EFFECT OF ANTIOXIDANT-DIETARY FIBER MIXTURES ON CANCER GROWTH IN COLORECTAL CANCER-INDUCED RATS

By

Samsu Udayana Nurdin

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

THE SCHOOL OF BIOLOGICAL SCIENCES

FLINDERS UNIVERSITY

MARCH 2013

TABLE OF CONTENTS

TABLE OF FIGURES	vi
TABLE OF TABLES	viii
ABBREVIATIONS USED IN THIS THESIS	xv
ABSTRACT	xvii
DECLARATION	xx
PREFACE	xxi
ACKNOWLEDGEMENT	xxii
PUBLSHED WORK	xxiv
1. GENERAL INTRODUCTION	1
1.1. Biology of Colorectal cancer	3
1.2. Rodent models for CRC prevention	8
1.3. Effect of Diet on Colorectal Cancer Risk	10
1.4. Dietary fiber and colorectal cancer	13
1.4.1. Inulin	14
1.4.2. Pectin	23
1.4.3. Cellulose	26
1.5. Antioxidants and Colorectal cancer development	28
1.5.1. Ascorbic acid	29
1.5.2. Vitamin E	30
1.5.3. Carotenoids	
1.5.4. Polyphenols	31

1.6.	Gre	een cincau (<i>Premna oblongifolia</i> Merr.)	.33
1.7.	Stu	idy Hypothesis	.35
1.8.	Ain	n of my PhD	.35
		MODULATION OF PROLIFERATION, DIFFERENTIATION A	
2.1.	Abs	stract	.38
2.2.	Intr	oduction	.39
2.3.	Ма	terial and Methods	.41
2.3	3.1.	Cell culture	.41
2.3	3.2.	SCFA stock solutions in pH adjusted media	.41
2.3	3.3.	Proliferation assay	.43
2.3	3.4.	Alkaline phosphatase (AP) activity assay	.44
2.3	3.5.	Caspase 3-7 and lactate dehydrogenase (LDH) assay	.45
2.3	3.6.	Statistical analysis	.45
2.4.	Re	sults	.46
2.4	4.1.	Effect of SCFA and pH on Caco-2 cell proliferation	.46
2.4	4.2.	Effect of SCFA and pH on Caco-2 cell differentiation	.50
2.4	4.3.	Effect of SCFA and pH on Caspase 3/7 activity	.52
2.4	4.4.	Role of apoptosis mechanism in cell death induced by SCFA.	.55
2.5.	Dis	cussion	.58
2.6.	Co	nclusion	.62

DIGESTIBL ACID PROI	NING THE EFFECTS OF COMBINATIONS OF E CARBOHYDRATE SOURCES ON SHORT CHAIN DUCTION USING AN <i>in vitro</i> FECAL FERMENTATION S 0-2 CELLS AS A MODEL OF THE HUMAN COLON	FATTY YSTEM
3.1. Abs	stract	64
3.2. Intr	oduction	65
3.3. Ma	terial and Methods	68
3.3.1.	In vitro fermentation of dietary fiber	68
3.3.2.	Green Cincau Leave materials	69
3.3.3.	Cell Culture	70
3.3.4.	SCFA analysis	70
3.3.5.	Proliferation assay	71
3.3.6.	Alkaline Phosphatase (AP) activity assay	72
3.3.7.	Caspase 3-7 and LDH Assay	72
3.3.8.	Statistical analysis	73
3.4. Res	sults	73
3.4.1.	SCFA content of dietary fiber fermentation supernatant	73
3.4.2.	Effect of dietary fiber FS on Caco-2 cell proliferation	76
3.4.3.	Effect of dietary fiber FS on cell differentiation	77
3.4.4.	Effect of dietary fiber FS on caspase 3/7 activity	79
3.4.5.	Mechanism of cell death induced by FS containing SCFA	80
3.5. Dis	cussion	83
3.6. Cor	nclusion	90

COLORECT	CTIVE EFFECTS OF PHENOLIC ANTIOXIDANTS TAL CANCER-INDUCED RATS ARE DEPENDENT IBER SOURCE IN THE DIET	
4.1. Abst	tract	.91
4.2. Intro	oduction	.92
4.3. Mate	erial and Methods	.96
4.3.1.	Green Cincau Leave materials	.96
4.3.2.	Animals and diet	.96
4.3.3.	Determination of SCFA composition and pH of fecal and ce	ecal
samples	5	.99
4.3.4.	Measuring ACF number and multiplicity	100
4.3.5.	Measuring proliferative activities	100
4.3.6.	Measuring lipid peroxidation in rat liver	101
4.3.7.	Measuring fecal bacterial community	101
4.3.8.	Statistical methods	103
4.4. Res	ults	105
4.4.1.	Body weight and daily intake	105
4.4.2.	SCFA Concentration and pH	107
4.4.3.	The number of aberrant crypt foci (ACF)	108
4.4.4.	Cell proliferation in distal colon	111
4.4.5.	Lipid peroxidation product	113
4.4.6.	Microbial profile of the colon digesta	113

4.5.	Discussion117
4.6.	Conclusion123
5. CC	NCLUSIONS AND FUTURE DIRECTIONS
6. AP	PENDIX
6.1.	Analysis of Varian (Anova) and LSD Tables134
6.2.	Dipeptidyl peptidase IV (DPIV) activity213
6.3.	The effects of Dietary fiber sources and antioxidant on average
weigl	nts of rats during 13-week experiment215
6.4.	Composition of chemicals used in dietary fiber fermentation216
7. RE	FERENCES

TABLE OF FIGURES

Figure 1-1. A genetic model for colorectal tumorigenesis (from Fearon and
Vogelstein, 1990)5
Figure 1-2. New model of adenoma-carcinoma(from Harrison and Benziger,
2011)
Figure 1-3. Chemical structure of inulin-type fructans15
Figure 1-4. Chemical structure of pectin (Khotimchenko et al., 2007)24
Figure 1-5. Chemical structure of cellulose (Colebrook 2012)27
Figure 1-6. Green cincau plant (Premna oblongifolia Merr.)
Figure 2-1. Effect of SCFA on Caco-2 cell proliferation in media (A) pH 6.0,
(B) pH 6.5, (C) pH 7.0 and (D) pH 7.548
Figure 2-2. Effects of SCFA on alkaline phosphatase (AP) activity of Caco-2
cells cultured at pH 6.0 (A) and pH 7.5 (B) media50
Figure 2-3. Effects of SCFA on caspase 3/7 activity of Caco-2 cells cultured
in pH 6.0 (A) and pH 7.5 (B) media53
Figure 2-4. Effects of butyrate on the caspase 3/7 (A), LDH (B) activity and
Caco 2 cell proliferation (C) with or without caspase inhibitor56
Figure 3-1. Effect of dietary fiber on the concentration of SCFA total (A),
acetate (B), propionate (C), and butyrate of fermentation supernatants74
Figure 3-2. Effect of dietary fiber FS on the proliferation of Caco-2 cells76
Figure 3-3. Effect of dietary fiber FS on AP enzyme levels78
Figure 3-4. Effects of dietary fiber FS on caspase 3/7 activity79
Figure 3-5. Effect of dietary fiber FS on caspase 3/7 activity (A), LDH release
(B) and Caco 2 cell proliferation (C) with or without caspase inhibitor81

Figure 4-1. The effects of dietary fiber sources and antioxidant on PCNA
labelling index (dark bar) and the number of PCNA positive cells (light bar) in
the mucosa of distal colon of AOM-treated rats
Figure 4-2. The effects of dietary fiber sources and antioxidant on MDA levels
in the livers of AOM-treated rats113
Figure 4-3. UPGMA dendrogram of 16S rDNA based DGGE profiles of
digesta bacterial communities. Scale refers to similarity index114
Figure 4-4. DGGE analysis of 16S rRNA gene fragment of total bacterial
population from digesta of AOM-induced rats fed different dietary fiber and/or
EGCG
Figure 6-1. Effect of SCFA on the Dipheptidyl peptidase IV (DP IV) activity in
(A) pH 6.0 and (B) pH 7.5 media213
Figure 6-2.Effect of dietary fiber FS on the Dipheptidyl peptidase IV (DP IV)
activity214
Figure 6-3. The effects of Dietary fiber sources and antioxidant on average
weights of rats during 13-week experiment215

TABLE OF TABLES

Table 2-1. Final concentration of SCFA in media43
Table 2-2. P* values of one way ANOVA test for effect of SCFA and pH on
cell proliferation, differentiation and apoptosis47
Table 3-1. Dietary fiber/dietary fiber mixture and their ratio 68
Table 3-2. Composition of dried green cincau extract
Table 4-1. Composition of experimental diets (per 1 Kg)
Table 4-2. The effects of dietary fiber sources and antioxidant on body weight
gain, liver weight, water and food intake of azoxymethane (AOM)-induced
rats106
Table 4-3. The effects of dietary fiber sources and antioxidants on SCFA
concentration in the digesta and feces (µmol/g)a of AOM-induced rats 109
Table 4-4. The effects of dietary fiber sources and antioxidant on AOM-
induced ACF110
Table 4-5. Closest relatives of band sequences excised from the acrylamide
gel in Fig. 4.4. Samples are from digesta of AOM-induced rats fed different
dietary fiber and/or EGCG116
Table 6-1. Anova of Effect of SCFA and pH on Caco-2 cell proliferation134
Table 6-2. LSD of Effect of pH on Caco-2 cell proliferation 136
Table 6-3. LSD of Effect of SCFA on Caco-2 cell proliferation
Table 6-4. Anova of Effect of SCFA and pH on Caco-2 cell differentiation
(Alkaline phosphatise activity)139

Table 6-5. LSD of Effect of SCFA on Caco-2 cell differentiation (Alkaline
phosphatise activity)140
Table 6-6. Anova of Effect of SCFA and pH on Caspase 3/7 activity141
Table 6-7. LSD of Effect of SCFA on Caspase 3/7 activity142
Table 6-8. Anova of Effect of SCFA and Caspase inhibitor on Caspase 3/7
activity144
Table 6-9. LSD of Effect of SCFA and Caspase inhibitor on Caspase 3/7
activity145
Table 6-10. Anova of Effect of SCFA and Caspase inhibitor on LDH release
Table 6-11. LSD of Effect of SCFA and Caspase inhibitor on LDH release 147
Table 6-12. Anova of Effect of SCFA and Caspase inhibitor on cell
proliferation (% growth)148
Table 6-13. LSD of Effect of SCFA and Caspase inhibitor on cell proliferation
(% growth)
Table 6-14. Anova effect of dietary fiber on Acetate content of fermentation
supernatant150
Table 6-15. Anova effect of dietary fiber on Acetate content of fermentation
supernatant151
Table 6-16. Anova of dietary fiber on Propionate content of fermentation
supernatant153
Table 6-17. LSD of dietary fiber on Propionate content of fermentation
supernatant154
Table 6-18. Anova of dietary fiber on Butyrate content of fermentation
supernatant156

Table 6-19. LSD of dietary fiber on Butyrate content of fermentation
supernatant157
Table 6-20. Anova of dietary fiber on SCFA total of fermentation supernatant
Table 6-21. Anova of dietary fiber on SCFA total of fermentation supernatant
Table 6-22. Anova of Effect of FS on Caco-2 cell proliferation (% growth).162
Table 6-23. Anova of Effect of FS on Caco-2 cell proliferation (% growth).163
Table 6-24. Anova of Effect of FS on Caco-2 cell differentiation (Alkaline
phosphatise activity)164
Table 6-25. LSD of Effect of FS on Caco-2 cell differentiation (Alkaline
phosphatise activity)165
Table 6-26. Anova of Effect of FS on Caco-2 cell apoptosis (Caspase 3/7
activity)166
Table 6-27. LSD of Effect of FS on Caco-2 cell apoptosis (Caspase 3/7
activity)167
Table 6-28. Anova of Effect of FS and caspase inhibitor on Caco-2 cell
apoptosis (Caspase 3/7 activity)169
Table 6-29. Anova of Effect of FS and caspase inhibitor on Caco-2 cell
apoptosis (Caspase 3/7 activity)170
Table 6-30. Anova of Effect of FS and caspase inhibitor on Caco-2 cell
proliferation (% growth)172
Table 6-31. LSD of Effect of FS and caspase inhibitor on Caco-2 cell
proliferation (% growth)173

Table 6-32. Anova of Effect of dietary fiber sources and antioxidant on body
weight gain175
Table 6-33. Anova of Effect of dietary fiber sources and antioxidant on body
weight gain176
Table 6-34. Anova of Effect of dietary fiber sources and antioxidant on liver
weight
Table 6-35. Anova of Effect of dietary fiber sources and antioxidant on
acetate concentration of AOM-induced rats digesta
Table 6-36. LSD of Effect of dietary fiber sources and antioxidant on acetate
concentration of AOM-induced rats digesta179
Table 6-37. Anova of Effect of dietary fiber sources and antioxidant on
propionate concentration of AOM-induced rats digesta
Table 6-38. LSD of Effect of dietary fiber sources and antioxidant on
propionate concentration of AOM-induced rats digesta
Table 6-39. Anova of Effect of dietary fiber sources and antioxidant on
butyrate concentration of AOM-induced rats digesta
Table 6-40. LSD of Effect of dietary fiber sources and antioxidant on butyrate
concentration of AOM-induced rats digesta183
Table 6-41. Anova of Effect of dietary fiber sources and antioxidant on SCFA
total of AOM-induced rats digesta184
Table 6-43. LSD of effect of dietary fiber sources and antioxidant on SCFA
total concentration of AOM-induced rats digesta
Table 6-44. Anova of effect of dietary fiber sources and antioxidant on pH
digesta of AOM-induced rats

Table 6-45. LSD of effect of dietary fiber sources and antioxidant on pH
digesta of AOM-induced rats187
Table 6-46. Anova of effect of dietary fiber sources and antioxidant on
acetate concentration of feces of AOM-induced rats
Table 6-47. LSD of effect of dietary fiber sources and antioxidant on acetate
concentration of feces of AOM-induced rats
Table 6-48. Anova of effect of dietary fiber sources and antioxidant on
propionate concentration of feces of AOM-induced rats
Table 6-49. LSD of effect of dietary fiber sources and antioxidant on
propionate concentration of feces of AOM-induced rats
Table 6-50. Anova of effect of dietary fiber sources and antioxidant on
butyrate concentration of feces of AOM-induced rats
Table 6-51. LSD of effect of dietary fiber sources and antioxidant on butyrate
concentration of feces of AOM-induced rats193
Table 6-52. Anova of effect of dietary fiber sources and antioxidant on SCFA
total of feces of AOM-induced rats194
Table 6-53. LSD of effect of dietary fiber sources and antioxidant on SCFA
total of feces of AOM-induced rats195
Table 6-54. Anova of effect of dietary fiber sources and antioxidant on total
ACF in the colon of AOM-induced rats196
Table 6-55. LSD of effect of dietary fiber sources and antioxidant on total
ACF in the colon of AOM-induced rats197
Table 6-56. Anova of effect of dietary fiber sources and antioxidant on single
crypt per focus in the colon of AOM-induced rats

Table 6-57. Anova of effect of dietary fiber sources and antioxidant on two Table 6-58. LSD of effect of dietary fiber sources and antioxidant on two Table 6-59. Anova of effect of dietary fiber sources and antioxidant on three Table 6-60. Anova of effect of dietary fiber sources and antioxidant on the crypts less than four crypts per focus in the colon of AOM-induced rats202 Table 6-61. LSD of effect of dietary fiber sources and antioxidant on the crypts less than four crypts per focus in the colon of AOM-induced rats203 Table 6-62. Anova of effect of dietary fiber sources and antioxidant on the crypts more than four crypts per focus in the colon of AOM-induced rats...204 Table 6-63. Anova of effect of dietary fiber sources and antioxidant on the Table 6-64. Anova of effect of dietary fiber sources and antioxidant on the Table 6-65. Anova of effect of dietary fiber sources and antioxidant on the Table 6-66. LSD of effect of dietary fiber sources and antioxidant on the ACF Table 6-67. Anova of effect of dietary fiber sources and antioxidant on the PCNA labelling indexes in the mucosa of distal colon of AOM-tinduced rats.

Table 6-68. LSD of effect of dietary fiber sources and antioxidant on PCN
labelling indexes in the mucosa of distal colon of AOM-induced rats21
Table 6-69. Anova of effect of dietary fiber sources and antioxidant on the th
MDA concentration of rat liver of of AOM-induced rats21
Table 6-70. LSD of effect of dietary fiber sources and antioxidant on the th
MDA concentration of rat liver of of AOM-induced rats21
Table 6-71. Micromineral solution (per 1 L solution)21
Table 6-72. Buffer solution (per 1 L solution)21
Table 6-73. Macromineral Solution (per 1 L solution) 21
Table 6-74. Reducing solution (per 1 L solution)21

ABBREVIATIONS USED IN THIS THESIS

ACF AGRF AI	Aberrant Crypt Foci Australian Genome Research Facility Apoptotic Index
AOM	azoxymethane
AP	Alkaline phosphatase
APC	Adenomatous Polyposis Coli
ATCC	American Type Culture Collection
ATP	Adenosine triphosphate
BARF	B-type Raf kinase
BLAST C	Basic Local Alignment Search Tool Cellulose
CFU	Colony Forming Units
CIMP	CpG Island Methylator Phenotype
CIN	Chromosomal Instability Pathway
Cin	Cincau
CinL	Cincau Leave
COX-2	cyclooxygenase-2
CRC	Colorectal Cancer
CtBP1	C-terminal Binding Protein-1
DCC	Deleted in Colorectal Carcinoma
DE	Degree of Esterification
DF	Dietary fiber
DGGE DMEM	Denaturing gel gradient electrophoresis Dulbecco's Modified Eagle's Medium
DMH	dimethyhydrazine
DNA	Deoxyribonucleic acid
DP	degree of polymerization
DSS	Dextran Sulphate Sodium
EGCG	(-)-epigallocatechin-3-gallate
FAP	Familial Adenomatous Polyposis
FB	Faecal Blank
FOS	fructose oligosaccharide
FS	fermentation supernatant
HCA	Heterocyclic Aromatic Amines
HDAC	Histone deacetylase Inulin
I IAP	Intestinal Alkaline Phosphatase
IBD	Inflammatory Bowel Disease
iNOS	inducible nitric oxide synthases
LDH	Lactate dehydrogenase
LSD	Less significant difference
MDA	Malondialdehide
MDF	mucin-depleted foci
MSI	Microsatelite Instability
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

NAD NEEA	nicotinamide adenine dinucleotide non essential amino acid
NOx	Nitrogen oxide
NSAIDs	non steroidal anti-inflammatory drugs
Р	pectin
PARP	Poly(ADP-ribose) Polymerase
PC	Pectin-Cellulose
PCNA	proliferating cell nuclear antigen
PCR	polymerase chain reaction
PGE2	prostaglandin E (2)
PGE3	prostaglandin E (3)
ROS	Reactive Oxygen Species
RNA	Ribonucleic acid
RNS	Reactive Nitrogen Species
SCFA	short-chain fatty acids
SEM	Standard error of mean
SHIME	Simulator of the Human Intestinal Microbial Ecosystem bromide
UPGMA	Unweighted pair group with mathematical averages

ABSTRACT

Colorectal cancer (CRC) incidence is rising significantly in most Countries due to increasing prosperity. Epidemiological studies indicate that dietary fiber and antioxidants may protect against CRC. Dietary fiber is thought to suppress colorectal cancer growth via the production of short chain fatty acids (SCFA) in the colon, where specific compounds are produced via bacterial breakdown of the fiber. Colonic bacteria are also involved in antioxidant metabolism in the colon, and they can increase antioxidant bioavailability and activity. My research aimed to study the beneficial effect of different combinations of dietary fiber and antioxidant sources including dried green cincau extracts in the colon, these effects were examined in both *in vitro* and *in vivo* models of colon cancer. Green cincau (*Premna oblongifolia* Merr) is an Indonesia plant where the extract has high dietary fiber and antioxidant activity and was also tested in this thesis.

SCFA significantly inhibited proliferation while inducing differentiation of Caco-2 cells irrespective of the media pH. Caspase 3 and 7 (key mediators in the extrinsic and intrinsic apoptotic pathway) activities were affected by both pH and SCFA, but there was no interaction between them. Caco 2 cells were less proliferated in low media pH as this condition induced cell apoptosis. Butyrate induced cell death was observed through both caspase3/7-dependent and -independent pathways as indicated by increased caspase 3/7 activity.

Fermentation experiments using anaerobic batch cultures inoculated with human fecal slurries showed that soluble fiber (pectin and inulin)

resulted in significantly higher SCFA production than that observed with insoluble (cellulose) fiber. In Caco-2 cells, inhibition of cell growth was dependent on the amount of SCFA generated during fermentation in particular butyrate. However, the effect of fermentation supernatant (FS) on cell differentiation and apoptosis was not able to be explained by the butyrate content, as high butyrate in the FS did not always promote differentiation and the apoptotic process. Apoptotic, necrotic and autophagic pathways might all be involved in cell death in response to FS treatment. The ability of the supernatant to modulate parameters of cell growth, differentiation and apoptosis was dependent on butyrate concentration and, possibly, unidentified compounds.

Using the Azoxymethane (AOM)-induced rat model of CRC it was found that 0.1% epigallocatechin-3-gallate (EGCG) increased some individual SCFA concentrations (acetate and butyrate) in digesta when the dietary fiber source was cellulose (CE), and an opposite effect was observed when the dietary fiber source was pectin (PE). Pectin-EGCG combined induced cancer progression, characterized by an increase in total number of aberrant crypt foci (ACF), and also an increase in the proliferating cell nuclear antigen (PCNA) labelling index and PCNA positive cells. This effect was associated with increasing lipid peroxidation in the liver. The protective effect of antioxidant EGCG consumption against colon cancer development appears to be dependent on the type of the dietary fiber source in the diet and the mechanism particularly through the modification of antioxidant/prooxidant properties of the EGCG.

The beneficial effect of individual dietary fibers does not automatically synergize with the positive effects of potential antioxidants, and their combined effect will depend on how they interact with the colon microbiota of the individual. Natural mixtures of dietary fiber and antioxidant sources (as found in fruits, vegetables and plant extracts) may exhibit protective effect against CRC, and utilization of these sources should consider the processing method such as the drying process to protect their potency. In conclusion the work presented in this thesis suggests that the consumption of fresh dietary fiber antioxidants sources may pose the greatest protection against CRC.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree of diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Adelaide, 29 August 2012

Samsu Udayana Nurdin

PREFACE

This thesis is based on the three major research projects that I have conducted during my PhD. It has 7 chapters arranged chronologically including general introduction (Chapter 1), three journal articles (Chapter 2, 3 and 4), Conclusions and Future direction (Chapter 5), Appendix (Chapter 6) and References (Chapter 7). I present this thesis mainly as three journal articles prepared for submission, so there will be some repetition of concepts, abbreviations and definitions, but all references are listed in one chapter (Chapter 7). Although these papers will be eventually submitted to different journals for ease of reading they all conform to the same style in the thesis. Some data and information supporting the main thesis can also be found in Appendix (Chapter 6).

Samsu Udayana Nurdin

ACKNOWLEDGEMENT

All Praise is due to Allah, Lord of the worlds.

I am deeply grateful to my supervisor, Associate Professor Cathy Abbott, Dr. Richard K Le Leu, Professor Graeme P Young and Associate Professor James Stangoulis for their guidance and support for completing my study at Flinders University, Adelaide. Thank very much especially to Cathy for helping and intensive supervision that allowed me to for complete this thesis. Many thanks for Dr. Richard K Le Leu and Professor Graeme P their help and for letting me using their lab.

I also would like to thank Dr. Hanna Krysinska, Dr. Tong, Pak Dono, and Lisa from the Abbott lab for their support and friendship. Special thanks for Hanna Krysinska for proof reading for my thesis. Thanks to Jean, Roshini, Joan and Dr. Ying from Graeme lab and animal staff for their support and help during the *in vivo* experiment. Thank you to Professor Andy Ball for DNA extraction facilities. Thanks to Arturo Aburto-Medina for helping me with the PCR and DGGE. Thank you to Patrick Laffy and Ali Hanafiah for teaching me to use the endnote program.

My grateful thanks to the Government of Indonesia who gave me the scholarship that allowed me to complete my PhD at Flinders. I wish to express my deep appreciation for Rector of Lampung University (UNILA) and his team for providing me with all assistance and attention that have been very useful for my study. Thank you to my colleagues in Department of Agricultural Product Technology, Lampung University for their support during my PhD study. Special thanks to Roni who prepared the dried cincau.

Many thanks to my brothers and sisters from the Indonesian Islamic Society of South Australia (MIIAS) who gave their prayers, support and encouragement during my time in Adelaide. Thank you to my mother, brothers and sisters in Indonesia for their endless support and inspiration. Finally, I would like to thank my wife Yeni Widarsih, and my son Bintang Ramadhan Putra Anis and my daughter Bulan Rahmah Putri Anis, for their amazing support, love and prayers throughout my life, especially during the hard times during my PhD studies.