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Abstract

Medical imaging has advanced at a tremendous rate since x-rays were discovered in
1895. Today, x-ray machines produce extremely high-quality images for radiologists
to interpret. However, the methods of interpretation have only recently begun to be
augmented by advances in computer technology. Computer aided diagnosis (CAD)
systems that guide healthcare professionals to making the correct diagnosis are slowly
becoming more prevalent throughout the medical field.

Bone fractures are a relatively common occurrence. In most developed countries the
number of fractures associated with age-related bone loss is increasing rapidly. Regard-
less of the treating physician’s level of experience, accurate detection and evaluation of
musculoskeletal trauma is often problematic. Each year, the presence of many fractures
is missed during x-ray diagnosis. For a trauma patient, a mis-diagnosis can lead to
ineffective patient management, increased dissatisfaction, and expensive litigation. As
a result, detection of long-bone fractures is an important orthopaedic and radiologic
problem, and it is proposed that a novel CAD system could help lower the miss rate.
This thesis examines the development of such a system, for the detection of long-bone
fractures.

A number of image processing software algorithms useful for automating the frac-
ture detection process have been created. The first algorithm is a non-linear scale-space
smoothing technique that allows edge information to be extracted from the x-ray image.
The degree of smoothing is controlled by the scale parameter, and allows the amount
of image detail that should be retained to be adjusted for each stage of the analysis.
The result is demonstrated to be superior to the Canny edge detection algorithm. The
second utilises the edge information to determine a set of parameters that approximate
the shaft of the long-bone. This is achieved using a modified Hough Transform, and
specially designed peak and line endpoint detectors.

The third stage uses the shaft approximation data to locate the bone centre-lines
and then perform diaphysis segmentation to separate the diaphysis from the epiphyses.
Two segmentation algorithms are presented and one is shown to not only produce better

results, but also be suitable for application to all long-bone images. The final stage
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applies a gradient based fracture detection algorithm to the segmented regions. This
algorithm utilises a tool called the gradient composite measure to identify abnormal
regions, including fractures, within the image. These regions are then identified and
highlighted if they are deemed to be part of a fracture.

A database of fracture images from trauma patients was collected from the emer-
gency department at the Flinders Medical Centre. From this complete set of images,
a development set and test set were created. Experiments on the test set show that
diaphysis segmentation and fracture detection are both performed with an accuracy
of 83%. Therefore these tools can consistently identify the boundaries between the
bone segments, and then accurately highlight midshaft long-bone fractures within the
marked diaphysis.

Two of the algorithms—the non-linear smoothing and Hough Transform—are rel-
atively slow to compute. Methods of decreasing the diagnosis time were investigated,
and a set of parallelised algorithms were designed. These algorithms significantly re-
duced the total calculation time, making use of the algorithm much more feasible.

The thesis concludes with an outline of future research and proposed techniques
that—along with the methods and results presented—will improve CAD systems for
fracture detection, resulting in more accurate diagnosis of fractures, and a reduction

of the fracture miss rate.
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