Appendix A

List of variables

$x \quad$ The horizontal image coordinate
$y \quad$ The vertical image coordinate
$\triangle x \quad$ Spatial increment in the x direction
$\Delta y \quad$ Spatial increment in the y direction
$I(x, y) \quad$ The original two-dimensional image
$t \quad$ The scale of smoothing
$\Delta t \quad$ The scale step
$I(x, y, t) \quad$ The image smoothed to scale t
$\nabla I \quad$ The spatial gradient of I
$|\nabla I(x, y, t)|$ The magnitude of the spatial gradient of I at the point (x, y) and scale t
$\phi(x, y, t) \quad$ The direction of the spatial gradient of I at the point (x, y) and scale t
$\triangle I \quad$ The Laplacian of I
$G(x, y, t) \quad$ Gaussian kernel of variance t
div \quad The divergence operator
$\mathcal{C}(x, y, t) \quad$ The diffusion (conduction) coefficient
ξ
$I_{\xi} \quad$ Directional derivative in the direction of ξ
$I_{\eta} \quad$ Directional derivative in the direction of η
$I_{\xi \xi} \quad$ Diffusion term in the direction of ξ
$I_{\eta \eta} \quad$ Diffusion term in the direction of η
$K \quad$ Perona-Malik constant
curv The curvature function
$\kappa \quad$ The curvature of a curve
$F \quad$ Curvature motion function
$i \quad x$ coordinate of a point in the image
$j \quad y$ coordinate of a point in the image
$n \quad$ Number of iterations of the smoothing equation required to reach scale t
$\chi \quad$ Radius of a disk that disappears after n iterations
$T \quad$ Threshold for image segmentation
$H \quad$ Hough accumulator array
$H_{N} \quad$ Normalised Hough accumulator array
$m \quad$ Line slope
c
The non-negative monotonically decreasing function used to choose the conduction coefficient $\mathcal{C}(x, y, t)$

Line y intercept
$M \quad$ Number of pixels to include in the line post processing technique for line finding
$E_{i}(x, y, t, \theta)$ The gradient magnitude $|\nabla I(x, y, t)|$ modified to match only where $\phi(x, y, t)$ is close to θ
$T_{1} \quad$ Magnitude threshold for line endpoint detection
$T_{2} \quad$ Length threshold for line endpoint detection
$\rho_{c} \quad$ The ρ value corresponding to the bone centre-line
$\Delta \rho_{1} \quad$ The inter-peak distances between peaks 1 and 2
$\Delta \rho_{2} \quad$ The inter-peak distances between peaks 3 and 4
$\omega_{\text {shaft }} \quad$ Long-bone shaft width
$\omega_{\text {epiphysis }}$ Long-bone epiphyseal width
$C(x, y, t, \rho, \theta, p)$ Gradient composite measure
$R(x, y, t, \theta, p)$ Importance rank
$D(x, y, \rho, \theta, p)$ Distance rank
$\alpha \quad$ The angle of interest in the importance rank calculation
$p \quad$ The power used in the importance rank and distance rank calculations
$T_{3} \quad$ Magnitude threshold for fracture detection
$T_{4} \quad$ Cluster sum threshold for fracture detection
$L_{x} \quad$ Number of horizontal sub-image tiles to create when dividing the image
$L_{y} \quad$ Number of vertical sub-image tiles to create when dividing the image
$B_{w} \quad$ Boundary stripe width
$C_{w} \quad$ Centre stripe width
$B_{h} \quad$ Boundary stripe height
$C_{h} \quad$ Boundary stripe height
$P \quad$ The number of processors available in the multi-processor system

