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Abstract 

TopCat is a WAM-V unmanned surface vehicle (USV) outfitted to compete in the Maritime 

RobotX Challenge. The Detect and Deliver task in the 2018 Maritime RobotX Challenge 

requires a USV to detect a symbol on a floating dock and deliver four racquetballs into the 

dock. Currently, vision based cameras are used to identify a set of symbols within the 

cameras’ field of view as the USV approaches them. Symbol detection is carried out using 

a blob detection algorithm that reports the symbol identified. However, the current symbol 

detection algorithm is prone to misidentifying symbols in changeable lighting environments 

and does not report the position of symbols within its field of view. 

 

This thesis addresses this issue through the development of a target tracking system that 

uses blob detection algorithm with automatic parameter configuration in combination with 

region of interest data from the lidar and simultaneous localisation and mapping systems to 

identify a symbol’s location and pass that information to a pan-tilt servo system. The 

automatic configuration of internal parameters allows the algorithm to identify symbols in a 

wide range of lighting environments while region of interest data from lidar sensors is used 

to reduce the area in an image stream that needs to be searched for symbols. After 

identifying the position of a symbol within the cameras’ field of view, the required servo 

positions are then sent to a pan-tilt servo system acting as the targeting system of a ball 

launcher. 

 

The target tracking system developed will enable a ball launcher to be aimed at a target as 

part of the Detect and Deliver task of the 2018 Maritime RobotX Challenge.  
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1 – Introduction 

RoboNation, formally the Association for Unmanned Vehicle Systems International (AUVSI) 

Foundation (RoboNation, 2018b), has run a biennial maritime competition for unmanned 

surface vehicles (USV) since 2014.  

 

The Maritime RobotX Challenge was first announced in 2013 at AUVSI’s Unmanned 

Systems Conference in 2013. Created in support of advancements in autonomous vehicle 

technology in land, air and water, and co-sponsored by the Office of Naval Research 

(ONR), AUSVI Foundation and Singapore’s Ministry of Defence, the inaugural competition 

was held in Singapore in 2014. Three teams each from the United States, Singapore, 

Australia, Japan and South Korea, were invited for participation (Office of Naval Research, 

2013). Flinders University, in cooperation with the Australian Maritime College in Tasmania, 

was one of the three Australian teams that participated in the inaugural Maritime RobotX 

Challenge. 

 

To compete in the Maritime RobotX Challenge, a student team has to fit out a 16-foot Wave 

Adaptive Modular Vessel (WAM-V) with propulsion, power and sensor systems, enabling it 

to navigate maritime environments autonomously. In the competition, USVs have to 

complete a series of challenge tasks. These tasks include autonomous navigation, obstacle 

avoidance and symbol identification and are designed to emulate real world scenarios that 

an USV might have to deal with. Flinders University’s USV, TopCat is shown in Figure 1. 

 
Figure 1. Flinders University’s USV, TopCat (Image courtesy: Centre for Maritime Engineering 

Control and Imaging, Flinders University) 
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The TopCat is equipped with an on-board computer system that controls the movement of 

the USV through processing of data collected from its sensors. The on-board sensors 

include RADAR, lidar, GPS, vision based cameras and an ultrasonic wind sensor. While it 

can run autonomously, it is also capable of being remotely monitored and controlled by a 

human operator via a base station. 

 

As of the 2018 Maritime RobotX Competition, there are eight different challenge tasks 

(RoboNation, 2018b): 

- Entrance and Exit Gates 

- Avoid Obstacles 

- Find Totems 

- Scan the Code 

- Identify Symbols and Dock 

- Detect and Deliver 

- Underwater Ring Recovery 

- Situational Awareness Reporting 

 

Among these eight tasks, Detect and Deliver was added to the challenge task roster in the 

2016 competition (RoboNation, 2018a). Detect and Deliver required a USV to approach a 

floating dock, identify a coloured symbol on the dock and deposit four racquetballs into a 

net located above the coloured symbol, Figure 2.  

 

Figure 2.  Visualisation of USV approaching floating dock, taken from the task summary 

(RoboNation, 2018c) 
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The target, see Appendix A, consists of a coloured target symbol with two square holes 

located directly above it. There is no requirement to deposit the racquetballs into a specific 

hole as they are only used to calculate points for the competition. However, depositing the 

racquetballs into the smaller hole results in more points.  

 

While performing the task, the USV is not permitted to directly interact with either the dock 

or the target, whether by pushing against the dock to hold position or latching onto the 

target. While the task permitted the insertion of the racquet balls into the target nets via 

methods other than propulsion, the task was designed to emulate a fire fighting scenario 

where a water jet has to be directed through small openings in a vessel or building. 

 

Except for the team from University of Hawai'i at Mānoa, who designed a telescoping 

mechanical arm to deposit the racquetballs into the target net, all other teams attempted to 

construct ball launching mechanisms to propel the racquetballs from the USV into the 

target. While almost all teams that competed in the 2016 challenge documented some form 

of ball delivery mechanism, the Seoul National University (SNU) team was the only one to 

demonstrate their system successfully.  

 

As documented in their team paper, the SNU team used a lidar system to find the location 

of the floating target platform before switching to the camera system to identify the symbol 

on the platform. Shape recognition was done using a template matching technique. After 

determining the correct target, the USV switched back to the lidar system and used the 

RANSAC method to determine its desired position in front of the target. Manoeuvring the 

USV to its desired position, a Canny edge detector was employed to locate the square 

regions with the target holes filtered out using geometric constraints. After locating the 

target, a proportional derivative control system was used to operate the pan and tilt motors 

to centre the aiming based on image pixel error. The ball launcher would then fire after the 

target position is determined (Choi et al., 2017). 
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The use of robotics for hazardous environments is not a new concept. The idea of using 

remote or robotic systems for such purposes goes as far back as the 1970’s. In 1972, 

Marvin Minsky, a well-known cognitive scientist in the field of artificial intelligence, 

submitted a proposal to the Advanced Research Projects Agency (ARPA) regarding the 

development of robotic systems for use in medicine and health, mining and undersea 

resources, nuclear facilities and space where tasks in the given environments could 

potentially be hazardous for humans (Minsky, 1972). 

 

In 1979, McGhee’s book ‘Future Prospects for Sensor-Based Robots’ (McGhee, 1979) 

mentioned the use of robots to replace humans for hazardous environments. It noted that 

applications included fire fighting, underground mining and ordnance disposal. In 1985, a 

student design project was carried out at the Naval Postgraduate School in Monterey, 

California to design a navy robotic fire fighter (Smith et al., 1985). In the paper, it was noted 

that the goal of developing a robotic fire fighter was not just for the purpose of replacing 

human fire fighters but to develop a robot that would be able to fight fires more effectively.  

 

The next year, Breaux (Breaux, 1986) explored the possible reactions of a simple robotic 

system to a fire. It discussed its potential benefits compared to a potentially erratic human 

action when confronted with catastrophic events. In 1988, a conceptual design study was 

carried out for the development of a remotely operated system to fight fires (Cox et al., 

1988). While it was not an autonomous system, the study demonstrated the feasibility of 

using robots or remotely controlled vehicles to eliminate human presence in hazardous 

environments. 

 

In 1991, a report on the United Kingdom’s Security and Fire Fighting Advanced Robot 

(SAFFAR) project investigated the development of a low cost, high performance robot for 

use in fighting nondomestic fires (Bradshaw, 1991). The use of neural networks to train and 

control a fire fighting robot was explored in a 1998 paper (Zhou et al., 1998). The paper 

considered the idea that a fire fighting robot did not necessarily have to be remotely 

controlled or operate on a fixed set of rules. Instead, it could learn to complete tasks such 

as identifying the source of a fire, navigating towards it and then combating the fire. The 

potential use of robotic systems for search and rescue tasks, including fire fighting in the 

aftermath of the Great Hanshin-Awaji earthquake in Japan 1995 was also investigated 

(Tadokoro et al., 2000). 
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Into the 21st century, the development of practical fire fighting robots became more 

prominent, with the Tokyo Fire Department developing several robots for the purpose of 

fighting fires remotely under various environment conditions (Miyazawa, 2002). In 2015, the 

US Navy unveiled a prototype shipboard fire fighting humanoid robot at the Naval Future 

Force Science & Technology EXPO in 2015. The Shipboard Autonomous Firefighting Robot 

(SAFFiR), was demonstrably able to walk across uneven floors, identify overheated 

equipment and deploy a hose to extinguish a small fire in a series of experiments. SAFFiR 

was developed by researchers at Virginia Polytechnic Institute and State University and was 

used by the ONR to evaluate the applications of unmanned systems in damage control and 

naval vessel inspection as part of the navy’s focus in supporting autonomy and unmanned 

systems (White, 2015).  

 

The ONR sponsored several more papers in 2016 that investigated the use of various 

sensors to track the path of water spray to maximise the capabilities of a robot to suppress 

a fire. In ‘Autonomous Fire Suppression Using Feedback Control for a Firefighting Robot’ 

(McNeil, 2016), a real-time feedback loop was used to identify the spray path of a water jet 

and apply the necessary adjustments to correct its trajectory. Unlike a ball launcher, water 

sprays are continuous. As a result, it is possible to utilise a feedback control system for 

trajectory correction.  

 

From the historical development perspective of robotic fire fighting, the inclusion of a 

challenge task emulating robotic fire fighting is well founded.  
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2 – Problem Formulation 

In the 2016 competition, the Flinders University team’s USV was unable to identify the 

target holes and propel racquetballs into the net behind the target to complete Detect and 

Deliver. However, three key issues were identified for further development and research. 

2.1 – Problem 1 
 

The USV lacked a fully functional ball launcher. Two prototypes were developed for the 

2016 competition but neither reached a satisfactory level of performance prior to the start of 

the competition. One prototype was too heavy to be mounted on the USV and not weather 

proofed for marine environments. The other was not sufficiently powerful to propel the 

racquetballs to the target. This problem was due to a lack of human resources to design 

and construct a ball launcher. 

2.2 – Problem 2 
 

The shape detection algorithm that was developed by Thomas Arbon (Arbon, 2014) for the 

2014 competition was not capable of detecting symbols at further distances or the square 

holes which served as targets. While the blob detection algorithm it utilised was robust, it 

had difficulty identifying symbols at distances further than 15m and in environments with 

varying ambient light. A modified algorithm to enable colour detection for the 2016 

competition failed to solve the problem. This problem was caused by the algorithm’s 

inability to adjust its own parameters to suit the ambient light environment in each image 

frame. The lack of square shape detection was because it had not been specifically 

required for any task in 2014 and had not been implemented in 2016 as Detect and Deliver 

was not attempted. 

2.3 – Problem 3 

The last problem was that the shape detection algorithm did not provide any information 

regarding the location of detected symbols within the camera’s field of view. Knowing the 

target location enables a ball launcher to be in position. Lacking this information made it 

impossible for a ball launcher system to aim at the target. 

 

The above problems indicate clearly that the USV could not apply its current shape 

detection algorithm to identify reliably the symbols at distances further than 15m in varying 

ambient light conditions and supply target position information to a ball launcher. 



7 
 

This thesis mainly investigates the second two areas of research to provide the USV with a 

viable method to track a target symbol by increasing the video stream resolution, modifying 

the shape detection algorithm to allow it to change its own image processing parameters 

and utilising region of interest data that can be supplied from the on-board mapping 

algorithm. 

 

3 – Objective 

The objective of this research is to develop a target tracking system that can aim a pan-tilt 

servo system towards a target in real time. Region of interest information will be used to 

assist the location of the target within the camera’s field of view, which is then transformed 

to the pan-tilt system’s coordinate frame. The required servo angles to aim the system are 

then calculated from the target location in the pan-tilt system’s coordinate frame. 

3.1 – Scope 
 

The scope of this thesis covers the following areas: 

- Increasing the resolution of the video stream from the on-board cameras to 

investigate whether it provides significant improvements to shape detection rate at 

varying distances and what the associated costs may be. 

- Modification of shape detection algorithm to allow it to self-configure its shape 

detection parameters based on parameters of each image frame in question. 

- Use region of interest data, supplied by the USV’s FastSLAM system using lidar 

sensors, to narrow the area of interest in each image frame and investigate the 

potential improvements to shape detection rate and image processing time. 

- Supply target position data to a pair of servo motors to control a pan-tilt system that 

will aim a ball launcher. 
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4 – System Configuration 

4.1 – System Overview 

The overall system for a ball launcher and target tracking system is divided into three main 

sections. The first section uses data from the lidar sensor to map the surroundings of the 

USV through a simultaneous localisation and mapping (SLAM) algorithm. While the SLAM 

system is outside the scope of this thesis, region of interest information generated from 

resulting map is used to provide the shape detection algorithm with information on where 

objects physically exist. 

Figure 3. Visualisation of the USV’s localisation and mapping with region of interest highlighted in 
the green cylinder (Image courtesy: Dr. Andrew Lammas, Centre for Maritime Engineering, Control 

and Imaging, Flinders University) 
 

The second section of the system uses region of interest data supplied by the object 

tracking system to reduce the area a shape detection algorithm has to process to search for 

symbols. Region of interest are transformed from the world frame to the camera frame, 

allowing the region of interest in the world frame to be resolved to pixel coordinate in the 

camera image. Camera images are then cropped around the region of interest to be 

processed by the shape detection algorithm, ideally locating a target symbol within the 

region of interest. Once the target symbol has been identified, the position of the target is 

then passed to the pan-tilt servo system through the Robotics Operating System (ROS). 
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The third section calculates the required signals to be sent to the pan-tilt servo system by 

transforming the target position information from the camera coordinate frame pan-tilt 

system’s coordinate frame. The pan-tilt system does not have a camera that shifts with it, 

so visual servoing cannot be used to control it. After the target is located within the pan-tilt 

system’s effective field of view, it is then used to drive the pan-tilt servos to the desired 

position. 

 

4.2 – Coordinate Reference Frames and Transformations 

4.2.1 – World Coordinate Reference Frame 

In this thesis, the East North Up (ENU) coordinate system is used to map the world around 

the USV. In the ENU system, the world inertial frame is fixed using an origin placed at a 

known location. Under ENU convention, the z-axis points up from the surface of the earth, 

the y-axis points east and the x-axis points north. 

4.2.2 – Camera Coordinate Reference Frame 

The camera system also uses the ENU coordinate system, which allows points located in 

the world frame to be matched with points in the camera frame. However, the camera is 

located in the local reference frame and requires a coordinate transform to locate objects 

from the world frame in the camera frame. For the cameras ENU reference frame, the z-

axis points up from the camera plane, the y-axis points to the right and the x-axis points 

forward. 

 

The images captured by the camera use a pixel coordinate system with its origin at the top 

left corner of each image. The u axis goes across the image, increasing in value from left to 

right. The v axis goes vertically down the image, increasing in value from top to bottom. 

4.2.3 – Pan-Tilt Servo Reference Frame 

The pan-tilt servo system used a spherical coordinate system with the origin of the 

reference frame located at the meeting point of the axes of rotation of both servo motors. 

Angle θ is the polar angle, controlled by the tilt servo, angle φ is the azimuth angle, 

controlled by the pan servo, and r is the distance from the origin. 
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4.2.4 – Coordinate Transformations  

Rotation matrices allow the mapping of coordinates from one frame to another using Euler 

angles.  Euler angles are a method of describing object orientation using the three angles of 

rotation. These three Euler angles are defined as the roll angle, Ψ; the pitch angle, Θ; and the 

yaw angle, Φ. Using ZYX Euler angles, they rotate around the x, y and z axis respectively (Orsag 

et al. 2018, p. 22-28). 

 

Provided the elementary rotation matrices: 

 

  ( )  [

   
     ( )      ( )

     ( )     ( )
] 

  ( )  [
    ( )      ( )
   

     ( )      ( )
] 

  ( )  [
    ( )      ( )  
    ( )     ( )  
   

] 

 

The transformation from one frame to another, such as from the world frame to the camera 

frame, is given as: 

 

  
    ( )    ( )    ( ) 

 

The frame transformation from the world frame to the camera frame is done in ROS using 

functions from the tf ROS library. To check if an object in the world frame lies within the 

cameras field of view, the image geometry ROS library is used in conjunction with the tf 

library to project a reference frame onto a live image stream. 

 

After a shape has been detected in an image, its pixel coordinates have to be transformed 

into the pan-tilt servo system’s spherical coordinate frame. This can be done by treating the 

2D image from the camera as a photo sphere (Pla and Traver, 2002). Setting the centre 

pixel of the image as the origin, the relative horizontal and vertical angle of the pixels 

around the centre pixel are calculated. These transformations can be performed using the 

ROS tf library, similar to the world to camera frame transform. 
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After the pixel location of a target has been identified, the pixel’s spherical coordinates are 

transformed into Cartesian coordinates. Rotation matrices are then applied to transform the 

Cartesian coordinates from the camera frame into the pan-tilt servo frame. Once the target 

Cartesian coordinates have been transformed into the pan-tilt servo frame, they are 

transformed back into spherical coordinates. The horizontal and vertical angles to the target 

are then used to move the pan-tilt servos to their desired position. 

 

The limitations of this method are that it makes an assumption about the distance from the 

USV to the target, using the effective range of the ball launcher as the distance. This is to 

avoid parallax when the camera coordinates are transformed to the pan-tilt system 

coordinates due to the lateral distance between the camera positions and the proposed ball 

launcher position. 

 

A second method had been considered as an alternative. Identifying the pixel coordinates 

of the target, the camera frame is transformed back into the world frame to find the lidar 

sensor’s distance return at those coordinates. The distance is then passed back to the 

shape detection algorithm to convert the pixel coordinates to the pan-tilt system, using the 

same method previously stated. Instead of using the effective ball launcher range as the 

assumed distance to the target, the second method uses the actual distance to the target to 

account for parallax. Nevertheless, the second method was discarded in favour of the first 

as the USV would have to be positioned close enough to launch the balls at the target 

accurately. It was decided that the overhead processing time required to transform the 

target location information from the shape detection algorithm to the world frame for 

distance measurement before transforming the target location to the pan-tilt system frame 

was not worth the accuracy improvement that might be obtained from it. 
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4.3 – Camera System 

The camera system that is used in the USV is a pair of pole mounted Microsoft LifeCam 

Studios, see Appendix B. LifeCam Studios are web cameras designed for video call use. 

The two cameras are mounted on the USV approximately 1.5m apart from each other 

laterally, facing out from the front of the USV, Figure 4.  

 

Figure 4. Location of the LifeCam Studios on the TopCat 

 

Their positions along the pole can be adjusted to increase or reduce the distance between 

them. Each camera can also be adjusted to be tilted at different angles. The cameras use 

CMOS sensors with a resolution of 1920 x 1080 pixels and wide-angle lenses, providing 

them with a 75˚ field of view. Images can be streamed from the camera at up to 30 frames 

per second.  

 

The two cameras are used to provide the USV with a wider field of view than could be 

provided by a single camera and are not used for stereo vision. The camera system is 

primarily used to identify any symbols that might be found on the surface of objects as well 

as the colour of the symbols or objects in question.  

 

Due to bandwidth issues, the cameras had been used to stream only 640 x 480 pixel 

images during the 2016 Maritime RobotX Competition. However, the bandwidth issues 

have since been resolved, allowing images to be streamed at the full camera resolution of 

1920 x 1080 pixels.  
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The cameras came with an autofocus function that allowed the camera to autofocus on 

objects at distances from 0.1m to further than 10m. However, when the autofocus function 

was on there were often issues when nearby objects, such as birds flying past, entered a 

camera’s field of view. This would trigger the autofocus function, rendering nothing clearly 

visible for several seconds as the camera ran through autofocus. As a result, this function 

was turned off and the cameras configured at a constant focus to infinity. 

 

4.4 – Lidar System 

The lidar system that is used on the USV is a HDL-32E Velodyne lidar, see Appendix. The 

HDL-32E is a small, high definition lidar designed for real world industrial applications, 

including autonomous vehicle control and mobile mapping. It uses 32 lasers, aligned from 

+10.67˚ to -30.67˚, to scan its 360˚ horizontal field of view. It has a range of 100m and a 

typical accuracy of ±2cm at a scan rate of 10Hz, generating approximately 700,000 points 

per second.  

 

 

Figure 5. Location of the HDL-32E Velodyne lidar on the TopCat 

 

The USV’s FastSLAM algorithm uses the Point Cloud Library to segment the point cloud 

data from the lidar sensor into objects of interest. FastSLAM was chosen as an algorithm 

that offered a more robust solution to the data association problem compared to other 

available SLAM algorithms.  
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Point cloud data from the lidar is filtered by removing points beyond the USV’s operational 

area as well as points returned from the water surface. The remaining points are then 

clustered into features of interest. Features of interest that are close to each other are then 

enclosed inside bounding boxes, which are then used to update the world map (Webb et 

al., 2014). 

 

To generate region of interest data, whenever objects are detected and tracked by the 

FastSLAM system, its coordinates are transformed from the world frame to the camera 

frame. A check is then run to see if the object of interest lies within the cameras’ field of 

view. If the object lies outside the cameras field of view, it is ignored. If the object lies within 

the cameras’ field of view, the camera frame coordinates of the object in interest are then 

used to identify the corresponding pixel coordinate region of interest in the camera image. 

This information can then be passed back to the image processing algorithms to reduce the 

area of the image that needs to be processed. 

4.5 – Ball Launcher Pan-Tilt Servo System 

Two HobbyKing high torque waterproof servo motors, see Appendix D, are used in a pan-

tilt servo system to control the aim of a ball launcher. Waterproof servos were chosen to 

minimise the effect of wet and damp conditions on the operation of the servo motors, which 

are expected to be used in marine environments.  

 

 

Figure 6. HobbyKing HK15328D Servo Motors (HobbyKing, 2018) 
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The servos have a torque of 12.8kg.cm at 6V and can rotate 180˚. They are mounted 

perpendicularly to each other on an aluminium frame with one servo motor controlling the 

pan angle and another controlling the tilt angle, Figure 7. Target positioning information is 

supplied by the shape detection algorithm and is transformed into the pan-tilt system 

coordinate frame to drive the servo motors to aim the ball launcher. 

 

 

Figure 7. Pan-Tilt system main frame (light gray), pan bracket (dark gray), tilt bracket (yellow) and 

servo motors (black) 

 

A pneumatic ball launcher that would be mounted to the pan-tilt servo system has been 

designed and a firearm exemption granted by the South Australian Police as part of South 

Australian firearm regulations (Firearms Act  2015). However, the complete ball launcher 

system has yet to be fully constructed. Nevertheless, a pan-tilt servo system is in 

construction for demonstration in the 2018 Flinders University Thesis Expo in late October 

2018.  

5– Experimental Data Collection 

5.1 – Overview 

The main focus of this thesis was to implement a ball launcher target tracking system onto 

a WAM-V USV. While a WAM-V was accessible for the project, deployment of the USV for 

live testing and experimentation of the shape detection algorithm was impractical due to the 

need of a support team to deploy the USV, time required to set up and dismantle the base 

station for remote monitoring and wash down of the USV after bringing it back up from the 
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water. As a result, two boards with coloured symbols were brought to site on one of the 

USVs operational field tests and set up so that the symbols could be clearly identified on 

the USV’s camera stream by a human.  

 

 

Figure 8. Blue cross and green triangle symbols used to collect data during the operational field 

test. Symbol sizes and colours are in line with the Maritime RobotX Challenge’s task specifications. 

 

Camera and lidar data was then recorded and stored into rosbags, a bag storage file format 

used by ROS, during the USV’s operational test. After the completion of the operational 

test, camera and lidar were offloaded from the USV and post processed separately. The 

camera’s rosbag data was extracted to a series of JPEG files for each recorded frame while 

region of interest data was extracted from the point maps created by the lidar sensor. 

 

5.2 – Experimental Setup 

Prior to the operational field test, both port and starboard cameras on the USV were 

configured to stream and record at a resolution of 1920 x 1080 pixels. While the USV is 

meant to operate autonomously, it was manually controlled for the duration of the 

operational test for the purposes of collecting specific test data. The weather conditions 

during the operational field test were partly cloudy with light wind, resulting in relatively 

consistent ambient light over the course of the test with minimal video distortion from 

sudden movements of the boat due to wind or waves. 
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During the operational test, a board with a blue cross was taped to a wooden pole and hung 

off the corner of a pier within view of the USV and USV operator. The USV was then 

operated to approach the board at varying angles from distances of 30m to 5m. 

 

 

Figure 9. USV vision of the blue cross from different approach angles 

 

After sufficient data was collected, the board with the blue cross was then replaced with a 

second board displaying a green equilateral triangle pointing vertically. As with the blue 

cross, the USV was operated to approach the board at varying angles from distances of 

30m to 5m. 

 

Figure 10. USV vision of the upright green triangle from different approach angles 

Lastly, the board with the green equilateral triangle was rotated 90 degrees so that the 

triangle pointed out horizontally. The USV was again operated to approach the board at 

varying angles from distances of 30m to 5m. 
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Figure 11. USV vision of the rotated green triangle from different approach angles 

 

5.3 – Data Collection 

Six sets of data were collected during the operational field tests of the USV using the two 

symbols. Two sets of data were collected from the USV directly approaching the blue cross 

at direct and oblique angles. Four more sets of data were collected from the green triangle 

by approaching it from direct and oblique angles in both orientations.  

 

The six data sets were then down sampled to 843 x 480 pixels to create another six data 

sets to compare the effect of increasing video resolution on shape detection. The previous 

resolution of the video stream had been configured 640 x 480 pixels using a 4:3 aspect 

ratio. However, since the cameras had been reconfigured to stream at 1920 x 1080 pixels, 

an aspect ratio of 16:9, the images were down sampled to 843 x 480 pixels instead of 640 x 

480 pixels to maintain their aspect ratio. 

 

Regions of interest generated from the FastSLAM algorithm were directly passed to the 

shape detection algorithm and were not used to generate extra sets of data. 

 

6 – Algorithm Simulation and Results  

6.1 – Algorithm Simulation Setup 

6.1.1 – Arbon’s Shape Detection Algorithm 

The original shape detection algorithm used in the USV was developed by Thomas Arbon 

(Arbon, 2014) for the 2014 Maritime RobotX Challenge. The Detect and Deliver task did not 

exist in the 2014 competition, so the shape detection algorithm was primarily used to detect 

plain black symbols on a white background as part of the Identify Symbol and Dock task. 
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The shape detection algorithm used a blob detection method and was written in C++, 

utilising functions from the OpenCV open source computer vision library.  

 

The shape detection process developed by Arbon had three main stages. In the first stage, 

the image frame was converted to grayscale and contrast stretched using OpenCV’s 

cvtColor and normalise functions. The conversion to grayscale was required in order to 

contrast stretch the image. Contrast stretching increased the initial contrast of the image, 

providing a clearer distinction between the darker coloured shapes and their white 

backgrounds. 

 

 

Figure 12. Original source image and image after conversion to grayscale and normalisation 

 

In the second stage, the contrast stretched image is passed through a binary threshold 

filter, converting the grayscale image to a black and white image using the inrange function. 

After that, the image is morphologically opened and closed to remove unwanted noise from 

the image. This method isolates shapes using threshold hole finding. At the same time, the 

image is also run through a Canny edge detection filter to binarise and find closed edges to 

locate shapes. The Canny edge detector was chosen because the OpenCV implementation 

performed well at detecting shape edges at varying light conditions and distances. Both 

methods were found to reliably detect shapes. However, both methods would also often 

produce false positives. Because of that, the binary AND of the output from the binary 

threshold and Canny edge detection was used to produce the final image for contour 

analysis, after a second round of morphological opening and closing. 
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Figure 13. Binary threshold of normalised image (left) and dilated Canny filtered image (right) 

 

In the third stage, the contours of the remaining blobs are analysed to see which of them 

meet the requirements for being a valid shape. Shape types are identified by dividing the 

squared perimeter of each blob by its area. This provides a ratio that should be unique 

within the shape types that can appear in the competition. Valid shapes are filled in with 

colour to visualise where the algorithm expects a shape to exist. 

 

 

Figure 14. Bitwise AND of the binary threshold and dilated Canny images (left) and detected shape 

after blob contour analysis (right) 

 

The algorithm was shown to be both size invariant and rotation invariant while also capable 

of detecting warped shapes to some extent, based on user defined parameters. Its size and 

rotation invariance stems from its use of contour analysis to identify shapes. 

 

The contour analysis used looks at two main features of each blob, the perimeter of a 

closed contour and the area enclosed within the contour. As it only uses the perimeter and 

area within a contour and the orientation of a contour has no effect on the length of its 

perimeter and enclosed area, this makes contour analysis rotation invariant. Shapes were 

identified using the ratio of the perimeter of each blob squared and divided by the area 
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enclosed in each blob. The squared perimeter of a blob scales linearly with the area 

enclosed by a blob allowing shapes of varying sizes to be identified as the same type of 

shape. The contour analysis is size invariant since it is capable of detecting shapes of 

varying sizes. The contour analysis used is also capable of identifying warped shapes due 

to the way it compares ratio of squared perimeter to area of each blob. By allowing a 

margin around the exact ratio expected for a given shape, warped shapes can still be 

classified correctly to a certain extent. A larger margin increases the warping allowed at the 

risk of incorrectly identifying shapes while a smaller margin decreases the amount of 

warping allowed at the risk of not identifying shapes with slight warping. 

6.1.2 – Increasing Video Stream Resolution 

One notable change between the USV system configurations when Arbon’s algorithm was 

developed in 2014 and the system configurations prior to the 2018 Maritime RobotX 

Challenge is that the camera stream resolution was increased from 640 x 480 pixels to 

1920 x 1080 pixels.  

 

While Arbon’s algorithm was a robust shape detector, it was believed that its effectiveness 

was limited by the resolution of the camera image stream. At a resolution of 640 x 480 

pixels, the pixel difference between symbols and neighbouring objects appeared to be too 

small differentiate features at wide angles and further distances. Symbols would either be 

segmented with the region surrounding it as a single blob or merged with other blobs during 

morphological opening and closing of blobs.  

 

The aim of increasing the camera stream resolution was to increase the pixel difference 

between colour segments in each image frame to allow for clearer differentiation between 

objects and their surroundings. For shape detection, the increased resolution provides 

larger pixel differences between shapes and their surroundings at angles and distances that 

would previously cause blob merging. 

 

Attempts to increase the camera resolution for the 2016 Maritime RobotX Challenge had 

previously been hampered by bandwidth issues. However, the bandwidth issues have since 

been resolved, allowing the LifeCam Studios to output data at their full resolution of 1920 x 

1080 pixels. 
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6.1.3 – Shape Detection Algorithm using Adaptive Parameters 

A major issue with Arbon’s algorithm is that the parameters used in the algorithm, such as 

binary threshold value for binarisation, have to be manually configured. This manual 

configuration could be done while the USV was operational using ROS’s dynamic 

reconfigure but could not be done while the USV was attempting a task as it would no 

longer be considered completely autonomous.  

 

This thesis explores the use of resolution limited morphological operations, scaling shape 

size thresholds, contrast limited adaptive histogram equalisation and adaptive binary 

thresholds to provide better frame to frame shape detection. 

 

With the increase in image resolution provided by the cameras, there were several 

parameters whose default values were no longer appropriate for higher resolutions. The 

affected parameters were morphological opening and closing iteration values and shape 

size cut off.  

 

The morphological opening and closing parameters controlled the number of iterations that 

the opening and closing operations should be done. This was mainly used to remove ‘salt 

and pepper’ noise that would occur in an image due to binary thresholding and edge 

detection. The main issue with the morphological operation iteration parameters was that as 

the image resolution increase, the pixel dimensions of the ‘salt and pepper’ noise also 

increased. However, as the number of opening and closing iterations remains constant, the 

noise can no longer be fully removed by the same number of iterations.  

 

To solve this issue, the iteration parameters were changed from constants to variables that 

scaled with input image resolution. Higher resolution input images would cause the 

iterations to scale up linearly from the default values, which were designed for 640 x 480 

pixel images. This not only allows morphological operation iterations to automatically scale 

with the increased image resolution but also allows image streams with images of varying 

dimensions, which would likely occur from region of interest data, to be filtered from image 

to image. 
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The second parameter affected by the increase in resolution was the shape size cut off 

threshold. This parameter filtered the contours of blobs during contour analysis, preventing 

blobs below the size cut off from being treated as shapes. As with the morphological 

operation iteration parameters, this parameter was originally configured for 640 x 480 pixel 

images. As this value did not scale with the image resolution, the increase in input 

resolution caused the relative minimum shape size to be decreased substantially, 

increasing the number of false positives picked up by the shape detection algorithm.  

 

To solve this, the shape size cut off was changed from a constant value to a variable that 

linearly increased with the resolution of the image. Doing this allowed the shape detection 

algorithm to filter out smaller blobs that may not have been removed by the morphological 

opening and closing that is used to remove noisy blobs. However, this also caused 

legitimate symbols in images to be filtered out. This is an unavoidable result when a size 

cut off filter is implemented. The trade-off that comes with size filtering is that while the false 

positive rate is decreased, the false negative rate is increased. However, the size filter 

overall improves the accuracy rate of the shape detection algorithm as it removes most of 

the remaining false positives that slip through the closing and opening operations 

regardless of the distance to the shape or if the shape is in the field of view at all. On the 

other hand, legitimate shapes will only be filtered out if they are too far away from the USV. 

At closer distances, the size cut off has no effect on the detection of shapes that do exist. 

 

Another issue with Arbon’s algorithm, prior to the increase in image stream resolution, was 

that objects or features that were very close to each other would often be grouped together 

during image segmentation. This prevented some individual features from being identified 

after segmentation. While this problem was alleviated by the increase in image stream 

resolution, increasing pixel differences between nearby features, the problem that some 

features could still be in close enough proximity to not be clearly differentiated remained. A 

combination of three methods was proposed to improve feature differentiation for shape 

detection, image sharpening filters, contrast limited adaptive histogram equalisation 

(CLAHE) and adaptive binary thresholding.  

 

Image sharpening is the use of image filters to highlight edges and small details in an 

image. It effectively runs a high pass convolution kernel across the image. However, 

directly running a high pass filter over an image also amplifies any noise that might be 
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present in the image, which is not ideal. To sharpen the image while minimising the 

amplification of any noise present, a technique known as unsharp mask was used. An 

unsharp mask creates a Gaussian blurred copy and a high contrast copy of the original 

image. The blurred image is then subtracted from the original image, producing the unsharp 

mask. Based on the brightness of pixels in the unsharp mask, pixels in the original image 

are then mixed or replaced with pixels from the high contrast image. As only bright pixels 

indicated in the unsharp mask are replaced in the original image, the amplification of noise 

is usually suppressed. 

 

The use of an unsharp mask on an image prior to conversion to grayscale allows nearby 

features of differing colours to have distinct edges. After image normalisation in grayscale, 

a second unsharp mask is used prior to binary thresholding. While the first unsharp mask 

was used to assist with colour segmentation, the second unsharp mask is used to assist in 

segmenting features in grayscale prior to image binarisation. This attempts to minimise the 

merging of blobs due to morphological operations after binarisation by clearly defining the 

edges between features. 

 

 

Figure 15. Original source image (left) and unsharp masked image (right) 

 

The second method of improving feature detection was to use a CLAHE filter after 

grayscale conversion. The use of histogram equalisation had been explored during the 

development of the original shape detection algorithm to improve image contrast. However, 

histogram equalisation had been found to produce worse results for shape detection and 

was discarded in favour of contrast stretching through normalisation.  
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The reason why histogram equalisation worsened the image contrast for shape detection 

was due to the way that it works. Histogram equalisation looks at the current brightness of 

all pixels in the image and stretches them out so that there is a more even spread of pixel 

brightness from darkest to brightest. However, for images where there is an existing high 

contrast between dark and bright locations in the image, histogram equalisation tends to 

brighten up the darker areas while over-brightening the brighter areas.  

 

 

Figure 16. Global histogram equalised image 

 

However, instead of using histogram equalisation, the use of CLAHE was explored. Unlike 

histogram equalisation, CLAHE divides the image into small blocks of pixels and performs a 

histogram equalisation on each block. To prevent noise from being amplified, contrast 

limiting is used to clip any pixels that go above a specified contrast limit. The use of CLAHE 

allows images to be histogram equalised while preventing over-brightness from occurring 

by setting a contrast limit. 

 

 

Figure 17. Contrast limited adaptive histogram equalised image 
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The final method used to assist in the improvement of shape detection was to switch the 

original fixed binary threshold to an adaptive binary threshold. Arbon’s algorithm attempted 

to use normalisation to contrast stretch the input images to a level where shapes could be 

reliably identified after applying a fixed binary threshold. However, the problem with using a 

fixed binary threshold value is that it optimises binary thresholding for a specific range of 

ambient lights that may be present in an image. While contrast stretching does improve the 

performance of a fixed binary threshold by attempting to shift the image contrast closer to 

the one the binary threshold is optimised for, it is not possible to do that for all images. 

When input images are significantly brighter or dimmer than what the fixed threshold value 

is optimised for, contrast stretching alone is not enough to produce a good threshold image 

where the shapes are clearly visible. 

 

The OpenCV libraries have inbuilt functions that can do a variety of adaptive binary 

thresholds, including adaptive mean thresholding, adaptive Gaussian thresholding and 

Ostu’s binarisation. However, the results from testing adaptive mean and Gaussian 

thresholds tended to result in highly detailed contours around every small feature, which is 

unwanted as the algorithm has to analyse each contour to evaluate if it is a symbol.  

 

 

Figure 18. Adaptive Gaussian thresholding (left) and adaptive mean thresholding (right) 

 

Otsu’s binarisation produced better results for some images and worse results for others. 

This was noted to be because Otsu’s binarisation assumes a bimodal image and performs 

significantly worse on non-bimodal images. 
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Figure 19. Ostu’s binarisation on a blue cross (left) and on a green triangle (right) 

 

An alternative to these methods that succeeded in providing a better image binarisation 

was to use an offset mean as a binary threshold value. This method took the mean 

brightness value of the image after normalisation and CLAHE and added an offset to it. The 

resulting value was then used as the binary threshold value. After running the offset mean 

binary threshold through several image datasets, it was found that the binary threshold 

performed best when the threshold value was significantly higher than the mean brightness 

value. While an offset mean threshold may not necessarily be the best adaptive 

thresholding method, it was shown that it provided better results from images with larger 

ranges of brightness than with a fixed binary threshold. 

 

 

Figure 20. Offset mean thresholding on a blue cross (left) and on a green triangle (right) 

6.1.4 – Shape Detection Algorithm using Regions of Interest 

The goal of a shape detection algorithm is to maximise the true positive detections, 

detection of shapes that exist, while minimising the false positive detections, detection of 

shapes that do not exist. Provided the available sensors on the USV, it was proposed that 

region of interest data from the lidar and mapping system could be used to limit the shape 

detection search area in an image and improve the true positive rate while decreasing the 

false positive rate. 
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The lidar system is part of a FastSLAM system that maps the surroundings of the USV. 

Point clouds from the lidar are clustered based on proximity and then grouped into bounded 

boxes that represent objects. These objects are then tracked as the USV moves around. 

Objects of interest are defined by their location within the world frame relative to the USV. 

As the cameras on the USV are forward facing, locations of objects behind it are not 

reported to the shape detection algorithm. For any objects that are located in front of the 

camera, their location is transformed from the world frame to the camera reference frame to 

see if object lies inside or outside the cameras field of view. If an object lies outside the 

cameras field of view, its location is not sent to the shape detection algorithm. However, if 

the object lies within the cameras field of view, its location is converted from the camera 

reference frame to the camera image’s pixel coordinate frame and a region of interest 

marked out in the image. 

 

The goal of using region of interest data is to limit shape detection to areas in the image 

where objects physically exist nearby. Since the shape detection algorithm no longer 

searches areas that contain no objects for shapes, it is less likely to detect false positives 

from those areas of the image. Vice versa, as the shape detection algorithm is only filtering 

areas of the image that are likely to contain shapes, removing areas such as the sky and 

water surface that do not contain objects, the adaptive contrast and thresholding filters will 

produce a segmented output based on the localised image area rather than the full image. 

 

 

Figure 21. Original source image (left) and region of interest subimage (right) 

 

The use of region of interest data should also assist in offsetting the increase in processing 

time of the adaptive shape detection algorithm. Reducing the area that needs to be 

analysed also reduces the time required to apply certain filters such as CLAHE and 

provides the same benefits of using the adaptive shape detection algorithm while lowering 

the time cost to implement it. 
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6.1.5 – Algorithm Simulation Environment 

While Arbon’s algorithm was originally written as a ROS C++ node to run on the USV’s 

Linux based environment, the C++ code was extracted to Visual Studio 2017 and built as a 

Win32 Console Application to run as an executable in a Windows environment for 

simulation purposes. 

 

All simulations were run in the same environment, using a Lenovo ideaPad 500S with an 

Intel Core i7-6500U running at base frequency of 2.50GHz over 4 cores, boosting up to 

3.10GHz under higher load, and 8GB of DDR3 1600MHz RAM. The Win32 Console 

Applications were single threaded and did not utilise more than a single core while running. 

The laptop had a Nvidia GeForce 920m 2GB video card which was capable of testing 

CUDA compatible image processing algorithms. However, no GPU acceleration was tested 

on any of the algorithms. 

6.2 – Increased Resolution Simulation Results 

6.2.1 Arbon’s Algorithm at 480p 

Arbon’s algorithm was tested on six different sets of 843 x 480 pixel images. The six 

images sets consisted of down sampled versions of direct and oblique approaches to the 

blue cross, direct and oblique approaches to an upright green triangle and direct and 

oblique approaches to a rotated green triangle. Each image set consisted of 100 images for 

a total dataset size of 600 images. The symbol was clearly visible in all images and was not 

obscured in any way.  

 

The algorithm was configured to its default parameters and was not tuned or optimised in 

any way to improve shape detection and images were read in at 10 images per second to 

mimic camera data rate. True positive and false positive detection rates were calculated for 

each data set with a true positive meaning that a shape was correctly detected and a false 

positive meaning that at least one incorrect shape was detected in an image. Overall 

minimum, maximum and average image processing times were also calculated for the total 

data set. 
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Table 1. True and false symbol detection rate in 843 x 480 pixel images using Arbon’s algorithm 

Image Data Set True Positive Rate False Positive Rate 

Direct Approach Blue Cross 0% 6% 

Oblique Approach Blue Cross 0% 1% 

Direct Approach Upright Green Triangle 28% 1% 

Oblique Approach Upright Green Triangle 37% 3% 

Direct Approach Rotated Green Triangle 37% 15% 

Oblique Approach Rotated Green Triangle 34% 3% 

 

Table 2. Image processing time of 843 x 480 pixel images using Arbon’s algorithm 

Minimum Image Processing Time (s) 16.7 

Maximum Image Processing Time (s) 149 

Average Image Processing Time (s) 37.4 

 

4.2.2 Arbon’s Algorithm at 1080p 

Arbon’s algorithm was tested on six different sets of 1920 x 1080 pixel images. The six 

images sets consisted of the full resolution images of direct and oblique approaches to the 

blue cross, direct and oblique approaches to an upright green triangle and direct and 

oblique approaches to a rotated green triangle. Each image set consisted of 100 images for 

a total dataset size of 600 images. The symbol was clearly visible in all images and was not 

obscured in any way.  

 

The algorithm was kept to its default parameters, as with the 843 x 480 pixel image sets, 

and was not tuned or optimised in any way to improve shape detection and images were 

read in at 10 images per second to mimic camera data rate. True positive and false positive 

detection rates were calculated for each data set. Overall minimum, maximum and average 

image processing times were recalculated calculated for the total 1920 x 1080 pixel data 

set. 
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Table 3. True and false symbol detection rate in 1920 x 1080 pixel images using Arbon’s algorithm 

Image Data Set True Positive Rate False Positive Rate 

Direct Approach Blue Cross 0% 34% 

Oblique Approach Blue Cross 0% 12% 

Direct Approach Upright Green Triangle 32% 21% 

Oblique Approach Upright Green Triangle 86% 12% 

Direct Approach Rotated Green Triangle 14% 6% 

Oblique Approach Rotated Green Triangle 86% 7% 

 

Table 4. Image processing time of 1920 x 1080 pixel images using Arbon’s algorithm 

Minimum Image Processing Time (ms) 74.5 

Maximum Image Processing Time (ms) 581 

Average Image Processing Time (ms) 159 

6.3 – Automatic Parameter Configuration Simulation Results 

6.3.1 Automatic Parameter Configuration Algorithm at 480p 

The automatic parameter configuration algorithm tested on the same six sets of down 

sampled 843 x 480 pixel images that Arbon’s algorithm was tested on. Shared parameters 

with Arbon’s algorithm that stayed constant regardless of image resolution were configured 

to the same values and were not tuned or optimised in any way to improve shape detection. 

Images were read in at 10 images per second to mimic camera data rate. True positive and 

false positive detection rates were calculated for each data set. Overall minimum, maximum 

and average image processing times were also calculated for the total data set. 

 

Table 5. True and false symbol detection rate in 843 x 480 pixel images using the APC algorithm 

Image Data Set True Positive Rate False Positive Rate 

Direct Approach Blue Cross 100% 1%* 

Oblique Approach Blue Cross 25% 19%* 

Direct Approach Upright Green Triangle 89% 12%* 

Oblique Approach Upright Green Triangle 39% 17% 

Direct Approach Rotated Green Triangle 17% 16%* 

Oblique Approach Rotated Green Triangle 92% 22% 

*The left float of the USV, which appears within the camera’s field of view, was detected as 

a shape in most frames of this data set. This is the percentage of false positives that are not 

due to the left float. 
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Table 6. Image processing time of 843 x 480 pixel images using the APC algorithm 

Minimum Image Processing Time (ms) 22.3 

Maximum Image Processing Time (ms) 61.2 

Average Image Processing Time (ms) 27.3 

 

6.3.2 Automatic Parameter Configuration Algorithm at 1080p 

The automatic parameter configuration algorithm was tested on the same six sets full 

resolution 1920 x 1080 pixel images that Arbon’s algorithm was also tested on. Shared 

parameters with Arbon’s algorithm that stayed constant regardless of image resolution were 

configured to the same values and were not tuned or optimised in any way to improve 

shape detection. Images were read in at 10 images per second to mimic camera data rate. 

True positive and false positive detection rates were calculated for each data set. Overall 

minimum, maximum and average image processing times were also calculated for the total 

data set. 

 

Table 7. True and false symbol detection rate in 1920 x 1080 pixel images using the APC algorithm 

Image Data Set True Positive Rate False Positive Rate 

Direct Approach Blue Cross 100% 0% 

Oblique Approach Blue Cross 40% 7%* 

Direct Approach Upright Green Triangle 91% 15%* 

Oblique Approach Upright Green Triangle 55% 3% 

Direct Approach Rotated Green Triangle 10% 7%* 

Oblique Approach Rotated Green Triangle 89% 11% 

*The left float of the USV, which appears within the camera’s field of view, was detected as 

a shape in most frames of this data set. This is the percentage of false positives that are not 

due to the left float. 

 

Table 8. Image processing time of 1920 x 1080 pixel images using the APC algorithm 

Minimum Image Processing Time (ms) 88.1 

Maximum Image Processing Time (ms) 222 

Average Image Processing Time (ms) 109 
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6.4 – Region of Interest Simulation Results 
The automatic parameter configuration algorithm was tested on a single set of region of 

interest images. The region of interest images were generated from the direct approach 

rotated triangle dataset which was the data set the automatic parameter configuration 

algorithm performed worst on. The reason for using region of interest images from this data 

set was to explore the effects of shape detection rates on data sets that had performed 

poorly without region of interest information.  

 

The region of interest data set consisted of the 100 images from the direct approach rotated 

triangle dataset where the sign containing the symbol has been recognised as a region of 

interest and sub images has been cropped out for specific shape detection analysis. The 

automatic parameter configuration algorithm remained the same from the previous data set 

tests. As with the previous data set tests, minimum, maximum and average image 

processing time were recorded. 

 

Table 9. True and false symbol detection rate in 1920 x 1080 pixel images using ROI with the APC 

algorithm 

Image Data Set True Positive Rate False Positive Rate 

Direct Approach Rotated Green Triangle 

with Region of Interest 
50% 2% 

 

Table 10. Image processing time of 843 x 480 pixel images using ROI with the APC algorithm 

Minimum Image Processing Time (ms) 0.86 

Maximum Image Processing Time (ms) 5.55 

Average Image Processing Time (ms) 3.50 
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6.5 – Pan-Tilt Servo System Simulation 

A function added to the automatic parameter configuration algorithm that was not present in 

Arbon’s algorithm is the ability to use symbol position information to drive other systems. 

Arbon’s algorithm located the centres of symbols to visually display where it believed a 

symbol existed. However, this information was only used internally and could not be used to 

drive other systems. Using the frame transformations in section 2.2.4, it is possible to 

convert symbol location data into angles that can be used to drive the pan-tilt servo system.  

 

 
Figure 22. Original source image of target setup (left) and identified symbol and target hole (right). 

Both square holes were detected by the algorithm but only one was displayed as a target. The other 
hole can be set as the target in the algorithm by changing the target selection parameters. 

 

 

Figure 23. Symbol location output from shape detection algorithm 

 

As of the writing of this thesis, the pan-tilt servo system used to demonstrate the aiming of 

the ball launcher has yet to be fully constructed. However, it is expected to be completed for 

demonstration in the Flinders University Thesis Expo in late October 2018. 
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7 – Discussion 

7.1 – Effects of Increasing Resolution on Shape Detection 

From the results in section 6.2.1, the limitations of Arbon’s algorithm were clearly shown. Its 

detection rate of the green triangle, regardless of orientation and approach, is quite low with 

none of the data sets reaching detection rates above 40%. Of important note is that the 

detection rate of the blue cross was 0% regardless of approach to the symbol. The reason 

for this was found to be due to the blue colour of the cross. Compared to the dark green of 

the triangle symbol, a lighter blue was used for the cross. During binary thresholding, the 

lighter blue tended to fade into the white around the symbol causing the symbol to be 

eroded after thresholding to a state where it was no longer identifiable through contour 

analysis.  

 

From the tests carried out with Arbon’s algorithm, it was found that the default parameter 

configuration tended to be more suited for darker lighting environments. As a result, it 

tended to provide poor shape detection for brighter environments. However, false positive 

rates also tended to be quite low for most datasets, with the exception of the direct 

approach rotated triangle dataset. 

 

From the results in section 6.2.2, it was shown that even with the increase in resolution, 

Arbon’s algorithm at default values remained unsuited for detecting the blue cross, with 

detection rates remaining at 0% for both approaches. However, while the blue cross 

detection rate did not increase with resolution, the false positive rate increased drastically. 

As minimum shape size in Arbon’s algorithm did not scale with image resolution, the 

increased image resolution resulted in more small blobs passing through the size filter 

without being disregarded. 

 

For the datasets containing the variations of the green triangle, the direct approach upright 

green triangle data set did not see a significant increase in detection rate with the increase 

in resolution. However, its false positive rate increased significantly from 1% to 21%. In a 

reverse case, with the increase in resolution, the direct approach rotated green triangle 

dataset had a significant decrease in detection rate by more than half from 37% to 14%. 

Despite this, the false positive rate also decreased by a similar factor from 15% to 6%. 

While these two data sets did not experience significant benefits from the increase in 



36 
 

resolution, the oblique approach upright and rotated green triangle datasets showed 

significant increases in true positive detection rates with the detection rates of both datasets 

increasing by a factor of at least 2. 

 

With the increase in image resolution, there is also an increase in processing time. From 

Table 2 and Table 4, it was shown that the average image processing time increased by a 

factor of 4.25 while the minimum and maximum image processing times increased by a 

factor of 4.5 and 3.9 respectively. The increase in processing time does not seem to have 

increased linearly with image size, with the increase in resolution increasing the pixel count 

by a factor of 6.75. However, the increase in average image processing time does cause 

some issues. At 843 x 480 pixels, the average image processing time is 37.4ms. This 

allows the algorithm to process images at frequencies higher than 10 images per second. 

At 1920 x 1080 pixels, the average image processing time jumps to 159ms, causing the 

algorithm to be unable to process 10 images per second, which is the camera and lidar 

update rate. This means that unless the algorithm can be optimised to process individual 

images in a shorter period of time, the increase in image resolution cannot be effectively 

utilised by Arbon’s algorithm without reducing the camera frame rate and lidar scan rate. 

 

From the perspective of Arbon’s algorithm, the increase in image resolution does not 

appear to provide clear benefits or detriments to shape detection. Several datasets saw no 

significant increase true positive rates while having significant increases in false positive 

detection rates. Two other datasets showed significant benefit from the increase in image 

resolution, with their detection rates jumping from sub 40% to sub 90% with only minor 

increases to false positive rate. In addition, there was a single data set that suffered from 

the increase in image resolution with its true positive rate halving. Even considering the 

increased true positive rates for two datasets, the increased image resolution would still 

require further optimisation to allow it to process images at the USV’s current camera frame 

rate and lidar scan rate. 
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7.2 – Effects of Automatic Parameter Configuration on Shape Detection 

From the results in section 6.3.1, the difference between Arbon’s algorithm and the 

automatic parameter configuration algorithm is shown. At 843 x 480 pixels, the automatic 

parameter configuration algorithm shows clear advantages as the blue cross datasets show 

significantly higher detection rates, with the direct approach blue cross dataset reaching 

100% true positive rate. It was noted that the automatic parameter configuration algorithm 

demonstrated higher true positive detection rates across all datasets with the exception of 

the direct approach rotated green triangle dataset. This was found to be caused by method 

used by the algorithm to filter the contours found after binarisation. According to the task 

rules of the 2018 Maritime RobotX challenge, duplicate symbols are not used for any of the 

challenge tasks. As a result, the algorithm filters out all except the largest contour that may 

fit a specific symbol. The issue with the rotated green triangle dataset was that the left float 

of the USV was detected by the algorithm as being a large triangle. As the area of the left 

float was detected to be larger than the actual triangle symbol at most distances in the 

dataset, it negatively affected the detection rate of the triangle for that specific dataset. The 

left float of the USV had been frequently identified as a shape for most of the dataset tests. 

However, it had mainly been detected as a circle and as a result, did not have noticeable 

impact on the detection rate of the cross and triangle shapes used. However, if a circle 

symbol were to be tested, it is likely that it would be impacted more significantly than the 

other datasets tested. 

 

From the tests carried out with the automatic parameter configuration algorithm, it was 

found that the automatic parameter configuration provides much higher true positive 

detection rates across most datasets. Compared to Arbon’s algorithm, it provides better 

detection rates across the blue cross datasets while providing equal or better detection 

rates for the green triangle datasets. It had a higher image processing time floor at 22.3ms 

but a lower average imaging processing time at 27.3ms. 

 

From the results in section 6.3.2, it was shown that with the increase in resolution, the 

automatic parameter configuration algorithm maintained its high detection rate or performed 

significantly better across most datasets, again with the exception of the direct approach 

rotated green triangle dataset. The left float of the USV remained an issue, with the 

detection rate in the direct approach rotated green triangle dataset decreasing further due 
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to the relatively higher increase in area of the left float compared to the symbol with the 

increase in image resolution. A note of interest is that the false positive detection rate 

decreased across most datasets with the increase in image resolution, compared to 

Arbon’s algorithm, which experienced an increase in false positive detection rate with the 

increase in image resolution. 

 

For the datasets containing the variations of the green triangle, the direct approach upright 

and oblique approach rotated datasets did not see much variation in true positive rate after 

increasing the image resolution. However, while the direct approach upright green triangle 

dataset saw a slight increase in false positive rates, the oblique approach rotated green 

triangle dataset saw its false positive detection rate drop by half. It was noted that the 

datasets that experienced issues detecting the USV’s left float as a symbol continued to 

experience those issues with the increase in image resolution. While the relative size of the 

float to the rest of the image does not change with the increased resolution, its pixel area 

does increase exponentially with the increase in resolution. This may have caused some of 

the datasets to appear to have lower true positive rates due to the float increasing the 

number of false positive detections. 

 

As with Arbon’s algorithm, with the increase in image resolution, there is also an increase in 

processing time. From Table 6 and Table 8, it was shown that the average image 

processing time increased by a factor of 4 while the minimum and maximum image 

processing times increased by a factor of 1.4 and 8 respectively. From the large variation in 

the increase of processing times between the minimum and maximum, it shows that while 

the average image processing time of the automatic parameter configuration algorithm may 

be shorter than that of Arbon’s algorithm at 1920 x 1080 pixels, the time that is required to 

process a single image is much less consistent. While the average image processing time 

of the automatic parameter configuration algorithm is 109ms, close to the 100ms required 

to process 10 frames per second, its wider range of image processing times makes it 

susceptible to taking significantly longer than the average 109ms to process a series of 

images. To utilise this algorithm as it is, while leaving a margin of error if a series of images 

uses an above average amount of time to process, the algorithm would likely have to be 

optimised further. However, it is possible to use this algorithm in conjunction with region of 

interest data to narrow the area for shape detection to improve shape detection accuracy 

and reduce image processing times. 
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 For the automatic parameter configuration algorithm, the increase in image resolution 

appears to provide significant improvement in shape detection across most datasets. 

However, it does suffer from the misidentification of permanent objects within the camera’s 

field of view, such as the USV’s floats. Similar to Arbon’s algorithm, the automatic 

parameter configuration algorithm will unlikely be able to process incoming camera images 

and lidar points of interest at the current frame and scan rate used on the USV. However, 

apart from further optimisation and streamlining of the code, another alternative is to use 

the points of interest data to limit the area of an image that needs to be processed by the 

algorithm. By cropping out the area of interest from the image where objects physically exist 

and running the algorithm over just the sub-image, it is possible to maintain the higher level 

of detail from the higher resolution images while decreasing the image pixel size to reduce 

the individual image processing time.  

7.3 – Effects of Region of Interest on Shape Detection 

As mentioned in section 7.2, the use of region of interest data for shape detection aims to 

do two things. Firstly, it reduces the effective area of an image that needs to be search for 

symbols to areas where objects are physically known to exist. Many false positive symbol 

detections are due to segmentation of water and distant objects on land into blobs that 

appear similar to a symbol. Although Arbon’s algorithm and the automatic parameter 

configuration algorithm will only display the most likely shape out of a series of contours, 

the USV will typically not see any symbols at all as it transverses the Maritime RobotX 

Competition area unless it specifically nears the area for the Identify Symbol and Dock or 

Detect and Deliver Tasks. Because of this, it is not useful to process camera images to look 

for symbols when there are physically no objects nearby that could potentially have a 

symbol on them. Because of this, the region of interest data from the USV’s FastSLAM 

system is used to limit the algorithm to only processing areas of an image that contain 

physical objects. 

 

In section 6.4, the effectiveness of using region of interest to limit the area of an image to 

process was tested. In both the 843 x 480 pixel and 1920 x 1080 pixel images tests, the 

automatic parameter configuration algorithm had incorrectly labelled the left float of the 

USV as being a valid symbol while ignoring the actual symbol within the field of view of the 

camera. This misidentification is caused by the fact that the algorithm is incapable of 

differentiating between areas where real symbols are more likely to be based on image 
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information alone. Using region of interest information, the area of the image to process can 

be narrowed down to exclude areas that can be misidentified as symbols, such as the floats 

of the USV. 

 

From Table 9, it was found that using region of interest information to limit the image area 

to process, the shape detection rate increased from 10% with 7% false positives to a true 

positive rate of 50% with 2% false positive detections. This is a substantial increase in 

detection rate with the use of region of interest information, but also displays two important 

issues when using region of interest. Using region of interest to limit the area to process 

does not guarantee that a symbol will be identified in the area, even if it does exist. This is 

dependent on how clearly the symbol is displayed within the region of interest and how well 

the algorithm can differentiate the symbol from its immediate surroundings. The second 

issue is that when a subsection of the image is cut out to be processed, filters such as 

normalisation and adaptive binary thresholding start to produce more noise due to the 

reduced sample area to perform filters like normalisation. It is possible to apply all filters up 

to the binary threshold before using region of interest information to limit the contour 

analysis area, but that potentially reduces the processing time benefits gained by using 

region of interest information. 

 

In Table 10, it was shown that for the direct approach rotated green triangle dataset, the 

average processing time for region of interest areas was 3.5ms, with the minimum and 

maximum image processing times ranging from 1.86ms to 5.55ms respectively.  This is 

faster than the average processing time of a full image by a factor of 31. From this, it was 

shown that benefits of using region of interest information for shape detection not only lie in 

its ability to increase shape detection rates by a significant amount, but also its ability to 

significantly reduce image processing times. 
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8 – Conclusions and Recommendations 

8.1 – Conclusions 

This thesis set out to incorporate a target tracking system for a ball launcher onto a WAM-V 

USV for the purpose of completing the Detect and Deliver task from the 2018 Maritime 

RobotX Challenge.  

 

A target tracking algorithm for a ball launcher using on-board cameras and region of 

interest information was developed in this thesis. The target tracking algorithm was 

designed for enabling a pan-tilt servo system to aim at and follow a target as well as to 

account for different ambient light conditions that may alter the relative appearance of the 

target symbol at varying distances and angles. Using a higher resolution image stream from 

the cameras and region of interest data from FastSLAM algorithm and lidar sensor, the 

shape detection algorithm was able to identify a target and produce target position data for 

a pan-tilt servo system to be aimed. It was also shown that the target tracking algorithm 

was capable of reliably identifying symbols from varying angle and distances. 

 

To support this thesis with strong evidence, the target tracking algorithm was simulated 

using real world data collected during an operational field test of the USV at Port River, 

Adelaide. Running the collected data through Arbon’s shape detection algorithm and the 

automatic parameter configuration algorithm, the results showed that high resolution 

images provided marginal improvements to Arbon’s algorithm but significant performance 

improvements for the automatic parameter configuration algorithm. Because of the 

increased image resolution, the increase in image processing time means that both 

algorithms are unable to process image output at the USV’s current camera frame rate. 

Nevertheless, the use of region of interest information was found to reduce image 

processing time significantly in addition to increasing shape detection rates. Using the 

automatic parameter configuration algorithm in conjunction with region of interest 

information, the target tracking system was able to reliably identify a symbol shape and 

produce the output required to aim the pan-tilt servo system in the direction of the target 

with controlled accuracy. 
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8.2 – Recommendations 

It is recommended that a ball launcher system be constructed and used in conjunction with 

the target tracking system to produce a complete ball launcher and target tracking system 

that can be mounted and operated on a WAM-V USV. It is also recommended that GPU 

acceleration be explored into as a method of reducing image processing times. 
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Appendix A – Detect and Deliver Task Target Dimensions 

 
Dimensions (inches) and locations of shape and holes in target face, taken from the task summary 

(RoboNation, 2018c) 
 



 

Appendix B – Microsoft LifeCam Studio Datasheet 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Appendix C – HDL-32E Velodyne Lidar Datasheet 

 
 



 

 
  



 

Appendix D – HK15328D Servo Motor Specifications 

 SKU 9225000014 

Voltage 4.5-6V 

Speed 0.26sec/60deg(4.8v) 0.22sec/60deg (6.0v) 

Torque 10kg.cm (4.8v) 12.8kg.cm (6.0v) 

Size 40.9mm x 20mm x37.75 mm 

Weight 58gram 

Motor Coreless 

Gear Material Metal 

Ball Bearing 2 

Type Analogue 

Spline 24 




