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ABSTRACT 

Unconsciousness is defined as the state of being where a person is unable to respond to 

any stimulus, be it tactile, auditory or otherwise. This plays a big part in surgeries, where 

doctors use anaesthesia to induce unconsciousness in patients to prevent them from feeling 

pain during the surgery. However, a known phenomenon is for patients to be able to rouse 

from unconsciousness mid-surgery, causing complications for both the patient and surgeon. 

Various tools have been attempted to be made to measure depth of anaesthesia (DOA) over 

the last 3 decades, but they still aren’t used widely in clinical settings due to high variability 

in results and a lack of interpretability for surgeons to use their judgement when algorithms 

fail. 

This project aimed to expand knowledge surrounding how the unconscious brain works, 

using a data set that demonstrates participants transitioning from consciousness to 

unconsciousness. As compared to similar studies, this one is unique as one of the largest 

sources of noise in brain recordings, skeletal muscle noise, was removed by 

pharmaceutically paralysing the participant prior to sedation. This data was to be processed 

to produce spectrograms that could be viewed multiple ways, and a connectivity analysis. 

The methods used to generate spectra of the EEG recordings were new to the brain signals 

laboratory (BSL), designed after the ‘multitaper method’ of spectrum estimation employed 

by other papers. It was found that this algorithm had great performance in creating ‘smooth’ 

spectra, although using additional methods such as ‘smoothing priors’ could help advance 

spectra estimation tools within the BSL further. The spectra and spectrograms generated 

using this method revealed a lot of hidden gamma activity within the brain during 

unconsciousness, in addition to recurring landmarks found to approximate LOC. 

From the connectivity analysis, it was found that regardless of baseline used, there was a 

significant number of connections demonstrating information flow towards the temporal 

regions of the brain. Whilst there is no further evidence to support this theory, it is 

hypothesised that this could be an intentional inhibitory signal towards the auditory 

processing centre of the brain.  

The project ended by setting up future works to find evidence for a hypothesised ‘inhibitory 

signal’ in the gamma band of frequencies that inhibits sensory function during 

unconsciousness. 
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INTRODUCTION 

Background 

Unconsciousness is defined as a state where a person is unable to respond to any stimulus, 

be it tactile, auditory, or otherwise, in addition to the loss of conscious thought and feeling. 

Within a medical context, this can be brought on voluntarily, using anaesthesia, or 

involuntarily as caused by various illnesses and injuries (Medline Plus, n.d.).  

During surgical procedures, patients are put under anaesthesia so they neither feel pain, 

move, or otherwise recognise what is happening during a surgery. This is a vital component 

of surgery as it reduces risk of mental trauma in patients, the feeling of pain during the 

operation, and allows surgeons to do their work without interruption (National Institute of 

General Medical Sciences, 2022). However, it is possible for a patient to arise from 

unconsciousness during the middle of a surgery, which introduces various complications 

during the procedure when the patient regains consciousness (Robson D, 2019). 

To counteract this phenomenon, there is ongoing work to produce tools that measure depth 

of anaesthesia (DOA) to assist surgeons by informing them when a patient is at risk of 

becoming conscious. The goal is that, if a tool can succinctly and accurately predict when a 

patient is edging towards consciousness, anaesthetists are able to increase dosage of 

anaesthesia before return of consciousness (ROC). Several tools have been designed and 

tested so far, as early as 1992 (Devika Rani and Harsoor, 2012) with bi-spectral index (BIS) 

monitors. They are considered the standard in measuring DOA, although they are still not 

fully recommended due to their high variance with age and mental health, in addition to 

being unable to account for different anaesthetics (Mathur Surbhi, 2023). BIS monitors are 

favourable for clinical use due to their relative low cost and non-invasive (does not penetrate 

the skin) nature, although a lack of consensus on validation methods for models impedes 

development in the tool (Devika Rani and Harsoor, 2012). 

There are several methods to measure DOA, but they are powered by algorithms and AI, 

with human understanding in the matter limited. This hampers interpretability of models, 

which when combined with the closed source nature of commercially available tools, 

significantly reduces human understanding. However, there is still much research being 

done to unveil the curtains on unconsciousness. 
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BSL Data Set 

This thesis is a retrospective study, based on EEG recordings done by the Brain Signals 

Laboratory (BSL) from 2006-2008. These recordings are significant as they contain 

participants transitioning from consciousness into unconsciousness and can assist in 

improving our understanding of loss of conscious (LOC) in surgery. The data is also unique 

as the recorded participants were pharmaceutically paralysed prior to LOC, which removes 

skeletal muscle noise in the recordings. This is significant to the findings of the project as 

skeletal muscle noise can completely obstruct brain signals and limit the findings of a study. 

This data has the capacity to reveal brain signals not commonly found in EEG recordings. 

Within this report, these recordings are analysed using a series of signal processing 

techniques to generate different views of the data, with the goal of gaining more insight into 

unconsciousness. There were 6 EEG’s recorded total under the conditions needed for the 

work done, however only 5 recordings were used in the study due to issues with one of the 

recordings. In the original study, each EEG recording was done using the following 

procedure: 

 

- The participant went through a series of instructed movements to demonstrate the 

effect on the recording. 

- The participant was pharmaceutically paralysed. 

- The participant attempted these same movements again, to record how the brain 

attempts to stimulate the muscles when they cannot move. 

- The participant is placed under anaesthesia (using propofol) and brought 

unconscious until the effects of paralysis have worn off. 

The original purpose of these recordings was to study how the brain prepares and executes 

movement in muscles from an EEG perspective, but the inclusion of LOC within the 

recordings allows this study to exist. This data is important to be able to validate the findings 

of recent papers covering the brains transition into unconsciousness. As previous papers 

recorded the transition, the participants in those studies were not pharmaceutically 

paralysed, and hence there existed some large amount of muscle artifact from the EEG 

recordings. By having data of paralysed participants, the analysis performed in this report 

can be extended into uncovering brain signatures typically hidden by muscle noise. 



 

3 

 

The first steps of this study were already completed as part of a previous paper written by 

Dhruti Rathod, where spectrograms of the data were successfully created to visualise 

different frequencies the brain is operating at, and at what powers. Some of the MATLAB 

code used for that thesis was adapted for the requirement of this paper. See Appendix A 

that contains heavily modified code from her original paper. 

The work already done by Rathod. D and Pope. K will be continued in this paper, which 

firstly includes refining the spectrogram outputs already being generated by previous code, 

and then conducting a ‘connectivity analysis’ of the recordings, which shows information 

transfer between regions of the brain at various stages of the recording. The refinement of 

spectrogram outputs within the BSL is needed due to other institutions algorithms being able 

to produce ‘smooth’ figures that we do not have the algorithms for. 

Scope 

The scope for this project is limited as follows: 

- Only 5 participants are included in the retrospective study and no new data is to be 

collected. 

- No analysis methods outside of a spectral analysis and connectivity analysis will be 

performed on the data. 

- No other methods for generating spectral estimates outside of that mentioned in the 

methodology will be explored. 

- Return of consciousness (ROC) will not be explored in this project due to lack of data. 

Any elements of research that go beyond the boundaries of these limitations can be 

considered out of scope of the project. 
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Research Gap 

As discussed earlier, there is a lack of clinical tools trusted by doctors to measure DOA in 

patients during surgery. Additionally, with how relatively little is known about the 

unconscious brain, there is a lack of interpretability in the results of DOA instruments. Hence, 

the research done for this project aims to increase understandability of EEG results of the 

brain, and further illuminate what is not known of the brains activity through a connectivity 

analysis. Hence, the research questions driving this project are: 

 

1) Are the EEG landmarks of unconsciousness reproduceable and are they a good 

measurement for DOA? 

2) With the removal of skeletal muscle noise, what previously unseen activity can be 

found in the unconscious brain? 

3) What connections are found within the unconscious brain? 

The current failing of . Interpretability of results is still an issue within 

Hence, the research questions for this project are: 

1) What landmarks in unconscious EEG are replicable for clinical use? 

2) What is revealed in unconscious brain activity without the presence of skeletal muscle 

noise? 

3) Which regions of the brain demonstrate connectivity with each other during 

unconsciousness? 

Research Outcomes 

To achieve the overarching goal of furthering the understanding of the unconscious mind, 

the project was spread out into 3 main objectives to ground the work done in a realistic 

manner. These project goals were: 

 

1) Improve the tools used within the BSL to generate spectrograms. 

2) Re-analyse the 2006-2008 data, to determine whether they either support or 

challenge other papers findings. 

3) Perform a connectivity analysis and see what interactions within the brain are not 

only statistically significant, but also what they might represent.  
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The data that this retrospective study is using was recorded in Compumedic’s proprietary 

.cnt format, where the vast majority of analysis tools available today would be able to read 

it. However, it is assumed that these objectives will be completed using MATLAB, with the 

EEG3 toolkit for presenting the results. This was done as this thesis is a continuation of a 

previous student’s project, where work was previously done in the MATLAB development 

environment.  

One of the constraints of the project is its small sample size, which reduces the statistical 

power of the results. Unfortunately, due to the nature of collecting data under paralysis, only 

a limited number of participants could be recruited, and recruiting more would be a 

substantial task. Of the ethics approval provided to 8 participants, only 6 were recorded, and 

5 were used within this project due to issues with one of the recordings.  

 

Report Structure 

Following this section, the thesis details the literature review performed at the beginning of 

the project, detailing all papers and research that relate to the findings and work done in this 

field. The research within both helped to interpret the results found during this project, and 

to illustrate and prove the gap that the project aimed to solve. This document also the tools 

used and the methodology practiced to obtain results in the ‘methodology’ section. The 

section describes both the application of these methods, but to view all the code written for 

the project, please see Appendices A-D. All figures displaying results are located in the 

appropriate ‘Results’ section, in addition to written descriptions and comments on 

repeatability. The results are compared to existing papers and explained / hypothesised on 

in the ‘Discussion’ section. After the concluding remarks made at the end of this paper, there 

is an additional section named ‘Future Research’ which provides suggestions on where this 

project can be continued by students in future semesters, and knowledge gaps raised by 

this thesis that can be filled in a future project. 
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LITERATURE REVIEW 

Unconsciousness from an EEG Perspective 

Currently, there is little to no incidence of being able to monitor the state of an unconscious 

person using EEG in a clinical environment (John H. et al., 2021). This has a variety of 

factors that have resulted in this, that being the relatively new research surrounding it and 

the difficulty in being able to approve the use of a device. However, recent movements have 

been made to identify this with recent medical research. John H et al. submitted an article 

to the public library of science detailing using machine learning (ML) to classify states of 

unconsciousness using specific types of anaesthesia (GABAergic in particular). This is of 

note for the work to be done for this project as the anaesthesia used for the data collection 

was propofol, a GABAergic anaesthesia.  Their testing from the ML algorithm was proven to 

be a success with being able to provide better outputs than previous efforts from 

Ramaswamy S, et al. in 2019 (Ramaswamy M.S et al., 2019).  This shows a rapid uptake in 

the ability to monitor unconsciousness using EEG in recent technological developments.  

Similarly, a paper by Li Q. et al. aimed to employ ‘sample entropy analysis’ to estimate depth 

of anaesthesia (DOA) using live EEG recordings to help estimate a patients level of 

unconsciousness during surgery. This is similar in regards to both previous papers 

discussed as it is aiming to achieve live detection of DOA in a surgical procedure. Whilst like 

the other two papers it approached a satisfactory level of detection of registering when a 

patient is at risk of waking up, it also admitted that it has a noticeable time delay in being 

able to respond to changes in DOA during the experiment. Of note, it uses a bispectral-index 

as a reference value to quantify DOA. The data obtained for this project did not use a 

bispectral-index monitor in addition to the EEG cap. This may provide an opportunity for a 

future project to expand the findings of this paper using BIS to further investigate 

unconsciousness. 

However, reading through the results and discussion of these three papers, it is clear that 

there is a lack of understanding or interpretability as to what the brain is doing. These papers 

fail to demonstrate to medical professionals what can be learnt about the brain and how to 

directly interpret what is being read on screen as an EEG is being recorded. Whilst the intent 

of this project aims to add to the greater goal of allowing software similar to what John H et 

al. and Ramaswamy S. et al. have developed, a crucial part of the research that still needs 

exploration is some human amount of understanding as to what is happening. 
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One paper that approaches very closely to what is aimed to be accomplished by this project 

comes from Wong K.F.K et al. in 2012. As such, this paper will be referenced a few times in 

this review. The paper aimed to investigate signatures of loss and recovery of 

unconsciousness from propofol (the anaesthesia used in the BSL experiment). Unlike the 

three papers discussed prior, this one aims to directly show what is going in the brain and 

hopes to answer how it is performing as it enters and leaves the state of unconsciousness. 

In its results it uses a variety of views to demonstrate what power each of the different 

regions of the brain is operating at during unconsciousness. A significant part of the report 

relevant to the visualisation of data that will be utilised in this project is the averaging 

algorithm they had used to collate participant data. As can be seen below in figure 1, Wong 

K.F.K et al had used an averaging algorithm that had made the overall view appear much 

smoother and have greater clarity than the data that this project has currently produced (See 

figure 2 for a direct comparison of what the current data looks like).  

 

Figure 1 has been removed due to Copyright restrictions. 

Figure 1: An example of the ‘smoothing algorithm’ in action for a spectral analysis depicting loss of 
consciousness (LoC), Wong K.F.K, 2012. 
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Figure 2 has been removed due to Copyright restrictions. 

Figure 2: An example of a previous students work in depicting loss of consciousness without a 
‘smoothing algorithm’, Rathod D., 2022 

 

The main difference between this project and the paper described is the data set used. The 

participants within that study were tasked with responding to stimulus in both verbal and 

physical to be able to define the exact point of loss of consciousness over the course of this 

experiment. This project will take those learnings of when to identify the loss and return of 

consciousness and apply them to the unique data set to be used for this project. As the 

project data contains significantly less muscle artifact, further understanding of the brain will 

be gained through this analysis.  

A similar paper in scope of the previous papers goals was done by Akeju O. et al. in 2016. 

Instead of doing the same experiment with propofol, however, it was done with ketamine as 

an anaesthetic. The reason why this is significant in difference to the propofol paper is 

because ketamine targets completely different receptors than propofol, resulting in a 

different brain response to the use of the chemical (Mathur Surbhi, 2023). 

Whilst the project for this thesis does not use data that includes participants that have been 

placed unconscious using ketamine, it does pose an opportunity for future research that 

involves going through a similar data collection process involving paralysing the participant 

to remove muscle artifact, but instead using ketamine as the anaesthesia to perform a study 

that delves deeper into NMDA receptor anaesthesia’s. The authors of that paper concur with 

this, as they discuss in their limitations their results are limited due to it being a retrospective 

study which did not provide the exact depth of data they wanted. 
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Improving EEG Analysis 

 

The first goal of this project was to improve the EEG analysis tools used by the BSL. 

Specifically, an algorithm dubbed internally as the ‘smoothing algorithm’. This ‘smoothing 

algorithm’ is in reference to a paper created by Wong, K.F.K. et al. (2019) that implements 

an algorithm that gives greater insight into how each of the EEG channels interact with each 

other and influence signals. This sort of effect can be found in a few other papers as well, 

notably with many of the same authors included in them. Within the 2019 paper, it is noted 

that the paper does not address how the algorithm was created, other than mentioning that 

the figure was an average between all participants of the study. The closest note the paper 

makes to revealing what has been done algorithmically is a reference it makes to a paper 

using ‘Global Coherence Analysis’. 

Inside the paper referenced (Cimenser A. et al, 2011), the authors reveal their processing 

methodology for obtaining similar plots to the 2019 Wong K.F.K. paper. The methodology 

used begins with a referencing scheme that has each electrode viewed in reference to the 

average activity of the electrode positions surrounding it. Additionally, findings of the paper 

showed that taking a surface Laplacian shows the approximation of how electrical current 

travels across the scalp at each electrode site, for a sufficiently dense EEG reading. 

However, given the density of the paper and the results already being covered in much 

greater detail in Wong K.F.K. et al’s 2019 paper, where the definition of the transition into 

unconsciousness was covered in far greater detail, this 2011 paper didn’t provide much 

other than indicators as to how to create this algorithm.  
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Looking further, there was a 2011 study in which Wong K.F.K et al. unpacked Cimenser A. 

et al’s paper, looking at how their methods could have greater use when viewing EEG 

recordings of participants under anaesthesia. Within this paper (Wong K.F.K et al. 2011), a 

method was found to improve upon Cimenser A. et al’s. work to make it significantly more 

robust to noise. Their findings demonstrated how, in a series of figures, how their could 

improve the views of their findings through the removal of large noise artefacts present in 

their findings. The authors show their methodology which includes equations of taking the 

cross-spectral matrix of the results, and using the median in place of the mean to make it 

more robust to noise. As the methods described only apply to the robustness to noise, and 

not trying to explicitly remove it, this methodology should have no negative impacts on the 

analysis of the paralysis data given the lack of muscle artifact. And as the methods for this 

smoothing algorithm is a little more defined, the final question of how to interpret the data 

must also be answered. 

Expectations of Findings 

 

Finally, using all that has been discussed prior, the question must be asked of what is 

expected to be found by analysing the data set unique to this project. One area that was 

under explored was how to interpret the results, and what is expected to be found as a result 

of the data analysis. As such, papers already discussed within this literature review were 

revisited to observe how each paper went about reporting and analysing their findings. Wong 

K.F.K et al. in 2019 created a series of spectrograms and visualisations based on defining 

the loss and returnal of consciousness, with a focus on specific bands of frequencies found 

at the scalp of the head. These frequencies being 0.1-1 Hz, 8-12Hz, and 25-35Hz. The paper 

used these to investigate specific frequencies they found relevant from a neuroscience 

perspective (these frequencies being named low-frequency, alpha and gamma 

respectively). The paper does make note of beta waves (13-24Hz) but does not provide 

visualisations of them. Hence, in this study it will be endeavoured to also investigate that 

band of frequencies. 

In Cimenser A. et al.’s 2011 paper, one visualisation of results was seen as particularly 

useful to one of the goals of the masters thesis, which was to produce a view of different 

regions of the brain and how they operate during unconsciousness. As seen in figure 3, this 

was done by generating individual views of each channel, and plot them all against each 

other, relative to where that channel is located on the scalp.  
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Figure 3 has been removed due to Copyright restrictions. 

Figure 3: A demonstration of how different regions of the brain can be viewed during 
unconsciousness (Cimenser A. et al. 2011) 

 

 

The final context of how to interpret results is discussed in Akeju O. et al’s 2016 paper. 

Whilst this paper covers work done to investigate ketamine as an anaesthetic (not 

particularly useful to this thesis), it does comment on how it analysis the results found 

through it’s study. Their results analysis was formed in investigating repeating patterns in 

certain frequency bands during the EEG recording. Using this, it is known that a portion of 

the results discussion should be dedicated to investigating the existence of any rhythmic 

patterns during the different stages of unconsciousness, and if any begin or cease during 

the transition between consciousness and unconsciousness, 
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METHODOLOGY 

Implementation of the Multitaper-Method into Existing Code 

 

As shown in the literature review, current methods used to generate spectrograms within 

the BSL do not match those of the literature and need to be improved upon. A method of 

spectrum estimation named the ‘Multitaper-Method’ was found to be used in experiments 

closest to this one, which was able to produce spectrum estimations with a higher frequency 

resolution than obtained previously (Purdon et al., 2013). The estimation method is 

performed by using several windows or ‘tapers’ to generate a variety of spectrum 

estimations, which are then averaged to create a “smooth” spectrum, as visually 

demonstrated in Figure 4. This process is then repeated multiple times by sliding the 

windows along the raw data to generate multiple spectra across the recording. Once this is 

done for the whole recording, all of the generated spectra are concatenated to provide a 

spectrogram which can be viewed using MATLAB. 

Initial tests for the algorithm attempted to utilise the original recordings sampling rate 

(5000Hz) for the spectrogram, but it was found that MATLAB would not be able to generate 

spectra at such a high sampling rate. This was found to be caused by an error where an 

adaptive algorithm made to determine if the spectrum estimate was ‘good enough’ would be 

stuck in an infinite ‘while’ loop due to the size of the data. Hence, the data was down sampled 

to 500Hz to prevent issues whilst maintaining a high enough rate to prevent any aliasing in 

the signal analysis. 

Figure 4 has been removed due to Copyright restrictions. 

Figure 4: A graph demonstrating the process of the multitaper method. Noisy data has several 
spectrographs taken of it using different windows (tapers) and is then averaged to create an 

averaged multi-taper spectrum. This process removes the effects of noise on the data, although at 
the cost of removal of some features (Prerau et al., 2017).  
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MATLAB has an implementation of the multitaper-method via the function ‘pmtm’. It takes in 

a set of data as a basic input, as well as allowing several optional inputs to be able to 

customise how the multitaper-method is performed. To allow this to integrate with the BSL 

dataset, a wrapper function was designed to work with the eeg3.eeg data objects in use. 

The wrapper handled cases where either one or more objects were inputted in addition to 

any variable amount of channels included in the recording. The wrapper would extract the 

raw data from each channel in each object and perform the ‘pmtm’ function on it, before 

packaging the resulting spectra into an eeg3.timefreq object.   

The default choice of tapers was left as the MATLAB default choice, discrete prolate 

spheroidal sequences. With the slide between each window being 0.1 seconds, this again 

down sampled the final spectrogram to 10Hz. Additionally, with using the function in 

MATLAB, the spectral resolution in the generated spectrograms became 0.5Hz. 

Determining LOC 

To analyse unconsciousness using EEG recordings, LOC needs to be identified so that all 

participant recordings can be aligned. If this is not done, the group cannot have its median 

taken and as a result general trends are much harder to find. Papers that have studied 

unconsciousness have used participant activity (responses to stimulants) to determine the 

point of LOC in participants, and marked the exact time in the recording this was found to 

be. The BSL data does not have this feature, as both the original study did not call for it and 

participants had no easy method to respond given their paralysis. Figure 1 demonstrates 

that LOC can be found as the location where there is a significant increase in power in the 

beta and gamma frequency bands (Purdon et al., 2013). This was hence used as a 

benchmark to identify LOC for each participant, with the help of an academic to verify the 

observed landmark of unconsciousness.  

Baseline 

Another significant aspect of the process in generating spectrograms is the use of a 

baseline. Baselines allow researchers to be able to study EEG recordings with respect to a 

selected time-period of the recording. By using baselines of BSL participants laying down 

with their eyes closed, interesting components of the recording that deviate from the 

participants normal state of being is exemplified.  
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Figure 5: An indicative timeline of the original paralysis experiment, identifying the periods of the 
time that will be used as a baseline (blue) relative to the major events of the experiment (red). 

 

The baselines that were used for this paper are shown in Figure 5, where two of them were 

taken during paralysis, and one pre-paralysis. It was hoped that the sedation recording could 

be used as a baseline due to it most closely matching the state of the participants mind at 

LOC, but due to the short amount of recording time prior to LOC the results between 

participants could vary greatly. Hence, an additional baseline was selected further away 

from LOC, but still part of the paralysis recording to ensure that a baseline of appropriate 

length and conditions was available. A paralysis baseline was desired as to address the lack 

of knowledge of the brain’s activity with skeletal muscle noise removed. Additionally, a pre-

paralysis baseline was also selected from the available recordings. This was done as it most 

closely matches the data found in both a clinical environment and in other research papers. 

Powerbands 

It is also interesting to generate other views of the spectrogram data as it may reveal details 

that are not immediately obvious to the observer. Averaging power over specific frequency 

bands (delta, alpha, ect.) is useful as these bands vary over time. The code needed to 

achieve this already exists, written by a previous student (Rathod, 2023). To mirror what 

was done in previous research, the frequency bands initially used were the delta, alpha and 

gamma bands, but this was expanded to include theta and beta frequencies to explore what 

is happening at other notable frequencies. 
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Topography Generation 

As the power in each EEG channel is different, being able to view where channel power 

varies relative to their location on the head is also useful for data interpretation, as 

demonstrated in Figure 6. Like with the power bands analysis, the code used to generate 

these figures was created by a previous student (Rathod, 2023). An EEG topography is 

achieved by choosing both a time period and frequency range from the spectrogram and 

averaging the power in that moment for a channel. This is repeated for all channels from 

which MATLAB will draw the powers of each channel relative to each other in a montage of 

the head. Unlike in the example below, the code used for this includes topology lines to 

show the peaks and valleys of the power.  

Figure 6 has been removed due to Copyright restrictions. 

Figure 6: An example of EEG topographies from a similar paper (Purdon et al., 2013) 

The time selected to represent unconsciousness was at the end of the sedation recordings, 

well past LOC as that represents a stable point of reference of the brains activity during 

unconsciousness. Instead of one frequency range being selected, multiple were made, 

selecting bands from delta to gamma frequencies to investigate the differences between 

bands. 
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Connectivity Analysis 

 

A connectivity analysis is a series of calculations made to test which parts of the brain are 

communicating with each other, and in which direction. There are a variety of connectivity 

measures useful to EEG analysis (Bakhshayesh et al., 2019), and each show different 

connections based on the question. In this project, 3 measures of connectivity were 

explored: 

1) Transfer Entropy (TE) 

2) Symbolic Transfer Entropy (STE) 

3) Normalised Transfer Entropy / Symbolic Normalised Transfer Entropy (NTE / SNTE) 

As can be observed, all 3 measures explored are variations of transfer entropy. Transfer 

entropy is a statistical test that measures information shared between two random events. 

It is a causal test, meaning that it can determine the direction of information flow between 

channels (Bakhshayesh et al., 2019). To illustrate how transfer entropy is measured, see 

Figure 7 for a visual guide. To elaborate on what the figure means, first, a signal’s current 

response (Yt) is estimated using previous data from the same signal (Yt-1:t-1-l), as represented 

by the red shaded region. Then, previous data from a different signal (Xt-1:t-1-l) is then used 

to estimate the current response of the original signal. The connectivity (information flow) 

from one channel to another is determined by how much the different signal is able to 

improve the signal estimation, represented by the green shaded region (Bakhshayesh et al., 

2019).   

 

Figure 7: How transfer entropy is measured using prior data. A signal's own ability to predict itself is 
shown in red, and information flow from one signal to the other is shown in green. 
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This entire process is calculated using the amplitude of the signal. However, an alternate 

method of calculating this to instead use numbers that represent the ranks of the amplitudes. 

This process, named ‘Symbolic Transfer Entropy’ (symbolic TE), was found to be better for 

fine-tuning parameters on the data as it makes no assumptions about the data 

(Bakhshayesh et al., 2019). If symbolic TE is found to create a significantly different 

connectivity result both will be used, otherwise only TE will be explored.   

Once the analysis methods have been chosen, the normalised form(s) of TE analysis will 

then be taken. Normalised TE differs from TE in that instead of measuring just the amount 

of information flow found between two signals, normalised TE finds this relative to how much 

information there is in the destination signal. This has the effect of showing connections that 

would’ve been disregarded otherwise and removes connections that were shown to have a 

high absolute measure of entropy, but a small relative value. Finally, to interpret the results 

of the connectivity analysis, the help of a neuroscientist was enlisted to gain insight into the 

findings. 
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RESULTS 

Initial Spectrograms 

 

Figure 8: The raw spectrograms of all the original participants. Time has not been aligned such that 
t=0 represents LOC, and the full recording associated with each participant has been used. 

 

Using the multitaper method as described in the ‘methodology’ section, all individual 

participants sedation recordings can now be visualized in a spectrogram, shown in Figure 

8. What needs to be noted at this point in data processing is that the data is not aligned to 

LOC for any of the participants, and that they all need to be set to the same size before any 

useful comparisons can be made. There is a large spike in power around 0.1 – 2 Hz, which 

is likely caused from cyclic behaviour in the body, such as breathing and the common 

heartbeat, but this is considered a normal feature of unconsciousness (Mukamel et al., 

2011). The last element that needs to be addressed regarding the initial spectrograms is the 

unknown artifacts which can be seen around 250 and 400 seconds in participant 2. After 

discussions with one of the lead scientists from the BSL who performed this experiment, 

those artifacts seem to be caused by someone poking the participant to see if they were 

unconscious yet. 
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Baseline 

As shown in Figure 8, creating a spectrogram using the Multitaper-Method did create 

‘smoother’ results, due to the increase in both time and frequency resolution (see Figure 24 

for a direct comparison). As discussed in the methodology, the times were selected through 

consensus when reviewing with an academic to find the most likely point of LOC. After 

aligning all participants to LOC, the data was truncated such that all participants had the 

exact same recording window, which not only made them easier to compare side-by-side, 

but also easier to generate a median of all participants data. As can be seen in Figure 9, the 

median shows a spike in power around 10Hz, which is typical of resting brain landmarks 

(Mukamel et al., 2011).  

 

Figure 9: Spectrograms of all participants within the study, including a median of all. The 
spectrograms have inconsistent noise patterns across participants. 

 

The variance between all participants and their oft hard to find LOC times are of note in 

manual analysis but given how much an EEG recording can vary with a multitude of factors, 

this isn’t a surprise (Devika Rani and Harsoor, 2012). However, to get more consistent 

results across participants, a baseline normalisation was performed, where post-stimulus 

activity is revealed by comparing post-stimulus data to a period of recorded data with no 

stimulus (University of Bern, n.d.). For this thesis, 3 baselines were tested to see what would 

suit the data the best. 
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The spectrograms made using the sedation baseline can be seen below in Figure 10. As 

predicted, the short selection time has resulted in three participants (1, 4 and 5) having 

reduction in alpha band power, whilst two participants (2 and 3) showed a sharp increase in 

this band. This is likely due to participants tensing prior to sedation and reducing alpha 

frequency power. As such the sedation baseline was rejected due to inconsistent responses. 

 

 

Figure 10: Spectrograms of all 5 participants, in addition to a median of all spectrographs, taken 
using the multitaper method and using a baseline from the sedation recording, close to LOC. The 

removal of power in the alpha frequency band can be observed. 

 

The spectrograms generated using the paralysis baseline is shown in Figure 11, which was 

found to be much more consistent between participants. Only one participant had a notable 

reduction of alpha frequencies, And all participants showed an increase in low beta / high 

alpha frequency power. One feature of note is the amount of activity happening in gamma 

frequencies (25 Hz +).    
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Figure 11: Spectrograms of all 5 participants, with an additional median of all spectrographs. This set 
of graphs was made using a baseline that was further away from LOC, using a specific ten second 

'baseline' recording. 

 

Using a baseline taken prior to paralysis was shown to create a very smooth spectrogram, 

as can be seen in the median of Figure 12. There is a significant reduction in power in the 

gamma band, due to the recording being compared to a time where participants weren’t 

paralysed (skeletal muscle activity primarily operating in the gamma band). 

 

Figure 12: Spectrograms of all 5 participants in addition to a median between them all. The 
spectrograms were made using a baseline taken pre-paralysis. In the median, the high alpha / low 

beta landmark can be identified, but not as much the delta landmark. 
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Relative to Paralysis 

 

The following section contains the produced median figures of all 5 participants. Figure 13 

contains the median spectrogram with respect to paralysis, 14 contains the average 

powerbands from the spectrogram as they vary over time, and figure 15 demonstrates the 

topography of the EEG cap well after LOC. 

 

 

 

 

Figure 13: Median of all 5 participants on the EEG channel 'Fz'. This spectrogram was taken using a 
paralysis baseline and shows a high amount of delta activity, with some power in the high beta / 

gamma frequency bands. 
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Figure 14: The power bands of the spectrographs taken of all 5 participants using a paralysis 
baseline. The power bands are Delta (blue), Alpha (pink), and Gamma (green). t=0 marks LOC and all 

bands show a significant increase in power post LOC 

 

 

 

 

Figure 15: The spatial distribution of power at low delta (left), alpha (middle), and gamma (right) 
frequencies. The powers of the signal are relative to paralysis, and show that there is a decrease in 

power of the occipital region of the brain. There is also a localized decrease in power in the temporal 
region for both low delta and alpha frequencies. 
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Relative to Pre-Paralysis 

The following section contains the produced median figures of all 5 participants, although 

these figures instead used a pre-paralysis baseline in their generation. Figure 16 contains 

the median spectrogram with respect to paralysis, 17 contains the average powerbands from 

the spectrogram as they vary over time, and figure 18 demonstrates the topography of the 

EEG cap well after LOC. 

 

 

 

 

Figure 16: Median of all 5 participants on the EEG channel 'Fz'. This spectrogram was taken using a 
pre-paralysis baseline and shows intermittent delta activity, with some power in the low beta / high 

alpha bands and a reduction in power in the gamma band. 
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Figure 17: The power bands of the spectrographs taken of all 5 participants when using a pre-
paralysis baseline. The power bands are Delta (blue), Alpha (pink), and Gamma (green). t=0 marks 

LOC and all bands show a small increase in power post LOC 

 

 

 

 

Figure 18: The spatial distribution of power at low delta (left), alpha (middle), and gamma (right) 
frequencies. The powers of the signal are relative to paralysis and show that there is a decrease in 

power of the occipital region of the brain, and a localised decrease in the temporal region. 
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Connectivity Analysis 

Shown in figures 19 through 22 is the results of the connectivity analysis performed using 

both transfer entropy (TE) and a normalised TE algorithm. As discussed in the methodology, 

symbolic TE was also tested as a variant, but didn’t display any connections between 

channels, see Appendix F for details.  

 

Figure 19: A top-down view of the brain, with the top of the figure representing the frontal region of 
the brain and the bottom representing the occipital region. A transfer entropy (TE) connectivity 

measure was taken of all 5 participants, and the brains connectivity between channels prior to LOC 
is shown. 
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Figure 20: A top-down view of the brain, with the top of the figure representing the frontal region of 
the brain and the bottom representing the occipital region. A transfer entropy (TE) connectivity 

measure was taken of all 5 participants and averaged, the brains connectivity between channels after 
LOC is shown. 

 

Across the results, it is noted that the algorithms chosen calculates the p-values for each 

found connection. Each connection between channels displayed on the model of the brain 

are hence considered statistically significant (p<0.05). Using the TE algorithm, conscious 

activity revealed some connections toward the frontal region of the brain, with the remainder 

travelling towards the temporal lobes or (in one case) the occipital lobe. Unconscious TE 

revealed heavy activity heading towards the right temporal lobe of the brain. 

Normalised TE revealed a lot more connections between channels. In the chosen conscious 

data set, not only are there more connections directed at the frontal cortex, but additionally 

more travelling to both temporal lobes. The unconscious data set also had an increase in 

channel connections, with some pointed at the frontal and occipital regions of the brain, but 

the majority of connections directed at the temporal lobes. 
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Figure 21: Connectivity analysis of the conscious brain, averaged between 5 participants. This was 
made using a normalised transfer entropy algorithm. Most of the connections lead toward left 

temporal and frontal regions of the brain. 

 

 

Figure 22: Normalised transfer entropy analysis of the unconscious brain, averaged between 5 
participants. Whilst some connections are moving towards the frontal and occipital regions, most 

connections are travelling towards the temporal regions of the brain.  
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DISCUSSION 

Comments on pre-paralysis baseline findings 

The first objective of the project was to create a new method for generating spectrograms 

within the BSL. This objective was fuelled by the lack of ‘smoothness’ in the spectrograms 

being generated by the BSL as compared to other academic papers and their results 

generation. Hence, as can be observed in Figure 23, there is a significant increase in both 

resolution that adds additional clarity to the shape of the spectrogram, in addition to 

smoother transitions between values on the figure. The frequency domain had a twofold 

resolution increase, whilst the time domain had a fivefold increase. This is a significant 

outcome as it increases the clarity at which the data can be viewed, allowing for smaller 

details to become observable. One currently unexplained element of the data is the bursts 

of delta energy around 50 and 250 seconds. Whilst not confirmed to be as such, it is 

hypothesised that the multitaper-method struggles with low frequencies due to the 

unconvincing appearance of the bursts.  

  

Figure 23: A comparison between the spectrograms generated using one of many available 
toolboxes (left) and the multitaper-method (right). The powers vary between results due to changes 

in baseline used. The high alpha / low beta landmark can still be seen on the graph, but the delta 
landmark is harder to locate on the right figure due to sudden bursts of delta power. There is an 

improvement in both frequency and time resolution as a result of the multitaper-method for 
increased detail. 
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Comparing the outcomes of the new BSL spectrograms to similar research in Figure 24, the 

time resolution of the spectrograms are similar, although this project’s spectrograms has a 

lower resolution in the frequency domain. The spectrogram on the left also features a much 

smoother transition between powers across the time domain. One key difference in 

methodology between the two spectrograms is that smoothing priors are implemented as 

well (Purdon et al., 2013). Implementing this could potentially account for the difference in 

resolution and additional smoothness in the figure. Hence, implementing smoothing priors 

would be the appropriate next step in attempting to improve the spectrogram estimates that 

can be created in the BSL. 

Figure 24 has been partially removed due to Copyright restrictions. 

 

Figure 24: A comparison between the spectrograms generated in a similar paper (left) (Purdon et al., 
2013) and the multitaper-method (right). The multitaper method still has a better frequency resolution 

as opposed to the other paper. The high alpha / low beta landmark can be seen on both 
spectrograms, but the delta landmark is incredibly clearer and distinguishable on the left. 

Additionally, the spectrogram made using the BSL data appears to be much noisier than the left 
spectrogram, although this may be due to the lack of smoothing priors implemented in the BSL’s 

data. 

The second goal of the project was to either support or challenge the existence of landmarks 

within a spectrogram that correlates to consciousness. From these spectrograms, support 

is shown for the existence of a landmark appearing at high alpha / low beta frequencies 

upon loss of consciousness. This is significant as this means there is a recurring signature 

that could be measured in clinical settings that could help measure depth of anaesthesia. 

However, due to the artifacts found at very low frequencies using multitaper estimation, the 

existence of the delta landmark is neither supported nor challenged.  
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The spectrograms created using a pre-paralysis baseline were then expanded into different 

views to be able to further reveal differences between consciousness and unconsciousness. 

As discussed earlier, there is support for the existence of a high alpha / low beta landmark 

appearing upon LOC. The power bands analysis in Figure 25 demonstrates that there is a 

clear increase in alpha band power upon onset of LOC. This holds true for low delta 

frequencies here too, yet it is noted that neither low delta nor alpha powers reach that of the 

referenced paper on the left. It is also observed that the use of a pre-paralysis baseline has 

significantly reduced the power in the gamma region (as skeletal muscle contains significant 

power at those frequencies).  

Figure 25 has been partially removed due to Copyright restrictions. 

 

Figure 25: The power bands of a similar experiment (left) (Purdon et al., 2013) and the bands 
generated using the multitaper method with the BSL data (right). All bands are matched in colour and 
frequency range. Upon loss of consciousness (t = 0), there is a rise in power common between both 

the low delta and alpha frequency bands. In the BSL data, there is a missing response from the 
gamma band of frequencies due to the suspension of skeletal muscle artifact by the paralysant. 

The topology analysis made using the BSL dataset is compared against a paper that had 

the same research goals in Figure 26, where a pre-paralysis baseline was used. Like all 

other visualisations of the BSL data set, the power is noticeably lower across all channels 

and frequencies as opposed to the literature. The delta band topology does share the high 

powers found at almost all channels, but unlike the paper referenced does not feature the 

decrease in power around the frontal and occipital regions of the brain. Given that noise 

from smooth muscle (gut, heart, etc.) is present at low frequencies, it is unknown how to 

interpret these high powers.  
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For alpha frequencies, the same general shape can be observed as to the literature, where 

the main increase in power post LOC is in the frontal cortex, and there is a decrease in 

power around the occipital region. The topology of gamma frequencies show a small 

decrease in the occipital region of the brain, whilst the alpha topology shows an increase in 

power in the frontal region of the brain in addition to a decrease in the occipital region. The 

gamma topology, unlike the literature, does not show an increase in power in the medial-

frontal region of the brain, although this is expected as when using a baseline that features 

a lot of gamma activity (pre-paralysis skeletal muscle artifact), there is expected to be heavy 

attenuation in the gamma band. One feature of the BSL’s dataset that was not observed 

within other papers is the decrease in power around the temporal lobes in both the delta and 

alpha bands of frequencies. While this may seem significant, before any hypothesis is made, 

additional review of individual participants and outliers within channels need to be checked 

prior.                                         

Figure 26 has been partially removed due to Copyright restrictions. 

 

 

Figure 26: The spatial distribution of power using the BSL data set (top) and from a similar paper 
(bottom) (Purdon et al., 2013). The topologies are viewed using 3 different frequency bands, and the 

time of the recording that is used for both sets of topologies is several minutes post LOC. 
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Addressing the peak of the topology power in the alpha range, it’s clear that the majority of 

activity in the brain during unconsciousness is in the frontal cortex. As that’s where abstract 

thinking and conscious thought occurs (El-Baba Rami and Schury, 2023), it shows some 

level of thought is still active within the brain during unconsciousness. This is a well-

documented phenomena where patients can recall certain memories from when they are 

under anaesthesia (Guerra, 1986).  

There is also decrease in alpha power around the central-parietal band of the head. This 

makes sense considering that’s the approximate location of the somatosensory cortex, 

where humans perceive tactile stimulus. In a clinical setting where unconsciousness is 

induced for reducing patient sensation during surgery, this is ideal. 

Regarding the connectivity analysis that used the normalised transfer entropy algorithm 

(Figure 21 and Figure 22), it was unexpected for that many channels to be found to show 

statistically significant connections during unconsciousness. It was hypothesised that there 

would a significant decrease in connectivity once the brain is unconscious, which was not 

supported by the data. The main notable feature of the connectivity post LOC is that many 

of the connections are pointed towards the temporal lobes of the brain. This may correlate 

to the decrease in power in the temporal lobes in Figure 26. It appears, given the decrease 

in power in those regions, it could be that the brain is sending an inhibitory signal to the 

auditory processing region of the brain (temporal lobes). It is hypothesised that the purpose 

of this behaviour is to supress a function within the brain that ‘wakes up’ the patient due to 

auditory stimulation. However, there is no further evidence to support this theory, and hence 

further investigation is required. 

To further investigate this feature of the connectivity analysis, the code was run again 

multiple times, with each iteration using data that had been bandpass filtered to a brain 

rhythm band. The bands tested to further explore this occurrence was theta, alpha, beta and 

gamma frequencies, the full results of this testing can be found in Appendix G.2 – Band 

Passed Connectivity For a Pre-Paralysis Baseline. The outcomes of this exploration shows 

that the temporal signals start at beta frequencies which can be seen in Figure 27, but the 

majority of them are found in the gamma band of frequencies, as seen in Figure 28. This is 

a significant finding of the report that suggests that gamma frequency brain waves inhibits 

signals in the brain during unconsciousness but again, further investigation is required. 



 

34 

 

 

Figure 27: Unconscious connectivity analysis, bandpass filtered to include beta frequencies and 
attenuate all others. 

 

Figure 28: Unconscious connectivity analysis, bandpass filtered to include beta frequencies and 
attenuate all others. 
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Comments on Paralysis Baseline Findings 

One of the more intriguing outcomes of the project were the findings made from the paralysis 

baseline. As the use of paralysant has removed skeletal muscle artifact from the EEG 

recording, any signals found at that frequency range are significant as it is typically hard to 

find brain activity in that range due to muscle artifact. As can be seen in Figure 14, there is 

an increase in the gamma frequency band by about 6 decibels. This is a significant finding 

as it implies that the brain has some unknown high frequency signals that occurs upon loss 

of consciousness. This potentially ties into the hypothesis that high frequency signals within 

the brain are the root cause of inhibitory signals that reduce perception of stimulation during 

unconsciousness, but another study is required to explore this further. As discussed in the 

results section, additional figures, including topography charts, connectivity analysis, and 

power band graphs can be found in appendices. This is due to many of the figures with the 

paralysis baseline mirror the findings of the pre-paralysis baseline with the exception of 

gamma frequencies. 
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CONCLUSION 

With the research of this paper complete, it has been reaffirmed and validated, some of the 

findings of previous research regarding spectrogram observations between the conscious 

and unconscious brain. Within the EEG recordings used for analysis, noise-smoothened 

spectrograms revealed an increase in power for frequencies in the alpha bands. This 

matched findings from past papers that explored the unconscious brain, where similar 

increases of power were found in those bands. However, there was a lack of activity found 

in the delta frequency band. 

Regarding how the power of different frequency bands varies across the topology of the 

head, it was affirmed that in the alpha band, the highest power of those frequencies are 

found in the frontal part of the head. Additionally, it was shown that with the removal of 

skeletal muscle noise, there is significant activity happening the gamma band of frequencies. 

Final findings of the report had shown that there is a difference in channel connectivity 

between the conscious and unconscious brain. The unconscious brain was found to have 

significant connections to the temporal lobes, and it is hypothesised that this may have an 

inhibitory effect on the senses. 

Through the findings of this study, both affirmations to existing research and new 

conjectures to how the unconscious brain were made. However, the new conjectures made 

regarding connectivity between the unconscious brain need further research. As this study 

comprised of only 5 participants, a new study that focuses on brain connectivity with a wider 

set of participants is proposed. It is hoped that these findings will push forth new research 

opportunities and expand current works into creating tools for clinical use. 
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FUTURE RESEARCH 

By the end of this project, there are questions posed by the results discussion that have not 

been achieved yet. Firstly, the methods used to generate spectrograms within the project 

are not perfect, featuring artifacts around very low frequencies (0.1-2Hz). Being able to 

refine the methods used to generate a multi-taper spectrum is the next required step in the 

project. The most likely way to achieve this is to implement smoothing priors into the code, 

as one paper has used them in tandem with multi-taper estimates to produce very clean 

spectrograms (Purdon et al., 2013). 

Secondly, one of the major limitations of this report was that there was the limited number 

of participants within the BSL’s data set, that being 5 participants. This reduces the statistical 

power of the findings, reducing the certainty that the hypothesised meanings of the results 

are true. Hence, recording more data that includes LOC in addition to ROC (return of 

consciousness) would be beneficial to increase the statistical power of the findings and get 

more insight into arousal from unconsciousness. However, the ability to be able to record 

additional participants using the methods from the BSL in 2006 would be incredibly unlikely 

in today’s world given the costs and ethics approval needed. A good alternative to recording 

data may be to reproduce the experiment with the removal of pharmaceutical paralysis as 

to make it easier to pass by an ethics board.  

This, however, comes with the issue of not providing suitable data to validate the increase 

in power seen in the gamma band upon LOC, as it is hypothesised to be connected to 

inhibition of sensory signals within the brain. This specific finding requires a recreation of the 

data collection specifically with the paralysis of the participants in order to find support for, 

as it is unlikely that current noise removal techniques would not be able to adequately 

remove skeletal muscle noise without also removing the low power, high frequency signals 

found during unconsciousness. Otherwise, additional data collection would be able to 

validate that the findings of the connectivity analysis performed within the report. As one of 

the major findings of the connectivity analysis was the connections found directed at the 

temporal lobes in the brain. As this paper is the only one that demonstrates this connection 

in propofol-induced unconsciousness, support for the findings shown is necessary. 
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Additionally, one aspect of the gap which has not been filled in this project is the effect of 

other anaesthetics. As discussed in the introduction, different anaesthetics are used 

clinically, and there are differences in patient reaction to them. Whilst useful to have an 

exploration into the effect of propofol on the brain as it goes unconscious, as this paper 

does, the gap question introduced still applies to other clinically used anaesthetics. As one 

of the overarching goals of the paper details, there is a need to be able to predict a patient’s 

risk of arousing from unconsciousness, and this need cannot be filled with an understanding 

of propofol alone. 
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APPENDICES 

Appendix A – All Spectrogram Figures and Data Loading Code 
% script for reproducing the Boston paper figures 
 
% use pretty_print: 
% pretty_print( 'target', 'slide', 'filename', 'myFig2B.png') 
 
% Guide to variable names: 
 
% d  = All loaded subjects from the experiment 
% dr = All loaded subjects with a resampled sampling rate 
 
%% Declare all definitions and variables 
 
% Variable definitions 
fs0 = 5000; 
fs = 500; 
 
frequencyRange = [ 0 40]; 
 
median_filter_order = 19; 
 
% Baseline choice % 
% 1 for no baseline 
% 2 for baseline.eyesclosed recording 
% 3 for baseline from sedation recording 
% 4 for baseline.preparalysis recording  
baselineChoice = 2; 
 
 
% Title definitions 
figure2B_name = 'Fig. 2.B'; 
figure2C_name = 'Fig. 2.C'; 
figure2D_name = 'Fig. 2.D'; 
 
% Timing info for unconscious data 
times = [ ... 
    1 803; ...                  % JOW  data 
    0.0002, 600.0002; ...       % RW   data 
    79, 679; ...                % JBW  data 
    0.0002, 1275; ...           % DDLA data 
    0.0002, 712; ...            % AM   data 
    ]; 
 
% Loss of consciousness (LOC) time values for 
% JOW, RW, JBW, DDLA, AM respectively 
LOC = [ 285 108 45 703 120]; 
% possibly JOW 185 seconds later? 
% old values:  
% LOC = [ 100 108 125 690 120]; 
 
% same for the background segments 
relaxed_background_times = ... 
    [ 20 70; 30 80; 10 40; 50 400; 30 80]; 
% these are definitely dodgy 
% old_relaxed_background_times = ... 
%     [ 40 355; 9 29; 99 119; 19 39; 125 320]; 
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% what to study this run? 
participants = { 'jow', 'rw', 'jbw', 'ddla', 'am'}; 
partiNo = numel(participants); 
 
chans = {'Fz'}; 
 
% chans = {'F7', 'F3', 'Fz', 'F4', 'F8'; ... 
%          'T7', 'C3', 'Cz', 'C4', 'T8'; ... 
%          'P7', 'P3', 'Pz', 'P4', 'P8'}; 
 
chanNo = numel(chans); 
 
nonEEG = { 'ECGII' 'HEOG_R' 'LJAW' 'REAR' 'RNECK' 'VEOG_D' ... 
    'VEOG_U' 'ECGIII' 'HEOG_L' 'LNECK' 'RJAW' 'RESP' 'HEMG'}; 
 
% if ifempty(chans) == 1 
%     warning('No desired channels selected. Assuming all channels needed'); 
%     chans = eeglocal.util.tenfive; 
% end 
 
% Paths to data 
data_paths = { ... 
    'Real_JOW_13_April_06', '7_after_post_7.cnt'; ... 
    'Real_RW_23_Nov_06', 'par_6.cnt'; ... 
    'Real_JBW_28_March_07', 'jbw_2007-03-28_sedation_1.cnt'; ... 
    'Real_DDLA_29_Jun_07', '5.para.car.filt.cnt'; ... 
    'Real_AM_27_Nov_07', '9.cnt'; ... 
    }; 
 
% Frequency bands we care about 
powerBandFreqs = {[0.1 1], [8 12], [25 35]}; 
bandNo = size( powerBandFreqs, 2); 
 
line_colours = [ 0 0 1; 1 0 1; 0 0.5 0.2]; 
 
 
 
%% Load in data (should need to do this once per session only) 
 
% Selectable channels; 
% Use these comments as a guide to what channels can be selected for  
% analysis. Fill in the array variable below with desired channels to  
% analyse so that the data for all desired channels can be stored in  
% a cell array.  
% 
 
% Load this in for easy access in functions 
local_path = getpref( 'eeglocal','paralysispath'); 
 
partiData = eeg3.eeg.alloc( 1, partiNo); 
partiBaseline = eeg3.eeg.alloc( 1, partiNo); 
partiPreBaseline = eeg3.eeg.alloc( 1, partiNo); 
 
for parti = 1:partiNo 
    % load sedation data for one subject, one channel, specified times 
    tic 
    d = eeg3.eeg.load( fullfile( local_path, data_paths{ parti, 1}, ... 
        data_paths{ parti, 2}), 'range', times( parti, :) * fs0);  
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    b1 = eeglocal.paralysis.load( participants{parti}, ... 
        'study.paralysis.baseline.eyesclosed'); 
    b2 = eeglocal.paralysis.load( participants{parti}, ... 
        'study.preparalysis.baseline.eyesclosed'); 
    toc 
 
    % convert cap to extended 10-20 
    d = eeglocal.util.tenfive( d); 
    d.subject = participants{parti}; 
 
    partiData(parti) = d; 
 
    b1 = eeglocal.util.tenfive( b1); 
    b1.subject = participants{parti}; 
    partiBaseline(parti) = b1; 
 
    b2 = eeglocal.util.tenfive( b2); 
    b2.subject = participants{parti}; 
    partiPreBaseline(parti) = b2; 
 
end 
 
 
%% Save loaded data to save time in future 
save("allPartiRawData.mat", ... 
        "partiData", "partiBaseline", "partiPreBaseline", "-v7.3"); 
%% Generate spectrum estimations for all selected data 
 
% Check users choice on data 
switch baselineChoice 
    case 1 
        useParalysisBaseline = false; 
        usePreParalysisBaseline = false; 
        useSelfBaseline = false; 
    case 2 
        useParalysisBaseline = true; 
        usePreParalysisBaseline = false; 
        useSelfBaseline = false; 
    case 3 
        useParalysisBaseline = false; 
        usePreParalysisBaseline = false; 
        useSelfBaseline = true; 
    case 4 
        useParalysisBaseline = false; 
        usePreParalysisBaseline = true; 
        useSelfBaseline = false; 
    otherwise 
        error('Please use an acceptable choice for baseline'); 
end 
 
 
% Allocate space for data 
subjectSpect = eeg3.timefreq.alloc(1, partiNo); 
timebases = zeros( partiNo, 2); 
 
% reduce number of channels 
preppedData = partiData;%.selectchan(chans); 
preppedData = preppedData.discardchans( nonEEG); 
if useParalysisBaseline == true 
    preppedBase = partiBaseline;%.selectchan(chans); 
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    preppedBase = preppedBase.discardchans( nonEEG); 
elseif usePreParalysisBaseline == true 
    preppedBase = partiPreBaseline;%.selectchan(chans); 
    preppedBase = preppedBase.discardchans( nonEEG); 
end 
 
% loop over participants 
tic 
for parti = 1:partiNo 
    %resample to a manageable sample rate for analysis 
    d = preppedData(parti); 
    dr = d.resample(fs); 
 
     
    % Create spectrogram of selected data  
    ds = spect_eeg3(dr, frequencyRange); 
     
    % Create baseline if selected 
    if useParalysisBaseline || usePreParalysisBaseline == true 
        b = preppedBase(parti); 
        br = b.resample(fs); 
        bs = spect_eeg3(br, frequencyRange); 
 
        for i = 1:size(bs.chan) 
            testChans{i} = bs.chan(i).label; 
        end 
        ds = ds.selectchan(testChans); 
        ds = relbaseline2(ds, bs); 
 
    elseif useSelfBaseline == true 
        ds = relbaseline2( ds, ds.selecttime( ... 
            relaxed_background_times( parti, 1), ... 
            relaxed_background_times( parti, 2))); 
    end 
 
 
    % Time align loss of consciousness 
    ds.time.start = ds.time.start - LOC(parti); 
 
    % We get the timebase of the recording for later use 
    timebases( parti, :) = ds.timebase; 
 
    % collect final results together 
    subjectSpect(parti) = ds; 
end 
toc 
 
% find times for which all participants have data 
timebase = [ max( timebases( :, 1)), min( timebases( :, 2))]; 
subjectSpect = subjectSpect.selecttime( timebase( 1), timebase( 2)); 
     
save("allPartiChanSpect_paralysisBaseline.mat", "subjectSpect"); 
 
%% View individual spectrograms 
 
% set up figure 
tiledlayout( 2, 3); 
set( gcf, 'Name', 'Individual spectrograms'); 
clims = [ 0 15]; 
cmap = jet( 128); 
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% loop over participants 
for parti = 1:partiNo 
    nexttile 
    data = subjectSpect(parti); 
    data.label = append('Participant ', num2str(parti)); 
     
    % display individual spectrogram 
    data.plot( 'Clim', clims, 'YLim', frequencyRange, 'scale', 'linear'); 
    colormap( cmap); 
end  
 
% and show the average 
nexttile 
data = simple_timefreq_median( subjectSpect); 
data.label = sprintf( 'median of %d', partiNo); 
data.plot( 'Clim', clims, 'YLim', frequencyRange, 'scale', 'linear'); 
colormap( cmap); 
 
 
% print to file? 
% pretty_print( 'filename', 'JOW_relative_far.png', 'target', 'ppt'); 
 
%% Show average of single channel 
 
singleChanData = subjectSpect.selectchan( 'Fz'); 
clims = [ 0 15]; 
 
data = simple_timefreq_median( singleChanData); 
data.label = sprintf( 'median of %d', partiNo); 
data.plot( 'Clim', clims, 'YLim', frequencyRange, 'scale', 'linear'); 
set( gcf, 'Name', 'Individual spectrograms'); 
cmap = jet( 128); 
colormap( cmap); 
% Make background transparent if desired 
% set(gcf, 'color', 'none');    
% set(gca, 'color', 'none'); 
 
 
 
%% Power band estimation for all selected data  
 
chanPower = cell(1, chanNo); 
 
for chan = 1:chanNo 
    % now calculate power in the various bands of interest 
    tempm = simple_timefreq_median(subjectSpect); 
    tempm.data = medfilt1( tempm.data, median_filter_order, [], 2); 
    dp = eeg3.eeg.alloc( 1, bandNo); 
    legend_strings = cell( 1, bandNo); 
    for bandi = 1:bandNo 
        % median filter on the band power to make it look better 
        temp = medianfreq( tempm.selectfreq( ... 
            powerBandFreqs{bandi}(1), powerBandFreqs{bandi}(2))); 
        dp( bandi).data = medfilt1( temp.data, median_filter_order); 
        dp( bandi).label = sprintf( 'median power from %d to %d Hz', ... 
            powerBandFreqs{ bandi}(1), powerBandFreqs{ bandi}(2)); 
        % should worry about the units and history 
        dp( bandi).units = tempm.units; 
        dp( bandi).history = tempm.history; 
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        dp( bandi).time = tempm.time; 
        dp( bandi).chan = tempm.chan; 
        legend_strings{ bandi} = sprintf( '%d-%d Hz', ... 
        powerBandFreqs{ bandi}(1), powerBandFreqs{ bandi}(2)); 
    end 
    chanPower{chan} = dp; 
end 
 
 
%% 2B Graph generation 
 
y = size(chans, 1); 
x = size(chans, 2); 
tiledlayout(y, x);  
 
set( gcf, 'Name', figure2B_name); 
 
medianSpect = simple_timefreq_median(subjectSpect); 
 
for chan = 1:chanNo 
    nexttile 
 
    % Make average of all loaded spectrograms for plotting 
    data = medianSpect.selectchan(chans{... 
        ceil(chan/x), ... 
        rem(chan + (x-1), x) + 1}); 
     
    % Set variables for plotting 
    clims = [ 0 15]; 
     
    % display averaged normalised spectrogram 
    data.plot( 'Clim', clims, 'YLim', frequencyRange, 'scale', 'linear'); 
    colormap( jet( 128)); 
end  
 
 
%% 2C Graph generation 
 
p = tiledlayout(1, 1);  
 
legend_strings{1} = '0.1-1 Hz'; 
 
for chan = 1:numel(chanPower) 
    nexttile 
    set( gcf, 'Name', figure2C_name); 
 
    dp = chanPower{chan}.selectchan('Fz'); 
     
    % display averaged band power 
    hl = dp.plot; 
    for linei = 1:numel( hl) 
        set( hl( linei), 'Color', line_colours( linei, :)); 
    end 
     
    title('Power bands for channel ', dp(1).chan.label); 
    legend( legend_strings, 'Location', 'northwest'); 
end 
 
set( gca, 'YLim', [ 0.01 100], 'YScale', 'log'); 
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%% MY topologies, calculate chanpower first 
 
chanTop = chanPower{1}; 
endTime = chanTop(1).timebase; 
endTime = endTime(2) - 30; 
stepTime = chanTop(1).time.step; 
 
chanTop = chanTop.discardchans( nonEEG); 
 
chanTop = chanTop.selecttime( endTime - stepTime / 2, endTime); 
titles = {'0.1 - 1 Hz', '8 - 12 Hz', '25 - 35 Hz'}; 
 
 
% prepare to display averaged normalised spectrogram 
hf = findobj( 0, 'Name', figure2D_name); 
if isempty( hf) 
    figure 
    set( gcf, 'Name', figure2D_name); 
end 
clf 
originalSize = cell(3); 
clims = [-7 17]; 
 
% chanTop( 2).plottopography( 'Clim', clims,'log', false); 
 
% display topographies 
for bandi = 1:bandNo 
    subplot( 1, 3, bandi) 
    chanTop( bandi).plottopography( 'Clim', clims,'log', false); 
    title(titles{bandi}) 
    originalSize{bandi} = get(gca, 'Position'); 
    if bandi ~= 3 
        colorbar('off') 
    end 
    set(gca, 'Position', originalSize{bandi}); 
    set(gcf, 'color', 'none'); 
end 

 

%% INCLUDE THETA, BETA FREQ BANDS 
 
% Frequency bands we care about 
altPowerBandFreqs = {[4 8], [12 25]}; 
bandNo = size( altPowerBandFreqs, 2); 
 
alt_line_colours = [ 1 0.5 0; 0.5 0.7 1]; 
 
chanPower = cell(1, chanNo); 
 
for chan = 1:chanNo 
    % now calculate power in the various bands of interest 
    tempm = simple_timefreq_median(subjectSpect); 
    tempm.data = medfilt1( tempm.data, median_filter_order, [], 2); 
    dp = eeg3.eeg.alloc( 1, bandNo); 
    legend_strings = cell( 1, bandNo); 
    for bandi = 1:bandNo 
        % median filter on the band power to make it look better 
        temp = medianfreq( tempm.selectfreq( ... 
            altPowerBandFreqs{bandi}(1), altPowerBandFreqs{bandi}(2))); 
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        dp( bandi).data = medfilt1( temp.data, median_filter_order); 
        dp( bandi).label = sprintf( 'median power from %d to %d Hz', ... 
            altPowerBandFreqs{ bandi}(1), altPowerBandFreqs{ bandi}(2)); 
        % should worry about the units and history 
        dp( bandi).units = tempm.units; 
        dp( bandi).history = tempm.history; 
        dp( bandi).time = tempm.time; 
        dp( bandi).chan = tempm.chan; 
        legend_strings{ bandi} = sprintf( '%d-%d Hz', ... 
        altPowerBandFreqs{ bandi}(1), altPowerBandFreqs{ bandi}(2)); 
    end 
    chanPower{chan} = dp; 
end 
 
 
 
 
% 2C Graph generation 
 
p = tiledlayout(1, 1);  
 
 
for chan = 1:numel(chanPower) 
    set( gcf, 'Name', figure2C_name); 
 
    dp = chanPower{chan}.selectchan('Fz'); 
     
    % display averaged band power 
    hl = dp.plot; 
    for linei = 1:numel( hl) 
        set( hl( linei), 'Color', alt_line_colours( linei, :)); 
    end 
     
    title('Power bands for channel ', dp(1).chan.label); 
    legend( legend_strings, 'Location', 'northwest'); 
end 
 
set( gca, 'YLim', [ 0.01 100], 'YScale', 'log'); 
 
% TOPOLOGIES WITH NEW FREQS 
 
chanTop = chanPower{1}; 
endTime = chanTop(1).timebase; 
endTime = endTime(2) - 30; 
stepTime = chanTop(1).time.step; 
 
chanTop = chanTop.discardchans( nonEEG); 
 
chanTop = chanTop.selecttime( endTime - stepTime / 2, endTime); 
titles = {'4 - 8 Hz', '12 - 25 Hz'}; 
 
 
% prepare to display averaged normalised spectrogram 
hf = findobj( 0, 'Name', figure2D_name); 
if isempty( hf) 
    figure 
    set( gcf, 'Name', figure2D_name); 
end 
clf 
originalSize = cell(3); 
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clims = [-7 17]; 
 
% chanTop( 2).plottopography( 'Clim', clims,'log', false); 
 
% display topographies 
for bandi = 1:bandNo 
    subplot( 1, 2, bandi) 
    chanTop( bandi).plottopography( 'Clim', clims,'log', false); 
    title(titles{bandi}) 
    originalSize{bandi} = get(gca, 'Position'); 
    if bandi ~= 2 
        colorbar('off') 
    end 
    set(gca, 'Position', originalSize{bandi}); 
    set(gcf, 'color', 'none'); 
end 

 

Appendix B – EEG Wrapper Function for Handling Data  
function [bt] = spect_eeg3( d, band) 
%        bt = spect_eeg3( d, band) 
% Calculate power in a specified band in the channels of an eeg3 object 
 
 
% handle multiple inputs 
if numel( d) > 1 
    bt = d; 
    for i = 1:numel( d) 
        bt( i) = spect_eeg3( d( i), band); 
    end 
    return 
end                                 
 
% operating on a single object 
 
% definitions 
band_information = { ... 
    'delta', [ 1 4]; ... 
    'theta', [ 4 8]; ... 
    'alpha', [ 8 13]; ... 
    'beta', [ 13 25]; ... 
    'low gamma', [ 25 48]; ... 
    'high gamma', [ 52 98]; ... 
    'mu', [ 8 12]; ... 
    }; 
 
% parse the first input 
assert( isa( d, 'eeg3.eeg'), 'First input must be an eeg3 object'); 
 
% ensure the second input is meaningful and convert to a useful format 
switch class( band) 
    case 'double' 
        assert( all( size( band) == [ 1 2]), sprintf( ... 
            '%s:: If numerical, band must be a 1x2 vector specifiying the frequency 
range', mfilename)); 
    case 'char' 
        ind = find( strcmp( band, band_information( :, 1))); 
        if isempty( ind) 
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            error( '%s:: Unknown band name', mfilename); 
        else 
            band = band_information{ ind, 2}; 
        end 
        % do something fancy to convert a band name to frequency limits 
    otherwise 
        error( '%s:: Don''t know how to interpret the second argument', ... 
            mfilename); 
end 
 
% Create the output object 
bt = eeg3.timefreq.alloc(1); 
% Create the spectrogram data and select the frequency range 
[ spectData, newSR] = estimation_generation( d, band( 2)); 
 
 
% Push the spectrogram data into the output object 
bt.data = spectData; 
bt.label = sprintf( 'Spectrum estimation from %s to %d Hz',... 
    num2str(band( 1)), band( 2)); 
bt.freq.step = 0.5; 
bt.chan = d.chan; 
bt.subject = d.subject; 
% Should worry about the samplerate 
bt.time.samplerate = newSR; 
bt.time.step = 1 / newSR; 
% Ensure units are correct 
bt.units.name = 'decibel'; 
bt.units.symbol = 'dB'; 
bt.units.tex = 'dB'; 

 

Appendix C – Multitaper Method Loop for Spectrum Estimation 
%Takes in an eeg file and extrapolates the needed analysis 
function [ spect, newSR] = estimation_generation( eegObject, maxFreq) 
 
% parse input arguments 
assert( isa( eegObject, 'eeg3.eeg'), 'First input must be an eeg3 object'); 
 
% definitions 
blockLength = 2; % seconds 
newSR = 10; % Hz 
chanNo = eegObject.nchan; 
 
% pull out useful information 
fs = eegObject.time.samplerate; 
eegDataLength = eegObject.ntime; 
 
% derived 
frs = 0:( 1 / blockLength):maxFreq; 
Nfreq = maxFreq * blockLength + 1; 
assert( Nfreq == numel( frs), 'Got frequencies wrong :<'); 
blockSlide = fs / newSR; 
Nblocks = floor(( eegDataLength - blockLength * fs)/blockSlide); 
 
% Make the overall spectrogram for all channels for the subject 
spect = zeros(chanNo, Nblocks, Nfreq); 
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for chani = 1:chanNo 
 
    % make space for the output channel spectrogram 
    chanData = zeros( Nfreq, Nblocks); 
 
    % Retrieve the appropriate data needed for the specific channel 
    eegData = eegObject.data(chani, :); 
 
    % Working on subject whatever, channel something something 
    fprintf('Starting estimation generation for subject %s, channel %s...', ... 
             eegObject.subject, eegObject.chan(chani).label); 
     
    % Loop over blocks of the channel of data 
    for blockNo = 1:Nblocks 
        blockStart = ( blockNo - 1) * blockSlide + 1; 
        blockEnd = blockStart + blockLength * fs - 1; 
        [spectBlock, f] = pmtm(eegData(blockStart:blockEnd), blockLength, ... 
            blockLength * fs, fs); 
        chanData(:,blockNo) = spectBlock( 1:Nfreq); 
         
    end 
 
    % Transforming data into dB 
    chanData = 10 * log10(chanData);  
    % Transforming data into format useable by timefreq object 
    chanData = chanData.'; 
    chanData = reshape(chanData, 1, size(chanData, 1), size(chanData, 2)); 
 
    % Place into output spectrogram 
    spect(chani, :, :) = chanData; 
    fprintf(' Complete!\r') 
 
end 

 

Appendix D - Connectivity Code for Testing Connectivity at Multiple 
Frequency Bands 
%% Unconscious connectivity analysis 
%  Code is intended to load in data from unconscious participants  
%  (set of 5) and generate a connectivity plot of the baseline recording 
%  and the before / after of the participant being brought unconscious. 
 
 
 
%% Declare all definitions and variables 
 
% Variable definitions 
fs0 = 5000; 
fs = 500; 
 
% Timing info for unconscious data 
times = [ ... 
    1 803; ...                  % JOW  data 
    0.0002, 600.0002; ...       % RW   data 
    79, 679; ...                % JBW  data 
    0.0002, 1275; ...           % DDLA data 
    0.0002, 712; ...            % AM   data 
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    ]; 
 
% Loss of consciousness (LOC) time values for 
% JOW, RW, JBW, DDLA, AM respectively 
LOC = [ 285 108 45 703 120]; 
 
% what to study this run? 
participants = { 'jow', 'rw', 'jbw', 'ddla', 'am'}; 
partiNo = numel(participants); 
 
% Which baseline to use? Choose either before or after paralysis 
% 'study.paralysis.baseline.eyesclosed' 
% Or 
% 'study.preparalysis.baseline.eyesclosed' 
baselineRecordingName = 'study.paralysis.baseline.eyesclosed'; 
 
chans = eeg3.util.labels1005; 
 
% chans = {'F7', 'F3', 'Fz', 'F4', 'F8'; ... 
%          'T7', 'C3', 'Cz', 'C4', 'T8'; ... 
%          'P7', 'P3', 'Pz', 'P4', 'P8'}; 
 
chanNo = numel(chans); 
 
baselineSegment = [4, 6]; 
 
% Paths to unconsciousness data 
data_paths = { ... 
    'Real_JOW_13_April_06', '7_after_post_7.cnt'; ... 
    'Real_RW_23_Nov_06', 'par_6.cnt'; ... 
    'Real_JBW_28_March_07', 'jbw_2007-03-28_sedation_1.cnt'; ... 
    'Real_DDLA_29_Jun_07', '5.para.car.filt.cnt'; ... 
    'Real_AM_27_Nov_07', '9.cnt'; ... 
    }; 
 
%% Load in data (run once per session only) 
 
% Load this in for easy access in functions 
local_path = getpref( 'eeglocal','paralysispath'); 
 
partiData   = eeg3.eeg.alloc( 1, partiNo); 
partiBaseline = eeg3.eeg.alloc( 1, partiNo); 
 
for parti = 1:partiNo 
    % load sedation and basline data for one subject 
 
    tic 
    partiData(parti) = eeg3.eeg.load( fullfile( local_path, data_paths{ parti, 1}, ... 
        data_paths{ parti, 2}), 'range', times( parti, :) * fs0);  
 
    partiBaseline(parti) = eeglocal.paralysis.load( participants{parti}, ... 
        baselineRecordingName); 
    toc 
 
end 
 
%% Reformat data for connectivity 
 
%  Requires that partiData and partiBaseline to be loaded prior 
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% which channels to drop and/or which to keep 
nonEEG = { 'ECGII' 'HEOG_R' 'LJAW' 'REAR' 'RNECK' 'VEOG_D' ... 
    'VEOG_U' 'ECGIII' 'HEOG_L' 'LNECK' 'RJAW' 'RESP' 'HEMG'}; 
chans = eeg3.util.labels1005; 
timebases = zeros( partiNo, 2); 
 
% Resample recordings to a reasonable rate 
partiConnectivity = arrayfun(@(x) x.resample(fs), partiData); 
connectivityBaseline = arrayfun(@(x) x.resample(fs), partiBaseline); 
 
% convert sedation data to 10-20 and add participant names 
for parti = 1 : partiNo 
    % convert cap to extended 10-20 
    partiConnectivity( parti) = eeglocal.util.tenfive( partiConnectivity(parti)); 
    partiConnectivity( parti).subject = participants{ parti}; 
end 
 
% Ensure baseline starts and time zero and are the same size within task 
for i = 1:partiNo 
    partiConnectivity(i).time.start = 0; 
    connectivityBaseline(i).time.start = 0; 
end 
 
% time align sedation data 
for parti = 1:partiNo 
    partiConnectivity(parti).time.start = ... 
        partiConnectivity(parti).time.start - LOC(parti); 
    % We get the timebase of the recording for later use 
    timebases( parti, :) = partiConnectivity(parti).timebase; 
end 
 
% find times for which all participants have data 
timebase = [ max( timebases( :, 1)), min( timebases( :, 2))]; 
partiConnectivity = partiConnectivity.selecttime( timebase( 1), timebase( 2)); 
 
% partiConnectivity = partiConnectivity.selecttime( 0, ... 
%     ( min( partiConnectivity.ntime) - 1) / partiConnectivity( 1).time.samplerate); 
connectivityBaseline = connectivityBaseline.selecttime( 0, ... 
    ( min( connectivityBaseline.ntime) - 1) / connectivityBaseline( 
1).time.samplerate); 
 
% Removes channels that don't work with connectivity analysis 
% Select desired channels 
partiConnectivity = partiConnectivity.selectchan( chans); 
partiConnectivity = partiConnectivity.discardchans( nonEEG); 
connectivityBaseline = connectivityBaseline.selectchan(chans); 
connectivityBaseline = connectivityBaseline.discardchans( nonEEG); 
 
%     % convert cap to extended 10-20 
%     partiData(subject) = eeglocal.util.tenfive( partiData(subject)); 
%     partiData(subject).subject = subjects{subject}; 
 
%% If desired, perform bandpass filter 
fs = partiConnectivity(1).time.samplerate; 
 
consciousTimes = [-45, -5]; 
unconsciousTimes = [432, 492]; 
bandnames = { 'theta', 'alpha', 'beta', 'gamma', 'allFreqs'}; 
bands = [ 4, 8; 8, 12; 12, 25; 25, 48]; 
Nbands = size( bandnames, 2); 
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for bandi = 1:Nbands 
    baseEEG = connectivityBaseline; 
    consciousEEG   = partiConnectivity.selecttime( ... 
        consciousTimes(1), consciousTimes(2)); 
    unconsciousEEG = partiConnectivity.selecttime( ... 
        unconsciousTimes(1), unconsciousTimes(2)); 
     
    % Never write a for loop in matlab, unless you are running out of memory 
    if bandi ~= 5 
    baseEEG = baseEEG.lowpass( bands( bandi, 2)).highpass( bands( bandi, 1)); 
    consciousEEG = consciousEEG.lowpass( bands( bandi, 2)).highpass( bands( bandi, 1)); 
    unconsciousEEG = unconsciousEEG.lowpass( bands( bandi, 2)).highpass( bands( bandi, 
1)); 
    end 
 
    % Connectivity analysis 
     
    connectivityFunction = @normalisedtransferentropy; 
    functionName = "normalisedTE_paralysisBase_"; 
    tic 
    % Do connectivity on bits of the data 
    [ ~, connectivityChans, AM0] = connectivity( ... 
        baseEEG, ... 
        connectivityFunction, 'permloops', 'slowandsmall'); 
    [ ~, ~, AMbefore] = connectivity( ... 
        partiConnectivity.selecttime( consciousTimes( 1), consciousTimes( 2)), ... 
        connectivityFunction, 'permloops', 'slowandsmall'); 
    [ ~, ~, AMafter] = connectivity( ... 
        partiConnectivity.selecttime( unconsciousTimes( 1), unconsciousTimes( 2)), ... 
        connectivityFunction, 'permloops', 'slowandsmall'); 
    toc 
    % now do a permutationtest - either through connectivity function or 
    % directly through the permutationtest function 
    tic 
    [ ~, ~, ~, ~, ptPvalBefore] = ... 
        connectivity( partiConnectivity, connectivityFunction, ... 
        'AM', AMbefore, 'AMs', AM0, 'permloops', 'slowandsmall'); 
    toc 
    tic 
    [ ~, ~, ~, ~, ptPvalAfter] = ... 
        connectivity( partiConnectivity, connectivityFunction, ... 
        'AM', AMafter, 'AMs', AM0, 'permloops', 'slowandsmall'); 
    toc 
     
    fileName = append(functionName, bandnames{bandi}, ".mat"); 
    save(fileName, ... 
        "ptPvalAfter", "ptPvalBefore", "AMbefore", "AMafter") 
end 
 
%% Get all chans from available data and create av AM's 
chanIndex = size(ptPvalAfter, 1); 
 
chans = cell(1,chanIndex); 
 
for i = 1:chanIndex 
chans{i} = connectivityBaseline(1).chan(i).label; 
end 
 
avAMbefore = mean(squeeze(AMbefore), 3); 
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avAMafter  = mean(squeeze(AMafter) , 3); 
 
 
%% Plot connectivity analysis onto a 3D plot 
 
baselinePlot = plot_connections3d_v3( avAMbefore, chans, ptPvalBefore); 
set( gcf, 'Name', 'Conscious Connectivity'); 
 
connectivityPlot = plot_connections3d_v3( avAMafter, chans, ptPvalAfter); 
set( gcf, 'Name', 'Unconscious Connectivity'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

Appendix E – An EEG Montage Mapped onto the Positions of Channels 
on an EEG Cap 

 

Figure 29: An EEG montage, featuring all channels from the BSL recordings in 2006, oriented onto an 
EEG topography, with a nose at the top for orientation. 
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Appendix F – Results of Symbolic Transfer Entropy Analysis 

Unfortunately, using ranks instead of amplitudes resulted in a connectivity analysis with no 

connections. It is not entirely known if there’s an error with the code or not, so it’s left as an 

open issue for another student to peek at and try to get working in a continuation of this 

project. 

 

Figure 30: The 'results' of the symbolic TE connectivity analysis 
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Appendix G.1 – Band Passed Connectivity for a Paralysis Baseline  

This section contains the findings of performing a bandpass filter to perform a connectivity 

analysis using frequency bands typically found in brain analysis. The first section goes over 

the conscious segments of connectivity and the second section goes over unconscious 

connectivity. All data shown here was using a paralysis baseline. 

Conscious Connectivity 

 

 

 

Figure 31: Theta band passed connectivity. Analysis was done on conscious participant data with a 
paralysis baseline used. 
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Figure 32: Alpha band passed connectivity. Analysis was done on conscious participant data with a 
paralysis baseline used. 

 

Figure 33: Beta band passed connectivity. Analysis was done on conscious participant data with a 
paralysis baseline used. 
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Figure 34: Gamma band passed connectivity. Analysis was done on conscious participant data with 
a paralysis baseline used. 

 

Figure 35: All frequencies connectivity analysis. Analysis was done on conscious participant data 
with a paralysis baseline used. 
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Unconscious connectivity 

 

Figure 36: Theta band passed connectivity. Analysis was done on unconscious participant data with 
a paralysis baseline used. 

 

Figure 37: Alpha band passed connectivity. Analysis was done on unconscious participant data with 
a paralysis baseline used. 
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Figure 38: Beta band passed connectivity. Analysis was done on unconscious participant data with a 
paralysis baseline used. 

 

Figure 39: Gamma band passed connectivity. Analysis was done on unconscious participant data 
with a paralysis baseline used. 
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Figure 40: All frequencies connectivity analysis. Analysis was done on unconscious participant data 
with a paralysis baseline used. 
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Appendix G.2 – Band Passed Connectivity For a Pre-Paralysis Baseline  

This section contains the findings of performing a bandpass filter to perform a connectivity 

analysis using frequency bands typically found in brain analysis. The first section goes over 

the conscious segments of connectivity and the second section goes over unconscious 

connectivity. All data shown here was using a pre-paralysis baseline. 

 

Conscious Connectivity 

 

 

 

 

 

Figure 41: Theta band passed connectivity. Analysis was done on conscious participant data with a 
pre-paralysis baseline used. 
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Figure 42: Alpha band passed connectivity. Analysis was done on conscious participant data with a 
pre-paralysis baseline used. 

 

Figure 43: Beta band passed connectivity. Analysis was done on conscious participant data with a 
pre-paralysis baseline used. 
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Figure 44: Gamma band passed connectivity. Analysis was done on conscious participant data with 
a pre-paralysis baseline used. 
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Unconscious Connectivity 

 

Figure 45: Theta band passed connectivity. Analysis was done on unconscious participant data with 
a pre-paralysis baseline used. 

 

Figure 46: Alpha band passed connectivity. Analysis was done on unconscious participant data with 
a pre-paralysis baseline used. 
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Figure 47: Beta band passed connectivity. Analysis was done on unconscious participant data with a 
pre-paralysis baseline used. 

 

Figure 48: Gamma band passed connectivity. Analysis was done on unconscious participant data 
with a pre-paralysis baseline used. 
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Appendix H – Additional Frequencies in Power Band and Topography 
Analysis 

 

 

Figure 49: Band power estimates for the theta (orange) and beta (blue) frequency ranges, done for a 
pre-paralysis baseline. 

 

Figure 50: An EEG topology done for a pre-paralysis baseline, one for the theta frequency range (left) 
and the other for the beta frequency range (right).  
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Figure 51: Band power estimates for the theta (orange) and beta (blue) frequency ranges, done for a 
paralysis baseline. 

 

 

 

Figure 52: An EEG topology done for a paralysis baseline, one for the theta frequency range (left) 
and the other for the beta frequency range (right). 




