that the ‘language’ to

deal with it does not yet exist and has to be made up. Fortunately this existence

of ours is not just that “continuous stream of sense impressions flashing past”

that we described in Chapter 3 where “nothing ever repeats”, there is, as the

old saying goes, “nothing new under the sun”, no situation is ever entirely novel.

Some of the elements of the language that we are required to deal with any

situation already exist, we have encountered them as patterns of our previous

experience, and even if we haven’t ourselves, other people may well have done so.

Often, indeed, all the patterns we need in a novel situation exist already from

our prior experience, the novelty really only exists as a sort of contextual illusion

- the same sort of things are happening, or need to be made to happen, in a

context in which we have not experienced them before.
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So the language that we have to make up in a new situation consists, mostly,

if not totally, of elements with which we are familiar in a different context. The

language is particular to the current situation, but the components come mostly

from the general pattern language of everyday experience. Think of how the

particular pattern for DOORcould have arisen over time. As humans moved from

living in natural shelters, such as caves, to manufactured ones, the problem of

entry and egress was dealt with using the experience that caves have openings.

ENTRANCEis thus a pattern that ‘adds structure’ to SHELTER, both of which

derive from the the general patterns surrounding life in a cave. When the situation

changes to life in an area devoid of natural shelters, these patterns are imported

into the pattern language for the new situation. But, of course, once you start

manufacturing shelters, a new language, derived from that for making tools, a

‘language of manufacture’ in effect, develops around the making of shelters. So,

although the idea of a door is a novel one from the cave experience, once you

have a language for making components of a shelter, walls and roof structures

for example, the idea of making a component to close off the entrance when it is

not being used, is not completely novel in terms of the ‘making components of

a shelter’ language, it is just a different type of COMPONENT, a modification of

WALLmaybe. A language for any particular endeavour will thus consist mainly

of patterns derived from languages for other types of experience, and the sum of

all the pattern languages can be seen as a sort of general pattern language for

the totality of life.

This means that a significant part of any creative process is establishing the

particular language for it, in both directions, specialization and generalization.

ENTRANCEin terms of the new language is a generalization of a component of

the ‘cave life’ pattern language, but a DOOR, a pattern that ‘adds structure’ to

ENTRANCEinvolves a specialization of the patterns of skill derived from making

tools. But this is, in a sense, still a general language for building shelters. Any

project for a particular shelter will be a specialization of this general language,

and, as Christopher Alexander points out, it is this language-composing element

that lies at the heart of design.

So, the real work of any process of design lies in this task of making

up the language, from which you can later generate the one particular

design. You must make the language first, because it is the structure

and the content of the language which determine the design. The

individual buildings which you make, will live, or not, according to

the depth and wholeness of the language which you use to make them

with. But of course, once you have it, this language is general. If it

has the power to make a single building live, it can be used a thousand

times, to make a thousand buildings live.

(Alexander 1979, p. 324)

The design of an novel artefact, is creation in the purest sense because once

where there was nothing, there is now something. And before it could exist as
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an artefact it had to exist in conceptual terms. But when you are talking about

something that does not yet exist, you are in the state of not really knowing what

you are talking about. Dijkstra describes a situation of this kind that arose when

he was part of a team designing a multiprogramming system.

When the design is complete one must be able to talk meaningfully

about it, but the final design may very well be something of a structure

never talked about before. So the design team must invent its own

language to talk about it, it must discover the illuminating concepts

and invent good names for them. But it cannot wait to do so until the

design is complete, for it needs the language in the act of designing!

It is the old problem of the hen and the egg. I know of only one way

of escaping from that infinite regress: invent the language that you

seem to need, somewhat loosely wherever you aren’t quite sure, and

test its adequacy by trying to use it, for from their usage the new

words will get their meaning.

(Dijkstra 1982, p. 342)

But this means that you are working largely in the dark, for not only are the

concepts unknown, they are constantly evolving. At the beginning of the design

process one only has the vaguest idea of what the elements one is using to discuss

the design will finally come to mean. This means the the design dialog involves

‘words’ that shift in meaning as the dialog progresses. No wonder the process

of creation seems mystical. To an outsider the discussion of a team involved in

design must appear to be verging on ‘crazy talk’. Dijkstra had this feeling about

the discussions of the team designing the multiprogramming system in which he

took part.

If during these discussions a stranger would have entered our room and

would have listened to us for fifteen minutes, he would have made the

remark “I don’t believe that you know what you are talking about.”

Our answer would have been “Yes, you are right, and that is exactly

why we are talking: we are trying to discover about precisely what

we should be talking.”

(Dijkstra 1982, p. 342-3)

However, it is only possible for concepts to evolve out of shadowy origins like

this if the language being used is informal. In a formal system the semantics of

any given element is fixed, there is no such flexibility available, and this is why

a programming language is the wrong language in which to design a program.

Because you are constantly dealing with “concepts that are meaningless with re-

spect to the original problem statement, but indispensable for the understanding

of the solution” (Dijkstra 1982, p. 343) you have to make up the language as

Alexander indicates, that is, you need a pattern language not a formal one. As

Dijkstra says, this “is the only way I know of in which the mind can cope with

such conceptual problems” (Dijkstra 1982, p. 343).
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Even Plato, who denounced the Milesian naturalists as atheists, never-

theless found in mind, the most remarkable of all natural phenomena,

the distinctive characteristic of deity. And he did not shrink from the

conclusion that deity, as mind, is not the “ultimate reality”, because

it is not causally independent. The “ultimate reality”, in Plato’s the-

ory, is the world of the Forms - a doctrine which he emphasized, the

“cognitively reliable”, as Vlastos puts it: the domain of the logically

necessary, by contrast with the world of contingent truth. In the

doctrine of the Forms ... Plato was also trying to state the theory

of universal patterns and standards, qualities and categories, and of

kinds of real things (which he mistakenly represented as degrees of

reality). Deity known to us as mind is causally dependent upon the

Forms: a notion which we may interpret as the dependence of orderli-

ness upon generality - i.e., that it is through the persistence of general

features or characteristics that the rapidly changing processes of the

universe retain their identity and exhibit the regularities in internal

activities and in interaction which we describe as “general laws”.

(Watts 1982, p. 11)

What this boils down to is a view of mind as a way of arriving at a rational con-

ception of the world. “A cognitive scientist would say that evolution constructed

truth-finding cognitive processes” (Gopnik 1996, p. 489).

Categorisation is a classic ‘patterning’ activity that also involves a hierarchy

of the connections between the categories, in other words, a pattern language.

The phylogenetic tree is thus a pattern language for taxonomy, for tracing the

evolutionary relationships among organisms. Again one sees the classic features

of the pattern language, pattern (structural similarity, that is, repetition of form)

and process (classification).

There is and will remain a Platonic element in science which could

not be taken away without ruining it. Among the infinite diversity of

singular phenomena science can only look for invariants. There was a

Platonic ambition in the systematic search for anatomical invariants

to which the great nineteenth-century’ naturalists, after Cuvier and

Goethe, devoted themselves.

Modern biologists sometimes do less than justice to the genius of the

men who, behind the bewildering variety of morphologies and modes

of life of living beings, succeeded in identifying, if not a unique ‘form’

at least a finite number of anatomical archetypes, each of them invari-

ant within the group it characterized. It was of course not difficult to

see that seals are mammals closely related to carnivores living on land.

It was much harder to discern the same fundamental scheme in the

anatomy of tunicates and vertebrates, so as to group them together

in the phylum Chordata; and it was still more a feat to perceive the

affinities between chordates and echinoderms; yet it is certain, and
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biochemistry confirms it, that sea urchins are much more closely re-

lated to us than the members of certain much more evolved groups of

invertebrates such as the cephalopods, for example.

(Monod 1974, p. 100)

But an even more critical aspect of categorisation is that no creativity is

possible without it, precisely because what it sets up is a pattern language.

Reasoning by similarity instead of calculation seems to have both

evolutionary and parsimonious advantages and lies at the bottom of

more complex reasoning. The ability to categorise is of fundamental

value for the simplest train of thought. If a subject cannot identify and

reidentify the object he reasons about, then he cannot entertain any

continuous, coherent thoughts. He becomes a momentary individual.

Categorisation develops in children at an early age from a general

ability to notice different features of objects over context-bound rei-

dentification to abstract categorisation. Abstract categorisation is in

principle independent of detection of perceptual similarities and rests

upon theoretical knowledge. It appears that conceptual or symbolic

thought in this manner evolves from imagery.

(Brinck 1997, pp. 12-3)

The important point about categorisation, indeed all the “truth-finding cog-

nitive processes” that Gopnik and Meltzoff identify is that they contribute to

the process of understanding. Carrying out any practical activity involves un-

derstanding the environment in which the activity is to be performed and the

purpose to which it is directed. So the feature that makes a concept a pattern is

its role in some process in terms of human purpose. This is the critical attribute

of a pattern, that it drives process. In the learning to program situation, there-

fore, the process that the pattern language drives is programming, and the next

chapter illustrates how the pattern language operates in enabling the process of

designing the conceptual superstructure of a simple program of the sort typically

encountered by novice programmers. But, before we do that, we need to consider

the role of pattern language in the cognitive activity called programming.

6.10 Cognition in Programming

By its nature, programming involves high level cognitive activity. It is the pro-

cess of solving a problem by creating a computer program, so it involves, not only

understanding the programming language, but using that knowledge in creative

ways. It is fortunate that the problem of levels of cognitive activity have been

well formulated in general educational practice. The treatment of the notion of

cognitive levels in learning can be used to help understand the cognitive load of

other activities, such as programming. So, in this field, the work done on catego-

rizing cognitive tasks embodied in Bloom’s Taxonomy of Educational Objectives
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(the left-most column in Table 6.2) are applicable generally to the activity of pro-

gramming itself, as well as specifically in the learning of programming as explored

in Section 7.7.

A complicating factor in the interaction between the normal cognitive process

and programming is the fact that there are two fundamental ways to approach the

programming task. Each of these has implications for the overall development

process as it impacts on the programmer and affects the artefact being built.

Top-down programming is based on breaking down the original specification of

what is needed into simpler and simpler pieces, until a level has been reached

that corresponds to the primitives of the programming language to be used. The

implications of this method for the cognitive process are that it mainly involves

the first four of Bloom’s categories. The fifth level, synthesis, which corresponds

to overall program design, occurs implicitly, almost by default from the process

of understanding and analyzing the task specification. The second style, bottom-

up programming, requires the fifth level of Bloom’s hierarchy, synthesis, right

from the start, as it is based on building up more-or-less abstract components of

the final system from the programming language primitives. In order to do this

correctly, the assumption of a comprehensive grasp of what is required is implicit.

The implications for the artefact in the top-down approach are mainly the

inbuilt rigidities involved in the overt concentration on the original specifica-

tion. Modules built in this way tend to be rather task specific, and therefore less

adaptable to changes in the original specification or to other situations. There is

a temptation to provide globally exposed data structures and to share these be-

tween modules in a way that creates dependencies between functions that, ideally,

should be isolated. Bottom-up programming naturally tends to produce modules

that are more general, and thus more reusable, and having less dependencies.

This implies more flexibility in responding to changes in the specification and to

greater ease of testing and maintenance.

The trade-off between the two approaches, then, is that between the level of

cognition required and program generality. Top-down is cognitively easier, but

is likely to generate a program that has inbuilt rigidities. In practice, it mostly

turns out that programming, in general, uses a mixture of both approaches, and

this involves separating design from implementation. The design stage is basically

top-down, but without involving any coding so that the design artefact is free of

any implementation details. This means, in effect, that the lower cognitive level

tasks involved in the top-down process, are directed at producing an artefact that

encapsulates the programmer’s understanding of the specification rather than the

final program itself. It covers the assumption, which is implicit to the bottom-up

process, that a comprehensive grasp of what is required exists in the programmer’s

mind, and so provides a sound basis for that approach

What this real world situation reveals is the intuitive fact that, given a com-

plex task, people will tend to try to reduce the cognitive load by tackling the

lower level cognitive activities involved in understanding it, first. The danger of
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separating design from implementation, however, is that the concepts used in the

design may not easily map onto the details of the programming language used in

implementation. Clearly, the idea of reducing the cognitive load is particularly

pertinent to novice programmers, so it is important in the learning situation to

facilitate this. However it is also important that the concepts used in doing this

are not completely abstract in terms of the programming environment. A pattern

language for a system is directly derived from the workings of the system, it is

an expression of the system’s underlying order. Using a pattern language for the

design stage therefore allows the top-down process to occur using concepts, the

patterns, that are still firmly rooted in the environment that is involved in the

bottom-up process. The synthesizing aspect is built into the decomposition tool

by the fact that the patterns are elements in a generative system, the pattern lan-

guage, but are nevertheless more general and abstract than the raw programming

language concepts.

Cognitive categories Programming Pattern paradigm

Knowledge Programming constructs Pattern name

Comprehension Programming construct semantics Problem

Application Use of programming syntax Solution

Analysis Understand the problem Pattern Language

Synthesis Design the solution Pattern process

Evaluation Coding, testing and debugging Code Examples

Table 6.2: Bloom’s Categories in Programming Terms. Adapted from (Bloom et

al 1971)

Table 6.2 shows how we think the activity of programming breaks down into

the cognitive categories identified by Bloom, in general terms and in pattern

terms. The first three categories involve the features of the programming sys-

tem, and these are covered in the pattern form itself, meaning that they can be

effectively ‘ignored’ by using the pattern language in the Analysis and Synthesis

levels. This is the ‘automatism’ of the expert discussed in Chapter 9. In effect,

the language features are being represented in the process of designing the con-

ceptual solution to the original specification of the problem simply by the name of

the pattern. The conceptual design involves analysing the problem and synthesis-

ing the solution, and this revolves around the use of the pattern language in the

pattern process described in Chapter 7. But, most significantly, the pattern way

of looking at programming reveals that coding the solution can be seen as a way

of evaluating it. In a sense, the code form ‘tests’ the validity of the conceptual

solution, the purpose of the program as expressed in the original specification is

shown to be either expressed or not expressed in terms of a computing system.

It turns out, then, that the pattern language idea combines the advantages of

the top down and bottom up methods by hiding the low level details required in

the bottom up process in the pattern form. That this is a valid way of viewing
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programming is shown by the fact that this is how the ‘automatism’ of the expert

proceeds. The expert bypasses the need to think about the low level detail by

having thoroughly internalised the pattern language. So, the apparent ‘paradox’

of the expert programmer, the ability to design and code at the same time is

‘explained’ by the ‘revelation’ that coding, although involving the use of low level

programming constructs is actually part of the high level cognitive activity of

Evaluation! But, and this is the really significant point in terms of programming

pedagogy, it illuminates the exact source of the difficulties that novice program-

mers exhibit. By attempting to code the solution they are tackling the highest

level of cognitive process without any appreciation of the hierarchical ordering of

the conceptual domain, not the ‘automatic’ implicit language built up over years

of programming practice, nor any explicit representation given to them by their

instructors. No wonder it’s like trying to fly without having grown wings first.

Just as nobody is born with wings, nobody is born with a pattern language for

programming either.



Chapter 7

The Pattern Process in Action

In what we call thinking the mind isn’t “directed” but suspended. You

don’t give it rules. You teach it to receive. You don’t clear the ground

to build unobstructed: you make a little clearing where the penumbra

of an almost-given will be able to enter and modify its contour.

(Jean-François Lyotard)

7.1 Learning to Program

The factor that makes learning to program so difficult is that there are multiple

activities involved. Firstly, the novice is attempting to build a mental representa-

tion, a model, of the programming system, that is, to acquire the basic knowledge

of the programming system that is required to use it. Secondly, she is trying to

use that model to develop a program. However because the program addresses a

situation in a domain other than programming, designing it involves understand-

ing the situation as expressed in the task specification, so a third strand in the

complex of activities is translating between the conceptual domain in which the

task exists and the programming system. Moreover, as we will see in Chapter 8 all

these various processes are themselves made up of a complex weaving of memory

and meaning expressed in the transformation from static declarative knowledge

to its procedural form. The most surprising aspect of all this is that anyone

ever learns to program. Clearly this situation is a recipe for massive cognitive

overload.

This is particularly so because the method that educators are relying on to

drive the transformation from static to dynamic knowledge is the practical com-

ponent, the experience of writing programs. Despite the attempts to bootstrap

this transformation, that is, to start with simple examples, it is clear that it is this

factor that lies at the heart of the difficulties expressed by novice programmers.

Most novices are able to demonstrate a reasonable grasp of the basic program-

ming language features, but many fail to be able to develop even the simplest

221
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program (Lister & Leaney 2003, p. 221). So the problem faced by educators

is that of providing a means of facilitating the transformation from static to dy-

namic knowledge. Like Helen Keller’s teacher we are confronted with the problem

of an incomplete conceptualisation in the minds of our pupils.

However, there is a more fundamental problem here, and that is that the

static, declarative knowledge, the basic set of features of the programming system,

is presented in a form that is pertinent to the operation of the execution process

in the machine, not the transformation from static to dynamic knowledge in

the programmer’s mind. So there is a category or ontological error involved

here. The transformation process is based on understanding, but the execution

involves pure mechanism. Whatever the properties of mind are that are involved

in understanding, they are being incorrectly ascribed to the programming system.

These two processes, understanding and execution, involve different processing

systems, language and logic, the sequence of steps taken in each is not the same,

and therefore they are, or should be, based on different combinatorial systems.

What this boils down to is the statement that a programming language is not

the right language for the development of the conceptual understanding of a task

in the domain in which it exists that leads to its incarnation as a process to be

executed on a computer. This has long been recognised at the advanced program

development level, hence the use of ‘modeling languages’ in the conceptual design

stage in Software Engineering. Unfortunately, the particular ‘modeling languages’

developed for use at this level are not suitable for programs at the novice level,

nevertheless the same situation pertains. In any case, the process must end up

producing an artefact that does, in fact, run on a computer, so there must be some

sort of bridging of the gap at some level. In the advanced situation the two sides

of the gap, the development of the conceptual solution and the coded version,

are usually handled by different groups of people, experts in using the modeling

language to develop the solution in model form and experts in translating from

the model to the code form.

Clearly, in the case of learning to program, the novice programmer has to

perform both roles. Since the roles can’t be separated at the physical level,

they must be separated at the temporal level, that is, one should not attempt

to perform them simultaneously. What is needed is a mechanism that separates

the two tasks without rendering them meaningless to each other. That is, a

conceptual solution that is not expressible in the execution of a machine is just

as unacceptable as an executable solution that does not perform the task required

by the initial specification. The bridging mechanism is therefore a way of thinking

about the task in terms of the execution of the machine that does not constrain the

thinking to just the execution level operations. A solution is not fundamentally

creative in terms of machine execution as the basic operations that a computer can

perform are set, therefore it actually exists only at the conceptual level because

execution is pure routine, it requires nothing that is really new at execution level.

If “thinking is the ability to contemplate something in its absence” in
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Kosslyn’s words, then creativity is the ability to contemplate some-

thing that has never existed before. This applies to the artist who

creates new visions, the writer, the composer, the scientist who con-

ceives of a new theory, the mathematician, the architect, the inventor

- in short, anyone who goes beyond the routine in his or her profession.

We value creativity as one of the most significant achievements of the

human brain. Can we say anything about possible mechanisms?

Again, we are tempted to look for this function at the highest cortical

levels. But it is instructive to examine the procedure employed in some

of these creative acts. An artist may have an idea for a painting, but

he may not immediately go to the canvas. Instead, he often begins

with a series of sketches.

But why sketch? Why is it necessary to externalize the idea conceived

in the brain, and then have the brain examine it? ... In every cre-

ative act we observe this bootstrap process in which nascent ideas are

externalized and then taken in again by the brain to be reexamined

and modified in a creative loop.

But sketchpads ... are relatively recent acquisitions to aid our creative

activities. If the picture I have drawn of the seeing and perceiving

brain is correct, then similar processes are built into our brains.

(Harth 1993, pp. 74-5)

The point about programming, then, is that although program execution is

performed in programming system statements (made in brush stokes), the think-

ing occurs at the level of ideas, not such statements (brush stokes). And just as

the externalising of thinking aids the creative process in composing a painting,

so too does externalising the concepts involved in designing a program. Just as

trying to envision the finished painting entirely in the brain is too much for all but

the most highly experienced painter, so trying to develop a program by mentally

executing it equally restrictive.

The internal sketchpad has its limitations. ... The images drawn on

it are ghostly and evanescent. It is difficult to hold complex patterns

in our mind for long and subject them to detailed scrutiny. This must

have been a severe limitation to our earliest creative drives. We can

now appreciate the enormous advantage humans gained when they

invented (or discovered) the ability to complete the projection, that

is, to externalize their mental images beyond the sketchpad of the

[mind] by creating permanent images in the world around them.

(Harth 1993, pp. 74-5)

Especially for novices, this externalisation of the language of ideas, is critical

in terms of assisting the creative process. Learning to program involves the

application of programming system features to the solving of novel problems,

so the features will be expressed in the bridging mechanism, but in conceptual

rather than executable form. We are dealing with the pattern of the solution not
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the process of execution, and this is why we need a pattern language. Design

is a different process and the pattern language concept is fundamentally about

providing a mechanism for driving the design process. Patterns are not just

expositions of a solution to a problem, they provide a generative framework, and

this is the purport of the ‘language’ idea. The power of the pattern concept is

based on the solving of problems using known solutions. Problems tend to recur

in many different situations, and it is the repetition that makes them patterns

that allows them to be used as a basis for design. The software pattern concept is

based on this simple fact of recurrence. Since the problem-solution combination

keeps recurring, the idea is to design an artefact, the pattern, that captures its

essence in a standard form. However, since most programming problems are too

large to be solved using a single pattern, the pattern concept must include the

facility for patterns to be put together to form a ‘pattern sequence’, that is, a

particular configuration of patterns that solves a particular problem.

Fortunately, the patterns in a particular domain form a powerful network of

connections in terms of the context in which they appear. For example, if you

are building or designing a wall you need to think about other things, like doors,

and maybe even windows. This network of relationships between the patterns in

a domain gives the overall collection a degree of coherence and forms the struc-

ture that is known as a pattern language. The use of the word ‘language’ is

suggestive here because of the contextual meaning implied by the relationships

between the patterns. Solutions for larger problems can be constructed from

the individual patterns because of the connections of meaning between them,

just as the relationships between words allow the construction of larger concepts

through combination. What transforms the collection of patterns in a domain

into a language, is the relationships between the patterns. It is from this net-

work of relationships that the process derives, and it is the process that reveals

the fundamental properties that give order to designs, “order as becoming” as

Alexander says (Alexander 2002a).

A pattern language, then, represents the design space as a network of the

patterns, and therefore the problems, that occur within it. It is the web of mean-

ing and provides the source of the process of design. The language provides the

dynamics for generating designs just as a natural language provides the dynamics

for generating written artefacts. It provides a means for developing sequences of

patterns.

To get it [a sequence], a static pattern language ... was then re-stated

as a generative sequence. In its sequence form it shows the user the

process of unfolding, in sequence, in such a way as to allow a good

building to be made, very easily, for the particular conditions of a

given site.

(Alexander 2002b, p. 303)

In approaching a programming problem, the idea is to analyse the context

of the problem with a view to understanding the forces or constraints that will
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shape the solution. Once this is done, the forces so exposed provide the means

to begin construction of the ‘pattern sequence’ for the solution. The advantages

of the pattern approach are that the configuration of forces in a given problem

situation can suggest which pattern best matches, thus providing an element of

synthesis within the analytic process, and that the ‘pattern sequence’ for the

solution can be constructed without having to deal with the code directly. The

pattern language drives the sequence-producing process, the product of which,

in turn, specifies the coded solution. In a sense, the pattern language is used to

translate the natural language specification of the problem into a conceptual form,

the sequence of patterns that solves it, and it is this concept level description that

drives the production of the code, not the original problem specification.

So the ‘language’ notion is important in terms of driving the design process

but it seems that this is often overlooked in practice. In the migration of the

pattern language concept into the computer science field, the emphasis has been

on the reuse of proven solutions, which in programming terms, are previous ex-

perience packaged in pattern form. But as Alexander himself points out, the

adoption of his thinking by the Computer Science community has been incom-

plete. At the OOPSLA conference in 1996 he was invited to address the several

thousand attendees, and delivered what, reading between the lines of convention

and politeness, can be seen as a fairly devastating criticism. He said that he

could see lots of patterns, and that was nice, but he could see no sense of moral

purpose in what was happening in Computer Science, and worse, he could see no

generative structural order - no process or language.

What, now, of my evaluation of what you are doing with patterns in

computer science? (Bear in mind, as you hear my comments, that

they need to be taken with a grain of salt; I’m ignorant; I’m not in

your field.) When I look at the object-oriented work on patterns that

I’ve seen, I see the format of a pattern (context, problem, solution,

and so forth). It is a nice and useful format. It allows you to write

down good ideas about software design in a way that can be discussed,

shared, modified, and so forth. So, it is a really useful vehicle of

communication.

(Alexander 1999)

He then goes on to point out that his own work in pattern languages was about

generating wholeness, morphological and moral coherence, not just providing

a “useful vehicle of communication,” and asks if these aspects “have yet been

translated” into computer science as this is the core issue of the pattern language

idea (Alexander 1999).

Alexander’s argument is that, in essence, the pattern idea is a way of looking

at a system. As a collection of related concepts organised in a way that is useful

in terms of some purpose, a system has both structure and purpose, and the

pattern view reflects this fundamental wholeness, the “moral coherence” that

Alexander discusses and which we explore in Section 11.4. The patterns are a
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representation of the structural detail, and the pattern language diagram is about

the overall order of the system and the process of building and maintaining it.

This is the advantage of patterns over other methods of designing a program,

such as pseudocode, flowcharts, Nassi-Schneiderman charts and the like. In these

cases the solution is generated by the programmer rather than being, partly at

least, driven by the relationships between the concepts that are illuminated by

the pattern language. The pattern language is a more powerful abstraction. It

doesn’t just provide a set of symbols to be manipulated by the designer; it adds a

view of the context, the relationships between the concepts, to the design space.

7.2 The Pattern Process

The next two sections, 7.3 and 7.4, of this chapter are based on papers pre-

sented at the Third Asia-Pacific Conference on Pattern Languages of Programs,

KoalaPLoP 2002 (Porter & Calder 2003a), and the Fifth Australasian Comput-

ing Education Conference in 2003 (Porter & Calder 2003b). These sections, 7.3

and 7.4, attempt to demonstrate how the process of designing a solution to a

programming problem derives from the use of a pattern language, but none of

the elements used, the problem, the patterns, or the language, are intended to

be realistic in terms of pedagogical practice - the idea is to simply demonstrate

the pattern process. To do this we introduce a simple pattern language based on

the C programming language as it might be presented to novice programmers.

Pitching the explanation to this level is justified on two grounds. Firstly, de-

signing a pattern language around just higher level programming constructs such

as those introduced in the GOF book is difficult, maybe impossible. Indeed the

authors state that “it’s hard to see how we could provide a “complete” set of

patterns, one that offers step-by-step instructions for designing an application”

(Gamma, Helm, Johnson & Vlissides 1995, p. 357), which is precisely the role

that Alexander assigns to his notion of ‘language’.

As in the case of natural languages, the pattern language is generative.

It not only tells us the rules of arrangement, but shows us how to

construct arrangements - as many as we want - which satisfy the

rules.

(Alexander 1979, p. 186)

Because the higher level constructs explored in the initial enthusiasm for soft-

ware patterns do not ‘naturally’ form a language in terms of the connections

between them, this backbone of connectivity has to be provided by some other

means. This backbone can only be constructed, via the ultimate purpose of pro-

gramming system features, that is writing programs, and because no program can

be written in anything but the primitive features, it is clear that the patterns of

experience must connect at that level. After all, even the advanced level features

can only be expressed in terms of the machine at the level of system primitives.
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The point is that the higher level patterns do, in actual fact, connect to the back-

bone, but appear disconnected if the backbone is absent. In a sense, this is a

justification, apart from any pedagogical purpose, for patterns based on the basic

features of a programming language - no pattern language incorporating patterns

at a higher conceptual level, such as the GOF patterns, is possible without them.

Secondly patterns are primarily instructional devices - a “pattern is the dis-

tilled result of the experiences of experts” written “for the benefit of both novices

and experts” (Nelson 1999, p. 364). But the main difficulty that novices experi-

ence is precisely that involved in putting concepts together. Expert programmers

already know the process, they don’t explicitly require the generative power of

a pattern language because they have, in a sense, internalised it. The high level

patterns don’t need to be presented in pattern language form because if you can

understand them you are already a competent programmer and so you just fit

them into your existing understanding. But this is not possible for novices, so

the pattern language form is critical at this level.

Because it requires the learning of a skill, most educators involved in teaching

programming agree that many students struggle in this field.

Results from a recent project by McCracken et al. (2001) are com-

pelling, because of the number of authors from differing educational

institutions and cultures. The 10 authors teach introductory program-

ming across 8 universities, in 5 countries. Each author tested his/her

own students on a common set of programming tasks. The students

performed much more poorly than the authors had expected. The

students did not simply fail to complete the set task, most students

did not even get close to solving the task.

(Lister & Leaney 2003, p. 221)

But concepts and meaning are the very foundations of human intelligence, so

we are looking at a misfit between the way we think and the way that program-

ming is taught - it’s just a particular form of problem solving, after all. There

have been many studies into the relationship between programming and prob-

lem solving ability (Mayer, Dyck & Vilberg 1986) (VanLengen & Maddux 1990)

(Reed 1998) (East & Wallingford 1997) and the similar relationship between

mathematics and inductive reasoning (Haverty et al 2000), and these concerns

have tended to flow into the idea of using patterns in introductory programming

because of the resonance of the apparent cognitive difficulties exhibited by novices

in building solutions with the problem-solution pair aspect of patterns.

Much psychological research ... suggests that programming expertise

is partly represented by a knowledge base of pattern-like chunks, vari-

ously named plans, templates, schemas, or idioms. ... Components of

such a chunk resemble those described in Design Patterns. ... Addi-

tional research suggests that students gain expertise in programming

and other disciplines from a process of knowledge integration.
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(Clancy & Linn 1999)

The suggestion, here, is that patterns are useful in the integration of knowledge,

in the task of putting disparate concepts and ideas into a coherent form, and

this should be advantageous to novices. So the motivation for this chapter is an

examination the process that arises from the use of a pattern language on the

basis that specifying the benefits that may be expected in the novice programming

environment will demonstrate the power of the pattern language idea generally in

software development. In its original setting, building architecture, the pattern

concept always had a strong sense of process built into it, but this seems to have

been lacking in the software pattern field (Alexander 1999).

7.3 Applying Patterns to a Problem

Novices need to be given a clearly defined notion of process because most of

the difficulties at this level arise from an inability to apply knowledge, rather

than from a lack of knowledge. It is this factor that indicates the significance of

the ‘language’ aspect of patterns in the educational context. The pattern form

associates a problem and a solution and analyses the forces that it resolves, en-

capsulates the knowledge, and the language diagram provides information about

the context in which the pattern is applicable, the operational semantics. This

suggests that analysing the problem situation in these terms should provide a

way of thinking about the problem in terms of patterns, which should help point

towards a solution. Section 7.4 demonstrates the use of this process in the solving

of a simple programming problem. Figure 7.1 illustrates the development process.

The steps contained in the dashed rectangle attempt to identify the pattern in

the catalogue of patterns that ‘best fits’ the context and forces of the problem.

Applying this pattern modifies or refines the initial problem as shown in Figure

7.3.

One of the difficulties for experts in instructing novices is that the expert will

make unconscious assumptions about a process like this. The expert recognizes

the patterns in a situation almost without thinking, and therefore doesn’t explain

the entire process when teaching it. As Sleeman pointed out (Sleeman 1986), most

people have great difficulty in explaining the process of finding the largest of a set

of integers because they do it without consciously thinking about how it actually

happens. In this case the expert, and even novices as they progress, will tend not

to have to explicitly iterate through an entire catalogue of patterns in order to

match a pattern to a problem. Instead the pattern selection processes will tend

to merge into a single step, “choose the pattern that best advances the solution

of this problem”. Merging the dashed box step, “choose pattern”, with the next

step, “apply pattern”, creates an overall process to be called ‘add pattern’ in

Figure 7.3.

There are three elements to the problem solving process. The first is the
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Figure 7.1. Building the ‘pattern sequence’

pattern language diagram (see Figure 7.2), which provides the context for the

next pattern to be applied. An indication of the forces resolved by applying it

is garnered from the ‘remaining problem’ section of the ‘add pattern’ process

illustrated in Figure 7.3, which is the second element. Further details about

applying the pattern are available, if necessary, in the pattern itself. We have

not included the patterns here as the pattern detail is largely irrelevant to our

purpose of demonstrating the pattern process that is driven by the contextual

representation - the pattern language. The third element, the context for the

next pattern, is derived by following the arrows in the pattern language diagram

downwards from the previously applied pattern. A single solid arrow means that

the pattern to which it points will always be applicable, while arrows with dashed

lines indicate that the context involves making a choice between several patterns.

The semantics of any downward pointing arrow is that following it to its target

‘adds structure’ to the pattern at its source. A pattern will remain open until



230 THE PATTERN PROCESS IN ACTION

Figure 7.2. The Pattern Language

Figure 7.3. Adding a pattern to the sequence

there is no more ‘structure’ to be added to it, at which point it becomes complete.

Note that some arrows lead back to patterns higher in the diagram, indicating

recursion in the language. For example, a loop will have a block of code that is

to be repeated. This block needs to be built up from STATEMENT SEQUENCE
like any other, and the upwards arrows cover this situation.

The process of solving a problem, therefore, takes the following form:

1. Ascertain the forces in the unresolved part of the problem from the ‘remain-

ing problem’ section of the ‘add pattern’ process.

2. Find the context of the next pattern in the pattern language diagram.

3. Apply the pattern with the help of the details in the pattern itself.

This interplay between the three elements drives the process that results in the

building of a sequence of patterns that describes the solution.

Identifying the context of a problem is a matter of knowing the location of the

last applied open pattern (that is, the pattern that still needs structure added
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to it). This is an indication of where you are in the development of your solu-

tion. The use of context, therefore, involves following the arrows from previously

applied patterns. That is, the context for a pattern to be applied is a pattern

that is still incomplete, that still requires additional structure added. In this

case it is STATEMENT SEQUENCEagain, unless it is clear that the current se-

quence is complete. If it isn’t, the context is the same as before, the four patterns

below STATEMENT SEQUENCE, and we then refer back to the current state of

the problem solution to study the remaining problem for guidance in making a

choice between them. This shows that in applying the ‘add pattern’ process in

Figure 3, the remaining problem is the source of an indication of the forces in

the situation, and the position in the pattern language provides the context for

the next pattern. The movement back and forth between the two diagrams is

the relating of forces and context, and this is what drives the problem solving

process, building the ‘pattern sequence’.

The subsequent steps repeat the process of selecting and applying further

patterns until the solution is completely specified and no more refinement is

necessary. The pattern sequence for the solution has thereby been constructed.

Note that the process does not specify when coding is done. It can be done at

any stage if the solution up to that point needs testing. Otherwise it can be left

until the pattern sequence is complete.

7.4 A Simple Example

This section works through the process of solving a simple problem using pat-

terns. It attempts to enumerate those things that are always done when solving

a problem. That is, we are looking for the activities that are common to the

problem solving process. So in that sense we are building a pattern view of the

problem solving process.

The Problem Specification.

Write a program to produce a multiplication table for integers from 1 to 9 as

shown below.

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

8 16 24 32 40 48 56 64
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9 18 27 36 45 54 63 72 81

Producing the above output on the computer screen is the initial problem.

Applying the process illustrated by Figures 1 and 3 to this initial problem will

divide the problem into two parts, the solved and unsolved part. The unsolved

part, ‘remaining problem’ in Figure 3, is then put into the ‘add pattern’ step to

again divide the problem. Continued iterations of this process will generate a

sequence of patterns that ‘describe’ the solution. The iterations continue until

such time as there is no more ‘remaining problem’. The remainder of this section

is a description of this process. Some iterations are insignificant in terms of

understanding how the process works, and are subsumed as elements of one larger

iteration. In these cases the new ‘pattern sequence’ diagram produced will contain

several new patterns instead of the normal one.

7.4.1 First iteration of ‘add pattern’ process

The problem specification states that the task is to write a program to produce

some output on the screen. Thus the first pattern to be indicated is PROGRAM.
This pattern indicates that it is the appropriate choice when the problem is suit-

able to a computer based solution and it specifies the structure of a program in

terms of C syntax.

Pattern 1 : PROGRAM

7.4.2 Second iteration of ‘add pattern’ process

Referring to the location of PROGRAMin the pattern language diagram gives us the

context for the next pattern, which involves a choice between three possibilities,

one of which, FUNCTIONS, is compulsory. In a situation like this, where there

is a combination of optional and compulsory lines of development, the optional

ones should be investigated first, and referring back to the problem specification

suggests that some external resources in the form of the output routines in the

input/output library are all that is indicated by these. Taking the compulsory

arrow to FUNCTIONSinvolves making a decision about the nature of the pro-

gram. Thus, so far, the solution involves a sequence of three patterns.

Pattern 1 : PROGRAM
Pattern 2 : EXTERNAL RESOURCES
Pattern 3 : FUNCTIONS
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7.4.3 Third iteration of ‘add pattern’ process

The patterns in the context formed by FUNCTIONSare FUNCTIONand MAIN.

In reading the ‘remaining problem’, no need for a separate function suggests itself

at this stage. This leaves MAIN where the actual execution of the program will

begin, thus involving the next pattern STATEMENT SEQUENCE. The patterns

applied so far are the mainly mechanical actions that set up the programming

environment, and applying them has not materially advanced the development of

the solution. STATEMENT SEQUENCE, however, sets the context for the attack-

ing of the problem, and offers four ways of doing this. Making the choice between

the four patterns below STATEMENT SEQUENCEmeans making an analysis of

the forces in the remaining problem for clues.

Pattern 1 : PROGRAM
Pattern 2 : EXTERNAL RESOURCES
Pattern 3 : FUNCTIONS
Pattern 4 : MAIN
Pattern 5 : STATEMENT SEQUENCE

7.4.4 Fourth iteration of ‘add pattern’ process

The repetitive nature of the output required is the force acting in this situation,

which suggests that the program control should consist of repeated action. Fun-

damentally the task is to generate a specific set of output lines, corresponding to

the rows of the table, This problem is addressed by the REPETITION pattern,

which tells how to perform a series of actions, in this case “print a line”, several

times in succession. REPETITION offers a choice between LOOPor SUBPROGRAM
and the pattern indicates that, as the repetitions are, in this case, contiguous,

LOOPis the choice we should make. The LOOPpattern shows how the division

of the program into a repeating and a non-repeating part is represented in a

sequence, and gives several variants. In this case, the best match is with the

index-loop form, which is appropriate when the action to be performed varies for

each repetition, and the variation can be expressed by a series of values. Specif-

ically, the loop will execute for each of the values, 1 to 9, each line displaying

multiples of those values.

For this problem, the entire task is contained in the code to“print a line”;

there is nothing left of the original problem that is not repeated. Reference to

the LOOPpattern tells us that therefore the rest of the sequence will be con-

tained inside the loop as there is no non-repeating part to go after the loop. The

box in the LOOPpattern contains the repeating block - if the remaining problem

suggested any need for further non-repeating code, the pattern sequence for this
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would continue after the box.

Pattern 1 : PROGRAM.
Pattern 2 : EXTERNAL RESOURCES.
Pattern 3 : FUNCTIONS.
Pattern 4 : MAIN.
Pattern 5 : STATEMENT SEQUENCE.
Pattern 6 : REPETITION.
Pattern 7 : LOOP.
Pattern 8 :

INDEX LOOP
remaining problem (print columns)

7.4.5 Fifth iteration of ‘add pattern’ process

The repeating part of the problem will involve setting up a separate sequence

of C statements contained in the block of code that is to be executed multiple

times. This fact is indicated by the arrow that leads upwards to STATEMENT
SEQUENCE, from where the repeating block can be developed. This provides

the context for the first pattern in the repeating block. The remaining problem

shows the need to examine what is required for each print line statement in the

loop. The line is made up, conceptually, of a series of columns. Just as the LOOP
pattern provided the answer to repeating rows it is clear that repeating columns

probably requires a similar approach. That is, each line will be a series of columns

printed out by an index loop. Proceeding through REPETITION and LOOPto

INDEX LOOPis the same sequence as before, so here it is telescoped into the one

pattern, INDEX LOOP.

This gives us the overall structure of the solution, which now takes the form

shown below.

Pattern 1 : PROGRAM.
Pattern 2 : EXTERNAL RESOURCES.
Pattern 3 : FUNCTIONS.
Pattern 4 : MAIN.
Pattern 5 : STATEMENT SEQUENCE.
Pattern 6 : REPETITION.
Pattern 7 : LOOP.
Pattern 8 :

INDEX LOOP
Pattern 9 :

INDEX LOOP
remaining problem (print cell)



7.4. A SIMPLE EXAMPLE 235

7.4.6 Sixth iteration of ‘add pattern’ process

Hence we have reduced the problem to “print cell”, which in turn reduces to the

problem of identifying and producing the number that makes up each cell. In a

multiplication table, each cell contains the product of the row number and the

column number. That is, each cell contains the formula row * column . In this case

the loop control variables directly represent these values, so the “print column”

sub-problem becomes:

print (outer index * inner index)

One obvious feature of the required output that has not been considered yet,

is the fact that each successive line increases in length by one column. The num-

ber of columns in each line is constrained by the line number.

for (j = 1; j <= i; j++)

where j controls the inner loop, and i the outer loop.

In a situation like this, if the developer is confident that the rest of the task

is trivial, the development of the pattern sequence can be stopped at this point

and a placeholder used to indicate that there is more to be done to complete the

sequence. In this situation we will use a placeholder called ‘calculate values’ as

Pattern 10. However, if necessary, the process can be continued through DECLA-
RATION, ASSIGNMENTand EXPRESSIONpatterns to find out how a dependent

value can be produced by an expression. Calculating the values completes the

solution of the initial problem because applying it leaves no smaller problem to

be solved. If the nine patterns are then put together in Alexander’s “pattern

sequence” form, the following pattern sequence results.

Pattern 1 : PROGRAM.
Pattern 2 : EXTERNAL RESOURCES.
Pattern 3 : FUNCTIONS.
Pattern 4 : MAIN.
Pattern 5 : STATEMENT SEQUENCE.
Pattern 6 : REPETITION.
Pattern 7 : LOOP.
Pattern 8 :

INDEX LOOP
Pattern 9 :

INDEX LOOP
Pattern 10 : Calculate Value

This shows the structure of the solution as Alexander says it would - “in its

sequence form it shows the user the process of unfolding, in sequence, in such

a way as to allow a good building to be made, very easily, for the particular

conditions of a given site.” In our case it is not a ‘building’, of course, but
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the ‘nested loop’ structure of our solution, with the inner loop containing the

number sequence generating pattern, is clearly evident in the diagram. Finally,

the completion of the solution involves providing the code to fit the design, and

the ‘code example’ sections in each pattern provide a guide to this.

7.5 Patterns and Teaching Material

The patterns used at this level are, more or less, the examples that would normally

be used in a first programming course, packaged in the pattern format. The

advantages of this approach are twofold. Firstly the pattern format generalises the

example code by providing extra information about its use in different contexts.

Secondly, it separates the pattern from the other teaching material that surrounds

it. This separation can be optimised by reproducing the patterns in a separate

document for ease of use in the assignment situation. In this way the pattern

format addresses the two main problems that novices have in using the examples

provided in their course material, finding them and using them. The patterns are

written during the normal course of developing the other materials for the first

programming course. They are software or design patterns in the sense of the

patterns in the book “Design Patterns: Elements of Reusable Object-Oriented

Software”(Gamma et al. 1995), and are only pedagogical in the sense that they

are used in a teaching environment.

The advantage of adding patterns to the design process is threefold. First,

it enables the tackling of coarser grained features in the original problem spec-

ification than would be possible otherwise (that is, there will be fewer steps in

the decomposition process). Having identified a pattern that handles part of the

problem you can effectively ignore that part of the problem and concentrate on

the smaller problems exposed by the first pattern.

The second advantage is that the patterns discovered by this process will

produce the ‘pattern sequence’ effect, which facilitates the design of the solution as

shown by the evolving sequence of patterns through the successive iterations. The

relationships between the patterns in a pattern language provide the connective

power that enables sequences of patterns to solve problems larger than those

solved by individual patterns in a pattern language. This is a case where the

whole is more than the sum of its parts. The ‘pattern language’ enables large

problems to be dealt with by building up a sequence of patterns.

What the network of relationships, illustrated in the pattern language, adds

to the process, is an indication of the context for the next pattern. If you are

currently ‘adding structure’ to STATEMENT SEQUENCE, for example, the pattern

language tells you that there are only four patterns that you need to consider

when deciding on the next pattern - all the others can be ignored. This focusing

of attention on the relevant patterns is especially important in the case of novices.
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The third advantage is the converse of the first. The power of the pattern

is itself twofold. Firstly it enables the details of the part of the problem that it

solves to be effectively ignored while the rest of the problem is tackled. Then,

once all the patterns are identified and the overall design of the solution attained,

it enables the details that were ignored in the earlier stages to now be filled in

easily, because they too are part of the pattern. Thus a pattern consists of two

main functions or forces. The outer shell, the name of the pattern, functions as

a component in the process of building up an overall solution, while the material

encapsulated in the pattern enables the component details to be filled in once the

overall solution has emerged. In other words, time is not wasted on fine details

until it is clear that the overall design does indeed solve the problem. Once the

‘pattern sequence’ is complete the code example in each pattern is used to write

the coded solution.

But there are other advantages in terms of pedagogy due to the fact that the

pattern language presented to the novice at any particular stage of her develop-

ment can match match her current understanding. That is, the pattern language

will evolve over time just as the novice’s understanding does. This is made pos-

sible by the separation of the conceptual information required for design, from

the implementation detail. Because of this partitioning all the patterns can be

presented in a single document at the start of the course and the pattern lan-

guage diagram relevant to the state of the current understanding of the students

handed out at different times during the course. In this way the externalising

of the thinking, discussed earlier (see Section 7.1), is actively promoted by the

teaching material.

7.6 The Evolution of a Pattern Language

To illustrate how the development of a student’s understanding can be represented

by an evolving pattern language we show here how the first two program examples

often used in a first programming course in Java can be presented in the form of a

pattern language. The process of building a sequence of patterns that solves the

problem from the language can be seen much more clearly. Usually the dynamic

process of deriving the solution is only ever attempted in the lecture situation,

but these live presentations are not available to the novice when they are needed

most, and the static, lecture-note format does not capture the process at all well.

We feel that the pattern language and pattern sequence shown here make the

code examples less static, and more importantly show how new concepts can be

‘attached’ to the conceptual structure that the student already has.

Moreover, complex ideas made up of several smaller concepts, like the use of

variables, form small pattern languages in their own right. Adding such complexes

of concepts to a student’s knowledge base, invariably involve a ‘shuffling’ of the

concepts, a re-arrangement of the conceptual structure, in the student’s head, and
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the following examples make this evolution explicit. In the following exposition

the use of various Java constructs as the names of the patterns is simply a device

to minimize the need for explanation. The patterns so named are both more than,

and looser versions of, the Java concepts concerned. For example, the pattern

called Class might be better named Class-as-Blueprint, Method might be better

named Method-as-Action-Sequence, and so on.

Often the first code example presented to novices is the ubiquitous ”Hello,

World!”, in which case the following pattern language applies (Figure 7.4):

Class

Method

Statement Sequence

Output Statement

Figure 7.4. The Language for ”Hello, World!”

Notice that this pattern language can only generate one sequence. This is why

this is the simplest possible program, as there are no real design choices to be

made. The pattern language can develop only the one type of program, that

being the output of a literal to the screen.

Class

Method

Statement Sequence

Output Statement

Figure 7.5. The Pattern Sequence for “Hello, World!”

As mentioned above, the next example often presented in teaching material

is based on the variable concept, which, in isolation, can be regarded as a small

pattern language in its own right, as shown in Figure 7.6:

Adding the new pattern language to the first results in the following structure

shown in Figure 7.7 and we believe that this is important as a reflection of what

must happen in the novice’s mind. In the standard exposition, that is, with-

out explicit pattern material, something like this ‘merging’ of concept structures

must be occurring. By the use of example programs, which are, after all, made

up of pattern sequences, the novice would be attempting to fit the isolated under-

standing of the variable concept into the understanding of the Java language that
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Variable

Assignment Initiali sation

Declaration

Figure 7.6. The Language for the Variable Concept

she already has. In other words, the novice merges the two pattern languages

without any awareness that this is what she is doing. We discuss this merging of

pattern languages in more detail in a paper published in 2005 (Porter et al. 2005).

But our main contention here is that the explicit use of the pattern languages

concerned helps make knowledge procedural rather than declarative.

Class

Method

Statement Sequence

Output Statement

Variable

Assignment Initiali sation

Declaration

Figure 7.7. The Merged Language

One sequence, shown in Figure 7.8, derived from this language is based on

the use of an instance variable. Another sequence, explaining the use and ini-

tialization of a local variable is illustrated in Figure 7.9, and a third, in Figure

7.10 demonstrates how an assignment statement can be used to change the value

of an instance variable. We have not bothered to show the code examples here,

but in the teaching material the code solutions would follow each sequence dia-

gram so that the progression from pattern language through conceptual design,

represented in the pattern sequence, to the code would be explicated completely.
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Class

Variable

Declaration

Initialization

Class

Method

Statement Sequence

Output Statement

Figure 7.8. The Pattern Sequence for Using an Instance Variable

Class

Method

Statement Sequence

Variable

Declaration

Initialization

Statement Sequence

Output Statement

Figure 7.9. The Pattern Sequence for Using a Local Variable

The sequences shown here demonstrate the process of working through the

pattern language discussed in Section 7.2 in a way that the code example on its

own fails to do. Novices can follow the back-and-forth step-through procedure

by which the program is designed in a way that is not possible with the bare

code. So this is an important improvement on programming pedagogy but, more

significantly it illustrates, for the teacher, how people progress through levels

of understanding. New concepts, as they are learned, need to be fitted into

an existing mental picture, and complex concepts usually cause a shuffling of

the current understanding of the kind shown in this example. If nothing else, the

current pedagogy, by failing to make this explicit, misses the opportunity to guide

the development process. It has to happen, anyway, but letting it just happen

by default means that developing the necessary structure is a hit-and-miss affair.

The way that understanding develops over time can be represented in techniques

like the merging of pattern languages as discussed in a paper published in 2005

(Porter et al. 2005).

7.7 The Pedagogy

So this is a powerful pedagogy on several levels. Each pattern is a small unit

of knowledge, containing within it the means for the first four of Bloom’s cogni-

tive processes, knowledge, comprehension, application, and analysis (Bloom et al
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Class

Variable

Declaration

Class

Method

Statement Sequence

Assignment

Statement Sequence

Output Statement

Figure 7.10. The Pattern Sequence for Using an Assignment Statement

1971). The pattern language structure adds weight to the fourth factor, analysis,

and provides the means for the last two, synthesis and evaluation, through the

contextual information and the creative process that it provides. Patterns lend

themselves to the learning of a skill, like programming, because they provide the

static knowledge plus the means of applying it, the dynamics of language. In

fact patterns have been criticised for being just a teaching aid. But the fact

that it can be said that “when designers become experts they discard patterns”

(Mattson 1996) and that “patterns are limited because of what they are - a teach-

ing tool”(Booch 1999) seems to miss the point that this is true of all expertise.

Once a technique is integrated into an expert’s practice its use occurs virtually

unconsciously, like shifting gears in a car when driving (Skemp 1971, p. 55). So

this is criticising a pattern for being a pattern - the written software pattern has

become a mental pattern. Of course, this is the thrust of this paper; the cor-

respondence between the specialised meaning of the word in the design pattern

sense and the normal meaning of the word in the mental pattern sense gives the

concept its educational power.

Bloom’s categories Learning to program

Knowledge Tools, constructs, syntax

Comprehension Relating concepts

Application Flow, semantics

Analysis Understand the problem

Synthesis Create the solution

Evaluation Assess other options

Table 7.1: Bloom’s Categories in Pedagogical Terms. Adapted from (Bloom et

al 1971)

But the pattern language idea has other advantages in the educational con-

text. For example, the separation of the design idea (the pattern name in the

language diagram) and the implementation details (the example section in the

pattern form) helps to encourage designing the solution before coding. A second



242 THE PATTERN PROCESS IN ACTION

advantage is that the code examples used in teaching materials are representa-

tions of the final artefact not the process by which it is developed. Replacing

them with a pattern language diagram containing the elements needed to de-

velop the program followed by the particular pattern sequence is a much clearer

representation of the program’s development. So instead of just the Java code

representing the use and initialization of a local variable, it would be preceded by

the pattern language shown in Figure 7.7 and the sequence in Figure 7.9. This

illustrates the process of developing the solution.

However the principle advantage is the correspondence between the pattern

language concept and thinking. In particular, the way that understanding de-

velops over time can be represented in techniques like the merging of pattern

languages as discussed in a paper published in 2005 (Porter et al. 2005). The

conceptual understanding that a novice has at any particular stage of his/her

learning can be seen as a pattern language, and this language is modified as the

novice learns new concepts. If a new concept is at all complex then it forms

a small pattern language in its own right, and adding the new concept to the

novice’s existing language represents a merging of two languages, not just a sim-

ple attachment of a concept to a language, or of one language to another. People

progress through levels of understanding, so new concepts, as they are learned,

need to be fitted into an existing mental picture, and complex concepts usually

cause a shuffling of the current understanding of the kind that can be represented

as the merging of two pattern languages to form a new one. Pattern languages

are thus useful at two levels of process. They drive the programming process in

the manner discussed in the example above, but they also illuminate the learning

process, and in particular the evolution of understanding over time.

As discussed in Chapter 5 the closest process in life to the learning of pro-

gramming is probably the learning of the first spoken language. But there is a

vast difference in how the process presents to the learner because the child ac-

quires its first spoken language one word at a time, they are ‘discovered patterns’.

Meaning is the key to learning the use of a new concept and the critical factor

for the learner in discovering meaning is context. The combinational aspect is

also interesting. When a child speaks its first self-constructed sentence, its use-

able vocabulary, if ‘useable’ is defined in terms of what it is capable of putting

into sentence form, is, most probably, only those words actually used in the first

sentence.

So there is a vast chasm here, between the way that a programming language is

learned and the acquisition of spoken language. Concepts in natural language are

‘discovered’ through use, not just presented in isolation as ‘facts’ to be learned.

Language is acquired ‘actively’, not ‘passively’, it is learned by using it. The

vocabulary expands ‘naturally’, via discovery through use. Acquisition and un-

derstanding are products of use, not rote learning. A pedagogy for programming

based on the use of pattern language can reflect this evolution in a way that

is simply not possible in the current methodology. This is how the disjunction
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between what a student knows about the programming language, and what she

can actually put to use in solving a programming problem can be overcome.

Another advantage of a pattern language in the learning to program con-

text is that this provides a mechanism for testing the efficacy of pattern lan-

guages generally. Already we have conducted a pilot study, reported in (Porter &

Calder 2004), and made two attempts to test the use of pattern languages with

novice programmers. The results of these experiments are discussed in Chapter

10.5 but the main point to emerge from the experiments is that basing them on

the use of a pattern language is a way of making the subjective level of under-

standing apparent. There is a major difficulty involved in the attempt to measure

empirically the performance of any particular skill caused by the fact that a skill

of any complexity involves a mix of mental factors that are almost impossible to

disentangle (see Section 8.4). As an externalisation of the thinking involved in

designing a solution, the pattern language provides a mechanism of accessing the

cognitive process involved, a view of the conceptual solution and its derivation

expressed in the pattern sequence.

So, despite the difficulties we encountered in designing an experiment that ad-

dressed the problems of motivation and commitment, we feel that our pilot study

which was based on interposing a test between the first and second programming

courses and testing two groups of volunteers, one with exposure to a pattern

language, and one, the control, without, did demonstrate the basic feasibility of

measuring the effectiveness of different educational materials. The correlation

between the understanding of the programming environment, indicated in our

case by the results that students got in their first programming course, and their

individual performance in the programming test did hold as expected, with the

pattern-exposed students improving on their first course results more so than the

members of the control group. Therefore given the correct experimental setup,

an experiment based on the pilot study should clearly indicate any difference in

the effectiveness of the materials being used.

So the pattern process explored in this chapter derives its effectiveness from

the fact that it is based on the way that the human mind works. Concepts are not

hard-wired into our thinking, they are patterns, not the rigid definitions that a

system of logic requires. The best illustration of the difference between a rigidly

formal system and an informal one based on patterns is probably the use of

numbers. In the informal usage employed by humans, it matters not a whit that

there are two number formats, integer and decimal, we mix them in our thinking

freely because number is a pattern. We just divide five by two and let context

decide which of the two forms matters in each case. However, such ‘looseness’

is not permissible in a mechanical system, here the two forms must be explicitly

separated because calculations using the different forms must be performed by

different logical circuits. Patterns are the basic grist of our psychology, so here

we need to explore the psychology of programming.
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Chapter 8

The Psychology of Programming

Programming is never going to be easy, since it forces otherwise sane

people to think like computers.

(Stephan Somogyi)

He only earns his freedom and his life

Who takes them every day by storm.

Johann Wolfgang von Goethe

8.1 What is Programming?

Ostensibly, programming is nothing more than instructing a machine, giving it

a list of precisely determined operations to carry out. This would appear to be

easy, even trivial, yet history shows that this is definitely not so. It is a promi-

nent feature of the history of computing that programming is seen as a difficult

task, even in cognitive terms alone. There have been three basic responses to

the perception of this difficulty. One response has been to modify the context,

considered in narrow terms, in which programming takes place, that is, the no-

tation of the means of communication between programmer and the computer

itself, the development of programming languages approach. Another approach

has been directed at changing the context, in much wider terms, the software

engineering approach. And a third has been to examine particular aspects of the

overall task in terms of the particular cognitive issues that each one raises, the

cognitive fitness approach.

The first response seems probably to founder on the fact that, ultimately,

any ‘programming language’ is constrained to strict logical form by the fact that

it must ultimately be translated into machine code. One’s thinking about a

programming problem is therefore driven along rigid logical lines even though

the language is made to appear as close to natural language as possible. A

245
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major difficulty with the second response is that, although it is soundly based in

its concentration on the non-coding aspects of programming, it seems to carry

across the impulse to formalise them as well, so that it tries to escape from one

formal system by instituting a system of design that is hardly less formal than

the one it is trying to escape. Both these responses miss the point that solving

problems is an informal mental process not a formal or algorithmic one. A formal

problem solving process is one based on searching a set of possible solutions for

the correct one (Newell, Shaw & Simon 1963, p. 113), but it is simply not the case

that every problem has an existing set of possible solutions and, in this situation,

finding one is a matter of creation not search and test. This leads us to the third

approach, fitting the task of programming to the way that the mind works. Of

course, by implication, this requires a theory of mind.

The belief that programming is difficult begs the fundamental question - why

is it so? Considered at the coding level, the actual means of interaction between

programmer and machine, the task seems to be not that complex at all. After

all the computer has very few native actions that it can perform, its operating

repertoire is quite limited. It would seem, therefore, that the difficulties that

programming presents are due more to the nature of the operations, or at least,

to the way that they are presented to the programmer, than to their number,

and it is this factor that lies behind the continual push for ‘programming lan-

guages’ that are ‘easier to use’. But while there is undoubtedly some truth in

this approach it seems to us that the difficulties are related to what we try to do

with the operations available. That is, considered as a language, this is one with

which we try to write extremely elaborate stories with a very small vocabulary.

It is what we are trying to do with our limited ‘language’, write sophisticated

programs, that introduces the complexity - we have complex ends not complex

means. So the difficulties result in producing the “design metascript”, a high level

schematic representation that drives the design process which provides the basis

of experienced programmers’ expertise (Adelson et al 1984, p. 473). We must

come to “realize that what we are called to design [has become] so sophisticated,

that Elegance is no longer a luxury, but a matter of life and death. It is in this

light that we appreciate the view of programming as a practical exercise in the

effective exploitation of one’s powers of abstraction” (Dijkstra 1982, p. 48) rather

than, one might add, the manipulation of a formal logic.

Although the program made by the programmer is his final prod-

uct, the computations evoked by it are the true subject matter of his

trade: he has to guarantee that the computations - the ‘making’ of

which he leaves to the machine - evoked by his program will have the

desired effect. As a result, he has the duty to structure his program

in a useful way, where usefulness (among other things) implies that

the form of the program admits trustworthy statements about the

corresponding computations. The second theme is that the mental

aids available to the human programmer are, in fact, very few. They
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are enumeration, mathematical induction and abstraction, where the

appeal to enumeration has to satisfy the severe boundary condition

that the number of cases to he considered separately should he very,

very small. The introduction of suitable abstractions is our only men-

tal aid to reduce the appeal to enumeration, to organize and master

complexity. Mathematical induction has been mentioned explicitly

because it is the appropriate (and only!) established pattern of rea-

soning by which we can understand programs with either repetitive

clauses or recursive procedures.

(Dijkstra 1982, pp. 1-2)

Djikstra then works though the process of developing two separate programs

and goes on to point out why he thinks the difference between the two solutions -

the care with which the decision as to where the interface between the successive

levels of each should be put - is less significant than the similarities between them.

Personally I am much more impressed by the similarity of the ways in

which the two rather different programs have been constructed. The

successive versions appear as successive levels of elaboration. It is

apparently essential for each level to make a clear separation between

“what it does” and “how it works”. The description of “what it does”,

the definition of its nett effect, requires introduction of the adequate

concepts, and both examples seem to show a way in which we can

use our power of abstraction to reduce the appeal to be made upon

enumeration.

(Dijkstra 1982, p. 13)

It is interesting that Djikstra here mentions that the differences between the

two programs are less significant that the similarities in the way they have been

constructed. This points to the thrust of the pattern idea, that solutions have

common ground in their underlying concepts in the ‘problem space’ - “what it

does” rather than “how it works”, that is repeating form rather than logical

shape.

Whenever there is a failure in “the effective exploitation of one’s powers of

abstraction” it is a result of a deficiency in theory, we simply don’t yet have the

correct view of the situation in which we are working. This has been a constant

state of affairs in software development, because the pace of change, driven partly

by the rapid advance of the electronics that underlies it and partly by the drive

to computerise ever more complex tasks, has been so great. On the face of

it, the task of the software developer seems so much simpler than that of the

hardware designer, but the difference is that the later is always working within

long established theory. The main problem faced here is the practical difficulties

of dealing with the ‘fuzziness of analog nature’, of staying ‘within tolerance’, not

a lack of theory.

For the understanding of his source components the hardware designer
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has as a last resort always physics and electronics to fall back upon: for

the understanding of his target problem and the design of algorithms

solving it the software designer finds the appropriate theory more

often lacking than not. How crippling the absence of an adequate

theory can be has, however, only been discovered slowly.

With the first machine applications, which were scientific/technical,

there were no such difficulties: the problem to be solved was sci-

entifically perfectly understood and the numerical mathematics was

available to provide the algorithms and their justification. The addi-

tional coding to be done, such as for the conversion between decimal

and binary number systems and for program loaders, was so trivial

that common sense sufficed.

Since then we have seen, again and again, that for lack of appropri-

ate theory, problems were tackled with common sense, while common

sense turned out to be insufficient. The first compilers were made in

the fifties without any decent theory for language definition, for pars-

ing, etc., and they were full of bugs. Parsing theory and the like came

later. The first operating systems were made without proper under-

standing of synchronization, of deadlock, danger of starvation, etc.,

and they suffered from the defects that in hindsight were predictable.

The indispensable theory, again, came later.

That people have to discover by trying that for some problems com-

mon sense alone is not a sufficient mental tool, is understandable.

The problem is that by the time the necessary theory has been de-

veloped, the pre-scientific, intuitive approach has already established

itself and, in spite of its patent insufficiency, is harder to eradicate

than one would like to think.

(Dijkstra 1982, p. 340-1)

8.2 Theory and Practice

This is, of course, the difference between art and science. Some of science is art in

the sense that one is working ahead of, and therefore, in the absence of theory. But

most of scientific endeavor is really technological in scope, one is working within

the limits of theory. Art, on the other hand, is never just working within the limits

of theory, it is always, to some extent, pushing the bounds of understanding. It

isn’t art if this isn’t so. In some sense this is an expression of the difference

between the ‘real’ world and the ‘virtual’ world of representation. The ‘real’

world is a continuum, Kant’s “complete community” of substance (Kant 1881,

p. 184), it is fundamentally analog in nature, at least at the level at which we,

as humans, apprehend it. But the ‘real’ world has to be represented in symbolic

form in our minds and symbolic form is always discrete, never analog. A lot of

what is apparently paradoxical in nature is caused by this disjunction between
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reality and its representation - Zeno’s Paradox is only the most obvious example

- and leads to von Neumann’s contention that although, in principle, a measuring

device can be described in terms of universal natural laws, doing so requires the

loss of its measurement function (Pattee 2001a, p. 349). It is probably something

of this sort that underlies the apparent paradoxical duality of the nature of light,

and, indeed Descartes’ notion of the dual nature of brain-mind - the brain exists

in the ‘real’ world, the mind in the world of ‘ideas’.

It may therefore be that programming is destined to be always working ahead

of theory in Dijkstra’s terms, that in this field we need as much of artistic intuitive

feeling as we do of basic knowledge - this is an art. As with music, theory cannot

drive the composition of the artefact in the same way that scientific theory does

a technological project. In other words it can’t be formalised. So the problem

seems basically to be that when we are programming we are “forcing our interac-

tions into the narrow mold provided by a limited formalized domain” (Winograd

& Flores 1987, p. 75) which stifles the source of our creativity, the power of ab-

straction and metaphor. The programming domain provides the tactical means,

the operators, to solve problems. What it does not, and cannot, provide is the

insight behind the task of combining them to solve a particular problem, the

strategy. “That strategic knowledge can be considered separate from knowledge

of operators is shown by the fact that a solver may know how to apply either of

two operators in a given situation but still not know which to apply” [emphasis

in original] (Lewis 1981, p. 87). The difference between a competent problem

solver and a novice is exactly the presence or absence of strategic level thinking.

Programming is an activity of the mind, not just a collection of static facts, and

it is important, perforce, to have some appreciation of what might be called the

psychology of programming. In fact it can be seen that most of the developments

in programming languages and methodologies have been explicitly predicated on

the belief that they will improve the performance of programmers by addressing

factors that are essentially psychological in nature (Sheil 1981, p. 101).

Although such claims are usually advanced informally, there is a grow-

ing body of research which attempts to verify them by controlled ob-

servation of programmers’ behavior. Surprisingly, these studies have

found few clear effects of changes in either programming notation or

practice. Less surprisingly, the computing community has paid rela-

tively little attention to these results.

(Sheil 1981, p. 101)

It has been said of this research that it is based on “an unsophisticated ex-

perimental technique and a shallow view of the nature of programming skill”

(Sheil 1981, p. 101). However this should not be surprising. We suggest that it

is the fate of any attempt to measure the level of creative skill of any kind to fall

into these particular traps, it is simply the nature of the beast. By definition,

creativity implies an element of the unexpected, which is the complete antithesis

of the science of measurement. Measuring always involves a scale, a proportional



250 THE PSYCHOLOGY OF PROGRAMMING

system, and this requires some expectation about the relationships being mea-

sured. So, for example, in the debate over structured programming in the sixties

and seventies, attempts were made to measure the difference in programmer com-

prehension promoted by different programming notations (Shneiderman 1976a).

In essence, this amounts to positing a relatively fixed relationship between syn-

tax and semantics, a claim that syntactic form is mostly about meaning. While

this is superficially true, it must be remembered that the real relationship is

convention, and this is an arbitrary connection, not one based on any sort of

universal principle. Testing on this basis is measuring the degree to which con-

ventional norms of expression have been absorbed, so it is not surprising that the

experimenters found that, for example, while the logical IF is significantly easier

than FORTRAN arithmetic for novices, this advantage dissipates with experience

(Shneiderman 1976a). This result supported earlier findings that had suggested

that experience with particular linguistic form is more significant than the actual

form itself (Sime, Green & Guest 1973).

The demand that “the methodological recommendations of computer science

should be recognized as empirically testable, psychological hypotheses” (Sheil

1981, p. 101) is both understandable and laudable but probably unrealistic. It is

understandable because, as Gannon and Horning point out, it is not possible to

logically prove the principles that underlie projected changes (Gannon & Horning

1975, p. 10), but not only is it based on the mistaken belief that science is

simple methodological empiricism, it overlooks the fact that programming, in

particular, is an essentially creative activity. The practice of science is not simply

the application of the formal rules of logic and mathematics to experience (West

1997). These are important tools in understanding the world, but understanding

is the process of building meaning, and, as such it is fundamentally creative

rather than formal in spirit. “Scientists and engineers were plying their disciplines

with imagination long before their fields were formalized and recognized” (Fabian

1990). Progress in science depends almost as much on imagination as does art.

Our conceptual imagination, like its artistic counterpart, draws inspi-

ration from contacts with experience. And like the works of imag-

inative art, the constructions of mathematics will tend therefore to

disclose those hidden principles of the experienced world of which

some scattered traces had first stimulated the imaginative process by

which these constructions were conceived.

When experienced orderliness is taken to be an embodiment of geom-

etry, it may become possible to test its correspondence to experience.

The observation of relativistic phenomena has served as an experi-

mental test for deciding whether the material universe was an instance

of Riemann’s geometry formulated in space-time by Einstein’s rules,

when combined with the assumption of trajectories being geodetics.

(Polanyi 1958, p. 46)

But the empirical verification followed the original insight, and, as Einstein
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himself said, although “nobody who really goes into the matter will deny that

the world of perceptions determines the theoretical system in a virtually un-

ambiguous manner, ... no logical [emphasis added] way leads to the principles

of the theory” (Einstein quoted in (Weyl) 1959, p. 153 ). This points to the

fundamental correspondence between all the nominally different types of think-

ing - the child learning to understand the world and the scientist searching for

meaningful explanations are both engaging in the cognitive process known as “in-

ductive discovery” (Greenfield 1984, pp. 27–28) not just pure logical deduction.

“The process of making observations, formulating hypotheses and figuring out the

rules governing the behavior of a dynamic representation is basically the cognitive

process of inductive discovery ... the thought process behind scientific thinking”

(Greenfield quoted in (Prensky) 2001, p. 45). Science is a way of thinking about

the world, an analytic way of thinking, to be sure, but, as Kant realized, analytic

reasoning can’t tell you anything that isn’t ultimately self-evident. Synthesis

is just as important as analysis, indeed you can’t have one without the other -

“thoughts without content are empty and intuitions without concepts are blind”

(Kant 1881, p. 45).

One of the most vital abilities of a software designer faced with a new

task is the ability to judge whether existing theory and common sense

will suffice, or whether a new intellectual discipline of some sort needs

to be developed first. In the latter case it is essential not to embark

upon coding before that necessary piece of theory is there. Think

first!

(Dijkstra 1982, p. 341)

The trouble is that the expert has the theoretical insight so deeply embedded

in her thinking that it is easy to forget that it is there. She doesn’t have to “think

first”, most of the time the integration of the theory in her thought patterns is

sufficient for the task at hand, the analysis is mostly already accomplished. This

points to a major disjunction between the way that we teach programming and the

way that experts actually program. Given the task of formulating a procedure

to find the largest value in set of N positive numbers, nearly all experienced

programmers will immediately produce code to this pattern:

int largest = 0;

for(int i = 1; i <= N; i++) {

int temp = <get the ith value>;

if(temp > largest) {

largest = temp;

}

}

Consider how that procedure could have been generated or under-

stood. One way, the way that you might believe it was done if you
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read the literature on programming that is written by computer scien-

tists, is by formulating a loop invariant. For this loop the appropriate

invariant is that, at the end of the kth pass through the loop, m ≥

a i; for j ε[1, k]. Once formulated, that invariant can be proved by

induction. Having been proved by induction, it can be instantiated

for k = N and now constitutes a proof that m is a maximum of the

set, which is the desired result.

The problem is that nobody does it that way. And the reason nobody

does it that way, except in introductory programming courses, is that

it takes too long and is far too complicated. If you know how to

program, you would neither generate this program nor synthesize an

understanding of it. You would know the answer. You would recognize

the problem, key directly into that knowledge, and pull out a working

procedure.

(Sheil 1981, p. 117)

The disjoint here is that the experienced programmer knows the pattern and

simply produces the solution in response to the problem without having to think

about it. As Sheil points out “the compelling subjective evidence for this ... is

the complete absence of any introspective trace whatsoever” in the experienced

programmer’s mind (Sheil 1981, p. 117). But, as educators, we have to explain

the solution to students and the fact that our solution is written in programming

language terms leads us into producing dubious explanations based on the code

(the implementation ‘space’) rather than the concepts (the conceptual ‘space’).

We stay in formal logic mode induced by the programming language even though

we did not, ourselves, explicitly produce the solution in that way. The usual text-

book explanations are appropriate to people used to thinking in terms of logical

formalisms, hardly a mode of thinking we would expect of novice programmers.

As experienced programmers we have a concept, a pattern in Alexander’s sense

in fact, that fits the task so we simply apply it, but as educators we are aware

that the novice does not have the concept, so what we need to do is to reproduce

the process by which we acquired the concept.

But this is where the difficulty arises because the process of concept acquisi-

tion is largely unconscious, a matter of having solved the problem several times.

Of course the novice does need to have some appreciation of the logic behind

the solution but explaining it in those terms might not be the best way, or the

most honest, of helping her to acquire it. Logic, by definition, is a controlled

progression, one step follows automatically, predictably in other words, from the

previous one. Creativity is, also by definition, the exact and complete opposite -

an unpredictable, and therefore, uncontrolled progression, an operation involving

many fits, starts and retracings.

The mere fact that creative mental processes are mental processes does

not ensure that they have explanations in the language of psychology

under any of their descriptions. It may be that good ideas (some,
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many, or all of them) are species of mental states which don’t have

mental causes. Since nothing at all is known about such matters,

I see no reason to dismiss the intuitions that creative people have

about the ways in which they get themselves to act creatively. The

anecdotes are, I think, remarkably consistent on this point. People

with hard problems to solve often don’t go about solving them by

any systematic intellectual means (or, at least, if they do they often

aren’t conscious of the fact they are doing it). Rather they seek to

manipulate the causal situation in hopes that the manipulated causes

will lead to good effects.

The ways that people do this are notoriously idiosyncratic. Some

go for walks. Some line up their pencils and stare into the mid-

dle distance. Some go to bed. Coleridge and De Quincy smoked

opium. Hardy went to cricket matches. Balzac put his nightgown on.

Proust sat himself in a cork-lined room and contemplated antique

hats. Heaven knows what De Sade did. It’s possible, of course, that

all such behaviours are merely superstitious. But it’s surely equally

possible that they are not. Nothing principled precludes the chance

that highly valued mental states are sometimes the effects of (liter-

ally) nonrational causes. Cognitive psychology could have nothing to

say about the etiology of such states since what it talks about is at

most ... mental states that have mental causes. It might be that we

are laboring in quite a small vineyard, for all that we can’t now make

out its borders.

So far I’ve been concerned with cases where mental states aren’t (or,

anyhow, may not be) contingent upon mental causes. The point has

been that the etiology of such states falls, by definition, outside of the

domain of the explanatory mechanisms that cognitive psychologists

employ; cognitive psychology is about how rationality is constructed,

viz., how mental states are contingent on each other.

But, in fact, the situation may be worse than this. Cognitive expla-

nation requires not only causally interrelated mental states, but also

mental states whose causal relations respect the semantic relations

that hold between formulae in the internal representational system.

The present point is that there may well be mental states whose etiol-

ogy is precluded from cognitive explanation because they are related

to their causes in ways that satisfy the first condition but do not

satisfy the second.

(Fodor 1975, p. 202)

All of which justifies the role of philosophy in the intellectual project. The

context of cognitive activity is the human condition, and the context of the human

condition is reality, so it is perfectly understandable that not everything that

is cognitive in function will be cognitive in origin, and that not everything in

the human condition will be explicable in purely human terms. If there is an
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overarching thrust involved in the idea of pattern language it is that form is the

product of context (Alexander 1964, pp. 15-6). But given the universality of the

universe, that is, everything that we know is ultimately an effect of the existence

of the universe, decomposition into “special sciences”1 is useful and necessary, but

somehow the whole must be preserved. If it is anything, philosophy is the attempt

to put the pieces back together again, to counter the tendency to reductionism,

to provide context for all our varied explorations of nature.

Philosophy studies the fundamental nature of existence, of man, and

of man’s relationship to existence. In the realm of cognition, the

special sciences are the trees, but philosophy is the soil which makes

the forest possible.

(Rand 1982, p. 2)

But all this means that there is an often overlooked aspect of ‘myth’ in creativ-

ity. The point is that we need myth to be functioning individuals because we can

never know everything about any given situation or field - subjective knowledge

is always partial knowledge. Unfortunately the word ‘myth’ has acquired the con-

notation of ‘unfactual’, or even ‘lie’, when in its original sense it was deliberately

neutral to the idea of ‘objective truth’ in any metaphysical sense. Myth was a

way of defining or explaining what might loosely be called a universal ‘human’

truth, a factor of human existence that is always true, such as, for example, that

exemplified by the “choice of Hercules” story, that life requires making choices

about one’s personal place in the totality of existence. As such, myth is a story

that illuminates some aspect of life regardless of the actual truth of every detail

expressed, its veracity is not the point of the story. In this sense it is like the

modern novel or film that is known to be based on ‘actual events’, but which

makes no claim on the ‘absolute’ veracity of every detail, the narrative or even

entertainment value overrides literal truth.

Myth, then, is just a fact of life because it is never possible to be completely

sure of every detail in a given situation, this is simply a given of human existence,

so to have any form of explanatory or defining text involves some degree of ‘myth’

in the original sense of a ‘defining story’. The purpose of myth is to illuminate

life, to point to the ‘universals’ behind the shadows in Plato’s sense. To demand

absolute correctness in every detail is not only silly it is impossible - we want

epistemic truth not metaphysical absolutism. There is always a devil in detail

and that evil is the potential to overwhelm understanding. Myth extemporates

the fundamentals and thereby is a form of abstraction, maybe even the original

form.

To this extent, then, what an educator always does is to construct a myth,

so the choice is not between myth or truth, but which myth to use. This is not

1Fodor uses the term to denote sciences that are not physics, on the basis that physics is the

most general description of reality, not on the positivist basis that ultimately, “all true theories

in the special sciences should reduce to physical theories (Fodor 1975, p. 9).
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to make any judgement about the existence of otherwise of an absolute truth,

simply to assert that because we cannot cognitively deal with every everything

simultaneously we need to simplify in order to understand. The implication is

not merely that we cannot know all there is to know, but that what we know is

only partially true (Clark 1990, p. 146).

This mythmaking aspect is also true of programming. It is hardly likely

that a program of any complexity is produced by thinking entirely in code. The

programmer simply must have thought about the solution in general terms and

this form of the solution clearly bears a mythical relationship to the coded one, it

is ‘defining form’ rather than ‘implemented form’. So what is it about the myth

form that enables it to illuminate the fundamentals? Mostly it would would seem

to be the power of abstraction. Just as myth lifts the essential message about

life that it is presenting out of the warp and weft of everyday life, so the general

thinking separates the solution principle from the coded solution.

Of course it is this very same abstractive power of metaphor that has driven

the change in meaning of the word, ‘myth’, from ‘defining story’ to ‘untruth’.

Abstraction implies the taking of an idea, a form, out of its original context and

this is also the force of the idea of deception. The Greek word, διαβαλλειυ, to

deceive, has the original literary meaning of ‘to throw across’, that is, ‘to take

something out of its original context and put it in another with the intention of

making it appear that it belongs there’. (The phrase ‘red herring’ would appear

to be a modern manifestation of the ‘throwing across’ metaphor.) We alluded

to this power of metaphor to deceive, or, at least to mislead, when we talked

about the ‘brain as computer’ metaphor (see Section 3.2). Furthermore, the

Greek word for ‘deceiver’ or ‘one who throws across’ is rendered ‘diabolus’ in

Latin and comes down to us as ‘diabolical’. Hence, also, the saying that ‘the

devil2 lives in the detail’, pointing out, perhaps, the tendency of a mass of detail

to obscure meaning, to deceive. All this points to a fundamental fact about

meaning. Context is everything in meaning, so much so that, both too much and

too little context in presenting a concept can cause semantic problems. Trying to

encompass context in all its gory detail can deceive one, but, equally, abstraction

(taking out of context) can also be deceptive.

What we want, then, in dealing with complexity, is abstraction without the

abstractive act distorting the essential meaning. The pattern idea avoids these

contradictory tendencies in abstraction by two means. Firstly, the pattern ab-

stracts the essential features of using the concept it encapsulates by identifying it,

not in purely conceptual or theoretical terms, but from actual practice. That is,

patterns are discovered not made3. Proceeding from actual usage means that the

features of the context that are essential are not lost in the act of abstraction - in
2Diabolus is the root for the word ‘devil’ in many languages including English.
3One needs to be a little careful here because this emphasis on the fact that patterns occur

in practice does not mean that there is no theoretical component in their ‘discovery’. One still

has to spot the underlying conceptual connections in the practical form and this often involves

theoretical and even logical types of thought. “For example, the pattern PARALLEL STREETS
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a sense the pattern discoverer is mining domain practice, not domain theory. Sec-

ondly, the pattern is always presented as one item in a language precisely because

this sets it in context in terms of usage - the arrow from one pattern to another,

says that applying the first has set up the context, imported that detail from

the concept’s environment that is necessary for it to retain its essential meaning,

for the second. Pattern is ‘metaphor with context’ or ‘abstraction with context’,

phrases which are almost a contradiction in terms. What saves them from con-

tradiction is the fact of a pattern’s place in a language, the detail-importing or

context-setting power of the language set out in the pattern language diagram.

The critical interdependence of symbol and the system in which it occurs is

the factor that is most often overlooked in various definitions of ‘information’, and

which causes most of the confusion that surrounds ‘information theory’. This is

the problem of meaning, again. Any attempt to define information independent of

semantic value (fitness to the dynamics of its context), that is, in totally abstract

terms, is bound to give rise to misleading explanations. So, for example, many

attempts to relate entropy to evolution seem to falter because they are based on

a semantics-free definition of information (Pattee 2001a, p. 347). The molecules

that act as symbols in the genetic coding system are only symbolic in terms of

the functioning of the genetic coding system as a whole. “A molecule becomes

a message only in the context of a larger system of physical constraints which I

have called a ‘language”’ (Pattee 1969, p. 8) that derives, ultimately, from the

semantics of the organism’s relationship with its environment, because without

this relationship there would be no ‘information’ to encode. In a sense it is the

treatment of the genetic code as a set of symbols in the abstract, that causes the

confusion, just as the programming language’s degree of abstraction does.

One of the main reasons for our inability to measure, in any sensible fashion,

the quality of a program derives from this obscurity of conceptual structure in the

code itself. Many of the ‘stylistic’ additions to coding practice, such as the struc-

tured programming and literate programming movements were attempts aimed

precisely at addressing the lack of conceptual structure in code. There are only

two ways to assess the ‘quality’ of a program using only the code and they are to

run the program or to understand it. The first method limits the assessment of

quality to the bare fact that it works in all the circumstances that the tester can

envision, but, as this is much easier than the second method, quality assessments

often default to it. Building up an understanding of a program from the bare

was discovered by purely mathematical reasoning, based on the forces which connect high speed

vehicular movement to the needs of pedestrians, the problem of accidents, the huge travel time,

the very slow average speeds, etc. At the time we discovered it, we were unaware that it actually

was an emerging pattern in the world of the 1960s and only later realized that separated parallel

arteries, without cross streets, was emerging as a pattern in several major cities. In this same

sense, it was possible to ‘discover’ uranium, by postulating the existence of a chemical element

with certain properties, before it had actually been observed” (Alexander 1979, pp. 259-60).

The fact that these patterns occurred in practice and were identified as patterns virtually

independently follows Kant’s dictum that though all our knowledge begins with experience, it

does not follow that it all arises out of experience (Kant 1881, p. 1).
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code is a difficult and time consuming process because of the obscuring effect of

the sheer mass of detail. Intuitively, imposing some form of structure on the bare

code is a way of making it ‘easier’ to read, and therefore, to understand, and stud-

ies with “literate programming” (Knuth 1984) scripts compared to conventional

structured style programs do indicate that this style made modifying them easier

for novice programmers, indicating an improved level of understanding (Bertholf

& Scholtz 1993).

But it is, obviously, easy to exaggerate this effect - ‘stylistic’ structure is not

the same thing as conceptual structure - and in any case, stylistic structure can

only assist conceptual understanding in terms of an already written program, or

part thereof. While program comprehension is clearly related to programming

skill it is more about other aspects of software engineering (Brooks 1978), such as

code maintenance, than those involved in the design stage (Young 1996). Never-

theless understanding code written by others is an activity that is recommended

for novices, and this is studied in Brooks, “Towards a theory of the comprehen-

sion of computer programs” (Brooks 1983) and in Wiedenbeck, “The initial stage

of comprehension” (Wiedenbeck 1991). Moreover, program comprehension is an-

other one of those activities that relates closely to the pattern idea of reusing

expertise which was one of the main motivations behind the introduction of Ob-

ject Oriented programming. Because OO was believed to be a better environment

in which to model real world entities and activities this was expected to make

reusing concepts, and therefore code fragments easier. However, a comparative

study of program comprehension in novices in the Object Oriented and procedu-

ral paradigms, concluded that the trade off between the increased complexity of

the programming language and the intuitive fit of the Object Oriented paradigm

with the real world, was not entirely clear cut (Ramalingam & Weidenbeck 1997).

And it is here, we feel, that pattern languages fit in by structuring the elements

of OO thinking in terms of process.

In essence, the pattern language idea is a way of abstracting, of capturing the

‘spirit’ of a code construct safely, that is, without distortion - the pattern carries

its context with it, or, at least, that part of its context that it needs to make sense

in terms of reusing it. This contextual feature is possibly the most important

aspect of the pattern idea in avoiding the common problems that a high degree

of expertise in a particular field causes, because most of the ‘danger’ of science

derives also from the power of abstraction to distort. Being an expert in her

domain means that the scientist carries around most of the context in which her

work exists unconsciously - the sense of process is implicit. If she is conscientious

about retaining this awareness, then it is less of a problem. however, not only can

we not rely on every scientist being conscientious in this way, it does not address

the problem of communicating her ideas to people who by the nature of their

being non-expert in her field, do not have the same ‘unconscious’ contextual

background - sense of process - for the ideas being presented. The words, the

symbols, are perceptually the same for everyone, but meaning is contingent on
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experience, it derives from context.

8.3 The Problem of Meaning

As with any intelligent activity, the key to programming is understanding, and

the source of understanding is ‘meaning’ - a concept is only a concept insofar as

it ‘means’ something, that it ‘acts’ in terms of my life. A bird can be trained,

‘programmed’ in fact, to utter phrases like “Polly wants a cracker” but to regard

this as symbolic behaviour is missing the point that for a word to be a symbol

it must represent a concept, it must carry meaning. This leads to a fundamental

question - what is ‘meaning’ in terms of the physical reality of the world? Like

Karl Pearson’s famous question - if life is entirely a physical process then what

is it that physically distinguishes the living from the lifeless? - this points to

one of those fundamental disjoints that cause us to resort to dualist explanations

(Pattee 2001b). It is clear that in responding to physical reality we develop a

symbolic model that is the entire basis for the way that we act in the world, and

it is this symbolic representation that carries meaning, that relates the Platonic

form to the real. Meaning is therefore some sort of relationship between life

(biology) and the physical reality in which it occurs - meaning is an empirical,

not a definitional relationship and this can clearly be seen in those cross-domain

mappings in the conceptual system that we call metaphors. “ In short, the locus

of metaphor is not in language at all, but in the way we conceptualize one mental

domain in terms of another” (Lakoff 1993).

But to express meaning we must use symbolic form, and, as Max Born pointed

out, they are many unanswered questions about the relationship between physical

laws and the mathematical symbols on which their representation depends. If, as

Born saw, all experience, “everything without exception”, is entirely subjective,

then it is only by using symbols that we can express any objective sense of our

subjective, private experiences (Max Born cited in (Pattee) 2001a, p. 341). He

proposed experiment as the condition for the objective use of symbols, a role he

called “decidability”, so that “ if a symbolic expression lacks empirical decidability

potentially available to all observers it has no necessary relation to any objective

reality” (Pattee 2001b). But even if a particular representation does bear an

empirical relationship to its basis in reality, that is, it provides an empirically

decidable description, it may still fail to carry any meaning. As Einstein once

said, everything has a correct scientific definition, but it might be “a picture with

inadequate means, just as if a Beethoven symphony were presented as a graph of

air pressure” (quoted in (Pattee) 2001a, p. 344).

This touches the related problem of reductionism. It seems to be the case that

some aspects of higher level forms are impossible to represent at the next level

down. For example, all snowflakes are individual, their shape reflects a unique

history as well as the symmetry derived from the molecular level. So the break



8.3. THE PROBLEM OF MEANING 259

between elemental and aggregate form is an epistemic disjunction, to adequately

understand the whole snowflake complementary descriptions are required. This

is the ‘measurement problem’ again, the fundamental difference between discrete

entities (elemental form) and the continuous nature of experience (experiential

form).

Solutions that are the most stable (stationary states) lead to the atoms

and molecules that are the basic forms within the energy domain of

living systems (I omit the lower level fundamental particles from this

discussion). They are elemental in the sense that one atom or molecule

of a given form is as good as another in building higher level struc-

tures. In other words, the stability of these forms is such that their

local environmental history is irrelevant and can play no role in their

description. It is also at this level where complementary descriptions

of the wave/particle duality are an empirical necessity. ... At the next

level are forms made up of elemental forms. They are more complex

but less stable. This is the level of macro-molecules and crystals that

may have a timeless overall symmetry, but that also show innumerable

detailed shapes that depend on their individual local environmental

histories. ... Aggregate forms have a lawful elementary description,

in principle, but their complete structure is not reducible to the laws

of elementary forms because their individual environmental history is

not in the language of the elementary forms.

(Pattee 2001a, p. 344)

Incomputability is another example of an epistemic break. It simply means

that a situation is not definable within the terms of the defining formalism. A

program fits this category, it is a solution ‘reduced’ to a description in the limited

means provided by the programming system, so it may even be perfectly correct

in those terms (that is, it executes) yet fail to address the real world problem it

was supposed to solve. So ‘meaning’ is a complicated relationship, it would seem

that meaning is only possible in the context of a web of semantics. But even

within the linguistic system itself, meaning is not as straightforward as we like

to think. This is best considered using an example and for this purpose I have

chosen the word ‘file’ in the context of ‘information’. Logically the best place to

start an examination of the ‘file’ idea is with a dictionary definition and see where

that takes us initially. The online version of the Oxford English Dictionary gives

us, among other items, the following list:

A string or wire, on which papers and documents are strung for preser-

vation and reference. In recent use extended to various other appli-

ances for holding papers so that they can be easily referred to.

A catalogue, list, roll.

A collection of papers placed on a file, or merely arranged in order of

date or subject for ready reference.

A collection of related records stored for use by a computer and able
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to be processed by it.

(Oxford Dictionary, 2005)

Some other definitions that might throw some light on our investigation are:

A row of persons, animals, or things placed one behind the other. the

common file = the common herd (obs. or arch.) in file: one after

another, in succession.

Chess. One of the eight lines of squares extending across the board

from player to player.

(Oxford Dictionary, 2005)

Even from these ‘defining’ ideas it is clear that the concept of ‘file’ is a very

‘slippery’ one. Perhaps, before the advent of the electronic age, the idea that the

concept of ‘file’ was carried by the physical apparatus that kept papers together

could be countenanced, but even here we are on shaky ground. Does said physical

apparatus still carry the concept, the same meaning, when it is empty of papers?

It is still the identical physically existing object that it was when it contained

the papers, but most of us would probably be uncomfortable with calling it a

file. And what if all it contained was several blank pieces of paper - would we

still want to refer to it as a file? A file, at least in the sense that we are using

the word here, containing no information is a rather unintuitive idea, at least to

our modern minds. Maybe for people in the earlier age where the concept was

attached to the linking apparatus, and to the physical placement one after the

other implied by the two extra definitions, this was acceptable. This is one of

the points about ‘meaning’ - it is affected by context, and the current ‘age’ is

part of the context for a word as meaning can change over time. What you and

I understand about the word, ‘watch’, as in personal timepiece, is quite different

from what a person in 1910, before the widespread advent of wrist watches, would

have.

The attempt to ‘locate’ the concept in a material manifestation of some kind

in physical space is clearly fraught even when we restrict our thinking to earlier

times. Maybe the second item in the Oxford’s primary list above can ground

us more securely - “a catalogue, list, roll”. Clearly these ideas are also rather

ambiguous and unclear. How much do these concepts themselves depend on

some physical material manifestation? Do we consider an organised collection of

items, of, say, the symbols for goods to be bought when I go to the supermarket,

a ‘list’, even when it ‘exists’ solely in my memory? And, of course, even in trying

to discuss the original concept one can’t help introducing other ideas such as

‘organised collection’ that are themselves pretty hard to pin down.

The third item is, more or less, a variation on the first - the papers contained

by the apparatus are its focus - so it probably doesn’t move us much further in

our attempt to understand what we mean by the word ‘file’, we have more or less
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the same problems about empty files and blank papers as before. So we come to

the fourth item in the list and here we enter the electronic era. At least we have

escaped the traps inherent in the physical material manifestation definitions. But

have we? We have introduced a rather tricky problem with the word ‘store’ if we

want to abstract our concept from physical reality. That is, if we regard ‘related

records’ in purely abstract terms, as ‘items’ of information, in what sense are they

‘stored for use by a computer’ - as zeros and ones, as electrical potentials? Trying

to tie the concept to computer ‘memory’, another delightful fudge, introduces the

problem of delimiting the concept. If ‘memory’ is made up of zeros and ones then

how to we delimit our notion of ‘a file’ - surely a computer’s ‘memory’ is just

one long string of these digits? Does that make the computer’s ‘memory’ just

one large file? If not then it is clear that some zeros and ones are ‘different’

from others of the same ilk. Reducing our thinking to the individual electronic

components that make up the ‘memory’, a seemingly necessary implication of the

word ‘store’, clarifies nothing, and in fact just adds another layer of confusion.

So if our attempt to ground our concept in space and time has failed, then

our attempt at abstracting it from ‘material reality’ hasn’t got us out of the

mire either. Defining a file as any collection of related ‘items’ of information

introduces the problem of ‘relatedness’ - in what way are they related. Staying

in ‘information’ mode restricts the type of relationship to ‘conceptual’. Yet I

have masses of information in my head, that are all conceptually related at all

sorts of levels, so is my mind one large file? Not only does using the concept of

‘file’ in the context of mind seem strange, to make the least of it, but the idea of

conceptual relationships acting as file defining elements reintroduces the problem

of delimiting a file.

Despite all this definitional thrashing around we all know exactly what the

word ‘file’ means. This must imply that ‘meaning’ is a much more powerful

aspect of living than can be captured by the formal means that linguistic method,

definition, provides. One can’t help thinking that any attempt at definition is

blatant reductionism. You have taken ‘meaning’ out of its living context and

thereby killed it. Meaning can only exist in terms of the whole shebang, I can

only acquire it in those terms through experience, no formal definitional process

can give it to me because the associations between concepts are infinite. I can’t

have a sensible meaning for the concept ‘file’ without one for ‘information’, for

‘related’, for ‘item’, for ‘store’, for ‘memory’, and so on. Moreover each one of

these concepts carries its own infinity of associations. By rights we should all be

bogged down in a mass of definitions, but the fact is that we aren’t! Thinking is

a product of living, not processing information, meaning is processing experience,

no definition can possibly work in the absence of any experience. The language

of life is based on pattern not definition because meaning derives ultimately only

from experience.

There is an obscuring force in the modern idea that the human condition is

a result of information processing because we don’t yet have a reasonable under-
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standing of what information actually is despite its critical role in our modern

way of life. We are like the Iron Age blacksmith who is the acknowledged expert

on the production of iron artefacts, but who cannot answer the question “what

is iron?”

Indeed, he has no frame of reference within which to even begin to

understand what it is you are asking! To give the kind of answer that

would satisfy you, he would need to know all about the molecular

structure of matter - for that surely is the only way to give a precise

definition of iron. (Or maybe there are other ways, ways that re-

quire theories we ourselves are not aware of - This possibility merely

strengthens the point I am trying to make.) But not only is your

man not familiar with molecular theory, he probably does not even

conceive of the possibility of such a theory!

(Devlin 1995, p. 1)

The expertise of the modern programmer like the expertise of the iron age black-

smith is based on experience, not a theory, or even a simple definition of, in-

formation, because we don’t yet have one! Like the example of the word ‘file’

discussed above, we all know what information is without being able to explain

the concept. This is the power of pattern language - meaning out of experience.

Our abstractions, our webs of meaning, are fundamental to thinking, but not

themselves, the source of thought. A computer program executes on a machine

but it is produced by thinking, programming is, in essence, thinking. The context

for programming in therefore life, not the machine environment - the program

can’t execute without that environment, but, equally, it can’t be produced in

that environment. Meaning is required, not just symbol processing - the code

is all symbol, it exists in the machine environment. Using the code symbols

for understanding is possible but it takes a great amount of experience, and, in

any case, the programmer is processing the meanings, not executing the code,

and is therefore using the symbols differently compared to the way that the

machine does. It is precisely this difference that causes the phenomena that we

know as ‘bugs’, humans think, that is process meanings, machines don’t, and are

therefore incapable of such misunderstandings, these errors of logic. The program

is merely the means by which human thinking about the problem being dealt with

is converted into a form that can be processed by the machine.

It is this fact, that programming is a form of thinking that gives rise to the

idea of bringing the language that the computer uses closer to ‘natural’ language.

A great deal of effort in computer science has been put into the task of bringing

programming languages closer to the style of natural language on the basis that

this will reduce the difficulty of programming. But the simple fact is that attempts

to empirically confirm this hypothesis have failed.

Given the small sizes of and inconsistencies among the reported ef-

fects, it is not even clear that notation is a major factor in the difficulty
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of programming. The study of programming languages has been cen-

tral to computer science for so long that it comes as a shock to realize

how little empirical evidence there is for their importance. Second,

many of these effects tend to disappear with practice or experience.

This raises some doubt as to whether these results reflect stable dif-

ferences between notations or merely learning effects and other tran-

sients that would not be significant factors in actual programming

performance.

(Sheil 1981, p. 108)

There are two aspects of this conclusion that are of interest here. Firstly, the

widespread intuition that more ‘natural’ languages should be easier to program

with has to be based on something, and that ‘something’ is probably the propo-

nent’s own perception of the difficulty that she has with using the less ‘natural’

notations, or, more likely, her perception of the difficulty that she sees novices

having. This relates to the second point of Sheil’s summary, that notation does

seem to have some beneficial effects in the novice situation. Tests with two simpli-

fied languages in 1973 found the IF statement to be easier to use than FORTRAN

arithmetic for novices (Shneiderman 1976b).

The introduction of structured programming techniques to address the read-

ing comprehensibility issues caused by the unconditional transfer of control from

one place to another in a program using ‘goto’ statements resulted in several

attempts to measure the expected benefits such as ease of understanding and

modification of code. For example, Lucas and Kaplan, ran an experiment using

students of a Stanford Graduate School of Business course entitled Information

Systems Technology and found that their results “provide some support for the

advantages claimed for structured programming, especially for the ease of mod-

ifying structured programs and the efficiency of the resulting code” (Lucas &

Kaplan 1976, p. 138). This conclusion supported similar results obtained by

(Sime et al. 1973), (M. E. Sime 1977) and, (Green 1997) using similar method-

ologies. Another study, based on understanding programs written to differing

levels of structure found that the main benefit of the more structured code was

in the increased confidence that the programmers had about their understanding

rather than in any more ‘objective’ measure of comprehension (Weissman cited

in (Sheil) 1981). Similarly, Sheppard et al noticed that to significantly degrade

performance in memorising, modifying and debugging programs, the ‘structure’

had to be verging on the deliberately chaotic (Sheppard et al 1979).

None of this suggests clear cut support for Shneidermann’s view that “the

choice of control structure does make a significant difference in programmer per-

formance” (Shneiderman 1980, p. 81), or that structured programming tech-

niques must aid programming. As Curtis points out, “relevant empirical findings

are mixed, due to the variability introduced by individual differences, languages,

tasks, and so on (Curtis 1990). Moreover, Green’s (Green 1997) and Sime’s

(Sime et al. 1973) results, in particular, suggest that the effect of practice on
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performance, that is, experience, clearly overides any effect caused by changing

notation. This ‘practice effect’ even shows up in the comparison of static and dy-

namic typing, for although the dynamically typed language produced more errors,

they were mostly related to representing data rather than the dynamic nature

of data types, and their occurrence tended to reduce with increasing practice

(Gannon & Horning 1975). What the ‘practice effect’ suggests is that the effect

of different forms of notation will show up, not in programmer performance, but

in the development of individual programming skill. That is, most of the mea-

sured differences in performance relate to the way that a program is ‘modelled’

in the mind of a novice, as compared to that of a master.

Undergraduates and other novices do not have the same structures

(often called schemas) built up is long term memory as do experi-

enced programmers. Thus, their reasoning about programming is

qualitatively different from that of more experienced programmers.

(Curtis 1982, pp. 213-4)

What we really need to know is the effect that notation has in assisting the

structuring of knowledge that underpins the learning of the skill. The failure to

demonstrate an effect on programmer performance is, in these terms, irrelevant,

except insofar as it points to the difficulty of measuring cognitive effects generally.

If it is not possible to measure effects on programmer performance, it is hardly

likely that it is any more feasible to measure effects on learning.

What we are suggesting here is that what is needed is not a different notation

in the same vein but a different notation in kind. A programming language

remains, in essence, a programming language, a system of logic, no matter how

close you manage to bring it to ‘natural’ form. It is not the linguistic form as

such that causes the difficulties of programming, and this is backed up by the

results discussed above, but its logical nature. Fiddling with the notational form

doesn’t change its basic nature.

8.4 The Measurement Problem

A major problem with the idea of basing pedagogical practice on empirical data

is knowing exactly what it is that is being measured by the data. It is not yet

clear that we even know how to assess quality in program terms, let alone pro-

gramming or programmer terms. When, as Yourdon points out, the question,

‘what are the qualities of a good program,’ elicits a plethora of different answers,

the idea that we can assess programmer performance in any meaningful way is

clearly ridiculous (Yourdon 1975, p. 6). Yet how else can one assess the efficacy

of a teaching method other than by some programmer performance metric. As-

sessment in introductory programming courses tends to default to more or less

simple measures of programming knowledge, rather than performance, not only

because of the difficulty of measuring performance, but because of the difficulty



8.4. THE MEASUREMENT PROBLEM 265

of controlling the opportunities for cheating as well. But even if the environment

in programming tests could be regulated, assessment of skill is still an issue. Ex-

periments conducted on experienced professional programmers showed that the

measures of performance covered a range from 5:1 to 28:1 in magnitude (see Ta-

ble 8.1). It can only be presumed that the employers of these programmers were

satisfied with their performance in the field, so the differences demonstrated in

the experiment clearly indicate the difficulty of devising any objective measuring

technique.

Performance Measure Worst Best Ratio

Debugging Hours - algebra program 170 6 28:1

Debugging Hours - maze program 26 1 26:1

CPU sec. For program development - algebra program 3075 370 8:1

CPU sec. For program development - maze program 541 50 11:1

Coding hours - algebra program 111 7 16:1

Coding hours - maze program 50 2 25:1

Program size - algebra program 6137 1060 6:1

Program size - maze program 3287 650 5:1

Run time (CPU sec.) - algebra program 7.9 1.6 5:1

Run time (CPU sec.) - algebra program 8.0 0.6 13:1

Table 8.1. Comparison of Programmer Performance

The reaction to these results has been rather simplistic. Even someone as ex-

perienced and perceptive as Edward Yourdon is led to say that it shows that some

programmers are very good and some are extremely bad. But I don’t think that

you can even draw as straightforward a conclusion as that from this experiment.

There are simply too many factors that feed into performance that have not,

and probably cannot, be controlled for. Presumably all these people came from

different programming environments and it is not clear from the information in

the paper that the experimental test involved using a programming system that

they were all equally familiar with, or even that the best and worst performers

in one measure were the same individuals in the other measures.

But even if familiarity with the test programming system was equal across

the participants, it would still be the case that they would all be working in

different kinds of conceptual contexts, so that, for example, a programmer who

was working on some sort of graphical software would probably find the transition

to the maze problem easier than someone whose normal working environment

was accounting software. So the experiment was really a measure of the fit

between the individual ‘psychological field’ of each participant, consisting of,

among other things, background, experience and so on, and the particular tests

and the environment in which they were conducted. In pattern terms we would

say that it was a test of the fit between the personal pattern language of the

programmer and that required for optimal performance in the test.
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Take a simplified example, the testing of rat intelligence by seeing how long it

takes a rat to learn to run a maze. As the devious organiser, I have presented my

experimenter with two rats, one which I have freshly caught in the city, the city

rat, and one which I have caught in the country, the bush rat, without telling her

anything of their different backgrounds. My experimenter finds, not surprisingly,

that one rat learns the task very much faster than the other and concludes that

the range of rat intelligence is huge. Of course the test shows nothing of the sort.

One would expect the city rat to learn a maze more quickly than the bush rat

because the maze environment is closer to the conditions that it is used to. The

bush environment does not generally consist of impenetrable continuous barriers,

any obstructions in such an environment are likely to be discontinuous and to be

of a nature that allows one to push one’s body through them. In other words the

experiment was really measuring the fit between the experiential background of

the rats and the test environment, not their intelligence in any abstract sense4.

So in the case of the programming test, just to mention one possible scenario,

it might have been the case that some of the spread was due to the simple fact

that the best performers in each test had written a program for a similar problem

previously. There is no way to control for such confounding factors, even asking

the programmers to reveal if they had encountered similar problems is not entirely

certain, and therefore the results have to be treated cautiously, particularly insofar

as they are read as a measure of individual programming performance in the

general sense.

It is important to remember always that experts are human, that their exper-

tise is merely a part not the whole of their being. Testing their performance in

the area of their expertise implies that it can be treated in isolation, that they

are, temporarily, ‘programming mechanisms’ not human beings. Dr Strangelove

types excepted, it is not normal to expect generals to be total warriors, “fighting

machines” pure and simple. They will have at least some of the same ambivalence

to the realities of war as everyone else, so even their military judgement will be

affected by their personal view of the world. Personality is largely established by

the start of a career, so it is difficult to believe that the dynamics of their field

can dominate over their personal opinions and feelings.

Every expert is a human being; and technical opinions reflect the

political views of those who give them. Generals and admirals are

confident of winning a war when they want to fight; they always

find decisive arguments against a war which they regard as politically

undesirable.

(Taylor 1964, pp. 124–5)

The technical aspect is just one aspect of a person’s experience, albeit an im-

portant one, and the fact that there is a dynamic relationship between expertise
4Of course, any talk about intelligence begs the questions as to what it actually is and

whether or not any test for it can escape from cultural or intellectual bias of one sort or

another.
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and personality works both ways. For example, this idea that a person brings

their particular experiential background with them into any unfamiliar situation,

can be seen as existing as a wider concern in social affairs, in terms of ‘conflict

of interest’ issues, and the fact that it is widely believed that legal decisions

are better made by juries, that is, a number of people from a diversity of back-

grounds, rather than by judges, whose view of the world is likely to be somewhat

conditioned by their constant involvement in the legal system. So the idea that

programmer performance can be treated as a factor to be studied in isolation from

the whole personality is somewhat dangerous. This was not entirely overlooked

by the experimenters themselves, it must be said, but it has been a feature of

the response to their results. One of the experimenters suggested elsewhere that

the reason “experienced programmers vary by an order of magnitude for most

performance variables”(Sackman 1970, p. 47), is that the programmer’s wider

personality is an issue in performance measures and this needs to be taken into

account.

Several attempts have been made to investigate the effect of particular traits

on human-computer interaction - assertiveness and the perception of the amount

of control that a person has over their environment as factors in preferring batch

over time-sharing systems (Lee & Shneiderman 1978), aggressive - humble and

introversion - extroversion measures against results in an introductory program-

ming course (Newsted 1975), analytic versus heuristic cognitive style in relation

to the differing decision structures of various information management environ-

ments (Zmud 1979), need-achievement and evaluative defensiveness as factors in

predicting performance in decision systems (Wynne cited in (Lee) 1978 p. 563),

and so on. While it is undoubtedly true that personality is a factor in problem

solving and decision making situations, attempts to associate particular traits

with performance in these tasks will probably always lead to unreliable and in-

consistent results due to the sheer complexity of the mix of factors.

Despite the potential importance of cognitive styles for management

decision-making and information use, conceptual and methodological

weaknesses have sharply limited the payoffs from this line of research

(Taylor & Benbasat 1980)

But it is not just the “conceptual and methodological weaknesses” of the

research that is a problem here, it is the underlying metaphysical assumption of

Descartes’ separation of res extensa and res cogitans. As beings we are obviously

whole systems, yet the behaviourist refusal to accept anything but overt behaviour

as a measure of psychological state (Skinner 1953, p. 35) still colours social science

research as if “the process of feeling”, in Susanne Langer’s sense, was not both

objective and subjective in its effect.

“Behavior,” “stimulus,” and “response” are working notions of the

animal laboratory, generalized and stretched in the hope of covering

the whole field of psychological facts; but beyond the context in which
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they were originated - experimentation on animals - they quickly de-

cline in usefulness. A term that designates a vast variety of phenom-

ena cannot be used to describe their differences, let alone to account

for them. Abstractions do not designate phenomena at all, but serve

to describe them. There is no object or event called “gravity,” but

such phenomena as the flow of water downhill, the position of stars

in relation to each other, the attraction of a compass needle to the

magnetic pole, are widely diverse events or conditions describable by

use of the concept of gravity. There are such things as stimuli and re-

sponses; to isolate and label them, even to pair some very simple ones,

is a sort of taxonomy; it does not furnish any principles of analysis

or construction, any terms to describe the relations between observed

events. [Emphasis in original]

(Langer 1962, p. 5)

The transfer of these elements of behaviourism from the study of animal be-

haviour has mired Social Science in mechanistic thinking, when, indeed even Skin-

ner himself “has to smuggle in mentalistic assumptions in order to make sense of

his simplest animal experiments” (Flanagan 1991). There is one indivisible pro-

cess going on in any human behaviour, it is not tenable to make a statement like

“nerve impulse is converted into thought” without implying that mental function

is some sort of “mysterious transubstantiation” from one type of substance, res

extensa, to another, res cogitans. Nerve impulse is “felt as thought”, both are

aspects of the same ‘whole’ system, that’s the point (Langer 1962, p. 10).

The expression “felt as thought,” which is here substituted for “con-

verted into thought,” raises another issue, the power of a new concept

to concatenate the findings in a general field of research. “Feeling”

in the broad sense here employed seems to be the generic basis of

all mental experience - sensation, emotion, imagination, recollection,

and reasoning, to mention only the main categories. Felt experience is

elaborated in the course of high organic development, intellectualized

as brain functions are corticalized, and socialized with the evolution of

speech and the growth of its communicative functions. On the other

hand, the mechanisms of felt activity are heightened forms of unfelt

vital rhythms, responses, and interactions; a psychology oriented by

this concept of feeling runs smoothly downward into physiology with-

out the danger of being reduced to physiology and therewith losing

its own identity. Even if it should ultimately appear as a branch of

physiology, the area of its branching is likely to remain quite visible,

though without a sharp dividing line (there are very few such sharp

lines in nature): it is the area where vital (probably neural) processes

begin to have psychical phases, i.e., to be felt. We may not always

be able to judge what activities are felt; such judgments, with re-

spect to speechless creatures, rest on many speculative grounds, not
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only analogies between animal and human behavior, but especially

phylogenetic continuities and structural homologies.

(Langer 1962, pp. 10–11)

It is reality that keeps us grounded, that does not allow the mind to totally

disassociate, that keeps us ‘whole’ in fact, just as it was reality that made us

what we are. Abstraction is a tool for life, not a mode of life, “our constant

sensory stimulation, even without conveying any new information, serves to keep

us realistic in waking life to the extent of not letting the brain freely hallucinate

as in dream”(Langer 1962, p. 19). But this wholeness invalidates any sort of

reductionist research and we encountered this limitation in our own attempts to

measure the effectiveness of patterns in helping novices learn to program (See

Section 10.5). The fact of the matter is that any attempt to measure program-

ming performance devolves to an assumption, namely that the relationship of

‘performance’ to the whole ‘psychological field’ is both simple and static, when

even the attempt to divide the task of programming into cognitive subtasks itself,

turns out to be very problematic. If we can’t even establish clearly, by experimen-

tal means, that program debugging requires comprehension (Bishop-Clark 1995),

that code modification relies on a combination of comprehension, composition,

and debugging (Koubek et al 1989), or that program comprehension involves

debugging, modification and learning (Shneiderman 1976c), then relating pro-

gramming performance to psychological factors in any sensible fashion is likely

to be well beyond our means.

All this means that we are, at least for the present, stuck in the realm of

theory rather than empirical modelling, but this should not deter us as “there

are many models in science that clearly do not purport to have relations to an

empirical system” (Downes 1992, p. 143). Theories, in this sense are “candidates

for psychologically real representations and rules” (Gopnik & Meltzoff 1997, p.

33), rather ‘empirically real’. One of the main drivers of theorising about the

difficulties of programming has been the idea of ‘cognitive load’. Cognitive load

is a theory that derives from Miller’s insight that working memory is limited

to about seven ‘chunks’ of information, and that they can only actively process

two or three elements at a time (Miller 1956). Most of the strategies that are

commonly seen in problem solving situations in virtually all domains, problem

clarification, breaking a problem down into key elements, drawing or modelling

the problem domain, simplifying or redefining the problem, etc. can be seen as

ways of addressing cognitive overload. More importantly, however, these restric-

tions on the processing power of the brain suggest that human reasoning is based

on something more than just ‘working memory’, that to be as effective as we are

there must be some other factor involved. As the example with Chess discussed

in Section 6.2 (in particular, see Figure 6.3), expertise in a field is based on knowl-

edge that encompasses much more than can be accommodated in a mere seven

chunks, in fact it has been shown that Chess masters have as many as 100,000

board configurations at their disposal (Simon & Gilmartin 1973). Clearly the
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limitations of the immediate working memory space are being avoided by the use

of long term memory.

But this introduces the problem of how the expert has such immediate access.

Accessing stored information involves being able to find what you need in the

mass and this implies that it is a well organised store of information. But there is

an even more profound implication involving how it got to be so well organised.

The only way that such a store of information could get to be both large and

well organised is for it to have incorporated the organisation as it was being

built. Here the idea of groups of ‘chunks’ or ‘schemata’ enters the scene as a

means of enabling the transition from working memory to long term storage and

vice versa - “schemata have the function of storing knowledge and reducing the

burden on working memory” (Garner 2001). Here, once more, what we have is

constructivism, the development of the ‘mind’ of an expert, rather than any sort

of ‘random’ storage of information, knowledge as a ‘web’ of ‘ideas’ or concepts.

Knowledge ... isn’t a copy of reality ... it’s a reconstitution of reality

by the concepts of the subject, who, progressively and with all kinds

of experimental probes, approaches the object without ever attaining

it in itself.

(Piaget in (Bringuier) 1980, p. 110)

Transcending the limitations of the animal brain, or even the pure neuronal

dynamics of the human version, involves another one of those epistemic breaks,

it is simply impossible to explain the mind in terms of the basic elements of brain

activity. So although animals display some degree of abstractive and metaphoric

ability - an animal does not require a ‘perfect’ fit between its stored representation

of a predator and some presence in its current experience, for example - this is

far coarser than that displayed by humans. So a seagull chick responds to the

presence of an adult with a begging response, but it will equally respond to

a beak that has been detached from a dead seagull, and even to a stick that

only vaguely resembles a beak (Tinbergen 1951). This demonstrates that it has

abstracted enough of the features of ‘adult beak’ to trigger the response, but

that it can be easily fooled. The behaviour is still tied closely to brain dynamics,

that is, it is largely instinctual, and therefore the animal is not capable of those

discontinuous ‘leaps’ that characterise ‘mind’, where response has been liberated

from the brain’s own continuous neuronal dynamics. Language is the ultimate

expression of this liberation, of course, associations are now made using a means

of accessing memory through pure symbol that is far more powerful than the

percept-level association used by the seagull chick.

Symbols, metaphor, and analogy recapitulate the ontogeny of a dy-

namic state through contestation with another, resulting in a new

synthesis within the epistemological domains of those states that are

consequently re-formed. Metaphor, symbol, and analogy all share the

key characteristic of synthesis of apparent and, in more advanced util-

ity, non-apparent elements of objects and events. A metaphor is thus
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a heightened degree of routine association made remarkable because it

involves the juxtaposition of apparently dissimilar phenomena. This

contributes significantly to our survival, enabling us to transfer solu-

tions across problems with similar goal structures. In the most ad-

vanced stages of brain development, we achieve true system mapping,

in which we far surpass other species in our capability to transcend

perceptual similarity. Discerning correspondence in non-similar phe-

nomena is one of our highest achievements. ...

Constraints are integral to this selected cognitive strategy. A language

is by nature open ended and capable of infinite combinations, but its

semantic value would be null if there were no categorical restrictions.

The variety and richness of semantics depends on the tension between

the language as a means of leaping dynamic states while constrained

by the inherited neurological processes upon which those states reside.

Meaning, in large part, emerges from this tension, from the continual

intersection of an abstracting system of organization that must relate

by nature of its associative propensities to the external world.

The metaphoric/symbolic quality of language production is inevitable

because meaning must be constructed from the associations of often

disparate elements and events. To say language or its component

words are ‘representational’ misses a critical point: words cannot rep-

resent singular objects or events without recourse to a variety of as-

sociations. Essentialism is impossible in linguistic constructs. On the

other hand, cognitive categories must relate to the external world, or

an organism would not efficiently categorize (and thus survive in) its

environment, in other words, the construction of categories must be

evolutionarily, and consensually, viable.

(Henry & Rocha 1996)

The cognitive abilities that underlie language thereby increase the potential

of the neuronal substrate through their associative (pattern) and generative (lan-

guage) power. And if this is the way that the limitations of neural dynamics were

transcended, then it suggests a clue to a way of dealing with the limits of the

cognitive system. Presumably there is some sort of relationship between cognitive

load and brain dynamics. At some level the demands on the brain of the creation

and use of abstractions overwhelm even the increased potential that they supply

- that is, the cost outweighs the benefit.

Deciding to create and use an abstraction is not costless. There is

a cognitive overhead merely in exploring the issue. There is also an

overhead, identified by the ‘cognitive dimensions’ analysis, in creating

many abstractions, since maintaining them in future may prove quite

effortful if they have to be redefined.

(Blackwell et al 2002)

It is this cost factor that drives the creation of ever higher level abstractions,
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and explains the difference between novice and expert performance. What novices

are doing is creating the web of associations, the pattern language, because that is

what learning is. So most of the cognitive load for novices in their programming

tasks is the cost of this setting up process. And this is also where the drive for

ever increasing degrees of abstraction comes from. If abstraction works to help

overcome the limits of the neural system then it should also work at the task

of assisting overcome the limits of the cognitive system, because the cognitive

system is just the neural system at one step of abstraction. The next step is a

sort of abstraction of lower level abstractions.

This can be seen in pattern language evolution, where a structure that is a

pattern language at one stage of a person’s development becomes a single pattern

in a developing larger language. We discuss this further in Section 5.9 in terms

of a child’s acquisition of natural language as levels of ‘linguistic organisation’,

and explicitly as pattern language evolution in Section 7.6. The likely memory

resources involved are covered in Section 9.4. It is this process, by the way, that

lies behind the ‘jargon’ phenomenon, experts are using concepts that have been

assimilated into their own thinking but which are meaningless to someone who

doesn’t possess them. The way that the expert explains the jargon to the initiated

is to go back to a lower level of abstraction, that is, to where the concepts being

used are likely to be more familiar - one is breaking the single pattern back down

into the form it had when it was a pattern language in one’s own mind.

Cognitive load, then, is an expression of homeostasis, where homeostasis is

“the capacity of a system to hold its critical variables within physiological limits in

the face of unexpected disturbance or perturbation” (Beer quoted in (Hall) 2005).

The critical variable being controlled in this case is the system’s own organisation,

its ability to maintain itself as a coherent system of knowledge. “A cognitive

system is a system whose organization defines a domain of interactions in which

it can act with relevance to the maintenance of itself, and the process of cognition

is the actual (inductive) acting or behaving in this domain” (Maturana 1970,

p. 13). The cognitive system is about ‘conceptual organisation’. If it becomes

overloaded the result is a breakdown of the organisation that is the very reason for

the system being in existence. In other words its sense of wholeness, its internal

coherence, is gone because organising one’s perception of the world is its sole

purpose in terms of survival.

There are no survival implications in most situations where cognitive load is

likely to occur, of course, nevertheless the loss of cognitive coherence has to be

a negative factor in terms of any intellectual performance. Dealing with compli-

cated situations involves both strategic and tactical level thinking (Lewis 1981, p.

87), but the later is much more effective if it is based on an overall strategic view.

So the main effect of cognitive overload is probably to effect the strategic level

view, leading to uncoordinated and misdirected activity at the lower level, which

is exactly the type of behaviour that we see in unskilled performance. But this

effect is triply pernicious because the resulting erratic activity itself adds to the
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cognitive load, and moreover, must tend to inhibit the development of a better

strategic view.
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Chapter 9

The Psychology of Learning

Programming

Memory and imagination are but two words for the same thing.

Thomas Hobbes (17th century philosopher)

We have - despite what psychologists, pædagogues and the like may

think - not the faintest idea how knowledge, insights and habits are

transferred. It is not unlikely, that the actual transfer is always by

imitation, and that all the explicit teaching in the scientific tradition

is no more than giving the student some verbal handles, which are no

more than an aid to memory. If this is true, then all purely “scientific

teaching” - i.e. the explicit rules and no more - is bound to be, and

to remain forever, a barren activity.

(Edsger Dijkstra 1982, p. 109)

9.1 A New Way of Thinking

Teaching anything is one of the great challenges inherent in the human condition,

because nothing is ever really taught, it is learned. Someone either learns what is

put in front of them by the teacher or they don’t, the actual performance of the

learning is entirely in the learner’s purvey, not the teacher’s. In the end, the role

of teacher is really that of facilitator of learning and nowhere is this clearer than

in Plato’s dialogues, where most of what Socrates does is to question his pupils.

He causes them to think of the matter under discussion in terms of the beliefs

that they already hold, and by this means moves their understanding forward

through the apprehension of the dialectic of the contradictions exposed thereby.

Ausubel (1968) states that “the most important single factor influ-

encing learning is what the learner already knows” (p. vi). We must

therefore search for an explanation of variation in human learning

275
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capacities primarily in the cognitive and affective experiences the in-

dividual has had. In the absence of organic brain damage and such

occasional biochemical hereditary defects as phenylketonuria, most

differences in human learning capabilities at any point in one’s life

up to old age should be predominantly the product of prior learning

experiences.

(Novak 1977, p. 57)

Of course, if this is true in explaining differences between individuals, then

it must also drive any explanation of the individual’s own level of learning ca-

pability at any particular time. One can’t explain a difference in levels between

individuals using a factor that does not relate to the capacity that is being com-

pared. This boils down to the statement that an individual’s capacity to learn

a particular knowledge domain or skill is a measure of the relationship between

the individual’s previous experience in terms of the nature of the new knowledge

or skill. Difficulties in learning a new field thus represent a ‘bad fit’ between the

cognitive or mental structure of the learner and the conceptual structure of the

new material, or, at the very least in the way that it is being presented. To a

significant extent the ‘cognitive structure’ of an individual is a direct result of

the ‘conceptual structure’ of the totality of her previous experience. This is why

the notion of wholeness is so important in relation to learning, the present is a

product of the past, and it is difficult to see how one can unravel them to any

extent and still address the individual at any level of understanding.

Given this degree of connection between the past experience of the novice and

their ability to learn anything, the idea of teaching programming begins to seem

a little ridiculous. If programming is considered to be horrendously difficult,

then teaching it would seem to verge on the impossible. As Gruenberger has

said, “I have to conclude that I don’t really know how to teach computing, and

I’m reasonably sure that no one else does either” (Gruenberger 1977, p. 124).

Yet teaching is just a process of directing, or assisting, the learning of another,

and we all spend our lives learning. This is a constructivist approach, the idea

that knowledge must be constructed by the learner, it cannot be supplied by the

teacher (Bringuier 1980).

The fundamental fact about learning ... [is that] anything is easy

if you can assimilate it into your collection of models. If you can’t,

anything can be painfully difficult. Here too I was developing a way

of thinking that would be resonant with Piaget’s. The understanding

of learning must be genetic. [emphasis in original] It must refer to

the genesis of knowledge. What an individual can learn, and how he

learns it, depends on what models he has available. This raises, recur-

sively, the question of how he learned these models. Thus the “laws

of learning” must be about how intellectual structures grow out of

one another and about how, in the process, they acquire both logical

and emotional form. ... [What is required is] an applied genetic epis-
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temology expanded beyond Piaget’s cognitive emphasis to include a

concern with the affective. It develops a new perspective for education

research focussed on creating the conditions under which intellectual

models will take root.

(Papert 1980, pp. vii–viii)

So it is the disjoint between the models in the learner’s mind and the models

underlying programming that cause the difficulties that learners exhibit. The

novice’s past has not equipped her to deal easily with the strict symbolic logic

involved, so she is basically learning from scratch, learning a new way of thinking,

a way of thinking, in fact, that is not only different from her previous mode, but

strictly contradictory. Those models and modes of thinking that have been labo-

riously constructed out of experience are rendered useless by the current models

used in the teaching of programming because they are based on meaning, and,

as we saw in the case of Helen Keller (see Chapter 5), symbols without meaning

are empty, mere ‘signs’, hardly worthy of being “called a thought” (Langer 1976,

pp. 62-3). Moreover if this is true then the solution to the problem is quite clear

- the current mode of teaching programming must be changed, as changing the

mode of thinking brought to the task by the beginner is simply not an option -

short of rearranging the common experience of life for everyone, anyhow.

The hidden ‘faith’ of education is that every human, with the usual obvious

caveats, is in a state conducive to learning virtually anything. As the California

State Board of Education states in respect of their mathematics education:

These standards are based on the premise that all students are capa-

ble of learning rigorous mathematics and learning it well, and all are

capable of learning more than is currently expected. Proficiency in

mathematics is not an innate characteristic; it is achieved through per-

sistence, effort and practice in the part of students and rigorous and

effective instruction on the part of teachers. ... The standards empha-

sise computational and procedural skills, conceptual understanding,

and problem-solving.

(CSBE 1999, quoted in (Macnab) 2000)

But this educative ‘ideology’ is a direct consequence of the way that we currently

view the mind. It is based on human understanding, a property reliant on mean-

ing. The fundamental principle of cognitive science that “the essence of knowledge

is structure” (Anderson 1981, p. 5) is thereby constructivist in terms of learning

- the only way to acquire knowledge is to build structure (construct). What this

means is that we should be able to identify those elements of cognitive structure

that contribute to ‘thinking like a programmer’. The best way to approach this

task is to examine the differences between the novice and expert minds, as what

the expert has done is acquire, painfully, the cognitive structure that facilitates

programming skill - the expert has learned the “new way of thinking” that the

novice needs to learn. In other words the expert has constructed “meaning” out

of experience, the only way that “meaning” can be acquired.
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The learning of any skill involves a journey from novice to competency, and

an appreciation of the psychological difference between the two end points is

vital to any teacher. On the face of it, instructing a machine with a very lim-

ited repertoire of basic operations would intuitively seem to be easy, but history

demonstrates that programming, and especially, learning the skill, is the cognitive

equivalent of climbing Everest (McCracken et al. 2001). Understanding the cog-

nitive structures on which competency is based, and how these representations of

the requisite knowledge vary from those of the novice (Novik 1990), is therefore

obviously desirable, however expertise is a complex and little understood state of

mind. All that we can probably hope to do at this stage is to point to some dif-

ferences in novice and competent performance, attempt to explain them in terms

of various cognitive factors, and relate this to pedagogical practice.

Probably the most compelling difference between the two performance levels is

in the apparent ease with which the expert proceeds compared to the floundering

performance of the novice. “Experts seem invariably to know when to apply

knowledge in a given task, whereas it is characteristic of novices that they often

fail to apply what they know” (Chase & Ericsson 1981, p. 175). But it is difficult

to account for this procedural difference purely in terms of the knowledge of the

programming language involved as the novice can often answer questions that

indicate a reasonably sophisticated level of such knowledge. What seems to be

lacking is the ability to apply the knowledge, the factor that in the expert’s

case appears almost automatic. But the the lack of this facility in the novice

is one of the major blockages to learning because, if in dealing with a problem

the student “cannot find his own way out he will not learn, not even if he can

recite some correct answer with one hundred percent accuracy” (Dewey 1966, p.

160). Clearly the expert has some cognitive support structures on hand that act

to change static knowledge into procedural form virtually automatically. This

ability to convert static knowledge into practice almost without effort is known

as ‘automatism’ and it is this feature that produces the observed differences in

performance. The most likely explanation of the effect is that automatism reduces

demand on limited resources, probably memory (Shiffrin & Dumais 1981, p. 139).

Moreover, we know what the “development of automatism” involves, namely,

lots of practice. “Almost always, practice brings improvement, and more practice

brings more improvement” (Newell & Rosenbloom 1981, p. 1). The obvious catch

here, though, is that it is difficult to practice when the source of your difficulty

is generating procedure from knowledge. Improving your knowledge base won’t

help if you already have the knowledge. What is needed is a mechanism that acts

to convert knowledge into action as the ‘automatism’ of the expert does. But

providing such a mechanism is presumably what we think we are doing when we

work through examples in our teaching materials and presentation. Clearly it

is not enough to facilitate the practice that novices need, probably because the

active component, the actual workthrough of the example, is not available to the

student at the time it is needed and the written version is a pale imitation of
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the dynamics of an actual demonstration. So what we need to do is to find a

way to make the written version more procedural in flavour, to give the novice

the equivalent of the semantic structure that the expert has developed through

experience.

In this chapter we want to explore the relationship between the expression of

a skill and memory and relate it to the use of a pattern language to facilitate the

practice that novices need but find difficult to do. The pattern language idea is

relevant in this context because it arises in a situation where the amount of detail

to be assimilated into the design of modern living space overwhelms the capacity

of even experienced designers in the same way that program design problems

overwhelm novices.

The very frequent failure of individual designers to produce well or-

ganized forms suggests strongly that there are limits to the individual

designer’s capacity.

We know that there are similar limits to an individual’s capacity for

mental arithmetic. To solve a sticky arithmetical problem, we need a

way of setting out the problem which makes it perspicuous. Ordinary

arithmetic convention gives us such a way. Two minutes with a pencil

on the back of an envelope lets us solve problems which we could not

do in our heads if we tried for a hundred years. But at present we have

no corresponding way of simplifying design problems for ourselves.

These notes describe a way of representing design problems which

does make them easier to solve. It is a way of reducing the gap

between the designer’s small capacity and the great size of his task.

(Alexander 1964, pp. 5–6)

This idea that a way of representing the relationships between concepts (this

is what a pattern language diagram is) can be a useful tool in supporting rea-

soning tasks is supported by recent findings in differential psychology research

(Monaghan 1995, p. 33).

The obvious strategy in considering the efficacy of patterns in introductory

programming is to test the use of patterns under experimental conditions. Un-

fortunately, this turns out to be rather more difficult than might be expected due

to the difficulty in controlling the multifarious variables involved. In our first two

attempts to measure improvement in a group exposed to a pattern language and

patterns against a control group we found that neither methodology tried pro-

vided clear cut evidence. In both cases the pattern group did perform better but

we feel that we were unable to isolate the results from factors like the Hawthorne

effect (Draper 2005), the ‘practice effect’ (Sheil 1981, p. 106) and other possi-

ble sources of improved performance. In the first instance we ran the test as

an experiment completely isolated from the normal coursework (see (Porter &

Calder 2004)) but found that motivating the required extra-curricula involve-

ment difficult. Accordingly, the second attempt involved the use of extra help
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sessions for students undertaking a second programming topic, however main-

taining consistent attendance again proved a problem. A third attempt, based

on running two of the normal practical streams along pattern lines, was made,

but providing a meaningful pattern context proved impossible in the restricted

circumstances of the practical laboratory session.

So although it is obviously desirable to establish the benefit of using pattern

languages in helping novices to become competent programmers it is also useful

to clarify why it is that we feel they should be of such benefit, and that’s what

we attempt in this chapter. There is nothing new in this, pedagogical change is

rarely based on solid empirical evidence simply because the educational context

changes too fast. But, in fact, this is just a reflection of the way that the world

is. Changes, important changes - think of the introduction of television, or in

more recent times, cellular phones, for example - in the way that society works

are made, or even just happen, without any attempt at trying to assess the

ramifications. Reflecting this, it can be seen that most of the developments in

programming languages and methodologies have been explicitly predicated on

the belief that they will improve the performance of programmers by addressing

factors that are essentially psychological in nature (Sheil 1981, p. 101), rather

than as a result of empirical research. Indeed where such research has been

conducted, usually in retrospect, it has “found few clear effects of changes in

either programming notation or practice” (Sheil 1981, p. 101).

Given the difficulties encountered in studying the novice programming en-

vironment, then, it is clear that research into simpler and more mature, and

therefore hopefully better understood, problem solving environments should at

least enable us to theorise about some of the cognitive structures and processes

involved in learning to program. In itself, the pattern idea has had an impact

on programming that can be regarded as pedagogical in nature. It is clear that

the patterns examined in the GOF book were, in fact, in common use prior to

its publication, they “are solutions that have developed and evolved over time”

(Gamma et al. 1995, p. xi). As Linda Rising points out “experienced designers

read these patterns and usually remark, ‘Sure, I’ve done that - many times!”’

(Rising 1996). So the main import of the GOF book was to make programmers

conscious of patterns that they were probably already producing incidentally in

their code, in order to facilitate and broaden that use - it was a way of sharing

knowledge in a readily usable form. So it is the pattern idea, not the individual

patterns as such that was being introduced and the evidence is that it did enable

us to think more clearly about what we were doing.

It is in this spirit that the idea of using patterns in the learning context arose.

If patterns were useful in enabling experienced programmers to better understand

what they were doing then this effect, on its own, has to be advantageous in the

novice situation. In this field we need as much of artistic intuitive feeling as we do

of basic knowledge - this is an art. As with music, theory cannot drive the com-

position of the artefact in the same way that scientific theory does a technological
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project. In other words it can’t be formalised or ‘engineered’. So the problem

seems basically to be that when we are programming we are “forcing our interac-

tions into the narrow mold provided by a limited formalized domain” (Winograd

& Flores 1987, p. 75) which stifles the source of our creativity, the power of ab-

straction and metaphor. The programming domain provides the tactical means,

the operators, to solve problems. What it does not, and cannot, provide is the

insight behind the task of combining them to solve a particular problem, the

strategy. “That strategic knowledge can be considered separate from knowledge

of operators is shown by the fact that a solver may know how to apply either of

two operators in a given situation but still not know which to apply” [emphasis

in original] (Lewis 1981, p. 87).

The thrust of patterns has always been this strategic level dynamic, the cog-

nitive aspect of using the operators to ‘create’ programs. And this relates to

an aspect of advanced programming that has been studied. This is the use of

‘programming plans’ by expert programmers. These ‘strategies’, however, now

appear to be “strongly tied to the particular learning experience of the program-

mer” and “related to the expression of design-related skills” (Davies 1990, p.

461). If nothing else, this points to the importance of the learning experience in

shaping programming practice, and, if pattern languages really are an expression

of strategic level thinking then the idea of using patterns in the teaching envi-

ronment is one way, at least, of providing the basis for the use of such plans.

But the real point about strategic thinking is that solving problems in any do-

main requires the same sort of insight, and produces the same sort of demand on

cognitive resources.

Therefore, to explore the use of cognitive resources in programming we ex-

amine a situation in mathematics that causes similar difficulties for novices, and

analyse a case study in the recall of digit sequences that suggests that the main

source of novice difficulties is in the development and use of long term or ‘se-

mantic memory’. What the expert appears to have that the novice doesn’t, is a

mechanism, basically a network of connections based on understanding (Brans-

ford et al. 2000, p. 127), a semantic network, in long term-memory that frees the

short-term memory from the task of making the necessary connections on the fly.

What we are observing in the novice are the symptoms of cognitive overload, the

utilisation of the limited capacity of short-term memory, Miller’s famous “7 ∓ 2

item” limit (Miller 1956), to do what the expert’s pre-existing ‘semantic network’

does in its ‘automatic’ fashion.

9.2 A Parallel Example in Mathematics

Generating a proof for a geometric or algebraic proposition is a similar situation

to designing a program to solve a problem. It involves a knowledge of the basic

principles underlying the design space, the development of a clear understanding
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of the goal of the exercise and a plan for achieving it, and a successful imple-

mentation of the plan in the formal notation appropriate to the task. In both

fields, mathematics and programming, it would appear the main difficulty arises

in what might be called the planning stage involving coming to understand the

problem and to plan its solution. Apart from things like mistaken notions of what

constitutes a proof and invalid beliefs about deriving one (Recio & Godino 2001),

the main difficulty that students of mathematics seem to encounter is at the level

of understanding required to translate the proposition into a plan for proving it,

that is ‘designing’ a solution.

In two studies, Weber [2001, 2002b] observed eight undergraduates

who had completed an abstract algebra course constructing non-trivial

proofs about group homomorphisms and isomorphisms. The studies

considered only those cases in which the undergraduates were aware

of the facts and theorems needed to prove a statement and could con-

struct a proof when specifically told which facts to use. Even in these

cases, the undergraduates failed to construct a proof without prompt-

ing 68% of the time. Examination of these undergraduates’ behaviors

revealed that their strategies for constructing proofs were ineffective

and crude. For instance, to prove a statement B, these undergradu-

ates would often try to find any theorem of the form “A implies B”

and try to prove A, even when the antecedent was implausible.

(Weber n.d.)

So the difficulties that novices exhibit in mathematics show a striking resem-

blance to those exhibited by programming novices, suggesting that the cognitive

models underlying both the skill itself, and the acquiring of it, are essentially

the same. Understanding the concept space is the key so we need to distinguish

between “learning that results in a relatively mechanical skill and learning that

results in an understanding of the problem situation” (Anderson et al. 1981, p.

206) in general terms. The cognitive model indicated is one that provides the

means for understanding problem situations in general terms because guiding the

process requires more than static knowledge.

Even if students are “logically capable” – that is, they know what

constitutes a proof and they can reason deductively, recite and ma-

nipulate definitions, and draw valid inferences – this does not guar-

antee that they can construct anything beyond very trivial proofs.

Knowing logical rules and the definition of a concept does not ensure

that students can reason about that concept. Students often require

an intuitive (conceptual) understanding of the concept that they are

working with before they can construct proofs.

(Weber n.d.)

Because the knowledge space involved in proof generation is, relatively speak-

ing at least, well studied, it can serve as a reasonable basis for an attempt to
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analyse the cognitive models and processes involved, and this has been attempted

as a qualitative study based on observing a 14-year old receiving instruction in

geometry in advance of encountering it in the normal school curriculum, and by

analysing interviews conducted with 7 students undergoing regular school instruc-

tion in geometry (Anderson et al. 1981). The interesting aspect of the findings

of this research is in the resonances with the pattern language idea. For example,

the researchers found “that planning exists as a logically and empirically sep-

arable stage of proof generation ... [and] that planning is the more significant

aspect and the aspect that is more demanding of learning. Execution, while not

necessarily trivial, is more mechanical” (Anderson et al. 1981, p. 192). This

matches the thrust of Alexander’s notion that design is like a hypothesis, “it can-

not be obtained by deductive methods but only by abstraction and invention”

(Alexander 1964, p. 92).

The picture of the process of transformation from novice to expert that

emerges from this study is that of a journey from a declarative to a procedu-

ral form of knowledge. “In a declarative encoding, the knowledge required to

perform a skill is represented as a set of facts. ... These facts are used by gen-

eral interpretive procedures to guide behavior” (Neves & Anderson 1981, p. 60).

Knowledge, for the novice, consists of the general rules of geometry and examples

of worked-out proofs, both of which are presented in the instructional process.

This knowledge is encoded declaratively for two complementary reasons - because

that is how it is presented and because this form of representation is more concise.

The point here is that the same set of facts “can give rise to a great many possible

productions reflecting various ways that the information can be used” (Anderson

et al. 1981, p. 214). Therefore using the declarative form of knowledge in gener-

ating a proof involves an intermediate step, translation from fact to action, what

Neves and Anderson (1981) call “general interpretive procedures.” This is the

difficult part precisely because it is not ‘mechanical’ - there is no ‘royal road’ from

fact to final proof, it requires the development of a hypothesis, the use of produc-

tions. “ The data alone are not enough to define a hypothesis; the construction

of hypotheses demands the further introduction of principles like simplicity (Oc-

cam’s razor), non-arbitrariness, and clear organization. ... There is at present no

prospect of introducing these principles mechanically” (Alexander 1964, p. 75).

But if the declarative form is both concise and ultimately flexible in that it is

not tied to particular procedures, it has the major drawback that “its interpre-

tative application is slow. Each fact must be separately retrieved from memory

and interpreted. The interpretive procedures, to achieve their generality, are un-

able to take any shortcuts available in applying the knowledge in a particular

situation. Many unnecessary or redundant tests and actions may be performed”

(Neves & Anderson 1981, p. 60). So the novice’s behaviour is based on a more or

less unstructured search of the knowledge base. Typically a candidate postulate

will be recited suggesting that the translation from fact to action is happening

in short-term memory as fragments of the postulate are matched individually to
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the problem and developed into productions (Anderson et al. 1981, p. 215). The

novice is making the connections ‘locally’ rather than retrieving the connected

version of the knowledge from experience as the expert does.

The expert’s ‘procedural form’ is dynamic rather than static, it is, in effect,

the declarative version plus action, the conditions under which it is applicable are

now built in (Whitehead 1929). It is a way of representing knowledge “as some-

thing that can be directly executed and so needs no costly interpretation phase”

(Neves & Anderson 1981, p. 61). So learning, the acquisition of expertise, is this

conversion of knowledge from a static to an active form. “Proceduralization is a

process that eliminates retrieval of information from long-term memory by cre-

ating productions with the knowledge formerly retrieved from long-term memory

built into them” (Anderson et al. 1981, p. 218). But this is an accumulative pro-

cess, and it is the development of even larger compositions of ‘active knowledge’

that we detect as growing expertise.

The effect of this proceduralization process is to enable larger com-

posed productions to apply because the proceduralized productions

are not limited by the need to retrieve long-term information into

working memory. This in turn allows still larger compositions to be

formed.

(Anderson et al. 1981, p. 219)

However, it is important that the process from declarative to procedural form

in memory is actually undertaken because there are some serious disadvantages

to the production form. On its own, conciseness is an important virtue, but

the really serious loss is flexibility because it is expressed in several ways. For

example, the knowledge encoded in productions cannot be inspected, virtually

the only way to understand the content of a production is by noting what it does,

and this is the old problem of simulating logical progression, not something that

we humans generally practice much in the course of our everyday lives. Moreover

when a rule is expressed in a production it can only be used in that form, and

the production cannot be changed (Neves & Anderson 1981, p. 62). In this sense

a production is like a mould or template, it has little of the flexibility of a simple

fact. But, because the production-based expertise has been developed over time

from the original declarative form, the expert has access to both forms.

Proceduralization and composition ... allow us to maintain the flex-

ibility of representing knowledge in a semantic net and also to build

production rules that will embody directly certain uses of the knowl-

edge. The knowledge underlying procedures starts out as propositions

in a network. Knowledge in this form can be changed and analyzed

by the cognitive system. As one applies knowledge, the proceduraliza-

tion process turns it into faster production rules automatically. Then

composition forms larger units out of the individual proceduralized

productions, in a gradual manner. These processes help explain some
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effects in the practice literature such as automatic speedup, develop-

ment of parallel search, and inability to introspect on the application

of well-learned procedures.

(Neves & Anderson 1981, p. 82)

So what are the cognitive factors that underlie this “proceduralization” of knowl-

edge that can help us facilitate it in students?

9.3 Memory and Meaning

It is an almost trivial observation that skill is highly dependent on memory in the

sense that knowing how to do something is fundamentally remembering how to do

it. This does not imply that skill is a completely memory-based operation, often

the memory component of a particular task merely involves remembering what

information is required and where to find it. But the fact is that it is meaningful

patterns in long term memory that underpin knowledge-based expertise. This is

shown by the studies of chess experts (Bransford et al. 2000) (Chase & Simon

1973) (de Groot 1966), and other knowledge-based experts (Chase & Chi 1980).

We know that increasing experience and knowledge in a specific field

(chess, for instance) has the effect that things (properties, etc.) which,

at earlier stages, had to be abstracted, or even inferred are apt to

be immediately perceived at later stages. To a rather large extent,

abstraction is replaced by perception, but we do not know much about

how this works, nor where the borderline lies. As an effect of this

replacement, a so-called ‘given’ problem situation is not really given

since it is seen differently by an expert than it is perceived by an

inexperienced person.

(de Groot 1965, p. 33–34)

The main difficulty in explaining expertise is accounting for the gap between

the limited capacity of short-term memory as shown by Miller (Miller 1956)

and the high-performance memory requirements of skilled performance (for ex-

ample, chess grandmasters can recall hundreds of chess-board configurations -

between 50,000 to 100,000 chunks according to (Simon & Gilmartin 1973)).

Short-term memory span has been related to intelligence test scores (Bachelder

& Denny 1977), and, more significantly shown to place severe constraints on

problem solving and information processing performance (Miller 1956) (Newell &

Rosenbloom 1981). As an example, correlations of between .80 and .90 have been

established between aspects of working memory (digit span, mental arithmetic,

etc.) and elements of reasoning (analogies, verbal reasoning, etc.) (Kyllonen

& Christal 1990). It seems that transforming information, the main element of

reasoning, places enormous demands on working memory (Holzman et al., 1982).

Yet the fact is that experts seem somehow to be able to bypass these limita-

tions, suggesting that the major difference in performance in reasoning ability is
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due to differences in the amount of information maintained in working memory.

What the expert seems to be doing is to use “their knowledge structures in seman-

tic memory to store information during skilled performance of some task” (Chase

& Ericsson 1981, p. 159) rather than relying totally on short-term capacity as

the novice who does not possess them is forced to.

So ‘semantic memory’ is, if not the whole, an element of long term memory,

and it is connected to knowledge in a general sense rather than to specific learning

experiences (short-term or ‘episodic’ memory) (Tulving 1972). It is in structural

terms that memory encodes meaning, the semantic network model, whereby con-

cepts are linked in terms of their semantic relationships (Harley 2001, p. 283),

and it is this structure that experts utilize in the performance of their skill. That

this is so is dramatically illustrated in a study of a subject who became, over

time, the apparent holder of the world record for the digit-span task (Chase &

Ericsson 1981, p. 141), that is, the recall of strings of digits up to 80 digits in

length. In 250 hours of laboratory practice over two years this individual in-

creased his memory span from the statistical average of about 7 digits by a factor

of 11, and the previous highest score recorded by a factor of four.

An undergraduate (SF) with average memory abilities and average

intelligence for a college student was paid on an hourly basis to par-

ticipate in the experiment. SF was run on the memory span task for

about an hour a day, 2 to 5 days a week, for over 2 years. The basic

procedure was to read random digits to SF at the rate of one digit per

sec, followed by ordered recall. If the sequence was reported correctly,

the length of the next sequence was increased by one digit, otherwise

the sequence length was decreased by one digit. Immediately after

each trial, SF was asked to provide verbal reports of his thought pro-

cesses during the trial. At the end of each session, SF was also asked

to recall as much of the material from the session as he could. On

some days, experimental procedures were substituted for the regular

sessions.

During the course of 25 months of practice, involving over 250 hours

of laboratory testing, SF demonstrated a steady improvement in his

average digit span from seven digits to over 80 digits. Furthermore,

there was a parallel improvement in his ability to remember digits fol-

lowing the session. In the beginning, SF could recall virtually nothing

after an hour’s session; now SF can recall well over 90% of the digits

presented to him.

(Chase & Ericsson 1981, p. 143)

This example is important, not in terms of what it is - recalling large strings

of digits is little else than a clever parlour trick - but for what it tells us about

how memory works in relation to a particular skill. It is clear that the system

developed by the subject is entirely based on setting up a hierarchical structure

through relating the ‘meaningless’ strings of digits to an information system,
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a semantic network, that he already possesses and giving them meaning, and

therefore making them useful in terms of the task at hand, recall, by that means.

He is, in a sense, reusing a pattern language, or indeed several pattern languages,

that he already has set up in his long term memory, for purposes entirely unrelated

to their normal functionality. What it tells us is that skill is ultimately based

on structural ordering of information, a web of meaning, in long term memory.

The really surprising aspect of all this is that the semantic web can be used for

a task that has nothing to do with its own raison d’être - it demonstrates the

power of the relationship between meaning and process that meaning can be used

‘secondhand’ or ‘out-of-context’ in this way.

From the study it became clear that the subject was utilizing a set of protocols

based on his prior knowledge of competitive running (he is a good long distance

runner), ages, years, and other numeric patterns. He uses these as a mnemonic

scheme for coding the digit sequences.

By the end of 6 months - 100 sessions - SF had essentially completed

his mnemonic scheme, and he was coding 95% of the digit sequences,

of which the majority were running times (65%), a substantial minor-

ity were ages (25%), and the rest of the coded sequences were years

or other numerical patterns (5%).

(Chase & Ericsson 1981, p. 143)

The scheme works as follows. As the string is read out the subject attempts

to relate the current subsequence to categories of running times, so, for exam-

ple, 3492 would be coded as “three forty-nine point two, near world-record mile

time”. He has 11 major categories of running events, each containing a number

of subcategories such as ‘poor’, ‘very good’, ‘near record’, ‘average mile time for

the marathon’ and ‘average work-out mile time’. Some sequences of digits do

not fit any category in his running time scheme, and these are coded using ages,

‘eighty-nine point six years old, very old man’, or other common patterns such

as years (1943 as ‘near the end of World War II’, for example).

The following diagram (Figure 9.1) illustrates the part of the semantic mem-

ory running-time net that is used in accessing the mnemonic encoding for 3492.

His recall technique is very systematic, “he begins with the shortest race and

systematically works his way up, category by category, with very few reversals.

Within each category, he uses the same procedure of systematically recalling from

the shortest to the longest subcategory, with pauses separating subcategories. At

the lowest level within each subcategory, SF still generally recalls times in an

orderly way from smallest to largest times” (Chase & Ericsson 1981, p. 150). Of

course, this technique only covers the storing and recall of sequences in terms of

long-term memory, it does not entirely explain how the limitations of short-term

memory are overcome, that is, one can’t assume that it is short-term memory

that is holding the retrieval cues like ‘near world record mile time’ because this

would account only for a maximum of 28 digits.
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Figure 9.1: Section of the running-time semantic network for encoding 3492

(adapted from (Chase & Ericsson 1981, p. 164)).

There are two problems with this simple short-term memory retrieval

model. First, the rehearsal-suppression experiments have proven to

our satisfaction that SF’s coded digit groups are not in short-term

memory. Our analysis of SF’s running short-term memory load indi-

cates that only the most recent one or two groups occupy short-term

memory momentarily while being coded into long-term memory.

The second problem with the simple short-term memory model of

retrieval is that SF recalls too much. If we assume that SF’s original

memory span for symbols is around seven and he learns to recode

single digits into groups of three or four digits, then his memory span

should be around seven groups, or a maximum of 28 digits. In fact,

because there is additional memory overhead associated with groups,

the real memory-span limit is around three or four groups, or 16 digits.

But SF’s memory-span performance has increased steadily to over 80
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digits (22 groups), and there is no sign of a limit. There must be some

other mechanism besides the mnemonic coding.

(Chase & Ericsson 1981, p. 168)

This mechanism, it would appear, is a sort of “retrieval structure” operating

between the short-term and long-term memories that allows the development of

expertise. In all complex tasks, even seemingly trivial everyday activities like

following a discourse, or watching TV, where visual and audial information has

to be processed simultaneously and integrated in order to make sense of what is

going on (Pezdek 1987, pp. 8–9), there is a need to store intermediate states.

So, for example, in listening to a conversation, we have to be processing several

levels simultaneously - handling what we are currently hearing, making sense

of the previous part of the current sentence, fitting that to the meaning of the

previous part, and keeping track of the task of comprehending the conversation as

a whole. Until recently cognitive theory assumed that the intermediate stages in

these various levels of the overall comprehension process were stored in short-term

memory, but this would seem to exceed its capacity (Shiffrin 1976, p. 177).

At one stage it was believed that organised pieces, ‘chunks’, were stored in-

stead of the individual elements of each, but as the group idea discussed above,

and as Chase and Simon found with chess masters (Chase & Simon 1973), the

capacity limit is still exceeded. It would, of course, be possible to postulate the

existence of an intermediate level of memory on the computer analogy (imme-

diate or sensory = keyboard cache, intermediate = cpu cache, and long-term =

RAM storage) (Atkinson et al 2000) but this is a peculiarly ‘physical location’

type of classification that seems not to fit the functional characteristics of mem-

ory in skilled performance and tends to lead to a sort of infinite sequence of stage

additions as apparent memory tasks increase in number and complexity. SF’s

retrieval structure, for example, has five levels (see Figure 9.2), are we supposed

to think that he therefore has three levels intermediate between short and long

term memory?

What the study of SF seems to suggest is that the intermediate step is se-

mantic in nature, not directly structural in physiological terms, or even strictly

functional in the sense of ‘a depth of processing effect’ whereby “deep, meaningful

kinds of information processing leads to more permanent retention than shallow,

sensory kinds of processing” (Matlin 1994). So, from observation of the prosodic

features of SF’s speech during recall, as well as SF’s own account of what he is

doing, Chase and Ericsson postulate the hierarchical structure of grouping pat-

terns shown below (Figure 9.2). These speech patterns, (pauses, intonation and

stress markers), are known indicators of the underlying mental process (Halliday,

cited in (Chase) 1981, p. 171).

There is a great deal of additional evidence that SF uses hierarchi-

cal retrieval structures. Probably the most straightforward evidence

comes from SF’s speech patterns during recall, which almost invari-

ably follow the same pattern. Digit groups are recalled rapidly at a
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normal rate of speech (about three digits per sec) with pauses be-

tween groups (about 2 sec between groups, on average, with longer

pauses when he has difficulty remembering). At the end of hierarchi-

cal group, however, there is a falling intonation, generally followed by

a longer pause.

(Chase & Ericsson 1981, p. 171)

554444 44 4444 444444 44 4444 4433 33 33 33 33 33 33 33 33 554444 444444 44 4444 444444 444444 444444 44 4444 444444 4433 33 3333 33 3333 33 33 33 33 3333 33 3333 33 33 33 33 3333 33 3333 33 33

Figure 9.2: Hierarchical organisation of retrieval structure (adapted from (Chase

& Ericsson 1981, p. 171)).

All this suggests that what is significant in terms of the performance of the task

is the semantic relationships that are being set up, that, in this case, semantics

is driving recall. It seems that SF has developed his ‘retrieval structure’ in long

term memory (Chase & Ericsson 1981, p. 177).

If this is true of an essentially meaningless memory task then it is also likely

to be a feature of the problem solving process where the conceptual space to

be searched for meaning is often enormous. Moreover this fits the contrasting

cases of expert and novice performance. The most obvious characteristic of ex-

pert behaviour is that experts seem always to know what to do, which aspect of

their knowledge to apply, in any particular situation. This is the exact opposite

of the novice, whose performance is characterised by failure to apply what they

are known to know - “it is characteristic of novices that they often fail to apply

what they know” (Chase & Ericsson 1981, p. 175). Therefore the most likely

explanation of the ‘practice effect’, the “ubiquitous law of practice” (Newell &

Rosenbloom 1981, p. 3), is the development through constant practice of a hier-

archical retrieval structure in long term memory. The essential difference between

the two levels of performance is thus the utilisation of a semantic structure in

long term memory rather than the reliance on cues in short-term memory.

So the truly intriguing question that arises from this, is “can this retrieval

structure be consciously set up?” and, the answer, from this study, is that this

is exactly what the subject did. He deliberately and systematically built his

mnemonic system and retrieval mechanism on an adapted version of a knowledge

structure that pre-existed in his mind, and this ‘learning curve’ is clearly apparent

in the graph of his average digit-span as a function of practice over time (Figure

9.3).
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Figure 9.3: Average digit-span over time (adapted from (Chase & Ericsson 1981,

p. 144)).

9.4 Pattern Language in this Context

In the discussion so far we have pointed, in passing, to resonances with the pat-

tern language idea, so it is now time to pull the threads of the pattern language

argument together. The main difference between the digit-span task and pro-

gramming is that the programmer is not constrained to working totally in in

memory. This means that a lot of the explicit training of memory, the subject’s

development of his mnemonic system, for example, can be bypassed. Moreover,

and indeed, more importantly, there is no need for the adaptation of a pre-existing

semantic structure in long term memory, as this can be presented to novice pro-

grammers in written form as a pattern language diagram, on the basis that this

must have some value in helping them develop one in memory. At the very least,

the pattern language given to them should assist novices to achieve more in the

way of meaningful practice, and practice can be facilitated further, as we discuss

below, by presenting the examples used in the teaching material in the form of

a pattern language that is specific to solving the example problem, adding, in

effect, at least some of the dynamics of a live example workthrough to the static

written form.

An important point that is often overlooked in the pattern literature in com-

puter science is that a pattern language is not just a collection of patterns. It is

a diagrammatic representation of the connections between the patterns in terms

of their use, the application of one pattern setting up the context in which the

patterns below it that are connected to it by arrows are now possible as the

next step in the solution. For example, if you are building or designing a wall,

having worked through the pattern language in Figure 9.4 to the point of ap-
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plying wall the language diagram tells you that you need to think about other

things, like doors, and maybe even windows. Thus wall forms the context in

which you can expect to find door and window. This network of contextual

relationships between the patterns in a domain gives the collection the coherence

that forms the structure that is known as a pattern language, and that drives the

pattern process, just as it is meaningful relationships between words that allow

the construction of larger concepts through combination, or the development of

productions in the geometry proof example.

The process that derives from the use of a pattern language involves applying

the first pattern in the hierarchy, in the case of Figure 9.4, house, and following

the arrows from there. This means here that the designer is prompted to think

about the need for a basement. If no basement is envisioned then the designer

considers the next arrow from house. However if such is required then basement

would be applied and the arrows from it investigated in the same way. This

procedure of following the arrows continues until such time as a pattern with no

further arrows is reached. The designer then backtracks to the point at which the

path began, in this case house. So the pattern language structure is a hierarchy

of concepts that drives the design - the list of patterns, the ‘pattern sequence’

(Alexander 1979, p. 382), that represents the path taken through the diagram

is the plan of action for the designer. All that is left to do is to implement that

plan, consulting the detail contained in each of the named patterns assisting, as

needed, in that implementation.

In examining the journey from novice to expert the Dreyfus brothers found

that the way that people cope with the overwhelming proliferation of factors in

the problem situation is by adopting “a hierarchical procedure of decision making.

By first choosing a plan to organize the situation, and by then examining only

the small set of factors that are most important given the chosen plan, a person

can both simplify and improve his performance” (Dreyfus & Dreyfus quoted in

Taggart (2000)). This is exactly the way that a pattern language works, the

solution strategy is directed to the currently pertinent choices by the path taken

through the pattern language (a hierarchy). This process of building a plan of the

program, a sequence of patterns, through the contextual information encoded in

the pattern language is discussed fully in Chapter 7 and an earlier paper (Porter

& Calder 2003b) through the use of a step-by-step example.

House

Wal l

Door

Foundati onBasement

Wi ndow

House

Wal l

Door

Foundati onBasement

Wi ndow

Figure 9.4: Highly simplified portion of a Pattern Language for designing a house.



9.4. PATTERN LANGUAGE IN THIS CONTEXT 293

It is in this sense that a pattern language is a procedural form of the knowl-

edge it represents just as the ‘semantic memory’ of the expert is. While you are in

the planning stage of the solution, all that you want to deal with is the abstract

form of the elements needed, not all the messy implementation detail, and this

separation of the concept from its detail, the ‘declarative form’ of the knowledge,

is exactly the function that both ‘semantic memory’ and pattern language dia-

gram enable and empower. But the pattern idea encompasses both forms because

while the detailed declarative ‘facts’ are not present in the pattern language di-

agram, accessing the detail is simply a matter of matching the pattern name in

the collection rather than having to recall them from long-term memory, the ex-

pert’s recourse, or to search them out in a relatively disorganised set of reference

material, the only recourse available to the novice. As the novice’s competency

increases the need to perform this search decreases but enabling its avoidance at

the early stage of her development via the separation of pattern concept from

pattern detail is a particularly important advantage that is not available to a

novice who does not have the material in pattern language form. In this sense a

pattern language is an ‘external representation’ (ER), and these are known to be

important in assisting reasoning.

A significant proportion of the information in analytical reasoning

problems is given implicitly and therefore must be inferred before it

can be represented. An important function of ERs is to guide the

search for implicit information.

(Cox & Brna 1995, p. 34)

So the critical advantage of ‘semantic memory’, the network of meaning in the

expert’s long-term memory, is that it overcomes the ‘cognitive load’ factor that

can be seen to be the main difference between novice and expert performance.

Presenting the semantic structure in written form, that is, as a pattern language

for introductory programming, bypasses the memory aspect altogether. It might

be argued that this adds to the load on short-term memory as the novice has

to continually refer back to the pattern language diagram in dealing with the

task at hand, but this is not so, because the novice has to do something of this

sort anyway with the relatively unstructured information (compared to a pattern

language) in the teaching and reference materials. So, if nothing else, the pattern

language form is organised for efficient searching and this must have some benefit

in terms of cognitive load stress. But, in any case, the main point about presenting

the material in this fashion is that, if it is true that the journey from novice to

expert is mainly about developing a structured-for-use version of knowledge, as

well as the static declarative form, presenting it in that form right from the start

should conceivably make the journey easier.

But the pattern language idea doesn’t stop there. One of its most significant

benefits is the use of a pattern language specific to the problem at hand, a subset

of the larger language for domain overall.

The real work of any process of design lies in this task of making up
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the language (emphasis added) from which you can later generate the

one particular design. You must make the language first, because it

is the structure and the content of the language which determine the

design.

(Alexander 1979, p. 324)

This can be seen as the functional equivalent of SF’s hierarchical retrieval struc-

ture, again with the advantage that it is not entirely based in memory as SF’s

version is. Just as SF develops his recall sequence using the specific retrieval

structure that he constructed during the digit readout, so the novice uses the

pattern sequence that is developed during the non-coding planning stage based

on the use of the overall pattern language diagram to drive the coding (imple-

mentation) stage. Note, also, that part of SF’s implementation stage, that is the

translation of the details held in his retrieval structure to his recall discourse, can

be accomplished in the non-coding planning stage in the case of the program-

ming novice. That is, the novice can develop his specific-to-the-task language

fully down to a simple sequence of patterns, before she even has to start thinking

about code implementation details.

However, the real significance of using a pattern language for introductory

programming is that it functions at two levels. That is, as well as facilitating the

practice that is essential for the novice to accomplish the journey from the declar-

ative to the combined (declarative plus procedural) form of knowledge through

the use of a cut-down specific-to-the-task language, this idea of cutting down the

main language to a subset can be used to represent stages in the development of

the full language as well, as a series of specific-to-the-stage languages to be pre-

sented as appropriate. This means that the journey from novice to expert can be

represented in some-knowledge-to-more-knowledge form as well as declarative-to-

procedural form. It is a surprise to most people that pattern languages can be as

explicitly pedagogical in nature as this, but this overlooks the fact that Alexan-

der’s original impetus was pedagogical in intent, if not in setting. In stating that

his purpose was to “describe a way of representing design problems which does

make them easier to solve” (Alexander 1964, p. 6), he was stating an aim that is

pure pedagogy - enabling somebody to perform a task that they were previously

incapable of achieving easily.

The idea that explicitly delineating the process of developing expertise in

the way described can actually facilitate that development is, possibly, still a

contentious point. After all it is clear that even experts fail to appreciate the

cognitive basis of their expertise. As Samuel says about the experts in the game

that he has consulted in developing his Checkers playing program, “The experts

do not know enough about the mental processes involved in playing the game”

(quoted in Dreyfus & Dreyfus (2004)) to provide him with the “compiled heuris-

tics” required to bring his program to expert status. Nevertheless it is clear from

SF’s discussions that he was very conscious of explicitly setting up the structures

in memory that he describes and that it was effective in improving his perfor-
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mance. Chase and Erickson make this point in comparing SF’s progress to that

of another subject who was unable to improve much after the first few days and

who quit after a couple of weeks.

In contrast to SF, this subject never developed a mnemonic system

and consequently was never able to improve very much. Notice that

the performance of both subjects is very comparable through the first

4 days of the experiment. In fact, on Day 4, SF gave us a fairly

lengthy verbal report about how he had reached his limit and no

further improvement was possible.

And then, on Day 5, something very interesting happened. There

was a large improvement in SF’s digit span (a jump of 4 standard

deviations from the day before), and, for the first time, SF began to

report the use of a mnemonic aid. From this point on, SF showed a

steady increase in his digit span as he developed his mnemonic system

and the accompanying control structure.

(Chase & Ericsson 1981, p. 147)

This suggests that it is possible to assist the acquisition of a skill by introspecting

on the cognitive processes and structures required, at least to some degree, and

this supports Ausubel’s contention about the conscious and purposeful linking

of new knowledge to prior knowledge in his Assimilation Theory of meaningful

verbal learning (cited in Zeilik, n.d.). Indeed, it is hard to see how any skill can be

learned without some conscious attention to the means by which the underlying

cognitive structures or strategies (Gagne 1979, pp. 19–20) are formed. The

point about the expert’s automatism is that it allows conscious attention to be

avoided at the time of use, the “inability to introspect on the application of well-

learned procedures” effect (Neves & Anderson 1981, p. 83), but does not preclude

introspection at the time of their construction which is something that SF clearly

did.

9.5 Bridging the Gap

What a pattern language represents is procedural abstraction, the foundation

of expertise, or ‘semantic memory’ in cognitive parlance. The trouble is that

expertise is a complex and hard to discern structure in the mind because we just

tend to get on with its use rather than introspecting about what it is. “[An]

expert’s knowledge is often ill-specified or incomplete because the expert himself

doesn’t always know exactly what it is he knows about his domain” (Feigenbaum

& McCorduck 1983). That is, the significance of knowledge to the expert is its

function not its structure, “experts use their knowledge live and rarely have the

opportunity to consciously reflect upon what they are doing” (Basque et al. 2004,

p. 1),and this is a common stumbling block for educators in trying to explain the

use of a concept. Expertise is the almost unconscious use of the web of meaning,
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‘automatism’, but the job of the educator is quite different. One study by Hinds

et al. has suggested the difficulty in transferring knowledge and expertise to

those less knowledgeable derives from the very characteristics that constitute

expertise (Hinds et al. 2001, p. 1232). The teacher’s programming expertise, her

‘automatism’, leads to explanations of the process of deriving a solution that are

partial and incomplete, but more importantly, based on complicated logic.

Sheil demonstrates this with a program to find the largest value in a set of

positive numbers (See Section 6). The method by which this program is produced

is based on the formulation of a loop invariant and proving that invariant by

induction, in other words, the teacher’s explanation is based on a formal process.

But in practice nobody does it that way because the solution is already in their

‘semantic memory’. When needed it is just retrieved without actually having to

generate it from scratch. Most novices need to be given the SWAPpattern when

they first come across a situation requiring the swapping of the values held in two

variables, it is an explicit node in their pattern language. But it quickly becomes

internalised and would disappear from any external representation. This is the

point about the evolution of understanding discussed in Section 7.7. But it is

a problem in teaching because the novice does not have the internal structure

that the teacher does, and teaching is ultimately about helping to build the

equivalent structure in the novice’s mind. So the idea that giving novices an

external representation of the knowledge structure involved in thinking about

programming makes up, to some extent, for the lack of the expert’s internal

model would seem to make sense as one of the major difficulties of teaching

with a programming language is that novices tend to concentrate on the surface

features of the system rather than the higher level structural representation that

the expert uses (Chi et al 1981)

The basis of the pattern language idea, recurring form, is an informal process.

So the importance of the pattern language idea is that by bridging the declar-

ative to procedural gap it breaks through the most common stumbling block of

novice performance, knowing what to do. It gives the novice a way to proceed,

saying, in effect, “well you have done this (applied this pattern), now you need

to think about doing one of these things (the patterns pointed to).” But, more

significantly, it gives the educator a means to present knowledge in usable form.

Examples given in the teaching material are static, in pattern terms they are

‘sequences’, the product of the journey rather than a map through the concept

space. Including the pattern language specific to the example provides the map

so that the novice can trace the path through the concept space. That is, it adds

at least something of the dynamics of the process of deriving the sequence that

forms the design as demonstrated in Section 9.4 and as illustrated in Section 7.2.

Making the process explicit in this way avoids the need to resort to dubious

explanations in terms of logic. Logic is the language of computer execution not

human communication, and, as such, it is not appropriate in explaining the human

process of programming. A significant ‘side-effect’ of presenting examples in
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pattern language form is that it encourages the novice to think of the problem in

non-programming language terms, that is, to explicitly plan before coding. On

its own event, this has advantages in cognitive load terms because of the added

load of trying to “deal with decomposition issues in the middle of coding, instead

of planning deliberately in advance” (Perkins et al. 1989, p. 257).

So it is the cognitive implications of the pattern language idea, its power

in, at first standing in for, and later, helping to set up, the semantic network

of relationships and the retrieval automatism of the expert. Moreover, it is in

this sense that it addresses the significance of Bloom’s taxonomy of cognitive

development, that is, that learning takes place in stages, each stage building on

the knowledge gained in the previous stage - comprehension requires knowledge,

application requires comprehension, analysis requires application, and so on. The

difficulty with learning to program is that programming presents a problem in

respect of Bloom’s progression as it requires high-level cognitive activities such

as analysis and synthesis virtually from the start of the learning process. The

novice’s development “therefore needs to be conducted on a partitioning of the

material based on something other than cognitive levels” (Porter & Calder 2003b,

p. 231).

We believe that the evidence of the studies examined here demonstrates that

pattern languages, as a product of a partitioning based on the declarative - pro-

cedural split, are the best maps of the journey from novice to expert performance

currently available. This is because, although the basic facts about program-

ming, the declarative knowledge captured in the individual patterns, stays the

same, the evolution of the procedural form of knowledge is expressed in differ-

ent pattern languages for the various stages of the individual novice’s progress.

In this way the developing pattern language reflects the “proceduralization and

composition” (Neves & Anderson 1981, p. 82) processes that express the growing

expertise of the programmer. This ‘evolution’ of the pattern language involves

two main processes. The first of these is the merging of separate languages into

one. It might make sense, for example, to present the variable concept as a small

pattern language in its own right, and ‘merge’ this into the main pattern language

appropriately for instance and local versions. This merging process is covered in

detail in a paper (Porter et al. 2005) and in Section 7.6 here. But as well as this

initial incorporation of the pattern language for variable into the main language

its elements - declaration, assignment and initialisation - become so familiar with

use that they are no longer required to be present in the language and become

absorbed into the pattern for variable. Thus the ‘evolution’ of a novice’s pattern

language fits Ausubel’s “Assimilation Theory of Meaningful Learning” (Ausubel

et al 1978). So just as the pattern idea empowers the fundamental process of

design at the individual level, it also drives the pedagogical process towards com-

petency as well.

The cognitive load theory discussed in relation to the difficulty of program-

ming applies twofold in the learning situation, of course, because if working mem-
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ory capacity is a limiting factor in the task of programming itself, then it must

be so in terms of learning. Indeed it is the impact of cognitive load theory on

learning that has driven the search for instructional design formats that attempt

to minimise the impact of the format on cognitive load so that resources are

kept free for where they are really needed, understanding the material (Paas et

al 2003). In terms of programming instruction, the largest contribution that is

made to successful acquisition by the learner is probably that provided by the use

of examples. But there are two ways in which examples can be dealt with in the

teaching context, by the provision of worked examples in the teaching material,

and by practical work, and the question is, which method is more effective. Sur-

prisingly, some research suggests that studying worked examples is more efficient

than solving equivalent problems yourself (Atkinson et al. 2000).

Moreover this effect was found in situations involving worked examples that

“showed the begin state of the problem, the goal state, and the solution steps

required to reach that goal state” (Van Gog et al 2004, pp 250–1). This would

seem to miss out an important aspect of the problem solving process, namely, the

strategic thinking behind the steps in solution that must naturally occur in solving

the problem, or an equivalent, yourself. Of course that is precisely the factor that

proves difficult for novices in solving a problem themselves, so it would seem that

the way around the difficulty is to present the strategic thinking required in the

apparently more effective format, worked examples. The major hurdle to taking

this route is to do it in a way that does not effectively ‘blow out’ the cognitive

load implications of the simple worked example format, because most attempts at

presenting strategic thinking in a written format involve lengthy and convoluted

explanations. A common approach to presenting material that involves lengthy

and convoluted expositions is to resort to a graphical form. What is required of

the additional material is for any additional load to be of the germane type, that

is, it is effective in learning, not just extraneous to learning (Van Gog et al. 2004,

p. 252).

It is a commonplace assumption that both programming and learning are

closely related to general thinking skill. If this were not so then the various

attempts to measure ‘intelligence’ in terms of constructing educational systems

or in predicting individuals’ outcomes in various academic situations would be

pointless. The IBM Programmer Aptitude Test (PAT), the Wonderlic Personnel

Test, the test of Primary Mental Abilities (PMA) (Mayer & Stalnaker 1968, p.

657), and the Aptitude Assessment Battery Programming (AABP) (DeNelsky &

McKee 2005) were early attempts to measure general intellectual ability levels as

a predictor of success in learning to program. Typical justifications for this kind

of predictive testing run along the following lines:

An aptitude test attempts to measure whether the applicant has the

skills necessary to learn a new set of tasks. Aptitude tests are com-

monly used for entry-level programming jobs as well as for internal

recruitment from other non-programming divisions within an organi-
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zation for the purposes of retraining.

The Berger Aptitude for Programming Test, Form D (B-APT D) is by

far our most popular aptitude test among our clients. This test was

designed for measuring the ability of a person to learn the skills nec-

essary to succeed in programming training for the mainframe world.

This test is widely used as the first step in admission to programming

training in many Fortune 500 companies.

(Psychometrics Inc 2005)

However there are several problems with this type of testing. Firstly the tests

typically “measure either a single cognitive factor or a mixture of cognitive factors

which have not been separated” (Scanlan 1988, p. 737). Programming involves

many different mental activities, therefore it is unlikely that there would be a

strong correlation with a single cognitive factor, but equally, an undifferentiated

mass of intellectual skills is difficult to relate to programming performance in

any meaningful way. Therefore “it is unclear which specific abilities included

in these tests relate most strongly to performance” (Webb 1984) in learning to

program. But, more importantly, these tests are, more or less, measures of general

intelligence (Mayer et al. 1986, p. 608), ‘tweaked’ IQ tests in effect, so it is

difficult to see why they would be more predictive of programming aptitude than

of aptitude for any other type of work based on mental activity. As Mayer

points out it is difficult to measure the skills required for programming except by

teaching it (Mayer 1985).

One of the major difficulties for the learner in constructing the base of knowl-

edge that underlies skill, the programmer’s mind, is that the stress of acquisition

is accumulative. As we have seen, the expert’s skill is based on the use of long

term memory rather than the easily overloaded working memory, but the only

way of transitioning information into long term memory is by means of organised

groups of the ‘chunks’ used by working memory, rather than the chunks them-

selves. But if the fact of having to process the chunks in order to handle the

immediate programming situation isn’t enough to ‘overload’ the cognitive sys-

tem, then the additional task of organising the transfer will certainly accomplish

that feat. Moreover it has been demonstrated that people who are under any

sort of cognitive load will tend to believe false information (Gilbert et al 1993)

which implies that they are constructing and transferring incorrect schemes into

long term memory. Using this unreliable base in further programming tasks will,

of course, cause difficulties that lead to further cognitive stress and the incor-

poration of more flawed schemata, a typical “vicious circle” type situation. So

once the faulty structure has been set in place, correcting it will be difficult, as

it is well known that reassessing information is, unlike the bulk of normal cogni-

tive processing, secondary and conscious, rather than primary and at least partly

unconscious, that is, it is resource intensive (Gilbert 1991).

All these factors derive, in the end, from the way that the learning process

is conducted. This much is made clear by the difference between between novice
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and experienced programmers. It would appear that much of the difference is

due to fact that the novice’s strategy is tightly coupled to the programming lan-

guage while that of the experienced programmer is “often disconnected from a

specific language” (Blaschke 2000, p. 9). Closely related to this is the differ-

ence between the way that incoming knowledge is encoded, that is, declaratively,

and the way that it is used, procedurally. Translating from the declarative form

(the set of static facts) to the procedural form (the dynamic skill) is a cognitive

task. A large percentage of the difference between expert and novice perfor-

mance is most likely due to a reduction of the cognitive overhead of this dynamic

interpretation of the set of facts, the declarative representation has become trans-

formed into a procedural form so that there is “no costly interpretation phase”

(Neves & Anderson 1981, p. 61). This, of course, is the ‘practice effect’, often

stated as ‘practice makes perfect’, or more correctly “almost always, practice

brings improvement, and more practice brings more improvement” (Newell &

Rosenbloom 1981, p. 1).

What seems to be happening in this transition is the more efficient organi-

sation of the basic facts of a domain in terms of their use in solving problems

in the domain - the expert has, probably, both a greater degree of organisation

and a form of organisation that has been honed by practice into a more useful

state. One of the main theoretical underpinnings of the idea that “there is no

essential difference between practice and learning” (Woodworth 1954, p. 156), is

the chunking hypothesis whereby the original primitives, the set of facts learned

by the novice become progressively organised into ever larger pieces of knowledge

(chunks) which themselves are organised pieces of knowledge (smaller chunks).

“A human acquires and organizes knowledge of the environment by forming and

storing expressions, called chunks, which are structured collections of chunks”

(Miller 1956).

All this confirms Dikstra’s point, quoted at the beginning of the Introduction

that 90% of the teaching of programming is the inculcation of a sense of process,

“the teaching of thinking”, in fact, not the bare facts of the matter (Dijkstra 1982,

p. 1). But we are simply not explicit about the fact that we are teaching problem

solving, that is, general thinking skills. Ultimately we are teaching nothing but

the logical system itself, the progressive organisation of the “facts” that we teach

into the “structured collections of chunks”, the “semantic memory” that underlies

skilled performance, is left largely to chance. If it performs no other function the

pattern language idea does, at least, address the issue of organising the necessary

facts into useful form.



Chapter 10

Measuring Pedagogical

Effectiveness

We are forced to participate in the games of life before we can possibly

learn how to use the options in the rules governing them.

Johann Wolfgang von Goethe

10.1 The Limits of Empiricism

There are several problems in taking too strictly the idea that ‘scientific method’

is the only path to ‘truth’, several of which pertain directly to the subject of this

project. We have seen, for example, that programming, as an essentially creative

activity, is at least as much of an art as it is a science. The scientific base of

computing is not in doubt, but the science itself cannot help one solve a problem

expressed in some larger system for which an automated procedure is required.

What the science provides is the means to carry out the task of automation, the

programming system, little else, and this is made apparent in the continuous, and

continuing, thrust to make programming systems “easier to use”. For what else

is the fact that they are widely perceived to be difficult to use than an admission

that the base level, the scientific core of computing, is not a good fit with the

human activity of solving a problem? If it were to be true that the facts of the

matter were all that were required then the universal observation (Winslow 1996)

that, despite being able to display an adequate grasp of programming knowledge,

most students cannot translate this knowledge into programming practice, would

simply not pertain.

Students with a semester or more of instruction often display remark-

able naivete about the language that they have been studying and

often prove unable to manage dismayingly simple programming prob-

lems.

(Perkins et al 1988, p. 154)

301
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But there is an even more fundamental problem because the idea that “progress”

in science itself is based purely on empirical methodology is itself an illusion. As

we have discussed elsewhere1, scientific progress depends at least as much on cre-

ative leaps into the unkown as it does on empirical research. All that empirical

research can do is produce data, and data, without interpretation, is meaning-

less. Deciding what it means is always a matter of creative imagination. The

data concerning the motion of the planets, for example, remained the same over

several centuries, yet the understanding derived from it changed radically during

the same period, and what changed was the meaning derived from the data. So

the idea that science concerns nothing but the facts cannot be correct.

Schools have been impressively successful in spreading the myth that

science has a special method of arriving at the truth, that scientific

truth is free from value judgements, transcends all cultures, and holds

for all time. Any discipline that cannot use the methods of science,

the myth holds, cannot establish “objective” knowledge, in short, the

discipline cannot establish immutable truths. Given the historical

fact that scientific “truth” has changed from the times of Copernicus,

Galileo, Kepler, Newton, and Dalton, it seems incredible that the

myth of immutable and culture-free science is so persistent.

(Novak 1977, p. 38)

The idea that programming, a mental activity, can be defined entirely by the

means provided by the programming system, the hard core science, is, effectively,

a claim that the human mind, at the level of mental activity involved in pro-

gramming involves the same means - a claim, in fact, that patterns of experience

are irrelevant to programming. It may, or may not, be true that, at the neuronal

level, the human brain parallels in some fashion the operation of a computer2,

but this is clearly not the case at the mental level, otherwise programming a

computer would be trivially easy. In terms of much cognitive activity, such as

visual perception and the like, the computer model of the brain is clearly a useful

analogy, but in terms of any “consciously directed” mental activity we encounter

what many cognitive scientists, such as Howard Gardner, themselves see as a

“computational paradox”.

The kinds of descriptions that are legitimately offered in the terms

of a digital von Neumann computer may turn out to be appropri-

ate accounts of these human cognitive processes. ... But as one

1notably, in Chapter 3.
2The trouble with trying to understand thinking in terms of some model of the ‘real world’

is that such models come and go, so one is merely reflecting the latest ‘fashionable theory’ in

physics. Thus in Descartes’ day the mind was seen in terms of mechanisms, then came force

fields á la Newton and “elective affinities” in the sense of Priestly’s valences, and finally the

various electrical analogies - such as switchboards in the telephone era and computers these

days. Even epiphenomenolism can be taken as reflecting the “parallel universe” aspect of the

Many Worlds interpretation of quantum mechanics.
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moves to more complex and belief-tainted processes ... or judge-

ments concerning rival courses of action, the computational model

becomes less adequate. Human beings apparently do not approach

these tasks in a manner that can be characterized as logical or ra-

tional or that entail step-by-step symbolic processing. Rather, they

employ heuristics, strategies, biases, images, and other vague and

approximate approaches. The kinds of symbol-manipulation models

invoked by Newell, Simon, and others in the first generation of cog-

nitivists do not seem adequate for describing such human capacities.

... Human thought emerges as messy, intuitive, subject to subjective

representations - not as pure and immaculate calculations.

(Gardner 1985, p. 385)

But Gardner’s “computational paradox” is just Karl Popper’s epistemological

paradox restated. What Popper was attempting to do was to “make a clear

distinction between the psychology of knowledge which deals with empirical facts,

and the logic of knowledge which is concerned only with logical relations” (Popper

1959, p. 30), in order to avoid the infinite regress that the quest for irreducible

facts involves. At some point in the reductionist program the problem of what

constitutes observable fact crosses over into the psychological problem of what it

is that we perceive. “The central problem of epistemology has always been and

still is the problem of the growth of knowledge. And the growth of knowledge

can be studied best by studying the growth of scientific knowledge” (Popper 1959,

p. 15). So the changing nature of scientific knowledge demonstrates that it is,

fundamentally theoretical, and that the driving force of change is the notion of

a “falsifying hypothesis”. “The requirement that the falsifying hypothesis must

be empirical, and so falsifiable, only means that it must stand in a certain logical

relationship to possible basic statements; thus this requirement only concerns the

logical form of the hypothesis” (Popper 1959, p. 87).

However, the problem goes even deeper than the misfit between thinking

and scientific methodology, there is a misfit at the educational level as well.

Like thinking, learning is not a simple cognitive process that can be reduced

to anything like “pure and immaculate calculations,” it too is “messy, intuitive,

[and] subject to subjective representations.” In short, it involves the complex

mix of meaning and memory, examined in Chapter 9. So although it is possible

to agree, in principle, with the proposition that changes to pedagogical method

should be based on empirical rather than anecdotal evidence (see (Daniels et al.

2004)), in practice it turns out to be extremely difficult, if not impossible, to

establish such an empirical basis for change. There are simply too many factors

involved in the learning relationship that make it impossible to control enough of

the variables to draw meaningful conclusions.

What causes schools’ mathematics curricula and teaching method-

ologies to change over time? To what extent do they change in a

rational response to external objective considerations; to what extent
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subjectively in accordance with beliefs and social pressures? What

does success mean in relation to change? Often enough, the effect of

change (planned or otherwise) is to metamorphose antecedent success

criteria to validate the change, at least in the short term.

(Macnab 2000)

Moreover there is an important sense in which this is simply a reflection of

the way that the human world is - ”unlike patterns in life forms, the patterns of

social and school structures are changing on a time scale of decades rather than

millenia” (Novak 1977, p. 32). When one thinks about it, changes, important

changes, in the way that society works are made, or even just happen, without

any attempt at trying to assess the ramifications. Sometimes there are attempts

to gauge the economic or political implications, but, at best, these are limited

in scope and dubious in intent. Often they appear to be more in the way of

justification for decisions that have already been made than a real attempt to

provide options. What all this rapid flux in social structure means, of course, is

that, as a species, we are engaged in a gigantic experiment in mind formation,

because mind is the embodiment of human experience, the interface between the

brain and reality.

Furthermore, it is a matter of history that the modern field of pedagogy is itself

largely a response to changing social circumstance. The modern mass education

system arose out of the acceleration in social change that has occurred over the

last few hundred years. As the methods of production changed, the ancient way

of passing on working skills, the master-apprentice relationship, simply became

uneconomic. This was paralleled by other social effects which meant that the

‘education’ of children became an issue that had to be dealt with on a wider

basis than family or church. In itself, the institutionalisation of education can

be regarded as a vast social experiment which was begun out of necessity rather

than because of any empirically derived imperative. We did not, indeed we could

not, know in advance what effect the systemisation of childhood experience would

have on the development of the human mind, we simply did it. That we now have

to live with the results of these vast experiments should come has no surprise. It

is just not reasonable to expect that the nature of mind will not reflect changing

circumstance.

Aspects of the individual, like expectations, motivations, imagination, and so

on, ‘forces’ in the individual psychological field, so to speak, are bound to be

affected by the sort of change that characterises the modern era. The patterns

of life are different today from what they were even a decade or two ago, and

continue to change apace. One example that is simple in origin, but massively

complex in implication, is the advent of modern forms of entertainment. It would

not be unreasonable to expect that film and television have changed the way that

imagination works. Written works have to be read, the world being presented

is ‘imagined’ by the reader. In other words the act of creation is carried out

as much by the reader as the author, one is an active participant in the world
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that is being created in one’s head. This is simply not true of watching film or

television, these are sensory rather than imaginative experiences for the viewer so

the sense of participation in the act of creation is diminished, if not entirely lost.

Viewing is, therefore, a much more mentally passive experience, a play, through

the senses, on emotion rather than creativity, and this parallels the other changes

in society in the direction of consuming over producing. Is it any wonder that

educators find difficulty in stimulating the imagination of their students. The

totality of human experience now is vastly more passive than it used to be, much

of what we know is given rather than understood, received complete rather than

built from scratch.

There is something of a dichotomy here for it is a feature of the history of new

technologies to propagate from being used by specialists to general use, that is to

change from items of general consumption to items promoting general creativity.

Even writing, which we now regard as an almost universal activity, was once the

preserve of professional scribes, and similar progressions can be seen in other fields

such as photography, computers, and so on (Davis & Moar 2005, p. 158). The

drive to make computers ‘easier’ to use was, and is, driven by the progression

from specialist to general use, for example. So maybe the contrasting trends

towards wide availability on one hand and passive involvement on the other are

conflicting with each other, at least at the level of education. Creativity is an

active rather than a passive involvement.

10.2 The Measurement Problem in Education

The attempt to base pedagogical practice on empirical data implies that we know

exactly what it is that is being measured by the data. But as we discussed in

Section 8.4 it is not clear that we even know how to assess quality in program

terms, let alone programming or programmer terms. Ultimately, any assessment

of the degree to which someone has assimilated knowledge of some kind is a more

a measure of the effectiveness of the pedagogy employed than anything else. If it

is not the capacity to learn that defines the human condition, then it is difficult

to envision what does. Humans display an innate learning capability from day

one of their emergence into the world, so if the attempt to direct their learning in

some direction can be shown to be failing then the failure lies in the teaching, not

the learning. It shows that we have not yet learned how to address the human

mind in terms of the subject matter being taught - not, anyway, in a widely

applicable sense.

The data generated from educational practice is mostly that derived from the

activity we call “assessment”. Unfortunately, this data is mostly seen as a way

of measuring the individual performance of the learner compared to her peers.

But this narrow interpretation is completely misguided in terms of the value of

the data to the education process itself. As much as it is used, and is useful, in
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guiding the assessee’s educational and post-education future, this factor is post

facto in terms of the situation that generated it. So, while testing and reporting,

the giving of marks or grades, is important, assessment is, or should be, more

about monitoring how effectively the teaching process contributes to learning.

Van De Walle (2004) describes it as having a number of purposes, including:

• Monitoring student progress in order to promote growth

• Evaluating the teaching program so that it can be adjusted

• Making instructional decisions to improve instruction

• Evaluating student achievement so as to recognize accomplishment

What is significant about these purposes is that they are concerned with two

agencies - the learning agent and the teaching agent. Knowing where a particular

learner stands in relation to the body of knowledge being studied is important

mainly in terms of adjusting the study material to better suit their current status

- to address any shortcomings in their understanding revealed by the assessment

process.

This is not to overlook the fact that there are individual subjective factors,

aptitude, motivation, commitment and the like involved. The point is that any ed-

ucational project must engage these factors, and therefore any assessment regime

is, to a large extent, merely measuring the degree to which they have been en-

gaged. In the end, the force that drives change in pedagogy derives from the

apprehension of the fact of failure, not the data that tells us we have failed, be-

cause that is all that the data can tell us. The response to failure, in other words,

is essentially created. How to deal with the failure is always going to involve

judgement, a creative leap of imagination, because the data reflects the past,

not the future. This should not dismay us, it is, in a critical sense, our job as

educators to figure out how to educate. And, as with the programming system,

the underlying empirical facts of the assessment system, in fact, any system of

measurement, for that is what, fundamentally, empiricism is, provide the means

for creative response to the problem, not the actual solution.

If empirical methodology cannot be useful in terms of actually creating a

solution, it can, nevertheless, provide some indication of the degree to which the

solution works compared to the original situation after the solution has been

formulated. In this regard the suggestion made by Joe Bergin in the early stages

of this research to make an attempt to measure the effectiveness of patterns in the

teaching of programming was followed up in three separate experiments, discussed

below in Section 10.5. The basic premise here was to attempt to measure the

effect on programming performance of different teaching materials. There are

some major methodological difficulties with measuring the performance of a skill

in this way, so probably the main contribution we made was to test the use
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of a pattern language as a means of overcoming some of these methodological

problems. Probably the main stumbling block in measuring the performance of a

skill is the confounding nature of the various factors that are involved. How does

one isolate the purely subjective aspects of individual performance?

The answer to this question, suggested by the emphasis of pattern language

on process rather than knowledge, is that one doesn’t. If the point about pattern

languages is correct, then the “whole” of the personality is involved. What the

raw knowledge of the facts does not necessarily engage, is the sense of becoming,

of being involved in the discovering, the creation of, knowledge, and this is the

fundamental source of the problem. The raw facts, on their own, do not present

any sense of process, any notion of the generative forces that they represent and

imply. This is why the transition from knowing to being able to apply creatively

is so difficult given lack of appreciation of the connectivity between the facts.

What drives the organisation that we see all around us is the web of relationships

between things, and, as Spinoza pointed out, “the order and connection of ideas

is the same as the order and connection of things” (quoted in (Grabow) 1983, p.

74) .

The difficulty involved in any comparison of different programming pedago-

gies is that there is no essential difference to be measured if they are simply

different ways of presenting the facts that do not engage the sense of process

of order implicit in the raw data. Programming is an active use of knowledge,

not just simple knowledge of the facts, so two pedagogies that are different only

in terms of the facts and not in terms of the process of using the facts are, in

essence, not different at all. Historically the big difference between what might be

termed “active pedagogy” and “passive pedagogy” has been access to the source

of process. Any practical or dynamic use of facts must derive from access to such

a source, and this was the power of the apprenticeship model. The master, as a

dynamic representation of knowledge, is automatically a source of process in a

way that symbolic form is not, and the only way to represent any sense of process

in static symbolic form is through the relationships between the items involved

in the knowledge as demonstrated in the digit span example (see Chapter 9).

So what the pattern language adds to the process of empirically assessing the

effectiveness of a pedagogy is the same as it adds to the process of understanding,

the means to actively use knowledge, not just passively store it in memory. In

other words, a pedagogy based on the relationships between the raw facts of the

matter is different in kind from a pedagogy based on just the facts (Mill 1981, p.

5), and therefore provides the scope for measuring a real difference in effectiveness.

Because humans do not approach tasks “in a manner that can be characterized as

logical or rational or that entail step-by-step symbolic processing” (Gardner 1985,

p. 385), just giving them the symbols alone is not enough. One needs a pedagogy

that enables process, not one that assumes that processing ability is somehow

innate and that all that needs to be done to empower it is to provide the symbols

and operators. The point is that the symbolic system arises originally from
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process, not process from the symbolic system, we created the symbolic system

in order to do something that we couldn’t do as easily without it - explore logical

or mathematical relations.

So even where some aspect that is clearly involved in learning, such as the

ability to come up with explanations, can be identified as a “relatively stable

person characteristic”(Renkl 1997), even this apparently “innate” characteristic

seems more to do with the quality of the internal representation of knowledge

than a a part of simple individual nature, when examined more closely.

The individual differences in the quality of self-explanations were,

however, found to be multidimensional. Most importantly, even when

controlling for time-on-task (quantitative aspect), learning gains could

be substantially predicted by qualitative differences of self-explanation

characteristics. Successful learners, in particular, tended to employ

more principle-based explanations, more explication of operator-goal

combinations, and more anticipative reasoning.

(Renkl 1997, p. 1)

Descriptions like, “principle-based” and “operator-goal combinations” are more

redolent of the symbol system than base “personality”, suggesting again that

identifiable aspects of the use of a symbolic system have more to do with the

degree to which the system has been “internalised” than anything else.

In this respect it is interesting to note that other versions of the pattern

language idea have arisen in other areas of knowledge from the opposite direction.

That is, whereas Alexander’s notion of pattern language is based on empowering

the process of design, the “Concept Map” idea arose directly out of an attempt

to measure “conceptual understanding”, to measure, in effect, the result of the

process of learning, the design of the knowledge base in the mind of the learner

if you will, rather than to drive it.

10.3 Concept Maps

Thus Concept maps, visual graphs consisting of nodes, which represent concepts,

and arcs, which represent relationships between the concepts (Kremer 1997, p.

iii), were discovered by means of Piagetian style interviewing (Novak 2004) of

students about their knowledge of a subject at various stages of its development.

The initial idea of the interview process was to establish the status of a student’s

knowledge in order to fit instruction to the level of understanding that the student

already had. This is in line with Ausubel’s Assimilation Theory of meaningful

learning (Ausubel et al. 1978).

The underlying basis of the theory is that meaningful (as opposed to

rote) human learning occurs when new knowledge is consciously and

purposively linked to an existing framework of prior knowledge in a
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non-arbitrary, substantive fashion. In rote (or memorized) learning,

new concepts are added to the learner’s framework in an arbitrary and

verbatim way, producing a weak and unstable structure that quickly

degenerates. The result of meaningful learning is a change in the way

individuals experience the world; a conceptual change.

(Zeilik n.d.)

It was found that the information gathered from the tapes of the interviews

could be best organised into a hierarchical structure “with more general, more

inclusive concepts occupying higher levels in the hierarchy and more specific, less

inclusive concepts subsumed under the more general concepts” (Novak 2004, p.

4). This is the form that Ausubel had suggested that meaningful knowledge takes

in the learner’s mind, and it came to be called a ‘concept map’. As it turned out,

translating the interview material in this way was both easy and useful, not only

in ascertaining the current status of an individual’s knowledge but in tracking its

development over time.

We found that a 15-20 page interview transcript could be converted

into a one page concept map without losing essential concept and

propositional meanings expressed by the interviewee. This we soon

realized was a very powerful knowledge representation tool, a tool

that would change our research program from this point on.

In the history of science, there are many examples where the necessity

to develop new tools to observe events or objects led to the develop-

ment of new technologies. For our research program, the necessity

to find a better way to represent childrens’ conceptual understand-

ings and to be able to observe explicit changes in the concept and

propositional structures that construct those meanings led to the de-

velopment of what has now become a powerful knowledge representa-

tion tool useful not only in education but in virtually every sector of

human activity.

(Novak 2004, pp. 4–5)

The particular context for these developments was a twelve year, longitudinal

study of a two year cohort of students as they progressed through school, starting

from when they were in first grade (6-8 years old). One half of the two year cohort,

that is the first grade students in the first of the two calendar years, was given

special instruction in basic science concepts concerning the nature of matter and

energy, while the those doing grade one in the second of the two years acted

as the control group, receiving no such instruction. Assessing the impact of this

instruction on students would be the task performed by the concept maps derived

from discussion with the students.

Twenty-eight lessons were developed that dealt with the particulate

nature of matter, energy types and energy transformations, energy

utilization in living things, and other related ideas. For the most
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part, these kinds of concepts are rarely presented to elementary school

children, especially to 6-8 year olds in grades one and two.

(Novak 2004, p. 2)

As it is not normal for children to be introduced to material of this kind at such

an early stage, the idea was to measure any effect on their assimilation of these

concepts when they encountered molecular kinetics and energy transformations

later in their schooling. Instructional material was specially developed to match

the level of the student’s understanding on the basis of the principle espoused by

Ausubel:

If I had to reduce all of educational psychology to just one principle, I

would say this: The most important single factor influencing learning

is what the learner already knows. Ascertain this and teach him

accordingly.

(Ausubel 1968, p. vi)

What the concept maps provided was a way of comparing an individual’s

understanding with both the model being taught and with other student’s under-

standing, but, perhaps more cogently, with their own understanding at different

stages. “The precision and clarity of the learner’s cognitive structure represented

this way made it relatively easy to follow specific changes in the student’s knowl-

edge structures as she/he progressed through the grades” (Novak 2004, p. 5).

Moreover, as the project progressed, other studies with a different set of students

(in order not to confound the main longitudinal study) were conducted in order

to gauge the potential for students to construct their own concept maps “by giv-

ing them key terms which they had to arrange in meaningful patterns and then

connect with lines that they labeled with the nature of the relation between the

terms” (Novak 2004, p. 6), and these were found to be equally informative in

illuminating the student’s cognitive structures.

By looking for both valid and invalid notions in the student’s understanding,

it was possible to measure the fit with the correct model, enabling the population

and temporal comparisons to be made.

It was clearly evident that Instructed children had fewer and fewer

misconceptions as they progressed through school, when compared

with Uninstructed students. Conversely, the Instructed students had

an increasing number of valid ideas or notions as they progressed

through the grades. The results are shown in Figure 10.1. We see

that by the end of grade 2 the Instructed students significantly out-

performed the Uninstructed students in their understanding of energy

and molecular kinetics ideas. When students begin the formal study of

science in grade 7, both Instructed and Uninstructed students improve

in their understanding of energy and molecular kinetics concepts, but

a highly significant (p< .001) superiority of Instructed students com-

pared with Uninstructed students was observed, both for valid and
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invalid ideas. Moreover, the Instructed students showed steady im-

provement as they progressed through high school science courses,

whereas improvements for Uninstructed students were small. This

significant difference in performance over the years for the Instructed

and Uninstructed groups led to a significant interaction variance for

years in school. Other statistical results have been reported elsewhere

(Novak and Musonda, 1991).

(Novak 2004, p. 7)

Figure 10.1: The number of valid and invalid notions held by Instructed and

Uninstructed students in grades 2, 7, 10, and 12. (adapted from (Novak 2004, p.

7)).

Because the trial began with a large number of students - 191 received the

special instruction in the first year - the attrition rate over the 12 year period

was not fatal to the project. Out of the more than 300 children in both groups,

87 remained available to the end, 85 of whom were interviewed in the final year.

Moreover both the instructed and the control group achieved virtually identical

Scholastic Assessment Test (SAT) scores, suggesting that the samples were com-

parable in general intellectual ability. What is significant in this experiment is
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the advanced nature of the concepts introduced in relation to the age of the chil-

dren and the fact that the hierarchical organisation of the information garnered

from the interviews proved to be the best way to provide a measure of compar-

ison of levels of understanding. Various forms of tests were tried initially but

were found not to be “valid indicators of the conceptual understanding of stu-

dents” (Novak 2004, p. 3) that could be demonstrated in the interview process

by individuals.

The significance of the concept map is therefore in its ‘objectification’ of the

subjective state of the student’s mind in terms of the particular set of concepts

involved, overcoming the difficulties involved in observing changes in cognitive

structure over time (Novak 2004, p. 4). But what this means is that the concept

map notion addresses the ubiquitous problem of knowledge transfer (Hinds et al

2001) , because the difficulty that is involved is the fundamentally the same, com-

municating understanding. The person producing the concept map is trying to

communicate the understanding demonstrated by the student under questioning

to others who read the report of the interview, while teachers are attempting to

communicate their own understanding of the teaching material to their pupils.

An example (Figure 10.2) of a concept map drawn from an interview with an

above average instructed student at the end of grade 2 is presented here. A ver-

sion from the same student at the end of grade 12 is presented in (Novak 2004,

p. 5), but the main issue here is to demonstrate the essential similarity between

a concept map and Alexander’s pattern language.

Molecules
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Figure 10.2: A concept map from an interview with a grade 2 instructed student

If the concept map is a “powerful knowledge representation tool” (Novak

2004, p. 4) in enabling the process of assessing the level of understanding of

students then presumably it is equally powerful in the process of communicating

understanding to students in the first place, and Novak, in fact, claims this.

Another use of concept maps is to provide maps made by experts to

serve to scaffold learning of students (ODonnell, Dansereau & Hall.

2002). The idea of scaffolding learning goes back to early studies by
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Vygotsky where he described his studies showing that language and

the social exchange using language can significantly enhance childrens

cognitive development. Through proper use of language, adults can

scaffold the learning of concepts by children.

(Novak 2004, p. 8)

This is, of course, the same notion that underlies the use of pattern languages

in assisting people to learn to program. So the question is, ‘how similar are

these two structures?’ Comparing Figure 10.2 to Figure 7.2 clearly demonstrates

that we are dealing with the same basic conceptual structure. Concepts are

arranged hierarchically “with more general, more inclusive concepts occupying

higher levels in the hierarchy and more specific, less inclusive concepts subsumed

under the more general concepts” (Novak 2004, p. 4). The most significant

difference between the two forms is undoubtably the naming of the links between

the concepts in the concept map version. So, for example, the link between

Molecules and air in Figure 10.2, is labeled as are in in the concept map,

while that between Molecules and size has the notation have. However both

these connections can be seen as specific forms of the usual implied meaning of

the connections between patterns in a pattern language, that is, refines, but at a

finer level of understanding.

In fact the versions of pattern languages produced by some practitioners do

explicitly name the links, for example as uses, may use, variant and the like

(Kodituwakku & Bertok 2003, p. 65). But even in the more usual pattern

language form the pattern for the concept air in the concept graph illustrated

here might incorporate the label on the link from molecules becoming are-

in-air, for instance. The main reason for not giving labels to links in pattern

languages for programming is that the process being driven by the language is

quite specific, that is, designing a program, so, in a sense, the meaning of a link

between patterns is always consider doing this next, especially so in a language

designed to help people learn to program.

So the main difference between a concept map and a pattern language can

be identified as the specificity of purpose. It seems that a concept map, because

it does not have a very specific purpose, needs the links to be specified because

they lack the common purpose assigned to links in a pattern language by the

overall purpose of the pattern language. The purpose of a concept map is to

express understanding, a very general notion, while that of a pattern language

is to express a specific design process. Although both purposes are ultimately

about the same thing, conceptual understanding, the understanding in the latter

case is being expressed in the programming task and is therefore inherently more

specific. It is understanding directed at the task of producing a program rather

than understanding just for the sake of it.

But at their most basic level, the very point about pattern languages is that

they are based on Ausubel’s principle insofar that they relate the unknown to

what is already known. A pattern is such because it is a common experience,
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but its commonness, by itself, does not necessarily make it useful in terms of

understanding. Sunrises are common experiences but, of themselves, they do not

make for a correct understanding of the solar system - an earth-centred view of

the system is possible, indeed likely, if the relationship between many, maybe

less noticed but equally common, events are not perceived. It is only when the

sunrise pattern is related to the other patterns in the sky (planetary motions) that

the true picture about the functioning of the system begins to emerge. In other

words, it is the pattern language that gives rise to the process of understanding,

not the single pattern. The single pattern contains information about the concept,

in this case the movement of the sun relative to the Earth, not the connection

between concepts that constitute system-level order. The system is illuminated

by correlating many of the various movements that commonly occur in the sky,

that is through the connections between concepts.

Perhaps the most interesting aspect of the concept map idea is the way in

which they were ‘discovered’. The problem that led to their formulation was that

of representing the conceptual understanding of individual students in a form

that made comparisons between them possible. Several studies of concept maps

as devices for measuring conceptual structure “suggest that the technique has

many of the desirable characteristics that testing and measurement experts look

for in new assessment tools ... [reflecting] essentially the same structure as that

seen in much more time-consuming techniques, such as interviews and picture

sorting tasks” (Zeilik n.d.). More usual ways of getting people to express their

understanding are either ineffective (Novak 2004, p. 3) or make comparisons dif-

ficult because of their discursive and static nature. Interviewing people avoids

the second of these last two difficulties, the interviewer can actively probe the

student, but a simple transcription of the interview is still discursive in form.

Translating the interview transcript into visual and thereby more easily compa-

rable form - or better still, getting the assessee to generate their own version - is

therefore the essential task performed by the concept map.

Interestingly this is exactly what the subject of the experiment examined in

Section 9.3 did in relation to the performance of the digit span task. But even

more fascinating is that the task being performed bore no real relationship to the

conceptual structure expressed in the concept map or pattern language used by

the subject. This points to the absolute primacy of process in the structuring

of information in these ways. In SF’s case the phrase “procedural knowledge” is

almost an oxymoron because the knowledge being used to drive the procedure

has virtually nothing to do with the procedure. The lack of a direct connec-

tion between the knowledge and the procedure being driven by the knowledge

in this case, illustrates the pure generative power of conceptual structure, the

fundamental premise of both the pattern language and concept map ideas. What

SF was doing was providing the information involved in the task with a context

that it did not possess in its own right, giving it meaning, in other words. And

this is precisely what a pattern language does for a symbolic logic system. The
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constructs that make up a programming system have no context in terms of the

real world where the problems being addressed by the programmer actually exist,

they carry no meaning in these terms, and therefore have no generative power in

the sense of creating a solution. Pattern languages set each of the programming

system constructs in relationship to each other, give the symbolic logic context,

and therefore meaning, in the real world that it does not inherently possess. This

is what happens in the mind of a competent programmer anyway, but, unlike SF

it is occurring unconsciously, unless, of course, she is pattern aware.

10.4 Objectifying Procedural Knowledge

Empirical quantitative analysis of the use of concept maps as a means of assessing

the knowledge structure of students suggest that it has many advantages in terms

of providing relatively objective metrics. But this means that they do more than

just address the measurement problem itself, because it indicates that a concept

map is a genuine feature of the way that knowledge is structured in the mind.

Results across all the studies using the construct-a-map technique

suggest the following good news about concept map scores: (1) Stu-

dents can be trained to construct concept maps in a short period of

time with limited practice. (2) Raters do not introduce error variabil-

ity into the scores. Concept maps can be reliably scored even when

complex judgments such as quality of proposition are required (the

interrater reliability on convergence score averaged across studies is

.96). (3) Sampling variability from one random sample of concepts to

another provides equivalent map scores when the concept domain is

carefully specified. It is possible that the procedure we have followed

in selecting the concept domain helped to create a list of cohesive

concepts, therefore, any combination of concepts could provide criti-

cal information about students knowledge about a topic. (4) The high

magnitude of relative (.91) and absolute (.91) coefficients, averaged

across types of scores and studies, suggest that concept maps scores

can consistently rank students relative to one another and provide

a good estimate of a students level of performance, independently

of how well their classmates performed. (5) The proportion of valid

propositions in the students map out of the possible propositions in a

criterion map seems to better reflect systematic differences in students

connected understanding than other scores and it is the most effort

and time efficient indicator. Other procedures have been carried out

for supporting score interpretations (e.g., comparison between experts

and novices scores).

(Ruiz-Primo 2004, p. 5)
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The concept map in this context is therefore an effective way of translating

the state of knowledge in a student’s mind into assessable form. But this is

exactly the same process that a pattern language addresses, translating domain

knowledge, in this case the expert’s rather than that of the person being assessed,

into a more useable form, where useability is defined in terms of design rather

than comparison. Given this convergence on the task of ‘translation of knowledge

into useable form’ it should come as no surprise that concept maps and pattern

languages are essentially the same. Therefore, as most of the difficulty with the

programming task for novices, especially, is exactly this ‘translation of knowledge

into useable form’, proceduralising it, suggests that the effectiveness of concept

maps in the task of assessing conceptual structure is a pointer, at the very least,

to the efficacy of pattern languages in building procedural conceptual structure.

Unlike other forms of assessing the degree to which a particular pedagogy has

empowered the assimilation of knowledge by an individual, concept maps and

pattern languages provide a means of assessing the necessary procedural form

rather than the static form of knowledge. In a sense, any attempt to measure

the performance of a skill like programming is, at base level, an attempt to mea-

sure the procedural knowledge of the programmer. The claim made for concept

mapping is that it, too, empowers a process, the process of explaining one’s un-

derstanding. Most forms of measuring the extent of knowledge acquisition, tests

and examinations, measure just knowledge, not understanding, static concept

level information rather than dynamic system or domain level connections.

By comparing the performance of two groups, one with pattern language

instruction and one with more usual instruction what we were really assessing was

the degree of proceduralisation of the knowledge in each group. So the claim that

pattern languages and concept maps empower the assessment of understanding

rests on a claim that these forms of knowledge representation drive process, and it

is important to discover how this dynamic is derived from what is, after all, still a

static representation of knowledge. Fortunately, there is another system that can

be seen as a pattern language or concept map, that illustrates this empowerment

at work, and this is the system used in identifying biological specimens known as

“keying”.

Identification assumes that the plants have already been classified and

named. When you identify a plant, you are basically asking:“Of all

known species, which one most closely resembles this individual in my

hand?”

Professionals and serious amateurs identify plants by keying. This is a

stepwise process of elimination that uses a series of paired contrasting

statements, known as a dichotomous key. Keying is like a trip down a

repeatedly forking road: If at the first fork you turn right, you cannot

possibly reach any of the towns that lie along the left fork. Each

successive fork in the road eliminates other towns, until you finally

reach your destination.
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When keying, the user begins by reading the first pair of statements

(called a couplet). For example, a key may begin by asking the user

to decide between “plants woody” and “plants not woody” If the un-

known is woody, all nonwoody species are immediately eliminated

from consideration. Successive couplets will eliminate further pos-

sibilities until only one remains, which is the species to which the

unknown must belong. The advantage of this procedure is that the

user must only make one decision at a time, rather than mentally

juggling long lists of features of many possible candidates.

(Lammers 2005)

Here we can detect the relationship between the details, the form of their

presentation, and the process in which they are being used. Although the infor-

mation required for keying specimens is not usually presented graphically, this

is probably due to an extraneous factor, the massive amount of information to

be presented - a representation of only 10 levels would have 210, or 1,024 nodes

in the final level. Nevertheless the fact that the presentation is in the form of a

hierarchy or tree is made clear by the reference to “forking roads”, even though

the tree is almost never drawn. The connection between information, form and

process is made abundantly clear in this case because the way that the linear

process of identification derives from interrogation of a hierarchy of knowledge is

simplified by the paired nature of the connections. So, unless an actual wrong

turn has been made, the strictly linear nature of the process is always apparent.

There is none of the multiple possible routes that occurs in design processes, nor

any recursive diversions.

This is as clear an exposition as is possible. The process is entirely derived by

making decisions based on the connectivity of information. Concept maps and

pattern languages must derive their procedural power in exactly the same man-

ner even though the structure involves more complex and recursive connectivity.

Clear too, is the nature of the connecting links, because, as with the pattern lan-

guage case, the links always mean “refines” - refines the identification rather than

refines the design as in a pattern language for design. And, again, the clarity is

the result of the fact that the process being driven by the pattern language, the

process of identifying specimens, is considerably less general than the notion of

an “understanding” process.

10.5 Testing the Pattern Process

Following the suggestion by Joe Bergin we decided to attempt to empirically

test the effectiveness of an introduction to patterns and a pattern language in

assisting the development of programming skill. This decision evolved over time

into three separate trials, driven mainly by the shortcomings in methodology

that were exposed during each trial. We always expected the first attempt to
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be something of a trial run for further experiments, but the progression evolved

quite differently from what we expected initially.

The situation at Flinders University in regard to the teaching of programming

starts with a first year course in Java, Computer Programming 1 (CP1), which is

followed up in second year with two more advanced topics, CP2A which is based,

like CP1, on general Java programming, and CP2B, which is built around a

library of abstract data type material, the ADS package. Whatever methodology

that we decided to use, it had to be built around the structure of the teaching

program.

The idea of an experiment to test the use of different teaching materials can

be implemented in two ways, the most obvious, and optimal, solution being to

divide the existing first course cohort into two groups and teach each group on

the basis of the different materials being tested. This method ensures a thorough

introduction to the material for the participants, and provides, therefore, the most

rigorous test, but the logistics of running a test on this scale, not the mention the

ethical implications, border on nightmare proportions. It would mean a virtual

doubling of the staff effort with the attendant timetabling complications and the

problem of keeping the two streams separate.

So a more realistic attempt would have to be built around the existing course

structure to take advantage of the state of knowledge expected of students at

each stage. By and large, the main thrust of CP1 is to act as an introduction

to Java. This can be seen by the fact that 60% of the assessment is based on

an open book multiple-choice exam and 10% on multiple-choice quizzes during

the weekly tutorial sessions. Therefore only the remaining 30% is based on ac-

tual programming performance. Moreover this programming component is done

during practical classes where demonstrators and other forms of assistance are

readily available.

The second general programming course, CP2A, makes more of an attempt to

cultivate programming skills, the assessment regime being based almost entirely

on programming performance as such, with 70% being in the form of online exam-

condition programming tests. Given this natural difference in the knowledge

base being addressed in each course, the conceptual gap between them is the

most obvious point at which to run a program that introduces different groups

to different materials to test the effect on their programming performance In

considering the conduct of an experiment to test the use of different materials

we needed to take account of two main factors, what the experimental subjects

already know and what they need to do with the knowledge. Their assessment

result in CP1 should give an indication of the state of their knowledge base, what

they already know, so all that is needed is a way to measure their performance

in using the knowledge to write programs.
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10.5.1 The First Trial

In the first semester of 2003 we set up the trial to be run as a standalone ex-

periment separate from the teaching program of both topics, the only point of

contact being to call for volunteers from the students beginning CP2A. To test

the process that arises from using a pattern language we proposed to give two

groups of students access to different teaching materials. Both groups would then

attempt a common programming assignment under the same conditions so that

the effectiveness of the two sets of materials can be compared. One group would

be introduced to a set of patterns and an associated pattern language, while the

other group would be given material that covers the same ground but is written

in a non-pattern form.

Since the patterns group would need both the patterns themselves, and the

pattern language diagram that illustrates the contextual relationships between

them, we also proposed to test the use of the pattern language idea itself. In

surveying the situation in Computer Science it is pretty clear that, by and large,

patterns have been adopted in isolation from pattern languages. We can find

very few actual pattern languages in the field. This means that the main benefit

that Alexander saw in his pattern work, the generative power of the language is

missing.

As in the case of natural languages, the pattern language is generative.

It not only tells us the rules of arrangement, but shows us how to

construct arrangements - as many as we want - which satisfy the

rules.

(Alexander 1979, p. 186)

Therefore by arranging a third group, who would be given the same patterns as

the first group, but not the pattern language, we could effectively test this notion

of the generative power of the pattern language. This widens the usefulness of

the experiment beyond the educational domain into a study of the use of patterns

in software development generally.

As Alexander himself has said, while addressing a gathering of several thou-

sand software development people at the OOPSLA conference in 1996, it would

appear that in transferring the pattern language idea into computer science the

generative and moral aspects that were primary for his own work have been missed

(Alexander 1999). If Alexander is correct, the widening of the experiment would

demonstrate this in practice. The group with both the patterns and the pattern

language should perform better in a programming test than the patterns-only

group because of this generative power of the language.

Dealing with people who had completed the first course, CP1, meant that we

could use the first course results to control for various degrees of familiarity with

the programming language. What we want to test is the effect of new material

on programming skill, so having a measure of each person’s knowledge of Java
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provides an important control given the complexity of the connection between

knowledge and skill.

Another consideration is that while the material is not entirely new, there

is nevertheless, a significant amount of learning required to assimilate the new

format and enable its use in solving programming problems. So as well as the

pattern material there would need to be a process of introducing it. We decided

to provide an introductory lecture and a follow up discussion based on stepping

through a couple of examples. The second session would be driven by student

participation.

The use of patterns is not entirely novel to these people as the first course

is to some extent built around a collection of patterns, but not organised as a

language. This project follows on from an investigation of patterns in learning to

program at the Honours level, and the current teaching program in CP1 had been

developed, in part, from that project. The patterns were especially developed for

the course, and were built on material derived from the patterns in programming

pedagogy available via various sources on the Internet, but in particular, that on,

and linked to, the primary site devoted to the use of patterns in programming

instruction, that of Joe Bergin (Bergin 2005), and on those in the book chosen as

the text for the course, “The Object of Java”, by David D. Riley. It should be

noted that although patterns are used in CP1, they are not organised in pattern

language form, and therefore the volunteers would have no experience in the

pattern process which is being tested.

In order to keep the experimental group experiences similar, introductory

sessions for the other two groups would also be needed. Doing this for the group

that has no pattern exposure is not too difficult. However the group with the

patterns but no language would have to be carefully dealt with, in order not to

introduce the pattern language inadvertently in explaining the use of the patterns.

In developing the pattern language for the experiment we found that some

of the concepts that we felt needed to be included as patterns did not fit very

well into the structure of relationships that derives from the basic syntax of Java.

The higher level thinking involved in developing the relationship between classes,

in particular, seemed to bear little relationship to that involved in designing the

detail of a class. This led us to separate the patterns into two pattern languages,

one for designing the program in terms of the relationship between classes, and

the other for designing class detail. The use of the first language, which was called

“Objects Everywhere” (see Figure 6.4), results in a diagrammatic representation

of the class structure of a program. The second language, “Class as Blueprint”

(see Figure 10.3), gives rise to a sequence of patterns that specifies the design

of a class. (Note: Two examples of patterns from each of these languages are

included in Appendix A).

Because we were running the trial on the basis of volunteers, and no induce-

ment other than a possible advantage in acquiring the skill of programming was

offered, we expected that the idea would appeal mainly to those who were already
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Figure 10.3. The Pattern Language for Class detail.

aware that they were struggling with programming. Of the approximately 300

students starting the second course, 84 signed up as being interested in taking

part in the experiment. As expected, this number fell off as further steps in the

process were taken, so that by the time the trial began 27 remained.

As we felt that this was not a large enough number to run three groups it was

decided at this stage to drop the patterns-only group. So the pool of volunteers

was broken down into two smaller groups, a test group of 13, Group A, and a

control group of 14, Group B. The test group was given a set of patterns based on

the syntax of Java and a pattern language structure in the form of a diagram. The

control group was provided with material describing the same basic programming

language details that are covered in the patterns, but structured in non-pattern

form. This material was loosely based on the course material provided to first

programming course students from 1998 to 2001.

The groups were arranged on the basis of the results of the participants in the

first programming course, so that each group contained a similar spread of ability.

Some people did not turn up for their introductory sessions, so the participation

rate was further reduced to 18. The introductory lectures for each group were

based around a discussion of the material and an analysis of the process of using it

to solve a simple programming problem. Another simple programming problem

formed the basis for the workshop sessions and these were driven by student

participation.
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A week later both groups completed a programming assignment. The pro-

gramming assignment was taken on an individual basis under the conditions that

normally apply for on-line exams in our school. The program code produced was

later assessed for the degree of completion reached and on the basis of its quality

in terms of programming technique and style.

The programming task set was divided into six stages of progressive difficulty,

designed so that anybody who had passed the first programming course should

have little trouble achieving stage 1, and that the increasing difficulty of the

subsequent stages would cause a spread of achievement that could be used to

measure the effect of the different materials. For the control group, we anticipated

a correlation between the first course result and the stage reached something like

that shown in Table 10.1. Any beneficial effect based on the effectiveness of

different materials should show up by shifting the achieved ranges upwards.

Topic1 result Expected spread of achievement

HD stage 5 or 6

DN stage 4 or 5

CR stage 3 or 4

P stage 1 or 2

Table 10.1. Expected range for the control group

Table 10.2 summarises the results achieved in the test by the individual par-

ticipants. The number in the result column is the stage reached within three

hours from the start time. Coding style quality is assessed in column 5. The

participant ID was assigned randomly in order to disguise the real identity of the

students, and the starting letter identifies the group to which the participant was

assigned - A for the pattern group, and B for the control group.

ID Topic1 result Stage reached Style

A1 P 2 satisfactory

A2 CR 5 very good

A3 HD 6(almost) excellent

A4 CR 4 good

A5 P 1 satisfactory

A6 DN 5(with a bug) good

B1 HD 5 very good

B2 CR 4 good

B3 CR 1 good

B4 P 2 good

Table 10.2. Summary of individual results

Figure 10.4 plots the results achieved in the test, using circles for members of

the control group and crosses for pattern users, against the range expected from

CP1 performance. The expected range is indicated by lines.



10.5. TESTING THE PATTERN PROCESS 323

Figure 10.4. Comparison of results with expected range.

What Figure 10.4 shows is that the individual results for the control group

matched the expected performance except for one student who achieved stage 4,

better than the expected stage 1 or 2. The results for the pattern group tended

to be in the high end of the range expected, except for one student who achieved

a stage 1 result. Some variation in this first programming course result level is

not unexpected because the Pass grade covers a larger range of marks than the

other grades.

The number of students who completed the programming task is probably too

small to allow any statistically significant interpretation of differences in achieve-

ment levels between the two groups. Nevertheless the results do seem to indicate

an improved performance for the group exposed to the pattern language as com-

pared to those without exposure. Moreover the exercise was highly useful in

providing indications of how the study should proceed, and we discuss this fur-

ther in the next section.

We feel that the results of the trial indicate that it is possible to measure the

effects of different materials on performance in this way, but that any subsequent

experiment will need to find a way to increase participation levels. Although 84

people from the 2003 cohort (approximately 300) expressed an interest in taking

part in the experiment, difficulties in arranging suitable times quickly reduced

this to 27. Eighteen people attended the introductory sessions, but only half of

these made it to the programming test.

And somewhat in contradiction to the need to increase the active participa-

tion rate is the fact that the experiment indicates that the approach of merely

introducing people to the materials and expecting them to be used in a program-

ming test is not realistic. That is, there is both a need to increase the length of

the time that volunteers commit to the study, and a need to find a way of increas-

ing the number of volunteers completing. Unfortunately, the obvious solution to

the participation rate issue, offering payment for participation, conflicts with the

commitment issue by complicating motivation.

Probably the most significant finding of the trial in pedagogical terms was

that concerning the structure of the first programming course. If we believe
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that designing a solution before coding is desirable then this needs to be made

a primary focus of the first programming course. The trial run demonstrated

that introducing the concept of design-before-code is not something that can be

done after the learning of the programming language. We need to be clearer

about what the aims of the first course are, so that we can be sure that they are

addressed in the course material.

10.5.2 The Second Trial

The major shortcoming of the first trial was that the number of volunteers in-

volved was too small to be able to make any statistical inferences. Part of the

problem is that having a control group reduces the number of volunteers who are

effectively being exposed to the methodology being tested. Therefore for a second

attempt we decided to try a method that removed the necessity for the use of

a control group by utilising a comparison between CP1 and CP2A results as a

means of measuring any difference in programming performance, rather than an

explicit programming test. The group exposed to the pattern material is com-

pared to the rest of the class. In this way any effect caused by the exposure to

pattern instruction should show up as a difference in the CP1-CP2A correlation

between those in the class who received it and those who didn’t.

This leaves the question of how the exposure to the pattern material is to

be administered and the experience of the first trial suggested that a couple of

specially run introductory sessions were probably not sufficient. Accordingly we

felt that the best way to conduct this version of the experiment was to offer those

in the whole CP2A class who felt that they required extra programming assistance

the opportunity to attend a series of special help sessions during the semester.

Their performance in the assessment for the topic would then be correlated with

their performance in CP1 and compared against a similar correlation of the results

of a group of students who had not attended the extra sessions. Because of the

difference in the assessment regimes for CP1 and CP2A, comparing the two results

correlates the knowledge of the programming language indicated by the CP1

result with the actual performance of programming skill indicated by the CP2A

results. Interposing an exposure to pattern-based teaching material between the

two topic assessments is thereby a way of assessing its impact on the acquisition

of programming ability.

Ethics approval for the use of student’s topic results was obtained, and the

project was introduced to the students at a normal CP2A lecture. Of the whole

class, 85 people signed consent forms for their CP1 and CP2A results to be

accessed, and during the semester, 17 attended at least one of the sessions which

ran over 10 weeks. The attendance pattern is given in Table 10.3 below. This

meant that the pattern group could, theoretically, number up to 17 and the

control up to 68, but this would be dependent on results being available for both

topics.
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Week 1 2 3 4 5 6 7 8 9 10 Totals

ID

P1 X X 2

P2 X 1

P3 X 1

P4 X X X 3

P5 X 1

P6 X 1

P7 X 1

P8 X X X X X X X X 8

P9 X X 2

P10 X X X 3

P11 X X 2

P12 X X X 3

P13 X 1

P14 X X X X 4

P15 X X 2

P16 X 1

P17 X 1

37

Totals 6 1 5 9 4 2 2 3 3 2 37

Table 10.3. Attendance at Help Sessions

In practice it was found to be difficult to concentrate exclusively on the pattern

material in the help sessions as students, understandably, tended to raise issues

of immediate concern to their current assessment task, but the discussion was

based as much as possible on the pattern material handed to students at their

first attendance. As is usual in extra sessions of this kind attendance tended

to be irregular with only 9 people attending two or more sessions. In general,

participation in the discussion was quite strong, with virtually all participants

contributing to some degree.

For various reasons not all of the volunteers have, at the time of writing,

results available for both of the topics being correlated, with the result that the

final comparison is between a group of 14 participants and 46 non-participants. Of

the non-participants, two were found to have results for CP2A below 10%, which

probably indicates that they had not attempted the on-line exam component.

These two students were therefore removed from consideration as their result in

CP2A is considered meaningless in terms of programming skill and just tends to

distort the figures for the control group.

The spread of results in CP1 for the pattern group is 38 to 100, which compares

to a spread of 52 to 94 for the control. As might be expected of a group that

self-selects on the basis of a feeling that they might require extra assistance,
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the patterns group represents a greater range, and in particular, a range with a

14% lower minimum value. On the other hand, the spread of results in CP2A

shows the opposite tendency, with the greater range, and lower minimum, being

achieved by the non-pattern control group, 81% (17 to 98), as against 38% (42 to

80) for the participants. A similar tendency shows up in the average difference

between CP1 and CP2A results with the control group achieving, on average,

16.4% less in CP2A, and the patterns group 12.7% less.

Figure 10.5. Comparison of CP1 and CP2A results

Ideally, instructors would hope to advance the capabilities of their students

evenly, such that their results in advanced courses matched the results they

obtained in an introductory course. Naturally such an ideal is never actually

achieved in practice, nevertheless it provides a benchmark for assessing the progress

of students through material of increasing complexity. In the graph shown in Fig-

ure 10.5, this benchmark is shown as the diagonal line across the graph from 0,

0 to 100, 100, and represents the ‘ideal’ correlation for CP2A results, the Y-axis,

against CP1 results, the X-axis.

The scores for the students are plotted on the graph, diamonds representing

non-pattern control group members and squares the pattern help session par-

ticipants. Lines of best fit are provided for both groups, that for the control

group, ’Class’, being roughly parallel to the benchmark but displaced, as would

be expected in a real world situation, towards a lower score in the more advanced

course, CP2A. The trend for the pattern group, ‘Part’, is quite different in that,

in the lower range, it starts off closer to the benchmark and then trends further

away as the scores get higher, ending up below the ‘Class’ line.

The divergence from the benchmark towards the positive in the lower range

is attributable to two participant students who did better in CP2A than CP1.



10.5. TESTING THE PATTERN PROCESS 327

No students in the lower end of the control group did this, although, further up

in the scores, two did manage it. The line for the participants then trends less

strongly upwards than the control group suggesting that participation was less

effective in maintaining the performance of higher-range students, although this

is probably more an artefact of the higher starting point. The important point is

that most participants in the middle and high range performed only a little below

the trendline for the non-participants, indicating that the difference is marginal.

Moreover, the most significant comparison is actual performance compared to

the benchmark line, rather than a direct comparison between the two groups.

One would expect the usefulness of special instruction to be more apparent in

the lower end of the range than the higher because good students require less

assistance in general, and this effect would itself be exaggerated by the ’volunteer

effect’, the nexus between realising that you are struggling and motivation to

participate in help sessions.

Figure 10.6. Spread of Difference between CP1 and CP2A results

The points on the graph shown in Figure 10.6 represent people who attempted

CP2A in 2004 for whom a result in CP1 is available, and who gave permission

for their results to be accessed. Not everyone who signed up had completed CP1,

presumably having been given status for equivalent work done elsewhere. It is the

need for a result in CP1 that explains the fact that all points are within the range

38 - 100% on the X-axis, which represents the CP1 score, the point being that

people scoring low marks in CP1 are less likely to attempt CP2A. Two people in

this group failed to reach the mark required for an academic supplementary in

CP1, and both attended the extra help sessions in CP2A. Both of these people

scored a positive difference, indicating that they improved their result in CP2A

as compared to CP1.

Both groups, as expected, tended to do worse in CP2A than they did in
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CP1, due, most probably to its greater emphasis on demonstrating actual skill at

writing programming code as well as the more advanced nature of the material

covered. The control group performed more poorly than the pattern group up

to approximately the 75% mark, where, as one would expect, the need for, and

therefore any beneficial effects of, extra assistance is likely to be marginal. Be-

cause the latter group exhibited behaviour that indicated that they were aware,

on the basis of their CP1 experience, of a need to seek extra help, some of their

better performance is probably attributable to extra motivation - they were mo-

tivated to attend extra sessions and therefore, presumably, motivated to work

harder at succeeding than the average student. Nevertheless we feel that these

results indicate that the pattern material probably did contribute to the partic-

ipant’s tendency to perform, in general, better than their colleges in the control

group, particularly in the lower and middle range of programming performance.

All of the figures, the spread of results, the correlations, and the mean dif-

ferences, seem to suggest that the pattern help sessions did have an effect on

performance of programming skill as measured by CP2A assessment. Students

in the pattern session group performed closer to the ’ideal’ correlation below the

credit level, 75%. Moreover, the maximum mean difference for the control group

occurs at approximately the 74% CP1 mark, whereas for the pattern group it is

approximately 86%, about 12% higher. This suggests that the reductive effect

of the more difficult work involved in CP2A cuts in at a higher CP1 mark for

participants than non-participants. As with the initial experiment, the number of

students involved in the pattern group is probably too small to give definitive re-

sults, nevertheless there does seem to have been some beneficial effect, especially

for students in the lower and middle range of performance in CP1.

More importantly, the spread of the groups in the difference graph represent a

breadth-depth effect - in a given population of students the average impact of the

extra difficulty of material and assessment is the same but shifted up towards the

higher end of the CP1 result by 12% by the propensity to seek extra assistance.

That is, the help session effect seems to be a displacement of the impact of

increasing difficulty on result in the second course towards a higher knowledge

level, rather than an amelioration of it. Although it is probably still a moot point

about the particular nature of the extra assistance, one has to assume that its

pattern-based nature does contribute to some degree.

The only way to untangle any effect of the nature of the help from the fact

of getting it would be to run the experiment many times with different kinds of

help. But one can take this drive for empirical verification too far. No one would

seriously suggest that the content of a system of help doesn’t matter, only the

fact of getting it. This is tantamount to saying that it is impossible to imagine

material so confusing as to cause the spread of the assisted group to be shifted to

the left rather than the right, and we have all had experiences where some well-

meant but unstructured assistance has set one’s understanding back, rather than

forward. The whole point about the pattern language idea is that a structure,
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the contextual relationship of language and meaning, is added to an otherwise

unstructured, or loosely structured, set of concepts in order to make the system

operation clearer and therefore easier. It says of two concepts that here is a

relationship between them that is not inherent at the conceptual level but which

arises in operation.

In this world some combinations are just more stable, some explanations more

coherent, some solutions more elegant, some artistic representations of reality

more beautiful. Insisting on an empirical demonstration of these effects misses

the point that some ‘narratives’ simply resonate with the way that the mind

works, which is just another way of saying with the way that the world is. Given

that the mind is a system in the brain arising from interaction with the world,

it should not be surprising that some real-world operations fit its own functional

form better than others, and that these ‘resonances’ are significant in terms of

‘understanding’.

Another important aim of this experiment was to test the idea of using a

correlation of CP1 and CP2A results as a means of measuring the performance

of programming skill. In terms of a methodology to measure the effect of spe-

cial teaching material on programming performance we feel that these results

demonstrate that a correlation of CP1 and CP2A results is quite promising. The

results do show a difference in performance between the two groups that, more or

less, matches expectation. This method, therefore, clearly provides the potential

to maximise the use of volunteers in that a proportion of them is not utilised

purely as a control. The main deficiency in the technique employed here is prob-

ably the inability to separate the motivation factor from any effect caused by the

special material. It would, therefore, be interesting to attempt to remove the

self-selecting nature of a volunteer group by presenting the material during one

or more of the normal CP2A tutorial or practical streams, and this, in fact, was

the basis of the third attempt.

10.5.3 The Third Trial

In moving from a stand alone experiment to providing an extra help component

to the second programming course we were attempting to address the attrition

issue, the fall off in attendance over time. However, because the extra help sessions

are optional, we were again relying on the students’ perception of needing extra

assistance, and this did not prove to be sufficient motivation. Moreover, it leaves

the issue of disentangling improved performance due to motivation and simple

attendance from any that might be due to the pattern language exposure. So we

felt that the only way to distinguish between the two effects was to attempt to

run the experiment utilising a normal component of the course. The only such

component that presents such an opportunity is the weekly practical sessions

during which students are working on a specified programming task.
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As attendance at one of these sessions is a de facto requirement of the course,

presenting the attendees at two of the nine sessions run each week with the pat-

tern material and instruction on its use, and basing the assistance given during

the session on the pattern process, would be a way of dividing the CP2A class

into two groups without having to call for volunteers. This effectively separates

out the motivation issue from any potential special material effect and simpli-

fies the recruitment and approval processes - we only needed to get permission

of the students for their results to be compared. Comparing the results of the

two groups would be based on the same procedure used in the second experi-

ment, the difference between the two attempts being in the nature of the pattern

involvement only.

But this difference does mean that the exposure to the pattern material is

occurring in an environment where the attention of the students is focussed on

what they see as the immediate problem, achieving as many of the checkpoints

in the given time as possible. Despite our realisation that this was likely to be

a significant problem, we felt that it was important to attempt it on the basis

of removing the motivation effect from the results. As it turned out there was

another problem, and that was that of the 11 weeks of practicals, five were run

as online examinations during which no assistance or interaction was allowed,

effectively cutting down the exposure to the extra material, such as it was, to six

one hour sessions.

Figure 10.7. Comparison between CP1 and CP2A results

Given these difficulties, it was not surprising that the results, tabulated in

Figure 10.7, do not provide any useful information. The spread of results is

roughly similar for both the pattern group and the rest of the class indicating

that the pattern sessions did not provide the noticeable differences indicated in

the first two trials. So the main lesson from the third version seems to be that
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any attempt to control for factors like motivation would need to be considered

carefully. From our point of view this is not too surprising because the pattern

language idea is based on a wholistic view of the world, and everything about

an individual is a part of the whole of personality. In any case, it is clear that

simply utilising a component of the normal stream of instruction for comparative

testing of this kind is unlikely to work as the component concerned has its own

role to play in instruction, with the attendant pressures and constraints. Adding

a further task to the mix, in our case the need to provide instruction in the

use of novel material, just overloads the dynamics of the situation. Moreover,

instead of reducing the cognitive load as the pattern process should, it is clear

that adding the extra material probably increases it, if anything it complicates

the “psychological field” for those involved.

10.5.4 The Overall Results

Therefore, the main thing to come out of our attempts is that the standalone

experiment is likely to be the easiest way to keep control of enough of the mix

of factors to obtain meaningful results. The difficulties encountered in the stan-

dalone experiment, our first attempt, were related to recruiting and maintaining

a large enough pool of volunteers and providing enough of an exposure to the

pattern material to be sure that it was incorporated into the student’s thinking

about programming. Attempting to address these issues by incorporating the

experiment into a stream of help sessions for a second programming course did

seem to have advantages in terms of the second issue, but probably exacerbated

the attrition rate issue. These two effects are the two sides of the same coin, of

course, more exposure requires a greater level of attendance.

We attempted then to split the coin, so to speak, by adding the exposure to an

existing component of the second course. This solves the attendance problem as

no extra time is involved, but it proved disastrous in terms of exposure. No extra

time on top of the normal course commitment means no time for exposure to the

special material, it would seem. From this experience it was clear that we took

the wrong route in attempting to address the attrition rate issue exposed in the

standalone version, but we took the route we did because we felt that the other

obvious alternative, paying people for involvement, complicates the motivation

issue. In testing the use of material one needs people to be committed to process

under test, not simply motivated by payment.

In terms of the standalone version it is unfortunate that we did not think to

ask students to produce and hand in a diagram of the pattern sequence they used

during the programming test. This would have done two things, it would have

made us confident that the material was being used, and it would have given us

an indication of what effect it was having on the thinking of the participants.

However it would have complicated the comparison of the performance of the

two groups, as there is no equivalent representation of the design rather than the
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coding process that we could have asked of the control group. At the time of con-

ducting the first attempt, however, we had not yet encountered the Concept Map

material that demonstrates the usefulness of concept maps (pattern language)

diagrams as measures of conceptual understanding, so it may be possible to have

the non-special material participants produce a concept map. Of course a con-

cept map is not a representation of the pattern sequence derived from the use of

a pattern language, nevertheless it may have provided some degree of comparison

of the design-level thinking of the two groups.

From our experience, then, the main recommendation we would give anybody

attempting to measure the effect of special material on the performance of novice

programmers is to conduct the test on the basis of a standalone experiment. There

would appear to be only one reasonable way to increase the time committed by

the participants without exacerbating the attrition issue, and that is to pay them.

This means either that one accepts the complication of motivations involved or

attempts some mechanism of recruitment that does not mention payment until

after the students have volunteered. As the test is mainly about attempting

to find a way of helping people learn to program it is fairly important that their

involvement is motivated by wanting to learn. Offering payment after the process

has begun might be a way of ensuring that they started for that reason rather

than for any financial purpose.

However, we also feel that the second attempt taught us an important lesson

in terms of comparing programming performance. Because the comparison is

made on the results of the students’ assessment performance over two 13 week

courses, rather than on a single programming test, we feel that it is a more reliable

indicator of programming performance. Of course, this is only possible because

the two topics involved have assessment regimes that are so clearly based on

measuring different factors, the knowledge of the programming language in the

first course, and on-line exam-condition programming performance in the second.

But, given this setup, the results we obtained showed that any effect due to

different pedagogies shows up clearly in the comparison.

Incorporating this method of comparison into a standalone experiment is

something that we would have liked to try. Of course it would mean that, as

a whole, the experiment would no longer be entirely isolated from the normal

teaching regime, but the introduction to any special pedagogical process would

be. It might therefore be a way of avoiding the need to utilise some of the precious

volunteers as a control, the control being provided by the rest of the class, thus

increasing the statistical confidence in any effect detected.

In terms of what we believe about the use of pattern languages in assisting

novices to learn how to program we feel that the main thing that our experiments

demonstrate is that providing instruction in this form is effective in promoting

the process of programming rather than simple knowledge of the constructs used.

The response of the participants did indicate that they found that the pattern

language approach to thinking about a problem was useful in terms of designing a
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solution. We also noticed that it helped people to express more clearly the aspects

of programming that they were finding difficult to understand. So, although our

experiments failed to provide sufficient grounds to draw any definite conclusions

about the use of pattern languages in programming instruction, we feel that they

did show that pattern instruction is useful from the point of view of both the

student and the instructor in clarifying what is difficult about coming up with a

solution to a programming problem.
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Chapter 11

Conclusion

The greatest thing a human soul ever does in this world is to see

something and tell what it saw in a plain way. Hundreds of people can

talk for one who can think, but thousands can think for one who can

see. To see clearly is poetry, prophecy and religion, all in one.

John Ruskin (19th Century Critic)

11.1 The Pedagogical Problem in Programming

There is a fundamental discordance between the idea that understanding derives

from the rational discourse with the world that we call reasoning and the means

which we use to express it. All symbolic forms of representation are linear in

nature, they support the dynamic cut and thrust of discourse hardly at all, and

at very best, only indirectly. This is the thrust of Socrates’ criticism of anybody

“who thinks that he can leave behind him an art in a book, and he who learns

it out of a book, and thinks he has got something clear and solid” (Plato 1999).

Socrates’ point is that understanding is constructed quite differently, it uses an

essentially non-linear process “ to collect together a multitude of scattered par-

ticulars, and, viewing them collectively, bring them all under one single idea, and

thereby be enabled to define, and so make it clear what the thing is which is

the subject of our inquiry. ... [And] to be able again to subdivide this idea into

species, according to nature, and so as not to break any part of it in the cutting,

like a bad cook” (Plato translated by John Stuart Mill (Mill 1946)).

In a sense, the formal representation in a symbolic narrative, that is, a linear

form, is like Socrates’ bad cook, it has ‘broken’ the essential conceptual structure

that is being expressed in any true understanding of the world in order to achieve

a linear presentation. The linear nature of the expressive form takes precedence

over the structure inherent in the content of anything that can truly be called

knowledge. This, of course, is a commonplace observation, and limited means of

interrogating texts, in Socrates’ sense of the way that “those who wish to learn”

335
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(Plato translated by John Stuart Mill (Mill 1946) do so, have arisen over time.

These are the familiar aids to reading texts such as tables of contents, indices, and

the like. The trouble with these is that, like the text itself, they are organised on

the basis of an ordering that does not reflect the conceptual order of the material

under discussion and so only indirectly enhance the process of understanding.

One has to know what it is that one is looking for in order to use these aids

effectively, presupposing at least some degree of understanding.

However no such presumption can be made concerning the novice’s under-

standing of programming. The whole project of teaching programming turns on

building the conceptual structure that underpins it in the mind of the novice.

Unfortunately, the teaching process tends to devolve to the linear form expressed

in formal symbolic means. This is, of course, understandable, and indeed, almost

unavoidable, as all experience is, by nature, linear in time. Moreover we know,

from history, that effective ways of teaching static knowledge can be structured

in this way. What history is equally clear on, though, is that effective ways of

teaching dynamic skills require developing the sort of knowledge “which is writ-

ten scientifically in the learners mind” (Mill 1946) that Plato has Socrates talk

about.

Understanding derives from the process of “interrogating” the world in order

to uncover the hidden connections and dependencies that cause it to be the way

that it is. So the scientific and Socratic methods of enquiry are essentially the

same, being based on the sequence, question - hypothesis - test, with the only real

difference being the nature of the testing stage. In the case of the Socratic method

one performs thought experiments rather than ‘empirical’ ones, but the ‘thought

experiment’ is, in one way at least, more precise than its scientific cousin, because

negative evidence is not only acceptable, but constitutes a general disproof of the

hypothesis and requires its modification. The nature of the periodic ‘Kuhnian’

revolutions in science corroborate the higher status of the ‘thought experiment’,

even in science, as the data from the paradigm-negating empirical research will be

ignored until such time as thinking has “caught up with the data”, so to speak.

In essence we are involved in a process of interrogating the structure of reality

whenever we are doing anything that requires understanding.

Given, therefore, the failure of linear means to express conceptual structure,

it is not surprising that one of the most common saws of our culture is the one

that claims that a picture is worth a thousand words. This is merely saying that

most of meaning is structured conceptually and that structure is usually more

clearly represented pictorially than narratively. However pictorial form has its

own limitations and these revolve around the level of detail that can be pictured.

Here, words are essential, but again, adding too many words to a diagram tends

to confound, rather than enhance, understanding.

Doing anything that requires understanding is itself a process, and a compli-

cating factor in the programming situation is that the result of the programming

process is a program, another process, one that gets executed on a machine. Ul-
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timately, therefore, the process that results in the program has to deal with the

execution level details of the machine. But these details mostly have nothing

to do with the task being automated at the conceptual level. We are, in effect,

mixing two domains, the problem and the programming domains, which, at the

conceptual level, are related only through the process of programming a task in

a problem domain. This is Dijkstra’s point about “the tools we use hav[ing] a

profound (and devious!) influence on our thinking habits, and, therefore, on our

thinking abilities” (Dijkstra 198). We come to see the problem purely in terms

of the tool rather than for what it really is, an element of a different context

entirely.

Nevertheless, any program has, in the end, to be executable, so in program-

ming it we have to take account of the machine’s execution environment to that

extent at least. The wrong turn that we took at the very start of the computer

age was to attempt to base our thinking about programming solely on the exe-

cution level features, and the history of programming since then has largely been

the story of our attempts to move to a mode of thinking that is less driven by

execution-level detail. We need a way of thinking about problems that exist in the

real world that results in machine execution, not a way of thinking about prob-

lems that exist in the real world in terms of machine execution. The sequence

of thoughts that we go through in designing a program is not the sequence of

actions executed by the machine.

There is only one answer to the problem of mixing a domain in which a

sequence produced by a process in which understanding is required, the pro-

gramming domain, with a domain in which the sequence being processed in-

volves exactly nil understanding, the machine execution domain, and that is to

use a language based on the former rather than the latter, a language based on

understanding not blind machine execution. Although computer science has at-

tempted to move away from using the base “machine level instruction set”, the

“programming languages” that resulted are still tied to “concepts” that can be

directed translated into machine level instructions. These “languages” are there-

fore strictly formal in a way that ‘natural’ human languages aren’t. But, in turn,

the push for more “natural language”-like programming languages founders on

the requirement that they are machine translatable into executable machine code.

In other words the “machine logic”, and therefore any “language” that pur-

ports to implement it, is a closed formal system in a way that no “natural lan-

guage” ever is. The “nature” of a formal system is that it is a completely defined,

internally consistent means of invoking logical relationships. It is this confusion

between the language used to think about a program, and the ‘language’ in which

it is implemented that bedevils our field.

The confusion is perhaps most clearly demonstrated by the often ex-

pressed opinion that “one cannot use a programming language that

has not been implemented”. But this is nonsense, of course one can!

One can use any well-defined programming language, whether imple-
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mented or not, for writing programs; it is only when you want to use

those programs to evoke computations that you need an implementa-

tion as well. Being well-defined, rather than being implemented, is a

programming language’s vital characteristic.

The above remarks are neither jokes nor puns; on the contrary, they

are pertinent to multi-million-dollar mistakes. They imply, for in-

stance, that the development projects - erroneously called “research

projects” - aimed at the production of “natural language program-

ming systems” - currently en vogue again - are chasing their own

tails.

(Dijkstra 1982, pp. 62-5)

So, at some point, the break with the machine simply has to be made. Any

language that expresses a solution in conceptual terms has to be based on under-

standing the problem, not executing the solution. What this statement boils down

to is that the solution must be expressed in a form that is not directly translatable

into executable machine code, and up until recently the ‘break’ has occurred in

the mind of the programmer. That is, whatever conceptual form is being used to

think about programming exists entirely in the programmer’s mind because the

only form in which the program is visibly represented is in machine translatable

language, the outside observer sees only the result of the programming process,

not the programming process itself.

What this requires, however, is a thoroughgoing and reliable internalisation

of the conceptual structure (understanding) involved, and this is something that

only the expert can be expected to have. The basic pedagogical problem in

programming, therefore, has always been that we are basing instruction on a

“language” that is not the “language” used by expert programmers because we

know not what that language is, we never see it! Nobody is ever taught the

language used in thinking about a programming problem, they develop it through

the use of a “language” translatable into executable machine code. No wonder

expert programmers are accorded almost guru status, their skill worshipped with

almost religious reverence. To the outside observer the source of their skill is

entirely invisible, literally ‘mystical’ in nature.

11.2 The Pattern Language Response

In the end, the reason, the only reason, for teaching programming through the use

of pattern language is that pattern language underlies programming skill, indeed

any human skill. Look at any expert in any field and what you see is a human

applying previous experience, which is all that a pattern language is. The roots of

the modern mind lie in the transition from an irrational to a rational explanation

of the world. Once you start reasoning, that is, seeking the reason for the way

that the world is in direct human experience rather than divine purpose, you
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have no other resources than patterns (of experience) and language (creativity).

In that sense, reasoning is built on causal relationships - the ‘cause’ of something

is the ‘reason’ it happens.

The whole thrust of the Socratic method is to build understanding by ques-

tioning the elements of experience. This is a classic process of evolution. Just

as biological form adapts through experience so does mental form. The present

is always the creative result derived from the patterns of past experience, there

really is no other way forward! Life develops not only by learning from its mis-

takes, but also from its successes, that is, from all experience, negative as well as

positive.

Both in science and in biology one expects continuity; small steps are,

of course, less dangerous than big leaps. A higher-order mechanism

favouring continuity in development will then be an asset. But note

that this will be an advantage also for the mechanism. Its own chances

of survival increase. Higher order mechanisms are themselves subject

to selection in the evolutionary process. Those which lead to rigidity

are dangerous and will tend to be eliminated. The same holds for

those which trigger off a cascade of untried connections.

Experience is decisive for the development of epistemic systems at

all stages. This holds also for the higher order mechanisms which

regulate the limits of experiment. These mechanisms can be regarded

as tools of problem solution. Their quality will then be dependent

upon earlier attempts at problem solution, and the success of these.

The outcome is a technique with empirical foundations.

(Halldén 1997, p. 19)

In specific terms, the pattern language system that we propose addresses the

pedagogical problem in programming by generalising the machine-level concepts

that are necessary and by including them in a language that contains concepts

that are not immediately or directly implementable in machine code. By this

means the “programming language” is a part, not the totality, of the language

used for designing the solution to the original problem. It is easy to forget that

the original problem specification always takes the form, “write a program that

does some task on a computer” even if it is not explicitly stated that way. The

task of the programmer is therefore to write the machine specification, not to do

the task to be done by the computer.

The point about pattern languages is that they are based on Ausubel’s state-

ment that “the most important single factor influencing learning is what the

learner already knows” (Ausubel 1968, p. vi). Pattern languages relate the

unknown to what is already known in two ways. Firstly, a pattern is a pattern

because it is a common experience, and some of the patterns in a language for pro-

gramming pedagogy will be for everyday concepts like CHOICE, REPETITION,

SWAP, and so forth. One very pertinent reason for including such concepts is to

build on knowledge that novices will already possess, in programming terms these
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are metaphors from real life phenomena. But there is an even more important

factor that we earlier discussed as the evolution of pattern languages as novices

learn.

One of the major shortcomings of current approaches to teaching program-

ming is that concepts are introduced in a linear way which makes little use of the

‘natural’ connections between them. This then shows up as common mistakes in

novice practice such as mixing the process of defining a method with the process

of calling it. A pattern language such as Figure 10.3, clearly delineates the differ-

ence between them in a way in which the normal presentation has not succeeded

in doing. So using an ‘evolving’ pattern language provides a way of attaching

new patterns to the existing structure as they are introduced. This makes the

relationships between them clear from day one, they are not just left to appear

as though they are isolated ideas plucked out of nowhere for no good reason. The

pattern language shows from whence they come in relation to what the novice

already knows, and the explanatory material in the pattern itself provides the

reason they exist.

There is a very significant juxtaposition here, and it constitutes, we believe,

the reason why the pattern language idea resonates in programming in a way

in which it resonates in no other field, including that in which it arose! And

the reason is this. Programming occurs in a meaning-free system, a computer.

Because the symbols being manipulated carry meaning for us as humans it is

all too easy to overlook the fact that they are entirely meaningless to the logic

system. Yet programming is about solving problems that are firmly situated in

the real world, the system being automated reeks of meaning. Somewhere along

the line the meaningless symbols of the logic system have been given the mean-

ing expressed by the program. And that is essentially what programming is, the

assignment of meaning, the giving of context, to a formulation of essentially mean-

ingless symbols, precisely as the subject of the digit span experiment, discussed

in section 9.3, did.

But this is the ultimate form of creativity, the creation of meaning. It is not

just the manipulation of a few symbols, that’s the trivial part. The powerful

bit is the creation of meaning out of meaninglessness, the symbols are just used

to express the created meaning not to create it! In almost no other field, with

the possible exception of mathematics maybe, do the entities being manipulated

carry less real world meaning in themselves than programming. But if the power

of programming is the assignment of meaning then the meaning can only come

from one place - the programmer’s mind.

But this is an exceedingly dangerous proposition, and not only in terms of the

programmer’s ego either. It makes it sound as though the programmer creates

the meaning by means of some unique force of personality, the “transition from

the problem to the solution is mediated by a conceptual process unique” (Grabow

1983, p. 43) to the individual programmer. So even though the agreed objective

of a program is to fulfil the requirements specified for it, “the actual generation
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of form is presumed discontinuous with its context” (Grabow 1983, p. 43). It’s

as if the elements (of meaning) that make up the new meaning “created” by the

programmer did not exist. This radical discontinuity between the form being

generated and its generation is only possible due to the ignoring of context - the

solution is presumed to originate outside of the context of the problem in the

“imagination” of the programmer, as if the imagination of the programmer is not

itself a product of context, that is, experience.

This points to the fact that although science deals with phenomena that are

objectively given to the mind, it relies on the mind to process the data so given,

and it can only deal with the data on the assumption that the phenomena are

independent of the mind. If this were not so, that is, if the primary data were

taken to be purely a product of the mind, then no reason, science, philosophy

or even art would be possible. These activities all depend on meaning, which is

a relationship between mind and reality. It makes no sense - there would be no

reason - to build a representation of reality, which is what the mind is, if there

was no reality to represent. Learning, then, is essentially a dynamic relationship

whereby mind is ‘fitted’ to reality - “a preparation for the pursuits of active life”

(Mill 1946, p. 36).

All the ‘mental’ activities are based on the patterns thrown up by the ever-

changing world. What the brain does is to provide the material locus for mental

activity - it is “the biology of meaning.”

The biology of meaning includes the entire brain and body, with the

history built by experience into bones, muscles, endocrine glands and

neural connections. A meaningful state is an activity pattern of the

nervous system and body that has a particular focus in the state space

of the organism, not in the physical space of the brain. As meaning

changes, the focus changes, forming a trajectory that jumps, bobs and

weaves like the course of a firefly on a summer night. ... The skills

of athletes, dancers and musicians live not only in their synapses,

but also in their limbs, fingers and torsos. Neurobiologists who study

the molecular basis of learning in synapses tend to overlook the fact

that enlarged muscles and honed immune systems have also learned

to do their jobs. The strengths of connections between the neurons

and the properties of the body are continually shaped by learning

and exercise throughout a lifetime. Each of us is born with genetic

and cytoplasmic endowments that establish some general limits to

the directions and extents of growth in striving for the wholeness of

intentionality. A state of meaning then knits together the brain and

body in brief time intervals, which, in the language of neurodynamics,

form short segments of an itinerant trajectory through the state space

of the organism. This state space includes the range of possible actions

begun at any moment by the personal history and condition of the

organism, its wholeness.
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(Freeman 1999, pp. 157-8)

This fundamental connection between mind and reality means that it is not

possible, in studying the acquisition of a skill like programming, to avoid the philo-

sophical issues raised by notions like knowledge and creativity, in other words,

the role of the mind. If behaviourism has left a legacy to its successor in psycho-

logical theory it is a deep scepticism about the need to have any regard for the

idea of ‘consciousness’ and ‘mind’. As Daniel Dennett has said, the prevaling atti-

tude during the rebirth of cognitive psychology seems to be a commitment to the

irrelevance of ‘consciousness’ in understanding how the human mind functions.

Consciousness appears to be the last bastion of occult properties,

epiphenomena, immeasurable subjective states - in short, the one

area of mind best left to the philosophers who are welcome to it.

Let them make fools of themselves trying to corral the ‘quicksilver of

phenomenology’ into respectable theory.

(Dennet 1978, p. 149)

But this, surely, is just the difference between the ‘objective’ functioning of

the brain and the subjective experience of the functioning. In reality it is no

different from perception.

I see light but perceptually know nothing about its nature. I see

light as light. But the nature of the mechanisms that subserve my

perception of light tell me nothing at all about whether light involves

waves or particles, about whether it has a speed, let alone what its

speed is, and so on.

(Flanagan 1991, p. 342)

The brain is reacting to the light, and I am experiencing its reaction without

knowing anything about how the reaction works at the objective level of brain

and light. If there were such a thing as an omniscient neuroscientist observing my

brain she would see certain patterns of neural activity and identify them with my

experiencing light. But I experience the light in a way that she does not, and the

fact that the brain reaction has two aspects that are seemingly incommensurate is

not a problem if considered epistemically. There is an analogy here with illusions

like the famous face-vase and Necker cube illusions, illustrated in Figure 11.1.

Strictly speaking, there is just one physical configuration before one’s

eyes, but it can be seen in either of two ways, as a vase or as a pair

of faces in the one case and as a cube with reversed foreground and

background in the other case. Gestalt illusions such as these show the

possibility that something metaphysically unproblematic (the Necker

cube is just a bunch of lines) may be seen, known, or described in two

different ways. Gestalt illusions have a further important property:

when one is seeing the image in one way, one cannot at the same time

see it in the other way. But remember, gestalt illusions are illusions.
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Figure 11.1. Gestalt Illusions

There is just one thing there. It has two aspects epistemically irre-

ducible to each other, but not irreducible to the whole they comprise,

not irreducible in some hoary metaphysical sense.

(Flanagan 1991, pp. 342-3)

So in dealing with a skill, the fact that ‘consciousness’ is the ‘quicksilver of

phenomenology’ is not a problem. Here we are dealing with the expression of

the skill in objective terms, not how it functions at the neuronal level. We need

a theory of mind, not a scientific view of the brain. The brain only impacts

on our observations of skill performance indirectly, by means of the way that it

sets up the mind. In a sense mind functioning is emergent from, not directly

related to, brain function. I can safely ignore the subjective ‘conscious’ process

if I can observe the results of performance. A bug in a program is the result

of a a mind-level problem, a fault in thinking, not a failure of brain function.

The programmer has mistranslated some aspect of the real world context of the

problem into programming logic because the two are not ‘naturally’ connected.

But, significantly in regard to this essential absence of real-world context in

programming, the pattern language idea is completely grounded on the awareness

of context. If there is one pivotal idea in pattern language thinking it is that

everything is fundamentally contextual in nature. In some sense the solution to

a problem exists already in the context of the problem because the problem is the

context. Think of any problem and what you will mostly think of is context. Take,

as a cogent example, global warming. Global warming is just a phenomenon, a

series of unfolding events. What makes it a problem, rather than just a phe-

nomenon, is context. The phenomenon is occurring in a context of living systems

and it is this fact that gives it its “problem” status. Given no life forms on the

planet there would be no problem, the increasing temperature of the planet would

have no meaning. So the problem is, in reality, all context - it is the relationships

between things that create context, and through context, problems, and indeed,

meaning.

What the pattern language idea makes clear is that the meaning expressed

by a program written in meaningless symbols comes, not from the programmer’s
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head in the sense of a unique individual attribute, but from the representation

of the context in which the program is meaningful therein. This is evident even

in that most “individual” of human attributes, genius. No genius ever existed in

isolation from some set of ideas that, in fact, set the context for the expression of

“genius”. A great idea is great, not because of the force of individual personality

of the person who comes up with it, but because of its effect on our understanding

of the world, its meaning in terms of the real world - greatness comes from context.

So the juxtaposition between the source of the power of programming, and

that of pattern language, is the factor that makes pattern languages so resonant

in computer science. The factor that makes a programming logic powerful is its

abstractedness, the very fact that the symbols carry meaning only in terms of the

operation of a machine. This is their only interface with reality. In some sense

their power derives from their meaninglessness, their lack of context, in other

words, and this is the exact and total opposite of the power of pattern language.

The power of pattern language is that meaning derives from relationships in the

real world. It is the abstractedness of a programming system, the very source of

its power, that makes the act of programming so difficult. As biological beings

we are entities entirely situated in the real world, we are survival, not abstract,

systems, meaning is essential to us. So the only way that we can deal with an

abstract system of logic in terms of generating effects in the real world is through

the use of a system that bridges the gap, gives the symbols their meaning, converts

them, in fact, from mere marks to symbols.

Because this transformation occurs in the mind, the fact that what is being

transformed exists outside of it, is obscured, and it is this obscuring of the actual

situation of the transformation in the real world that leads to all the dead ends

represented by ideas like individual talent and aptitude. Mastery lies in what

is being mastered, not the master, it is expressed in the artefact through the

properties and attributes of the material being shaped into new form. A master

in any domain can only do with the material that which the material will allow.

Meaning exists “in the the state space of the organism, not in the physical space

of the brain” (Freeman 1999, pp. 157). For humans the mind is the substrate

in which meaning is expressed but meaning actually exists as a relationship in

the real world. The relationship between global warning and living biological

systems would still exist and have the same essential effect, that is, meaning in

biological terms, even if none of the biological systems had minds, that is, were

human in that sense. So it is an arrogance on our part to take personal credit for

our thinking, we simply provide the means by which the meaning which actually

exists as relationships in reality is made abstract and the relationships freed from

their concrete form.

Moreover the fact of where the transformation occurs, in the human mind,

also obscures its true nature as a language of patterns. The sense of personal

achievement, of individual endeavour, hides the fact that new meaning is just a

reconfiguration of relationships that already exist. Even the theory of Relativity
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is just a reformulation of the basic physical relationships between objects that

have always been there. Reformulation requires a set of data. It is not abstract,

something that occurs in isolation. The items being shuffled around in the refor-

mulation process are abstract only in form, they would not be symbols if they did

not have an essential connection with some factor in the real world. These are

patterns of experience, meanings, not phantoms of random or gratuitous neuronal

activity.

It is the lack of a direct connection between the symbols and the meaning being

expressed by the program that is the source of the difficulties in programming.

Our belief that pattern language is essential in programming pedagogy derives

from the need for a mechanism to bridge the gap, to make the connection between

the symbols and the context of the problem, to make them, in fact, symbolic in

the problem domain, not just phantoms of random electrical activity. What a

program has to do is represent the context in which the task has meaning in

the form of electrical circuits, so programming is, at its most fundamental level,

context setting - metaphor.

The clearest exposition of the power of pattern language to give meaning to

otherwise meaningless data, to give conceptual context to a random sequence

of digits, is the case of SF discussed in Section 9.3, but the 12 year longitudinal

study on the use of concept maps (see Section 10.3) backs up their effectiveness in

more traditional learning situations. Knowledge is structured, not merely random,

or linearly sequenced, information. Any process, including the process we call

understanding, derives from the structure of knowledge, and that is why graphical

representations are so ubiquitous in any situation where a process is taking place.

Given this fact, the history of the use of such representations in programming,

and programming pedagogy is interesting.

11.3 Knowledge and Process

Although, as we have pointed out elsewhere, most changes in programming prac-

tice and pedagogy have, by and large, not been driven by empirical research,

one area where the results of experimentation does seem to have had some in-

fluence on programming practice is the use of flowcharts as an aid to designing

programs. At one time flowcharting was ubiquitous, some authorities going so

far as to claim that “coding begins [emphasis added] with the drawing of a flow

diagram” (Goldstein and von Neumann quoted in (Shneiderman) 1977, p. 373).

Although flowcharts were seen as a ‘high level’ definition of the solution to a prob-

lem it is not clear that they are anything more than a description of the logic

of the solution. That is, they describe a solution that has already been derived

and therefore provide little or no guidance in the process of deriving the solution.

Like programming code they force the programmer into thinking in strict logic,

and while this is feasible for experienced programmers, it is neither desirable or

useful, or even possible, for novices.
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But the interesting fact about flowcharting is that it has virtually disappeared

from programming practice, and this raises the question as to why. Part of the an-

swer lies in the development of ‘higher level’ languages which attempt to address

the ‘high level’ definition of the solution in terms of a language that is as close

as possible to natural forms instead of graphically. Also, of course, the standard

flowchart ‘language’ is based on ‘goto’ style programming and as structured, and

therefore ‘goto’ free programming, came in, it fell into disuse (Tracy 2003). But

this doesn’t altogether explain it’s disappearance because the flowchart idea can

be expressed in forms that support structured style programming. Indeed several

versions of such flowchart languages were, in fact, developed, Nassi and Shneider-

man (Nassi & Shneiderman 1973) and G. W. Williams (Tracy 2003) promoted

examples, but the fact that they didn’t catch on suggests that there was more

to the demise of the flowchart than simply the rise of structured programming.

The use of flowcharts in the early days of programming came, almost certainly,

out of circuit design and ‘manual’ programming of the “plug-panel” kind. The

development of the higher-level languages meant that the ‘flow’ of the program

was, more or less, conveyed by the ‘linguistic flow’ of the program itself, making

the use of a flowchart based on any particular flowchart ‘language’ somewhat

redundant.

We conjecture that detailed flowcharts are merely a redundant pre-

sentation of the information contained in the programming language

statements. The flowcharts may even be at a disadvantage because

they are not as complete (omitting declarations, statement labels,

and input/output formats) and require many more pages than do the

concise programming language statements.

(Shneiderman et al 1977, p. 380)

Another factor was the almost unconscious realisation that is expressed in the

move towards more ‘natural’ languages, that solving problems requires thinking

not just logic, because thinking is mostly language-based.

Precision is the stock in trade, the raison d’être of formal notations.

[They] are precise. They tend to be complete. ... [But] what they

lack is comprehensibility. ... Almost all formal definitions turn out to

embody or describe an implementation of the hardware or software

system whose externals they are prescribing.

(Brooks 1983, pp. 63–64)

The development of a solution is informal (heuristic) at least as much as it is

formal, and, as an exposition of the flow of the logic, flowcharts provide almost

no assistance in terms of creating the conceptual solution.

But the fact that attempts to measure the effectiveness of flowcharts in assist-

ing the task of writing programs were, by and large, negative (see (Shneiderman

et al 1977)), coupled with the realisation that the effectiveness of graphical repre-

sentation of algorithms “as an aid to comprehension is questionable” (Waddel &
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Cross 1988), probably also played a part in the decline of flowcharting. In a sense,

the type of language that supports what we now know as ‘visual programming’

has taken over the claims for the utility of graphical representation of program

flow that flowcharts provided, but even here “experiments which compared the

comprehensibility of textual with visual programs failed to give support to such

claims (Green et al. 1991; Moher et al. 1993). The choice of graphical nota-

tions and diagramming techniques is rarely empirically justified”(Chattratichart

& Kuljis 2000, p. 46).

The pertinent point about all this is that aids to programming closely based on

the implementing “language” seem to be difficult to justify empirically despite the

widespread belief held by many experienced programmers that they are useful. It

is therefore possible that this paradox is caused, not by the believers being wrong

necessarily, but by the difficulty, or even, possibly, the impossibility, of measuring

programming performance. Some of the disjunct here lies in the näıve assumption

of a strong correspondence between the ability to comprehend program code that

is already written, or some aspect of it, such as its logical flow, and the ability to

program. But the ability to understand a written representation is not the same

thing as producing a new one from scratch. Certainly one would expect that the

former is necessary for the latter, but one would hardly use the fact that a reader

can demonstrate an understanding of published literary works, as a predictor of

the ability to produce such a work. There is a correspondence, certainly, but it

is not a strong one.

It is possibly not even true that good programmers are necessarily good at

understanding written code, these are complimentary but not equivalent skill-

sets. Writing programs requires understanding the problem, not other programs.

Indeed it may even be the case that understanding programs written by others is

more difficult than writing a program from a reasonable natural language specifi-

cation. If the basis of the “software crisis” is the difficulty of meeting the original

requirements then this is, at least, a concept-level problem, the failure is a fail-

ure to translate natural language into code. The reverse, translating code into

understanding has to be a far more unfamiliar procedure, even for experienced

programmers. Furthermore it involves the construction of two mental models

simultaneously, a model of the program flow and a model of the problem domain

(Pennington 1987), usually with little in the way of documentation other than

the code itself. At the very least, the programmer starts with some domain level

knowledge expressed in the specification. The reverse-engineer has to derive even

that from the code.

In this respect, patterns can be seen as advantageous in the reverse-engineering

process as one of the features of the pattern idea is that it is the ‘conceptual

understanding’ behind the code that is being encapsulated, reducing the cognitive

effort of building that understanding directly from the code. But there is another

factor, and that is that software patterns are the result, in effect, of a process

very like the reverse engineering of code - that’s the sense of the “patterns are
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discovered” notion. In other words the need for novice programmers to digest

written programs whole, in order to benefit from the experience of others, is

reduced, if not entirely eliminated, by the fact that concepts that are known to

have wide applicability will, eventually, find their way into pattern form.

This is probably the main point about patterns, their separation of the concept

under discussion from its code implementation. They are means of causing a

programmer to think like a problem solver rather than a programmer. It would

seem to us that most “aids” to the programmer, like API’s and the like, are

written in such a manner as to force one to think in programming terms not in

terms of the problem one is trying to solve. How can I possibly know, without

being told, where to find the method call to convert a String into an int in the Java

API? The point is that the API requires preknowledge to make it useful, it forces

one to already think like a programmer rather than as a human problem solver

trying to deal with an aspect of the real world. To paraphrase John Backus’

controversial article, “Can Programming be Liberated from the von Neumann

Style?” (Backus 1978), ‘to the man with a von Neumann machine everything

looks like something that can be dealt with using a programming statement’.

At its most fundamental level the pattern idea encapsulates the fulcrum point

of decision making - a pattern reveals that a decision has been made on some

point of issue1. Once again this is best illustrated by exploring an example and the

most revealing, in programming, is the decision about the choice between using

a recursive or an iterative (looping) form of repetition. Speak to any experienced

programmer about this decision and they will be able to tell you pretty clearly

the circumstances in which they would definitely choose recursion and those in

which the choice would be to go for a loop. They rarely express any grey areas,

even though, when pressed on the point, they admit to being aware that, in most

circumstances, the two are, in an objective sense, equivalent in terms of execution

and programming convenience. Yet when pressed to explain the reasoning behind

their pattern of behaviour, they can’t. They know what they do, they are aware

at some level that they had a real choice at the point of doing it, yet they cannot

explain why they made the choice they did - the decision was made automatically

and mostly unconsciously, the sign of a genuine ‘ingrained’ pattern of behaviour.

What the pattern form tries to do is to give expression to the thinking that lies

behind such decision points in programming, to reveal the reasoning that must

have occurred at some stage, even though the programmer can no longer give voice

to it. Even if it is something that they have picked up in their training, ‘inherited’

from their instructors so to speak, then this still emphasizes the pattern nature

of what is going on. In fact, this is the force behind the idea of using patterns

in learning situations. One way or another, students will pick up the patterns

of process inherent in their instruction, the thrust of the pedagogical pattern

concept is to make the patterns explicit rather than implicit by default. It might

1This is why notions of creativity, choice and free will are important in understanding the

pattern idea at a theoretical level.
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well be that the fact that many experienced programmers cannot explain the

reasoning (literally, the reasons for their decision on handling repetition) for or

against recursion in particular circumstances is precisely this fact that they have

‘inherited’ it as a pattern in the most forceful sense of the concept - they simply

picked up the patterns of behaviour implied by the ‘style’ of instruction they

received, and their subsequent experience, without even being aware of it.

What this all says is that most, if not all, intellectual activity is post facto jus-

tification for what one does. Pressured on the point, programmers will talk about

things like whether or not the situation involves a recursively defined concept or

not2, but it is clearly just circular thinking to say that recursive action is driven

by recursive definition. Clearly, recursion is one of those fundamental features of

thinking, a concept about conceptualization, that is almost impossible to ratio-

nalise. Like metaphor we just use it without being aware of it. Who, apart from

theoretical mathematicians, for example, is aware that any formal definition of

natural numbers is recursive; who apart from theoretical linguists is aware that

that the use of language is recursive; and who apart from chaos theorists and

fractal mathematicians are aware that aspects of many biological (for example,

proteins) and other natural processes involve recursive relations and processes?3

Given all this, then, it is probably not surprising that programmers seem to

rely more on their ‘intuitive’ feel for a situation than direct reasoning, in deciding

between a recursive or iterative solution. It is not clear that one can ever fully

justify it on purely objective grounds, such as execution time or resource usage,

for example.

There are several significant problems with recursion. Mostly it is

hard (especially for inexperienced programmers) to think recursively,

though many AI specialists claim that in reality recursion is closer

to basic human thought processes than other programming methods

(such as iteration). There also exists the problem of stack overflow

when using some forms of recursion (head recursion.) The other main

problem with recursion is that it can be slower to run than simple

iteration. Then why use it? It seems that there is always an iterative

2Commonly in discussion of recursion one will hear expressions like “inherently recursive

concept” (Riley 2002, p. 525), “some problems are easier to solve with recursion ...[because

they] involve recursive data structures” (Zimmer 1998), “some procedures are very naturally

programmed recursively” (Allen & Dhagat 1999) which amount to little more than the state-

ment “recursion is recursive”, and do little to explain when and why recursion is preferable to

iteration.
3For example a lot of scientific theories model change as ‘the rate of change of the variable is

proportional to the variable’, a ‘definition’ that holds as much in Schroedinger’s equation as in

classical mechanics. Another example is evolution, much of which is modeled by the Fibonacci

series, a classic recursive function (a Fibonacci series is one in which each number is the sum of

the two numbers that proceed it), so much so, indeed, that it fuels an ongoing dispute between

geneticists and mathematicians over primacy. “Geneticists are convinced that the patterns are

genetic and the mathematicians keep insisting that they are mathematical” (Stewart 1995, p.

137).
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solution to any problem that can be solved recursively. Is there a

difference in computational complexity? No. Is there a difference

in the efficiency of execution? Yes, in fact, the recursive version is

usually less efficient because of having to push and pop recursions

on and off the run-time stack, so iteration is quicker. On the other

hand, you might notice that the recursive versions use fewer or no

local variables.

So why use recursion? The answer to our question is predominantly

because it is easier to code a recursive solution once one is able to

identify that solution. The recursive code is usually smaller, more

concise, more elegant, possibly even easier to understand, though that

depends on ones thinking style. But also, there are some problems

that are very difficult to solve without recursion. Those problems that

require backtracking such as searching a maze for a path to an exit

or tree based operations ... are best solved recursively. There are also

some interesting sorting algorithms that use recursion.

(Danzig n.d.)

Recursion is thus a perfect illustration of the power of a pattern in the decision-

making matrix of the design process. But, of course, that which makes it perfect

as an illuminator of the power of patterns is the same factor that makes it impos-

sible as an example of a pattern in elucidating pattern form. Because the resulting

machine behaviour will be the same in either case, the decision about which of

recursion or iteration to use in a particular case comes down to understanding,

to the conceptual ‘flavour’ of the decision point to the particular programmer.

The decision is being made on the basis of a purely subjective assessment - does

recursive thinking help me to see the solution to this problem? This is probably

something that cannot be taught, or even expressed in words, it really is totally

a matter of experience.

This does not mean, it should be noted, that the use of recursion cannot be

expressed in pattern form. In fact, as Eugene Wallingford has shown with his

“Roundabout” Pattern Language (Wallingford 1998), this is entirely possible,

and indeed, highly desirable. The fact is that experienced programmers have

learned to answer the question “does recursive thinking help me to see the solution

to this problem?” So it is part of their pattern language. But this points to

the real force of pattern languages, they are an adjunct to, and facilitator of,

experience, not a replacement for it. In the end the use of a pattern is, to some

degree, subjective. No pattern language can encapsulate every aspect of every

programmers’ experience. All it can do is promote good practice from the feature

set of a particular programming system.

But learning to do something via the experience of doing it implies that doing

it is feasible for the novice, and it is in this respect that pattern languages are

most significant. As we have seen, a pattern language encapsulates those elements

of a system that keep recurring as the system is used, and it is, insofar as it does
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that, a facilitator of experience. Therefore, to a significant degree, the patterns

in a system are objective features of the system, even though they occur in that

most subjective of environments, the programmer’s awareness. The trick is to

make them available to conscious awareness. For that is the crux of the matter.

The phenomena that we classify as intuitive are mostly those where the response

seems to be driven directly by the sensual input, we are not aware of any reasoning

process intervening between the input from the senses and our behaviour.

But, and this is the crux of the matter, it must be there. The fact that with

increasing experience we become less conscious of the decisions we are making

only acts to demonstrate the absolute importance of pattern language in human

existence. Expertise is the ingraining of the pattern process so deeply in the

expression of a skill that it is no longer discernible, even to the expert herself.

How else is one to explain the failure of expert programmers in the elucidation

of their use of recursion?

Recursion is an objective feature of the programming system, not some phan-

tom that the programmer conjures out of thin air. It is therefore a pattern of

the experience of programming. All that the pattern language idea says, really, is

that making the patterns of experience visible is the only way that their conscious

reuse can be promoted. So the pedagogical pattern idea is just an extension of

reuse into instruction. In a sense instruction is nothing more than a form of

reuse, but where the reuse is expressed by the novice. What a teacher is saying,

even, as we have shown (see Figure 2.1), when patterns are not being explicitly

used in instruction, is “this has been found to be a useful feature of program-

ming practice”, a pattern, “so you need to be able to think of it when you are

programming.” Unfortunately, that’s as far as most instructors go. They rely on

the practical experience of writing programs to give the novice the awareness of

the when and where of its application.

Clearly, this is not sufficient, and it is on this point that the current methodol-

ogy fails. With great persistency, and far too much frustration, a novice can learn

to program in this way. But it is just not reasonable! It is the most inefficient

use of the biological endowment of memory. On its own, biological memory is

“episodic” (Tulving & Thompson 1973), the straight recording of events in a linear

fashion. Therefore the only reasoning possible is an almost mechanical replica-

tion of past experience. Knowledge, if it can even be referred to by that name, is

strictly rigid, linear, essentially meaningless in any sense except temporal order-

ing. It is entirely specific, applicable only in exactly similar circumstances, there

is no flavour of general applicability involved. But the real power of reasoning

derives from generalised, that is, non-specific, knowledge forms, and these require

semantic structure, a web of associations that is independent of the original linear

recording of experience.

So all that the pattern language does is to provide the so-called Generic Knowl-

edge Structures (Graesser & Clark 1985, p. 32-3) that illuminate the reasoning,

to make the connections between the programming concepts explicit so that the
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when and where, as well as the implementation detail, is made obvious. Almost

everyone involved in education agrees that “much of what we do as educators is

devoted to conveying to the student the cognitive maps that we use for problem

solving in a discipline” (Hiltz & Turoff 2005, p. 62), but nobody practices it

in any explicit way, because more often that not, the real source of their own

facility in programming is a complete mystery to them. It depends on the “au-

tomatism” (Shiffrin & Dumais 1981, p. 139) that flows from the generalising

of experience, the procedualisation of their knowledge base of which they had

almost no conscious awareness (see Chapter 9) as it was an implicit “side effect”

of practice.

However, if experts can afford the luxury of not being able to explain the basis

of their practice, educators cannot. If the importation of the pattern idea into

programming made any sense at all, it did so by pointing out, by default if not

explicitly, that even experts need help in using advanced programming concepts.

The significance of the GOF book (Gamma et al. 1995) was that although most

advanced programmers were probably already writing code equivalent to PROXY
and so on, they were virtually “re-inventing the wheel” each time. Putting these

concepts in pattern form was thereby a way of making the reuse explicit and

therefore easier. If this is true for experts, and patterns were found to be effica-

cious in this regard, then it must follow that it should also be true for novices with

less advanced concepts. There is, perhaps, one proviso, and that is that experts

have an established sense of process, they know what they need to do, what they

mostly need help with is in remembering the implementation details, reusing the

concept. So pattern languages, as such, did not arise at this level, both because

they are not necessary, and because they are impossible to formulate without

the lower level constructs in pattern language form on which to hang them (See

Section 7.2).

But the basic thrust of the pattern idea is always pedagogical in nature.

Patterns are teaching somebody something, even if it is simply reminding them

how a particular concept is implemented. Most of any complex mental task, even

in the hands of an expert, is like that. Experience just means that less has to be

looked up, not that nothing does. And that is probably the biggest contribution

that pattern languages make in the novice programmer context. At least the

information that the novice needs is presented in a form that makes finding the

appropriate parts of it simple. What the novice needs while designing the solution

is a pointer to what is available given the current location (context) in the problem

solving process. The pattern language diagram empowers the design process at

this contextual level. Having designed the solution, the sequence of patterns that

solves the problem at the conceptual level, its implementation is facilitated by the

fact that the implementation detail is provided within the pattern form. So the

main pattern of behaviour observed in the introductory programming laboratory,

the more or less frantic search for the example that illustrates what the novice

thinks is needed to solve the current problem is, at the very least, made easier.
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What we are teaching when we are teaching people how to program is a way

of thinking, a discipline in Dijkstra’s terms (Dijkstra 1976, p. 60), about a task

in terms of automating it. We are giving them, or should be, a language to as-

sist thinking in these terms, “not just a collection of programming constructs”

(Sheil 1981, p. 107). Such a language has two requirements, and neither of them

suggests that the language be implementable on a computer. The first require-

ment is that the language be general enough to encompass the wide range of

domains in which the tasks automated in the introductory programming envi-

ronment are likely to come from, and the second is that it assists in generating

the understanding required to solve the initial problem. Clearly, the languages

currently used in instruction do not fit the bill in this regard. The history of pro-

gramming is the story of the gradual move away from the logic of the machine,

but the situation in the programming classroom will only begin to be eased when

the final break is made, when we address the patterns of programming practice,

not the logic of execution.

As Alan Kay points out, most of what we call “intelligence” is just a matter

of having the appropriate point of view to appreciate the current circumstances

for what they are, in other words, the pattern language for the situation. In

this sense, the human condition is basically the journey involved in learning to

be a rational agent, to acquire the skill in identifying the patterns that underly

existence, that give the world both meaning and beauty - that is, form.

Watching a famous guy much smarter than I struggle for more than

30 minutes to not quite solve the problem his way (there was a bug)

made quite an impression. It brought home to me once again that

“point of view is worth 80 IQ points” I wasn’t smarter but I had

a much better internal thinking tool to amplify my abilities. This

incident and others like it made paramount that any tool for children

should have great thinking patterns and deep beauty “built-in.”

(Kay 1993, p. 70)

The belief that “much of what we do as educators is devoted to conveying to

the student the cognitive maps that we use for problem solving in a discipline”

(Hiltz & Turoff 2005, p. 62), Kay’s “internal thinking tool”, is largely misplaced,

as is evidenced by the lack of inculcation of such skills in students. We are

simply not giving them a better “internal thinking tool” because we expect such

a tool to be derived from a simple presentation of the knowledge involved and

practice in using it. What is needed is “an explanation of programming skill

that integrates ideas about knowledge representations with a strategic model,

enabling one to make predictions about how change in knowledge representation

might give rise to particular strategies and to the strategy changes associated with

developing expertise” (Davies 1994, p. 238), and what we have attempted to do

here is to show that pattern language is the essential integration of “knowledge

representation” (pattern) and a “strategic model” (language).

As we have shown, a pattern language is a representation of the inherent



354 CONCLUSION

conceptual structure of a field of knowledge, and is thereby an attempt to make

visible the “cognitive map” used in solving problems in the domain. Basing

instruction on a pattern language provides the means to demonstrate how knowl-

edge is related to practice, it gives the student an indication of the process of

solving a problem not just its bare solution as the examples currently used in

instruction do. Pattern languages are based on the insight that “designers rarely

start from scratch” (Visser quoted in (Glass) 2002) , they base their exploration of

the current problem on existing models from prior solutions to similar problems.

So, however it is that the neuronal brain, as an aspect of reality, gives rise

to the cognitive maps that we use in our dealings with reality, we do know one

thing, and that is, maybe, all that we need to know. Ultimately, that collection

of cognitive maps that makes up our model of the world is created through ex-

perience of the world, there can be no other process at work here, so, at this

level, the neuronal details are irrelevant. This is a map of reality not a map of

neuronal pathways. The true significance of ‘mind’, indeed the very source of its

effective realisation, is that response (behaviour) has been liberated from neu-

ronal dynamics to the extent that response is not based purely on instinct, that

is, fixed neural pathways. So the significance of cognitive structure, the “form” of

the mental model, is that it is a reflection of the physical, chemical and biological

“form” we experience in the world, not just neural structure. Of course, even in

its instinctual form, behaviour is something that is extremely difficult to relate

back to simple configurations of molecules - DNA or neuronal.

Nobody has the slightest idea of how the mere fact of arranging a few

molecules in a particular permutation (a static form) brings about

highly integrated activity. The problem is far worse here than in

morphogenesis, where spatial patterns are the end product. It might

be conjectured that the genetic record resembles a sequence of pro-

grammed instructions to be ‘run’ like the punched tape input of a

pianola, but this analogy doesn’t stand up to close scrutiny. Even

instinctual behavioural tasks can be disrupted without catastrophic

consequences. An obstacle placed in an ant trail may cause momen-

tary confusion, but the ants soon establish an adjusted strategy to

accommodate the new circumstances. ... In other words, the organ-

ism cannot be regarded (like the pianola) as a closed system with a

completely determined repertoire of activity. An ant must be seen

as part of a colony and the colony as part of the environment. The

concept of ant behaviour is thus holistic, and only partially dependent

on the internal genetic make-up of an individual ant.

(Davies 1989, pp. 187-8)

As the study of metaphor as a cognitive rather than linguistic phenomenon

has shown, ‘meaning’ is the fundamental connection between life and reality -

“semantic productivity can be characterized in the same way as morphological

productivity, suggesting that form and meaning are organized by the same princi-
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ples” (Clausner & Croft 1997, p. 247). We are rational productive agents insofar

as we have understanding of the world (conceptual organisation of meanings).

Nothing gets done successfully without it, so everything we do, no matter how

abstract it is as a task in itself, has to be based on understanding of the world.

Ultimately, solutions emerge from the judicious study of discernible reality, be-

cause that is where the problem exists - it can only be solved there, in its real

context, not in the context of a rigidly prescribed programming language in which

every possible action is strictly defined.

Conceptual understanding is based on the empirical nature of experience, not

on a set of definitions. “Concepts are bundles of statistically reliable features,

hence ... having a concept is knowing which properties the things it applies to

reliably exhibit (together, perhaps with enough of the structure of the relevant

conceptual hierarchy [emphasis added] to at least determine how basic the concept

is)” (Fodor 1998, p. 92). As we saw in Section 8.3, the trouble with definitions

is that “nobody has a bullet-proof definition of, as it might be, ‘cow’ or ‘table’

or ‘irrigation’ or ‘pronoun’ on offer; not linguists, not philosophers, least of all

English-speakers as such” (Fodor 1998, pp. 92-3). Concepts are entirely con-

textual and context is entirely a matter of experience. “Knowledge of reality,

whether it is occasioned by perception, language, memory, or anything else, is a

result of going beyond the information given. It arises through the interaction of

that information with the context in which it is presented, and with the knower’s

preexisting knowledge” (Ortony 1979, p. 1), that is, the conceptual context of the

receiver. So the fabric of concept is the memory of repetitive form in experience,

that is, pattern, and creativity is the combinatory power of a language of patterns

in designing new form. As Genesis puts it, “language ... is only the beginning of

what they will do” (Genesis 11:6).

The ultimate object of design is form.

The reason that iron filings placed in a magnetic field exhibit a pattern

- or have form, as we say - is that the field they are in is not homo-

geneous. If the world were totally regular and homogeneous, there

would be no forces, and no forms. Everything would be amorphous.

But an irregular world tries to compensate for its own irregularities

by fitting itself to them, and thereby takes on form. D’Arcy Thomp-

son has even called form the “diagram of forces” for the irregularities.

More usually we speak of these irregularities as the functional origins

of the form.

[So our] argument is based on the assumption that physical clarity

cannot be achieved in a form until there is first some programmatic

clarity in the designer’s mind and actions; and that for this to be

possible, in turn, the designer must first trace his design problem to

its earliest functional origins and be able to find some sort of pattern in

them. I shall try to outline a general way of stating design problems

which draws attention to these functional origins, and makes their
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pattern reasonably easy to see.

It is based on the idea that every design problem begins with an effort

to achieve fitness between two entities: the form in question and its

context. The form is the solution to the problem; the context defines

the problem. In other words, when we speak of design, the real object

of discussion is not the form alone, but the ensemble comprising the

form and its context. Good fit is a desired property of this ensemble

which relates to some particular division of the ensemble into form

and context.

(Alexander 1964, pp. 15-6)

Ultimately, as we stated in the Introduction, programming is like living. It is

about dealing with the probabilities inherent in a real situation, deciding what

you believe to be the case, and as such it is based on hypotheticals, beliefs -

partial truths, perhaps - not truth-values as such. As long as we continue to

base the teaching of programming on a system based on truth-values we will

continue to bypass the fact that the true nature of a problem lies in its context in

reality. Once you mix intent (life - in Alexander’s sense, as well as the standard

meaning) with logic (causation) you have context and pattern, pure logic is no

longer a sufficient means on which to create understanding. You need a language

of meanings not just the logic of a system of rules as the rules constitute only a

part, not the whole, of a living, creative system.

In essence, pattern is dynamic form, which explains why it expresses, through

language, as a process. But there is a minor difficulty in that it also forms

the basis of concept, and in this form there is always a danger of rigidity, of

meaning, that is, relationship, becoming frozen - definitional and formal, rather

than experiential. Those revolutions in the way that we see the world that need to

occur periodically are precisely the result of the need for a pattern of thought that

has become frozen into canon to be smashed, so that the essential dynamism of

thought, pattern language, can be released anew from established knowledge, to

become as fluid, and therefore as creative, as the reality it is meant to represent.

All of the static knowledge that we present to novice programmers is as creatively

barren as the parchment on which it resides. It can only be transformed into ideal

form in the mind, and knowledge in this form is pattern, not formal concept,

language-as-understanding, not language-as-communication. Only once it exists

in mind/pattern form is creativity, that is, programming, possible. Before they

can program we have to bridge this gap in our novices. Programming nous has to

become pattern language in their minds, rather than formal canonical knowledge.

But notice the difficulty we have in even talking about this situation. The

words in their static form have almost to be forced against their nature to express

dynamism because much of their informational content, the experiential knowl-

edge they stand for, is formally undefinable. We discussed earlier the basis of

this disjunction with the idea of a ‘file’ as against the dictionary definition of the

same idea. It is the difference between concept as a pattern of meaning derived



11.4. MORAL ORDER 357

from life, that is, mythos, and the restricted form of word as formally defined

literal meaning (logos). This is translation in the wrong direction. Most of what

we call learning is based on extending into more formal means the knowledge we

acquire from life. Unfortunately in the systemisation of learning into education,

the process, at some point, crosses into ritual, experience loses its dynamism,

becomes rote repetition. In that sense we are like Socrates’ friend who thinks he

has captured art in a book. We act as though we think that programming resides

in a programming language formalism.

So pattern language puts back into the mass education system as much of the

master-apprentice experience as is likely possible. Of course, a map is not the

same as having a living exponent of the skill on tap, so to speak, but it has to be

an improvement on the disjointed presentation that, necessarily, results from the

current pedagogies of skill acquisition, that is, giving students the knowledge in

programming language form and expecting the skill in using it to develop through

some minimal supervised practise.

11.4 Moral Order

During the development of this thesis we have referred several times to the moral

dimension of Alexander’s thinking, in particular, his reference to it in his address

to the object oriented software community in 1996. Having sidestepped the issue

on these occasions it is now important to face up to the implications of his advice

because the issue is central to his thinking, not just a peripheral consideration.

I think that insofar as patterns have become useful tools in the design

of software, it helps the task of programming in that way. It is a nice

neat format and that is fine. However, that is not all that pattern lan-

guages are supposed to do. The pattern language we began creating

in the 1970s had other essential features. First, it has a moral com-

ponent. Second, it has the aim of creating coherence, morphological

coherence in the things that are made with it. And third, it is gen-

erative: it allows people to create coherence, morally sound objects,

and encourages and enables this process because of its emphasis on

the created whole.

(Alexander 1999)

Unfortunately, there has been a radical narrowing of meaning in the modern

understanding of the word ‘moral’ that, I believe, has reduced the comprehension

and prevented the acceptance of Alexander’s ideas more widely. He is, I think,

using the idea in the sense of a sort of ‘moral order’, or as he terms it, ‘moral

coherence’, that flows from the conceptual order made apparent in our dealings

with the objective world. When he is talking about the generation of “coherence,

morally sound objects,” he is addressing the epistemic disjunction, the subjective-

objective gap, not the narrow conception of morality as a feature of personal or



358 CONCLUSION

group belief as it is understood today. As I read it, his thinking goes like this.

The natural order that we perceive all around us, as the objective basis of any

subjective understanding of the world, provides the only means by which we can

achieve the wholeness expressed in the ancient ideas of truth, beauty and virtue,

the “threefold order of the universe” (Watts 1982, p. 9). All three of these

ideas about the world (ideals) express a sort of holistic unity in the way that the

subjective awareness in each case matches the objective source of the awareness.

Thus truth is the fitting of form to context in terms of apprehending the real

facts involved, beauty is the same fitting of form to context in terms of aesthetic

value, and virtue the same in the narrow moral sense. But all three together

form a whole in that any one of these features is unlikely to occur alone, and

that it is in terms of this whole that the phrase ‘moral order’ has currency - that

which is most true to its relationship to reality (context) is also both beautiful

and virtuous.

It is this same sense of form fitting context that provides the source of Alexan-

der’s feelings about pattern language balancing all the forces involved in a partic-

ular scenario, the moral coherence that he talks about, understood in the widest

possible sense of ‘moral order’ rather than in the narrow modern sense. It’s

about an idea, an artefact of mind process, being true to its roots in the ‘real

world’, not just morally correct as in the “right thing to do.” This is why, at a

fundamental level, Alexander’s ideas are so difficult to grasp. We no longer live

in a Platonic world, as Alexander seems to, where form and context exist as a

dynamic living force, the “nature of order” itself. Having separated mind from

matter, we are left with no unifying principle, no means to evaluate fit between

form and context that is ‘objective’ in spirit, as we are mired in a system where

form (the human controllable part of the environment) and context (the part

not amenable to direct human control) can only be approached separately. The

relativism, even maybe the so-called “clash of civilizations”, of the modern era

derives from the radical separation involved. How else is it possible to explain the

widespread dominance of beliefs such as ‘beauty lies in the eyes of the beholder’,

‘knowledge is what one believes to be true’ or ‘the end justifies the means’. There

is no “moral coherence” here, no resonance of the objective in the subjective, no

‘order of nature’ in the separated aspects as there is in the unified whole.

But, if Alexander, and Plato, are right, then a wide-ranging reintegration of

all the aspects of humanity that have become separated over time, mind-body,

reason-feeling, logos-mythos, fact-value and so on, is urgently needed because the

humanity of a person can only be expressed by the whole, not by the parts sep-

arately. Just as a plane can only be a flying machine in terms of the systematic

organization of its separate parts, so too can humanity only be expressed holis-

tically. The implication of there existing, in an objective sense, a set of elements

(patterns) that are capable of generating all the complex order, not only in na-

ture, but in human affairs as well, is vast, beyond all comprehension almost. Yet

we now know that everywhere we look we see this same process at work - pattern
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language generating form.

The ‘moral order’ in this sense, then, is nothing more than the reflection of

the ‘natural order’ in human affairs, just as ‘conceptual order’ is its reflection

in the human mind. Just as an individual subjective conceptual structure built

on something other than the natural order of things is a delusion, so too is an

individual morality so based. Essentially, Alexander’s argument about pattern

language is that it is the means by which ‘natural order’ is translated into con-

ceptual and moral order rather than the disorder that results from untrammelled

subjectivism. There is, indeed, an important sense in which the three levels of

order, natural, conceptual and moral are the same - the objective sense - which

means that there are two core elements to Alexander’s thinking. Firstly he is

claiming that conceptual and moral order are generated by a system of rules,

and secondly he is claiming that the rules involved in the act of generation are

actually inherent in the objective world.

The fact that I’m claiming to put out here is that environments are

also generated by systems of rules. They do not have systems of rules

which sort of ”constrain” their creators. They are actually generated

by them. With the onset of computers, for the first time it has actually

been possible to study the effect of certain interacting rules. Suppose

you take the shape of a wave breaking, for example. You can ask,

“Do I understand what is happening?” So you write a set of rules -

an algorithm - which is supposed to depict the history of a wave. Then

you can run these rules through the computer and generate a pattern

of dots on a cathode ray tube. It might be no more than a dozen

rules, but if you keep going through those rules, over and over again,

in different combinations of sequences, and you are successful, you

will actually see this pattern of dots forming a breaking wave. Now

when we talk about things like the breaking of a wave we might be

up to a dozen rules. In the case of an organism, there are about fifty

thousand genes responsible for an incredible number of interactive

rules. In the case of environments, there are hundreds. This kind

of complexity cannot be accounted for by the kind of mathematics

[normally considered]. And indeed, it is only by studying the process

which consists of the interaction of the set of rules that you can begin

to generate that kind of complexity. So the fact that the environment

is created like this - generated like this - is a very remarkable thing.

It is miraculous and beautiful.

(Alexander quoted in (Grabow) 1983, pp. 48-9)

The important thing here is that the conceptual structure - the computer

simulation in this case - is built on the mathematical relations that exist in the

objective world, and that it is these relationships that generate the form, not any

individual or subjective factor. But even more startling is the implications of this

in terms of the expression of the subjective.
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Now, once we get into linguistic systems, and pattern languages specif-

ically, you not only have these very complex rules that generate things

but you also have the power of choice - so that you are free to make

something that has not been made before by allowing the system of

rules in your mind to do it. This is another step which goes further

than saying that, indeed, nature is produced by interacting rules. In

a linguistic system or in a pattern language you not only have very

complex sets of interacting rules but you have choice. You can say any

sentence you want to say at a particular moment in order to make a

response to something and, similarly, you can create something that is

appropriate to a particular environmental situation which was never

made before. But it is the structure of your rule system or language

that is enabling you to do this. And that same structure ultimately re-

sides in the finished product, although you have still made it and have

created a thing never before created in that specific framework. But

to realize that there is no opposition between the immense creative

power and the power of the rules - that is difficult to grasp.

(Alexander quoted in (Grabow) 1983, p. 49)

It is difficult to grasp, indeed! These two sources of power are the basis of

the long-running free-will - determinism debate, after all. But it follows from

the proposition that conceptual and moral order flows from ‘natural order’ that

the expression of free will, choice, is only rational insofar as it reflects objective

reality. I can choose to believe that I have some sort of supernatural power of

flight but if I try to express it by jumping from a 300 metre cliff, I will die. The

point here that the choices we make are generated by the objective status of our

existence, not just our subjective awareness. We are, after all, organisms that

were generated by nature, is it really so surprising that our consciousness is driven

by our relationship with reality? However, unlike the computer simulation of the

wave, the generative forces involved in linguistics and pattern languages are not

just reflections of rules that exist in reality they are inherent in reality.

In the case of linguistics and genetics, we are saying that the rules

actually exist. They are not just a conceptual model to explain what

is going on - they are in the real thing, although you have to dis-

cover them by inference. This is very important in the case of the

environment because what I am claiming to have discovered is that

there are rules operating in this same way in the environment. I am

not saying that this is a handy simulation. I am saying that these

rules are actually there, in people’s heads, and are responsible for the

way the environment gets its structure. ... Pattern languages are not

like [Chomsky’s] generative grammars. What they are like is the se-

mantic structure, the really interesting part of language and which

only a few people have begun to study. The structure which connects

words together - such as ‘fire” being connected to “burn,” “red,” and
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“passion” - is much more like the structure which connects patterns

together in a pattern language. So pattern languages are not so much

analogous to generative grammars as they are to the real heart struc-

ture of language which has hardly been described yet.

(Alexander quoted in (Grabow) 1983, p. 50)

It is the claim that it is the “real heart structure of language”, the semantic

connections that exist between concepts and which can only derive from experi-

ence of the ‘natural order’ of the universe4, that powers all creativity, comes as a

total shock to those of us who live in the modern era. It goes against everything

we believe about ourselves and our place in the overall scheme of things.

The idea that the structure comes from these languages rather than

from the creative brilliance of designers is initially repulsive. Archi-

tects imagine they are creating buildings and, by extension, towns or

parts of towns and that these entities are the products of the fertil-

ity of the imagination. To have a theory which claims that there are

these systems of rules and that we, by embodying these rules, pro-

duce particular versions of the structure implicit in the rules - but no

more than versions - and that it is really the implicit structure which

governs, is pretty much of a shock to the ego. Even lay people tend

to think that architects control the environment. The basic attitude

is that architects bring order into an otherwise chaotic situation - in-

stead of recognizing that the order comes through this system of rules

which, in some version or other, exists anyway. It’s the same difficulty

one has in understanding that a bird can be made from a set of rules.

People just won’t believe it.

(Alexander quoted in (Grabow) 1983, p. 46)

It is this element of the unbelievable, the mystical quality of the claims, that

expresses the sense of ‘moral order’ that Alexander, I believe, is using when he

talks about pattern language generating “coherence, morally sound objects.”

Because we experience conceptual, aesthetic and moral factors primarily as

feelings - truth discovery as excitement and elegance, aesthetic appreciation as

pleasure and the numinous, and virtue as righteousness and guilt or shame, for

example - we tend to overlook the objective factors that give rise to the feelings.

In the type of thinking that we call ‘cognition’, the connection between the real

world entity and the expression of it in our mind is centre stage, yet even so

we find it difficult to maintain a realistic relation between the two. How much

more difficult is it then to relate a feeling back to its causal roots in reality when

the fit between form and context to which we are reacting emotionally is not as

readily available to normal cognitive awareness? Yet the two apparently different

processes, the emotional reaction and the creative imagination, are aspects of

4‘Fire’ ‘burns’ and is ‘red’ in colour. ‘Passion’ feels, in some fashion, hot like ‘fire’, that is,

it seems to ‘burn.’ These are simple facts of everyday experience.
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the same system, mind, a system, moreover, that only makes sense insofar as it

informs us about some objective feature of our circumstance, illuminates context

in fact. Given this essential congruity in space, time and purpose, it is difficult

to accept that these features of thinking can be fundamentally different in spirit.

And it is this, I believe, that is the crux of Alexander’s point about ‘moral order’.

So Alexander’s claim for moral coherence is not a simple call for what pattern

practitioners do to be referred back to some narrow measure of what is ‘morally

correct’, it is central to how a pattern language actually works to generate the

Quality Without A Name, to enable people to live their lives to the full. It is a part

of the package not an external measuring stick or an optional add-on. Of course,

it could be argued that in a predominately technical field, such as programming,

these non-technical considerations have no place, but this is precisely the point

that Alexander makes in respect of his own field, that it is the total concentration

on the technical architectural details that has led to the contemporary blind alley

in building design - the excessive consideration given to the technical order of the

field results in ‘moral disorder’ instead of ‘moral order’ in terms of providing an

environment for community life. Here, we are simply making the same point in

regard to programming. The total reliance on the logical structure imposed by

the nature of the computer produces a similar result in programming and it is

not surprising that the ‘moral disorder’ manifests primarily as a misfit between

the way that the mind works and the programming task just as, in architecture,

the misfit presents at the interface between community life and the architectural

superstructure that is meant to support it. In programming it is only the fact that

the experience gained over time disguises the misfit that the field has advanced

as much as it has. Moreover, it might well be that much of the continuous

atmosphere of crisis in software engineering over the last few decades is also a

manifestation of the basic misalignment between mind and strict logic, and it

is only because of the modern narrow conception of what is ‘moral’ that the

connection with Alexander’s ideas concerning ‘moral order’ has been missed.

Any “problem in a context” is an indication of conceptual, and therefore, in

Alexander’s sense, moral confusion. Something about the human relationship

with the world, mind, is not fitting its context, not meshing well with that part

of the human environment that is not directly amenable to human action. The

answer is new form, form better fitted to the problematic context. In our field

the problem we face is the massive difficulty that most people have in learning

to program, and the context in this case, the part of the environment over which

we have little or no control, is the fundamental logical and ‘mechanical’ nature

of the machine (the technical aspect). The only way to approach this problem is

to construct new form, that is, to better fit the mind to the context. Mostly, in

computer science, we have expended the effort of the last 50 years in a wasteful,

and ultimately doomed, attempt to change the context, that is to modify the

nature of the machine, at least in how it presents to the programmer, leading

to the sort of blind alleys, the “multi-million-dollar mistakes” pointed to by Di-
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jkstra (Dijkstra 1982, pp. 62-5). Admittedly, some effort has been devoted to

reconstructing the form, how the mind approaches the machine, but, as it has

not been based on pattern language it too has failed to address the heart of the

matter - it has not tapped the generative power of objective order.

When Alexander exhorted us at OOPSLA in 1996 to take the moral dimension

of his work seriously, he could not, and indeed he said as much, be aware of the

particular manifestation of bad fit and moral confusion in our domain. Yet, it is, in

fact, exactly the same problem in both fields, his and ours - a basic misalignment

between human organism and mechanical order that results in ‘moral’ disorder. In

the clamour for technical progress, any sense of moral purpose, in both meanings

of that word, has been lost. And as he points out, without the language half of

his conception, the web of semantic connections between the patterns, there can

be no generation of “coherence,” no “morally sound” (whole) objects created.

We are left, therefore, to depend, as we always have depended in Computer

Science, on the ‘native’ creativity of the individual programmer, a dependence

that the experience of 5 decades in the field with novices demonstrates is entirely

unsatisfactory.

11.5 Epilogue

The essence of our argument is that there is a fundamental correspondence be-

tween programming as the design of an artefact for human purpose and biology

as the design of an organism for survival. Programming-as-design, like evolution-

as-design, is an informal process that happens to be implemented in a formal

symbolic system. In other words, evolution proceeds on the basis of patterns

of life experience, fitness, adaptation, and so on, NOT the formal programming

language of the genetic system that underlies the implementation of the ‘design’

exposed by the experience of life, the pattern process. In the end, meaning can

only be expressed at the informal level of design, not the actual coding of im-

plementation. The problem in programming, like that in life, is the fundamental

problem of ‘meaning’, the basic ‘epistemic cut’ between reality and its represen-

tation in a system that is attempting to ‘understand’ reality. It is pattern that

forms the language of meaning, not DNA molecules or electronic switches, which

is why this is a philosophical issue not one of communication. If the basis of

metaphysics is the question “why is the world the way it appears to be?”, then

the particular metaphysical problem we face is “why is programming so difficult

to learn?” Learning is the creation of meaning. It is the learner who crosses

the subjective-objective gap, who ‘understands’ (creates meaning). And if we

might be allowed to paraphrase Douglas Hofstadter, understanding is not a per-

sonal issue, it is a matter of having the proper representation of concepts in a

mind(Hofstadter 1985, p. 528), in other words, a pattern language.

The force of the pattern language idea is this recognition of the fundamental

process, the fitting of form to context, meaning, through design for function or
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purpose, and there are many other aspects of these issues that we would have liked

to pursue. Like, for example, the relationship between pattern language and the

almost mystical feel for motivating learning exhibited by those really great teach-

ers that we have all encountered on our way through life. As with the aesthetic

and moral dimensions of the pattern language idea that Alexander discusses, and

which we treat only in passing, we feel that greatness in teaching, indeed maybe

even greatness in general terms, is an aspect of Alexander’s “Quality Without

a Name” that derives from an intuitive grasp of the pattern process, where the

intuition demonstrated is a product of experience, not an ‘innate’ characteristic.



Appendix A

Example Patterns

This appendix contains 4 patterns that appear in the pattern languages used in

the experiment detailed in Chapter 10 and in the step through example in Chap-

ter 7. The first two, Ojects Everywhere and Director , are in the pattern

language for identifying the objects needed for a program (see Figure 6.4), and

Class-as-Blueprint and Action Method are part of the pattern language

for developing a class (see Figure 6.6). These patterns were adapted from various

sources, including David Riley, “The Object of Java” and the Pedagogical Pat-

tern site of Joe Bergin and Eugene Wallingford, for use in the first programming

course at Flinders University.

Objects Everywhere

Problem

You need to program a computer so that it performs a particular task. The task

comprises many possible scenarios, and the detailed behaviour depends on the

particular circumstances in a complex way.

Solution

Think of using the computer to construct a model of the way the task might be

performed as a real-world activity. Decompose the task so that you can think

of it as being carried out by separate interacting objects. Think of each of the

objects (identified by nouns in the task specification) as having a set of attributes

(properties) that represent its state, and a set of actions (behaviours) that define

the way it interacts with other objects. Every object that exists belongs to one

or more categories, that is, groups of objects with the same properties and be-

haviours. Thus a particular car is just one example (instance) of a category called

car. Java handles the concept of categories by means of the class mechanism, that

is, any object in java is an instance of a class just as any object in the real world

is an instance of a category. See Class.

365
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Related patterns

Clients & Servers suggests a way of thinking that helps to identify potential ob-

jects. Director recommends creating a single object that has overall responsibility

for other objects. Action Object shows how to create objects that respond to user

input. Class discusses the way that categories of objects are represented in Java.

Class-as-Blueprint shows how to define the behaviour of the objects.

Director

Problem

You are writing a program that will need lots of objects, all interacting with each

other. You need a way to get the program started and maintain overall control.

Solution

Design an object that will act as a director, creating other needed objects and

coordinating their interaction. Then you can start the program simply by creat-

ing a single instance of the director. The pattern is named after the director of a

stage play or film, who is responsible for choosing and hiring actors, telling them

what to do, and maintaining overall responsibility for what goes on.

Related patterns

Clients & Servers suggests a way of identifying and refining possible objects and

their roles. Director-as-Handler shows how to design a director to respond to

external events.

Class-as-Blueprint

Problem

You need to define the characteristics of the objects that will be used in running

a program. The program will need lots of different kinds of objects, and lots of

instances of each kind.

Solution

Organise the objects that will be needed for the program into groups of like kinds,

where objects in each group have the same attributes and behaviours. For each

group, define a class that will act as a blueprint from which you can create the

object instances. The class defines the attributes and methods that each object

of the class will have, and it provides constructors that tell how to construct new

instances of the class.

Related patterns
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Attribute Variable shows how to define object attributes, and Method shows how

to define object actions. Instance Constructor shows how to specify actions that

should occur then instances are created.

Method

Problem

You’re defining a class for constructing objects that have actions. Each object

created from the class will be able to perform the same set of actions, which

define the services that the objects provide to their clients. Sometimes there are

different ways to request an action, each distinguished by different action data.

Solution

Define each action using a method declaration. The method specifies both the

name for the action and the sequence of instructions to carry it out. If there

are multiple ways to request the action, use multiple method declarations with

the same name, each distinguished by its parameter signature. Using a method

declaration to define an action means that the algorithm (strategy) used by each

instance will be the same because the instruction sequence is the same for each.

However, the consequences of different instances performing the method will typ-

ically be different because each object typically has different attribute values, and

the effect of a particular instruction (or indeed which instruction to execute next)

often depends on the values of attributes.

Code Example

Problem:

You are writing a program to administer a printer which has several options.

Solution:

Each option will require a printing job to be handled differently so there will be

a separate method with different signatures for each option.

public class Printer {

. . .

public void print() {//code for plain printing}

public void print(String paperSize) {//code for paper size}

public void print(int copies) {//code for multiple copies}

. . .

}
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Every instance of class Printer will have copies of these methods. Calling a

method requires using its exact signature, i.e passing it the correct type of pa-

rameter as specified in the parameter list. So, for example, the methods defined

above would be called as follows:

Printer max = new Printer(); //construct an instance

max.print(); //call the method for plain printing

max.print(A4); //call the method for printing on A4paper

max.print(7); //call the method for printing 7 copies

Note how the actual value passed as a parameter in the method call matches

the type specified in the parameter list. Thus the first method call has no param-

eters (), the second is passed a String value (A4), and the third an int (7). The

method call is always related to the signature of its definition in this way. Some-

times you are required to work in reverse that is, you are given a method call, say:

max.print(A3, 4, Color.blue);

From this code you can tell that you need to write a method called print that

takes three parameters, the first being a String, the second an int, and the third

a Color object. This means that you can write the method specification using

the following signature:

public void print(String paperSize, int copies, Color c) {

//code for printing multiple copies to a specified

//paper size and colour

}

Related patterns

Action Sequence shows how behaviour is composed from primitive instruc-

tions. Elements of Style discuses the issue of distinguishing overloaded names

(such as multiple methods of the same name) based on parameter signatures.
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