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THESIS SUMMARY 

Despite the clinical benefits of modularity in total hip replacement (THR) implants, modular 

interfaces such as head-neck taper junction are susceptible to fretting wear and corrosion due to 

relative micro-motions at the interface and also the presence of corrosive body fluid. This fact 

induces a chain of host body responses that may ultimately result in revision surgery to retrieve the 

failed implant. Through large-scale implant retrieval studies, the damage sustained by the implants 

is assessed, and possible associations between several implant/patients factors and the 

extent/location of the damage are investigated. 

This PhD study aims to conduct the first large-scale retrieval study in Australia through exploring a 

database of 2100 operation records available at Royal Adelaide Hospital and a retrieval library of 

implants with approximately the same number of implants that had been retrieved since 1980s. The 

database was filtered at multiple occasions to identify implants suitable for this study.  

Visual scoring of damage at taper junctions is the sole method to quantify corrosion in large-scale 

retrieval studies. In this work, an intelligent image analysis-based method was developed and 

implemented that can objectively assess corrosion at the stem taper of retrieved hip implants, 

according to the popular Goldberg’s scoring method. A Support Vector Machine classifier was used 

that takes in vectors of global and local textural features and assigns scores to the corresponding 

images. Bayesian optimisation fine-tuned the hyperparameters of six binary learners of this 

classifier to minimise the cross-validation error and increase the accuracy level to 85%. 

Moreover, the spatial distribution and the severity of corrosion damage onto the surface of the 

metallic stem tapers were objectively explored. An ordinal logistic regression model was developed 

to find the odds of receiving a higher score at eight distinct zones of stem tapers. A method to find 

the order of damage severity across the eight zones was introduced based on an overall test of 

statistical significance. The findings showed that corrosion at the stem tapers occurred more 

commonly in the distal region in comparison with the proximal region. Also, the medial distal zone 

was found to possess the most severe corrosion damage among all the studied eight zones. 

In the last phase of the project, several multivariate analyses of patient and implant factors were 

carried out to identify the challenges regarding the causal-explanatory statistical modelling 

techniques that are currently used in the literature of retrieval studies. It was elaborated why this 

group of techniques are not suitable for looking at multiple confounding variables. Predictive 

analytics was recommended to be utilised in conjunction with the existing methods to enable 

clinicians to predict the likelihood of implants failure for prospective recipients. 
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Introduction 

This chapter provides an overview of various aspects of hip replacement devices ranging from 

medical to engineering. It elaborates on their postoperative complications and the existing 

approaches to mitigate them. 

Since this thesis is about conducting a retrieval study of failed hip replacement implants, it is 

essential to have a reasonable level of insight into the medical conditions that lead to hip 

replacement, the history of these prostheses, their constituent components and biomaterials, the 

potential postoperative complications, and the approaches to mitigate them. 

Joint Disease 

Joint diseases can be categorised into several groups. Two popular ones are known as Rheumatoid 

Arthritis (RA) and Osteoarthritis (OA). RA is a chronic systemic disease that affects connective 

tissues, muscle, tendons, and fibrous tissues along with joints. It is characterised by an overactive 

immune system and joint inflammation. However, OA is a typical joint condition that has 

degenerative characteristics. The joint deterioration most likely occurs owing to continuous 

stressing of articular cartilage. It encompasses knees, hips, fingers, and lower spine region. 

A study conducted by the U.S. Census Bureau in 2005 reported on the prevalence and most common 

causes of disability among adults in the U.S., which is listed in Table 1-1. This table is based on 

responses from an estimated 45.1 million persons (94% of total) reporting a disability. 

Table 1-1. Arthritis holds the first rank among the causes of disability in the U.S. 

Condition 
All Persons Men Women 

Estimated 

Population 
% Estimated 

Population 
% Estimated 

Population 
% 

Arthritis or Rheumatism 8,552 19 2,154 11.5 6,398 24.3 

Back or Spine Problems 7,589 16.8 3,158 16.9 4,431 16.8 

Heart Trouble 2,988 6.6 1,570 8.4 1,418 5.4 

Lung or Respiratory Problem 2,224 4.9 925 4.9 1,299 4.9 

Mental or Emotional Problem 2,203 4.9 982 5.2 1,222 4.6 

Diabetes 2,012 4.5 907 4.8 1,106 4.2 

In this table, arthritis holds the first rank among the main causes of disability in this country. Arthritis 

Foundation considers OA as the most common form of arthritis with 27 million people affected by 

it. The high prevalence of OA in the world and complicated nature of this disease have been among 
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the motivations for conducting this study. Figure 1-1 illustrates the impact of RA and OA on a bone 

joint. 

Figure 1-1. Schematic comparison between a normal and two diseased joint (from www.thefitindian.com) 

Osteoarthritis: A Snapshot 

Hip OA is characterised by mobility impairment and joint pain in which joints start to lose their 

elasticity and become stiff. As displayed in Figure 1-2, when cartilage weakens, tendons and 

ligaments may start to stretch and bones may rub against each other. Hence, joints lose their ability 

to act as shock absorbers any more.  

Figure 1-2. Impact of OA on hip joint (from www.preferredpaincenter.com/hip-pain.html) 

While the causes of this condition are not completely understood, it is believed that the following 

factors may contribute toward it. 

 increasing age

 being overweight

 congenital disorder (inherited defects in the cartilage)

 putting excessive stress on joints through activities that involve the hip

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]

http://www.thefitindian.com/
http://www.preferredpaincenter.com/hip-pain.html
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Unlike Rheumatoid Arthritis, OA is considered a silent disease. That is, only after the development 

of pronounced inflammations, symptoms of pain become noticeable. 

Prevalence and Incidence 

OA is the most prevalent form of arthritis in Australia. In 2011-12, the Australian Bureau of Statistics 

(ABS) reported 14.8% of Australians suffering from arthritis, which is equal to around 3.3M. More 

than half portion (55.9%) of this population had OA. 

ABS figures accentuate age and sex as the most prominent factors. While people aged 25 or below 

constituted only less than 1% of the patients, 52.1% falls into the category that was aged 75 or 

above. Also, women constituted 59.9% of patients in this category. 

It is also worthy of note that joint disease is not the only source that stops joints from functioning 

as trauma leads to that as well. 

Treatment 

No cure has been found for OA so far. Only a few treatments exist that help alleviate pain or restore 

motion. Yet, they cannot prevent, halt, or reverse OA progression. Among them, an increasingly 

popular approach is hip replacement (Figure 1-3). 

Figure 1-3. Replacement of femur head and acetabular by a prosthesis (from http://medicalpicturesinfo.com) 

 In traumatic situations, based on the definition provided by the Australian Orthopaedic Association 

National Joint Replacement Registry (AOANJRR), these systems are used when “a fracture just below 

the head (ball of the femur) where the head and neck have also become separated and out of 

position” is encountered (Figure 1-4). 

[Image removed due to copyright restriction]

http://medicalpicturesinfo.com/
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Figure 1-4. Fractured femur bone (from  www.hughston.com) 

AOANJRR has introduced three broad categories of hip replacement systems, namely primary total, 

primary partial, and revision hip replacements.  

In the first two groups, the common property is the replacement of the femur head by an artificial 

head. As partial hip replacement is outside the scope of this study; hence, only THR and revision 

groups are to be elaborated here. Within THRs, the scope narrows to total conventional systems 

since NJRR reported that resurfacing has become quite infrequent, and, in 2012, only 1.4% of all 

primary total hip replacements utilised resurfacing. Figure 1-5 compares schematically the 

difference between these two THR systems.  

Figure 1-5. Conventional vs resurfacing hip replacements (from www.toxicdoselaw.com) 

Due to its significantly lower popularity, total resurfacing and thrust plate systems are excluded from 

this study, and total hip replacements (THRs) is to refer to total conventional hip replacement 

systems from now on. 

Total Hip Replacements 

The utilisation of THRs dates back to 1960s. An orthopaedic surgeon, Sir John Charnley, who was 

working at Manchester Royal Infirmary established the modern THR by introducing his low friction 

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]

http://www.hughston.com/
http://www.toxicdoselaw.com/
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arthroplasty [1]. Figure 1-6 represents his design that consisted of a metal femoral stem, a 

polyethylene acetabulum, and acrylic bone cement. 

Figure 1-6. Sir. John Charnley and his THR design (from www.almuderis.com.au) 

Over time, the increasing number of successful operations resulted in the surgery techniques 

becoming standardised and the average age of recipients to drop. Currently, THRs are comprised of 

a head which fits into an artificial socket that replaces the acetabulum. The artificial socket is fixed 

into the pelvis. Also, there is a stem which is passed down inside the femur to hold the head in place 

(Figure 1-7). 

Figure 1-7. THR in position (from www.telegraph.co.uk) 

THRs have a vast variety in terms of their designs, materials, and brands in the market (Figure 1-8). 

Head and stem in THRs come with monoblock (one piece), and modular (separate) designs with the 

latter introduced more recently.  

Orthopaedic surgeons select THRs for patients while taking into account several patient and implant 

factors plus their experience to ensure achieving the best functionality with the lowest risk of 

postoperative complications. 

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]

http://www.almuderis.com.au/hip-surgery/hip-arthroplasty/141-information/history-of-hip-replacement
http://www.telegraph.co.uk/
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Figure 1-8. Which implant configuration serves a specific patient best? (from http://www.levinlaw.com) 

Modular THRs 

A prominent feature of THR systems is modularity which dates back to 1971 when Harris [2] 

introduced the first modular prosthesis to address what he claimed as features that may extend 

wear, increased stability, and preserving range of motion [3]. His modular system included a metal-

backed acetabular component with a high-density polyethylene core twisted into it. Figure 1-9 

displays this preliminary design, which was still monolithic where head and neck were attached as 

a single piece. 

Figure 1-9. The first modular design made by Harris [2] 

The inner, replaceable, and high-density polyethylene core had a higher thickness in comparison to 

that period’s existing designs which extended the longevity of the device. Also, for the first time, it 

became possible to replace the polyethylene component with a new one.  

Over the years, modular designs went through various changes in terms of their popularity and 

specifications. In the market, different variants of modular THRs can be found which may use various 

components such as screws, polyethylene inserts, attachable collars, distal and proximal sleeves.  

Figure 1-10 shows a modular prosthesis. In this design, the head is connected to the stem by a 

double-tapered neck (Figure 1-10). 

Along with offering plenty of merits, modular designs pose some concerns as well. The primary 

advantage of using modular systems is that the surgeon can assemble a custom prosthesis to 

accommodate the anatomical variations among patients more effectively. However, this capability 

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]

http://www.levinlaw.com/news/what-hip-implant-do-i-have-identifying-your-device
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may give rise to new and unpredicted risks. Therefore, the modularity benefits need to be carefully 

weighed up against their associated risks. 

Figure 1-10. A modular double-taper THR prosthesis [4] 

 Advantages 

A higher degree of freedom in customising THR designs warrants the following clinical benefits. 

 Choice of bearing surface after femoral fixation

 Intraoperative leg length adjustment via the head-neck taper

 Intraoperative femoral anteversion adjustment via neck-stem taper

 Simplified revision procedures due to having more component-targeted revisions

 Flexibility in terms of material selection

 Retaining well-fixed acetabular shells

 Reduced revision operation times

 Decreased inventory levels [5]

Disadvantages

Despite these clinical benefits, increasing the number of modular interfaces presents additional sites 

for failure. Recent research works support the hypothesis that various components of contemporary 

modular designs are susceptible to fretting and corrosion damage [6]. Solid and soluble wear debris 

[Image removed due to copyright restriction]
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and corrosion products released from bearing surfaces, taper joints, or cement stem interface elicit 

some untoward body’s responses (Figure 1-11) that will be discussed in section 1.4.1. 

Combinations of mechanical, electrochemical, geometrical, material, and chemical conditions have 

been identified as the underlying factors for such problems [7]. Section 1.4 will dig into corrosion 

mechanisms plus physical and chemical evaluation of the resulting deposits. 

Figure 1-11. Metal debris released from modular THRs has posed concerns (from www.yourlawyer.com) 

The complex nature of physical and chemical interactions between a host body and an implant may 

arise different complications within short or long periods after primary surgery. Based on the 

intensity of these postoperative complications and patients’ circumstances, a surgeon may proceed 

with replacing THRs totally or partially with a new one by doing revision surgery. 

THR systems are under constant pre-screening and review for any higher than expected rate of 

revision and postoperative complications. Over the past decades, there have been some THR 

systems which were recalled and withdrawn from the market. In July 2012, Stryker Orthopaedics 

(Mahwah, NJ) initiated a voluntary recall of two of their relatively new THR systems, ABG II and 

Rejuvenate (Figure 1-12). This recall was due to concerns raised by early implant failures. The issue 

was identified to be in association with corrosion at modular neck-stem interface [8].  

Figure 1-12. Rejuvenate & ABG II THRs recalled in July 2012 (from www.metalonmetalhipsettlement.com) 

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]

http://www.metalonmetalhipsettlement.com/
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Properties of biomaterials used in the fabrication of these prostheses underlie their success or 

failure. Therefore, the next section provides an overview of the biomaterials that are currently in 

use and compares them based on their applications and properties. 

Biomaterials 

In Oxford dictionary, biomaterial is defined as “A biological or synthetic substance which can be 

introduced into body tissue as part of an implanted medical device or used to replace an organ, 

bodily function, etc.” 

Biomaterials are used in a host of situations such as implants, extracorporeal medical devices, 

dermal and mucosal treatments and devices, drug delivery systems, sensors, and diagnostic assays. 

Hence, a wide variety of them exists based on three major goals that they can serve. The first goal 

is to assume the functional properties of a replaced tissue while provoking reasonable (or minimal) 

levels of deleterious response by a host body. The second goal is associated with biomaterials that 

are resorbable. Based on the situation at hand, they can be designed so that desirable degradation 

rates can be achieved. That is, the discrete interface between the surface of an implant and 

surrounding biological tissues could controllably degrade into soluble and nontoxic products by the 

host body. The third goal comprises biomaterials that support and stimulate the regeneration of 

functional tissues. They can be utilised to regenerate organs or tissues lost due to disease or trauma. 

The scope of this research project only encompasses the first goal. 

The biomaterials used in hip prostheses belong to a diverse range that includes metallic alloys, 

ceramics, polyethylene, composites, hydrogels, engineered natural materials, Pyrolytic Carbon. Due 

to the overall synthesised nature of them, they mostly serve the first group of the purposes above. 

The performance of THRs is a function of the properties of their biomaterials. The forthcoming sub-

sections introduces the metallic alloys, ceramics, and polyethylene that are used in their fabrication. 

The first level of interaction between biomaterials and host body is through their surface which 

comes in contact with biological species. Hence, the overall responses of the biological environment 

to biomaterials depend on their compositions, structures, and properties. The following sections 

discuss briefly these aspects of these three classes of biomaterials [9].  

http://www.oxforddictionaries.com/definition/english/biological#biological__3
http://www.oxforddictionaries.com/definition/english/synthetic#synthetic__3
http://www.oxforddictionaries.com/definition/english/introduce#introduce__3
http://www.oxforddictionaries.com/definition/english/tissue#tissue__4
http://www.oxforddictionaries.com/definition/english/implant#implant__3
http://www.oxforddictionaries.com/definition/english/medical#medical__3
http://www.oxforddictionaries.com/definition/english/device#device__3
http://www.oxforddictionaries.com/definition/english/replace#replace__3
http://www.oxforddictionaries.com/definition/english/organ#organ__3
http://www.oxforddictionaries.com/definition/english/bodily#bodily__3
http://www.oxforddictionaries.com/definition/english/function#function__3
http://www.oxforddictionaries.com/definition/english/etc.#etc.__3
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Metallic Biomaterials 

Today, a big portion of the medical device industry relies on implants with one or more metallic 

parts which has given them a special place in the biomaterials market [10]. Three types of metallic 

biomaterials, namely stainless steel, Co-based alloys, and Ti-based alloys will be discussed here. 

Some of their categories, as established by the American Society for Testing and Materials (ASTM), 

along with their desirable and unfavourable properties, are to be introduced in this section.  

Stainless steel is the first (since 1926) metallic alloy that was used in orthopaedic practice. Currently, 

the most popular form is 316L (ASTM F138 – ISO5832-1). “316” and “L” indicate austenitic and low 

Carbon content. Low concentration of carbon prevents carbide (Chromium-Carbon) accumulation 

at the grain boundaries. More recent stainless steel alloys such as 22-13-5 (ASTM F1314), Rex 734 

(Ortron 90 – ASTM F1586 – ISO 5832-9), and Biodur 108 (ASTM F2229) exhibit even better 

characteristics (e.g. more resistance to corrosion) [10]. Stainless steels are comprised of Iron and 

Carbon, and may typically possess other elements such as Chromium, Nickel, and Molybdenum. 

Different concentrations of these secondary elements may affect steels’ mechanical properties 

through alteration of their microstructures [11]. 

Presence of foreign particles known as inclusions may adversely affect steels behaviour against 

corrosion. Initial melting of alloys may give rise to the creation of oxide particles such as alumina or 

silicates. These particles may become trapped within the material during the subsequent 

processing. If located on the alloy’s surface, they may act as corrosion initiation sites. That justifies 

the importance of their processing history. ASTM has specified permissible ranges for the size and 

the number of inclusions [10].  

In general, stainless steels have lower strength and resistance to corrosion in comparison to the 

other implant alloys [10]. On the other hand, they promise desirable ductility (up to threefold 

elongation at fractures) in comparison to the other types of alloys [11]. 

Strengthening methods such as cold-working (strain hardening) via plastic deformations combined 

with annealing is used to reduce slip of dislocation within the crystal structure. Cold-working 

increases hardness, yield, ultimate tensile, and fatigue strength in comparison to the annealed state. 

However, it reduces the ductility which ordinarily does not raise major concern in metallic implants. 

After cold working metal, it is usually heated to a sufficiently higher temperature (around 750°C) 

where at grain boundaries, new grains (quite different to original ones) begin to form. They grow 
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rapidly until a new undistorted grain structure completely takes over the old distorted one 

(recrystallisation). Then, the metal is left to cool in the air where the old type of grains begins to 

reappear and grows till they meet their neighbours. The new grains look similar to the old ones, yet 

they have reduced sizes and are more uniform, which in turn change the properties of the steel. 

This process restores softness and ductility and reduces tensile strength. 

The recommended grain size for 316L is ASTM #6 or finer (higher) as smaller grain diameters may 

induce higher levels of yield stress. Grain size is mostly a function of manufacturing history 

(solidification conditions, cold working, annealing cycles, and recrystallisation) [10]. Manufacturing 

operations can elongate or distort grains which result in a change in mechanical properties of the 

metal. 

Cobalt-based alloys have been in use since the 1920s. At first, their application was limited to dental 

implants, yet through time, these alloys found applications in orthopaedic, spinal, and 

cardiovascular products [12]. Table 1-2 lists some popular series of this alloy that is used for such 

applications. Apart from their processing histories, F75 and F799 are identical in composition. They 

both contain 58-70% Cobalt and 26-30% Chromium. F90 and F562 possess slightly less Chromium 

and Cobalt as well as more Tungsten (F90) and Nickel (F562) [10].  

Relatively, large percentages (25-37%) of Nickel in F562 and F563 (Co-Ni-Cr-Mo-W-Fe) provide 

better corrosion resistance. However, the Nickel released from these alloys has raised concerns in 

association with toxicity and Adverse Local Tissue Reactions (ALTR). Also, due to their poor frictional 

(wear) properties, their application in articulations are not recommended  [11]. The main attribute 

of F75 is corrosion resistance in chloride environments due to its bulk and oxide (Cr2O3) 

compositions. Metallurgical processes used for this group of metallic biomaterials are 

predominantly casting (F75) and in some cases (F1537) wrought [10]. 

Cobalt-based metals used for fabrication of joint replacement components are the strongest, 

hardest, and most fatigue resistant alloys. However, finishing treatments such as coating must be 

executed with relative care to avoid losing these properties [11]. 

Table 1-2. Cobalt-based alloys used in implants [10] 

NAME Co-Cr-Mo Co-Cr-Ni-W Co-28Cr-6Mo Co-Ni-Cr-Mo 

SERIES ASTM F75 ASTM F90 ASTM F799 ASTM F562 
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Titanium-based alloys have been in use in the aviation industry since the mid-1940s. These alloys 

entered orthopaedic practice around the same time. Commercially pure Titanium (cpTi), Ti-6Al-4V 

(ASTM F136), and Ti-6Al-7Nb are currently in use for fabrication of implants. cpTi with 98-99.6% 

Titanium is commonly used in dental implants and porous coating (due to higher ductility) of joint 

components which are made of Ti-6Al-4V [11]. 

Alloys that are rich in Titanium are covered by TiO2 layer. This passive oxide film turns Ti-based alloys 

into superior corrosion resistant biomaterials.  Also, this group of biomaterials is relatively bioinert 

and do not illicit in-vivo allergenic responses. The other attractive feature is their moduli of elasticity 

which is closer to that of bone in comparison to other alloys. Table 1-3 summarises some mechanical 

properties of these three groups in comparison to their counterparts [10]. 

Efforts are being made to achieve closer Young moduli to that of bone in the next generations of Ti-

based biomaterials. For instance, Ti-Nb-Ta-Zr (E = 40 GPa) or Tu-35Nb-7Zr-5Ta (E = 55 GPa) are 

gaining attention owing to their desirable elastic properties. Furthermore, Nitinol (Nickel-Titanium 

Naval Ordnance Laboratory) which is an equiatomic alloy of Nickel and Titanium is a recent addition 

to this group. Commercial use of NiTi commenced in the mid-1990s due to its superelastic and shape 

memory properties. Yet, some drawbacks in association with Nickel ionic release and provoking 

allergenic responses at high concentration levels have restricted utilisation of this type of 

biomaterials [10]. 

Table 1-3. Mechanical properties of some Ti-based alloys used in orthopaedic applications

Alloy Microstructure Elastic Modulus 
(GPa) 

Yield Strength 
(MPa) 

Ultimate Tensile Strength 
(MPa) 

cp Ti α 105 692 785 

Ti-6Al-4V α/β 110 850-900 960-970

Ti-6Al-7Nb α/β 105 921 1024 

Steel 316L - 205-210 170-750 465-950

Co-Cr-Mo - 220-230 275-1585 600-1785

Bone - 10-40 - - 

Titanium-based alloys have the highest corrosion resistance relative to the other two groups. Some 

of their mechanical properties such as lower flexural rigidity can exceed those of stainless steel and 

Cobalt-based alloys. The proximity of their torsional and axial stiffness moduli to those of bone 

provides lower stress shielding. On the other side, their relative softness and poor wear and 
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frictional properties are considered as their major drawbacks. Ti-6Al-4V is more than 15% softer 

than Co-Cr-Mo and subsequently wear significantly more when deployed in articulation sites [11]. 

Ceramic Biomaterials 

The second class of biomaterials is Ceramics. Compounds such as Al2O3 (Alumina), SiC (Silicon 

Carbide), MgO (Magnesia), Fe3O4 (Magnetite), and ZrO (Zirconia) are usually brittle and corrosion-

resistant. They are inorganic non-metallic compositions used in a wide variety of medical 

applications including orthopaedic prostheses.  

For more than 30 years, alumina has been utilised in the fabrication of articulating surfaces of 

(usually young patients) joints. Properties such as excellent biocompatibility, high strength, and 

corrosion and wear resistance are among desirable characteristics of this nearly inert crystalline 

material. They usually have relatively low friction coefficients. Ageing and fatigue studies have 

shown that it is essential to produce alumina while meeting or exceeding the relevant quality 

assurance standards (i.e. ISO 6474) to achieve excellent resistance to subcritical crack growth and 

dynamic and impact fatigue. Also, very small grains (<4 µm) and narrow size distribution facilitate 

superb tribologic (friction and wear) properties (Ra <0.02 µm). These conditions have led to 10 times 

lower wear on alumina-alumina articulations in comparison to their metal-polyethylene 

counterparts. Currently, non-cemented cups and femoral balls made of alumina have generally good 

long-term results (1 failure in 2000 over ten years), especially in younger recipients [13]. As ceramic 

particulate debris is chemically stable, it causes no adverse biologic response at high concentrations 

[11]. 

Zirconia was also in use for fabrication of hip and knee articulations between 1985 and 2000 when 

due to a series of implant failures (fracture in 400 femoral heads) within a very short period it was 

withdrawn from the market. Yet not entirely, as zirconia toughened alumina put forward for 

orthopaedic components is expected to enhance strength and toughness properties over those of 

alumina. Toughening is a phase transformation process that increases the resistance to crack 

propagation [14]. 

Apart from the intrinsic properties of biomaterials, other properties such as surface characteristics 

are receiving an increasing level of attention about the biological performance of biomaterials. As it 

is the surface of an implant that interacts with the biological environment, it can strongly influence 
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the overall material-body response (Figure 1-13). This response can be quite detrimental to the 

overall performance of a prosthesis which gives rise to the notion of biocompatibility. 

Figure 1-13. Biomaterial surface and surrounding tissues[15] 

A point to bear in mind is the fact that the properties discussed here are not the sole determinant 

of successful performance of implants. That is, inadequate attention to them may doom an implant 

to failure; yet, there exist other considerations such as the mechanical design that may result in 

their failure as well [10]. 

Biocompatibility 

Williams [16] defined biocompatibility as “the ability of a material to perform with an appropriate 

host response in a specific application”. A device is considered biocompatible when it successfully 

fulfils its intended functionality [17]. 

A prosthesis and the biological environment of a host impact each other mutually. Biocompatibility 

is about the impact of the host body on the prosthesis material such as tissue reactions to bone 

cement, an uncemented titanium stem, or an acetabular cup. These are reactions to specific 

components of the device (biomaterials) [17]. One preliminary level of this response can take place 

postoperatively. The surgery leads to injury to surrounding tissues or organs which initiates the host 

defence system. The response of defence system can be in different forms, namely inflammatory, 

wound healing, and foreign-body responses. 

Unlike biological biomaterials, synthetic biomaterials are less likely to be attacked by the immune 

system. That arises from having immunologically recognisable biologic motifs on the tissue. Still, 

non-biologic biomaterials may induce other variants of biological responses such as the clotting of 

blood and foreign-body reaction that are non-specific and can impair their usefulness. The basis for 

such reactions is associated with the adsorption of adhesion proteins to the surface of biomaterials. 

[Image removed due to copyright restriction]
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Figure 1-14. Biocompatibility, toxicity, and allergic reactions are three major criteria for biomaterials (from 
http://biomatsci.blogspot.com.au) 

Figure 1-14 represents how they can be converted into biologically recognisable materials. Yet, the 

protein adsorption event which occurs on all implanted materials within seconds is out of the scope 

of this research along with tissue regeneration approach.  

Traditionally, the main focus in biomaterial science was on the synthesis, characterisation, and the 

material-host interaction. However, it has been witnessed that biomaterials that met the mandating 

standards still induce non-specific biological responses known as a foreign-body reaction [18]. 

The non-specific nature of these responses justifies the current studies being undertaken to work 

out some subjective measures which characterise them. Establishing quantitative linkage between 

human and implant factors sheds light on a better selection of implant systems for patients, and 

consequently lower risk of postoperative complications. 

The Mechanical and Electrochemical Behaviour of THRs 

As mentioned previously, a prosthesis and the corrosive environment of the host body impact each 

other mutually. Here, the impact of a prosthesis on a host body will be discussed. The mechanical 

and electrochemical properties of a device such as fatigue, corrosion resistance, and distribution of 

the stresses that are transferred to the bone are substantial to warrant a desirable performance. 

Unlike the preceding section which concerns biological reactions to specific components of a device 

(biomaterials), here, a device is evaluated in its entirety. This distinction can be seen in the US Food 

and Drug Administration (FDA) policy where only complete devices instead of materials receive 

approval [17]. 

It should be noted that an implant system is to replace a joint. Joints provide relative motion 

between body parts. For instance, hip joints are to connect femur bone to pelvis. The head of femur 

[Image removed due to copyright restriction]

http://biomatsci.blogspot.com.au/
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bone makes a ball-socket type of junction with the concave surface of the pelvis being known as 

acetabulum. Hence, as the implant system imitates the same mechanism, the bearing area formed 

between the head surface and the acetabular shell is to go through multiple loading-unloading 

cycles over time. The dynamic nature of these mechanical cycles can result in malfunctioning of the 

implant which appears as wear, fracture, corrosion, dislocation, impingement, and so on.  

Figure 1-15 displays wear on the surface of a hard-on-hard articulation site. Metal particles 

generated at other parts of the system may move to the bearing surface. Then, patch or stripe wear 

of the bearing surface may take place after subsequent loading cycles. 

Figure 1-15. Wear on articulation surfaces[19] 

Hence, the mechanical properties of the implants are critical to their performance since the relative 

motion between the components of the implant systems can give rise to issues which adversely 

affects both the implant and the nearby tissues. 

Postoperative Complications 

As explained previously, two major concerns exist about the performance of implant systems: (1) 

their biomaterials must not influence the surrounding host tissues and fluids adversely; (2) in return, 

they are not expected to sustain damage from the surrounding tissues and fluids [11]. These systems 

are operating within an aqueous medium that contains diverse cations (e.g. Na+, K+, Ca2+, Mg2+), 

anions (chloride, phosphate, and bicarbonate ions), organic substances (e.g. proteins and lipids), 

and dissolved oxygen (in venous blood approximately a quarter of that in air) [20]. Over time, either 

the system or the surrounding tissues may sustain such serious damage that leaves the orthopaedic 

surgeon/s no choice but to redo the surgery. More information about these two concerns is 

provided in sections 1.4.1 and 1.4.2. 

[Image removed due to copyright restriction]
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Adverse Host Body Reactions 

Over time, failure of an implant system may elicit a range of host body responses which can be 

categorised under the general term of adverse local tissue reaction (ALTR) [20]. After reviewing the 

current concepts in biological reactivity to metal wear particles, ions and corrosion products, Billi et 

al. [21] maintained that the mechanisms through which ALTR is induced are still unclear. They 

maintained the physiochemical properties of these by-products play a significant role in governing 

their cellular uptake and the succeeding intercellular fate. 

 Aseptic Lymphocyte-dominated Vasculitis-Associated Lesions (ALVALs)

 Osteolysis (bone loss) due to particles wearing off the implant surface and releasing into hip
joint and surrounding tissues

 Periprosthetic fracture, fractures around joint replacement prostheses

 Hypersensitivity

 Pseudotumor formation owing to increased levels of metal ions

 Metallosis due to deposition and build-up of metal debris in the soft tissues

 Inflammation that reduces blood pH from about 7.4 to 4 or 5

Figure 1-16. Periprosthetic fracture at different areas of femur bone (left) (from www.orthointerview.com)  
the surrounding black tissue stemmed from implant wear and particle release (right)[22]  

There are various mechanisms in use to monitor and identify ALTR. Among them, ions concentration 

in blood plasma and extracellular fluid is a popular method. Each type of ion has a permissible range 

of concentration. Consistent monitoring of their levels in THR recipients help identify problems at 

an early stage. Research works have endeavoured to discern possible correlations between ion 

levels and THR damage. 

[Image removed due to copyright restriction]
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 evaluated Chromium and Cobalt ion levels in a cohort of asymptomatic patients (n=16) who had 

implanted ABG II modular hip (Stryker) between July 2007 and November 2011. It was to determine 

whether the increase in ion levels had been originating from corrosion at the modular neck-stem 

interface. In doing so, they selected patients who had received either a ceramic-on-ceramic or a 

ceramic-on-polyethylene interface to remove any chance of ion generation from the articulating 

interfaces. 

The result of their study showed higher levels of serum Cobalt than Chromium. They hypothesised 

it could be due to the rapid transport of Co from joint and elimination in the urine. Whereas 

Chromium is stored in the tissues and eliminated gradually. Hence, they concluded that the rise of 

ion in serum could only be an ALTR predictor with moderate specificity and sensitivity. However, 

they believed their sample size was too small for such an analysis, and further study is required to 

confirm this result.  

Molloy et al. [23] measured serum Cobalt and Chromium levels in 15 patients. They found a poor 

correlation between serum metal ion levels and ALTR, and no patient had undergone revision only 

due to high serum metal ion levels. 

Impaired THR Systems 

Different components of a THR system may sustain various forms of damage. At taper junctions that 

is the interest of this research, the damage modes are as follows. 

 Fretting wear, a contact damage process resulting from micro-motions of interfacing metals
that usually happens in modular junctions

 Corrosion, chemical reaction with the biological environment that results in the formation
of compounds such as oxides or hydrated oxides on the surface exposed to air, water, or
electrolyte

Figure 1-17. Corrosion on metallic implant surface through random attacks by immune system cells[8] 

[Image removed due to copyright restriction]
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It should be noted though that these two modes of damage are not always mutually exclusive. These 

two damage modes may integrate into a destructive process known as mechanically assisted crevice 

corrosion which will be described shortly. This research looks into the surface damage and does not 

investigate the resultant surrounding tissue damage. 

There are other types of damage involved which are either not relatively significant or within the 

scope of this project. Still, they are not independent of each other. That is, one may contribute to 

the initiation or magnification of the other/s through some chain reactions. For instance, fretting 

may wear off or fracture the oxide layer on a metal that triggers corrosion. Through this process, 

the debris released from the implant can be in the form of metal ions (Co2+, Cr3+, Mo2+, and Ti2+), 

fractured oxide, or metallic particulate. These particles may initiate Osteolysis (Figure 1-18) where 

Osteoclasts (cells responsible for the resorption of the bone matrix during bone remodelling) are 

activated. Since Osteoclasts are abnormally activated, they make bones too weak to withstand the 

loads which in turn results in a higher likelihood of fractures and loosening of the femoral stem. 

Also, the release of metal particles may give rise to Metallosis. 

Figure 1-18. Metal debris release is the underlying factor for further complications (from http://www.ltu.se) 

This type of collaboration between fretting and corrosion is known as mechanically assisted 

corrosion. Still, there are other types of corrosion involved in THRs which will be discussed as well.  

Fretting 

ASM (American Society for Metals) handbook on fretting and fracture defined fretting as “A special 

wear process that occurs at the contact area between two materials that are under load and subject 

to minute relative motion by vibration or some other force”. 

[Image removed due to copyright restriction]
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In THRs, the male taper of necks fits into the female taper of heads. In THR systems with higher 

modularity, neck and stem can be separated as well. The neck in this type of systems has double 

tapers which fit into the female taper of the head and the stem. 

At taper junctions, no relative motion between tapers is meant to occur, but in conditions of poor 

lubrication in interfacing metals, high friction moments can trigger fretting. Also, the constant 

loading-unloading cycles between bearing surfaces of articulations may fracture and wear off 

segments of the passive oxide film which initiates corrosion. 

Hence, fretting is directly or indirectly involved in biomaterial damage by removing material from 

the surface or triggering other types of damage respectively. Figure 1-19 displays an SEM image 

taken of a CoCrMo head taper. The head has been in contact with a threaded trunnion where due 

to fretting, horizontal bands of material loss appeared on the surface. 

Figure 1-19. Fretting altered surface characteristics of a CoCrMo head taper[7] 

Among the existing biomaterials, Cobalt-based alloys exhibit higher resistance to fretting in 

comparison to Titanium-based alloys owing to its higher modulus of elasticity (210 vs 114 GPa) [24]. 

Fretting is visually associated with perpendicular deformations to the original machining marks [25].  

considered fretting as “scratching perpendicular to machining lines on the taper, and/or wearing 

away of the machining lines”.  described fretting as small scars running perpendicular to the 

circumferential machine lines of the screw thread. 

[Image removed due to copyright restriction]
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 Corrosion 

Corrosion, in general, is an electrochemical process where the gradual destruction of materials 

occurs through some chain chemical reactions which induce material deposition or loss [26]. 

This phenomenon degrades different biomaterials distinctively. It may work locally and evolve into 

pitting and then cracks, or it may affect arbitrary regions on the surface of prostheses. In metallic 

biomaterials, degradation is more significant compared to ceramics. In ceramics, corrosion is not 

directly involved in failure because crack propagation is the main mechanism. Accumulation of 

corrosive molecules like water at the crack tip and their reactions with the ceramic molecules can 

lead to rupture of chemical bonds in ceramics [27]. 

The unique combination of strength and resistance to wear and corrosion has been desirable 

enough to rank metallic biomaterials as the most popular class of biomaterials. They have been 

chosen for orthopaedic implants because of their relatively high load-bearing capacity, low cost, and 

low wear rates. However, their electrochemical behaviour in the body may pose unique and specific 

concerns [28]. 

Metallic biomaterials have a high driving force to corrode, and it is their oxide film that acts as a 

kinetic barrier to corrosion. This micrometre thick film (passive layer) is dense and adheres strongly 

to the underlying metallic substrate [10]. However, highly repeated contact loading situations at 

taper-locked or clamped implant interfaces increase the likelihood of surface fretting wear which 

disrupts the oxide layer [27]. Disruption of the passive layer exposes the underlying metal to body 

fluids which sets in motion highly energetic reduction-oxidation (redox) reactions. As a result, 

positive ions are generated in the solution (ionic dissolution) and also it promptly induces 

establishing a new oxide film. This recurring passivation process is illustrated in Figure 1-20 and is 

known as mechanically assisted crevice corrosion. 

Figure 1-20. Mechanically assisted corrosion at articulation surfaces & taper junctions are dominant[29] 

[Image removed due to copyright restriction]
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The dynamic nature of loadings leads to iterative passivations. Gradually, as the recurring redox 

reactions consume the ambient oxygen molecules, the level of negative ions starts to drop while 

positive ions such as H+ and M+ accumulate in the solution and makes the local net charge positive. 

To balance the charge in the solution, other negative ions (usually Cl-) flow to the scene and alter 

the solution chemistry and consequently, behaviour.  

For starters, the subsequent oxide layers will be less resistant to corrosion attacks. Also, H+ and Cl- 

ions start to combine and form HCl (Hydrochloric acid), which will increase the solution’s 

acidification (pH level drops to below 5). These two factors intensify the corrosion damage locally, 

which lead to pitting and crevice types of corrosion which are autocatalytic in nature. 

As mentioned in section 1.3.1, modular THRs have shown vulnerability to corrosion. Twisting the 

male taper of the neck into the female taper of the head forms a crevice space between the two 

opposing surfaces. Through time, the nearby body fluids leak into the crevice and form a crack-like 

fluid-filled environment. Repassivation within this environment alters chemical properties of the 

trapped solution more significantly which paves the road for crevice corrosion with a relatively high 

intensity [30]. 

Kop et al. [25] defined corrosion visually as surface irregularity with associated black debris, pits, 

and etch marks. Higgs et al. [6] considered corrosion as “white haziness (indicative of inter-granular 

crevice corrosion), discolouration, and/or blackened debris”. Hothi et al. [31] considered corrosion 

regions as those with discolouration or dullness or with black debris or signs of pitting or etching.  

Mitigating the Complications 

Introduction of new THR systems in the market, the high cost of these surgeries, long surgery 

(upwards of 12 months) waiting times (if not self-insured), and complex nature of postoperative 

complications raised by non-specific nature of body reactions call for the vigilant selection of 

patient-specific implant systems with desirable functionalities. These reasons have been 

motivations for scientists, industrials or clinicians to become engaged with investigating the possible 

failure mechanisms and monitoring the performance of THRs in the market. 

Mitigating the issues associated with THR undesirable postoperative responses can be achieved by 

undertaking different types of studies. Researchers with different areas of expertise (e.g. 
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biomaterial science, mechanical engineering, and medical science) endeavour to identify and 

formulate solutions that lessen the postoperative complications. 

Reviewing the literature revealed that the existing studies concerning failure mechanisms of THRs 

can be categorised into three major groups of retrieval studies, in-vitro laboratory tests, and 

computational modelling. 

Laboratory In-Vitro Experiments 

Apart from retrieval studies that investigate damaged implants to identify root cause/s of THR 

failure, there are two other methodologies that serve the same purpose, yet by using different 

approaches. 

In this type of study, biomaterials behaviours associated with their mechanical, electrochemical, 

geometrical, and material characteristics in various solution conditions can be examined in a 

laboratory environment. Unlike retrieval studies where biomaterials are assessed in-vivo, this in-

vitro study simulates in-vivo circumstances by deploying testing set-ups.  

Affatato et al. [32] have divided these set-ups into two categories, namely wear screening devices 

and wear joint devices. The first category is to provide information exclusively on the intrinsic 

features of biomaterials. The biomaterials can be formed into pins, disks, rings, or cylinders (Figure 

1-21).

Figure 1-21. Wear screening devices are used to assess intrinsic properties of biomaterials[32] 

Hence, they do not represent the geometry of prostheses components accurately which results in 

reproducing approximate wear mechanisms that occur in-vivo. On the other side, they can handle 

relatively large numbers of samples within a short time. 

[Image removed due to copyright restriction]
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Figure 1-22 illustrates a wear joint test set-up based on ISO 7206-4 standard to obtain the load levels 

required as well as the minimum number of cycles without fracture of the implant [33]. Here, real 

prostheses can be tested in an environment which resembles in-vivo circumstances fairly well. 

These set-ups can accommodate complex and dynamic test conditions which has made them a 

prerequisite for introducing new design and materials combinations before their mass production 

[32]. 

One example of these set-ups is the one introduced by  to investigate fretting corrosion in metal-

on-metal biomaterials. They simulated this type of THR by utilising a disk and pin pair with the pin 

located above the disk in the set-up. 

The top and bottom metal samples were cone-shaped flat pin and a flat circular disk that were 

brought into direct contact, loaded, and moved in a small cyclic fashion using piezoelectric 

actuators. The interface was immersed in a phosphate-buffered saline solution. 

Figure 1-22. The fatigue test according to ISO 7206-4 simulates the dynamic loading of a hip stem (from 
www.endolab.org/implant-testing.asp) 

High compressive forces (up to 3.5 kN) with a motion range of up to 140 µm were applied by an 

actuator to move a linear X-Y stage on which the sample chamber (connected to the disk) was rigidly 

fixed. A similar configuration was used to move a linear Z-stage (creating vertical motion) that was 

connected to the pin. 

During fretting testing, parameters such as normal force, tangential interfacial force, and other 

moments generated about the interface were tracked by a load cell. Also, a Differential Variable 

Reluctance Transducer (DVRT) was deployed to characterise the effect of load on the actual motion 

[Image removed due to copyright restriction]
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achieved at the interface. The DVRT’s role was to measure the pin-disk displacement at the closest 

site possible near the interface. 

The measurements were used in some equations to derive other variables that relate mechanical 

factors to fretting and corrosion. Yet, these equations are subject to some assumptions that simplify 

the system or phenomenon they are addressing. These assumptions eliminate processes with 

negligible impact on the system.  

So, these equations can represent the behaviour of the system partially. For instance, the 

mechanical energy dissipated in a single cycle of fretting is calculated by assuming no partial or full 

sticking taking place, and only full slip motion was accounted for. However, in the past, it has been 

established that titanium alloy when coupled by itself can reveal an adhesive galling nature which 

results in adhesion between surfaces when fretting takes place. 

In the end, the authors have recommended for further development of the model to accommodate 

voltage, crevice, and solution changes to achieve higher accuracy and realistic outputs. 

Computational Modelling (Simulation) 

Simulations are based on developing 3D models of THRs and subjecting them to loads in different 

magnitudes, directions, and frequencies. Mixed alloy material combinations can be created by 

assigning mechanical properties associated with commercial biomaterials currently used in the 

fabrication of THRs.  

Finite Element Analysis (FEA) as a popular technique allows for assessing the performance of THRs 

in multitudes of circumstances in terms of geometry, material combination, and load. For instance, 

Dyrkacz et al. [34] used FEA to discern parameters involved in micro-motion at the head-neck taper 

interface of modular hip prostheses. Through FEA analysis, head size, assembly force, and taper size 

were identified with profound influencing on micro-motion.  
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Figure 1-23. The von Mises stress (MPa) of the femoral head and neck after applying 3300N of compressive 
force [34] 

Figure 1-23 displays their FEA simulation which demonstrates how an inclined compressive force 

gives rise to von Mises stress in the femoral head and neck. FEA facilitates testing the performance 

of components of THRs with different geometrical and mechanical properties in any desirable 

configuration with relatively lower costs, risks, and time.  

FEA has some advantages over the other methods. Retrieval studies are only limited to the available 

explants with arbitrary loading conditions, implantation times, manufacturing processes, and 

tolerance levels. This fact makes it difficult to isolate factors influencing corrosion damage at any 

taper or articulation interface. However, FEA is quite flexible in that regard. It enables creating 

different models and comparing the effects of the involved parameters on the damage individually. 

Despite the analysis flexibility offered by 3D models, generating wear and corrosion processes in a 

specific material requires spending a long amount of time to encode, as the software does not 

provide pre-existing models for them. 

In addition, there are some discrepancies between dimensions of a 3D model and its corresponding 

component which lead to obtaining models that may not represent the true system accurately. 

Lowering such errors mandating utilisation of 3D profiling technology with relatively high 

resolutions and accuracy. These technologies can be quite expensive and not viable for large 

quantities of components though. 

In order to measure simulated damage, simulators measure wear after subjecting a prosthesis 

component to a high number of gait cycles (physiological profiles) which approximates the cycles a 

prosthesis undergo over time in the body. 

[Image removed due to copyright restriction]
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 maintained that gait activities do not comprehensively represent the normal activities of a person. 

Other activities, especially the ones associated with younger generations and sport, are not being 

accommodated. Besides, they stated the number of considered cycles only represent a few years of 

life. Hence, they concluded assessing wear after the components have been used in service might 

offer more accurate outcomes. 

To summarise, the assumption made while taking on computation modelling or in-vitro studies can 

give rise to imprecision and inaccuracy of outcomes. However, as retrieval studies examine the 

actual damage and performance of THRs under working conditions in the host body, outcomes that 

are more realistic can be offered by them. Therefore, this research project takes on retrieval study 

as the methodology. 

Retrieval Studies 

As the name suggests, this type of research involves analysing the damage sustained by retrieved 

THRs along with the damage sustained by the host body as the result of the failure. 

Investigating the postoperative complications sustained by the host body is the subject of clinical 

studies of retrieved implants that are usually undertaken by clinicians. Through primary and 

retrieval surgeries, they may encounter various host body reactions to THR systems. Sharing these 

observations helps patients, surgeons, and even manufacturers learn about the existing and 

potential defects and consequently amend the THR systems in the future to mitigate these 

unfavourable situations (Figure 1-24).  

Figure 1-24. THRs are retrieved following the failure and adverse body reactions (from http://istaonline.org) 

Alongside conducting clinical investigations, examining retrieved implants and investigating the type 

and extent of damage they have sustained serve the same goal. As mentioned before, the scope of 

this research is confined to just targeting the damage on THR explants.  

[Image removed due to copyright restriction]
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After obtaining appropriate visuals of damaged areas on an implant, observers can choose the 

suitable areas to assess the damage quantitatively or (semi)qualitatively. Quantifying the damage 

can be divided into two groups. The first group quantitatively assesses the damage and delves into 

its mechanism by using advanced analytical techniques that rely on complex apparatus. They can be 

split into two categories of surface profilometry and spectroscopic techniques. There exists contact 

surface profilometry (roundness measuring machine, gravimetric wear assessment, and coordinate 

measuring machine) and non-contact surface profilometry (e.g. RedLux) that quantifies damage as 

material loss or deposit on the surface. Also, techniques such as X-ray Photoelectron Spectroscopy 

and Energy Dispersive X-ray can be used to quantify the elements or compounds that sits in the 

corroded zones at the surface. 

Owing to the high precision of measurements that are carried out by this group, they may demand 

considerable time and financial resources. Therefore, the failure of only a small (below 10) sample 

size can be investigated by these techniques. On the other hand, the second group is not concerned 

with details of failure mechanisms and utilises cost-effective methods to (semi)qualitatively quantify 

the damage which makes conducting large-scale retrieval studies feasible. 

(semi)Qualitative assessment is a subjective analysis where the output is an ordinal rather than a 

ratio metric of the damage. This type of analysis assigns scores (levels) to the damage by visual 

inspection based on several existing visual criteria. Therefore, this approach is also known as visual 

scoring. In retrieval studies of modular implants, several scoring methods have been developed to 

quantify fretting or corrosion damage at various junctions and components of hip replacement 

devices. Each method may score the component of interest holistically or assign an individual score 

to various predefined zones on the surface. Also, fretting and corrosion may be scored separately 

or together. 

Figure 1-25. Visual assessment of corrosion scores the damage [35] 

[Image removed due to copyright restriction]
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A common peer-reviewed method to implement this approach at taper junctions is based on visual 

scoring (Figure 1-25) of the damage that was introduced in 2002 by Goldberg et al. [24]. It is a four-

level scoring method based on some predefined visual definitions in terms of the shape, colour, and 

reflectivity of the damaged areas. Table 1-4 summarises the visual criteria to distinguish between 

the damage levels and rank them. As of date, this paper has been cited 160 times, and this scoring 

method or its modified versions have been used by many large-scale retrieval studies [6, 7, 23-25, 

30, 31, 36-39]. 

Table 1-4. The scoring system developed by Gilbert is used to visually rank corrosion and fretting damage 
[24]

 Score Corrosion Criteria Fretting Criteria 

1 (None) No Visible Corrosion No Visible Fretting 

2 (Mild) <30% Surface Discoloured / Dull 
Band(S) for Fretting Scars Across ≤3 
Machine Lines 

3 (Moderate) 
>30% Surface Discoloured / Dull or
<10% Containing Black Debris, Pits
or Etch Marks

Band(S) Involving >3 Machine Lines on 
Taper Surface 

4 (Severe) 
>10% of Surface Containing Black
Debris, Pits, or Etch Marks

Several Bands of Fretting Scars Involving 
Several Machine Lines or Flattened Areas 
With Nearby Fretting Scars 

This research does not utilise the first group of analyses since it is a large-scale retrieval study. It 

finds the linkage between the observed damage on explants and the factors that may have 

contributed toward the failure. These factors stem from the recipients (retrospective clinical) or the 

design of implants as summarised by Table 1-5. The information obtained via this methodology can 

be used to predict or pre-screen in-vivo or in-vitro performance of implant systems [17]. 

Table 1-5. Some patient and implant factors that can be correlated with the fretting and corrosion damage 

Patient Factors Implant Factors 

Age Sex Manufacturer Assembly Conditions 

BMI 
Serum Ion 

Concentration 
Component's Material Component's Size 

Implantation Time Reason For Revision Surface Topography Wear Rate 

In the next chapter, a comprehensive literature review of the large-scale retrieval studies is 

conducted to learn about the scoring methods, the influence of patient and implant properties on 

fretting and corrosion, and most importantly the common limitations and concerns that they faced. 
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Summary 

This chapter endeavoured to provide an overview of the various aspects of hip replacement 

prostheses and analytical methods to evaluate their in-vivo and in-vitro performance. 

The next chapter will elaborate on the large-scale retrieval studies that have conducted so far to 

work out the existing methodologies to quantify fretting or corrosion and also find the associations 

between the damage and patient/implant properties.  
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2 LITERATURE REVIEW 

LITERATURE REVIEW 
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33 

Introduction 

This chapter reviews the literature of large-scale retrieval studies to investigate the existing 

methods, the findings, and any potential gap in the literature. To address the identified gaps and 

concerns in this context, other spheres of literature will be explored to learn how some particular 

issues have been addressed within other contexts which have encountered similar challenges. Next, 

the situation that is faced in this particular context is compared with those of the other contexts to 

highlight the potential limitations that need to be addressed in the methodology. 

Large-Scale Retrieval Studies 

Since the early 1990s [40, 41], several large-scale retrieval studies have been conducted to 

investigate the potential associations between the failure of hip replacement implants and 

implant/patient properties. They used specific implant properties, patient information, sample size, 

visual scoring method, and statistical analyses for their investigations. 

Goldberg et al. [24] analysed 231 modular hip explants to find out how factors such as material 

combination, metallurgic condition, flexural rigidity, head and neck moment arm, neck length, and 

implantation time may affect in-vivo corrosion and fretting of modular taper surfaces. Optical 

microscopy with magnifications between 3.5X to 40X (based on the required detail level) was 

utilised for inspecting and scoring. One researcher did the inspection and scoring for consistency 

reasons. He divided the necks and the heads into four (medial, lateral, posterior, and anterior) 

quadrants which were further split into two (distal and proximal) zones, and scored them for fretting 

and corrosion. The scores for each component were combined so that single global scores for 

fretting and corrosion, the most representative of the damage over an entire component, could be 

obtained. 

Table 2-1. The comparative impact of the investigated factors on the observed damage 

Observed 
Damage 

Fretting Corrosion Localised 
Damage 

Fretting Corrosion 
Neck * * Neck * * 
Head * ** Head * *** 

Longer 
Implantation 
Time

Moment 
Arm 

Neck - up Neck - *** 
Head down up Head *** *** 

Higher 
Flexural 
Rigidity

Neck 
Length 

Neck - down Neck - - 
Head down down Head - - 

Material 
Combination 

Regional 
Damage 

Mixed ** ** Proximal * * 
Similar * * Distal * *** 
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Corrosion scores were higher at the heads with respect to the necks. The scores observed to be 

correlated. Fretting scores of the heads were higher than those of the necks. The two scores 

behaved similarly. Corrosion and fretting of mixed alloy samples (both head and neck) were found 

to be significantly higher than those of the similar alloys. The couples (head and neck) with longer 

implantation times had higher corrosion scores. While neck fretting seemed to be unaffected by 

implantation time, head fretting decreased with longer implantation times which is due to etching 

of fretting scars [24]. The correlations identified between the observed damage and implant factors 

at head-neck junction are listed in Table 2-1. 

Since publishing this scoring method, there has been a fair number of studies that utilised this 

scoring model to characterise fretting or corrosion at head-neck and other modular or articulation 

interfaces. Many of these works adopted the same model, and some have introduced an entirely 

new or a modified version of Goldberg’s scoring method which more or less stratify the degree of 

damage.  

This fact was the reason for a group of American researchers to introduce a modified version of the 

original method with the collaboration of the senior author of that work 11 years later. Higgs et al. 

[42] conducted a retrieval study of 76 explants. The examined components were comprised of 76

heads. 31 stems (22 modular necks), 10 modular acetabular liners, and 5 corresponding acetabular 

shells. The interfacing components were fabricated by the same manufacturer (no mixed & matched 

sets) [42]. This modified scoring method is summarised in Table 2-2.  

Table 2-2. Modified version of fretting and corrosion criteria that were established in 2002 [42] 

Damage Score Criteria 

Minimal 1 Fretting on <10% surface and no corrosion damage 

Mild 2 
Fretting on >10% surface and/or corrosion attack confined to one or more small 
areas 

Moderate 3 
Fretting on >30% surface and/or aggressive local corrosion attack with corrosion 
debris 

Severe 4 
Fretting over majority (>50%) of mating surface with severe corrosion attack and 
abundant corrosion debris 

Fretting and corrosion were visually identified based on the definitions given by literature. Unlike 

the original method in which 2 and 4 regions were individually scored, here, each interface was 

holistically assigned a single score. Each score represents both fretting and corrosion damage due 

to the synergistic nature of them. Table 2-3 lists the outcomes of the scoring and association 

between the implants and patient properties [42]. 
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Table 2-3. Summary of the qualitative analysis 

Damage vs. 
Implantation 
Time 

head tapers modular stems 

Mild 
Damage % 

head 
tapers 

male neck 
tapers 

↗ ↗ 89 91 

taper II 
monolithic 

stems 
stem 

tapers 
shells & liners 

↗ X 68 100 

Modular 
Necks 

medial lateral posterior anterior 

* * - - 

Effect of 
Neck 
Modularity 

heads paired with modular 
necks 

heads paired with monolithic stems 

** * 

Observed 
Damage 

Modular Necks 

head neck 

** * 

Monolithic Stems 

head stem 

* * 

material 
combination 

mixed head similar head 

*** * 

Kocagoz et al. [7] investigated whether any correlation exists between taper angle clearance and 

visual fretting-corrosion scores in ceramic (n=50) and CoCrMo (n=50) heads. The values of angle 

clearance were calculated through roundness measurement (will be introduced later). Then, they 

applied this four-level scoring model on the images obtained by optical instrumentation.  

Failure of 74 implants from two different manufacturers was investigated by Dyrkacz et al. [36] to 

elucidate any the role of head size and manufacturer in the fretting and corrosion behaviour along 

bore taper of the head and neck taper of the stem. Taper interfaces were divided into four quadrants 

with each comprising a superior and an inferior region. Hence, they ended up with eight regions for 

a neck and eight regions for a head. Each region received two scores, one representing the severity 

of fretting and corrosion and the other for the amount of damaged area. These two scores were 

multiplied to form eight regional scores for fretting and corrosion. By adding up these scores, 

separate scores for the head and neck were obtained. As this process was being performed by three 

observers, the obtained scores were averaged.  

Their study revealed significantly higher scores at explants with the larger head size (36mm) and 

increased head sizes result in a higher likelihood of fretting and corrosion at head and neck junction. 

They hypothesised it had been associated with the greater torque they had experienced over their 



36 

taper interfaces which in turn had resulted in more micro-motions between the heads and the 

necks. Also, they observed a poor correlation between fretting and corrosion damage versus 

implantation time [36].  

The hypothesis that with head-stem pairs, ceramic-metal tapers (n=50) are less susceptible to 

corrosion than metal-metal tapers (n=50) was investigated by Kurtz et al. [30]. Ceramic heads were 

scored based on the observed metal transfer to their bore tapers. Stem tapers with ceramic heads 

received lower fretting-corrosion scores (Table 2-4). Hence, they maintained that by using ceramic 

femoral heads, fretting and corrosion at head-neck junctions might be mitigated. Also, they advised 

visual scoring does not necessarily correlate with the volume of metallic debris generated at a 

modular interface, and further taper analyses to quantify material loss at ceramic-stem modular 

connections are required. Yet, they believed their scoring technique was consistent with the 

approach of other investigations. 

Table 2-4. Influence of head size on the damage at neck 

Head 
Material 

Fretting Corrosion 

CoCr ** ** 

Ceramic * * 

Another study in regard to evaluating the reliability of visual scoring was conducted by Hothi et al. 

[31] to investigate fretting and corrosion in 150 metal-on-metal bearing of implans. Female tapers

of femoral heads with large heads (>36mm) were examined. Each distal and proximal region 

received fretting and corrosion scores. By combining the two regional scores, two overall scores 

(fretting and corrosion) were obtained for each taper. They noticed the scores are not normally 

distributed, and corrosion scores were higher than fretting scores. Also, while a moderate 

association between Volumetric Material Loss (VML) and corrosion scores was witnessed, the 

correlation between VML and fretting scores was weak (Table 2-5).  

Table 2-5. Comparison between fretting and corrosion damage extent 

Observed 
Damage 

Fretting Corrosion 

Neck - - 

Head * ** 

VML 

Fretting Corrosion 

Neck - - 

Head * ** 
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They maintained it could be due to the central role of galvanic corrosion in comparison to fretting 

corrosion on material loss, and also the relative difficulty in measuring fretting scores. Therefore, it 

was recommended to investigate the association between VML and blood metal ion levels. 

In another study by the same investigators, Hothi et al. [38] analysed 20 explants that were 

comprised of 36mm metal on metal Pinnacle heads paired with Corail (n=10) or S-ROM (n=10) 

stems. They used the Goldberg method to score the head tapers for corrosion based on visual 

assessment. No significant difference between the corrosion scores at head tapers paired with both 

types of the stems was witnessed. Also, rougher and shorter stem tapers for Corail designs were 

observed. 

In a novel study by Goyal et al. [37], it was investigated how retaining a corroded stem and just 

replacing the head in a revision surgery impact the survivorship of the new implant system. As the 

stems were not accessible, they scored 86 retrieved head tapers (Co-Cr alloy). Each retrieved head 

was photographed in five different views to cover the entire taper surface. In order to assess the 

effect of the corrosion at the time of revision on the likelihood of second revision, they defined high 

and low levels of corrosion when the assigned scores belonged to 3 – 5 and 1 – 2 intervals 

respectively.  

No correlation between the scores and the time in-situ, head type, taper size, and head-diameter 

(28 and 36mm) was observed. However, patients with moderately higher BMI had greater corrosion 

scores. In the seven cases with re-revision, no corrosion-related disease had been diagnosed. The 

extent to which the head taper had been corroded observed to have no effect on the survivorship 

in both high and low-level heads. Hence, they supported retaining the well-fixed femoral stems with 

corrosion. Due to the nature of this study, only femoral heads were scored, and these heads were 

apparently paired with stems that had already sustained damage to some extent. 

Molloy et al. [23] reviewed the results in 15 recipients of ABG II (Stryker Orthopaedics, NJ) modular 

hip systems. The head was BIOLOX delta ceramic (CeramTec, Plochingen, Germany), the neck was a 

Ti-based alloy, and the stem was fabricated by CoCr. They performed a retrieval study of fretting-

corrosion at the modular junctions (head-neck & neck-stem tapers) of 7 recipients who had 

undergone revision surgery due to ALTR. They examined and rated fretting and corrosion at the 

male tapers by using a reflected-light stereomicroscope at up to 10X magnification. Fretting and 



38 

corrosion were observed to have different intensities at these two junctions (Table 2-6). Superior 

section of neck-stem taper of neck exhibited the most severe corrosion.  

Table 2-6. Fretting and corrosion scores witnessed at the male tapers 

Fretting Corrosion 

Head-Neck mild no or very little 
Neck-Stem no fretting moderate to 

severeThe influence of taper design and head size on fretting and corrosion at head-neck junction in metal

on metal hip arthroplasties with large heads (>= 36mm) was investigated in another study [39]. 40 

retrieved heads were subjectively graded for fretting and corrosion using Goldberg method. For 

each taper, the scores were summed up and averaged between the two observers, so that a single 

score for fretting and a single score for corrosion at each taper could be obtained. They categorised 

implants into three taper groups, namely 11/13, 12/14, and type 1. Each taper design had different 

values for angle, distal diameter, and contact length.  

Unlike many past studies, the only observed correlation was between fretting damage and taper 

geometry. Tapers with thicker and longer contact lengths observed to be more prone to fretting. 

Hence, they concluded a thinner and shorter taper is more beneficial than a longer and thicker taper. 

Yet, these three taper designs exhibited no influence on corrosion scores and VML (Table 2-7). Also, 

parameters such as head size, lateral offset, and implantation time did not correlate with fretting, 

corrosion, or VML.  

Table 2-7. The impact of taper design and location on quantitative and qualitative assessment of damage 

Contact Length & 
Thickness 

11/13 12/14 Type 1 

Fretting *** ** * 

Corrosion * * * 

VML * * * 

Regional Damage 

Fretting Corrosion 

Proximal - * 

Distal - ** 

They pointed out that the heterogeneous nature of the cohorts and respectively low number of 

explants has made their dataset underpowered which can lead to overestimating the prevalence of 

damage at head and neck junctions. 

Higgs et al. [6] performed a semi-quantitative evaluation of modular interfaces along with a review 

of the clinical records. In the first part, they investigated the correlation between modularity and 
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fretting-corrosion damage in 137 metal on metal explants at head-stem and shell-liner interfaces. 

In their study, patient and implant variables such as the type of paired alloys, head size, medio-

lateral offset, and neck moment arm were investigated.  

They also found increasing modularity escalated fretting-corrosion damage at bore taper of the 

head. The evaluations revealed that dissimilar alloy pairing, larger head sizes, increased medio-

lateral offsets, longer neck moment arms, and distal neck tapers were associated with increased 

taper damage at the modular taper interface. Similar to the other investigations, they raised the 

subjectivity of visual scoring as one of the limitations that may lead to issues in characterising 

amounts of VML and corrosion debris at taper junctions. 

Increased modularity was also investigated in another study to learn more about its role in the 

failure of THRs [43]. They conducted a retrieval study of 57 explants from seven Double Tapered 

Cone (DTC) THR designs. Stem trunnion and neck trunnion of the necks were assessed to compare 

and contrast degradation mechanism/s at the neck-stem junction to its head-neck counterpart in 

terms of the nature and its contribution toward the failure of the studied THRs. They introduced a 

modified version of the Goldberg method in which corrosion is graded in five levels, and fretting is 

assessed using a binary model that states whether fretting is present or not. The observers also 

commented on the presence of mechanical movement that indicates whether long scratches on the 

taper were induced by initial application of seating load to the taper or introduced during revision. 

In relation to degradation and junction stability, Ti-based modular necks observed having an 

additional locking mechanism for the neck-stem junction, while the Co-based devices observed 

relying entirely on mechanical stability through the design of the trunnion. They maintained that 

the influence of this feature on reducing micro-motion is unknown. No correlation was observed 

between trunnion machine finish and damage scores. Yet, they recommended further investigation 

into its possible impact on corrosion susceptibility. They observed higher fretting scores in neck-

stem than the head-neck junctions. Therefore, they concluded that increasing modularity by 

introducing the neck-stem junction may come at a cost. Higher rates of fretting and crevice 

corrosion witnessed at this additional junction can justify the rise in metallic debris and soluble 

metallic ions [43]. Table 2-8 summarises the findings of this study. 
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Table 2-8. Effects of material and modular junction on the degradation of THRs 

Ti-Based Co-Based 

Fretting % 50 90 

Corrosion % 30 62 

Degradation 
Taper I Taper II 

* ** 

With respect to increased modularity, a retrieval study in Australia used Goldberg method for semi-

quantitative assessment of corrosion in 16 explants that belonged to double-tapered cone (DTC) 

Margron necks (Portland Orthopaedics, Matraville, NSW, Australia) that were paired with alumina 

Biolox heads [25]. They observed no correlation between fretting and corrosion scores and any 

patient or implant properties. Their study maintained that despite the availability of modern taper 

designs and corrosion-resistant materials, increasing the modularity can lead to fretting and crevice 

corrosion. Hence, they recommended further optimisation of the taper design and material. 

The influence of three implant characteristics, namely neck-shaft angle, stem size, and overall neck 

length on fretting and corrosion was the subject of a study by De Martino et al. [44]. They analysed 

60 Rejuvenate (Stryker Orthopaedics, NJ) explants. Two orthopaedic surgeons independently assess 

the presence and severity of damage by a stereomicroscope. The stem tapers were divided into 

eight zones similar to the Goldberg method. However, head tapers were divided into four 

quadrants. The visual criteria in Goldberg scoring technique were utilised to score the components. 

Neck-shaft length and stem size observed to not correlate with fretting and corrosion damage at 

the necks and stems. Likewise, no association was witnessed between overall neck lengths and 

damage in the neck components. Also, implantation time had significant positive correlations with 

the damage on both the neck and stem components. Table 2-9 provides further information about 

the relative extent of damage on different zones of the explants. 

Table 2-9. A comparative list of damage scores at different locations on the explants 

NECK 
Corrosion 

anterior posterior medial lateral 

distal ** ** **** *** 

proximal * ** ** ** 

NECK 
Fretting 

anterior posterior medial lateral 

distal ** ** **** *** 

proximal * ** ** ** 

STEM 
Corrosion 

anteior posterior medial lateral 

*** *** **** *** 

STEM 
Fretting 

anteior posterior medial lateral 
** * * ** 
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Early (between 0.8 and 3.1 years) revision of 19 Rejuvenate implants was investigated by Lanting et 

al. [45] Similar to some other studies, stems were divided into four quadrants before going through 

the 4-level scoring of fretting and corrosion under stereomicroscopic visualisation. After the visual 

inspection, as with the anterior and posterior sides, the superior and inferior scores were mutually 

combined owing to similar degrees of observed damage. Table 2-10 lists the relative extent of 

damage on these two combined zones. 

Table 2-10. Relative comparison of damage in the combined zones on the surface of the necks 

ant/post sup/inf 

Fretting ** *** 

Corrosion * * 

The role of using heads and necks from different manufacturers at corrosion in 151 retrieved 

implants were investigated by Whittaker et al. [46]. In this study, 51 heads were identified as having 

stems from different manufacturers. Goldberg scores and VML were measured at this junction, and 

no significant difference in corrosion between these two groups was observed. The inclusion criteria 

demanded modular components with Co-Cr metal-on-metal bearings and a 12/14 taper which had 

been revised after a minimum of 12 months. 

Triantafyllopoulos et al. [47] conducted a retrieval study of 154 large diameter metal-on-

polyethylene implants to investigate whether head size, implantation time, implantation time, taper 

design, and alloy combination influence the fretting and corrosion at head-neck taper junction. Two 

investigators used the Goldberg method and considered the total score as the summation of region 

scores. While head size did not significantly contribute toward fretting and corrosion, the remainder 

of the investigated properties observed to affect the damage.  

The topography of circumferential machining lines on the surfaces of tapers was the focus of a novel 

study to investigate its role in fretting and corrosion [48]. Unlike the previous studies [49, 50] that 

had used average roughness as the descriptor of surface topography, this study used machining 

mark height and spacing to quantify the topography. A modified Goldberg method was used to score 

damage at 140 Co-Cr/Co-Cr and 129 Co-Cr/Ti head-stem couples. Two investigators scored fretting 

and corrosion combined. Between the two material couples, very similar average damage scores of 

stem and head tapers were observed. Also, Co-Cr and Ti tapers appeared to have almost identical 

surface topography which maintained to be aligned with the findings of some previous similar 
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studies. For Co-Cr/Co-Cr couples, the outcome of this work suggests that stem taper machining mark 

height was associated with higher stem and head taper damage. 

This section reviewed several large-scale retrieval studies that semi-quantitatively measured 

corrosion at the head and stem junction of hip replacement devices. It was observed that Goldberg 

scoring method is still widely in use and some modified version of that have been introduced since 

2002. Also, the analysis of associations between patient/implant properties and corrosion has led 

to conflicting results in some studies which can be due to variations in their statistical power and 

the difference within the set of the investigated patient and implant properties. 

With approximately 42,000 hip replacement surgeries per year, Australia is one of the main users of 

these products. 4,500 revision surgeries are undertaken each year to remove or reinsert 

malfunctioning implants [51]. Despite the clinical significance and high-incurred costs of revision 

surgeries together with the availability of large pools of failed implants, retrieval investigations on 

the fretting corrosion failure of THRs are still new in Australia and need development. Review of the 

literature shows only a limited number of retrieval works on the fretting corrosion damage to the 

head-neck taper junction of explants in Australia. The size of investigation pools ranges from 7 to 57 

retrievals [23, 25, 43, 52, 53]. In the three larger studies, the variety of implants were either quite 

limited or belonged to some groups which are not popular in Australia anymore. Annual reports of 

Australian National Joint Replacement Registry indicate that Exeter V40 (Stryker) and CPT (Zimmer), 

have been among the ten most used femoral stems for THRs for more than a decade.  None of these 

five studies included these popular designs in their investigations. These facts justify and signify the 

necessity of establishing retrieval libraries and programs that systematically investigate the failure 

of retrieved hip replacement devices in Australia. 

Reliability of Visual Scoring 

More recently, the reliability of visual assessments has been questioned by some researchers [6, 30, 

31, 39, 54]. Some have tried to evaluate the reliability of damage scores by measuring their 

association with the measurements of quantitative methods (i.e. surface profilometry). These 

investigations endeavoured to verify inter-observer reproducibility and single-observer 

repeatability of measurement performed using visual scoring (Figure 2-1). Inter-observer 

reproducibility is the uncertainty in measurements when different observers measure the same 

thing under the same circumstances. Single-observer repeatability is the uncertainty in 
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measurements when an observer measures the same thing a number of times under the same 

circumstances. It can be calculated as the standard deviation of a measurement that is replicated 

several times. 

Figure 2-1. Reliability of a method to perform an experiment is based on its repeatability and reproducibility 
http://blog.f1000research.com 

The statistical analysis performed by Hothi [31] revealed that the inter-observer reproducibility of 

fretting scores could be vulnerable. It stems from the fact that fretting scars might be obscured by 

the material deposited on different parts of an explant surface due to corrosion. Also, some scars 

on the surface of an explant (such as taper junctions) can be due to damage caused by impaction 

during assembly or disassembly of tapers. Goldberg et al. [24] maintained that distinguishing 

between fretting damage attributable to impaction and actual fretting may be done differently 

amongst the observers. Hence, qualitative assessment has a predisposition to observer subjectivity. 

Also, Higgs et al. [6] believed different laboratories conducting such observations are subject to the 

lack of standardisation in visual scoring.  

These concerns can give rise to an increased risk of false evaluation which has been the motivation 

for some studies [31, 54-57] to evaluate the reliability of visual scoring. Assuming VML as a valid 

reference point for damage, they measured it at a (limited) number of taper junctions or bearing 

interfaces, and the results were compared with the associated visual scores. Based on the calculated 

inter-observer reproducibility and single-observer repeatability, these studies concluded that the 

obtained visual scores could be moderately correlated with the VML measurements, yet visual 

scoring cannot substitute measuring VML.  

This situation is not confined to scoring fretting or corrosion damage in retrievals. The majority of 

condition assessment units require periodic inspection and monitoring of tribounit systems that 

[Image removed due to copyright restriction]

http://blog.f1000research.com/
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similar to THR devices operate under chemical-mechanical conditions and are subject to some 

combination of oxidation and erosive wear (fretting corrosion) [58]. The condition rating methods 

proposed by expert bodies such as ASTM (D610-08) or Japan Association of Steel Bridge 

Construction (Specification for Highway Bridges I & II) uses visual criteria to classify the degree of 

rusting on coated steels which require qualified staff and the use of subjective criteria [59-71]. In 

the field of Structural Health Monitoring, painting warranty clauses mandate both the owner and 

contractor inspect painting of steel bridges regularly for any defect (i.e. rust). Through this process, 

a defect is assigned a level based on its percentage, and accordingly, the painting has to be redone 

partially or entirely. Here, the subjectivity of the inspection may result in an argument between the 

owner and contractor [72]. 

Besides the visual inspection, there are some studies that questioned the suitability of measuring 

VML for evaluation of non-uniform corrosion damage. They raise two general concerns in relation 

to VML quantifying corrosion damage. First, VML does not reflect the distribution of corrosion 

damage. A corroded component with a mild level of damage which has spread widely across its 

surface may return a similar VML value to another component with severe but local corrosion. 

Second, the damage level 4 in Goldberg’s scoring method has observed to have a relatively large 

variation in VML values [31].  

These reliability concerns in regard to visual scoring and VML are among the reasons for researchers 

to search for alternative methods that can provide feasible yet reliable outcomes in various 

corrosion related applications. 

An Alternative Method 

Processing optical and electron microscopy images obtained from various surfaces have been 

successfully practised in the past to detect and classify the severity and typology of corrosion 

generated defects. Digital image acquisition, processing, and interpretation techniques offer several 

benefits such as finding information hidden from the human eye, identification and quantification 

of common numerical features in the same class images, and developing image databases that can 

be shared and used in future for testing more advanced processing algorithms [73]. 

Here, two distinct disciplines are involved, namely Digital Image Processing (DIP) and machine 

learning. These two disciplines are so closely related that it is inevitable to discuss DIP applications 

without elaborating on techniques in machine learning [74]. 
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DIP may assume two roles. First, it can be used for image enhancement (first step in many vision 

tasks) purposes by benefiting from tools such as noise suppression filters, histogram equalisation, 

and contrast stretching. These tools can be used to highlight regions of interest in an image (e.g. 

wear or corrosion spots) and attenuate the present noise. Second, it can be used to extract 

characteristic features from images via quantifying surface morphology which is believed to be 

closely related to the degree of corrosion damage [61]. 

On the other hand, machine learning acts as a decision-making tool in situations where the decision-

maker is a single trusted person, or a committee of experts, who despite their long experience 

cannot express their reasoning in any sensible way [75].  

The corrosion-related studies have deployed different (un)supervised techniques in various contexts 

such as steel bridge, atmospheric corrosion, and steam boilers for the following defect (rust, crack, 

and wear) classification purposes.  

 Analysis of shape and size of defects (e.g. pits): [58, 76-81]

 Identification or classification of corrosion severity: [59, 60, 62, 64-66, 68-71, 73, 82]

 Identification or classification of corrosion typology: [61, 83-85]

In relation to corrosion typology, using optical images may not be a suitable option and electron 

microscopy methods (e.g. Scanning Electron Microscopy, Transmission Electron Microscopy, and 

Atomic Force Microscopy) which reveal the microstructure is conventional. There are a lot of studies 

that analysed microstructure images and derived information from them regarding the corrosion 

typology which is out of the scope of this research. 

DIP and Machine Learning in Classification Problems 

Large-scale retrieval studies need a metric for corrosion severity. They rely on visual scoring and use 

predetermined visual criteria to assign corrosion scores subjectively. In other words, the implants 

are classified into several groups according to their corrosion severity. Therefore, we are facing an 

image-based rating problem in which images are to be classified according to a specific scoring 

method such as Goldberg. 
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This approach has not been implemented in the past to score the corrosion objectively in large-scale 

retrieval studies. Therefore, this section reviews the works that endeavoured to detect or rate 

corrosion severity via an intelligent rating of optical images. Reviewing the literature revealed that 

such studies belong to a larger group that uses morphological attributes to extract a vector of 

characterising features from an image that later on is used as the input for machine learning 

algorithms (Figure 2-2). Therefore, it is essential to be reasonably familiar with the DIP and machine 

learning algorithms that are being developed in such studies. 

Figure 2-2. An overview of intelligent image-based rating methods 

It should be noted that many of these algorithms have been around for many decades. However, 

they only became (or are still becoming) applicable after breakthroughs in technologies such as high-

resolution cameras and powerful computer hardware [75]. 

DIP Algorithms 

The morphology of defects can be used to formulate and extract three groups of features, namely 

colour, texture, and shape [61]. Corrosion defects usually appear as scattered random spots. 

Therefore, shape as a morphological attribute is not used for characterising corrosion defects. 

Colour Features 

This type of features is derived from the frequency histograms of colour components. Colour 

components result from segmentation of images according to the colours that they contain. Colour 

cameras reproduce colour by sensing the optical energy in three overlapping wavebands and 

thereby generate three separate signals (components) namely, Red-Green-Blue (RGB). Colour 

science suggest other representations for colour (i.e. colour models) for different vision tasks [75]. 

These alternate colour models express the RGB model in alternative coordinate systems [86].  
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Figure 2-3. RGB colour space forms a 3D cubic coordinate system[75]. 

They present colour information in ways that make certain calculations more convenient (Figure 

2-3). Another colour model in image analysis applications is the HSI (Hue, Saturation, and Intensity

or Value) model. Hue and Intensity components are approximately proportional to the average and 

sum of RGB components, respectively, and Saturation quantifies the deficit of white colour [86]. In 

an HSI image, colour values are described by the Hue (e.g. red) component. As hue varies from 0 to 

1.0, the corresponding colours vary from red through yellow, green, cyan, blue, magenta, and back 

to red, so that there are red values at 0 and 1.0.  The corresponding colours (hues) vary from 

unsaturated (shades of grey) to fully saturated (no white component). As Intensity (luminance) 

varies from 0 to 1.0, the corresponding colours become increasingly brighter. 

Figure 2-4. HSI colour space[74] 

HSI colour model allows for separation of colour from the lighting to a greater degree in comparison 

with the RGB model. This fact can benefit image analysis in two ways. First, image enhancement 

which is based on the manipulation of contrast, may not work effectively for RGB images. 

Transformation of the RGB values of the pixels to improve contrast may alter the chromatic (i.e. the 

colour) content of the image. However, HSI colour decouples the chromaticity (H and S) from the 

intensity which allows for fine-tuning the intensity without altering the colour information [74]. The 

second advantage of using an HSI colour model benefits characterising colour as an attribute of the 

[Image removed due to copyright restriction]

[Image removed due to copyright restriction]
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morphology regardless of possible variations in luminance. This type of variation can increase the 

diversity among the images that belong to the same class by throwing away information and 

introducing noise into the system [87]. Luminance variation may stem from non-uniform scene 

illumination and image formation process in the image acquisition device. 

Therefore, in many studies, before extracting colour features, the colour model of images is 

converted from RGB to HSI and the Intensity component is ignored [59, 64, 68, 71, 84, 88]. These 

studies calculated several numerical features from the brightness histograms of the Hue and 

Saturation components. The histogram for an image colour component demonstrates the frequency 

of occurrence for each pixel value and can be regarded as the probability density of an image pixel 

having a certain brightness [64, 86]. In an 8-bit image, a pixel brightness is a discrete number which 

may span from 0 (black) to 255 (white) [86]. The histogram is considered as one form of global 

information about an image. An image matrix may contain much data which slows down the 

processing tasks. Using global information in an image histogram is more concise and occupies less 

memory. 

There are several features that have been extracted directly from the histograms of image colour 

components in various studies. These features are known as first-order image statistics. Some 

include moments, entropy dispersion, mean (an estimate of the average intensity level), variance 

(this second moment is a measure of the dispersion of the region intensity), mean square value or 

average energy, skewness (the third moment which gives an indication of the histograms 

symmetry), and kurtosis (cluster prominence or ‘‘peakedness’’) [75]. 

One limitation of first-order statistics is that they only reflect on individual pixel intensities and 

provide no information about the relative position of pixels (spatial information) to each other [75, 

89]. 

Texture Features 

Using intensity histograms is associated with some drawbacks, though. A histogram does not 

provide any information about the order of the measured intensity frequencies. In other words, a 

histogram does not reflect the spatial relationships between the pixels and only provides 

information about them individually. 
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The texture is considered as an important morphological attribute of corrosion defects because the 

corrosion process can deteriorate the surface of metals and produce rough surfaces. Consequently, 

the corroded surface will have a different texture to the rest of the image [61, 63, 64].  

Texture is a term that refers to properties that represent the surface of an object. It is loosely used 

to describe the ‘roughness’ of something. Despite being widely used, and perhaps intuitively 

obvious, there is no precise objective definition for that due to its wide variability [74, 86]. It may 

be described subjectively using terms such as coarse, fine, smooth, granulated, rippled, regular, 

irregular, and linear. Therefore, some more precise properties must be defined to be able to use it 

in machine vision tasks. 

One popular technique of texture analysis in corrosion-related studies is based on using grey-level 

co-occurrence matrix (GLCM) [60, 61, 64, 67, 68, 70, 82, 83]. GLCM is the matrix of relative 

frequencies PØ,d (a,b) that describes how frequently two pixels with the grey levels a and b appear 

in a window separated by an offset distance d in direction Ø. The dimensions of a GLCM depends 

on the range of grey levels that it covers. In a digital 8-bit image, there exists up to 28 distinct grey 

levels which yield up to 256 × 256 GLCMs. There is no standard approach for finding the optimum 

distance and direction values in a particular problem [90].  Memory requirements may mandate 

scaling the grey level values to a smaller set, but it results in a reduced grey level accuracy [86].  

The diagonal elements of GLCM correspond to the histogram. In an image with low contrast, the 

elements of the GLCM that are far from the diagonal are equal to zero or are very small. For high 

contrast images, the opposite is true. From GLCM, several numerical features can be extracted. 

Examples include Energy, Entropy, Contrast, Correlation, and Homogeneity [86, 91]. Due to the 

statistical nature of the GLCM method, the features that are extracted via this method are known 

as second-order image statistics. 

Wavelet Features 

It should be noted that texture description is highly scale-dependent. When texture elements are 

large enough, they might be defined in more than one scale. Therefore, image resolution (scale) 

must be a consistent part of the texture description [86].  maintained that those features extracted 

from second-order statistics could be inadequate since at a particular scale, some textures with the 

same numerical features can be easily discriminated by human visual systems. To decrease the 

problem of scale sensitivity, the texture needs to be described in multiple scales by using a coarse-
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to-fine multiresolution strategy [86]. Over the past two decades, multiresolution analysis techniques 

such as wavelet transform have received a great deal of attention in various applications of DIP [66, 

67, 69, 71, 77, 78, 92-95].  

It is well established that gradients of intensity in various directions over different scales reflect the 

texture of an image [96]. An effective method to capture image gradients at different magnitudes 

and directions is to use 2-D Fourier transform (FT). By using this transform, an image can be 

reconstructed to obtain a frequency-space representation. In the context of corrosion, defects 

appear as abrupt spatial changes in intensity which result in high frequencies in the corresponding 

FT reconstruction. By using this property, high-pass (HP) and low-pass (LP) filters can be created that 

pass specific spatial frequencies into the reconstruction while suppressing the others. These filters 

can be used to visually highlight texture features with particular magnitudes or directions [74]. 

A wavelet transform is computed by the convolution of the signal (image) and the scaled-shifted 

versions of a mother wavelet function (e.g. Daubechies, Haar, BiorSplines, and Gaussian). Figure 2-5 

shows single decomposition wavelet transform that is implemented by a bank of 1-D HP and LP 

filters. 

Figure 2-5. 2-D discrete wavelet decomposition 

Here, Si
LL is the input image at resolution level i. According to the Nyquist’s rule, decomposition of 

an image with an LP or an HP filter yields almost twice as much data. In order to keep the amount 

of data almost the same size as the input, the data was down-sampled following each filtering 

(which is represented by the circle blocks in Figure 2-5). H and L represent 1-D HP and LP filtering 

and the r (rows) and c (columns) superscripts denote the direction of down-sampling. The circle 
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blocks which perform down-sampling are 2↓1 (keeping one column out of two) or 1↓2 (keeping 

one row out of two) [66, 95]. 

The result is the decomposition of the input image into four sub-band images. Di+1
LH, Di+1

HL, and 

Di+1
HH correspond to the low-high, high-low and high-high bands in the frequency domain, 

respectively. Also, these images highlight the horizontal, vertical, and diagonal details in the input 

image. Si+1
LL (low-low component) is an LP filtered version of the input image that would be the 

input for further wavelet decompositions.  

At each decomposition level, the wavelet transform coefficients of the three detail sub-band images 

produce several textural features. Among them, wavelet energy signatures which reflect the 

distribution of energy along the frequency domain are often employed as corrosion texture 

features. The energy signature arrays are denoted by 𝐸𝐿𝐻𝑖
, 𝐸𝐻𝐿𝑖

, and 𝐸𝐻𝐻𝑖
. The length of each arrays

is equal to i (decomposition level) [66, 93, 95, 97].  

Local Features 

Although wavelet transforms address the scale sensitivity via multiresolution image processing, 

there exists other imaging deformations that wavelet transforms are not invariant to. These imaging 

conditions that have been considered by many studies [97-105] as serious issues against the 

application of global features are categorised as (1) geometric or affine (scale, translation, and 

rotation) distortions and (2) photometric (illumination, 3D camera viewpoint, background clutter, 

and occlusion) deformations.  

Owing to this fact, the features extracted from an image can be grouped into global and local levels 

[105]. The aforementioned features extracted from intensity histogram, GLCM, and wavelet 

transforms are considered as global features because they characterise the entire content in an 

image [98, 105]. The sensitivity of these features to imaging conditions has led to the introduction 

of local features. These features are well localised in both the spatial and frequency domains which 

reduce the probability of disruption by imaging conditions [104, 106]. 

Unlike global features, their local counterparts refer to a pattern or distinct structure found in an 

image, such as a point or edge. They are usually associated with an image patch that differs from its 

immediate surroundings by texture, colour, or intensity. Here, what the feature actually represents 

does not matter, just that it is distinct from its surroundings along various orientations and scales 

[105].  
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Local features are selected as a number of ‘interest points’ at distinctive locations (more generally, 

regions) in an image by a detector that relies on gradient-based and intensity variation approaches. 

Alternatively, the interest points can be obtained by using a regular grid where the gridline 

intercepts define locations for interest points. Good local features are superior in three aspects. 

First, when given two images of the same scene, most features that a detector finds in both images 

are (ideally) the same (repeatable detection). In other words, the features are robust to changes in 

viewing conditions and noise. Second, the neighbourhood around a feature centre varies enough to 

allow for reliable comparison between the features. Third, a feature has a unique location assigned 

to it. Hence, changes in viewing conditions do not affect its location [99, 101, 104]. 

From the intensity pattern within a region, a vector of region descriptor is calculated. Here, a local 

pixel neighbourhood is transformed into a compact vector representation which is robust to local 

shape distortions and change in illumination within the Images [106]. 

After extracting vectors of region descriptors, it is required to encode them into a single vector of 

local features. There are several approaches to fulfil this task. A popular method is Bag Of Visual 

Words (BOVW) which was initiated originally in the context of texture classification. BOVW is 

analogues to the frequency of the words used in a text [107]. Words are the constituent elements 

of a text, and their frequency can be used to represent a text. This property can be used to match 

two texts and establish word clouds which highlight the most frequently used word/s in a text. By 

looking at the word cloud of a text, texts can be classified according to their topic, etc. [108].  

Unlike a text in which the words come from a known vocabulary, there exist no vocabulary for 

images to represent them. Therefore, it is required to come up with a vocabulary for them. A BOVW 

model reduces a large number of vectors of region descriptors by quantising them using cluster 

analysis. Each cluster centre represents a feature or visual word. From the frequency histogram of 

the visual words in an image, the vector of local features is extracted. The number of clusters (words) 

required in a (classification) problem depends on the situation. Therefore, local features can derive 

a large number of features relative to their global counterparts. 

Since the 1980s, a wide variety of local feature detectors and descriptors have been proposed in 

many image-based domain-specific applications such as content-based image retrieval [109, 110], 

face recognition, medical image annotation [111-113], scene classification [87, 98, 105, 107, 114-

116], and object recognition [106, 116]. They vary mostly by the amount of invariance they 
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theoretically ensure, the image property they exploit to achieve invariance and the type of image 

structures they are designed to detect [98]. 

Although extending local features to be invariant to full affine transformations sounds desirable, at 

first glance, it may result in an increased level of sensitivity to noise. Lowe [106] maintained affine 

frames are more sensitive to noise than those of the scale-invariant local features which in turn 

deteriorates repeatability of affine local features.  evaluated the performance of several different 

local feature detectors and descriptors for texture and object classification on four texture and five 

object databases. The outcome of their research confirms that local features with the highest 

possible level of invariance do not yield the best performance. Therefore, a combination of multiple 

detectors and descriptors usually may achieve better results than even the most discriminative 

individual detector/descriptor channel. This fact can be extended to not ruling out global features 

and using them in combination with their local counterparts which have observed in some studies 

[112, 117]. 

Reviewing the literature in other texture analysis applications revealed that Scale Invariant Feature 

Transform (SIFT) has been utilised as the preferred method for extracting local features [97-99, 101, 

104, 106-108, 110-112, 114, 116, 118-123]. Among the reasons for SIFT to be popular in texture 

classification problems are robustness to reasonable levels of 2-D affine transformations, scale, and 

viewpoint changes [103, 119]. More recently, though, due to the wider utilisation of local features 

in new image-based applications, different versions of SIFT or joint utilisation of different techniques 

based on the problem at hand are being proposed [97, 109, 112, 116, 117]. 

In choosing a feature detector and descriptor, the decision must be weighed up against the specific 

application (e.g. image classification, recognition, retrieval, and so on) and the nature of the images 

(resolution and presence of clutter or occlusion). There are studies which recommend a specific 

method over the others in a particular application. For instance, in image-based dietary assessment, 

Anthimopoulos et al. [103] maintained that SIFT detectors are not generally suitable for food 

classification problems. In large scale image retrieval,  pointed out two limitations of SIFT local 

features.   

SIFT was introduced in 2004 by Lowe [106], and it can be used as a detector or a descriptor. A SIFT 

detector searches over all scales and image locations by using a difference-of-Gaussian function to 

locate potential interest points that are invariant to orientation and scale. The nominated points are 
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local maxima in scale space of Laplacian of Gaussian (LOG) filtered image. The scale space is 

generated by using different smoothed versions of an image filtered by this LP spatial filter. 

When it comes to using a spatial LP filter, it is usually unknown at what scale the details may appear 

in an image. Therefore, using a whole spectrum of scales, the zerocrossings versus scales are plotted 

in a scale-space. Zerocrossings are the locations of edges in a LOG filtered image. They are associated 

with the locations at which the second derivative along a row/column becomes zero which indicates 

a maximum/minimum for the first derivative (intensity gradient) along that direction. Figure 2-6 

displays the intensity variation along a particular row (red line) in the original and filtered image. In 

the intensity graphs, the red plot represents the gradients in the original image while the green plot 

belongs to the smoothed image which approximates the original gradient.   

Figure 2-6. The influence of smoothing out operation on intensity gradients 

This process can be iterated at higher scales to further smooth out the gradient graph (signal). 

Through this process, some zerocrossings persist while some are eliminated, and as zerocrossings 

can be associated with location of interest points, a number of potential points can be ultimately 

selected as the interest points. Here, the eliminated zerocrossings are associated with noise in the 

image. 
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Figure 2-7 displays 15,235 potential interest points that were originally identified from the 

zerocrossings. By resampling the original image and applying three different sigma values at each 

octave (sample level), 114 points are identified as the interest points. Each resampling is carried out 

by eliminating every other row and column which results in 50% reduction in the resolution. Each 

octave (row in the image) was filtered by three different sigma values which increases from left to 

right. 

Figure 2-7. Calculation of SIFT interest points via down-sampling 

A SIFT descriptor is used to derive a vector of descriptors at a local region (usually a 16×16 pixels 

neighbourhood) surrounding each interest point. The magnitude of the local gradients and the 

gradient orientations at each pixel within the surrounding patch is computed. Gradient looks at 
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change, and it is more robust to noise than the actual intensity values. When there is little change 

in illumination, the intensity values may significantly change while the gradients may not be that 

much influenced. Next, the 16×16 neighbourhood is divided into a 4×4 sub-region and a histogram 

with a certain number of bins summarises the frequency of gradient orientations in each sub-region. 

For instance, a histogram with eight bins displays the frequency of orientations at 45° intervals. 

Figure 2-8 displays this procedure for the aforementioned neighbourhood and histogram. The 

gradient magnitude and orientation at each point are weighted by a Gaussian window (the overlaid 

circle) at the left image. They are then accumulated into orientation histograms at the middle image. 

The length of each arrow corresponds to the sum of the gradient magnitudes near that direction 

within the region. 

Figure 2-8. Calculation of frequency of gradient orientations 

From a 16×16 neighbourhood, a 4×4 descriptor array is computed in which each element 

(histogram) is an eight-dimensional vector. Therefore, a SIFT descriptor is a 128 dimensional vector 

[97, 106, 111, 124, 125]. Lowe [106] justified the selected size for the neighbourhoods, sub-regions, 

and histogram bins by comparing the percent of interest points giving a correct match to a database 

of 40,000 interest points using different sizes.  

In 2008, a version of SIFT knowns as Speeded-Up Robust Features (SURF) was introduced to address 

the concerns associated with the large dimension of region descriptors and consequently 

computation costs associated with SIFT descriptors [99]. SURF features are designed for 

classification problems. Figure 2-9displays the strongest 100 detected SURF interest points along 

with their corresponding neighbourhoods in two different images of the same object (Eiffel tower) 

that had been captured under widely different photometric conditions. In the left and right figures, 

746 and 572 interest points were identified respectively. As can be seen, the radii of the 
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neighbourhoods are different. Their values are calculated based on how large a region around an 

interest point needs to be extracted to form a feature vector.  

Figure 2-9. SURF interest points and their patch neighbourhoods 

These are very distinct regions in the image which can be used to match with other images of the 

same class or matching an image with another image of the same scene or object. Figure 2-10 

displays the eight matching interest points on these two images that are connected by the yellow 

lines. 

Figure 2-10. SURF can be used for the purpose of object detection 

Local features have application in many domains. For instance, Content-Based Image Retrieval 

(CBIR) takes advantage of them to search within an image database to identify a suspect whose 

image was taken by a CCTV camera in a crime scene. In remote sensing, local features can be used 

to match interest points which belong to urban areas in several images which have been taken over 

a time span to detect measure any change. In text recognition, local features can be used to read 

alphanumerical characters in images of a scanned book or read the license plates of a car driving 

over the speed limit. 

Besides SIFT and SURF, the Computer Vision Toolbox in MATLAB offers several types of local feature 

detectors such as the Features from Accelerated Segment Test (FAST), Harris, Shi & Tomasi, and 

Maximally Stable Extremal Regions (MSER) methods. It also provides local feature descriptors such 
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as Fast Retina Keypoint (FREAK), Binary Robust Invariant Scalable Keypoints (BRISK), and Histogram 

Of Gradient (HOG). One can mix and match the detectors and the descriptors depending on the 

requirements of the problem to find the best configuration that yields the highest classification 

accuracy down the track. There are some general rules of thumb that may recommend utilisation 

of a specific method over the others based on the type of features in images, the context in which 

the features are used (i.e. classification and registration), and performance requirements (e.g. real-

time performance and accuracy versus speed). Needless to say, the type of distortions present in 

images may limit the choice of local features as each is robust to one or some particular distortions. 

In the context of corrosion, the application of local features has been limited to only a few studies 

that used them for matching purposes.  used SIFT features to identify bolts and the cracks in their 

vicinity as a part of an automated vision-based crack detection for automated inspection of large 

scale bridge structures. This algorithm can be applied to aerial images without advanced knowledge 

of the crack locations or special control of camera position and orientation. An automated method 

for monitoring the evolution of corrosion at industrial structures was introduced by . They used SIFT 

features to match UAV images of the same area to unify their alignments before comparing their 

corrosion severity. 

To learn more the application of local features to classification problems, other spheres of texture 

analysis literature was reviewed.  introduced an automatic image modality classification method for 

three medical image databases with 18 and 31 distinct classes. The texture was quantified using 

local binary patterns, colour and edge directivity descriptors, fuzzy colour and texture histogram, 

and SIFT. They observed SIFT detectors provide the best performing descriptors for modality 

classification. SIFT method was used by another study for a five-level liver fibrosis scoring. In the 

visual codebook, the influence of grid spacing, bin size, and the codebook size was investigated 

across 168 possible combinations of them. Detecting lesion in retinal images that are induced by 

diabetic Retinopathy was the subject of another study in which SURF features were deployed. Three 

large retinograph datasets with diverse resolutions were used to test the performance of their 

algorithm [113]. A SIFT detector was also used in a food recognition system to classify 11 classes of 

food in 4868 images that had been collected from the web [103]. 

To summarise, local features are invariant to many image deformations and also can provide large 

quantities of numerical features in comparison to global features. Having more characterising 

features can potentially enhance the performance of subsequent machine learning algorithms. 
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Hence, introducing these methods in the analysis of corrosion damage at taper junctions of 

retrieved hip replacement implants may address the reliability concerns associated with the 

subjectivity nature of visual scoring methods. 

Pre-processing the Features 

Describing morphological attributes of corrosion damage is a challenging task. There exists no 

integrated theory to offer a set of specific features that provide a desirable level of discriminatory 

power to classify the intensity or typology of corrosion damage. Each study, according to the 

acquired images, the situation at hand (e.g. type of the alloy and defect), and the available 

computational technology has used a specific set of features for their problem. Section 2.5.1 

categorised these features into four major groups (Figure 2-11). Features that characterise the 

shape of objects of interest were excluded from this study as explained in that section.  

Figure 2-11. The raw information from an image can be captured and characterised by features 

Generally, a larger feature set demands for more computer memory and leads to higher 

computation time, while fewer features can produce a poor classifier. Therefore, it is essential to 

preprocess the extracted features to ensure the most relevant information are passed to the 

subsequent machine learning algorithms. This section discusses some methods to assess the quality 

of the extracted features according to their discriminatory power in classification problems. 

Some of these methods can determine the contribution of each feature and identify those with 

negligible levels of power that can be discarded. Reducing the dimensions of the feature space by 

dropping less descriptive features simplifies the classification process which may come at a 

computationally expensive cost. Alternatively, the feature can be combined to obtain a transformed 
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version which produces a simpler description of the system in terms of capturing as much of the 

variability in the data. These two approaches (i.e. feature selection and feature transformation) are 

for the purpose of dimensionality reduction, and each can be implemented in several different ways. 

It is the context of the problem which determines which one is applicable. 

Feature transformation methods such as Principal Component Analysis (PCA) aims to capture and 

reconstruct the variability of the original features in its most succinct and compact way. PCA 

produces a transformed version of the original features (principal components) which are a linear 

combination of them. PCA computes and sorts the PCs in the order of their contribution in explaining 

the variability of the original data points. This property of PCA helps with identifying PCs with no or 

negligible contribution and removing them to reduce the dimensionality of the feature space. It 

should be noted that PCA can act as a feature selection tool as well. It can find PCs that have high 

correlations with one smaller set of features and little or no correlation with another set of features. 

Therefore, those features with no higher correlation with any PC are discarded [61]. 

Capturing the variability of the features is of interest when it is desired to identify the number of 

clusters that are naturally formed by the data. This fact is not applicable in this study since the 

number of classes is already known, and there are sensible visual criteria to distinguish them. Also, 

feature transformation is applicable when the number of observations (e.g. images) is significantly 

greater than the number of descriptors (e.g. features). However, as mentioned before, DIP may 

produce hundreds of numerical features that exceed the quantity of the available images. 

Therefore, feature transformation was not deemed applicable in this study. 

Feature selection aims to identify a subset of the original features that are most suitable for 

prediction of the known classes. Therefore, it is applicable in classification problems with pre-

labelled data which is the case in this study. Unlike feature transformation techniques such as PCA 

and multidimensional scaling which were used by several studies [60, 61, 63, 64, 82, 83], feature 

selection has been deployed by fewer studies in the context of image-based corrosion assessment. 

Among the reasons for this fact is the low number (usually below 10) of features that are usually 

extracted in such studies. Gamarra Acosta et al. [68] used Fished scores that are a metric of 

interclass distance to reduce the dimensionality of their feature space from 6 to 1. In another study, 

used two filter model methods (Wilk’s Lambda and data range analysis) to reduce the dimension of 

the feature space to three in a corrosion detection problem. Considering feature selection as a 
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dimensionality reduction tool, it may not be suitable for feature spaces with small dimensions due 

to losing discriminative information required by the classification algorithms. 

One method for feature selection that can handle large dimensional data sets as well as large feature 

spaces is Neighbourhood Component Analysis (NCA). NCA is a model that is embedded into a 

randomised classification construction and calculates a vector of feature weights which indicates 

the relevance between the corresponding features and the target labels. This feature selection 

method is less prone to overfitting concerns and computationally more efficient in comparison with 

the filter model (e.g. Fisher Score) and wrapper model feature selection algorithms [126]. NCA has 

a regularisation parameter, Lambda, which can be tuned to further reduce the generalisation error. 

It provides control over the sparsity as well as minimising the redundancy within the feature space. 

Machine Learning Algorithms 

After extracting and selecting numerical descriptors of corrosion, each image can be replaced by a 

representative feature vector. Using these vectors, an image is mapped into an abstract feature 

space as a point where its coordinates are derived from the elements of its corresponding feature 

vector. In the context of classification, machine learning algorithms search for decision boundaries 

or clusters that partition the images (points) according to their actual class (supervised) or a sensible 

reason (unsupervised) in the feature space. There exists a broad spectrum of (un)supervised 

techniques that serve this goal. 

Unsupervised Learning 

Unsupervised learning techniques aim to find how many clusters are naturally formed by the feature 

vectors in the feature space. The most natural clustering method is to visualise the feature space 

and subsequently, the cluster locations. Since the dimensions of the feature vectors are usually 

greater than three, for a human observer, direct visualisation of the feature space is impossible. 

Therefore, alternative methods have been developed that quantitatively measure the similarity of 

the images in the feature space. 

A similarity measure describes how near or far the images are mapped in the feature space. The 

closer the distance between two distinct points on the space, the more their similarity. On the same 

token, the farther the distances are, the less alike they are in terms of their features. Based on the 

nature of the data, one can choose from several different pairwise distance metrics such as 

Euclidean, Cityblock, Minkowski, and Mahalanobis. 
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In accordance with the measured distances, clusters are formed on the feature space. Additionally, 

cluster evaluation determines the optimal number of clusters for the data via using different 

evaluation criteria. The task of unsupervised classification is to determine the ranges of the clusters 

corresponding to various images and to set the rules being the functions of their features, which are 

used to divide the images into classes [61]. 

Studies such as [58, 60-62, 64, 78, 83] used cluster analysis techniques such as multidimensional 

scaling and multivariate discriminant analysis in the classification of corrosion severity and typology. 

For instance, multidimensional scaling was used by two studies in a classification of corrosion 

typology to visualise pairwise distances of images in the feature space by producing a representation 

of them in a smaller number of dimensions. They maintained that Minkowski method is the most 

frequently used similarity metric in classification problems [61, 83]. Unsupervised learning 

techniques do not account for the actual class of the feature vectors and also the number of desired 

score levels. Therefore, they do not apply to the classification problem in this work. If unsupervised 

learning was not deemed as a suitable classification tool, then one would have to resort to 

supervised learning. 

Supervised Learning 

Supervised learning is carried out according to the true classes of a training set. These adaptive 

algorithms identify patterns in data by learning from the observations. Generally, classification can 

be considered as a supervised learning task when the classes have meaningful definitions. 

Classification by Machine Learning divides the images into test and training subsets. By using the 

training images, their corresponding feature vectors are extracted and mapped into a feature space. 

Then, the algorithm finds line/s (2-D feature vectors), plane/s (3-D feature vectors), or hyperplane/s 

(higher dimensional feature vectors) that best classify the images according to their corresponding 

visual scores. These borders are also called decision boundaries. Figure 2-12 displays this process 

for a 2-D feature space schematically. In this example, there are two distinct classes (denoted by 

square and triangle), and 11 images for each class. Therefore, there are 22 feature vectors where 

each vector maps a point into the feature space. Using the true class of each image that was already 

determined by an expert, the algorithm searches for a line (decision boundary) so that the sum of 

the vertical distances of the 22 points is minimised. 
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Figure 2-12 The training phase yields the decision boundaries. 

To evaluate the performance of the predictive model, the images from the test set are used to see 

how the model can be applied to unseen images. Similar to the training stage, the feature vector for 

each image is calculated first. Next, this vector is mapped into the feature space and based on its 

location with respect to the decision boundaries, the class (score) is predicted (Figure 2-13). 

Figure 2-13 Decision boundaries determine the class of an unseen image. 

The actual class of each image is used as the benchmark to determine what percentage of the test 

subset images are misclassified by the predictive model. Obviously, it is desired to utilise a machine 

learning algorithm which minimises the classification error. 

Over time, several machine learning methods have been introduced. These methods differ in terms 

of their speed of training, memory usage, and predictive accuracy of new data. To find which 

method/s may be more suitable for a particular problem, the literature can be studied to find the 

recommended methods where similar types of data and objectives have been used. 

In the context of corrosion-related applications, an emerging machine learning method is Support 

Vector Machine (SVM), a binary classification algorithm that has been mostly used for detection of 

corroded from intact surfaces [69]. It was used though for a multiclass problem by  to distinguish 

pitting, uniform corrosion, and passivation of 304 stainless steel based on features that were 

extracted from electrochemical noise and achieved a 100% accuracy. In a binary classification 

problem, SVM was used to objectively decide on retiring or reusing the cross-arms of power poles. 

Interestingly, they did not deploy any DIP algorithm to extract numerical features and simply used 
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the actual pixel values as the input for the machine learning algorithm [127]. 165 images of steel 

bridges were analysed in another study [59] to determine the rusted areas that needed blasting. 

They maintained that Radial Basis Function (RBF) is the most commonly used kernel function in SVM 

algorithms. Yan et al. [69] used SVM to classify the severity of corrosion in 530 weathering steel 

images. They also maintained that RBF kernel functions outperform their counterparts such as 

linear, polynomial, and sigmoid function in that they need fewer model parameters and can achieve 

easier convergence on numerical training. In their work, a maximum classification rate of 85% was 

achieved. 

In addition to analysing corrosion, this method has shown promising results in other computer vision 

and text categorization applications, especially those involving large dimensional feature spaces [97, 

98, 121, 128, 129]. For further information about the other types of machine learning algorithms, 

one can refer to two survey studies that list and compare them in the context of corrosion-related 

applications [63, 130]. 

SVM classifies images by finding the best hyperplane that separates all data points of one class from 

those of the other class. Hence, SVM is only suitable for binary classification problems, and it cannot 

handle multi-class problems directly. The best hyperplane for an SVM is the one with the largest 

margin between any two classes. Margin is the maximal width of the slab parallel to the hyperplane 

that has no interior data points. The support vectors are the data points that are closest to the 

separating hyperplane and constitute the boundary of the slab [95]. Figure 2-14 shows the support 

vectors and the margin for a 2-D feature space. As mentioned before, the decision boundary appears 

as a line in a 2-D feature space. 

Figure 2-14. Classification by binary SVM learners. 
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In order to deploy SVM in a machine learning algorithm, there exist other considerations that will 

be discussed in the next chapter which elaborates on implementing SVM. 

Statistical Analysis Methods 

Upon quantification of damage semi-quantitatively, each study deploys a particular set of statistical analyses 

to investigate the effect of a particular set of factors (predictors) on the response (damage score). This step 

is quite critical since it extracts knowledge out of the undertaken cumbersome observations and 

measurements, and constitutes the outcome of these investigations. Although the nature of many retrieval 

studies is similar in terms of the existing predictors and response variables, a diverse range of statistical 

methods is used by the literature to study their associations. 

Generally, these analyses belong to three groups of methods, (1) correlations (e.g. Pearson product-moment 

and Spearman’s rank-order), (2) comparing average (median) values between groups (e.g. student t-test, 

ANOVA, Mann-Whitney, and Kruskal-Wallis test), and (3) prediction of outcome variable (e.g. multiple linear, 

binomial, and ordinal regression). Reviewing the literature of large-scale retrieval studies reveals that while 

the first two categories have been the popular methods [37, 39, 131-133], the last group, more specifically 

Ordinal Logistic Regression (OLR), has been seldom used by retrieval studies [46, 56, 134]. 

Correlations 

This group only works for univariate analyses. While Spearman’s rank-order has been used 

frequently by many studies [6, 24, 31, 36, 135], Pearson product-moment has been used less often 

[136, 137].  

Spearman’s rank-order provides a measure of the strength and direction of the association between 

two continuous or ordinal variables. The ordinal nature of visual scores justifies the higher 

popularity of this method compared with its counterpart. 

Pearson product-moment measures the strength and direction of a linear relationship between two 

continuous variables. For instance, multicollinearity of continuous patient/implant factors as well as 

associations between these factors and material loss have been quantified via this method. 

Comparing Differences Between Groups 

This group can be deployed to conduct univariate as well as multivariate analyses (e.g. student t-

test, ANOVA, Mann-Whitney, and Kruskal-Wallis test). However, the number of included factors in 

multivariate analyses may not go higher than two or three which makes this method inefficient for 
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conducting multivariate analyses of several patient/implant factors. Since this group of analyses 

compares the mean (median) between groups of categorical factors, only categorical factors can be 

analysed via this group, not continuous factors. The strict assumptions of this group of methods 

demand a reasonable quantity of observations in each cell of the design to check for outliers, the 

distribution or variance of damage scores. 

Ordinal Logistic Regression 

OLR can also handle both univariate and multivariate analyses (e.g. multiple linear, binomial, and 

ordinal regression). Since the assumptions of OLR do not mandate a particular distribution of data 

or similar variance in each cell of design, more factors can be included in multivariate regression 

models compared with the previous group of methods. Unlike the previous two groups, OLR models 

can take in both numerical as well as categorical factors. More importantly, besides the 

determination of the influence of several factors on an ordinal variable, OLR provides predictive 

models that can be used to predict damage scores based on the available patient/implant data. This 

attribute of OLR sets it different from the other two groups since the outcome would not be 

retrospective analytics any more, but predictive analytics.  

OLR belongs to the larger group of machine learning techniques that achieve a model using the 

training data when equation and laws are not promising. Besides OLR that fits a linear model to 

predict visual scores, there exist several other machine learning techniques that address situations 

where more complex nonlinear models may provide higher classification (scoring) accuracy.  

Summary of the Literature and Highlights of the Research Gap 

This chapter elaborated on several large-scale retrieval studies of hip replacement implants that had 

investigated many potential associations between patient/implant properties and fretting or 

corrosion damage at various junctions of these prostheses. Reviewing these studies revealed several 

issues that may pose concerns over the reliability of the study outcomes. 

In the next chapter, the reviewed methodologies are tailored to an intelligent algorithm that utilizes 

DIP and machine learning to objectively score corrosion damage in a large-scale retrieval study. Also, 

OLR, as well as other machine learning techniques, will be developed to generate both retrospective 

and prospective analytics based on the available patient/implant data. 
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Comparison of Corrosion at the Zones 

There are several studies that scored stem tapers locally according to a set of predefined zones [31, 

44, 53, 55, 131, 132, 138-141]. The literature usually assumes the overall value as the global score 

for each implant [31, 55, 131, 132, 138]. This has led to presuming that this global score is a 

continuous variable, and statistical analyses for continuous variables have been utilised. Analysing 

a continuous variable with an interval or ratio level of measurement is generally less complex in 

nature. However, an increased number of levels in the global score does not imply a known 

“distance” between the score levels. Therefore, it is required to search for more reliable 

alternatives. Therefore, this approach was treated with suspicion in this study and was not adopted. 

An alternative approach can be for zone to go through only univariate analysis based on the local 

scores, and the other predictors to go through univariate or multivariate analyses by holistically 

scoring the damage. Based on the advantages of OLR over the other statistical methods, it can fulfil 

both these tasks. 

The number of zones scored at stem tapers has seldom gone beyond four (anterior, medial, 

posterior, and lateral quadrants). One reason for that could be the complexity of conducting 

pairwise comparisons within the groups of zone factor. With four zones, six combinations (order 

disregarded) would be required. If it is desired to consider the distal and proximal regions of each 

quadrant as well, 28 (i.e. 
8!

(8−2)!×2!
) pairwise comparisons would be required to investigate the 

damage thoroughly. The studies that scored the distal and proximal regions separately have 

observed different damage patterns within these regions [44, 140, 141]. Therefore, it is required to 

look at stem taper zones with a higher level of granularity to explore whether any significant 

difference exists between the distal and proximal regions of the quadrants. 

Visual Scoring Reliability 

Visual scoring of fretting has been associated with several issues by the literature. According to 

several studies, fretting might be masked by corrosion damage and, consequently, hard to visually 

identify [31, 44]. Also, Hothi et al. [31] maintained that severity of fretting in Goldberg’s method 

could not be measured consistently because the pitch of the machined thread of trunnion varies 

among different stem designs. Besides, fretting scars can be mixed up with scratches caused by 

attaching or detaching the head intraoperatively [132]. 
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It was discovered that the damage severity is measured by only semi-quantitative methods of visual 

scoring in large-scale retrieval studies, whereas having a numerical (rather than an ordinal) measure 

may significantly improve the damage resolution. Numerical metrics are superior in capturing the 

variability of damage which in turn results in more accurate statistical inference outcomes. To 

measure material loss, complex instruments which perform surface profilometry are required, 

wherein time and cost feasibility limitations do not allow employing that for large sample sizes. 

Due to these drawbacks, quantification of corrosion damage in large sample sizes was investigated 

in other domains of corrosion-related applications. It was discovered that a new group of methods 

had been developed over the past decade that is based on analysis of images or signals that are 

obtained from corroded samples. They capitalise on the principles of image/signal processing and 

machine learning to provide categorical or numerical measures of damage that might have been 

induced naturally or in a lab environment. More specifically, it was pointed out that they have been 

used to analyse the shape and location of defects, rate corrosion severity, or identify corrosion 

typology. While this new group has shown promising results in various corrosion-related 

application, no retrieval study has considered deploying them in the analysis of wear or corrosion 

at the hip or other orthopaedic implants.  

The studies that have used this group of methods deployed various texture and shape analysis 

techniques which have been in use by areas other than corrosion for similar purposes (e.g. 

classification or prediction). Therefore, having a reasonable level of insight into the texture analysis 

methods that have been developed in other texture related applications may facilitate developing 

simple yet effective algorithms. 

Rating the corrosion severity at hip replacement implants can be more challenging in comparison 

with many similar studies that have addressed corrosion as rust [67, 68, 70]. The morphological 

attributes that can be used in characterising corrosion at taper junctions confine to just texture 

while both colour and texture play a prominent role in characterising rust. 

Also, there are additional complexities in the nature of this classification problem compared to those 

algorithms that work based on a set of well-defined classes (e.g. object classification). In retrieval 

studies, visual scores need to be benchmarked to train and evaluate the performance of machine 

learning algorithms. These scores are prone to the existing reliability concerns which may impact 

the quality of classifiers. It should be noted though that machine learning aims to take over the role 
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of an expert. Therefore, to address this matter, it is essential for the images to be scored by an 

experienced investigator in the training phase so the resulting classifier can provide the same 

expertise which then can be used by anyone and anywhere in future. Looking at classification 

problems in popular contexts such as medical image analysis shows a similar situation in which 

objects (regions) of interest have to be labelled in training images by an expert to develop intelligent 

classification tools. 

The application of local features in corrosion images are limited to a few studies that only used them 

for image registration purposes. However, it was observed that areas other than corrosion had used 

them successfully as texture descriptors. Hence, it needs to be investigated whether popular local 

feature detectors and descriptors (e.g. SIFT or SURF) can be used in characterising texture in 

corrosion images. 

Multivariate Analysis 

Considering the large number of factors that have been identified so far as potential contributors 

toward damage, and the synergistic role of these factors in the outcome of hip replacement 

operations, it is essential to study the role of these factors via multivariate analyses. 

Although the nature of many retrieval studies is similar in terms of the existing predictors and 

response variables, a diverse range of statistical methods is used by the literature to study their 

associations. Review of the literature revealed that the majority of these methods face limitations 

to perform multivariate analysis. These limitations mostly arise from assumptions that demand 

specific distribution of scores and equal variance in each cell of design. However, the assumptions 

of OLR does not require maintaining such conditions. Also, unlike the other methods which can 

handle only predictors with specific levels of measurement, OLR can handle continuous, 

dichotomous, and polytomous predictors simultaneously. 

OLR is a method that has been seldom used by the literature. The studies that used this method 

have not analysed polytomous variables. Analysing this type of variables such as zone and stem 

design requires several pairwise comparisons to obtain an overall test of statistical significance. 

These comparisons do not directly sort the groups in terms of the severity of the damage. Therefore, 

it is required to devise a method to fulfil this task. 
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One drawback of using regression models for multivariate analysis is that all the factors may not be 

included in a model due to the possibility to violate the multicollinearity and proportional odds 

assumptions. Another issue which exists for all statistical analyses is missing information which is an 

inherent characteristic of healthcare data. Increasing the number of included factors will result in a 

drop in the number of eligible records following listwise deletion. These two reasons turn the 

variable selection into a cumbersome task. Regression models with different sets of factors yield 

different outcomes. For instance, a particular factor grouped with two distinct sets may turn from 

significant into insignificant or vice versa. The significance of this matter needs to be investigated. 

The retrieval studies that deployed OLR have only used it to produce retrospective analytics to 

investigate the influence of the factors that hypothesised to be contributing to damage scores. 

Hence, the quality of the regression models in the prediction of damage has been overlooked and 

not reported so far. Considering OLR as a baseline machine learning technique for more complex 

nonlinear models, a comparative investigation of linear (i.e. OLR) versus its nonlinear counterparts 

is required to identify suitable predictive analytics techniques for the context of retrieval studies. 

Research Aim and Objectives 

This section specifies the aim and objectives of this research study, following the review of three 

spheres of literature that were comprised of large-scale retrieval studies of hip replacement 

implant, DIP and machine learning algorithms in analyzing corrosion, and DIP and machine learning 

in texture analysis within application other than corrosion. This thesis is to address the reliability 

concerns associated with the visual scoring of corrosion by developing an intelligent method. 

Aim 

 Incorporating Artificial Intelligence (AI) to objectively determine corrosion scores based on

the medical records data as well as features extracted from images of stem trunnions

Objectives 

 to search and identify a set of explants in the retrieved implant library of Royal Adelaide
Hospital that meets the inclusion criteria for this study

 to develop a photography setup that enables capturing images of stem trunnions under
desirable lighting-optics-viewing conditions
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 to determine a set of morphological attributes within images of corroded regions that
provide superior discriminatory power for this classification problem

 to train, optimize, and cross-validate a machine learning algorithm that learns statistical
patterns within images belonging to the same Goldberg score levels with an acceptable
accuracy rate and computation cost

 to compare the severity of corrosion damage at eight distinct zones of stem tapers

 to investigate the variability of regression model outcomes when different sets of factors are
selected

 compare the accuracy of several machine learning methods in prediction of the corrosion
scores based on implant records data
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3 METHODOLOGY 

METHODOLOGY 

[Image removed due to copyright restriction]
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Introduction 

The core of this chapter is about deploying AI to objectively predict the sustained corrosion damage 

and find possible associations between that and several patient/implant attributes. Prediction of 

corrosion scores can be achieved via two different alternatives. The first approach utilises images of 

stem tapers to rate the severity of damage according to a desirable scoring method. The second 

approach is based on using the patient and implant data to achieve a predictive model. 

Designing an intelligent algorithm that can be trained according to a desired visual scoring method 

and automatically score images of stem tapers of hip replacement implants was inspired by the 

literature of texture analysis in corrosion and some other applications that offers guidelines in 

choosing and implementing accurate yet efficient methods. When it comes to choosing the 

programming environment, one can choose software packages that provide libraries and toolboxes 

of common relevant workflows. In this study, MATLAB was selected as the programming tool. The 

Image Processing toolbox along with Statistics and Machine Learning toolbox offer several functions 

and interactive applications that can be used to perform tasks such as feature extraction and 

multidimensional data analysis. Rather than programming in a lower-level language (e.g. Java, C, 

C++, or Fortran), where it is required to perform tasks such as declaring variables, specifying data 

types, and allocating memory, MATLAB enables one to focus on the actual problem and apply 

concepts in a wide range of engineering, science, and mathematics applications. It offers thousands 

of engineering and mathematical functions which eliminates the need to code and test them 

yourself. Once an algorithm was designed and tested, MATLAB coder workflow can generate a 

corresponding standalone C or C++ code to be used in desktop, mobile or web applications. 

Acquiring the Implants 

This study was approved by the Southern Adelaide Clinical Human Research Ethics Committee 

(Reference No. 485.13). The inclusion criteria associated with the suitable implants for this study 

were (1) revision operations between 1995 and 2015 (2) detached head and stem (3) available 

patient record. To identify the right retrievals for this study, 2131 records of the primary and revision 

operations at Royal Adelaide Hospital (RAH) were explored to find the revision procedures in which 

both the head and stem had been retrieved. These records were checked against the information 

in Our Patient Management and Outcomes Database (OPMOD) of RAH to resolve any missing or 

conflicting information. The outcome was 302 cases with 164 attached head-neck and 138 detached 
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head-neck junctions. The attached cases were excluded from this study. Also, the record for one 

case with attached head-neck could not be found. 

Table 3-1 summarises the demographics and the implant information of this pool. Despite the great 

efforts to resolve the missing data issue, it could not be entirely addressed. 

Table 3-1 Demographics of the selected retrievals for this study 

Predictor Quantity (% frequency) Median Range 

Head Material 

CoCr 60 (43.8) 

Stainless Steel (SS) 7 (5.1) 

Ceramic 8 (5.8) 

Stem Material 

CoCr 54 (39.4) 

Stainless Steel (SS) 41 (29.9) 

Titanium 31 (22.6) 

Stem Fixation 

Cemented 76 (55.5) 

Cementless 50 (36.5) 

Gender 

Female 57 (45.2) 

Male 69 (54.8) 

Stem Taper 

12/14 52(38.0) 

V40 19 (13.9) 

9/10 12 (8.8) 

6° 8 (5.8) 

C-TAPER 8 (5.8) 

TYPE 1 2 (1.5) 

11/13 3 (2.2) 

10/12 1 (0.7) 

Joint Side 

Right 69 (54.8) 

Left 57 (45.2) 

Head Diameter (mm) 28 22-55

Time to Revision (year) 6 0-35

Weight (kg) 77 51-178

Age at Primary (year) 63.5 22-85

According to the Implant Retrieval, Cleaning and Documentation Protocol developed at the Royal 

Adelaide Hospital, the retrieved implants were immersed in 70% ethanol for four days; and 

subsequently, washed with running water. The washed implants were then immersed in 4% Biogram 

solution (polyphenolic disinfectant and detergent with approximately 18% phenol) and left in a 
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fume cupboard for 48–72 hours. During the decontamination process, biologic debris such as blood 

or proteinaceous films were carefully removed using a cotton bud without abrasion. For this study, 

the stem tapers were further cleaned by immersing them in acetone for three minutes followed by 

a gentle wipe with a soft nylon brush to ensure the surface was free of any biological film or dirt.  

Photography 

The performance of any DIP algorithm can be sensitive to affine distortions, scene illumination, 3D 

camera viewpoint, and background clutter. The metallic surface of stem tapers can produce high 

reflections of light which usually appear as strips of glare that cover the surface partially and 

deteriorate the quality of an image. Also, these surfaces reflect the colours of nearby objects which 

is undesirable. Hence, it was required to develop an overall plan for a vision system to minimise the 

presence of glare and reflections from the nearby objects such as camera and implant fixtures which 

deteriorates the quality of images. In doing so, the following matters have to be addressed via 

experimentation. 

 Configuring an optical sub-system (i.e. placing the lighting, optical elements and camera)

 Calculating field-of-view, depth of focus, and image resolution

 Choosing an appropriate image sensor (camera)

To create a controlled set of conditions for the photography, imaging of implants was performed in 

a cubicle. An Olympus TG-4 camera with a resolution of 16 Megapixels was selected because that is 

the only compact camera that offers the focus stacking feature. This feature allows the camera to 

take multiple consecutive shots of a scene with several different degrees of depth of field and 

merges them so that the entire scene is in focus from the foreground to the background. This feature 

was initially believed to be vital as the taper surfaces are curved, and imaging from a close distance 

(below 100 mm) results in the focus to be on only a specific portion of the stem tapers. However, a 

shorter distance between the camera and an implant was found to give rise to the high reflection 

of the camera’s image on the surfaces of the implant. 

To cover the entire 360° of the circumferential areas of tapers, four shots (anterior, medial, 

posterior, and lateral) were taken by imaging the tapers every 90°. Distal ends of the stems were 

inserted inside a high-density foam in angles and levels for the tapers to be placed in the centre of 

images with a minimum level of inclination to the sides. Table 3-2 details out the camera settings. 
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Table 3-2 The camera settings 

Feature Setting 

Optical Zoom x4.0 - MAX 

Digital Zoom - 

Mode Microscope 

Flash Off 

Picture Mode Natural 

Exposure Compensation 0 

White Balance Yes 

ISO Auto 

Resolution 3456 x 3456 pixels 

Aspect Ratio 1:01 

Compression Fine 

Auto Focus Mode Spot 

Image Stabiliser Off 

These settings allowed for reduced levels of noise and consistent quality in images. To minimise the 

reflection of the surrounding objects in the tapers, an implant and its fixation foam were placed 

inside a cylindrical shade with a diameter of 420 mm. The camera was fixed via a flexible arm in 

place and placed outside and tangent to the shade. A hole in the wall of the shade with a diameter 

of 10 mm allowed the camera to capture images, and avoid the camera’s reflection in the implants 

(Figure 3-1).  

Figure 3-1 The position of the camera with respect to the shade (left image). The distance between the 
implant the camera was 250mm (right image) 

To further minimise the reflection, the implants were placed 250 mm away from the camera which 

was the maximum distance that still allowed for the camera and the fixation foam to freely rotate 

360° inside the enclosed area of the shade (Figure 3-1). 



77 

The lighting source was a DC Ikan Daylight LED spotlight that provides illumination with a reasonably 

low level of fluctuation. To suppress the glare, a fabric diffuser was used to cover the top section of 

the shade to provide a uniform illumination inside the shade. 

Four shots from each of the 138 tapers were captured which resulted in 552 images each displaying 

a 90° region of the cylindrical geometry of the tapers. Otsu's method was used to segment the stems 

from the background. Using the oblique sides of the taper, each image was rotated to ensure the 

top side of the taper is horizontal. Next, the coordinates of the four corners of the taper were 

obtained and used to locate the middle section (i.e. the 90° region) which constitutes the region of 

interest (ROI) that represents a quadrant. 

Figure 3-2, schematically, illustrates the front view of a stem taper in which P and D subscripts 

denote proximal and distal regions, respectively. The coordinates of the four top-left (BP), top-right 

(EP), bottom-left (BD), and bottom-right (ED) extrema points of the segmented tapers were obtained 

via blob analysis. Since each image covers the entire 180°, and it was desired to crop the middle 

90° ROI, the coordinates of the four corners of the ROI were calculated. 

Figure 3-2. The front view of a typical stem taper along with the calculated ROI. 

The stem tapers had a circular cross-sectional area, so from the coordinates of the four extrema 

points, the radii at the distal and proximal regions were calculated as half of the sides BE at these 

two regions. By using the radii and the extrema points’ coordinates, the midpoint O was located 

which represents the centre of circular sections. 
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Figure 3-3. The top view of a typical stem taper along with the calculated ROI. 

Figure 3-3, schematically shows half of the cross-sectional area of a taper which is the top view of 

Figure 3-2. Given the radius and the fact that the ROI is the middle 90° segment (arc CF), the sides 

AB and DE which are equivalent to CB and FE in Figure 3-2 were calculated as follows: 

𝑂𝐶 = 𝑂𝐵 = 𝑟 

𝐶𝑂𝐹̂ = 90° 

𝐴𝑂𝐶̂ =  𝐴𝐶𝑂̂ = 𝐵𝑂𝐶 =̂ 45° 

𝐴𝐶 = 𝐴𝑂 

𝐴𝐶 =
𝑟

√2

𝑂𝐵𝐶̂ =  𝑂𝐶𝐵̂ =
180° − 𝐵𝑂𝐶̂

2
= 67.5° 

tan 𝑂𝐵𝐶̂ =
𝐴𝐶

𝐴𝐵
=

𝑟
√2⁄

𝐴𝐵

𝐴𝐵 =  
𝑟

√2 × tan 67.5

Considering the symmetry of this geometry, DE and AB are equal. By subtracting these two offsets 

from BE, the top and bottom sides of the ROI were determined. Figure 3-4 displays the result for a 

left joint stem taper where the red lines represent the boundaries of the ROI in each image. 
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Anterior Medial Posterior Lateral 

Figure 3-4. A sample of the four quadrants of a taper and the corresponding ROIs. 

Subsequently, each image was split from the middle horizontally to obtain the distal and proximal 

zones at each quadrant. Therefore, 1104 images were obtained from the 138 stem tapers in this 

work. Figure 3-5 displays the final result of an example taper. 

Figure 3-5. Eight images were obtained from each stem taper 
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Visual Scoring 

The accuracy of a classification algorithm was to be evaluated by comparing its predicted scores 

against the actual visual scores. Therefore, it was required to score the images visually to use them 

as the reference point. Since the aim was for the classification algorithm to utilise the expertise of 

the experienced investigator (RM) in this work, the investigator visually scored the images according 

to the Goldberg scoring method (Table ) to train a classifier. From each stem taper, one score for 

each of the eight zones was obtained. 

To score consistently, one trained investigator (RM) evaluated the damage. Eight images that 

correspond to posterior-distal, posterior-proximal, medial-distal, medial-proximal, anterior-distal, 

anterior-proximal, lateral-distal, and lateral-proximal zones of each stem taper were scored in 

randomly. Figure 3 displays a sample of each score level.  

Table 3-3. The visual criteria for scoring corrosion damage [24]. 

Score Corrosion Criteria 

1 (None) No Visible Corrosion 

2 (Mild) <30% Surface Discoloured / Dull 

3 (Moderate) >30% Surface Discoloured / Dull or <10% Containing Black Debris, Pits or Etch Marks

4 (Severe) >10% of Surface Containing Black Debris, Pits, or Etch Marks

score: 1 score: 2 score: 3 score: 4 

Figure 3-6. Scores of 1 through 4 for stem tapers. 

The DIP Algorithm 

After acquiring the images and visually scoring them, several features were extracted. These 

features are scalar properties of an image that provide a succinct and compact representation which 

can be very useful when dealing with large volumes of images with possibly high resolutions. There 

are potentially many features which can be selected and used, and this is a hot topic of research in 

the application of DIP in various contexts [70]. The features used in this study were selected 

according to the literature of corrosion-related DIP and focused on surface texture which is believed 

to be closely related to the degree of corrosion damage [61, 70, 77]. In this study, the Computer 
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Vision System Toolbox of MATLAB was used to extract three groups of global features, namely first 

and second-order image statistics, and wavelet features; plus one group of local features known as 

Speeded-Up Robust Features (SURF). The following sections present how these four groups are 

calculated and discuss their contribution toward the quality of this classification problem.  

First Order Image Statistics 

As a global descriptor of images, this group of features is derived from histograms of intensity 

distribution to characterise texture [86]. Similar to many conventional cameras, the colour model 

of the original images captured in this study was RGB (Red-Green-Blue). To calculate this group of 

features, first, the colour model was transformed to HSV (Hue, Saturation, and Value) by ‘rgb2hsv’ 

command because it decouples chromaticity (H and S) from brightness (Value). In a set of images, 

due to luminance fluctuations, the Value colour component may not be reliable and is usually 

excluded from feature extraction [68, 71].  

The first-order image statistics were obtained from the histograms of the Hue and Saturation colour 

components only. Equation 1 gives the first-order histogram P(i) in which i represents the grey levels 

of an image (i.e. 1 ≤ i ≤ 256). 

𝑃(𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑒𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
(1) 

From each histogram, six features (mean, standard deviation, smoothness, third moment, 

uniformity, and entropy) were calculated according to  which resulted in 12 (6 × 2) values. Equations 

2-7 provide the corresponding mathematical expressions.

𝑚𝑒𝑎𝑛 = ∑ (
𝑖

256 − 1
) × 𝑃(𝑖)

256−1

𝑖=0

 (2) 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √ ∑ (
𝑖

256 − 1
− 𝑚𝑒𝑎𝑛)

2

× 𝑃(𝑖)

256−1

𝑖=0

 (3) 

𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = 1 −
1

(1 + 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛2)
(4)
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𝑡ℎ𝑖𝑟𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 = ∑ (
𝑖

256 − 1
− 𝑚𝑒𝑎𝑛)

3

× 𝑃(𝑖)

256−1

𝑖=0

 (5) 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ (𝑃(𝑖))
2

256−1

𝑖=0

(6) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃(𝑖) × log2 𝑃(𝑖)

256−1

𝑖=0

 (7) 

Table 3-4 summarises these 12 (6 × 2) features. 

Table 3-4. The first-order image features from Hue and saturation components. 

1st Order Image Statistics 

Hue_Mean Sat_Mean 

Hue_Standard Deviation Sat_Standard Deviation 

Hue_Smoothness Sat_Smoothness 

Hue_Third Moment Sat_Third Moment 

Hue_Uniformity Sat_Uniformity 

Hue_Entropy Sat_Entropy 

Second-Order Image Statistics 

Intensity histograms have limitations including that they do not provide information about the order 

of the measured intensity frequencies. In other words, they do not reflect the spatial relationships 

between the pixels and only provides information about their intensities. To overcome this issue, 

Grey Level Co-occurrence Matrix (GLCM) was used to extract the second group of features. GLCM 

is a popular method for statistical texture analysis of corrosion defects or other types of surfaces 

[61, 66, 77]. 

GLCM is the matrix of relative frequencies PØ,d (i,j) that describes how frequently two pixels with the 

grey levels i and j appear in a window separated by an offset distance d in direction Ø. The 

dimensions of a GLCM depends on the range of grey levels that it covers. In a digital 8-bit image, 

there exists up to 28 distinct grey levels which yield up to 256 × 256 GLCMs. Memory requirements 

may mandate scaling the grey level values to a smaller set, but it results in a reduced grey level 

accuracy [86].  
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In this study, from a GLCM, at a particular distance and direction, five numerical features, namely 

energy, entropy, contrast, correlation, and homogeneity were calculated, according to Equations 8-

16 [86, 91]. 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑗=0

256

𝑖=1

(8) 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ [(𝑖𝑗)𝑃𝜙,𝑑(𝑖, 𝑗)] − 𝜇𝑎𝜇𝑏

256
𝑗=1

256
𝑖=1

𝜎𝑎𝜎𝑏

(9) 

𝜇𝑎 = ∑ 𝑖 ∑ 𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑗=1

256

𝑖=1

 
(10) 

𝜇𝑏 = ∑ 𝑗 ∑ 𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑖=1

256

𝑗=1

 
(11) 

𝜎𝑎 = ∑(𝑎 − 𝜇𝑎)2 ∑ 𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑗=1

256

𝑖=1

(12) 

𝜎𝑏 = ∑(𝑗 − 𝜇𝑏)2 ∑ 𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑖=1

256

𝑗=1

(13) 

𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ (𝑃𝜙,𝑑(𝑖, 𝑗))
2

256

𝑗=1

256

𝑖=1

(14) 

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑃𝜙,𝑑(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

256

𝑗=1

256

𝑖=1

(15) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃𝜙,𝑑(𝑖, 𝑗) × log2 𝑃𝜙,𝑑(𝑖, 𝑗)

256

𝑗=1

256

𝑖=1

 
(16) 

The offset distance was considered as 1 pixel, and over four directions, the GLCMs were obtained 

which resulted in obtaining four GLCMs for each image. Table 3-5 summarises the matrix of distance 

and direction offsets which correspond to the top, top left, left, and bottom left directions. The 
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positive horizontal and vertical coordinates correspond to the right and upward directions, 

respectively. 

Table 3-5. One offset distance and four directions for GLCM. 

Orientation Horizontal Distance (pixels) Vertical Distance (pixels) 

top 0 1 

top-left -1 1 

left -1 0 

bottom-left -1 -1

A GLCM is symmetrical with respect to the main diagonal because the order of selecting the two 

pixels is not important. Therefore, the other four directions were not accounted for here. Having 

four GLCMs for an image from which five features had been calculated resulted in 20 second-order 

image statistics (Table 3-6). In this study, the ‘graycomatrix’ and ‘graycoprops’ commands were used 

to calculate GLCMs and the five features, respectively. 

Table 3-6. The second-order image features based on the four directions. 

2nd Order Image Statistics 

Direction_1 Direction_2 Direction_3 Direction_4 

Energy_1 Energy_2 Energy_3 Energy_4 

Entropy_1 Entropy_2 Entropy_3 Entropy_4 

Contrast_1 Contrast_2 Contrast_3 Contrast_4 

Correlation_1 Correlation_2 Correlation_3 Correlation_4 

Homogeneity_1 Homogeneity_2 Homogeneity_3 Homogeneity_4 

It should be noted that texture description is highly scale-dependent. When texture elements are 

large enough, they might be defined in more than one scale. Therefore, image resolution (scale) 

must be a consistent part of the texture description [86]. Huang et al. [94] maintained that those 

features extracted from second-order statistics could be inadequate since at a particular scale, some 

textures with the same numerical features can be easily discriminated by human visual systems. To 

decrease the problem of scale sensitivity, the texture needs to be described in multiple scales by 

using a coarse-to-fine multi-resolution strategy [86]. Over the past two decades, multi-resolution 

analysis techniques such as wavelet transform have received a great deal of attention in various 

applications of DIP, particularly the analysis of corrosion images [63]. Therefore, wavelet transform 

was used to extract the third group of global features in this study. 
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Wavelet Features 

It is well established that gradients of intensity in various directions over different scales reflect the 

texture of an image [96]. An effective method to capture image gradients at different magnitudes 

and directions is to use 2-D Fourier Transform (FT). Using this transform, an image can be 

reconstructed to obtain a frequency-space representation. In the context of corrosion, defects 

appear as abrupt spatial changes in intensity which result in high frequencies in the corresponding 

FT reconstruction. Using this property, high-pass (HP) and low-pass (LP) filters can be created that 

pass specific spatial frequencies into the reconstruction while suppressing the others. These filters 

can be used to visually highlight texture features with particular magnitudes or directions [74]. 

Wavelet transform is computed by the convolution of the signal (image) and the scaled-shifted 

versions of a mother wavelet function (e.g. Daubechies, Haar, BiorSplines, and Gaussian). Figure 3-7 

shows a single decomposition wavelet transform that is implemented by a bank of 1-D HP and LP 

filters. 

Figure 3-7. 1-D discrete wavelet filters applied first horizontally and then vertically. 

Here, Si
LL is the input image at resolution level i. According to the Nyquist’s rule, decomposition of 

an image with an LP or HP filter yields almost twice as much data. To keep the amount of data almost 

the same size as the input, the data was down-sampled following each filtering (which is 

represented by the circle blocks in Figure 3-7). H and L represent 1-D HP and LP filtering and the r 

(rows) and c (columns) superscripts denote the direction of down-sampling. The circle blocks which 

perform down-sampling are 2↓1 (keeping one column out of two) or 1↓2 (keeping one row out of 

two) [66, 95]. 
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The result is the decomposition of the input image into four sub-band images. Di+1
LH, Di+1

HL, and 

Di+1
HH correspond to the low-high, high-low and high-high bands in the frequency domain, 

respectively. Also, these images highlight the horizontal, vertical, and diagonal details in the input 

image. Si+1
LL (low-low component) is an LP filtered version of the input image that would be the input 

for further wavelet decompositions.  

At each decomposition level, the wavelet transform coefficients of the three detailed sub-band 

images produce a number of textural features. Among them, wavelet energy signatures which 

reflect the distribution of energy along the frequency domain are often employed as corrosion 

texture features. The energy signature arrays are denoted by [𝐸𝐿𝐻𝑖
𝐸𝐻𝐿𝑖

𝐸𝐻𝐻𝑖
]. The length of each

array is equal to i (decomposition level) [66, 95, 97]. Yan et al. [69] computed a number of features 

from the energy signatures which were adopted in this study. From the summation of the three 

energy features, the global distribution of energy at a particular decomposition level (𝐺𝑖)  was 

calculated (equation 17). Also, the local distribution of energy was calculated (equation 18).  

𝐺𝑖 =  𝐸𝐿𝐻𝑖
+ 𝐸𝐻𝐿𝑖

+ 𝐸𝐻𝐻𝑖
(17) 

𝐿𝑖 =
𝐸𝐻𝐻𝑖

𝐸𝐿𝐻𝑖
+ 𝐸𝐻𝐿𝑖

(18) 

In general, from a k level decomposition of an image, 2k global and local features can be obtained. 

The images were decomposed down to three levels based on the assumption that the 

decomposition levels should be selected to ensure that the size of the smallest sub-image is greater 

than 10 × 10 pixels. Therefore, six energy features from the wavelet transform of the images were 

obtained as summarised in Table 3-7. 

Table 3-7. The 6 extracted features from the wavelet transform of an image. 

Wavelet Energy 

Decomposition Level 1 Global_1 Local_1 

Decomposition Level 2 Global_2 Local_2 

Decomposition Level 3 Global_3 Local_3 

Speeded-Up Robust Features (SURF) 

Unlike global features which are directly extracted from an entire image, two components are 

required for local feature extraction, namely detector and descriptor. A detector picks the location 

of a number of interest points within an image, and then a descriptor extracts a vector of region 

descriptors from a neighbourhood of each interest point. A literature review in the other texture 
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analysis applications (e.g. land-use remote sensing and medical image annotation) revealed that 

Scale Invariant Feature Transform (SIFT) that was introduced by Lowe [142] could provide superior 

results in classification problems. One reason for SIFT to be popular in texture classification 

problems is robustness to reasonable levels of 2-D affine transformations, scale, and viewpoint 

changes [103, 119]. 

More recently, because of the wider utilisation of local features in new image-based applications, 

different versions of SIFT have been proposed [110, 111]. In 2008, a refinement on the basic scheme 

of SIFT known as Speeded-Up Robust Features (SURF) was introduced to address the concerns 

associated with SIFT computation costs [102, 113]. Therefore, this study used SURF according to Bay 

et al. [99]. 

In this work, two methods to define the SURF interest points were compared. The first method is 

based on using the SURF detector, while the second method relies on a regular grid that is 

superimposed over an image. The quality of the obtained features from both methods was near 

identical. Hence, the second method was adopted here due to its lower computation cost. 

According to this approach, the interest points are considered as the gridline intercepts of a regular 

8 × 8 grid. For each interest point, four neighbourhood blocks (patches) with dimensions of 32, 64, 

96, and 128 pixels were used to investigate texture at different scales. In the next step, a SURF 

descriptor calculated vectors of region descriptors for the patches. The distribution of these vectors 

in the four classes is summarised in Table 3-8. 

Table 3-8. The quantity of the vectors of region descriptors obtained from each class. 

Class Images SURF 

1 364 3307164 

2 515 4743644 

3 174 1641092 

4 51 401788 

At each class, 80% of the strongest region descriptors were preserved, and the rest were discarded. 

Also, to balance the number of descriptors across the four categories, only 321430 of them at each 

class were used which is equal to 80% of the minimum detected descriptors (i.e. class 4 with 401788 

descriptors). 
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To calculate local features from the region descriptors, a Bag of Visual Words (BOVW) model was 

used. BOVW identifies visual words (numerical features) that best characterise the images. Since it 

was desired to extract 1000 SURF features, the descriptor vectors were quantised into 1000 clusters 

by using k-means clustering. The cluster centroids which act as the visual words were quantified in 

each image to find a frequency histogram. This histogram constitutes the feature vector, and its 

length corresponds to the number of visual words (1000). Figure 3-8 illustrates an overview of this 

process. 

Figure 3-8. An overview of the process of interest point selection, extraction of region descriptors, and 
BOVW. 

Dimensionality Reduction 

Describing morphological attributes of corrosion damage is a challenging task. There exists no 

integrated theory to offer a set of specific features that provide a desirable level of discriminatory 

power to classify the intensity or typology of corrosion damage. Each study, according to the 

acquired images, the classification objectives, and the available computational technology has used 

a specific set of features. To overcome this issue, a relatively wide variety of features compared with 

similar corrosion-related studies were extracted in this study. 

Multivariate data analysis can be used to assess the discriminatory power of the obtained features. 

Through this process, the contribution of each feature can be determined and subsequently, those 

with negligible levels of power can be discarded. Dropping those features improves not only the 
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quality of the feature vectors but also reduces their dimensions which in turn lowers the 

computation cost of the subsequent classification algorithm.  

 Alternatively, the feature can be combined to obtain a transformed version which produces a 

simpler description of the system in terms of capturing as much of the variability in data. These two 

approaches (i.e. feature selection and feature transformation) are for dimensionality reduction, and 

each can be implemented in several different ways. 

It is the nature of the features which determines more suitable methods for a specific problem. 

Feature selection is preferable to feature transformation when the original units and meaning of 

features (e.g. categorical features) are important, and the modelling goal is to identify an influential 

subset. While this is not essential to for DIP features, it is required to maintain this condition for 

patient and implant factors since they directly influence the decisions of surgeons and 

manufacturers. Therefore, DIP features will be explored via both feature selection and 

transformation to identify which approach can yield superior features for machine learning 

algorithms. Since the number of patient and implant features is very low compared with DIP 

features, feature selection or transformation do not apply to this group of features. 

Another criterion to select a feature selection or transformation technique is whether the data 

points come with actual classes. If it is desired to discover the patterns within the feature space, 

unsupervised feature selection techniques are required. However, if it is desired to obtain superior 

features in terms of predicting the actual classes of data points, supervised classification techniques 

should be used. The performance quality of one unsupervised and one supervised feature selection 

and transformation techniques were compared based on incorporating their outcomes in 

subsequent unsupervised and supervised machine learning methods. 

Principal Component Analysis 

A popular unsupervised method is Principal Component Analysis (PCA) which is also knowns as 

Hotelling transform [60, 63, 64, 74, 143, 144]. The common saying ‘Why use a hundred words when 

ten will do?’ embodies the central idea behind PCA, a very important and powerful statistical 

technique that aims to express information in its most succinct and compact form. In a feature space 

with many dimensions (variables), groups of variables often move together due to relatively high 

correlations between them. In other words, more than one variable might be measuring the same 

driving principle governing the behaviour of the system. This is the primary and essential 

http://au.mathworks.com/help/stats/feature-transformation.html
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requirement for PCA to be useful: the value of a given variable in the feature space, to some degree, 

is expected to be predictive of the values of the other variables. 

PCA is a feature transformation tool which can be extended to feature selection. As a feature 

transformation means, PCA synthesises new variables (components) which are a linear combination 

of the original ones. These components are uncorrelated, obey the same statistical distribution as 

the original feature vectors, and have a descriptive power that is more easily ordered than the 

original features. In this case, less descriptive components can be dropped from consideration when 

building models. Sometimes the context of the problem needs for conducting the classification using 

(a subset of) the original features. In such situations, via rotation of the matrix of PC coefficients and 

comparing the correlation of the features with each PC, feature selection is performed. 

PCA linearly transforms the feature space to obtain a set of principal axes which are uncorrelated. 

In doing so, the correlation or covariance matrix is calculated. Here, the latter will be used as 

methods for statistical inference based on the sample Principal Components (PCs) from the 

covariance matrix are easier and are available in the literature. Also, if the original features are 

normalised (mean-subtracted features divided by standard deviation), these two matrices will be 

identical. The PC coefficients will be calculated by ‘pca’ command in MATLAB. 

The dimensionality of the PCs is identical to that of the original features. PCA returns the PCs in the 

order of their contribution in explaining the variability of the original data points. This property of 

PCA helps with identifying PCs with no or negligible contribution and removing them to reduce the 

dimensionality of the feature space. Scree plot and Pareto chart can be used for this purpose. A 

Scree plot sketches the variance of the PCs. Looking at a Scree plot, one has to determine after how 

many PCs the plot converges to a horizontal line and retain them. Conventionally, PCs with variance 

values greater than 1 are preserved while the others are discarded. Using this criterion requires for 

the feature vectors to be standardised to have mean 0 and scaled to have a standard deviation 

(variance) 1. Alternatively, a Pareto chart can be used which cumulatively illustrates the contribution 

of the PCs. The first set of PCs which provide a cumulative contribution of at least 95% are preserved, 

and the rest are discarded. The latter approach is not sensitive to standardising the feature vectors 

as it addresses the percentages rather than their actual variance. 

Once the final number of PCs were determined, the next step is to interpret them. The covariance 

of the coefficient matrix of the selected PCs may reveal strong correlations of a variable with several 
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PCs or variables with no strong correlations with any of the PCs. To make the location of the PC axes 

fit the actual data points better, these axes can be rotated.  

There are many different types of rotations. An important difference between them is that they can 

create PCs that are correlated or uncorrelated with each other. Rotations that allow for correlation 

are called oblique rotations; rotations that assume the factors are not correlated are called 

orthogonal rotations. Brown [145] provides a detailed discussion about the selection criteria for the 

rotation method. 

The outcome of the coefficient rotation is called loadings which can be used to find which variables 

tend to clump together. In other words, a matrix of loadings which has the same dimensions as the 

coefficient matrix produces factors that have high correlations with one smaller set of variables and 

little or no correlation with another set of variables. PCA conducts feature selection by discarding 

those variables with no higher loading at any PC [61]. After removing some of the features, the 

entire process can be iterated by recalculating the PCA of the reduced feature space and removing 

the weaker features. 

Neighbourhood Component Analysis 

As a supervised technique, Neighbourhood Component Analysis (NCA) was implemented by the 

‘fscnca’ command in MATLAB. NCA selects features intending to maximise prediction accuracy of 

classification problems. In doing so, it calculates a weight for each feature for minimising an 

objective function which measures the average classification loss (error) of a 1-nearest-neighbour 

classifier over the training data. Therefore, besides the feature vectors, the corresponding scores 

were required to implement NCA.  

NCA has a regularisation parameter (λ) which may need tuning to further reduce the generalisation 

error. Normally, lambda is expected to be a multiple of 1/(number of images). Tuning lambda is 

carried out by an n-fold partitioning of the training data and splitting each fold into training and test 

subsets. A vector of lambda values which are multiples of 1/(number of observations) can be used 

to train an NCA model for each fold. Next, the generalisation errors for the corresponding test set 

in each fold using the vector of Lambda values were calculated. From the average loss values 

obtained over the folds for each lambda value, the lambda which returned the lowest average loss 

was selected. 
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Machine Learning 

So far, the corrosion damage morphology was characterised by several local and global features that 

replace an image with a representative feature vector. By using these vectors, the images were 

mapped into an abstract feature space as a point. The coordinates of each point were derived from 

the elements of its feature vector. In the context of classification, machine learning searches for 

decision boundaries or clusters that partition the images (points) according to their class in the 

feature space. To serve this goal, there exists a broad spectrum of machine learning techniques that 

can be categorised into unsupervised and supervised learning methods. 

In the context of visual scoring, the literature has used scores with a different number of levels. Two-

level scoring is a binary classification of images which can be used to detect whether there is any 

corrosion or not. Scoring methods with more than two levels are not just about detection; they rate 

the severity of the damage. 

Unsupervised learning (also known as cluster analysis) explores data and find how many clusters are 

naturally formed by the feature vectors in the feature space. Cluster analysis served two aims in this 

study. The first aim was to determine how many patterns exist naturally within the extracted DIP 

features. The second aim was to see whether the Goldberg scoring technique can be used in less or 

more than four levels. In other words, whether splitting a score level or combining two or three 

score levels can potentially improve the clustering results.  

On the hand, supervised learning is a straightforward task since the number of desired classes is 

already known, and it is not necessary to explore the data to determine the number of natural 

patterns. These algorithms find hyperplanes (decision rules) that classify the images according to 

their corresponding visual scores. 

Unsupervised Learning 

One popular unsupervised learning technique is k-mean clustering. It partitions data into k mutually 

exclusive clusters and returns the index of the cluster to which it has assigned each observation. 

This technique which is considered more suitable for large amounts of data treats each observation 

in the data as an object having a location in space. It finds a partition in which objects within each 

cluster are as close to each other as possible, and as far from objects in other clusters as possible. 

In MATLAB, ‘kmeans’ command offers five different distance measures which can be selected 
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depending on the kind of data being clustered. Each cluster is defined by its member objects and its 

centroid. The centroid for each cluster is the point to which the sum of distances from all objects in 

that cluster is minimised. Cluster centroids are computed differently for each distance measure to 

minimize the sum with respect to that distance measure. 

If the number of desired clusters is specified as k, this algorithm randomly picks k data points and 

assigns them as the centroids of the clusters. Based on the selected distance metric, the remainder 

of the data points are assigned to the closest cluster centre. Using the mean of the coordinates of 

the data points in each cluster, a new centroid is calculated. This process is iterated by finding the 

distances of the data points to the new centroids and forming new clusters. Therefore, every time 

the centroid and consequently the clusters are updated. This process is iterated until the centroids 

are not updated any more. The kmeans solution depends to a great extent to the initial cluster 

centres that were randomly selected. As the final cluster centroids are to minimise the sum of 

distances from all objects in their clusters, it is important to avoid local minimums. Therefore, 

MATLAB provides the option to replicate this process by choosing different initial centroid in each 

replicate. The replicate which yields the lowest total sum of distances (obtained by adding up the 

total distances of the data points in a cluster to the centroid) has got the best initial centroids. 

In MATLAB, kmeans function can take in any values as the number of the desired clusters. Therefore, 

it is essential to evaluate the quality of the obtained clusters so that the optimum value for k can be 

identified. While visualisation of the cluster yields a preliminary idea about the quality of the 

clusters, the silhouette plot of the cluster indices for each clustering can be used for a more objective 

evaluation. In this type of plot, each horizontal bar represents a data point, and the bars are 

vertically grouped according to their assigned classes. That means the total number of bars is equal 

to the number of data points. The length of each bar is a value ranging from -1, through 0, to +1. 

This value which is represented by the horizontal axis explains how close a data point is to the points 

in the neighbouring clusters. It is desired for the bars to extend as much as possible toward +1, 

indicating points of a cluster that are very distant from neighbouring clusters. A value of 0 indicates 

a point that is not distinctly in one cluster or another, and -1 is a point that is probably assigned to 

the wrong cluster. 

This process can turn from a graphical into an analytical one by calculating the average silhouette 

value for each clustering solution. As mentioned before, it is desired for these values to be as high 

as possible (closer to 1), so the same rule is applied to their average. In MATLAB, silhouette function 
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can take in the feature vectors (data points coordinates) and their cluster indices and return the 

silhouette value for each data point as well as the silhouette graph. 

Besides identifying the optimum number of clusters, it is required to evaluate the images within 

each cluster based on their actual scores similarity to ensure each cluster includes a reasonable 

number of same score images. It should be noted that while the order matters for the levels of visual 

scores, clusters do not follow any order. Therefore, several cluster-score configurations based on 

the desired number of clusters need to be explored to identify which configuration provides the 

best accuracy rate. Within these configurations, each score level must be assigned to a unique 

cluster, yet more than one distinct score levels can be assigned to a unique cluster. Also, when more 

than one score level is assigned to a cluster, the difference between the score levels must not exceed 

unity. 

Supervised Learning 

In the previous chapter, SVM was determined as the machine learning method that has 

outperformed other types of supervised learning algorithms in characterising corrosion and many 

other texture analysis applications. On this ground, it was adopted in this study as the classification 

method. 

In this work, there were four classes (i.e. Goldberg score levels) which mandated using a multi-class 

classifier. To utilise SVM in a multi-class problem, ‘fitecoc’ command in MATLAB was used which 

offers an ensemble method known as Error-Correcting Output Codes (ECOC). It includes a 

combination of binary SVM classifiers according to a particular coding design. The ECOC coding 

design used in this study was ‘one-versus-one’. In this design, for each binary learner, one class is 

positive, another is negative, and the rest are ignored. This coding design exhausts all combinations 

of class pair assignments. Table 3-9 displays the coding design for this four-class problem. 

Table 3-9. Six binary learners were trained for a four-level classification problem. 

Learner 1 Learner 2 Learner 3 Learner 4 Learner 5 Learner 6 

Class 1 1 1 1 0 0 0 
Class 2 -1 0 0 1 1 0 
Class 3 0 -1 0 -1 0 1 
Class 4 0 0 -1 0 -1 -1
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Having k classes yields k(k-1)/2 binary learners according to ‘one-versus-one’ coding design. Hence, 

in this four-class problem, six binary learners were created. Learner 1 was trained on observations 

having Class 1 and Class 2 and treated Class 1 as the positive class and Class 2 as the negative class. 

The other learners were trained similarly. Each binary learner used 80% of the images in each of the 

two classes for training and the remainder 20% for testing. The classifier assigned an image to the 

class yielding the minimum average of the binary losses over the six binary learners. The binary loss 

was a function of the class and classification score that determined how well a binary learner 

classified an observation into the class assigned to it.  

Two hyperparameters, namely Box-Constraint and Kernel-Scale, were optimised to enhance the 

performance of this SVM classifier. The incorporated Bayesian optimisation attempts to minimise 

the cross-validation error by varying the hyperparameters. 

To evaluate the performance of the classification model, three standard measures were utilised, 

namely, no validation accuracy, cross-validation accuracy, and confusion matrix. The training sample 

accuracy was calculated using the entire images for training the classifier and finding what 

percentage of the images could be successfully classified by that model. This accuracy rate may not 

be reliable though due to overfitting concerns which occur when a model learns the detail and noise 

in the data to the extent that it negatively impacts the performance of the model on new data. This 

means that the noise or random fluctuations in the training data may be picked up and learned as 

concepts by the model. It usually leads to obtaining a model that classifies the data too well. To 

eliminate overfitting, fivefold cross-validation was used which partitioned the entire data into five 

disjoint sets (folds) randomly so that each fold has roughly equal size and roughly the same class 

proportions as in the vector of visual scores. The first classification model is trained using the 

observations in the last four folds and reserves the observations in the first fold for validation. The 

second classification model is trained using the observations in the first fold and the last three folds 

and reserves the observations in the second group for validation. The cross-validation proceeds in 

a similar fashion for the remainder classification models. The cross-validation accuracy was 

calculated as the mean of the five validation results. The third measure was confusion matrix which 

tabulates the predicted scores against the true scores in a classification model and reveals the 

quantity of misclassified images for each score level. 
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Statistical Analyses 

In this study, two sets of scoring were conducted. First, each stem received eight visual corrosion 

scores that are associated with eight distinct zones on the surface. These scores were used to 

investigate the severity and spatial distribution of corrosion across the eight zones. Second, each 

stem taper was scored holistically so that a single score represents the corrosion damage. These 

scores were used to investigate the role that patient and implant factors play in corrosion. In this 

study, a univariate and a multivariate OLR were used for the first and the second groups of the 

statistical analysis. Selection of OLR over the other causal-explanatory statistical modelling is based 

on the advantages of regression over its counterparts, as discussed in Chapter 2. 

Binomial Versus Ordinal Regression 

The OLR model in this study uses cumulative logits. Selection of cumulative logits against other 

models (e.g. adjacent or continuation categories) was due to the interest of this study to use the 

entire response scale regardless of the score level. Specifically, cumulative odds ordinal logistic 

regression with proportional odds will be used. 

The odds of an event occurring is the probability of it occurring versus the probability of it not 

occurring. The natural log of the odds of an event occurring is called logit. A logit is important as the 

log odds of an event occurring (a success) can be modelled as a linear expression of a set of 

Independent Variables (IVs), which occurs in binomial logistic regression. Assume the Dependent 

Variable (DV) is whether there is any corrosion on the surface or not with a dichotomous response 

of either ‘’Yes” (the success category) or “No” (the failure category). Equation 19 shows the 

relationship between the logit of success for this dichotomous DV and two IVs (age and weight). 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)

𝑃𝑟𝑜𝑏(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)
) = 𝛼 + 𝛽1 × 𝑎𝑔𝑒 + 𝛽2 × 𝑤𝑒𝑖𝑔ℎ𝑡 (19) 

Using this configuration, it is possible to generate intercept (α) and slope (β) coefficient terms 

through an iterative process that maximizes the log-likelihood of the outcome. The intercepts 

provide a useful and meaningful interpretation of the model, including the calculation of odds ratios 

and probabilities. This can allow the effect of the IV to be considered. 

However, corrosion score is not dichotomous due to possessing more than two levels, and to 

maintain this characteristic for this DV, ordinal logistic regression has to be considered as a series of 
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binomial logistic regressions that run simultaneously on cumulative logits. Cumulative logits split 

the DV in two with lower values (categories) considering the event/success and all higher values 

considering the non-event/failure. 

By extending the previous example so that instead of simply asking whether there was any corrosion 

on the surface, we asked how much damage was present on the surface. The answer to this question 

could be “none” (score = 1), “mild” (score = 2), “moderate” (score = 3), or “severe” (score = 4). Given 

this setup, the first cumulative logit would be the natural log of the odds of the first category 

("none") versus all higher categories (i.e., "mild", "moderate" and "severe"), which as expressed by 

equation 20. 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 1)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 1)
) = 𝛼1 + 𝛽1.𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽1.𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 (20) 

The subscript 1 used for the intercept and slope coefficient terms reflects the fact that this is the 

first cumulative logit. 

This binomial logistic regression has now captured some of the ordinal nature of the ordinal DV. It 

has done this by allowing us to express the effect that the IVs have on whether a lower or higher 

score on the DV is probable, but only for this particular cumulative logit (i.e., "none" or lower versus 

higher than "none"). To extend this analysis, the next cumulative logit, which uses the first two 

categories ("none" and "mild") versus all higher categories (i.e., "moderate" and "severe" combined) 

could be expressed in a binomial logistic regression (equation 21). 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 2)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 2)
)

= 𝛼2 + 𝛽2.𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽2.𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 

(21) 

Similarly, the final cumulative logit (equation 22) uses the first three categories ("none", "mild" and 

"moderate") compared to higher categories (i.e., the "severe" category), and is expressed in a 

similar format. 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 3)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 3)
)

= 𝛼3 + 𝛽3.𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽3.𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 

(22)
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In summary, splitting the categories of the ordinal DV to run cumulative logits is shown in Table 

3-10.

Table 3-10. An ordinal DV with four levels giving three cumulative probabilities and consequently logits.

Binomial Regression Event Category Non-Event Categories 

1 
Probability (score ≤ 1) Probability (score > 1) 

“none” “mild”, “moderate”, and “severe” 

2 
Probability (score ≤ 2) Probability (score > 2) 

“none” and “mild” “moderate” and “severe” 

3 
Probability (score ≤ 3) Probability (score > 3) 

“none”, “mild”, and “moderate” “severe” 

Each binomial logistic regression now predicts the probability of being classified into the 'lower' 

categories as opposed to the 'higher' categories for each dichotomization of the ordinal DV based 

on cumulative probabilities. 

Assumptions of Ordinal Logistic Regression 

In order to run an ordinal logistic regression, there are four assumptions that need to be considered. 

The first two assumptions relate to the nature of the study, while the other two assumptions relate 

to the characteristics of the data. 

Assumptions #1 & 2 

The first two assumptions of an ordinal logistic regression relate to the study design. The first 

assumption mandates the dependent variable is having an ordinal level of measurement, a 

categorical variable in which order is important. The nature of this study confirms this fact as 

corrosion scores have an ordinal nature with four distinct categories. 

Under the second assumption, there should be at least one IV that is continuous, ordinal or 

categorical (including dichotomous variables). However, ordinal IVs must be treated as being either 

continuous or categorical. They cannot be treated as ordinal variables when running an ordinal 

logistic regression. 

Table 3-1 has characterised the IVs in terms of their level of measurement and their categories. As 

can be seen, there exists no ordinal IV in our study. The other two assumptions are related to how 

the data fits the ordinal regression model. 



99 

Assumption #3 

Under this assumption, there should be no multi-collinearity between the IVs. Multi-collinearity 

occurs when there are two or more IVs that are highly correlated with each other. This leads to 

problems with understanding which variable contributes to the explanation of the DV and technical 

issues in calculating an ordinal logistic regression. 

Since multi-collinearity is associated with only the IVs, it can be determined by using the same 

method used for multiple linear regression, despite the dependent variable being ordinal and not 

continuous. However, before implementing this, one should consider that regression procedures do 

not accept categorical variables directly into the model. Based on the second assumption, 

categorical IVs can only be of a nominal type. To enter a categorical IV directly into the regression 

equation would be incorrect because the regression equation would assume that the variable is 

continuous and treat it accordingly. 

When a categorical IV with k categories is present, it is required to recode it into k-1 dummy 

variables. Each dummy variable indicates whether a case (e.g., participant) is a member of the 

category represented by that dummy variable. With dummy coding, a case is coded as "1" if it is a 

'member' of that category and "0" if it isn't. Creating a dummy variable for the kth category would 

be redundant since the last category will be coded "0" on the entire k-1 dummy variables. The kth 

category (the category with missing dummy variable) is called the reference category, and it plays 

an important role in the interpretation of the parameters of the logistic regression model. It should 

be noted that any category in a nominal IV can act as the reference category. 

Equation 23 shows an example of a regression model with numerical age and categorical 

stem_material (CoCr, Stainless Steel, and Titanium) as the IVs.  

ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 𝑗

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 𝑗
)

= 𝛼𝑗 − 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽𝑠𝑡𝑒𝑚𝐶𝑜𝐶𝑟 × 𝑠𝑡𝑒𝑚𝐶𝑜𝐶𝑟 + 𝛽𝑠𝑡𝑒𝑚𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚

× 𝑠𝑡𝑒𝑚𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚 

(23) 

Here, the category of Stainless Steel in stem_material has been considered as the reference 

category, and therefore, stem_material has been recoded into two dummy variables stemCoCr and 

stemTitanium. 
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There are two methods to assess the multi-collinearity. The first method uses a correlation matrix 

(e.g. Pearson's product-moment or Spearman's rank-order) which is a measure of the strength and 

direction of the association/relationship between continuous or ordinal variables (Spearman) or just 

continuous variables (Pearson). Correlation coefficients above and below +0.8 and -0.8 respectively 

are considered too high conventionally. The second method can be implemented by incorporating 

collinearity diagnostic under linear regression which returns the Variance of Inflation Factor (VIF). 

VIF indicates to what extent a particular IV is contributing to multi-collinearity issues within the 

dataset. The higher the number, the bigger the problem caused by this IV. A general rule of thumb 

is that numbers in excess of 10 indicate a very big multi-collinearity problem. Unlike the first 

alternative, VIF does not indicate which IVs are showing strong correlation together. Also, since the 

reference category of nominal IVs is not inserted into regression models, changing the reference 

category alters the obtained VIF values which limits the obtained information from this method. 

 Assumption #4 

As pointed out previously, cumulative odds ordinal logistic regression fits the data into more than 

one regression model due to the splitting of the categories of the ordinal DV to run cumulative logits. 

The problem with this approach of separately running multiple binomial logistic regressions is that 

the effect of the independent variables can differ for each cumulative logit. This means that it would 

not be possible to make an overall statement about the effect of an IV on the ordinal DV, but must 

qualify the statement to each specific cumulative logit. The above problem is expressed by the 

subscript 1, 2 and 3 in equations 20-22 (i.e., intercept and slope coefficients). 

To overcome this problem, the fourth assumption comes into play. Under this assumption, the 

effect of each IV is assumed to be identical at each cumulative logit and, as such, the slope 

coefficients are constrained to be the same. Consequently, the odds would be the same for each 

cumulative logit.  

This assumption will lead to a model (expressed in logit terms) where the intercepts (called 

thresholds) will differ for each cumulative logit, but the slope coefficients will remain the same. The 

result is transforming the three cumulative logit equations into three new equations 24-26 in which 

the slope coefficients for the corresponding IVs would be the same, and only the thresholds vary. 
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𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 1)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 1)
) = 𝛼1 − (𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡) (24) 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 2)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 2)
) = 𝛼2 − (𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡) (25) 

𝑙𝑜𝑔𝑖𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 3)

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 3)
) = 𝛼3 − (𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡) (26) 

Therefore, these three binomial regression models transform into three new ordinal logistic 

regression model as in equation 27. 

ln (
𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ 𝑗

𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 > 𝑗
) = 𝛼𝑗 − 𝛽𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 (27) 

In this equation, J categories of the ordinal dependent variable with J – 1 cumulative logits exist. 

This set up means that it would not be necessary to qualify our statements to particular cumulative 

logits when declaring the effect of an IV on the DV. This is more similar to linear regression. However, 

this parsimonious model comes at a price: the assumption of proportional odds has to be 

ascertained whenever a cumulative odds ordinal logistic regression is deployed. 

Ordinal Logistic Regression Outcomes 

This section provides an overview of various statistics that are generated after running Ordinal 

Logistic Regression in SPSS. The outcomes and their interpretation which are of more interest will 

be elaborated on. There are two main objectives that can be achieved with the output from an 

ordinal logistic regression: (a) determining which IVs (if any) have a statistically significant effect on 

the DV, and (b) determining how well the ordinal logistic regression model predicts the DV. 

Based on the literature of retrieval studies, only the first type of outcome has always been of 

interest. However, the second type of outcome which determines the accuracy of regression models 

can be used to compare the power of this linear approach with more advanced supervised learning 

approaches. This matter requires immediate attention due to the potential to create dynamic 

prediction models that can act as decision support systems. Being trained by the vast amount of 

existing operation records and outcomes, these models use the patient characteristics and implant 

properties to assist clinicians in choosing implants with lower risks of failure. DVs such as time to 

revision or failure risk within a specific time-frame can be predicted by these models. This may serve 
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the main aim of retrieval studies which is about learning lessons from the past experience to make 

more reliable decisions in the future.  

 Cell Patterns and Overall Fit 

There are three categories of tests to interpret the overall model fit. 

 two overall goodness-of-fit-tests

 the likelihood-ratio test

 three pseudo-R2 measures

However, to do this correctly, the observed frequencies in each cell pattern should be large. Here, 

a cell pattern represents a unique combination of values of the IVs and DV that exist in the dataset. 

When a continuous variable is included as an IV (e.g. age), it is unlikely that cell sizes will be adequate 

due to having a large number of cells with zero frequency. This is because a continuous variable can 

take on a large number of different values. Therefore, overall goodness-of-fit statistics described 

later should be treated with suspicion when a continuous IV is present and/or there are a large 

number of cells with zero frequency. 

Overall goodness-of-fit-tests: SPSS Statistics generates two tests of the overall goodness-of-fit of 

the model. These are the Pearson and Deviance goodness-of-fit tests. They are designed to provide 

a measure of how poorly the model fits the data (or the variation in the model that cannot be 

explained). 

The Pearson goodness-of-fit test provides this measure by calculating an overall summary measure 

of the Pearson residuals. Alternatively, the Deviance goodness-of-fit statistic is the difference in fit 

between the current model and a full model; a full model being a model that fits the data perfectly. 

Hence, one is looking for these tests to be not statistically significant to indicate a good model fit. 

Neither of these tests will provide reliable tests of goodness-of-fit if there are many cells with zero 

frequencies and/or small expected frequencies and are generally not recommended. 

The likelihood-ratio test: A better method of assessing model fit is to look at the change in model 

fit when comparing the full model to the intercept-only model. Here, a full model represents a 

model with the intercept and all independent variables. In this model, the coefficients of the IVs 

have been estimated using an iterative process that maximizes the log-likelihood of the outcome. 
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The intercept-only model describes a model that does not control for any IVs and simply fits an 

intercept to predict the DV. 

The smaller the -2 log-likelihood value, the better the fit. As such, a greater difference between the 

-2 log-likelihood of these two models implies the IVs are better at explaining the DV. Here, a

significant difference indicates that the IVs add statistically significantly to the model or, put another 

way, at least one IV is statistically significant. 

pseudo-R2 measures: Logistic regression does not have an equivalent to the R2 that is found in 

ordinary least-squares linear regression which quantifies the proportion of variance for the DV 

explained by the IVs. Therefore, they are referred to as "pseudo" R2 measures, and it is 

recommended to interpret them with great caution. 

Overall Parameter Estimates 

The parameters in this model consist of the thresholds (intercepts) and the slope coefficients. As 

pointed out earlier, the type of ordinal regression model we are running produces an equation for 

each cumulative logit. As there are four categories of the DV, there are three cumulative logits and, 

therefore, three equations. Also, the assumption of proportional odds constrains the slope 

coefficients to be the same for all the three equations, so it is just the thresholds that differ between 

the three equations. 

The slope coefficients represent the change in the log odds of being in a specific category with 

respect to the reference category (or a unit change in a numerical IV). However, changes in log-odds 

do not have much intuitive meaning. Much better is to report changes in terms of the odds; that is, 

the ratio of the odds between any two categories (or a unit change in a numerical IV), which is called 

the odds ratio (OR). The OR is the exponential of the log odds of the slope coefficient. To further 

clarify the effect of a particular IV (categorical/numerical) on the odds ratio, the 95% confidence 

intervals of the OR, and whether the effect is statistically significant have to be reported.  

While analysing numerical and dichotomous IVs is fairly straightforward, polytomous IVs incur 

additional calculations to complete an overall test of statistical significance. SPSS Statistics requires 

as many orthogonal contrasts as there are degrees of freedom (i.e., one less than the number of 

categories in an IV) to provide an omnibus test of statistical significance. The reason for this is the 

fact that for categorical variables, always one category is taken as reference, and the rest of the 

categories are compared with that. Hence, to exhaust the entire pairwise comparison of the 
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categories, more than one significance test would be required. In each significance test, the 

polytomous IV has to be recoded into a new variable with the desirable reference category coded 

as the last category (highest level). 

If the study design is interested in investigating the OR of a specific set of categories, not all 

orthogonal contrasts would be required to explore. Also, it would be wise first to establish whether 

that polytomous IV is statistically significant overall before exploring any specific contrasts. SPSS 

statistics provide the Test of Model Effects table which reports an overall test of significance for 

each variable (not the dummy variables) entered into the logistic regression model. 

Predictions and Model Fit 

One way of assessing whether a model fits the data well is to see how well it can predict the DV. 

However, what one would like to know is how well the model predicted the correct response. In 

binomial logistic regression, only one estimated probability is required because this probability is of 

the event occurring or not.  

However, in ordinal logistic regression, it is more complicated, with more than one level to predict. 

The ordinal regression estimates the probability that a case will be classified into each of the levels 

of the ordinal DV. As such, there will be as many predicted probabilities as there are categories of 

the DV (e.g., four predicted probabilities in this study) and they should sum to 1. The model selects 

the response (level) with the largest predicted probability. 

SPSS statistics name these probabilities as EST1_1 through EST4_1 (four score levels). For each 

observation, the predicted level is provided by PRE_1. Also, for any observation, PCP_1 and ACP_1 

carry the information about the highest probability and the probability of the actual level, 

respectively. In order to get a better idea of how the observed and predicted levels are related based 

on this version of assessing the model fit, a confusion table can be created. 

As discussed previously, a table of confusion provides an overall idea about the performance of the 

model. Very high accuracy rates may indicate overfitting which implies the model will be performing 

poorly with new unseen data. One way to overcome this concern would be cross-validation. 
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Alternative Predictive Models 

OLR is usually considered as a baseline for evaluating more complex machine learning methods. The 

Classification Learner app in MATLAB was used to compare the performance of a selection of 

different classification models. 

Due to the limited size of the data, first, the models were fit to the entire dataset (no holdout or 

cross-validation). If a reasonable accuracy was achieved, five-fold cross-validation was also 

performed to eliminate overfitting concerns. The accuracy level usually drops after cross-validation. 

However, this approach ensures the model can be generalised to unseen new data without too 

much variation in the performance quality. 

Summary 

This chapter elaborated on the methodology that has been implemented in this work. The two 

important analytical phases, namely quantification of corrosion at stem tapers and exploring 

associations between corrosion and implant/patient attributes by ordinal logistic regression were 

detailed out. 

Ordinal Logistic Regression models assume the classes (levels) are linearly separable. So, they may 

not be powerful in classifying nonlinear systems. Considering the diverse range of IVs, it might be 

required to compare the accuracy of these models with other peer-reviewed studies to learn where 

a particular model stands concerning those developed in other studies with similar IVs and DV. This 

aspect of regression models has not been explored in the literature of retrieval studies. 
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4 OBJECTIVE VISUAL SCORING1 

1 This chapter is based on the work that has been published in Medical Engineering and Physics; Milimonfared, R., et al., 
An intelligent system for image-based rating of corrosion severity at stem taper of retrieved hip replacement implants. 
Medical engineering & physics, 2018. 

[Image removed due to copyright restriction]
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Introduction 

Following the proposed methodology, this chapter will provide the results of applying DIP and 

machine learning to objectively score corrosion at stem tapers. DIP was used to extract several 

characteristic features from the images. Two types of unsupervised as well as supervised feature 

selection reduced the dimensionality of the feature space to investigate whether the performance 

of machine learning algorithms can be improved. A range of unsupervised and supervised machine 

learning techniques was deployed, and their performance metrics were compared. 

Feature Extraction 

Table 4-1 summarises the three groups of global features obtained from the HSV and grey-scale 

images. There are 12, 20, and six features that belong to the first-order image statistics, second-

order image statistics, and wavelet groups, respectively. 

Table 4-1. An overview of the 38 extracted global features. 

1st Order Image Statistics 2nd Order Image Statistics 
Hue_Mean Sat_Mean Direction_

1

Direction_

2

Direction_

3

Direction_

4
Hue_Standard 

Deviation

Sat_Standard 

Deviation

Energy_1 Energy_2 Energy_3 Energy_4 
Hue_Smoothnes

s

Sat_Smoothnes

s

Entropy_1 Entropy_2 Entropy_3 Entropy_4 
Hue_Third 

Moment

Sat_Third 

Moment

Contrast_1 Contrast_2 Contrast_3 Contrast_4 
Hue_Uniformity Sat_Uniformity Correlation

_1

Correlation

_2

Correlation

_3

Correlation

_4
Hue_Entropy Sat_Entropy Homogene

ity_1

Homogene

ity_2

Homogene

ity_3

Homogene

ity_4
Wavelet Energy 
Global_1 Global_2 Global_3 Local_1 Local_2 Local_3 

These 38 global features and 1000 local features (SURF) yielded 1038-D feature vectors. From the 

1104 images, an 1104 × 1038 matrix was obtained in which the rows represent the images, and the 

columns are the features. 

Dimensionality Reduction 

Feature selection and transformation techniques were utilised to identify features suitable for 

supervised and unsupervised machine learning. Section 4.3.1 fulfils this task for unsupervised 

machine learning, while section 4.3.2 identify a subset of features for supervised machine learning. 

Principal Component Analysis 

PCA was applied to the 1104 × 1038 matrix of DIP features. The high number of features prevents 

visualising them by scatter plots. Hence, Pareto charts and Scree plots were generated to evaluate 
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the quality of the PCs in capturing as much of the variability in the features. These methods use 

different mechanisms to reduce the dimensionality of the feature space. 

Figure 4-1 illustrates the Pareto chart which cumulatively plots the contribution of the PCs. Pareto 

function in MATLAB preserves the first set of PCs which provide a cumulative contribution of at least 

95% and discards the rest.  

Figure 4-1. The Pareto chart for the first 10 PCs extracted from the 1038 features 

As can be seen, the cumulative contribution did not reach 95%. Checking the array of cumulative 

variance percentage explained by the PCs revealed that the index of the first PC that exceeds 95% 

had been 347. Since it was not possible to sketch the Pareto chart of the first 347 PCs, only the first 

10 PCs were illustrated here. According to the Pareto chart, it can be concluded that preserving the 

first 347 PCs produces a simpler description of the system while as much (95%) of the variability in 

the data can be captured. 

As an alternative to the Pareto chart, a Scree plot can be employed to visualise the variance of the 

PCs. Conventionally, PCs with variance values greater than one are preserved while the others are 

discarded. Scree plot demands the feature vectors to be standardised first. Figure 4-2 displays the 

scree plot for the same 10 PCs.  
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Figure 4-2. The Scree plot for the first 10 PCs extracted from the 1038 features 

After looking at the array of PC variance values, PC 160 observed to be the first component that its 

variance falls below 1. Considering that PCs are in descending order of component variance, it is 

evident that the PCA of the feature vectors does not provide PCs that explain large portions of the 

data variance. This Pareto chart suggests using twice as large as the number of PCs that were 

identified via the Scree plot. Still, taking the first 347 PCs reduces the dimensionality by almost a 

third (1038/3). 

From the first 347 PCs, a matrix of loadings (obtained from the rotation of PC axes) with 1038 rows 

(features) and 347 columns (rotated PCs) was established to identify variables with no higher 

loading at any of the 347 PCs to be consequently discarded. Conventionally, correlation values 

higher than 0.3 are considered, so a threshold of 0.3 for the correlations was set that resulted in the 

selection of 307 DIP (12 global and 295 local) features. Table 4-2 lists the selected 12 global features. 

Table 4-2. The global features having higher correlation with the 347 PCs 

text_stat_Hue_4 text_stat_Hue_5 text_stat_Sat_5 cooc_contrast_2 

cooc_contrast_3 cooc_contrast_4 cooc_correlation_1 cooc_correlation_2 

cooc_correlation_3 cooc_correlation_4 E_global_1 E_local_1 
 

This process can be iterated to further reduce the dimensionality of the selected DIP features. Since 

the subsequent machine learning algorithms determine the suitability of the selected feature set 

for this classification problem, further feature selection was not carried out to see first how the 

dimensionality reduction will influence the performance of the classification algorithms in section 

4.4. 

Besides Pareto chart and Scree plot which uses some rules of thumb to decide on the number of the 

required PCs, the performance of machine learning methods can be compared when using the 
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original feature space compared with subsets of the corresponding PCs. This matter will be 

investigated in section 4.4.1 to see whether feature selection or transformation offer the same 

quality of results. 

Neighbourhood Component Analysis 

Feature selection by NCA may not necessarily improve the quality of classification algorithms. 

Therefore, the first step was to evaluate the suitability of NCA. This was performed by dividing the 

images into training (80%) and test (20%) subsets and then computing the generalisation error using 

one as the weight for the entire features. In the second step, the error was calculated according to 

the feature weights that were determined by the NCA model. The result decreased the error from 

0.3800 to 0.2900. Since the weights by NCA induced a lower generalisation error, NCA deemed 

suitable for improving the quality of the features. 

Since the total number of images was 1104, 20 coefficients, ranging from 0 to 20, were randomly 

generated to be multiplied by 1/1104. Also, a 5-fold cross-validation partitioning of the training set 

with a division into training (80%) and test (20%) subset was performed. The NCA model used these 

20 Lambda values to calculate 20 generalisation errors in each fold. Having five-folds, the result was 

a 20 × 5 matrix. To find the average error for each Lambda, the average of the elements in each row 

was calculated. The outcome was a vector with 20 generalisation errors that were averaged across 

the five folds. Figure 4-3 displays these twenty values. 

Figure 4-3. Optimization of Lambda in NCA minimises the loss. 

The Lambda value which returned the lowest average generalisation error over its five-folds was 

0.0122. According to this Lambda value, the generalisation error was further reduced to 0.2566. This 
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Lambda value was used by the NCA algorithm to perform feature selection. Optimising the Lambda 

parameter in the NCA algorithm reduced the dimensionality of the feature space from 1038 to 25. 

The feature weights obtained by NCA are shown in Figure 4-4. 

Figure 4-4. Feature loadings by NCA. 

In this graph, the first 38 features are global, and the remainder is the 1000 SURF features. The 

maximum weight (1.836) was associated with the 38th feature which was the local energy at 

decomposition level 3. Many features were observed to have negligible weights, and only those 

with a weight greater than 2% of the maximum weight (0.036) were selected. The result was a 

selection of 25 features which were comprised of 8 global and 17 local features. The result was a 

selection of 25 features as summarised in descending order by weight in Table 4-3. The expressions 

of the features were stemmed from Table 4-3. The selected features sorted according to their NCA 

weight. The index of the SURF features reflects the index of the corresponding visual word. 

Table 4-3. The selected features sorted according to their NCA weight. 

Feature Name Weight Feature Name Weight Feature Name Weight 

Local_3 1.836 SURF_features_576 0.579 SURF_features_150 0.149 

Global_1 1.573 SURF_features_211 0.408 SURF_features_602 0.135 

Sat_Entropy 1.502 SURF_features_633 0.340 SURF_features_203 0.068 

SURF_features_149 0.939 SURF_features_175 0.339 SURF_features_844 0.046 

Homogeneity_1 0.918 SURF_features_808 0.280 Correlation_2 0.043 

Correlation_3 0.869 SURF_features_915 0.273 SURF_features_462 0.039 

SURF_features_396 0.792 SURF_features_957 0.248 SURF_features_778 0.038 

SURF_features_296 0.650 Entropy_1 0.237 

SURF_features_921 0.588 Correlation_4 0.193 

Aside from the first-order image statistics that characterise colour in an image, the other three 

groups of global features had representatives in the subset of selected features. In this study, the 
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colour was not expected to be a prominent feature within the captured images as it is well 

established that corrosion at taper junctions of hip replacement implants appears as regions with 

discolouration, dullness, or black debris [31]. 

Machine Learning 

This section elaborates on the outcomes of the unsupervised and the supervised machine learning 

methods. Considering the diverse range of the available techniques, they were narrowed down to 

k-mean clustering in the unsupervised group based on its popularity and ease of implementation.

For the supervised group, SVM was hypothesised as a potentially superior technique after the 

review of the literature. This needed to be verified for this study dataset before embarking on 

formulating a refined SVM algorithm. 

Unsupervised Learning 

Unsupervised learning analyses the data to find whether any pattern exists. Here, it is desired to 

learn how many clusters naturally exist within the DIP feature space. According to Goldberg scoring 

method, four clusters is desired in which the data points (images) of the same class should be 

clustered together. Cluster analysis can also be used to investigate whether increasing or decreasing 

the number of score levels produce better clustering solutions.  study detected a relatively large 

variation of volumetric material loss at stem tapers with score level 4. It rose the question of 

whether that would be better to break this particular score level into two or even more levels. This 

matter was investigated here by setting the number of desired clusters to 5 and investigating the 

accuracy of clustering solutions in which score level 4 is broken into two distinct levels. The results 

of five clusters are compared with four clusters to determine whether this will improve the accuracy. 

This approach was applied to three groups of input dataset to see whether feature selection and 

transformation by PCA improves the quality of the clusters. The kmeans function supports four 

pairwise distance measures for non-binary data that were used here to see which one provides 

superior clustering solutions.  

Via looking at the silhouette graph, the best distance metric can be identified. This process can turn 

from graphical into analytical by calculating the average silhouette value for each clustering 

solution. Unlike the silhouette graph, this metric does not specify which cluster/s have been more 

problematic which is not a matter of concern. It is desired for average silhouette values to be as 
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close as possible to unity, and the same is true for their average. Therefore, the distance metric with 

the largest average silhouette value was selected. To avoid falling in local optima, each clustering 

solution was obtained after ten replicates, and the replicate with the minimum total sums of point-

to-centroid distances was selected for each clustering configuration. 

The accuracy rates were obtained after comparing the actual scores and the assigned cluster indices 

for each image. Formulating the accuracy rate is a complex task, There exist several different ways 

that score levels and clusters can be grouped. While the score levels have order, the clusters do not 

follow any order which increases the number of possible solutions. 

 The Original 1038 DIP Features 

The features obtained from section 4.2 were used to group the images into four and five clusters by 

using the four distance metrics (Table 4-4) 

Table 4-4. The average silhouette values for each clustering solution using the 1038 features 

k-value sqeuclidean cityblock cosine correlation 

4 0.159 0.128 0.239 0.205 

5 0.153 0.129 0.224 0.203 

Cosine distance metric offered the best clustering for both clustering solutions. To evaluate the 

accuracy of the clusters, first, the corresponding confusion matrices were obtained. The rows 

represent the score levels, and the columns are associated with the clusters. Table 4-5 shows the 

confusion matrix for the four clustering solution with cosine distance metric. 

Table 4-5. Confusion matrix for four clusterings of 1038 features using cosine distance metric 

C1 C2 C3 C4 

S1 87 86 49 142 

S2 108 104 62 241 

S3 31 47 18 78 

S4 11 12 5 23 

Since the clusters do not follow any order, 24 cluster-score configurations wherein each score level 

is associated with just one cluster were established to quantify the accuracy rates. Table 4-6 

summarises the accuracy rate for each configuration. 

Table 4-6. The accuracies of the 24 cluster-score configurations for four clustering 
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1 2 3 4 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1    

S2  


 

S3    

S4 
   

ACCURACY 21.0% 24.8% 19.8% 21.6% 

5 6 7 8 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1  


 

S2 
   

S3    

S4  


 

ACCURACY 34.4% 32.4% 21.3% 25.1% 

9 10 11 12 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 
   

S2 
   

S3    

S4 
   

ACCURACY 18.3% 21.5% 32.9% 32.2% 

13 14 15 16 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2    

S3    

S4 
 


 

ACCURACY 18.8% 21.9% 20.6% 22.4% 

17 18 19 20 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 
   

S3    

S4   




ACCURACY 31.5% 30.2% 24.9% 25.5% 

21 22 23 24 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 



  

S3 
   

S4 


  

ACCURACY 23.7% 22.4% 27.4% 25.4% 

The accuracy rates range between 18.3% (configuration 9) and 34.4% (configuration 5). These 

results will be used as the benchmark to investigate whether dividing score level 4 into two distinct 

score levels improves the accuracy rates. Table 4-7 shows the confusion matrix for five clusters. 

Table 4-7. Confusion matrix for five clusterings of 1038 features using cosine distance metric 
C1 C2 C3 C4 C5 
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S1 113 82 38 82 49 
S2 184 100 42 128 61 

S3 58 46 12 40 18 

S4 19 12 5 10 5 

Having five clusters and four score levels results in multitudes of distinct score-cluster 

configurations. Since the focus is on score level 4, only those configurations in which score level 4 is 

assigned to two clusters were investigated. The result was 24 score-cluster configurations (Table 

4-8). Each accuracy rate corresponds to a specific configuration.

Table 4-8. The accuracies of the 24 cluster-score configurations for five clustering 
1 2 3 4 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  


 

S2 


  

S3    

S4 
       

ACCURACY 21.7% 19.6% 26.5% 17.8% 

5 6 7 8 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
   

S2    

S3  


 

S4 
       

ACCURACY 25.6% 19.1% 22.3% 21.3% 

9 10 11 12 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
 







S2    

S3 
   

S4        

ACCURACY 27.1% 19.6% 26.6% 20.1% 

13 14 15 16 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  







S2 
   

S3 
   

S4        

ACCURACY 25.0% 20.9% 27.3% 19.7% 

17 18 19 20 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
 


 

S3    

S4        

ACCURACY 22.8% 26.3% 19.5% 15.4% 

21 22 23 24 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
   

S3 
   

S4        

ACCURACY 15.7% 16.8% 19.9% 14.7% 
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The accuracy rates range between 14.7% (configuration 24) and 27.3% (configuration 15). The top 

accuracy rate drops from 34.4% to 27.3%. Hence, it is concluded that breaking score level 4 into two 

score levels will not improve the clustering solutions when the entire features are used. 

The First 347 PCs 

From the Pareto chart, the first 347 PCs observed explaining 95% of the data variance. As the input 

data, they went through the same process as in the previous section. Table 4-9 summarises the 

clustering results according to the four distance metrics. 

Table 4-9. The average silhouette values for each clustering solution using the first 347 PCs 

k-value sqeuclidean cityblock cosine correlation 

4 0.174 -0.016 0.264 0.263 

5 0.171 -0.021 0.248 0.248 

Similar to the previous dataset, the cosine metric produced the maximum average silhouette values 

for both clustering solutions. To evaluate the accuracy of the clusters, first, the corresponding 

confusion matrix was obtained. Table 4-10 shows the confusion matrix for the four clustering 

solution with cosine distance metric. 

Table 4-10. Confusion matrix for four clusterings of 347 PCS using cosine distance metric 

C1 C2 C3 C4 

S1 72 114 45 133 
S2 101 202 74 138 

S3 49 64 20 41 

S4 23 10 8 10 

Table 4-11 summarises the accuracy rate for the 24 cluster-score configurations. 
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Table 4-11. The accuracies of the 24 cluster-score configurations for four clustering 

1 2 3 4 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1    

S2  


 

S3    

S4 
   

ACCURACY 27.5% 29.3% 19.9% 17.8% 

5 6 7 8 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1  


 

S2 
   

S3    

S4  


 

ACCURACY 25.5% 21.7% 22.2% 23.9% 

9 10 11 12 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 
   

S2 
   

S3    

S4 
   

ACCURACY 22.4% 22.8% 28.0% 26.7% 

13 14 15 16 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2    

S3    

S4 
 


 

ACCURACY 27.7% 28.2% 19.9% 17.8% 

17 18 19 20 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 
   

S3    

S4   




ACCURACY 24.5% 21.9% 34.2% 35.5% 

21 22 23 24 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 



  

S3 
   

S4 


  

ACCURACY 26.6% 24.1% 27.7% 23.9% 

The accuracy rates range between 17.8% (configurations 4 and 16) and 34.2% (configuration 19). 

These results will be used as the benchmark to investigate whether dividing score level 2 into two 

distinct score levels improves the accuracy rates. Table 4-12 shows the confusion matrix for five 

clusters. 
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Table 4-12. Confusion matrix for four clusterings of 347 PCS using cosine distance metric 

C1 C2 C3 C4 C5 

S1 119 81 44 49 71 

S2 123 132 70 94 96 

S3 40 45 20 20 49 

S4 9 6 8 5 23 

The 24 score-cluster configurations wherein score level 4 is assigned to two distinct clusters were 

evaluated to identify the best configuration (Table 4-13). 

Table 4-13. The accuracies of the 24 cluster-score configurations for five clustering 
1 2 3 4 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  


 

S2 


  

S3    

S4 
       

ACCURACY 27.1% 23.7% 22.8% 19.8% 

5 6 7 8 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
   

S2    

S3  


 

S4 
       

ACCURACY 21.7% 22.1% 28.4% 24.7% 

9 10 11 12 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
 







S2    

S3 
   

S4        

ACCURACY 24.1% 20.8% 22.8% 23.2% 

13 14 15 16 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  







S2 
   

S3 
   

S4        

ACCURACY 25.0% 22.6% 21.3% 18.0% 

17 18 19 20 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
 


 

S3    

S4        

ACCURACY 19.8% 20.7% 18.3% 15.9% 

21 22 23 24 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
   

S3 
   

S4        

ACCURACY 16.6% 16.3% 18.1% 15.9% 
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The accuracy rates range between 16.3% (configuration 22) and 28.4% (configuration 7). The top 

accuracy rate has dropped from 34.2% to 28.4%. Hence, it is concluded that breaking score level 4 

into two score levels will not improve the clustering solutions when the first 347 PCs are used. 

The Selected 307 DIP Features 

Based on the 347 PCs from the previous section, 307 DIP features were selected due to showing 

relatively higher correlations with the rotated components. Table 4-14 summarises the clustering 

results of this set of data. 

Table 4-14. The average silhouette values for each clustering solution using the selected 307 features 

k-value sqeuclidean cityblock cosine correlation 

4 0.087 0.082 0.184 0.164 

5 0.088 0.084 0.171 0.162 

Again, the cosine metric produced the maximum average silhouette values for both clustering 

solutions. To evaluate the accuracy of the clusters, first, the corresponding confusion matrix was 

obtained. Table 4-15 shows the confusion matrix for the four clustering solution with this distance 

metric. 

Table 4-15. confusion matrix for four clusterings of 307 features using cosine distance metric 

C1 C2 C3 C4 

S1 113 42 132 77 

S2 206 70 137 102 

S3 61 21 45 47 

S4 10 7 10 24 

Table 4-16 summarises the accuracy rate for the 24 cluster-score configurations. 

Table 4-16. The accuracies of the 24 cluster-score configurations for four clustering 

1 2 3 4 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1    

S2  


 

S3    

S4 
   

ACCURACY 22.8% 21.7% 26.7% 27.5% 

5 6 7 8 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1  


 

S2 
   

S3    

S4  


 
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ACCURACY 22.3% 24.2% 28.7% 27.6% 

9 10 11 12 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 
   

S2 
   

S3    

S4 
   

ACCURACY 23.9% 21.4% 19.5% 18.0% 

13 14 15 16 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2    

S3    

S4 
 


 

ACCURACY 26.0% 23.5% 34.7% 35.5% 

17 18 19 20 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 
   

S3    

S4   




ACCURACY 24.0% 27.4% 18.3% 19.7% 

21 22 23 24 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 



  

S3 
   

S4 


  

ACCURACY 22.2% 25.5% 28.4% 30.3% 

The accuracy rates range between 18.0% (configuration 12) and 35.5% (configuration 16). Table 

4-17 shows the confusion matrix for five clusters.

Table 4-17. Confusion matrix for four clusterings of 307 features using cosine distance metric 

C1 C2 C3 C4 C5 

S1 104 90 54 40 76 

S2 106 144 100 67 98 

S3 37 48 25 20 44 

S4 8 6 8 7 22 

The 24 score-cluster configurations wherein score level 4 is assigned to two distinct clusters were 

evaluated to identify the best configuration (Table 4-18). 
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Table 4-18. The accuracies of the 24 cluster-score configurations for five clustering 

1 2 3 4 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  


 

S2 


  

S3    

S4 
       

ACCURACY 27.1% 23.7% 22.8% 19.8% 

5 6 7 8 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
   

S2    

S3  


 

S4 
       

ACCURACY 21.7% 22.1% 28.4% 24.7% 

9 10 11 12 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
 







S2    

S3 
   

S4        

ACCURACY 24.1% 20.8% 22.8% 23.2% 

13 14 15 16 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  







S2 
   

S3 
   

S4        

ACCURACY 25.0% 22.6% 21.3% 18.0% 

17 18 19 20 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
 


 

S3    

S4        

ACCURACY 19.8% 20.7% 18.3% 15.9% 

21 22 23 24 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
   

S3 
   

S4        

ACCURACY 16.6% 16.3% 18.1% 15.9% 

The accuracy rates range between 16.3% (configuration 20 and 24) and 28.4% (configuration 7). The 

top accuracy rate has dropped from 35.5% to 28.4%. Hence, it is concluded that breaking score level 

4 into two score levels will not improve the clustering solutions when the selected 307 DIP features 

are used. 



122 

The Second Round of Feature Selection 

Achieving relatively better solutions after conducting feature selection by reducing the 

dimensionality of the feature space from 1038 to 307 inspired one further replication of feature 

selection. The aim was to see whether a feature space with a dimension below that can achieve the 

same or even better clustering of the images. 

From the PCA of these 307 features, the Pareto chart of the resultant 307 PCs was obtained. Figure 

4-5 includes just the first 10 PCs. Similar to the Pareto chart of the PCs obtained from the original

1038 DIP features, this new set of PCs are not explaining high portions of data variability. It takes 

186 PCs to explain more than 95% of this new dataset variance.  

Figure 4-5. The Pareto chart for the first 10 PCs extracted from the selected 307 features 

Using these PCs, a matrix of loadings with 307 rows (features) and 186 columns (rotated PCs) was 

established to discard variables with no higher loading at any of the 186 PCs. This second round of 

feature selection also used the conventional value of 0.3 as the threshold. The result was a selection 

of 177 out of 307 features wherein 19 and 158 features belong to global (Table 4-19) and local types. 

Table 4-19. The global features having higher correlation with the 186 PCs 

text_stat_Hue_1 cooc_contrast_2 cooc_contrast_3 cooc_contrast_4 

cooc_correlation_1 cooc_correlation_2 cooc_energy_1 cooc_energy_4 

cooc_homogeneity_1 cooc_homogeneity_2 cooc_homogeneity_4 cooc_entropy_2 

cooc_entropy_3 cooc_entropy_4 E_global_1 E_global_3 

E_local_1 E_local_2 E_local_3 

Table 4-20 summarises the clustering results of this subset of feature space. 

Table 4-20. The average silhouette values for each clustering solution using the selected 177 features 
k-value sqeuclidean cityblock cosine correlation 

4 0.064 0.066 0.153 0.148 

5 0.067 0.061 0.148 0.140 
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As in the other three input datasets, the cosine metric produced the maximum average silhouette 

values for both clustering solutions. To evaluate the accuracy of the clusters, first, the corresponding 

confusion matrix was obtained. Table 4-21 shows the confusion matrix for the four clustering 

solution with this distance metric and Table 4-22 summarises the accuracy rate for the 24 cluster-

score configurations. 

Table 4-21. Confusion matrix for four clusterings of 177 features using cosine distance metric 
C1 C2 C3 C4 

S1 137 106 74 47 
S2 142 197 104 72 
S3 48 60 46 20 
S4 11 9 24 7 

Table 4-22. The accuracies of the 24 cluster-score configurations for four clustering 
1 2 3 4 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1    

S2  


 

S3    

S4 
   

ACCURACY 35.1% 34.2% 27.9% 24.5% 

5 6 7 8 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1  


 

S2 
   

S3    

S4  


 

ACCURACY 26.5% 23.9% 27.3% 26.4% 

9 10 11 12 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 
   

S2 
   

S3    

S4 
   

ACCURACY 24.0% 21.8% 22.6% 21.3% 

13 14 15 16 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2    

S3    

S4 
 


 

ACCURACY 29.5% 27.4% 25.6% 22.2% 

17 18 19 20 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 
   

S3    

S4   




ACCURACY 19.7% 18.4% 27.3% 28.6% 

21 22 23 24 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

S1 



 




S2 



  

S3 
   

S4 


  

ACCURACY 20.1% 18.8% 24.7% 22.1% 
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The accuracy of the configurations span from 18.4% (configuration 15) to 35.1% (configuration 3). 

Table 4-23 shows the confusion matrix for five clusters. 

Table 4-23. Confusion matrix for four clusterings of 177 features using cosine distance metric 
C1 C2 C3 C4 C5 

S1 72 100 45 48 99 
S2 100 108 65 93 149 

S3 44 40 20 24 46 

S4 21 9 7 7 7 

The 24 score-cluster configurations wherein score level 4 is assigned to two distinct clusters were 

evaluated to identify the best configuration (Table 4-24). 

Table 4-24. The accuracies of the 24 cluster-score configurations for five clustering 
1 2 3 4 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  


 

S2 


  

S3    

S4 
       

ACCURACY 19.4% 17.3% 21.2% 20.2% 

5 6 7 8 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
   

S2    

S3  


 

S4 
       

ACCURACY 18.0% 19.1% 21.7% 24.9% 

9 10 11 12 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
 







S2    

S3 
   

S4        

ACCURACY 23.6% 27.8% 22.9% 24.0% 

13 14 15 16 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1  







S2 
   

S3 
   

S4        

ACCURACY 20.6% 23.6% 19.0% 23.3% 

17 18 19 20 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
 


 

S3    

S4        

ACCURACY 22.8% 21.6% 19.4% 22.5% 

21 22 23 24 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

S1 
  




S2 
   

S3 
   

S4        

ACCURACY 17.1% 22.4% 21.9% 19.7% 
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The accuracy rates range between 17.1% (configuration 21) and 24.9% (configuration 8). The top 

accuracy rate has dropped from 35.1% to 24.9%. Hence, it is concluded that breaking score level 4 

into two score levels will not improve the clustering solutions when the 177 selected DIP features 

are used. Table 4-25 summarises the top accuracy rates of 4 and 5 clustering solutions. By comparing 

the result of using 307 features with 177 features, it can be concluded that the second feature 

selection does not influence the quality of clustering. The lower dimensionality of the feature space 

which simplifies the cluster analysis justifies performing the second round of feature selection. 

Table 4-25. The summary of the highest achieved accuracy rates via cluster analysis 

k 1038 features 347 PCs 307 features 177 features 

4 34.4% 34.2% 35.5% 35.1% 

5 27.3% 28.4% 28.4% 24.9% 

Generally, this method of clustering does not recommend breaking score level 4 into two distinct 

levels. Also, the accuracy rates across the four input datasets are not significantly different. 

Therefore, using the 177 features which reduces the dimensionality is recommended. The feature 

selection process can be further replicated and based on the observed quality of cluster-score 

configurations, it can be determined when to stop this process. 

Supervised Learning 

From NCA, 25 DIP features were identified as potentially superior for supervised classification of 

images. This section verifies this matter by using the entire features as well as this subset throughout 

the supervised learning. 

algorithm selection 

Via Classification Learner app in MATLAB, 22 classifications models were trained and fivefold cross-

validated to compare their performance. They belong to five groups of classifiers that are comprised 

of Decision Trees, Discriminant Analysis, SVM, Nearest Neighbour Classifiers, and Ensemble 

Classifiers. Table 4-26 summarises the performance of the top three accurate algorithms with and 

without validation schemes using the 1038 features. 

Table 4-26. Supervised learning outcomes of the original 1038 DIP features 

No Validation (accuracy rate) 5-fold Cross-validation  (accuracy rate) 

Linear Discriminant (100%) Support Vector Machine (80.8%) 

k-Nearest Neighbour (100%) Decision Tree (72.8%) 

Support Vector Machine (99.3%) k-Nearest Neighbour (65.5%)
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The very high accuracy of no validation scheme raised overfitting concerns which were addressed 

via fivefold cross-validation to ensure the classification models are generalisable to unseen new 

images. This procedure was replicated for the 25 selected features to assess their discriminatory 

power. Table 4-27 summarises the corresponding results. 

Table 4-27. Supervised learning outcomes of the selected 25 DIP features 

No Validation (accuracy rate) 5-fold Cross-validation  (accuracy rate) 

k-Nearest Neighbour (100%) Support Vector Machine (81.8%) 

Support Vector Machine (99.4%) k-Nearest Neighbour (76.0%)

Decision Tree (93.8%) Decision Tree (75.4%) 

The results confirm that SVM outperforms other supervised learning techniques as reported by the 

literature regardless of using the entire features or the selected features. Since dimensionality 

reduction simplified the classification problem and observed not to impact the accuracy rate, NCA 

approved to be a suitable feature selection technique for this dataset. Therefore, the selected 

features were used by an SVM classifier in this study. 

the SVM algorithm 

The script of the SVM model that had returned a relatively high cross-validation accuracy was 

extracted for amendments to further improve its performance. Accordingly, two hyperparameters, 

namely Box-Constraint and Kernel-Scale, were optimised. The process attempts to minimise the 

cross-validation error by varying the hyperparameters.  

In MATLAB, the default values for Box-Constraint and Kernel-Scale hyperparameters are 1. However, 

the extracted script from Classification Learner App showed that Box-Constraint is set equal to 1, 

while MATLAB selects an appropriate scale factor using a heuristic procedure for Kernel-Scale. This 

heuristic procedure uses subsampling so that estimates can vary from one call to another. 

Therefore, the initial value for both of them was set equal to 1 before commencing hyperparameter 

optimisation. 

Using these default values and no optimisation, ‘fitcecoc’ was observed to return an unrealistically 

high (99.4%) accuracy with no validation scheme. To address the overfitting concerns, fivefold cross-

validation accuracy was conducted, and the result was an accuracy rate of 60% approximately. 

Therefore, Bayesian optimisation was deployed iteratively (n = 30) by varying these two 

hyperparameters. The algorithm attempted to minimise the fivefold cross-validation accuracy by 
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finding suitable values for the hyperparameters. The result improved the cross-validation accuracy 

from 60% to around 85%.  

By updating the hyperparameters across all the binary learners, a no validation accuracy of 92% was 

achieved. Table 4-28 is the confusion matrix which quantifies the number as well as the percentage 

of the misclassified images. 

Table 4-28. Confusion matrix for the entire 1104 images. 

Predicted Scores 
Image set quantity 

1 2 3 4 

Actual 
Scores 

1 338 (92.9%) 26 (7.1%) 0 0 364 

2 33 (6.4%) 469 (91.1%) 13 (2.5%) 0 515 

3 0 8 (4.6%) 162 (93.1%) 4 (2.3%) 174 

4 0 0 3 (5.9%) 48 (94.1%) 51 

In this confusion matrix, the diagonal elements represent the quantity of the images that were 

correctly classified according to their actual Goldberg score while the rest of the elements are 

associated with the misclassified images. The difference between the actual and predicted scores 

never exceeds unity in this table. 

Summary and Discussion of the Results 

In this chapter, principles of computer vision, digital image processing, and machine learning were 

used to investigate the applicability of the well-established methods to rate the severity of corrosion 

at stem tapers of total hip replacement implants. Several groups of DIP features were extracted and 

went through feature selection and transformation to potentially improve the performance of the 

subsequent classification algorithms (Figure 4-6). 

Figure 4-6. An overview of the objective corrosion rating pipeline 
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MATLAB was used as the environment to design and implement the algorithms. Two toolboxes of 

Image Processing & Computer Vision and Statistics & Machine Learning provides several functions 

and workflows to implement these tasks. The abundance of learning materials facilitated taking 

advantage of the available capabilities of MATLAB in a high capacity. 

The performance of the classification phase is subject to the quality of the acquired images. Hence, 

throughout the photography phase, it was crucial to ensure that the images are captured with a 

reasonable level of quality. To fulfil this task, it is required to minimise affine distortions (i.e. 

translation, rotation, and scale transformations) and photometric deformations induced by scene 

illumination, 3D camera viewpoint, background clutter, and occlusion. The global features are not 

usually invariant to such imaging deformations. Out of the three groups of global features that were 

used in this study, only the wavelet transform provided robustness to scale transformations. While 

local features (e.g. SURF) are usually invariant to many of these deformations, they can be 

computationally expensive.  

It should be noted that the images used in this study were captured in a laboratory environment 

under a strict lighting-optics-viewing condition to minimise these unfavourable conditions. 

Therefore, the main reason for considering local features in this study was to produce large numbers 

of numerical features which is another attribute of local features. This can provide the successive 

classification stage with more characterising information about the images. Local features have 

been introduced more recently in comparison to their global counterparts, and therefore, only a 

few studies have used them in texture analysis of corrosion defects to date [71]. 

In visual scoring of damage at stem tapers, it is routine to rely on microscopes in addition to the 

naked eye to magnify an area of interest and ensure the visual features are associated with 

corrosion and not anything else (e.g. biological debris). Despite the best efforts, it was not always 

possible to thoroughly remove dirt from stem tapers. The resolution of the camera was not in a top 

range, and the images were captured from 25 cm away outside the surrounding shade. Therefore, 

there is a possibility of mixing up corrosion with dirt. Also, using a professional camera with a long-

reach macro lens can address this matter to some extent. 

Rating corrosion severity via image-based analysis in large-scale retrieval studies resolves implant 

accessibility issues and the images can be shared and used by anyone and anywhere in future. The 
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sensitivity of the SVM classifier to image sets obtained under different lighting-optics-viewing 

conditions need to be assessed to ensure reliable long-term performance. 

This chapter elaborated on 1038 DIP features that were extracted from 1104 labelled images that 

belong to four classes (visual scores). One of the key decision to make is to extract what features 

from the images. Rating corrosion damage within this context was more challenging in comparison 

with many similar studies that have addressed corrosion as rust [67, 68, 70]. The morphological 

attributes that can be used in characterising corrosion at taper junctions confine to just texture 

while both colour and texture play a prominent role in characterising rust. This fact was verified 

through the features selection phase in this research. Out of the 12 extracted first-order image 

statistics that characterise colour, only one (text_stat_Sat_6) was picked as suitable to be used in 

the subsequent machine learning stage. 

The global and local features that have been formulated for texture analysis are numerous. Since 

the novelty of this project was not about introducing new features, global and local features that 

have outperformed the others more frequently were used in this study. Nevertheless, there is 

always room for improvement by formulating superior texture features. This matter is looked upon 

as one disadvantage of many machine learning techniques against Convolutional Neural Networks 

(CNN) which has eliminated the need for image feature extraction. CNN is a group of machine 

learning algorithms with an architecture that can be divided into two parts. The first part receives 

the images as the input and takes advantage of a range of convolutional filters which enable them 

to adaptively learn and formulate a feature extractor. The second part is a fully connected neural 

network that classifies the feature vectors [146]. Although feature extraction and classification are 

integrated, CNN demands thousands of labelled images in each class to be properly trained. Since it 

is not practical in many problems, the other machine learning techniques have been more feasible 

to implement so far. 

Unsupervised and supervised feature transformation and selection were observed to positively and 

sometimes adversely influence the performance of the subsequent machine learning algorithms. 

The matrix of features (1104 × 1038) was not too large in dimensions. Therefore, the computation 

time was not a matter of concern in this study. Yet, dimensionality reduction via supervised feature 

selection and transformation observed to yield approximately the same level of classification 

accuracy as when the entire features are used.  
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Two unsupervised and supervised dimensionality reduction techniques were deployed. Their 

efficacy levels were only determined after deploying their outcomes in the classification algorithms. 

As for the unsupervised dimensionality reduction, PCA was used for two rounds of feature selection. 

The second round observed achieving similar results to those of the first round. Considering the 

lower dimensionality of the feature space which in turn reduces the computation cost, it was 

recommended to continue this process until the accuracy of the obtained cluster-score 

configurations drops.  

As for the supervised dimensionality reduction, NCA was observed to be effective in reducing the 

dimensionality of the feature vectors to 25 without adversely affecting the accuracy rate of the SVM 

algorithm. NCA determined which global features are better at the prediction of scores which can 

be used as a guideline in future studies to avoid spending time in the calculation of less relevant 

features. 

The nature of this classification problem demands supervised learning. The number of classes is 

already known, and the images had been already labelled. The reason for incorporating 

unsupervised learning was to see whether the extracted feature vectors are better classified in five 

clusters if score level 4 breaks into two levels. The average silhouette value and the maximum 

accuracy rate dropped after increasing the number of clusters from 4 to 5 which indicates that by 

using the 1038 DIP features and kmeans clustering, still no improvement is achieved following the 

increase in the number of the score levels. Therefore, breaking score level 4 is not recommended. 

Generally, increasing the number of classes makes classification problems more complex which may 

adversely affect the accuracy rates. One way to improve the classification accuracy is by reducing 

the number of classes by combining them. It seems this problem abides the same rule. 

The supervised algorithm introduced in this study endeavours to find patterns in data according to 

the scoring method that has been deployed to rate the corrosion severity. The algorithm does not 

surpass human expertise in evaluating damage severity. Therefore, the classification error entirely 

stems from the classification model, not the benchmark visual scores. This argument is based on the 

outcome of a previous study [31] that had identified substantial inter-observer reproducibility and 

single-observer repeatability of visual scoring techniques.  

Several supervised classification algorithms were compared. As expected from the findings of the 

literature, SVM observed to be more robust to cross-validation. NCA features did not affect the SVM 



131 

performance, so it was adopted as the feature selection tool to reduce the dimensionality of feature 

space. Optimising the two hyperparameters of the SVM algorithm improved the accuracy from 

about 60% to 85%. Taking into account the characteristics of this particular classification problem, 

the cross-validation accuracy achieved in this study sits well in the range of its counterpart reported 

by similar studies on other contexts of rating corrosion severity [59, 60, 73].  

Generally, implementing supervised learning turned out to be a straightforward process that more 

accurately predicts the scores. Although SVM is highly more complicated than k-means clustering, 

MATLAB and similar software packages facilitate development, implementation, and tuning such 

complex techniques. 
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5 CORROSION ACROSS STEM TAPER ZONES2 

2 This chapter is based on the work that has been published in Metals; Milimonfared R, Oskouei RH, Taylor M, Solomon

LB. The distribution and severity of corrosion damage at eight distinct zones of metallic femoral stem implants. Metals, 
8(10) (2018) 840.  

RESULT - II 

[Image removed due to copyright restriction]
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Introduction 

As mentioned in chapter three, the first set of scores measures corrosion semi-quantitatively at 

eight distinct zones that correspond to the Posterior-Distal (PD), Posterior-Proximal (PP), Medial-

Distal (MD), Medial-Proximal (MP), Anterior-Distal (AD), Anterior-Proximal (AP), Lateral-Distal (LD), 

and Lateral-Proximal (LP). These scores were used to compare the frequency of score levels at each 

zone as well as the severity of damage across the eight zones. 

Distribution of Scores 

Weighted kappa (κW) with quadratic weights was run to determine the single-observer repeatability 

of the corrosion scores. A confusion matrix was established to quantify the disagreements. For 

quadratic weights, the further away from a disagreement from the perfect agreement, the more 

harshly that disagreement is considered. Weighted kappa (κW) with quadratic weights indicated a 

statistically significant agreement, κW = 0.64 (95% CI, 0.59 to 0.69), p < 0.001 between the two sets 

of scores. According to [147], the strength of the agreement was classified as good. 

Visual scoring of the 137 stem trunnions across eight zones resulted in 1096 corrosion scores. Table 

5-1 Table 1-1summarises the quantity and percentage of each score level. Score level 2 had the

highest quantity (512) while the lowest quantity (51) belonged to score level 4. 

Table 5-1. The quantity of the zones having each score level. 

Score Quantity (%) 

1 359 (32.8) 

2 512 (46.7) 

3 174 (15.9) 

4 51 (4.7) 

Figure 1-1 compares the frequency of each score level over the entire eight zones. The values in this 

figure are portions of 137 (the scores assigned at each zone), and adding up the values in each 

column (not row) should give 100%. Score levels 1 through 4 stood in the first place at zones 

Posterior_Proximal, Anterior_Distal, Medial_Distal, and Medial_Proximal respectively. 
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Figure 5-1. Distribution of corrosion score levels across the entire eight stem taper zones of 137 retrieved 
implants. 

Considering the unbalanced score levels, the first two score levels that are higher in quantity (i.e. 

359 and 512) always show higher percentages compared with score levels 3 and 4 within each zone. 

To better compare the severity of damage across the zones, two more configurations of scores (by 

combining the original score levels) were also explored. The first configuration groups the first and 

the last two score levels into low and high groups, respectively. Figure 5-2 visualizes this 

configuration and compares each score group across the eight zones. 

Figure 5-2. The quantity of the double score levels at each zone (scores 1 and 2 versus scores 3 and 4 
combined). 

As expected, the low score group which comprises 871 (359 + 512) scores has a higher frequency 

compared with the high score group (174 + 51). This configuration can better show which zones 

have more severe corrosion damage (for example, MD and LD zones). Also, at zones, MD and PP, 

the smallest and largest gaps between these two combined score levels were observed. 
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The third configuration preserves score level 1 and combines the other three score levels to form 

two new score groups of intact and corroded stem tapers. Figure 5-3 illustrates the frequencies of 

these two score groups. 

Figure 5-3. Distribution of corroded stem tapers against the intact group. 

The medial distal zone had the largest difference between these two score groups which confirms 

that this particular zone is most damaged. Also, the posterior-proximal zone had the smallest 

difference between the two score groups (thus least damaged). As a key finding, the distal regions 

of the four quadrants showed more corrosion damage compared with the proximal regions. 

These finding from the histogram can shed light on the likely outcome of the OLR model. Especially 

when the number of DV levels are higher, cumulative logits models may become infeasible. 

Histograms can determine which score levels are more important to be compared via using other 

types of OLR models such as adjacent categories. 

Comparison of Corrosion in the Zones 

Cumulative odds OLR with proportional odds was employed to conduct a pairwise comparison of 

the zones. First, it was established whether zone is statistically significant overall. By referring to the 

Test of Model Effects table at SPSS output report, zone was observed to be a significant (p = 0.002) 

predictor of corrosion scores in a univariate regression.  

Since no specific zone was preferential to investigate, 28 pairwise comparisons had to be 

undertaken which incurred additional calculations to obtain the overall omnibus statistical test. 

Table 5-1 summarises the OR, p-values, and confidence intervals. Significant OR values are 

highlighted in grey. In this table, each zone has been used seven times either as the primary or 

reference (inside brackets) group to exhaust the combinations. OR values below 1 indicate that for 
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the primary category, the odds of having a higher corrosion score is lower than that of the reference 

category. 

For instance, the odds of receiving a higher score at Anterior_Proximal zone is 0.59 times that of 

Lateral_Distal zone. Since this number is below one, that implies the odds of observing more 

corrosion at Anterior_Proximal is 0.41 times lower than that of Lateral_Distal. 

Table 5-2. The odds of observing a higher corrosion score at a primary zone compared with a reference 

ZONE PAIR OR p-value CI (p < 0.05) 

AD (AP) 1.493 0.077 0.957 2.329 

AD (LD) 0.882 0.577 0.566 1.372 

AD (LP) 1.365 0.169 0.876 2.128 

AD (MD) 0.755 0.212 0.485 1.175 

AD (MP) 1.524 0.063 0.977 2.378 

AD (PD) 0.998 0.993 0.641 1.554 

AD (PP) 1.634 0.031 1.047 2.551 

AP (LD) 0.590 0.020 0.379 0.921 

AP (LP) 0.914 0.693 0.586 1.427 

AP (MD) 0.505 0.003 0.324 0.789 

AP (MP) 1.021 0.928 0.654 1.594 

AP (PD) 0.668 0.076 0.429 1.043 

AP (PP) 1.094 0.692 0.701 1.709 

LD (LP) 1.549 0.054 0.993 2.414 

LD (MD) 0.856 0.490 0.550 1.331 

LD (MP) 1.729 0.016 1.108 2.697 

LD (PD) 1.132 0.583 0.727 1.762 

LD (PP) 1.853 0.007 1.187 2.894 

LP (MD) 0.553 0.009 0.355 0.862 

LP (MP) 1.116 0.628 0.715 1.742 

LP (PD) 0.731 0.167 0.469 1.140 

LP (PP) 1.197 0.429 0.767 1.869 

MD (MP) 2.019 0.002 1.294 3.152 

MD (PD) 1.322 0.216 0.850 2.058 

MD (PP) 2.165 0.001 1.386 3.382 

MP (PD) 0.655 0.062 0.420 1.022 

MP (PP) 1.072 0.760 0.686 1.675 

PD (PP) 1.637 0.030 1.049 2.556 

The reciprocal of odds ratios can be calculated to compare a reference group with a primary group. 

To compare the severity of corrosion across the entire eight zones, the odds ratios where sorted 

and plotted (Figure 5-4). The red and blue bars indicate significant and insignificant OR values, 

respectively. An OR equal to 1 indicates equal odds of observing a higher corrosion score at the 

primary and reference zone groups. By moving away from unity, the odds ratios are first insignificant 
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which later on become significant. The speed by which this transition takes place is a function of the 

presumed statistical significance level. 

Figure 5-4. The 28 odds ratios sorted and colour-coded for 28 pairwise comparisons. 

The severity of corrosion at each zone with respect to the other zones was assessed based on its 

corresponding OR values. For each zone, Table 5-2 has provided seven OR values wherein that 

particular zone appears as either primary or reference. 

Table 5-3 sorts the eight zones from the least to the most severely damaged according to the value 

of C1 + C2. This value quantifies how many times each zone had a higher likelihood of damage 

compared with the other seven zones throughout the 28 pairwise comparisons. C1 indicates how 

many time a particular zone, as the primary, had an OR value above 1, while C2 indicates how many 

times that same zone, as the reference, had an OR value below 1. Therefore, both C1 and C2 reflects 

the frequency of each zone appearing as more severely damaged with respect to the other zones. 

Table 5-3. The frequency of each zone showing statistically significant OR. 

Zone C1 C2 C1 + C2 

Posterior_Proximal (PP) 0 0 0 

Medial_Proximal (MP) 1 0 1 

Anteriori_Proximal (AP) 2 0 2 

Lateral_Proximal (LP) 2 1 3 

Anterior_Distal (AD) 4 0 4 

Posterior_Distal (PD) 1 4 5 

Lateral_Distal (LD) 4 2 6 

Medial_Distal (MD) 3 4 7 
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Zones PP and MD were identified as having the least and highest severity of corrosion. Interestingly, 

proximal and distal regions were found to be grouping together in this table with the distal region 

showing more damage compared with the proximal region across the four quadrants in the studied 

stem tapers. 

 Summary and Discussion of the Results 

Eight distinct zones of the stem tapers including Anterior_Distal, Anterior_Proximal, Medial_Distal, 

Medial_Proximal, Posterior_Distal, Posterior_Proximal, Lateral_Distal, and Lateral_Proximal were 

scored and statistically compared to identify the zone(s) with the most severe corrosion damage in 

the retrieved implants studied in this work.  

A univariate OLR was carried out to identify which zones sustained statistically higher levels of 

damage. The three histograms of corrosion scores highlighted that Medial _Distal and 

Posterior_Proximal zones have relatively higher and lower corrosion scores, respectively. To find 

more details, zone was used as the predictor in an OLR model with proportional odds. Out of 28 

possible pairwise comparisons of zone groups, 11 turned out to be significant. To find the order by 

which the zone groups are damaged, regardless of the p-value, an index that measures the 

frequency of each zone group being more damaged against the other zones was introduced.  

The outcome was aligned with the histograms of score levels across the eight zones. Medial_Distal 

and Posterior_Proximal zones observed having the highest and lowest severity of the damage. Also, 

the distal regions of the four quadrants were observed having more damage compared with the 

proximal regions. 

There are several works in the literature that chose to score stem tapers holistically, not locally [42, 

46, 56, 135, 148]. Within the studies [31, 44, 53, 55, 131, 132, 138-141] that have scored stem tapers 

locally, the pools of implants had limited diversity in terms of implant properties (e.g. head 

diameter, articulation type, and stem design). Therefore, it was deemed necessary to explore 

whether a similar distribution of corrosion damage can be seen in a more heterogeneous pool of 

implants. 

To the best of our knowledge, there are only two studies [140, 141] in the literature that similar to 

this work have given eight local scores to the stems while the rest have given lower numbers of 

zones. Among them, one did not compare the scores between the zones [140]. The other compared 
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the four quadrants and the two distal proximal regions separately in terms of corrosion severity and 

did not determine which zone(s) had the most severe damage [141]. 

In this study, since there was no particular hypothesis about the relative level of corrosion at the 

eight zones, 28 pairwise comparisons were carried out to exhaust the entire pairwise comparison 

of the zones. The distal region of the medial quadrant was found to have the highest odds ratio 

(meaning the highest corrosion scores) which is aligned with the findings of the literature that 

identified the distal region [141] and the medial quadrant [6, 24, 42, 53] having the highest corrosion 

scores. Also, this study shows that the medical region of all the four quadrants had more corrosion 

damage in comparison with the proximal region of those quadrants. It was therefore found that, 

regardless of the quadrant, corrosion damage is more present distally than proximally.     

Generally, the higher severity of wear or corrosion at a specific zone has been attributed to several 

factors such as increased micro-motions at the interface, head or stem materials, head diameter, 

high friction moments, and poor lubrication of bearing articulation. While some act as root causes, 

the others play the role of causal factors. Also, damage at this junction usually appears as a 

combination of wear and corrosion mechanisms. Some of these factors may only contribute to a 

specific mode of damage, while others may contribute toward a set of damage mechanisms.  

In a retrieval study of 231 implants [24], the stem tapers received four fretting and corrosion scores 

corresponding to the four quadrants. The medial and lateral scores were observed to be significantly 

higher than the scores at the other two quadrants (posterior and anterior). This was explained to be 

due to a higher likelihood of micro-motions between the head and neck about an axis in the sagittal 

plane. Similar to the present study, the pool of implants in [24] had a wide diversity, and higher 

corrosion scores at medial quadrant suggest that it could be a more general phenomenon than 

patient and implant factors only. 

 explains that at the double tapered cone design of Profemur Z, the proximal end of the neck 

experiences an almost pure compression and shear loading. High friction moments at taper 

junctions was related to poor lubrication of articulation interfaces by another study Bishop et al. 

[149]. Medial quadrant was identified having higher corrosion scores in a retrieval study of 52 S-

ROM components Munir et al. [53]. It was hypothesised that greater micro-motions at this quadrant 

could result in a more frequent disruption of the passive oxide layer, and consequently more severe 
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corrosion damage. Similar to the conclusion of the  study, they maintained that this region is 

generally under a compression loading regime. 

A computational modelling of the stem taper stresses paired with large diameter heads confirmed 

this hypothesis after witnessing maximum levels of principal stresses at the medial quadrant [150]. 

In this study, a 3D model of a 12/14 titanium taper paired with cobalt-chromium and alumina heads 

were used. Increasing the head diameter significantly increased this quadrant’s stresses distal to the 

junction. It was highlighted that pairing of a small trunnion and a large head leads to a larger 

moment arm transmitting a higher force to a small surface area which facilitates tribo-corrosion. 

These studies have used relatively homogenous pools of implants, yet they observed a higher level 

of corrosion at the medial quadrant or distal zones of stem tapers. Based on the findings of this 

study which show that the distal region of the medial quadrant sustains the most severe corrosion 

damage, it is understood that this particular zone is most severely damaged compared with all the 

other zones regardless of the properties and patient characteristics of the investigated pool of 

implants. 

A relatively higher amount of load and stress at the medial quadrant causes elastic strains which 

appear as surface compression. This may lead to micro-motions of approximately 5 to 40 µm [137] 

which in turn may result in abrasion or fracture of the oxide layer. The subsequent changes in the 

metal surface potential and the continuous re-passivation of the oxide layer will change the 

chemistry of the crevice solution. Ultimately, the deaeration and pH decrease of the solution initiate 

crevice corrosive attacks [5, 151]. 

Besides micro-motion, galvanic corrosion at this interface due to using mixed metal components is 

a potential source of material loss. In this study, 18 (13.1%) implants had mixed head and stem 

materials, whereas 45 (32.8%) had similar materials. Therefore, galvanic corrosion cannot be 

nominated as the sole mechanism of corrosion. 

Greater corrosion damage at the distal region of stem tapers has been reported by several studies 

[141, 152]. This has been attributed to using increasingly larger heads which induces a significant 

rise of stress at this region [139, 150]. Crevice corrosion tends to occur near the bore opening which 

may explain observing more severe corrosion at the distal region [153]. 
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6 MULTIVARIATE ANALYSIS OF PATIENT/IMPLANT FACTORS 

RESULT - III 

[Image removed due to copyright restriction]
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Introduction 

This chapter will use the information from the pool of 137 implants to discuss the issues regarding 

performing multivariate analysis of implant and patient factors. Unlike the previous chapter that 

looked at sustained corrosion damage at various zones of stem tapers and investigated the 

underlying reasons for that, this chapter aims to compare the different outcomes of OLR that were 

induced by variable selection. 

The second set of scores will be used to investigate the influence of nine patient and implant factors 

on corrosion at stem tapers. OLR with cumulative odds will be used to identify the significant factors 

and compare the groups of polytomous factors. The outputs of three regression models will be 

compared to highlight the concerns raised in association with multivariate analysis. 

Since OLR can also be used as a predictive model, the accuracy of the model in predicting the 

corrosion scores based on the available patient and information data will be explored. The 

performance of OLR is compared with more advanced machine learning methods to identify 

superior classification algorithms for prediction of scores. 

Preliminary Analyses 

The stem tapers were scored by two investigators (R.O and R.M). The differences in scores between 

the two investigators never exceeded one grade of the Goldberg scoring model, and this occurred 

in 20% of the examined stem tapers (28 of 137). Via a joint examination, a consensus was reached 

to resolve the discrepancies. 

Visual Scores Statistics 

Weighted kappa (κW) with quadratic weights was run to determine the inter-observer 

reproducibility of the corrosion scores. A confusion matrix was established to quantify the 

disagreements. For quadratic weights, the further away from a disagreement from the perfect 

agreement, the more harshly that disagreement is considered. Weighted kappa (κW) with quadratic 

weights indicated a statistically significant agreement, κW = 0.79 (95% CI, 0.71 to 0.87), p < 0.001 

between the two sets of scores. According to Landis et al. [147], the strength of the agreement was 

classified as good. 
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Visual scoring of the 137 stem trunnions resulted in 137 corrosion scores. Table 6-1 summarises the 

quantity and percentage of each score level. Score level 3 had the highest quantity (64), while the 

lowest quantity (3) belonged to score level 1. 

Table 6-1. The distribution of corrosion scores across 137 stem tapers 

Score Quantity (%) 

1 3 (2.2) 

2 54 (39.1) 

3 64 (46.4) 

4 17 (12.3) 

Data Exploration 

Since it was desired to determine a subset of the predictors for an adjusted multivariate analysis, 

first each factor went individually through univariate OLR to determine whether it is statistically 

significant. Table 6-2 sorts the significance levels from smallest to largest for the nine factors. 

Table 6-2. Statistical significance level of each factor 

Factor p-value

Head material 0.193 

Age 0.498 

Head diameter 0.526 

Hip fixation 0.544 

Stem taper 0.605 

Time to revision 0.638 

Joint side 0.683 

Stem material 0.889 

Gender 0.925 

Since none of them was observed to be statistically significant, a subset of seven confounding 

variables which have been investigated (individually or in a group) in the past and observed to be 

potential contributors toward damage by the literature were selected. This set is comprised of four 

categorical variables (Stem Material, Head Material, Stem Taper, and Hip Fixation) and three 

continuous variables (Time to Revision, Head Diameter, and Age at Insertion). The demography 

information is summarised by Table 6-3 which is representative of 52 (38%) implants with available 

information across the entire seven adjusted variables. For stem taper, 11/13 and Type_1 were 

eliminated due to having zero records in the set of 52 implants. 
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Table 6-3. The demography of the selected 52 operations 
Predictor Quantity (% of 52 implants) Mean Range 

Head Material 

CoCr 40 (76.9) 

SS 6 (11.5) 

Ceramic 6 (11.5) 

Stem Material 

CoCr 27 (51.9) 

SS 15 (28.8) 

Titanium 10 (19.2) 

Stem Fixation 

Cemented 29 (55.8) 

Cementless 23 (44.2) 

Stem Taper 

12/14 30 (57.7) 

V40 5 (9.6) 

9/10 3 (5.8) 

6° 8 (15.4) 

C-TAPER 5 (9.6) 

TYPE 1 0 (0.0) 

11/13 0 (0.0) 

10/12 1 (1.9) 

Head Diameter (mm) 32.35 26 - 55 

Time to Revision (year) 6.92 0 - 27 

Age (year) 63.31 30 - 85 

Assessing The Quality Of The Adjusted Variables 

The validity of the OLR model obtained by adjusting for these variables from a statistical point of 

view was investigated. Accordingly, the quality of the model fit, the multi-collinearity, and 

proportional odds assumptions were considered. 

The Overall Model Fit 

Due to observing a high quantity of 156 (75.0%) cells with zero frequencies, overall goodness-of-fit 

statistics were not deemed to be reliable to test the overall goodness-of-fit of the model. Therefore, 

the quality of the model fit was investigated by comparing the full model to the intercept-only 

model. As such, a significant difference between the -2 log-likelihood of these two models was 

desired which implies the confounding predictors are better at explaining the scores. Table 6-4 

presents model fitting information for these variables. The difference between these two models 

was observed to be significant as desired. 

Table 6-4. Comparison between the full and intercept-only model 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 104.971 

Final 81.296 23.675 13 0.034 
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Multi-Collinearity 

To test the multi-collinearity assumption, collinearity diagnostic which return Variance of Inflation 

Factor (VIF) was used. VIF indicates to what extent any particular predictor is contributing to multi-

collinearity issues within the dataset. A general rule of thumb is that values over 10 indicate very 

strong multi-collinearity which was adopted here. The polytomous variables were dummy coded, 

and all the dummy variables except the reference group were included. Table 6-5 summarises the 

outcome. As can be seen, the VIF index never reached 10 which indicates that the adjusted variables 

are not associated with multi-collinearity concerns. 

Table 6-5. VIF used as a metric to investigate multi-collinearity 

(Dummy) 
Variable

VIF 

Head Diameter 2.583 

Time to Revision 3.258 

Age 1.891 

Stem_CoCr 7.823 

Stem_Ti 8.324 

Head_CoCr 4.004 

Head_SS 7.221 

Stem Fixation 4.621 

V40 3.892 

9/10 4.177 

6° 3.187 

C_Taper 2.661 

10/12 1.265 

Proportional Odds 

Proportional odds assumption was tested via the test of parallel lines that compare the fit of the 

proportional odds model to a model with varying slope coefficients. It was desired not to reject the 

null hypothesis that states the slope coefficients are the same across the three cumulative 

regression models. Table 6-6 displays the outcome of this test. The obtained p-value (0.613) did not 

reject the null hypothesis as desired. 

Table 6-6. The outcomes of the test of parallel lines 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 81.296 

General 57.938 23.358 26 0.613 

The Influence of the Factors 

Two other OLR analyses were performed to investigate the influence of the predictors. The first one 

investigated the significance of the seven adjusted predictors individually using the 52 implants. The 
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second group used these predictors in a multivariate regression model. The role of the first group 

of analyses was to ensure that any differences between the previous section analysis and the 

multivariate analysis of these seven predictors were due to the adjustments and not due to the 

different implant records. 

Throughout these analyses, the polytomous predictors (i.e. stem taper, stem material, and head 

material) incurred additional calculations to obtain an overall test of statistical significance since 

always one group had to be taken as reference. For a polytomous predictor with c groups, c(c-1)/2 

dichotomous dummy variables were generated. For instance, taper had six distinct groups; hence, 

6(6-1)/2 or 15 tests of statistical significance did a pairwise comparison of the groups. 

Univariate Analyses of the Confounding Variables 

The first group of analyses performed a univariate regression of the seven predictors over the 52 

implant records. Table 6-7 sorts the significance levels from smallest to largest. 

Table 6-7. The significance levels of the factors from the univariate OLR 

Factor p-value

Head material 0.026 

Age 0.245 

Head diameter 0.357 

Stem taper 0.528 

Hip fixation 0.599 

Stem material 0.739 

Time to revision 0.973 

Unlike the previous section that did a univariate analysis of the entire dataset and observed only 

stem taper having one out of 28 significant odds ratio values, only head material in this analysis was 

observed to be significant at SS (Ceramic) with an odds ratio of 0.031. 

By comparing Table 6-7 with Table 6-2, it can be concluded that adjusting for the seven confounding 

variables does not dramatically influence the significance level of the predictors in univariate 

analysis. 

Multivariate Analyses of the Confounding Variables 

The second group of analyses performed a multivariate regression of the seven predictors. The 

overall significance of the predictors in a multivariate analysis can be investigated by referring to 

the Test of Model Effects table at SPSS output report. Table 6-8 displays the sorted values. Stem 
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material and head material turned out to be significant predictors of corrosion scores in this group 

of analysis. 

Table 6-8. The significance levels of the factors from the multivariate OLR 
Factor p-value

Stem material 0.010 
Head material 0.012 
Age 0.156 
Stem taper 0.207 
Hip fixation 0.484 
Time to revision 0.654 
Head diameter 0.980 

Table 6-9 summarises the OR values, confidence intervals (CIs), and p values. The groups of 

polytomous variables were compared by each other by taking them as primary and reference (inside 

bracket). At each mutual comparison, the odds of receiving a higher score for the primary group 

compared with the reference group is provided. The majority of the significant odds ratios (grey 

rows) belong to stem material and head material comparisons which is in accordance with Table 6-8 

findings. Stem taper had the remaining three significant odds ratios wherein 9/10 group shows a 

lower likelihood of receiving higher corrosion scores. 

Table 6-9. The outcome of the multivariate OLR of the seven predictors 
Analysis III OR p-value CI (p < 0.05) 

head diameter (mm) 1.001 0.980 0.899 1.115 

time to revision (year) 0.965 0.654 0.825 1.129 

age (year) 0.952 0.156 0.890 1.019 

stem material 

CoCr (Ti) 2.581 0.468 0.199 33.381 

SS (Ti) 1165.610 0.005 8.706 156216.790 

CoCr (SS) 0.002 0.003 < 0.001 0.121 

head material 

CoCr (Ceramic) 0.066 0.061 0.004 1.137 

SS (Ceramic) < 0.001 0.003 < 0.001 0.054 

CoCr (SS) 330.961 0.009 4.293 25539.971 

stem fixation cemented (cementless) 2.368 0.484 0.212 26.417 

stem taper 

12/14 (10/12) 0.366 0.694 0.002 55.054 

V40 (10/12) 0.006 0.103 < 0.001 2.780 

9/10 (10/12) < 0.001 0.027 < 0.001 0.424 

6° (10/12) 0.013 0.160 < 0.001 5.508 

C-Taper (10/12) 0.969 0.992 0.002 518.506 

12/14 (C-Taper) 0.377 0.533 0.018 8.067 

V40 (C-Taper) 0.006 0.076 < 0.001 1.681 

9/10 (C-Taper) < 0.001 0.028 < 0.001 0.445 

6° (C-Taper) 0.014 0.062 < 0.001 1.249 

12/14 (6°) 27.872 0.052 0.971 800.150 

V40 (6°) 0.475 0.707 0.010 23.195 

9/10 (6°) 0.033 0.174 < 0.001 4.521 

12/14 (9/10) 838.564 0.016 3.486 201746.806 

V40 (9/10) 14.281 0.155 0.364 559.935 

12/14 (V40) 58.720 0.066 0.769 4485.766 
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From Table 6-9, similar to the previous chapter, the order by which the groups of polytomous 

variables (stem material, head material, and stem taper) had higher severity of corrosion can be 

determined regardless of their significance levels. Table 6-10 summarises the results for these three 

polytomous predictors. C1 represents the number of times a group had an odds ratio above one as 

the primary group. C2 represents the number of times a group had an odds ratio below one as the 

reference group. 

Table 6-10. Comparison of the severity of corrosion across the groups of the three polytomous predictors 

Factor Group C1 C2 TOTAL 

Stem material 

Ti 0 0 0 

CoCr 1 0 1 

SS 1 1 2 

Head material 

SS 0 0 0 

CoCr 1 0 1 

Ceramic 0 2 2 

Stem taper 

9/10 0 0 0 

V40 1 0 1 

6° 0 2 2 

12/14 3 0 3 

C-Taper 0 4 4 

10/12 0 5 5 

Stainless steel stems, ceramic heads, and 10/12 tapers were associated with higher corrosion scores 

compared with the other groups in each of their corresponding polytomous variable. 

Prediction of Scores 

Prediction of corrosion scores was carried out via different classification models. Unlike the causal-

explanatory statistical modelling which demands to check several assumptions before adjusting for 

variables, predictive analytics methods do not impose such limitations. However, due to the missing 

information, including a higher number of predictors in the model results in a reduction in the 

number of implants with information available across the entire record fields. 

Besides, there needs to be a balance between the number of included predictors and the number 

of available observations. Having too many predictors in a model may produce high multi-

collinearity and introduce some noise into the classification model. On the other hand, 

incorporation very few variables may deprive the model of the useful information that could have 

enhanced the accuracy rate. 
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Considering that the inclusion of some particular variables might be preferential to the rest in the 

predictive models, a set of variables were selected as the predictors in the classification models. 

From a clinical decision-making perspective, selection of stem material and head material for a 

patient with a specific age can be preferential owing to the diversity and modularity of hip 

replacement implants. These factors were observed to be significant in the multivariate analysis. 

Also, time to revision is a key factor to predict the corrosion severity within any desired time frame 

after the operation. The polytomous predictors of stem material and head material were dummy 

coded, and their last categories were used as the reference. Therefore, the predictive models were 

comprised of age and time to revision as two continuous predictors and four binary predictors that 

were associated with two categories of stem material and head material. 

The size of the available implant record for this set of predictors is 58 which is a reasonable value 

due to having around 15 observations per predictor. Table 6-11 summarises the quantity of the 

score levels for these 58 implant records.  

Table 6-11. The distribution of the score levels across the 58 selected implants 

Score Quantity (%) 

1 1 (1.7) 

2 21 (36.2) 

3 31 (53.5) 

4 5 (8.6) 

The classes are highly imbalanced with score levels 2 and 3 possessing the majority of implant 

records. Therefore, it is expected the same pattern to occur for the predicted scores. Also, this fact 

led to not using any validation scheme and just reporting the accuracy rate of models that use the 

entire 58 records for training. 

 Ordinal Logistic Regression 

The prediction accuracies of two OLR models were determined here. Since the assumption of 

proportional odds is not required in prediction, the accuracy rates of OLR models with and without 

this assumption was determined to find how this condition may influence the prediction of the 

visual scores. After establishing the confusion matrix for these two predictive models, they were 

observed to be identical. Table 6-12 quantifies the actual scores against the predicted scores. The 

accuracy rate is 58.6% for both OLR models. 
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Table 6-12. Confusion tables for the OLR model 

Predicted Score 
TOTAL 

1 2 3 4 

Actual 
Score 

1 
count 0 0 1 0 1 

% 0.0% 0.0% 100% 0.0% 100% 

2 
count 0 5 16 0 21 

% 0.0% 23.8% 76.2% 0.0% 100% 

3 
count 0 2 29 0 31 

% 0.0% 6.5% 93.5% 0.0% 100% 

4 
count 0 0 5 0 5 

% 0.0% 0.0% 100% 0.0% 100% 

The identical classification of implant records by these two OLR models shows that having 

proportional odds does not influence the prediction of scores. 

Alternative Machine Learning Methods 

Via Classification Learner app in MATLAB, three different classifications models were trained to 

compare the performance of OLR with these complex nonlinear algorithms. Table 6-13 summarises 

the performance of the top three accurate algorithms against the OLR models. As mentioned before, 

due to the limited size of the classes, no validation scheme was carried out. 

Table 6-13. The summary of the accuracy rates in the prediction of scores 

Technique Accuracy rate (%) 

k-Nearest Neighbour 98.3 

Support Vector Machine 87.9 

Decision Tree 74.1 

OLR 58.6 

Summary and Discussion of the Results 

The statistical analysis in the literature of retrieval studies is dominated by univariate analysis of 

patient and implant factors. A large number of factors that have been identified so far as potential 

contributors toward damage and the synergistic role of these factors in the outcome of hip 

replacement operations demand looking at the influence of these factors, concurrently, via 

multivariate analysis. This study is among the few works in the literature that performed 

multivariate analyses of several patient and implant factors. OLR with proportional odds was used 

to carry out three groups of regression modelling.  
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The outcome of the first group showed that none of the ten predictors is individually significant. The 

second and third groups used a subset of 52 implant records with information about seven 

predictors. The univariate analysis of these factors revealed that head material has become 

significant. The multivariate analysis detected the statistical level of significance for head material 

as well as stem material. It can be concluded that adjusting for that seven predictors is the reason 

for stem material, yet such conclusion cannot be made with certainty for head material as its 

significance may be attributed to using a different dataset. For polytomous variables of stem taper, 

head material, and stem material, a method was introduced to sort their corresponding groups in 

order of increasing corrosion severity. 

Also, the prediction accuracy of the corrosion scores by OLR was investigated. Due to having missing 

information, a subset of 58 implant record with information available about four predictors of head 

material, stem material, age, and time to revision was selected to be used in several prediction 

algorithms. The unbalanced size of the score levels did not allow for performing validation. The 

accuracy rates showed that nonlinear classification algorithms are potentially better at predicting 

the corrosion scores. 

Regression is the sole method that can handle the multivariate analysis of continuous and 

categorical factors. The majority of the literature methods which are based on comparing the mean 

(median) of scores across different groups of nominal predictors [30, 37, 136, 138] or Pearson and 

Spearman correlations [30, 132] face limitations to perform multivariate analysis. These limitations 

mostly arise from assumptions that demand specific distribution of scores and equal variance in 

each cell of design. However, the assumptions of OLR does not require maintaining such conditions. 

Unlike the other methods which can handle only specific types of predictors in terms of the level of 

measurement, OLR can handle continuous, dichotomous, and polytomous predictors 

simultaneously. 

The capability of OLR to handle multivariate analysis was investigated here through using the 

database of 137 retrieved implants with nine patient and implant fields (head material, head 

diameter, hip fixation, stem taper type, stem material, joint side, time to revision, age, gender). The 

assumptions of OLR did not allow for using the entire nine factors in the regression models which 

resulted in the need for variable selection. The high number of all possible subsets of predictors that 

could be considered in the regression model turns the variable selection into a complicated task. 

This matter was elaborated by performing three groups of regression analyses. The outcomes 
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showed that the predictors might shift from being significant into insignificant and vice versa based 

on the available data (the first two groups of regressions) as well as the seven adjusted predictors 

(the third group versus groups one and two). For instance, head material was insignificant when all 

the available data (i.e. 75 out of 137 records) for this factor was used, yet it became significant after 

adjusting for the seven confounding variables and using this factor in the univariate analysis of the 

52 implant records. Also, stem material which was not significant in both of the univariate analyses 

turned into significant in the multivariate analysis. The difference in the outcome is not confined to 

just the significance level of the factors, The odds ratio values vary as the main outcome of the OLR 

models as well which leads to different explanations about the associations between these factors 

and the corrosion scores. 

These facts show that although OLR can be superior in conducting multivariate analyses compared 

with other types of methods, it may suffer when the number of predictors or the groups of 

polytomous predictors increases.  

Several machine learning techniques were used to investigate how accurate they can predict the 

corrosion scores for the dataset that was available for this study. OLR with and without the 

assumption of proportional odds showed that maintaining this assumption does not change the 

accuracy (58.6%) of the model fitted to this particular dataset. Also, this method, as a linear model, 

did not perform as well as the other, more complex nonlinear methods. The very high non-validated 

accuracy of the nonlinear methods raised overfitting concerns which need to be addressed via a 

cross-validation scheme. However, the small sample size of score levels 1 and 4 did not permit a 

cross-validation in the dataset used as a sample for this purpose. 
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7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 

DISCUSSION 

[Image removed due to copyright restriction]
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Introduction 

This chapter will endeavour to use the obtained experience from this work to provide a future-

oriented outlook for works that consider expanding the horizon of leveraging AI in orthopaedics and 

more specifically, large-scale retrieval studies of orthopaedic implants. 

AI and Orthopaedics 

The potential applications of AI tools (i.e. DIP and machine learning) in orthopaedics are elaborated 

in this section. 

DIP 

Image-based rating of corrosion severity at modular junctions as well as other surface areas of 

orthopaedic implants can resolve the concerns associated with the reliability of visual scoring. 

However, capturing images of hard to reach areas such as bore taper of femoral heads may pose 

limitations to the applicability and even feasibility of image-based rating. Despite that limitation, 

this approach offers other advantages such as creating large databases of implant images through 

time that can be shared and used in future. Also, it facilitates the visual scoring of various zones of 

a specific interface, as discussed in chapter 5. 

Section 3.2 detailed out the process to clean the stem taper surfaces according to an existing 

protocol. Here, it should be noted that the total removal of dirt, the tissue remains, and bloodstains 

from these surfaces is not always possible. One reason for these limitations is the desire to keep the 

corroded and worn areas intact for the studies. In this study, it was endeavoured not to include 

implants with significant dirt to minimise its impacts on the results. 

This work just relied on analysing RGB optical images of retrieved implants. However, image analysis 

is not just limited to post-revision. Through the life of an in-situ implant, medical images can be 

obtained and analysed continuously by DIP and machine learning algorithms. They can detect or 

measure variables representative of the current status of implant/host such the position and the 

orientation of implants components concerning each other or the nearby bones and tissues. Also, 

nearby tissues damage induced by particulate wear/corrosion debris can be detected and 

evaluated. Acquiring and analysing such images regularly can facilitate early detection of a 

problematic implant. 
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This information, along with the retrieved implants and the corresponding medical records, can 

support retrieval studies to gain a more detailed understanding of the causal factors and their 

interactions throughout the implantation time. The importance of leveraging AI in orthopaedic 

image analysis has been already highlighted by some clinicians [154]. 

Machine Learning 

 have reviewed the literature on musculoskeletal problems and related health conditions to learn 

the extent by which machine learning techniques have been employed since 2000. They listed 

several studies in which researchers developed and applied machine learning to support clinicians 

in their main tasks, whose essence is the need to make decisions in the absence of certitude and 

translate these decisions into choices of care for the betterment of patients. 

The present work used machine learning for two distinct purposes. The first one served the 

development of a classification model for prediction of scores by using some textural features that 

characterise the severity of corrosion damage. As mentioned in Section 4.5, currently, the feature 

extraction process is getting automated by taking advantage of adaptive learning techniques. These 

techniques can learn a set of features that best fit in a predictive model of the response variable 

(e.g. corrosion scores). 

Adaptive learning comes at a much higher computation cost compared with non-adaptive learning 

and usually demands a larger sample size within each class (e.g. score level). The advent of powerful 

processors, cloud computing tools, and data augmentation techniques have paved the path to 

overcoming this limitation. High volumes of data can be analysed on an ongoing basis to extract 

knowledge from experience to improve processes and decision outcomes. 

On the same token, this study endeavoured to embed the knowledge and experience of a human 

expert to develop a classification model that visually scores modular junctions of implants with no 

human interventions (objectively).  

Machine learning, also served the second purpose in this study. Rather than using DIP features from 

the implant images to predict the severity of corrosion damage, prediction of scores from the 

patient and implant records was investigated. That can be a very important milestone since the 

prediction of damage from images can be made only after failure and retrieval of implants which 

incur high costs for both the patients and the medical systems. On the contrary, using the empirical 
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data from medical records from the past primary/revision operations allows for predicting the 

severity of corrosion through time (similar to survival analysis) or even earlier where decisions are 

made about the implant to be used for a prospective recipient. 

The available dataset for this study was quite limited, and the size of the implants within each score 

level was small and unbalanced. This matter was highlighted (Sections 3.8, 3.8.3.3, and 3.8.3.4) and 

explored (Sections 6.4) using the available data.  

Another reason that justifies a broader use of machine learning in large-scale retrieval studies is the 

limitations associated with the existing causal-explanatory statistical modelling techniques 

(elaborated in Section 6.5). Although OLR can be superior in conducting multivariate analyses 

compared with other types of methods, it may suffer when the number of predictors or the groups 

of polytomous predictors increases. To address this matter, alternative machine learning techniques 

can be employed to capture the underlying characteristics of the data. A classification model of 

damage scores is not subject to complexities associated with the variable selection. Recently, with 

the advent of powerful computers and the availability of several machine learning libraries and 

open-source toolkits, it has become feasible to incorporate these algorithms in various classification 

as well as regression contexts. 

Overall, this study detailed out the process to apply supervised machine learning algorithms to 

predict corrosion scores based on the implant and patient information. It is a decision support tool 

to estimate the probability of severe corrosion damage at in-situ implants for surgeons any time 

after an operation. It can facilitate the decision-making process regarding when to remove a 

seemingly malfunctioning implant. The performance of these machine learning algorithms can be 

improved by refining (e.g. via hyperparameter optimisation) and incorporation of larger datasets 

which was out of the scope of this study, and it can be investigated through future works. 

Electronic Medical Records and Clinical Decision Support Systems 

The essence of retrieval studies is to produce evidence-based knowledge to achieve better clinical 

decision-making which in turn can improve the outcomes of primary and revision operations. This 

can be done over two stages of systematically collecting and analysing the data. In a larger scale, 

successful commercialisation and adoption of many Electronic Medical Record (EMR) systems have 

shifted the question from gathering the data to converting the massive amounts of available data 

into knowledge directly applicable to diagnosis, prognosis, or treatment. 
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The result has been the evolution of EMR-based Clinical Decision Support Systems (CDSS) in a variety 

of healthcare settings such as precision medicine which serve in capacities beyond generating alerts 

and reminders [155-157]. Considering the increasingly voluminous data associated with medical 

records as well as knowledge accumulated from the past retrieval studies, it is necessary to integrate 

similar systems that encode the knowledge in a way that makes it actionable by clinicians and 

manufacturers. 

Concluding Remarks 

1. Image-based rating facilitates visual scoring of stem taper zones.

2. The expertise in visual scoring can be captured and used objectively via image classification

algorithms.

3. Global and local textural features used in rating corrosion severity within other corrosion-

related domains can also be used for taper corrosion.

4. The significant difference observed in corrosion scores across eight stem taper zones

mandates using local scores over scoring holistically.

5. Using overall visual scores as a continuous variable should be treated with suspicion.

6. Corrosion at stem tapers is more commonly seen distally and medially.

7. Despite the extensive advancements in characterising damage at modular orthopaedic

implants, the data analysis techniques are just limited to causal-explanatory statistical

modelling.

8. While the techniques to quantify the damage, analyse wear and corrosion mechanisms, and

characterise corrosion by-products have advanced significantly, analysing the raw data

produced by them is still limited to causal-explanatory statistical modelling and have not

evolved properly.

9. No certain protocol exists for statistical analyses in this area. Different studies use different

approaches to similar works. The impact of using different analyses on the results are not

known.

10. The synergistic role of several patient/implant factors at the outcome of hip replacement

operations demands for multivariate data analysis. Due to the limitation in sample size, the

majority of studies are content with using just one or just a few factors.

CONCLUSION 
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11. Ordinal logistic regression is recommended over the other causal-explanatory statistical

modelling.

12. Due to concerns associated with variable selection in regression models, causal-explanatory

statistical modelling is recommended to be used alongside predictive modelling to capture

the underlying characteristics of the data.

Suggestions for Future Work 

1. The potential utilisation of machine learning and deep learning tools to be explored to

generate predictive analytics from the vast amounts of primary and retrieval operation

records.

2. This study endeavoured to predict corrosion scores from image descriptors. These

descriptors can expand to several patient/implant/surgical factors for prediction of not just

corrosion scores, but the likelihood of implant failure for a specific patient using a specific

hip replacement

3. The successful experience of decision-making related areas with leveraging state-of-the-art

big data storage and analysis tools need to be investigated to develop a clinical decision

support system in the context of orthopaedic implants.
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