
Chapter 9

Conclusions and future directions

This chapter summarises the findings within this thesis, examines its main contribu-

tions, and provides suggestions for further directions.

9.1 Thesis summary

This thesis has presented background information about bone anatomy, fractures and

methods of visualisation along with an overview of the previous research that has

been performed in the field of computer aided diagnosis and more specifically fracture

detection. It examined methods of detecting edges within long-bone x-ray images,

and how the long-bone shaft could be approximated using a set of parameters. These

parameters were then utilised for diaphysis segmentation and fracture detection within

the segmented region. Finally, to decrease the diagnosis time, parallelisation of two of

the slower parts of the algorithm was examined. Results showing the effectiveness of

each of the algorithms were presented in each section.

After examining the relevant bone and joint anatomy and physiology, it was noted

that despite their great strength and flexibility, bones do occasionally break. The inci-

dence of bone fractures is relatively high, accounting for roughly 20% of the occupancy

of orthopaedic wards [30], at any point in time. In addition, the treatment costs for

fractures are increasing, as are the number of fractures associated with age-related

bone loss [94]. The first step in providing adequate treatment for bone fractures is

accurate fracture diagnosis. Unfortunately, missed diagnoses are relatively common,
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and account for a significant portion of the malpractice suits against radiologists in the

USA [20]. Satisfaction of search—where the identification of an obvious abnormality

distracts the observer from detecting other abnormalities, or causes the search to end

prematurely—is a possible cause of this error during x-ray reading, along with lack

of compliance in unconscious patients and interpretations made without localisation

cues or a clinical history. A computer aided fracture diagnosis scheme that does not

suffer from the SOS effect was suggested as a solution to this problem, and midshaft

long-bone fractures were identified as the abnormalities that should be detected. In

order to achieve this aim, a digital x-ray image database was created using long-bone

x-ray images collected from an emergency department in metropolitan Adelaide. From

this database, an algorithm development set of six images, and an algorithm test set

of 44 images were produced. Ideally the test set would have been larger, but given the

time and difficulty of obtaining this current set, it was not practical to continue image

collection for a longer period.

The overview of previous work revealed, most importantly, that very little had been

achieved in the way of automated bone fracture detection. The only closely related

work [105, 110, 104, 59] involved detecting neck of femur fractures based on the angle

of the neck of femur, and on the analysis of the disruption to the trabecular patterns in

the femoral neck. Limited work had also been performed on osteoporosis diagnosis and

bone age estimation. Similarly, only a small amount of work had been published on

automated long-bone segmentation, with only two relevant algorithms identified. The

algorithm by Jia and Jiang [51] utilised a geodesic active contour model to identify

bones within the arm, but the model required a very accurate prior shape for the

match to occur, and was only likely to be accurate for a very small range of images.

El-Kwae [38] created a model by analysing a diverse range of bone shapes, and the

model was then applied to the image in an unspecified manner, to determine if any

matches occurred. In both cases, no results from their algorithms were presented. This

lack of previous literature indicated that the creation of a CAD system for the detection

of long-bone fractures should be a priority.

Within this thesis, the first stage of analysing the x-rays was performing low level
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analysis to detect edges within the image. To separate the true edges from the inherent

noise, smoothing was required, leading to the notion of scale-space. In a scale-space

approach to edge detection, the original image is replaced with a smoothed version of

that image, at a particular scale. In this manner, local disturbing detail such as image

noise or texture can be removed so that the features at that scale can be extracted. If

the smoothing had to be linear, then the only suitable candidate was convolution with

a Gaussian, which was equivalent to the solution of the heat equation [56]. However,

because the heat equation was isotropic, smoothing occured across the boundaries in

the image, resulting in blurring of the features that were to be detected. The solution

was to limit the smoothing across the edge boundaries, but this required a non-linear

smoothing function. One such function was the anisotropic diffusion by Perona and

Malik [83]. Their equation was equivalent to the heat equation when the magnitude of

the gradient was small, and the inverse heat equation when the magnitude of the gradi-

ent was large. The Perona and Malik equation was an improvement because smoothing

was retained inside the boundaries, but it had several practical and theoretical diffi-

culties that made it unsuitable for the low level analysis of x-ray images.

A non-linear partial differential equation called the mean curvature motion (MCM)

was examined instead, and shown to diffuse only in the direction orthogonal to the

gradient. A special case of this equation, called the affine and morphological scale

space (AMSS) was chosen because it too only diffused in the direction orthogonal to the

gradient, and was fully affine invariant, thereby satisfying all invariance requirements.

A discrete numerical method to calculate the AMSS was implemented. Regardless

of which smoothing method was chosen, selection of the most appropriate scale for

analysis was still a significant and difficult problem. This limitation was tackled by

examining the standard deviation of a sample of regions within the six development

images, at a range of scales, to determine the effect of the smoothing. From this

analysis two global scales were chosen for the various analyses. Testing of the AMSS

algorithm on the development images showed that the edges it detected were much

clearer than those created by the Canny edge detection algorithm.

After the low level analysis was performed, and a good representation of the impor-
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tant edges was obtained, it was necessary to interpret them. Rather than attempting to

use traditional segmentation and extraction methods such as clustering or global seg-

mentation algorithms—which can produce poor results on x-ray images—the long-bone

shaft was instead approximated by a set of parameters. That is, only the information

about the location and orientation of the bone was determined. This approximation

was possible because long-bone diaphyses are generally straight, despite a large degree

of natural variation in bone shape. To extract this global information from the image,

the Hough Transform was utilised to convert spatially extended patterns into spatially

compact features within the space of possible parameter values. As a result, the prob-

lem was altered from a difficult global feature analysis, into a more simple local peak

detection. The standard Hough Transform was then modified slightly to reduce the

likelihood of false accumulator peaks being created.

Once the transform had been performed, the detection of the appropriate peaks

within the accumulator was still a significant problem that needed to be solved. Various

peak detection algorithms already existed, but all of them assumed that the input image

was relatively simple and that only one peak needed to be detected. As a result, they

were not appropriate. It was shown by Van Veen and Groen [106] that the amount of

peak spread in an ideal image can be quantified. This meant that a window of that

size could be used to detect the peaks of interest, using the specially designed ranked

sums method. The key feature of this new method was that due to the amount of peak

spreading in a real x-ray image, the importance of a particular region should be based

on the sum of the accumulator cells within that region, rather than the maximum

value that it contained. Testing revealed that this method produced excellent results,

with almost 90% of all peaks in the test set accurately detected. Manual intervention

was used to correct the remaining peaks. In the future, a possible improvement to the

algorithm could be to automatically increase the number of peaks to be detected from

e = 4 to e = 6 in the case of radius and ulna fractures, since in many cases the radius

was better approximated with four lines rather than two.

A unique long-bone shaft endpoint detection algorithm was also created in Chapter

5, to determine the extent of the parameterised lines. This algorithm was based on the
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magnitude of the gradient, which was modified to remove pixels where the direction of

the gradient did not match the line angle parameters. A thick strip was extracted from

underneath each line, and the sum of the pixels across the strip was calculated. Finally,

a dual stage thresholding technique was used to identify the line endpoints within the

strip. At this stage, the long-bone shaft should be accurately represented by a series

of straight lines, whose parameters and endpoints were known. In the test image set,

the line endpoints were identified with an accuracy of almost 98%, making this the

most accurate part of the complete long-bone segmentation and fracture detection

algorithm in this thesis. Analysis of the results also indicated that the method was

more likely to perform well with images containing subtle fractures where there were no

gross abnormalities, than in images where there were obvious, displaced fractures that

confuse the long-bone shaft parameter approximation algorithm. This was significant

because it is images containing subtle fractures that are more likely to require the

assistance of a CAD system to improve the accuracy of the fracture detection.

After the long-bone shaft parameters were accurately identified, it was necessary

to complete the segmentation to isolate the diaphysis. In Chapter 6 this was initially

performed using an implementation of the AO segmentation, which involved locating

the appropriate landmarks on and around the joints. The first segmentation stage

involved locating all the bone centre-lines using the shaft approximation parameters,

before determining which of the centre-line(s) should be retained. To determine all

bone centre-lines, it was necessary to correctly choose pairs of shaft parameters that

corresponded to the bone edges on each side of the desired centre-line, which was then

located by averaging the angle and distance parameters. The difficult part of this stage

was therefore to correctly determine how the parameters should be paired. Pairing by

ranking the parameter pairs based on either ρ or θ was shown to work on two of the

development images, but was unlikely to do so in more complicated cases. Instead,

the lines were paired in the same way that a human would be likely to pair them in

the absence of any image data. That is, based on how close the lines and the line

endpoints were located to each other. To do this, a table of all the possible pairings

was created, and the sum of the distances between each of the line endpoints in all the
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pairs was recorded. A second criterion consisting of the absolute distance between the

ρ values of each line within the pair was also recorded. The sum of these two values

was calculated and the combination of pairs with the smallest sum was chosen. For

the image test set, 93% of the centre-lines were correctly detected using this method.

From the complete set of centre-lines, the required centre-lines were selected based on

the Hough inter-peak distances.

The next stage of the AO segmentation method involved locating the extreme artic-

ular surface and calculating the epiphyseal width. Both of these tasks were performed

using projections obtained from the modified Hough Transform. In both cases, cor-

rectly interpreting the projections was a non-trivial problem that could even be very

difficult to perform manually. A set of criteria were chosen for both tasks, and were

shown to be only moderately successful in locating the required features in the six

development images. However, this was not the case for the images in the test set.

Not only was the AO segmentation method not suitable for application to many of the

test set images, but it also did a very poor job of segmenting those that were appro-

priate. A significant portion of this poor performance was due to the articular surface

identification step, with no single or multiple criteria able to accurately determine its

location. Due in part to the poor results it produced, and also because it could not be

applied to mediolateral images or images that did not completely contain the articular

surface and epiphyses, the AO segmentation method was abandoned.

The AO segmentation algorithm was replaced with one that used the long-bone

shaft approximation lines to mark the diaphysis end points. This was possible be-

cause the line endpoints correspond to the locations where the bone curved away from

the approximation lines, and these points were by definition the diametaphyses. Not

only could this algorithm be applied to all the images in the test set—unlike the AO

method—but it also correctly segmented 83% of the images in the test set. The only

significant problem with this method was that, in a small number of cases, the pres-

ence of a fracture caused the bone centre-line to end prematurely, resulting in the

segmentation occurring in the incorrect location. Fortunately this only occurred with

very obvious fractures, which are less likely to be the type requiring the use of a CAD
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system. In the case of subtle fractures, the segmentation was 100% accurate. Despite

not using the AO segmentation method, the first of the two major aims of this thesis

outlined in Section 3.3.4 on page 51 was satisfied, with the algorithm able to discern

between the diaphyseal and epiphyseal segments.

Once the segmentation had been performed, a fracture detector could be applied.

In Chapter 7, the fracture detection algorithm was constructed to locate abnormal gra-

dients within the segmented image, using a tool called the gradient composite measure.

The GCM was used to remove all the normal parts of the image, such as the bone shaft,

leaving behind only the abnormal regions such as fractures. The GCM was a combi-

nation of the magnitude and direction of the gradient of the smoothed image that was

calculated using the product of the magnitude of the gradient and two scaling factors

called the importance rank and the distance rank. These two scaling factors measured

how well the direction of the gradient at a chosen pixel matched the angle parameter θ

of the long-bone shaft approximation lines, and how close that chosen pixel was to all

of the approximation lines, respectively. Thus, the regions corresponding to the bone

shaft received a very low importance rank because the angle of the gradient at those

points matched the angle parameter. The resulting GCM was characterised by regions

of high intensity where the fracture was located, and very low intensity everywhere else

in the image.

Two methods of presenting the fractures were examined. The first involved artifi-

cially colouring the image to show the magnitude of the GCM, but this had a number

of practical limitations including being very difficult to see. Instead, using the second

method, the regions were marked more clearly using a three step fracture identifica-

tion process. Part of this process involved a dual stage thresholding to retain filtered

GCM points of sufficient intensity and size. To determine the correct thresholds, a

sampling based sensitivity analysis was performed using a range of threshold values.

From this analysis, two new thresholds were chosen, and used to evaluate the final

fracture detection algorithm using the complete image test set. The first significant

result was that, while hard to measure objectively, subjectively the GCM did a very

good job of highlighting abnormalities. However, the ability of the fracture identifica-
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tion algorithm to mark those GCM regions as either fracture or non-fracture was not

quite so good. Although 83% of the fractures were detected, the false positive rate

was relatively high, with many images containing at least one normal region that was

identified as a fracture. Analysis of the causes of the false detections showed that most

were due to biological phenomena that the algorithm confused as being fractures, while

a smaller number were due to image artifacts or bones overlapping.

Although the algorithm did not detect all fractures within the test set, it did manage

to detect one fracture that was missed during the initial reading by the radiologist,

indicating that for some images the sensitivity of the algorithm is very high. This

effectively illustrated the most significant problem with the current implementation

of the fracture detection algorithm, which was that the two thresholds are probably

not appropriate for all images. The sensitivity analysis showed that it was possible

to select global thresholds that allowed five of the six images in the development set

to be correct, but no choices would allow all six images to be correct. Interestingly

this was almost the same proportion of images that were correct in the 44 image test

set. If it were possible to accurately adaptively select the two thresholds in some way,

then it is likely that the results would be greatly improved. The second problem with

this implementation was that the sensitivity with which fractures were detected was

related to the angle at which the fracture occured, due to the assumption that all

regions parallel to θi were likely to be normal. As a result, fractures parallel to the

bone centre-line were not necessarily as well detected as those parallel to it. Although

the accuracy of the fracture detection scheme was not as high as desired, and not all

types of fractures could be equally well identified, the second of the two major aims

outlined in Section 3.3.4 was still achieved.

The final body of work within this thesis examined the amount of time required to

calculate the AMSS and Hough Transform. Both of these algorithms were originally

relatively slow to compute, due to the very large number of iterations that had to be

performed. Some methods by which the AMSS calculation time could be reduced were

suggested, but the only practical method was to implement a parallel algorithm that

could run on multiple CPUs simultaneously. Unfortunately, the input for each AMSS
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iteration was the output of the previous iteration, so for parallelisation it was necessary

to split the image into a number of stripes or tiles. In addition, the image could not be

split and sent to multiple CPUs and then simply recombined, as the smoothing across

the boundary resulted in an incorrect output. Instead, it was necessary to perform

some boundary extension at the points at which the image was split, and the amount

of extension required was determined by the final scale of smoothing. Several methods

by which the image could be split and then smoothed were examined. Analysis of

the chosen method—the incremental iteration smoothing algorithm—showed that the

final scale of smoothing t2 = 20 was reached in around one third of the time taken by

the standard method. Similarly, the modified Hough Transform algorithm was also

parallelised, and was found to be over one hundred times faster than the standard

non-parallelised Hough Transform. Both of these methods allowed a diagnosis to be

made much more rapidly.

9.2 Key contributions

In sum, the key contributions of this thesis, listed in order of significance, are:

• The production of the first semi-automatic computer aided long-bone segmenta-

tion and fracture detection algorithms.

• Fracture detection using gradient analysis, including the design of the importance

rank, distance rank and gradient composite measure.

• Implementation of the AO segmentation method, and the design of a superior

segmentation method based on the analysis of the bone curvature.

• The idea of approximating the long-bones using a set of straight lines, incor-

porating creation of the ranked sums method for peak detection in the Hough

accumulator, and the long-bone shaft endpoint detector.

• Centre-line detection by minimising the distance between the line endpoints.

• The identification of the AMSS as the only appropriate method of smoothing

x-ray images.
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Figure 9.1: Scale-space analyses such as the AMSS can also be used to detect fractures based
on the curvature of features within the image. This example demonstrates the results of this
type of analysis on the same image used throughout Chapter 7, and shows that the intensity

is higher in the region surrounding the fracture.

• The method of analysing the standard deviation over a range of scales to deter-

mine the appropriate scales for AMSS smoothing.

• Parallelisation of the AMSS algorithm.

9.3 Future directions

Chapter 4 introduced the theory and implementation of the affine morphological scale

space, but did not provide any other uses apart from image smoothing. Although im-

portant for long-bone shaft parameter approximation and fracture detection, smoothing

is not the only use for the scale-space techniques described. The scale-space curvature

function described in Equation 4.18—where curv (I) = κ is the curvature—can be used

as a shape descriptor that is invariant to translation, scale and rotation [64]. This is

possible because the curvature describes the rate of change in the direction of a curve,

per unit length. As a result, the most curved sections of a line will have the greatest

curvature. As suggested in Section 4.3.3, each point on a curve moves in a direction

perpendicular to the boundary with a speed given by its curvature, so that more curved

sections become flattened more quickly. In images containing fractures, the features of

the fracture are often points of very high curvature, which therefore become smoothed

quickly. In theory, a curvature analysis could be performed to detect these points and

use them in the fracture detection decision process. An example of the type of image

that could be used is shown in Figure 9.1.

In this example, the curvature is obtained by simply calculating the absolute dif-
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ference between the images at two different scales, in this case t1 = 5 and t2 = 20, the

scales chosen in Section 4.6.1. This effectively determines which regions have changed

the most over the scale evolution, and this in turn is proportional to the curvature of

those regions. Other methods of utilising the curvature were also investigated. In many

respects the features that are detected are very similar to those in the GCM image in

Figure 7.6b. However, the advantage of the curvature analysis is that the GCM is no

longer required, and fractures are more likely to be detected well regardless of their

orientation. The problem with the curvature method is that it is highly dependent on

the scales chosen, and many fractures are poorly highlighted at the scales demonstrated

here. Again, this reverts to the difficult problem of automatic scale selection identified

in Section 4.6. Reliable results were not obtained with this method, in part because

an appropriate set of global scales could not be determined. In addition, some false

detections (similar to those described in Table 7.3) still occured, because the curvature

analysis detected similar features to the GCM. Further investigation into this area is

required to determine how the curvature information can be better utilised for fracture

detection. Although likely to be difficult, a future improvement could be to adaptively

choose the scales on a per image basis, using an automated scale selection method. As

a result, the scales would be more likely to be appropriate for the features within the

image.

As demonstrated in Chapter 7, the detection of fractures was performed in two sep-

arate parts. The first involved the use of the GCM (or in future, some type of curvature

analysis) to process the image to extract a set of features, while the second involved

examining those features to make a decision about whether or not they constitute a

fracture. The decision making process utilised in Section 7.3.2 was not particularly

advanced, and essentially just selected regions based on their size and intensity, with

the use of the thresholds T3 and T4. Although this method performed well, it is likely

that the fracture detection accuracy could be improved if a more advanced decision

process was used. For example, an artificial neural network (ANN) that was trained

using the features extracted from the development images, may produce good results

on the test set. Alternatively, a Bayesian classifier or support vector machine approach
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could be used. Again, further development in this area is required to determine not

only what type of classifier should be used and how it should be trained, but also how

the features in the image should be applied.

In Section 2.3 is was suggested that in order to effectively treat a fracture it is first

necessary to determine if, where and how the bone is broken. The fracture detection

system described in this thesis performs the first and second of these two tasks, to de-

termine if and where the bone is broken, but it does not examine how the the bone is

broken. Section 2.3 also stated that this third task is normally achieved by performing

fracture classification, to determine the nature and severity of the fracture. One of the

problems with the described classification schemes is that they can be subjective, with

some studies showing that there is little inter-observer agreement on the group and

even less agreement on the subgroup of some AO fractures [57]. A method of auto-

matically performing the fracture classification—after the fracture detection has been

performed—could improve the reliability and accuracy of a classification. Although

beyond the scope of this thesis, it is possible that computer aided fracture classifica-

tion could be performed by analysing the shape of the features extracted using either

the GCM or the AMSS curvature, and assigning the resulting shape to the appropriate

AO group and subgroup.

As stated in the summary at the start of this chapter, ideally both the image

development and test sets would have been larger, but it was not practical to continue

image collection for a longer period of time. However, the investigations made using

these data sets highlighted the need for more openly accessible high quality image data

sets that are large enough for training, testing and validation of fracture detection

algorithms. This will become even more important when ANNs are utilised, due to

the quantity of training data that is likely to be required. A larger image set will also

certainly allow more accurate development before testing. Additionally, it is possible

that the small size of the development set—consisting of only six images—contributed

to the results obtained. In future studies it would be better to use the entire image set

for algorithm development, thereby increasing the exposure to the number and types

of fractures, possibly creating a more robust method. To test the algorithms, a cross
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validation method could then be used to estimate their performance on unseen data.

A significant limitation of this thesis was that the criteria for success were weak.

Unfortunately, the final analysis of the fracture detector described in Chapter 7 relied

partly on the subjective comments of a single radiologist. For future studies, in addition

to a larger image set, it would also be advantageous to have a larger group of radiologists

interpret both the original x-ray images, and the results produced by the fracture

detection algorithm. An experiment could be constructed, in which images of normal

bones and bones with very subtle fractures were shown to a group of three or four

radiologists, who would be asked to identify all fractures within the images. The

false positive, false negative and true detection rates of the radiologists could then be

compared to those of the algorithm. This would also allow the inter-rater reliability to

be measured, and a better opinion of the algorithm to be gauged. This will become

even more important as the fracture detection accuracy improves and approaches that

of a trained human observer, and direct comparisons between the CAD system and

radiologist are made. However, in the context of this study, it is unlikely that having

a larger number of radiologists would have had any impact on the results obtained.

Finally, rather than reporting only the number of true and false positive and neg-

ative results obtained by the algorithms, in the future it may be better to perform a

receiver operating characteristic (ROC) analysis to determine how the chosen thresh-

olds affect the algorithm sensitivity and specificity. It was suggested in Section 7.4

that adjusting the sensitivity of the algorithm on a per image basis, using the two

thresholds T3 and T4, resulted in a better detection. Construction of a ROC curve—

the true positive rate against the false positive rate—would allow the tradeoff between

the sensitivity and specificity, as well as the accuracy to be quantified. However, for

a ROC analysis to be meaningful, it is necessary to know what constitutes normal

and abnormal results. In this thesis, the gold standard—that is the radiologist’s di-

agnosis of either fractured or unfractured—was not necessarily completely accurate.

This is because only one expert was used to make the diagnosis, and extremely subtle

fractures—those that the algorithm was aimed at detecting—may have been (and in

one case certainly was) missed. Thus, performing a ROC analysis would have had very
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little effect on the outcome of this research.

Utilising the results presented in this thesis, including the suggestions for future

work, should allow the production of faster and more sensitive algorithms for the

detection of fractures in long-bones. However, the most important future goal should

be the extension of these methods from long-bone diaphyses to long-bone epiphyses

and then to other anatomical regions. The development of a CAD system that can

detect all types of fractures in all anatomical locations will be extremely valuable for

physicians and radiologists.

9.4 Conclusion

Prior to this thesis, the computer aided detection of midshaft long-bone fractures

had not previously been examined. This thesis presented a method by which semi-

automated long-bone shaft segmentation could be performed, along with fracture de-

tection within the segmented region. In the test set, 83% of the diaphysis segmenta-

tion boundaries were correctly identified, and subsequently 83% of the fractures within

those segmented regions were also detected correctly. Incorporating the methods and

results formulated and utilised in this thesis, along with the future research outlined

above, will further expand the capabilities of today’s CAD systems, and result in more

accurate diagnosis of fractures and a reduction of the fracture miss rate.
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