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THESIS SUMMARY 

Antibiotics are an essential component of contemporary healthcare but their increasing use 

has accelerated the rate of antibiotic resistance. Currently, data on multidrug resistant 

organisms (MDROs) comes from diagnostic sources such as during infection and from 

sources that use only culture-based techniques. However, the consequences of antibiotic use 

such as carriage and transmission of antibiotic resistance genes in organisms 

asymptomatically, as well as disruption of the protective commensal microbiome, are rarely 

considered. Children and elderly people who typically exhibit microbiome instability and less 

robust immune responses are at high risk of poor clinical outcomes when the effectiveness of 

antibiotic treatment is reduced. One way to better understand changes in the microbiome and 

resistome is the application of sequencing-based approaches. This project aimed to use such 

approaches in two clinical cohorts to characterise the unintended consequences of antibiotics 

on the gut microbiome and resistome. The first cohort, the Cellulitis at Home or Inpatient in 

Children presenting to the Emergency department (CHOICE) study, was a randomised control 

trial (RCT) that compared the efficacy and safety of inpatient intravenous (IV) flucloxacillin with 

outpatient IV ceftriaxone in children who presented to emergency with cellulitis. The second, 

the Generating evidence on Resistant bacteria in the Aged Care Environment (GRACE) study, 

was an observational study that investigated the impact of the residential aged care 

environment on the gut resistome. In both studies, sequencing-based approaches were 

applied to investigate how a single, controlled antibiotic exposure (CHOICE) and a multi, 

uncontrolled antibiotic exposure pattern (GRACE) impacted the microbiome and resistome. 

Responses in the gut microbiome and resistome differed substantially in each cohort. In 

children treated with antibiotics for cellulitis, no changes to the resistome, or carriage of genes 

known to be associated with broad-spectrum beta-lactam use were found. Although the 

microbiome was affected, this only occurred transiently and protective commensal bacteria 

increased in abundance shortly after treatment ceased. In a cohort of elderly, institutionalised 

people, the abundance of genes conferring antibiotic resistance were much higher in those 

who had recent and frequent antibiotic exposure compared to those who had no exposure. 

Microbiome richness was also much lower in these people, owing to the characteristics of the 

microbiome previously observed in the elderly and those in aged-care facilities. Antibiotic use 

has a significant impact on the gut resistome and microbiome in both young children and 

residents of aged-care facilities. The findings reported in this thesis indicate that the use of 

metagenomic sequencing should be more frequently adopted in medical decision-making, 

particularly in the development of antibiotic stewardship policies, where the impact of 

asymptomatic carriage of resistance genes and microbiome disruption is often not considered. 
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1. INTRODUCTION 

Antimicrobial resistance is now recognised as one of the most significant threats to human 

health globally.[1, 2] By 2050, it is predicted that 10 million deaths per year will be attributable 

to antimicrobial resistant pathogens, with the most vulnerable members of the community at 

greatest risk.[3] With rates of resistance to first-line antibiotic treatments continuing to rise, the 

reliance on last line antibiotics, such as carbapenems, is becoming increasingly common.[2] 

In Australia, efforts to reduce inappropriate prescribing preserve the efficacy of antibiotics that 

are currently available, and better characterise the carriage of multidrug resistant organisms 

are being prioritised.[2, 4] However, these reports, together with data from culture-based 

screening studies, often focus on resistance in only one target pathogen, commonly after an 

infection has been identified, and do not consider that the gene conferring resistance may be 

present in other organisms, such as commensals and pathogens not causing the infection.[5] 

Asymptomatic carriage of resistant organisms represents a latent but significant risk to the 

health of those carrying them, with increasing exposure to antibiotics encouraging their 

selection and acquisition of resistance. Although several studies have used sequencing-based 

techniques to report the epidemiology of the genetics-drivers of AMR organisms in niche 

groups, no study has yet associated antimicrobial prescribing patterns with the resistome 

composition using a sequencing-based approach.[6-10] This introductory chapter aims to 

describe the nature of antibiotic resistance, why this occurs, how the human commensal 

microbiome contributes to protection against infection by antibiotic resistant pathogens, and 

what strategies might be adopted to address this growing risk to health. Finally, it will describe 

how a sequencing-based approaches, such as those used in the current project, can add to 

the current knowledge and contribute to a much-needed data-driven approach to antibiotic 

stewardship. 
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1.1. IMPORTANCE OF ANTIBIOTICS IN HEALTH 

Following the discovery of penicillin in 1928, what has been considered the golden age of 

antibiotic discovery led to unrivalled advances in healthcare. In the 1940s, Australian scientist 

Howard Florey was at the forefront of testing and developing penicillin for safe use in humans, 

with sulphonamides having been introduced just a few years earlier.[11] Soon, discovery after 

discovery of new antibiotics were made and notifications of bacterial illnesses such as 

gonorrhoea and syphilis dropped significantly, alongside a marked increase in rates of 

recovery from septicaemia, pneumonia and meningitis.[11] Antibiotics are now one of the most 

common types of medication, with over 10 million Australians prescribed antibiotics each 

year.[2] Due to an increase in living standards and sanitation, many of the bacterial infections 

experienced during the early to mid-twentieth century have become increasingly rare. 

However, it is fortunate that infections that remain common, such as urinary tract infections 

(UTIs), typically respond well to antibiotic therapy.[2] 

With increasing use of antibiotics came a simultaneous increase in rates of antibiotic 

resistance. Some of the earliest observations of antibiotic resistance were in cases of 

streptogramin-resistant, mutated strains of Mycobacterium tuberculosis during WWII.(13) Not 

long afterwards in the 1950s, the ability for bacteria to transfer resistance through horizontal 

gene transfer was observed.[12] Hundreds to thousands of -lactamase enzymes, conferring 

resistance to -lactam antibiotics (i.e. penicillins) have now been identified in bacteria that 

commonly cause infections, such as UTIs and septicaemia.[12, 13] 

With antibiotic resistance leading to increased risk of antibiotic treatment failure, the 

consequences of reduced antibiotic efficacy started to emerge. In studies that investigated the 

efficacy of antibiotic treatment for septicaemia, all identified that cases of initial antibiotic 

treatment failure were associated with significantly higher rates of mortality compared to those 

that were susceptible to initial treatment.[14-16] Concerningly, the use of antibiotics deemed 

critically important by the World Health Organization was reported to have increased globally 

by 91% between 2000 and 2015.[17] 

1.2. UNINTENDED CONSEQUENCES OF ANTIBIOTIC USE: ANTIBIOTIC 

RESISTANCE 

1.2.1. HOW ANTIBIOTICS WORK 

To understand how antibiotic resistance arises, it is important to first understand the 

mechanisms of action of antibiotics in current use. Antibiotics are grouped into different 

classes, each with their own mechanism of action (see Table 1.1 for examples). Cephalexin 
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is in the cephalosporins and amoxicillin in the penicillins. Amoxicillin-clavulanic acid is also a 

member of the penicillin class but includes a -lactamase inhibitor (clavulanic acid). Both 

cephalosporins and penicillins have a -lactam action, which works by inhibiting the synthesis 

of peptidoglycan in the bacterial cell wall, triggering autolysis and cell death (Figure 1.1).[24] 

Other antibiotic mechanisms of action include inhibition of protein synthesis by interfering with 

the bacterial ribosomal subunits, as is the case for macrolide-class antibiotics (e.g. 

roxithromycin and clarithromycin) and tetracycline-class antibiotics (e.g. doxycycline).[22, 26] 

Sulphonamide (sulphamethoxazole) and diaminopyrimidine (trimethoprim) antibiotics interfere 

with nucleic acid synthesis, while nitrofurantoin and metronidazole interfere with protein 

synthesis via disruption of the DNA.[23, 25] However, bacterial resistance has rapidly 

emerged across the range of mechanisms of action of all classes of antibiotics. 

Figure 1.1 Antibiotic classes target different components of basic bacterial cell functions. This includes 

interferences with cell wall synthesis (e.g. cephalexin and amoxicillin), interference with protein 

synthesis via ribosomal subunits (e.g. doxycycline and clarithromycin) and via DNA disruption (e.g. 

metronidazole and nitrofurantoin), and interference with nucleic acid synthesis (e.g. trimethoprim, and 

sulphamethoxazole). 
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1.2.2. ANTIBIOTICS MOST COMMONLY USED IN AUSTRALIA 

According to data from the Antimicrobial Use and Resistance in Australia (AURA) report, the 

most commonly used antibiotics in the Australian community include cephalexin, amoxicillin 

and amoxicillin-clavulanic acid, accounting for 21, 20 and 17% of all antibiotic prescriptions, 

respectively (Table 1.1).[2] 

Table 1.1 Antibiotics most commonly used by the Australian public according to data from 

the Antimicrobial Use and Resistance in Australia (AURA) report, their mechanism of action 

and common indications for use. 

Antibiotic 
% of all 

antibiotic 

prescriptions 

Mechanism of 

action 
Common indications 

Ref 

Cephalexin 21.1 
Inhibition of cell wall 

synthesis 
UTIs, URTIs, LRTIs, 

skin infections  

[2, 18] 

Amoxicillin 20.1 
Inhibition of cell wall 

synthesis 

ENT infections, 

Helicobacter pylori 

eradication (in 

combination) LRTIs, 

acute bacterial 

sinusitis, skin 

infections, UTIs 

[2, 19] 

Amoxicillin-clavulanic 

acid 
17.2 

Inhibition of cell wall 

synthesis (with -

lactamase inhibitor) 

Community-acquired 

and aspiration 

pneumonia, acute 

bacterial 

rhinosinusitis, UTIs, 

acute otitis media, 

skin infections 

[2, 20] 

Doxycycline 8.8 

Inhibition of 

bacterial protein 

synthesis (30S 

ribosomal subunit) 

Acne, malaria 

prophylaxis, skin 

infections, STIs 

[2, 21] 

Roxithromycin 4.3 

Inhibition of 

bacterial protein 

synthesis (50S 

ribosomal subunit) 

URTIs, LRTIs, skin 

infections 

[2, 22] 

Trimethoprim 3.3 
Inhibition of nucleic 

acid synthesis 
UTIs 

[2, 23] 

Flucloxacillin 2.9 
Inhibition of cell wall 

synthesis 
Staphylococcal 

infections (i.e. of the 

[2, 24] 
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skin) endocarditis, 

osteomyelitis 

Clarithromycin 2.5 

Inhibition of 

bacterial protein 

synthesis (50S 

ribosomal subunit) 

Pneumonia, sinusitis, 

skin infections, 

tonsillitis, Helicobacter 

pylori infections (in 

combination) 

[2, 22] 

Metronidazole 2.4 
Disruption of DNA 

leading to inhibition 

of protein synthesis 

Anaerobic bacterial 

infections including 

those causing 

septicaemia, intra-

abdominal infections, 

bacterial vaginosis, 

LRTIs, skin infections  

[2, 25]  

Phenoxymethylpenicillin 2.1 
Inhibition of cell wall 

synthesis 
Strep throat, skin 

infections, otitis media 
[2, 24] 

AURA, Antimicrobial Use and Resistance in Australia; ENT, ear, nose and throat; LRTI, lower 

respiratory tract infection; URTI, upper respiratory tract infection; UTI, urinary tract infection; and STI, 

sexually transmitted infection 

 

1.2.3. MECHANISMS OF RESISTANCE 

Antibiotic resistance, includes both intrinsic and acquired resistance. Some bacteria are 

intrinsically resistant to some classes of antibiotics due to factors such as type of cell wall and 

genes already present in their genome that are part of their basic physiology.[27] For example, 

Pseudomonas aeruginosa cannot be treated effectively with many -lactam antibiotics 

because of the low permeability of the outer membrane as well as the presence of several 

antibiotic efflux pumps.[28] Of most concern are species that acquire resistance and are no 

longer susceptible to antibiotics previously effectively used in their treatment. This can occur 

either through mutations in target genes in the chromosome and selection for the strains that 

carry resistance, or through acquisition of resistance genes from other bacteria through a 

process termed horizontal gene transfer. Horizontal gene transfer can occur by three 

mechanisms: conjugation, transformation, and transduction. Conjugation is a process 

whereby bacteria directly transfer genetic material encoded on plasmids. This can occur 

through either connection via pilus structures, in the case of gram-negative bacteria, or by 

chemical production, in the case of gram-positive bacteria.[27] Transformation is a process of 

uptake of genetic material into the cell, often from lysed bacteria that have released their cell 

contents into the shared environment.[27] Finally, transduction is a process of the 
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bacteriophage-mediated transfer of genetic material between bacteria that are infected. These 

genetically-mediated changes correspond to different mechanisms of antibiotic resistance 

including antibiotic efflux, reduction in cell wall permeability, antibiotic modification and target 

protection.[27] 

Antibiotic efflux pumps fall into five main families: resistance-nodulation-division, small 

multidrug resistance, multidrug and toxic compound extrusion, ATP-binding cassette, small 

multidrug resistance and the major facilitator superfamily.[29, 30] Antibiotic efflux pumps can 

be encoded either chromosomally or on mobile genetic elements such as plasmids. However, 

those that confer multidrug resistance are typically chromosomally encoded, often due to 

having other functions in the cell in addition to transport of antibiotics.[29, 31] The first 

discovered antibiotic efflux resistance mechanism was a plasmid-mediated resistance protein 

identified in Escherichia coli resistant to tetracycline-class antibiotics, now known as the TetA 

pump.[26, 32, 33] TetA is a member of the major facilitator superfamily efflux proteins and 

works by exchanging a proton on the antibiotic molecule.[26, 34] These efflux pumps are found 

across multiple genera and now dozens of Tet proteins conferring efflux-mediated resistance 

to tetracyclines have been identified, with most encoded on plasmids/mobile genetic 

elements.[26, 35] 

As mentioned above, some bacteria can be innately resistant to antibiotics simply due to the 

composition and low permeability of their cell wall, as in the case of P. aeruginosa and -

lactams.[28, 36] However, previously susceptible organisms can also prevent the antibiotic 

from entering the cell via a reduction in cell wall permeability. Outer membrane proteins, 

known as porins, are found in gram-negative bacteria and allow the transport of hydrophilic 

compounds in and out of the cell.[37, 38] An example of this mechanism occurs in porins 

found in members of the Enterobacteriaceae family including E. coli (e.g. OmpC, OmpF), and 

Klebsiella pneumoniae (e.g. OmpK), as well as Acinetobacter baumannii (e.g. OmpA).[39-42] 

Disruption to the genes that encode porins has been shown to reduce cell permeability to 

antibiotics including chloramphenicol, cefepime and carbapenems.[40, 42] 

A well-known example of antibiotic modification/inactivation-type resistance is through the 

production of -lactamases.[43] -lactamases are one of the most common resistance 

mechanisms in gram-negative bacteria and work by hydrolysing the -lactam ring found in 

carbapenem-, cephalosporin-, monobactam- and penicillin-class antibiotics, preventing the 

antibiotic from interfering with cell wall synthesis.[13] There are now thousands of classified 

-lactamase enzymes that can be found in the chromosome and on plasmids, with clinically-

significant carbapenemases and extended-spectrum -lactamases (ESBLs) becoming 

increasingly common.[2, 13] Enzymes that inactivate aminoglycosides are another example 
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of the antibiotic inactivation resistance mechanism.[44] This can occur by the action of three 

classes of enzymes, acetyltransferases, nucleotidyltransferases and phosphotransferases, 

often encoded on plasmids and easily transferred between species.[44] 

Target protection occurs when the protection protein binds or chemically alters the target 

protein such that the antibiotic is no longer biologically active.[45] One of the most well-

characterised examples of this is in resistance to tetracycline through ribosomal protection 

proteins Tet(O) and Tet(M). These work by binding to the 30S ribosomal subunit, protecting it 

from tetracycline-mediated inactivation.[45-47] Importantly, these are plasmid-encoded and 

Tet(M) in particular is the most common cause of tetracycline resistance in several 

pathogens.[45] Reduced susceptibility to fluoroquinolones in Enterobacteriaceae is also 

mediated by target protection proteins by the qnr gene family also found on plasmids, further 

reducing the efficacy of antibiotic treatment of members of this family of bacteria.[45, 48] 

1.2.4. RATES OF RESISTANCE IN COMMON PATHOGENS 

Rates of antibiotic resistance in pathogens responsible for the most frequent and high-risk 

infections are routinely collected in Australia. One example of these programs is AURA with 

biannual reports that detail the use of antibiotics in the Australian population and includes 

rates of resistance for specific pathogens. These pathogens include Enterobacteriaceae, 

Enterococcus faecalis and E. faecium, P. aeruginosa, and Staphylococcus aureus. 

Enterobacteriaceae are an family of bacteria that is frequently associated with UTIs and 

septicaemia and includes E. coli, K. pneumoniae and Enterobacter cloacae.[2] Importantly, 

resistance is easily transferred between members of this family of bacteria and is most 

commonly -lactam resistance, which imparts resistance to penicillins, cephalosporins, 

monobactams and in some uncommon cases, carbapenems.[2, 49] According to the most 

recent AURA data, E. coli strains were most frequently resistant to ampicillin, cefazolin (first-

generation cephalosporin), trimethoprim-sulphamethoxazole and trimethoprim alone (Figure 

1.3A).[2] Resistance to cefazolin, fluoroquinolones (ciprofloxacin and norfloxacin), gentamicin 

and trimethoprim was highest in aged-care facilities whereas resistance to ampicillin, 

amoxicillin clavulanate, third-generation cephalosporins (ceftriaxone/cefotaxime) piperacillin-

tazobactam and trimethoprim-sulphamethoxazole was highest in hospitals.[2] Meropenem 

resistance, a reserved carbapenem-class antibiotic, was not observed in hospitals or in aged-

care facilities but was observed in <0.1% of strains from the wider community.[2] In K. 

pneumoniae strains from aged-care facilities, resistance was highest to trimethoprim, 

piperacillin-tazobactam and fluoroquinolones, whereas in hospitals and the wider community 

resistance was highest to trimethoprim, trimethoprim-sulphamethoxazole and cefazolin 
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(Figure 1.3B).[2] Meropenem resistance was not observed in aged-care facilities but was 

observed in 0.5% of K. pneumoniae strains from hospitals and <0.6% in the community. 

Finally, E. cloacae strains were most resistant to third-generation cephalosporins and 

piperacillin-tazobactam, with 0.2% of strains from hospitals identified as resistant to cefepime, 

a fourth-generation cephalosporin (Figure 1.3C).1 Additionally, a large proportion of E. cloacae 

strains were resistant to trimethoprim and trimethoprim-sulphamethoxazole across the 

different locations.[2] Meropenem resistance was observed in 0.1% of strains from the 

community and 2% of strains from hospital, but this data was not available for aged-care 

facilities.[2] 

 
1 Data on cefepime resistance was only available for hospitals. 
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Figure 1.3 Data adapted from the Fourth Australian report on Antimicrobial Use and 

Resistance in Human Health showing the resistance rates to antibiotics used to treat A) 

Escherichia coli, B) K Klebsiella pneumoniae and C) Escherichia cloacae in aged-care 

facilities, community and hospitals in 2018-2019. Data was missing for K. pneumoniae 

resistance to cefazolin, third-generation cephalosporins (ceftriaxone/cefotaxime) and 

trimethoprim-sulphamethoxazole in aged-care facilities, E. cloacae resistance to cefepime, 

meropenem, piperacillin-tazobactam and trimethoprim-sulphamethoxazole in aged-care 

facilities, and E. cloacae resistance. 
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The genus Enterococcus, which includes E. faecalis and E. faecium, can cause septicaemia, 

UTIs and intra-abdominal infections, most commonly in high-risk populations such as the 

elderly.[2, 50] Due to the nature of their cell wall, enterococci are naturally resistant to several 

classes of antibiotics, including macrolides and cephalosporins.[2, 50] The first line of 

treatment for minor Enterococcus infections is non-staphylococcal penicillins including 

amoxicillin and ampicillin. In E. faecalis, resistance to ampicillin remains low in Australia (0.3-

0.6%, Figure 1.4A) but is extremely high in E. faecium, with over 90% of strains from all 

locations resistant (Figure 1.4B).[2] Fluoroquinolone resistance was high in both E. faecalis 

(15-25%, excluding aged-care facilities) and E. faecium (over 90% in hospitals and aged-care 

facilities and 65% in the community) whereas resistance to nitrofurantoin was much higher in 

E. faecium (over 70% for all) compared to E. faecalis (<1%).[2] Vancomycin is a glycopeptide-

class antibiotic that is an alternative treatment to penicillins for more severe enterococcal 

infections.[2, 50] Resistance to vancomycin was low in E. faecalis (<0.5%) but over 20% of E. 

faecium strains from each location were resistant, with the numbers in public hospitals 

reaching nearly 40%.[2] In cases where vancomycin is ineffective, known as vancomycin-

resistant enterococci (VRE), reserved treatments such as teicoplanin (for vanB genotypes) 

and linezolid or daptomycin (for vanA genotypes) may be necessary.[2, 50] Resistance to 

teicoplanin was also low in E. faecalis (0.1-0.7%) but ranged between 5-11% in E. faecium 

strains from hospitals.[2] 
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Figure 1.4 Data adapted from the Fourth Australian report on Antimicrobial Use and 

Resistance in Human Health showing the resistance rates to antibiotics used to treat A) 

Enterococcus faecalis and B) Enterococcus faecium in aged-care facilities, community and 

hospitals in 2018-2019. Data was missing for E. faecalis resistance to fluoroquinolones in 

aged-care facilities, and E. faecium resistance to linezolid and teicoplanin in aged-care 

facilities. Hospital data are an average of the data collected from both private and public 

hospitals. 

P. aeruginosa is an opportunistic gram-negative pathogen found in hospitals and commonly 

associated with morbidity in cystic fibrosis patients, as well as infections in burn patients.[51] 

As previously mentioned, the spectrum of antibiotics available to treat P. aeruginosa is 

significantly reduced due to its innate resistance to a number of different classes.[51] It is a 

highly concerning pathogen due to its ability to acquire a various types of resistance, such as 

-lactamase genes, and its ability to upregulate genes already present in the genome.[51] 

Rates of resistance in P. aeruginosa were highest for piperacillin-tazobactam, with 7%, 5% 

and 4% of strains resistant in hospitals, aged-care facilities and the community, respectively 

(Figure 1.5).[2] This was closely followed by ciprofloxacin (2-8%), and ceftazidime (2-6%) 
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resistance.[2] Meropenem resistance was highest in public hospitals (4%) and lowest in aged-

care facilities (0.8%).[2] 

 

Figure 1.5 Data adapted from the Fourth Australian report on Antimicrobial Use and 

Resistance in Human Health showing the resistance rates to antibiotics used to treat 

Pseudomonas aeruginosa in aged-care facilities, community and hospitals in 2018-2019. 

Hospital data are an average of the data collected from both private and public hospitals. 

The final example is Staphylococcus aureus, an organism commonly associated with skin 

infections but can also be present asymptomatically on the skin as well as in the nose.[52] In 

cases of blood infections it has a rapid and high mortality rate, with a 15% 30-day mortality 

rate reported in 2017.[53] Methicillin-resistant S. aureus, known as MRSA, is one of the most 

common causes of healthcare-associated infections and is resistant to first-line treatments 

including flucloxacillin and first-generation cephalosporins.[2, 52] Resistance to penicillin was 

between 80 and 90% in S. aureus strains from across all locations, but was highest in the 

community (Figure 1.6).[2] Strains from aged-care facilities had the highest rates of resistance 

for most antibiotics, including oxacillin/methicillin (26%), erythromycin (21%), clindamycin 

(19%), tetracyclines (6.3%), and trimethoprim-sulphamethoxazole (3.9%). Ciprofloxacin 

resistance was highest in aged-care facilities, with a resistance rate of 20%, compared to 

community (2.1%) and hospitals (7.8%).[2] 
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Figure 1.6 Data adapted from the Fourth Australian report on Antimicrobial Use and 

Resistance in Human Health showing the resistance rates to antibiotics used to treat 

Staphylococcus aureus in aged-care facilities, community and hospitals in 2018-2019. 

Hospital data are an average of the data collected from both private and public hospitals. 

In addition to resistance profiles of individual species, some pathogens are classed as 

reportable to the federal government in Australia through the National Alert System for Critical 

Antimicrobial Resistances (CARAlert).[2] Included in this list of 12 resistance phenotypes is 

carbapenemase-producing Enterobacteriaceae (CPE) and Enterobacteriaceae that produce 

transferable colistin resistance, carbapenemase-producing P. aeruginosa (CRPA), 

carbapenemase-producing A. baumannii, vancomycin/linezolid/daptomycin-nonsusceptible 

S. aureus and linezolid-nonsusceptible Enterococcus. CPE was the most reported group of 

organisms in the CARAlert system in 2020, with roughly 650 cases making up 41% of all those 

reported.[2] Carbapenemase-producing P. aeruginosa and carbapenemase-producing A. 

baumannii were reported 44 and 25 times, respectively.[2] Linezolid-nonsusceptible 

Enterococcus was detected infrequently, with only 19 reports in 2020. Transferrable colistin 

resistance, a last-resort antibiotic used in extreme cases of resistance due to its high toxicity, 

was reported 9 times in Enterobacteriaceae in 2020.[2] In high-risk locations, such as hospitals 

and aged-care facilities, attempts to reduce the spread of MDROs, especially those reportable 

organisms such as noted here, have been addressed through implementation of infection 

control policies. 
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1.3. CURRENT EFFORTS TO PREVENT INFECTION AND PRESERVE 

ANTIMICROBIAL EFFICACY 

Currently, infection control policies to manage multidrug-resistant organisms (MDROs) 

encourages contact precautions, improved antimicrobial stewardship (AMS), and has a strong 

focus on hand hygiene.[54] This is not unwarranted; when hand hygiene is properly 

implemented, rates of methicillin-resistant S. aureus (MRSA) infection, found commonly on 

the skin and in the nose, is significantly reduced.[55] Ensuring these precautions are in place 

will certainly continue to improve infection control outcomes. Although hand hygiene is 

essential for reducing the spread of resistant organisms, there are other factors involved 

particularly for gut pathogens. The human gut provides a unique environment which, when in 

a health state, can support a vast diversity of bacteria. It is, however, constantly exposed to a 

range of different food, foreign bacteria and medications (including antibiotics), which can 

significantly alter its microbial community. Consequentially, this can also allow the colonisation 

or expansion of pathogenic MDROs such as VRE and ESBL gram-negative bacteria, and most 

concerningly, CPE and CRPA. Although evidence does show that adherence to hand hygiene 

standards can reduce the transmission of VRE, a pathogen frequently implicated in cases of 

septicaemia, contact precautions are not sufficiently effective in limiting its spread.[56] In 

addition, transmission of ESBL-producing gram-negative bacteria, also found predominantly 

in the gut, is reduced by improved hand hygiene practices.[57] However, given that the 

incidence of infection with ESBL-producing gram-negative bacteria is also significantly 

associated with third-generation cephalosporin and fluoroquinolone use, AMS is equally, if not 

more important.[57] 

One study based in a Melbourne teaching hospital showed that implementation of an 

electronic AMS policy significantly reduced the use of antibiotics such as later generation 

cephalosporins and carbapenems, and improved susceptibility in S. aureus and 

Pseudomonas spp. to several antibiotics.[58] Currently, all Australian health services, 

including aged-care facilities, dental practices and hospitals, are required to have an AMS 

policy in place. Although the Australian Commission into Safety and Quality in Health Care 

released a final version of their AMS standard in 2020, this was only a guide, and it is up to 

the discretion of individual healthcare providers which measures they will implement.[59] 

Antimicrobial stewardship and clinical pathology are at the forefront of efforts to characterise 

and address the spread of AMR. It is evident that there are improvements being made to 

implemented policies with resistance development minimised in some of the most dangerous 

pathogens. Nevertheless, there is a valid argument that there are contributing factors to AMR 

beyond the narrow context of the target pathogen and it would be appropriate to investigate 
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rates of resistance in a wider range of bacteria than just those pathogens considered to be 

the primary cause of infectious diseases. It is now evident that antibiotic resistance genes can 

be transferred between bacteria in the microbiome, but clinical decisions around the use of 

antibiotics rarely consider this phenomenon. Essential data on how antibiotic exposure 

influences both the collection of antimicrobial resistance genes, termed the resistome, and the 

risk of resistant pathogen overgrowth is not readily available in clinical practice. Increasing 

evidence implicating antibiotic overuse in the development of AMR in all aspects of healthcare 

provides no doubt that antimicrobial stewardship will be at the forefront of its control. However, 

future thinking about antimicrobial stewardship must include consideration of the damage 

already done by unregulated use of antimicrobials in terms of development of resistance, and 

the contribution the commensal microbiome makes to protection from infectious pathogens 

1.4. UNINTENDED CONSEQUENCES OF ANTIBIOTICS: DISRUPTING 

THE MICROBIOME 

It is important to recognise that even in the case of narrow-spectrum antibiotic use, the impact 

is not limited to the bacteria causing the infection. Even for antibiotics not targeted to 

pathogens in the gastrointestinal tract, if they are used systemically (oral or IV), many leave 

an impact on the organisms there. The microbiome is the collection of microorganisms that 

inhabit all external niches in the host. In the human gastrointestinal tract, known less formally 

as the gut, this includes a highly diverse population of bacteria with a variety of functions. One 

such function is colonisation resistance, where commensal bacteria in the gut microbiome 

prevent new, potentially pathogenic bacteria from colonising by competing for space and 

nutrients.[60] This function also extends to pathogenic bacteria already present in the gut at 

asymptomatically low levels. Antibiotic use can therefore impact the microbiome and 

resistome through two broad mechanisms: (1) disruption and depletion of the microbiome can 

create opportunity for external pathogens to colonise through reduction of colonisation 

resistance, and (2) the disruption caused by frequent and unregulated use of antibiotics can 

select for bacteria carrying resistance genes and create a niche for them to proliferate and 

cause infection (Figure 1.7).[12, 60, 61] 

Therefore, it is reasonable to postulate that a disruption of colonisation resistance could have 

adverse effects in terms of infection risk. In cases of Clostridioides difficile2 infection, the 

protective effect of the commensal microbiome has been sufficiently well researched that 

faecal-microbiota transplantation is now an established treatment for recurrent infections.[62] 

Antibiotic use is a significant risk factor for developing not only infections with C. difficile but a 

 
2 An opportunistic pathogen found in the gut associated with antibiotic use. 
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number of AMR enteric pathogens. By eliminating commensal microbiota and competition, 

antibiotic use enables the expansion of resistant pathogens while simultaneously disrupting 

regulation of local immunity provided by the commensal microflora (Figure 1.7).[63] VRE 

colonisation models in mice showed that antibiotic treatment reduced the expression of 

RegIIIγ, a C-type lectin produced in the intestines that can kill VRE and other gram-positive 

species. In these models, killing of VRE was significantly reduced and could only be restored 

through the administration of lipopolysaccharides, produced by commensal organism 

Bacteroides thetaiotaomicron involved in the regulation of RegIIIγ.[64] Colonisation and 

overgrowth of ESBL-producing K. pneumoniae was significantly increased with the use of anti-

anaerobic antibiotics such as clindamycin but not with the use of antibiotics that have minimal 

impact on the anaerobic gut bacteria. Hooper and colleagues demonstrated that Paneth cell 

secretion of Ang4 (angiogenin that has bactericidal activity in the gut) was increased in mice 

colonised with an adult-intestinal microbiota and with B. thetaiotaomicron alone.[65] 

Colonisation with organisms resistant to carbapenems, including CRE and CRPA, have been 

associated with significantly reduced taxa richness compared to a presumed healthy 

microbiome.[66, 67] Importantly, the presence of a select group of commensal taxa was found 

to be associated with protection against colonisation by CRPA in a group of ICU patients 

whereas in patients in which these taxa were absent or depleted CRPA colonisation 

occurred.[66] Colonisation by VRE has also been frequently found to be associated with a 

disruption to the presumed normal microbiome composition. Antibiotic-mediated destruction 

of the anaerobic commensal microbiology was found to be strongly associated with 

colonisation by VRE in the gut and supplementation with a subgroup of selected commensal 

bacteria was shown to increase clearance of VRE and prevent colonisation.[68, 69] Within 

one aged-care cohort, reduced diversity, alongside a depletion of several anaerobic 

commensal taxa was found to be associated with colonisation by ESBL-producing 

Enterobacteriaceae even in the absence of differences in antimicrobial exposure.[70] 
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Figure 1.7 Cycle of antimicrobial resistance (AMR) and its impact in the gut microbiome. 

Patient presents with infection and is prescribed antibiotics (top circle). Antibiotics deplete 

commensal organisms that are within the spectrum and non-resistant. The reduction of 

commensal organisms results in reduced colonisation resistance and regulation of intestinal 

immunity (right circle). Bacteria that carry resistance genes survive antibiotic treatment and 

can also transfer mobile resistance genes through horizontal gene transfer (bottom circle). 

Increased resistance through horizontal gene transfer and selection for resistant bacteria 

provides opportunity for proliferation of the intestinal pathogen. This can trigger an immune 

response, disrupt the epithelial barrier and allow pathogen escape from the gut lumen (left 

circle). Escaped, resistant pathogens are able to cause infection which requires new 

antibiotics. 

In the case of C. difficile, its overgrowth in the gut has a direct impact on gut function, producing 

toxins that disrupt the tight junctions of the gut epithelial layer, leading to diarrhoea, reduced 

absorption of nutrients and severe abdominal pain.[71] A recent review on the impact of the 

implementation of AMS policies for C. difficile infection management found that a highly 

restrictive stewardship policy, such a complete removal of certain medications or prior 
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approval requirements, was significantly associated with reduced risk of infection.[72] Wilcox 

and colleagues showed that the incidence of C. difficile diarrhoea was significantly reduced 

after implementation of a policy that reduced cefotaxime (broad-spectrum, third generation 

cephalosporin) in conjunction with preferred usage of piperacillin-tazobactam (broad-

spectrum penicillin with -lactamase inhibitor).[73] For other bacteria, such as E. coli and 

Enterococcus spp., an overgrowth in the gut reflects a risk of escaping and causing infection 

in other parts of the body, such as the cardiovascular system.[74] However, certain groups 

may be at higher risk of these complications than others. 

1.5. WHO IS AT RISK? 

Although this phenomenon poses a moderate risk to everyone using antibiotics, particular 

groups in the community are more vulnerable than others. Children, who have relatively naive 

immune systems, and whose commensal microbiology is still developing, are at a higher risk 

of the unintended consequences of inappropriate antibiotic use (Figure 1.8).[75] Elderly 

people are at a higher risk of infections due to a weakened immune system that accompanies 

the ageing process, termed immunosenescence (Figure 1.8).[76, 77] The mechanisms that 

put these groups at particular risk, and the reason for their investigation in this project, are 

discussed below. 

Globally, infectious diseases are responsible for the most deaths in children under 5 years of 

age.[78] Rates of hospitalisation due to sepsis are some of the highest in infants under 1 year 

of age, and make up a significant proportion of all hospitalisations for this age group.[79, 80] 

In a European study, children under 1 year of age had the highest disease burden and rates 

of mortality for infections of antibiotic-resistant pathogens, particularly for pathogens in the 

order Enterobacteriaceae with carbapenem resistance.[81] Children also had significantly 

higher rates of resistant P. aeruginosa bloodstream infections compared to adults from the 

same location.[82] 

Children are highly susceptible to infections and the complications of these due to their naive 

immune system and other factors related to birth and feeding.[75, 83] There is also evidence 

that the developing microbiome contributes to the shaping of the immune system. In fact, in 

preterm infants, inhibition of the developing microbiome has been associated with serious 

illness, such as sepsis.[84, 85] During this pivotal stage of life, the microbes that begin to 

colonise the gut have essential functions for shaping the host immune system. This 

phenomenon has been shown in mice, with those lacking microbiota colonisation developing 

significantly fewer Th17 cells, which are essential for local immunity and regulating 

inflammation, leading to a lower ability to resist infection by the rodent pathogen Citrobacter 



 

 29 

rodentium.[86] Additionally, Bouskra and colleagues showed that commensal organisms, 

specifically gram-negative peptidoglycan, stimulated the genesis of intestinal lymphoid tissue 

through recognition by the nucleotide-binding oligomerisation domain containing 1 receptor in 

germ-free mice, essential for regulating local immunity.[87] It is therefore of paramount 

importance that the microbiome of infants and children be disrupted as little as possible during 

this period of development, especially given the emerging evidence of how important the 

commensal microbiome is in regulating immunity.[75, 88] 

With AMS becoming increasingly important in medical practice, a few studies have emerged 

investigating the impact of a range of antibiotic treatments on health outcomes in children. For 

example, one such study examined the efficacy and safety of treating children who presented 

to the emergency department with severe cellulitis (infection of the skin), with either narrow-

spectrum flucloxacillin administered in the hospital or broad-spectrum ceftriaxone 

administered at home.[89] Given the high-risk age group and the spectrum differences of each 

antibiotic, the investigators included a small sub-analysis that cultured stool samples and 

screened for EBSL-producing bacteria. In a study by Reyman and colleagues, the use of three 

antibiotic treatment regimens for suspected early-onset neonatal sepsis were investigated for 

their impact on the microbiome and resistome.[90] Each had a markedly different effect on the 

microbiome and resistome genes with no difference in treatment efficacy, suggesting that the 

antibiotic with the least adverse microbiological effects should be considered first for 

treatment. 

 

Figure 1.8 Suggested relationship between age, the microbiome and immune function. 

Microbiome stability is low for the first few years of life while development occurs, but is often 

accompanied by a high use of antimicrobials. In elderly people, a similar mechanism occurs 

by which they are frequently prescribed antimicrobials, with a low microbiome stability that 
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does not recover as quickly from perturbations. Main differences appear in the response of 

the immune system to the microbiome and pathogens, with a highly sensitive, naive immune 

system in younger people, and a depleted, weaker immune system in elderly people 

(immunosenescence). 

In the context of residential aged-care facilities, it is not hard to understand why rates of AMR 

are high. Residents of aged-care facilities are in close contact with other residents, frequently 

visit hospital and are regularly prescribed antimicrobials.[91-93] High rates of cognitive 

impairment hinder management of some residents and leads to difficulty in controlling the 

spread of AMR. Additionally, residents of aged-care facilities have a significantly lower 

microbial diversity in the gut compared to elderly persons living in the community, making 

them highly susceptible to the effect of pathogen overgrowth.[94] There are several factors 

that might contribute to this. Residents of aged-care facilities are often older, frailer, and 

frequently suffer from malnutrition due to a reduced ability to masticate food and absorb 

essential nutrients.[95] Immunosenescence likely contributes to the frequency and severity of 

infections occurring in the elderly. Recovery from infections, such as those of the bloodstream, 

is significantly reduced in the elderly and is accompanied by higher risk of mortality, and 

incidence of urinary tract infections is twentyfold higher in elderly people than in younger 

people.[76, 96] Although not well understood, there is some evidence that this phenomenon 

may be associated with immunosenescence, involving two main components of the adaptive 

immune system: reduction of T cell production due to a weakened thymus, and cessation of 

T cell proliferation and differentiation.[77, 97] Such changes mean that the capacity of T cells 

to be assigned as memory cells is markedly reduced and infections with similar pathogens 

does not result in a more rapid and robust immune response. Additionally, NF-B, a pro-

inflammatory transcriptional factor, is upregulated with ageing, promoting local and systemic 

inflammation and rendering the host more vulnerable to infection.[98, 99] This effect has been 

linked with protection of the commensal microbiome, with the addition of clostridium-derived 

butyrate controlling enterocolitis through increased Treg cell differentiation in a germ-free 

mouse model.[100] It has also been theorised that neutrophils, the first and main responders 

to bacterial infections, are significantly reduced in numbers and have reduced bactericidal 

activity, leading to a poor response to invading pathogens.[101] 
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Combined with the physiological effects of their advanced age, the diet provided to residents 

of aged-care facilities has been found to not support a diverse gut microbiome.[94] Claesson 

and colleagues showed that a reduced microbiome diversity was associated with a high fat/low 

fibre diet when compared to a low fat/high fibre diet. Importantly, around 80% of long-term 

aged-care facility residents were clustered in the high fat/low fibre diet group. In a study that 

examined the impact of providing a Mediterranean diet as an intervention on the microbiome 

and markers of health, a significant increase in Faecalibacterium prausnitzii, a bacterial 

species associated with reduced frailty and gut health, was observed.[102] A reduction in pro-

inflammatory markers (IL-17, CRP) as well as microbes associated with inflammatory 

diseases such as IBD were also observed in those who adhered to the dietary 

intervention.[102] 

Further adding to the risk of treatment failure, levels of antibiotic use are high in age care 

residents, with a significant proportion receiving prophylactic treatment, sometimes with no 

end-date indicated.[2, 4] The most commonly used antibiotics in Australia and their functions 

are described above, and in aged-care facilities, the usage of these antibiotics is significantly 

higher and less-well regulated.[4] Excluding topical antimicrobials, the most commonly used 

antibiotics in Australian aged-care facilities differ slightly to the general population, with 

cephalexin (21%), amoxicillin and clavulanic acid (7%), and trimethoprim (6%) the three most 

prescribed.[4] One in six antibiotic prescriptions were written as per resident need, and about 

20% of antibiotics prescribed were for prophylaxis.[4] Of these, 47% were for UTI 

prophylaxis.[4] This is concerning as a large proportion of antibiotics used for urinary tract 

infections have been shown to impact the gut microbiota.[103-105] In fact, O’Sullivan and 

colleagues demonstrated that antibiotic treatment had significant and long-term effects on the 

gut microbiome and specific commensal members of the microbiome.[106] Challenges in 

enforcing hand hygiene and other infection control practices, in addition to a microbiome with 

a reduced capacity for controlling pathogen abundance suggests that the microbiome should 

be considered when managing antibiotic use in this group. 
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1.6. OPPORTUNITY TO APPLY SEQUENCING-BASED APPROACHES 

DNA sequencing methods provide an opportunity to examine the composition of both the 

microbiome and the resistome. Sequencing allows a culture-free alternative to investigating 

the effects of various exposures on the microbiome and been used as a basis to analyse the 

microbial ecology of many different sample types in many different contexts (Figure 1.9). 

The development of amplicon-based sequencing for microbial DNA revolutionised microbiome 

research and provided scientists with a way to capture the microbiome in a sample without 

requiring prior microbial culture.[107, 108] This was possible because all bacteria share a 

ubiquitous 16S rRNA gene with hypervariable regions that allow differentiation between 

genera. Amplicon sequencing was first applied to investigate environmental microbiomes, 

particularly those in the soil, but was later expanded to human, clinical samples.[109, 110] 

Sequencing 16S rRNA gene amplicons is an attractive option for microbiome research due to 

its relatively low cost, ease of sequencing and ease of data analysis post-sequencing.[111] 

One limitation of this is that the resolution of identification is not as high as some other 

methods, with the most reliable identification at genus-level rather than species-level.[111] 

An alternative approach is shotgun metagenomic sequencing, a methodology that involves 

sequencing all DNA present in a particular sample.[108, 111] This type of sequencing provides 

identification that is more reliable and of higher resolution (species level), and can be used to 

investigate other features in the sample, such a bacterial functionality and antibiotic resistance 

genes.[111] However, this approach is significantly more costly than amplicon-based 

sequencing, so the desired research outcomes must be considered carefully when selecting 

the methodology to be used. [111]  

Investigation of antimicrobial resistance using shotgun sequencing approaches has 

limitations. Given that all DNA is sequenced during this process, in cases where genes can 

be present in multiple bacterial species (such as those on plasmids), assignment of genes to 

specific bacteria is often not possible. Consequently, the resistome that is determined by this 

type of sequencing is defined as the collection of antimicrobial resistance genes present in the 

microbiome. 

Whole genome sequencing (WGS) can be applied to specific strains and provides a high 

resolution for gene annotation. This method has been used frequently in projects investigating 

the genetic-drivers of infectious outbreaks.[6-10] However, this method is preferred for single-

organisms, and is not as useful for assessments of the entire microbiome and resistome. 
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Figure 1.9. Sample collected from source (clinical or environmental) undergoes extraction of 

microbial DNA, and/or is isolated into pure cultures. During amplicon-based sequencing, for 

example 16S rRNA gene sequencing, samples undergo amplification (polymerase chain 

reaction) of the 16S rRNA gene followed by sequencing and bioinformatic assembly of those 

sequences. These are mapped to a 16S database and gives a genus-level taxa relative 

abundance output. During shotgun sequencing, all DNA from a sample is fragmented and 

sequenced. These sequences can be mapped to databases to provide information such as 

species-level taxa relative abundance data, bacterial functional data and antimicrobial 

resistance data. The isolated strains can be sequenced using whole genome sequencing 

whereby the fragmented genome is sequenced and matched to a reference genome in order 

to annotate genes present. This could include bacterial functional genes and antibiotic 

resistance genes. 
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Given that these technologies are relatively new, examples of their application to resistome 

analysis are limited. One applied metagenomic sequencing to arctic soil samples assumed to 

be free of anthropogenic impacts, and detected several genes that conferred resistance to 

commonly used antibiotics in clinical practice.[112] Mahnert and colleagues investigated the 

presence of antimicrobial resistance genes in anthropogenic-environments using 

metagenomics and showed a significant difference in resistome composition between 

controlled environments (such as ICU) and uncontrolled environments (such as private 

residences).[113] A study investigating the sewage resistome composition found that 

resistance genes detected correlated with that of E. coli that was currently circulating in the 

community.[114] In a mouse model, Xu and colleagues showed that some resistance genes 

in the gut microbiome are enriched with antibiotic use and that cross resistance can be found 

to a small number of antibiotics.[115] The human microbiome project applied a metagenomic 

sequencing approach to a few of their samples to investigate the microbiome composition and 

relatedness of different niches in the human body, but this study did not examine the 

resistome.[109] 

For the reasons outlined above, a metagenomic-sequencing-based approach was applied in 

this candidature to investigate the impact of antibiotic use patterns on the microbiome and 

resistome, as well as a 16S rRNA gene amplicon-sequencing-based approach to investigate 

the microbiome in the CHOICE study component3. Although current, culture-based techniques 

are excellent for screening and observation of current carriage of resistant organisms, the 

ability to combine this with sequencing-based technology in clinical practice would allow a 

greater understanding of the pathways leading to resistance and pathogen overgrowth. 

Currently, there are few reports that investigate the human resistome using metagenomic 

sequencing methods. To demonstrate this, a narrowly-targeted literature search was 

performed in PubMed to gather currently available articles that used metagenomic sequencing 

to investigate the effect of antibiotics on the human resistome using the search term, 

"(metagenomic OR shotgun) and (resistome OR resistance) and (antibiotic OR antimicrobial) 

and human". No language restrictions were applied and reviews/commentaries were 

excluded. Thirty-four articles were identified as matching to this search term and two other 

highly relevant articles not found using this search were added.[116, 117] Of these 34 articles, 

14 were excluded for the following reasons: six used metagenomics but did not include 

resistome analysis, five did not use metagenomics or include resistome analysis, and one was 

a virus study. The remaining 22 articles were reviewed and a summary is presented in Table 

 
3 Details of the choice of 16S rRNA gene amplicon sequencing for the CHOICE microbiome analysis 
are given in Chapter 3. 
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1.2. Nineteen included an analysis of the gut resistome, four the respiratory resistome (sputum 

and throat swabs) and three single articles on skin, saliva or urine. 

Table 1.2 Summary of a review of 22 selected articles that matched the PubMed search term:  

(metagenomic OR shotgun) and (resistome OR resistance) and (antibiotic OR antimicrobial) 

and human. Search was performed on 20 September 2022 for original research articles 

published between 1 Jan 1946 and 20 September 2022 with no language restriction and 

excluding reviews/commentaries. 

Author Year Clinical context Body site Sample size Ref 

Bajaj et al. 2020 FMT in cirrhosis Gut 20  [118] 

Djamin et al. 2020 Macrolide maintenance 

treatment in chronic 

obstructive pulmonary 

disease patients 

Throat 92 [119] 

Doan et al. 2019, 

2020 

Azithromycin prophylaxis in 

preschool children from 

Niger, Tanzania and Malawi 

Gut 30 

communities 
 [120] 

Fishbein et al. 2021 Oral vancomycin treatment 

for C. difficile 
Gut 15  [121] 

Francis et al. 2020 Cotrimoxazole treatment in 

HIV-infected children 
Gut 72  [122] 

Hansen et al. 2021 Campylobacter infected 

patients compared to 

healthy family members 

Gut 70  [123] 

Jo et al. 2021 Impact of systemic antibiotic 

exposure on skin 

microbiome 

Skin, 

Throat, 

Gut 

14  [124] 

Kwak et al. 2020 Trial of microbiota-modifying 

drug 
Gut 66  [125] 

Langdon et al. 2021 Restoration of microbiota to 

prevent colonisation of 

MDROs in CDI patients 

Gut 29  [126] 

Leo et al. 2021 Shortening antibiotic 

treatment duration in 

patients with gram-negative 

bacteraemia 

Gut 56  [127] 



 

 36 

Li et al. 2021 Exposures on the infant 

resistome and onset of 

asthma 

Gut 662  [116] 

Millan et al. 2016 FMT for recurrent CDI Gut 20  [128] 

Pettigrew et al. 2022 Short and standard length 

antibiotic courses for 

community-acquired 

pneumonia in children 

Throat, 

Gut 
171  [129] 

Rampelli et al. 2015 Hunter-gatherer vs urban 

microbiome and resistome 
Gut 38  [130] 

Rani et al. 2020 Multidrug resistance in urine 

of kidney patients and 

healthy controls 

Urine 46  [131] 

Reyman et al. 2022 Antibiotic treatment regimen 

on resistome in suspected 

early-onset neonatal sepsis 

cases 

Gut 147  [90] 

Taylor et al. 2021 Resistome of cystic fibrosis 

patients versus controls 
Gut 35  [117] 

Taylor et al. 2019 Azithromycin maintenance 

treatment in asthma patients 
Sputum 61  [132] 

Vaga et al. 2020 Microbiome and resistome 

of healthy gut (mucosal 

layer) 

Gut 5  [133] 

Willmann et al. 2019 Haematology patients 

receiving prophylactic 

antibiotic treatment 

Gut 41 [134] 

Zaura et al. 2015 Response of saliva and gut 

to antibiotic treatment 
Gut, 

Saliva 
66  [135] 

FMT, faecal microbiota transplant; CDI, Clostridioides difficile infection 

Metagenomic sequencing to investigate the effect of prophylactic macrolide treatment for 

respiratory illnesses on the resistome was performed in three studies.[117, 119, 132] Taylor 

and colleagues demonstrated that prophylactic use of azithromycin in patients with severe 

asthma was associated with a significant increase in the abundance of macrolide antibiotic 

resistance genes,[132] which was also observed in a study investigating the impact of 

azithromycin in chronic obstructive pulmonary disease patients.[119] Three studies used 
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metagenomic sequencing to investigate the impact of treatment of infectious diseases in 

children on the resistome, specifically in low income countries.[120, 122, 136] These studies 

recognised the importance of antibiotic treatments for preventing and controlling illnesses 

such as HIV-associated infections, while investigating the impact that repeated and prolonged 

antibiotic use had on the microbiome and resistome. The effect of different antibiotic 

treatments, either through antibiotic type or course duration has been investigated with a 

metagenomic-sequencing approach by several researchers. In a recent study by Reyman and 

colleagues, the type of antibiotic regimen given to infants with suspected early-onset neonatal 

sepsis was shown to significantly impact the resistome, with an amoxicillin and cefotaxime 

treatment having the strongest effect.[90] Two groups of researchers used a metagenomic-

sequencing-based approach to evaluate the impact of reduced treatment lengths in different 

clinical contexts.[127, 129] In the bacteraemia patients, no significant changes to the gut 

resistome was observed with length of treatment.[127] However, in the pneumonia patients, 

a shorter course of antibiotics was associated with a lower abundance of antibiotic resistance 

genes in the throat microbiome.[129] Finally, three studies investigated various treatments for 

C. difficile infections and their impact on the gut microbiome and resistome.[121, 126, 128] In 

a study investigating the impact of oral vancomycin treatment for patients colonised with C. 

difficile, a significant increase in macrolide-lincosamide-streptogramin resistance genes was 

found in the treated group.[121] Millan and colleagues showed that a faecal-microbiota 

transplant recipients with recurrent C. difficile infections significantly reduced the number of 

antibiotic resistance genes in the gut.[128] This was supported by Langdon and colleagues 

who demonstrated that C. difficile infection could be prevented through a microbiome-

modulating treatment.[126] 

Due to the newness of this technology, there remains a gap in information on the resistome. 

Controlled studies, such as that of Reyman and colleagues, are a first step in merging 

microbiome and resistome analysis into clinical decision-making. Indeed, clinical practice 

would benefit from the findings of studies such as these when considering alternative 

treatment options.[90] However, in populations where antibiotic use is high, such as in the 

elderly and extremely frail, performing controlled studies is much more difficult. The impact of 

frequent and poorly-targeted antibiotic use on the microbiome and resistome and the 

possibility of using metagenomic sequencing to do this must be the first approach. 
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2. METHODOLOGY AND DEVELOPMENT 

For this project, a mix of established methods and methods that required some further 

validation were utilised. Types of data collected for component of this project, as well as details 

of recruitment, data processing and statistical analysis are included in the component specific 

chapters below. This chapter presents the general methods, as well as the procedure for 

identifying, validating and solving issues with methods used throughout the thesis. 

2.1. STANDARD METHODOLOGY 

2.1.1. COLLECTION, STORAGE AND DNA EXTRACTION OF STOOL SAMPLES 

CHOICE: Stool samples (whole faeces) were refrigerated and transferred to a microbiological 

laboratory within 12 h of collection where they were stored at -80°C.[98] DNA was extracted 

from stool samples by the Australian Genome Research Facility (AGRF) following their 

standard protocols. AGRF, an organisation offering sequencing-based research services, was 

used to perform all lab processing before metagenomic sequencing for the CHOICE RCT. 

GRACE: Stool samples (whole faeces) were collected in 20-ml tubes with DNA stabilisation 

buffer (Norgen, Thorold, ON, Canada) and stored at -80C until further processed. DNA was 

extracted from stool samples internally in the Microbiome Research Laboratory, using the 

PowerLyzer PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany) following the 

manufacturer’s instructions and as previously described.[137] Blank PBS controls were 

processed and quantified with each batch of extraction to maintain quality control. 

2.1.2. 16S RRNA GENE SEQUENCING (CHOICE ONLY) 

Sequencing of 16S rRNA genes was performed by AGRF. Hypervariable V1-V3 regions of the 

bacterial 16S rRNA gene were amplified using the AmpliTaq Gold 360 master mix (Life 

Technologies Australia Pty Ltd, Mulgrave, Vic., Australia) using primers 27F (5'-

AGAGTTTGATCMTGGCTCAG-3') and 519R (5'-GWATTACCGCGGCKGCTG-3') under the 

following conditions. Samples were held at 95°C for 7 min, followed by 29 cycles of 94°C for 

45 s, 50°C for 1 min and 72°C for 1 min, then a final extension stage at 72°C for 7 min. A 

further polymerase chain reaction (PCR) for indexing amplicons was performed with TaKaRa 

Taq DNA Polymerase (Takara Bio USA, Inc., San Jose, CA, USA). The resulting amplicons 

were measured using Quant-iT PicoGreen dsDNA Assay Kits (Invitrogen, Waltham, MA, USA) 

and normalised before pooling. The equimolar pooled library was quantified by quantitative-

PCR and sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA) with 2 x 

300-bp paired-end chemistry. 
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2.1.3. SHOTGUN METAGENOMIC SEQUENCING 

Metagenomic sequencing of stool samples of sufficient DNA quality was performed by 

Macrogen Oceania (Bella Vista, NSW, Australia). DNA fragmentation of samples was 

performed with Nextera XT DNA Library Prep Kits (GRACE) or Truseq Nano DNA Library 

Prep Kits (CHOICE) (Illumina). 4  Minimum DNA required for Nextera XT metagenomic 

sequencing was 0.2 ng/l. Minimum DNA required for TruSeq metagenomic sequencing was 

1 ng/l. Samples were sequenced to a depth of 5 Gb on an Illumina Novaseq platform with 

150-bp paired-end reads. Due to the cost of metagenomic sequencing, blank controls were 

not submitted alongside sample DNA. However, Macrogen does internal quality checks when 

processing samples and provides updates to project leads when required. 

2.1.4. BIOINFORMATIC PROCESSING OF SEQUENCING DATA 

16S rRNA gene sequencing for microbiome output 
Sequences of the 16S rRNA amplicons were processed with QIIME 2 (v2.2019.4).[138] Paired 

forward and reverse sequences were imported, converted to artifacts and demultiplexed  with 

the parameters PairedEndSequencesWithQuality. Read quality was visualised, and truncation 

length was chosen based on quality of the forward and reverse reads. Sequences were 

truncated, denoised and merged using DADA2 (Read depth: med = 20,686, IQR = 

14,21227,599) with the denoise-paired option.[139] Chimeric sequences were identified and 

removed via the consensus method in DADA2. Reads were visualised using the feature-table 

summarize function and subsampling depth was chosen according to the samples with the 

lowest reads (depth = 3,969). The functions alignment mafft and phylogeny fasttree were 

executed for alpha and beta diversity measures in the following step.[140, 141] Contaminating 

mitochondrial and chloroplast sequences were filtered before alpha and beta diversity 

estimates. Alpha and beta diversities were calculated using the input filtered table, phylogeny 

rooted tree and chosen subsampling depth. Once core metrics were produced, taxonomy was 

assigned to all sequences using a feature classifier trained with SILVA v132 97% OTU 

database trimmed to the V1-V3 region of the 16S rRNA gene.[142] 

Bioinformatic processing of metagnomic sequencing data for microbiome and resistome 
output 
CHOICE: Paired-end sequences were quality filtered using Trimmomatic (v0.39) and human-

reads were removed using Bowtie (v2.3.5.1) using the NCBI human reference genome 

release GRCh38.[143, 144] Sequences were converted to fasta format using FQ2FA and 

microbiome composition data was extracted using MetaPhlAn (v3.0).[145] Contigs were 

 
4 Data used in this step was validated as described in Section 2.3.1. 
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assembled de novo using IDBA-ud (v1.1.3) and open reading frames were identified with 

MetaGeneMark (v1.0).[146, 147] Non-redundant genes were extracted using CD-HIT (v4.8.1) 

with parameters (‘-c 0.95 -aS 0.9’) to give genes with >95% identity and aligned length 

covering >90% of shorter gene, and genes <100 bp in length were removed.[148] A catalogue 

of 3,186,222 faecal genes were transcribed to amino acids using the European Molecular 

Biology Open Software Suite (EMBOSS v6.6.0).[149] Transcribed genes were mapped to 

antimicrobial resistance genes in the Comprehensive Antibiotic Resistance Database (CARD) 

using BLASTP (v2.9.0) with the parameters‘ -evalue 1e-10 -qcov_hsp_perc 99 -max_hsps 1 

-max_target_seqs 1’.[150] Alignment of non-redundant gene catalogue with human-cleaned 

reads was performed with Bowtie (v2.3.5.1).[144] Gene-length normalised read count 

calculation was performed and antimicrobial resistance gene quantification per sample was 

calculated using R (v4.1.2).[151] Gene abundance is reported as reads per kb of transcript 

per million mapped reads (rpkm). 

GRACE: Processing of metagenomic sequences for the GRACE study was performed as 

given above with some modifications5. Firstly, Prodigal was used in place of MetaGeneMark 

for identification of open reading frames due to compatibility with the available high-

performance computing environment6.[152] A catalogue of 12,209,321 genes were identified 

for GRACE. Transcribed genes were mapped to antimicrobial resistance genes in CARD 

using their Resistance Gene Identifier (RGI v5.2.1) tool with the BLAST alignment option.[153] 

Parameters were set to only include genes with a strict or perfect match in the output table. A 

generic version of the code generated for processing metagenomic-sequencing data in a 

conda environment is given in Appendix A. 

2.1.5. REPORTING OF MICROBIOME AND RESISTOME DATA 

Resistome data (metagonomic sequencing) 
Two main measures were used to characterise the resistome. Firstly, the number of unique 

antibiotic resistance genes (ARGs; i.e. simple count of the number of unique matches) 

detected in each sample was determined. This metric indicates the number of ARGs that are 

at a detectable abundance in the resistome. Secondly, the resistome was characterised using 

the total abundance (sum of the abundances for each gene detected in the sample) of 

antibiotic resistance genes present in the sample. This reflects the selection for and 

abundance of bacteria carrying ARGs in the microbiome. Resistome distribution, determined 

 
5 Some components of the bioinformatic processing of shotgun metagenomic-sequencing data were 
validated as described in Section 2.2.2. 
6 Flinders University HPC DeepThought underwent significant changes during the course of this 
project which required movement to a conda-environment-based approach to analysis. Not all 
software was compatible with this new environment. 
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by the presence or absence of antimicrobial resistance genes within a cohort, was depicted 

by Sorenson transformed data on a non-metric multidimensional scaling (nMDS) plot. 

Coordinates were generated in Primer 7 and data were visualised using in R (v4.1.2) package 

"ggplot2" (v3.3.5).[154]  

Microbiome data 
Alpha and beta diversity calculations of the microbiome were performed on both sequencing 

types: 16S rRNA gene sequencing in the CHOICE study, and for metagenomic sequencing 

output in the GRACE study. The type of diversity metrics used was the same across both 

data-types and is expanded on in this section. Alpha diversity (within-sample diversity) of the 

microbiome was estimated in four ways: (1) Pielou’s evenness (closeness in abundance of 

detected taxa, with a higher value indicating greater evenness), (2) taxa richness (number of 

unique taxa detected in the sample, with a higher number corresponding to a greater 

richness), (3) Shannon-Wiener diversity (combined richness and evenness of detected taxa, 

with a higher value indicating higher diversity), and (4) Faith’s phylogenetic diversity (diversity 

weighted according to the phylogenetic relatedness of detected taxa, where a higher value 

indicates higher phylogenetic richness). Each of these measures helps to determine the risk 

that the particular treatment or exposure poses to the microbiome: (1) a lower evenness might 

indicate the overgrowth of a particular bacteria, (2) a change in Shannon-Wiener diversity 

indicates an overall shift in microbiome composition, and (3) a reduction in taxa richness 

indicates that the abundance of some bacteria have fallen below the detection threshold. 

Beta diversity (between-sample diversity) was estimated using weighted UniFrac distance, 

which accounts for both phylogenetic relatedness and relative abundance. Here, beta diversity 

is visualised using nMDS plots. Microbiome dispersion, which describes the within-group 

variance of microbiome composition, was assessed using mean distance to centroid. 

Coordinates were generated in Primer 7 and data were visualised using R package "ggplot2". 

An additional analysis of changes in the abundance of core taxa was performed. Core taxa 

were defined as genera present in at least 80% of samples for each comparison. An 

assessment of the presence of nosocomial pathogens defined by those flagged in clinical 

practice and the ESKAPE list was performed at the genus-level.[2, 155] 

GRACE included an additional analysis of the total sum of Proteobacteria pathogens in each 

sample. 

2.2. VALIDATATION OF METHODOLOGY 

2.2.1. METAGENOMIC SEQUENCING LIBRARY PREPARATION 
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There are several methods for preparing DNA samples for sequencing, with most requiring 

high initial DNA concentrations to yield reliable results.[156] Recent developments in 

sequencing technology have allowed for samples with lower initial DNA concentrations to be 

successfully sequenced. However, these methods, such as the Nextera XT method (Illumina), 

are subject to amplification biases that may impact on identifying genes later in the 

process.[156-158] For the CHOICE study, all samples extracted were at a sufficient 

concentration to be processed using the TruSeq Nano (Illumina) library preparation method, 

suitable for samples with a higher starting concentration. GRACE, however, contained some 

samples that were not of sufficient DNA concentration for this method, and therefore all 

samples were prepared using Nextera XT. Although the two cohorts were not compared 

statistically at any point during this project, it was important to ensure the quality of the data 

would not be impacted by the use of different methods. 

Five stool samples from the GRACE study were randomly selected and sequenced using both 

the Truseq Nano and Nextera XT library preparation methods. Samples were sequenced to a 

depth of 5 Gb on an Illumina Novaseq platform with 150-bp paired-end reads. All sequences 

were processed as in the GRACE study. Microbiome and resistome outputs were compared 

for these five samples. 

Total sequences before (Figure 2.1A) and after (Figure 2.1B) the trimming step did not differ 

significantly for samples sequenced using each method as determined using a Wilcoxon 

matched-pairs signed-rank test with significance set at p < 0.05. Neither average sequence 

length post-trimmomatic (Figure 2.1C) nor percentage GC content (Figure 2.1D) differed 

significantly between methods. 
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Figure 2.1 Sequencing results for the same sample processed using the TruSeq Nano library 

preparation method and the Nextera XT library preparation method. No difference in (A) total 

raw sequences, (B) total trimmed sequences, (C) average sequence length, or (D) percent 

GC content were found between treatment groups. Bars represent median and interquartile 

range. 

Shannon-Wiener index, Pielou’s evenness, species richness and Faith’s phylogenetic 

diversity were compared between library methods using a Wilcoxon matched-pairs signed 

rank test (Figure 2.2A-D). No estimate of alpha diversity was significantly different between 

library preparations when treating samples as replicates. 
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Figure 2.2 Alpha diversity as estimated by (A) Shannon-Wiener index, (B) Pielou’s evenness, 

(C) species richness, and (D) Faith’s phylogenetic diversity do not differ significantly between 

library preparation methods. Bars represent median and interquartile range. 

Microbiome composition was also not significantly different between library preparations when 

controlling for sample ID (Figure 2.3). 
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Figure 2.3 Bray-Curtis similarity matrix data displayed as a principal coordinates (PCO) biplot 

showing the relative location of each sample compared to others on the plot. All paired 

samples clustered together regardless of library preparation method. 

Finally, measures of the resistome were assessed for significant differences between methods 

(Figure 2.4). Neither the number of genes detected, nor the total abundance of resistance 

genes, were found to differed significantly between library preparation methods. 

 

Figure 2.4 Measures of the resistome, (A) number of genes detected per sample and (B) 

total abundance of the genes in each sample were not significantly different between library 

preparation methods. Bars represent median and interquartile range. 

Therefore, it was concluded that Nextera XT was an appropriate method for library preparation 

for metagenomic sequencing. The same approach was used for the GRACE study. 
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2.2.2. ALIGNMENT OF GENE CATALOGUE TO RESISTANCE GENE DATABASE 

As above, one of the last steps in the bioinformatic processing of metagenomic sequences to 

obtain resistome data is to align the gene catalogue to CARD, the most comprehensive and 

updated ARG database currently available that covers all ARGs (i.e. not just -lactamases). 

Currently, BLASTP is used to predict AMR assignments of protein sequences from the 

metagenomic gene catalogue.[117, 132, 159, 160] However, during the analysis of the 

GRACE data, some genes of clinical importance were identified by the research team as 

appearing at a highly unusual frequency (Table 2.1). The team from CARD created the 

resistance gene identifier tool (RGI) that uses BLAST or DIAMOND alignment tools to match 

sequences to putative AMR genes, which may have provided more reliable matches.[153] 

Table 2.1 Most frequently detected, clinically important genes that were flagged as likely to 

have been identified incorrectly during the alignment step. Prevalence is reported as percent 

of the cohort where the gene was detected at least once and was generated from BLASTP 

alignment data. 

Gene Description Detection frequency with 

BLASTP (%) 

n = 164 

mefB Antibiotic efflux pump conferring resistance to 

macrolides 
100 

vanB Antibiotic target alteration gene conferring 

resistance to glycopeptides 
99 

VEB-1 Transferrable class A extended-spectrum -

lactamase conferring resistance to 

cephalosporins and monobactams 

79 

MCR-9 Mobilised colistin resistance (MCR) 

phosphoethanolamine transferase conferring 

limited resistance to colistin 

70 

CTX-M-52 Transferrable class A extended-spectrum -

lactamase conferring resistance to 

cephalosporins 

63 

rmtD2 Antibiotic target alteration gene conferring high 

resistance to all clinically available 

aminoglycosides 

43 

rmtF Antibiotic target alteration gene conferring high 

resistance to all clinically available 

aminoglycosides 

40 
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OXA-247 Transferrable carbapenemase-type variant of 

OXA-163 conferring resistance to cephalosporins 

and penicillins 

31 

qnrE2 Transferrable antibiotic target protection gene 

conferring resistance to quinolones 
27 

QnrB29 Transferrable antibiotic target protection gene 

conferring resistance to quinolones 
26 

 

To investigate the reliability of the matches that were considered clinically important, the hits 

identified by BLASTP were analysed and compared to matches from CARD’s RGI method 

using both BLAST and DIAMOND alignment tools, as follows: (1) validity of the matches 

confirmed using BLASTP, (2) matches from BLASTP compared to matches for the same 

sequences from RGI, and (3) prevalence of problematic genes determined, if they differed 

between tools. 

CARD has a listed bit score (reliability of matches) that it uses as a cutoff for a strict or loose 

match. CARD also treats a 100% sequence identity as a perfect match. BLAST output 

provides both percentage sequence identity and bit score, as well as other metrics (Table 2.2). 

Many of the genes that were identified as being present in unusually high abundance were 

deemed inaccurate using these metrics. For comparative purposes only, Table 2.2 also 

includes some examples of genes that are considered to be correctly identified. 

Next, the BLASTP output was compared with the output from RGI with BLAST and RGI with 

DIAMOND. The following parameters were chosen for the test of RGI BLAST: ‘-t protein -n 8 

‘--alignment_tool blast --local’. The same parameters were used for the test of RGI DIAMOND 

with ‘--alignment_tool diamond’ as the only modification. Other parameters which were not 

included as they had an undesired effect on the outcome were: ‘--low_quality’, which allowed 

the prediction of partial genes; and ‘--exclude_nudge’, which would have disallowed loose 

matches with a 95% or greater sequence match to be included in the output table. Table 2.3 

gives gene prevalence estimated by different identification methods for some genes deemed 

to be either correctly or incorrectly identified. 
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Table 2.2 Measures to determine the reliability of gene assignment to a sequence using the BLASTP method. Bit score cutoff and match type 

is generated by the CARD team, all other measures were extracted from the sequencing data. 

Gene Prediction 

of match 
Length of 

gene (aa) 
Hits Mean length 

of hit (aa) 
Mean % 

sequence 

identity 

Mean e 

value 
Mean bit 

score 
Bit score 

cutoff 
Match type 

CMY-2 Accurate 381 1 381 100 0 785 700 Perfect 

DHA-1 Accurate 379 1 379 100 0 774 700 Perfect 

CTX-M-15 Accurate 291 1 291 100 0 593 500 Perfect 

ErmA Accurate 243 2 243 91 6.9E-147 451 400 Strict 

CMY-87 Inaccurate 381 1 381 93 0 744 700 Strict 

CTX-M-52 Inaccurate 291 1 241 24 7.23E-12 60 500 Loose 

MCR-4 Inaccurate 541 1 188 31 1.13E-12 61 1000 Loose 

vanB Inaccurate 341 23 265 45 2.21E-12 206 650 Loose 
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Table 2.3 Gene assignment for a subset of the clinically important resistance genes to demonstrate variability between methods. All methods 

are compared with each other in a pairwise manner, as well as an assessment to determine if the match was consistent across all three. 

Gene 

sequence ID 
BLASTP hit RGI BLAST hit RGI DIAMOND hit BLASTP hit 

matches RGI 

BLAST hit 

BLASTP hit 

matches RGI 

DIAMOND hit 

RGI BLAST hit 

matches RGI 

DIAMOND hit 

All 

methods 

match 

gene1350400 CMY-2 CMY-2 CMY-2 TRUE TRUE TRUE TRUE 

gene5865120 CTX-M-15 CTX-M-15 CTX-M-15 TRUE TRUE TRUE TRUE 

gene2953700 CTX-M-24 CTX-M-24 CTX-M-24 TRUE TRUE TRUE TRUE 

gene1363125 DHA-1 DHA-1 DHA-1 TRUE TRUE TRUE TRUE 

gene8940091 ErmA ErmA ErmA TRUE TRUE TRUE TRUE 

gene2402822 vanB vanB vanB TRUE TRUE TRUE TRUE 

gene5303 vanB D-Ala-D-Ala ligase D-Ala-D-Ala ligase FALSE FALSE TRUE FALSE 

gene1538836 vanB D-Ala-D-Ala ligase D-Ala-D-Ala ligase FALSE FALSE TRUE FALSE 

gene675456 vanB D-Ala-D-Ala ligase vanD FALSE FALSE FALSE FALSE 

gene1361110 vanB vanE vanE FALSE FALSE TRUE FALSE 

gene1047299 vanB D-Ala-D-Ala ligase vanG FALSE FALSE FALSE FALSE 
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gene1090049 vanB D-Ala-D-Ala ligase vanG FALSE FALSE FALSE FALSE 

gene2016841 CMY-101 CMY-137 CMY-100 FALSE FALSE FALSE FALSE 

gene5324124 MCR-3.12 MCR-4.4 MCR-4.5 FALSE FALSE FALSE FALSE 

gene7011844 rmtF rmtF rmtF TRUE TRUE TRUE TRUE 

gene251825 VEB-1 cepA cepA FALSE FALSE TRUE FALSE 

gene8393238 VEB-1 CepA-44 cepA FALSE FALSE FALSE FALSE 

gene6029391 VEB-1 CepA-49 CepA-49 FALSE FALSE TRUE FALSE 

gene9204102 CTX-M-52 cepA CepA-49 FALSE FALSE FALSE FALSE 

gene7567187 TLA-1 cepA cepA FALSE FALSE TRUE FALSE 

gene4616126 QnrA1 QnrA6 QnrA7 FALSE FALSE FALSE FALSE 

gene6379546 QnrB11 QnrVC5 QnrC FALSE FALSE FALSE FALSE 

gene3718078 QnrB16 QnrC QnrA6 FALSE FALSE FALSE FALSE 

gene598635 rmtD2 rntD2 rmtF TRUE FALSE FALSE FALSE 

gene5770673 rmtD2 rmtD2 rmtR TRUE FALSE FALSE FALSE 
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gene219122 MCR-4.5 MCR-4.5 MCR-4.4 TRUE FALSE FALSE FALSE 
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Finally, an analysis of the differences in detection frequency of the clinically important, flagged 

genes between the alignment tools was performed (Table 2.4). 

Table 2.4 Prevalence of three genes deemed incorrectly identified (vanB, rmtF, rmtD2) and 

one correctly identified gene (ermF) obtained by three identification methods. Genes with 

single hits, such as CMY-2, CTX-M-15 (correct) and CTX-M-52 (incorrect) are not included 

as the estimated abundances would not differ between methods. Prevalence is given as the 

percentage of the cohort in which the gene was detected at least once. 

Gene Prevalence (%) 

BLASTP RGI BLAST RGI DIAMOND 

vanB 99 42 63 

rmtF 40 37 63 

rmtD2 43 57 14 

ermF 26 17 21 

 

Although there was some variability between methods, RGI BLAST was considered the most 

appropriate for the following reasons: (1) it is regularly updated with the latest nomenclature 

and is a specialty tool for antibiotic resistance analysis, (2) it identified many of the clinically 

important extended-spectrum -lactamases as cepA (or a variant of), a -lactamase found 

commonly in commensal Bacteroides which is highly prevalent in the GRACE cohort, and (3) 

it uses BLAST, which is a more commonly-used tool than DIAMOND, and, despite the longer 

run time, stands up well[161], and both provided realistic detection frequencies for the clinically 

important genes. Further investigation could usefully be made to assess the reliability of 

DIAMOND for this data set in the future. 
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3. BROAD- VERSUS NARROW-SPECTRUM ANTIBIOTICS OF 

THE SAME ACTION DIFFERENTIALLY IMPACT THE GUT 

RESISTOME IN CHILDREN 

3.1. CHAPTER SUMMARY 

Antibiotics are frequently administered to infants and children due to their susceptibility to 

infection.[78-80, 161, 162] Given the significant risks associated with antibiotic resistant 

infections, the impact of antibiotics on the development of resistance needs to be well-

characterised for this population.[81, 82] This component of the project aimed to investigate 

the impact of two different treatment options, a broad-spectrum antibiotic and a narrow-

spectrum antibiotic, on the gut resistome and acquisition of extended-spectrum -lactamases 

in children presenting with severe cellulitis to the emergency department of a Melbourne 

hospital.[89] Although the concept of broad and narrow spectrum is usually thought to reflect 

the number of possible pathogenic bacteria the antibiotic is effective against, it does not 

encompass the action of the antibiotic on non-target organisms. As such, this is where a 

metagenomic sequencing-based approach is most appropriate, and can characterise the 

impact of various antibiotic spectra on the whole microbiome. Here, antibiotics were deemed 

“broad” or “narrow” spectrum as typically classified,[89] but the analysis of their effect was not 

limited by these terms. In this way, a significantly higher diversity of antibiotic resistance genes 

in the narrow-spectrum antibiotic group than the broad-spectrum antibiotic group was 

observed, and the overall resistome composition clustered by treatment group. Analysis 

demonstrated that residual effects of systemic antibiotic use are observed in the gut resistome, 

and therefore should be considered in treatment selection, even for non-gastrointestinal 

illnesses. 

3.2. INTRODUCTION TO THE CHAPTER 

Antibiotics are the commonest drugs prescribed to children in developed countries with 

increasing use worldwide.[161, 162] By 5 years of age, up to 98% of children have received 

at least one course of antibiotics.[163-165] Although critical for the prevention and treatment 

of severe infections, overuse of antibiotics has contributed to a global crisis of antimicrobial 

resistance (AMR), and efforts to combat this in Australian children have been prioritised.[166-

170] However, antibiotics can also contribute to adverse health outcomes through the impact 

on broader bacterial populations, including through the selection of AMR,[66, 171] the 

disruption of protective commensal microbiota,[66] and the alteration of important 

developmental cues linked with non-infectious disease risks.[172-174] As a consequence, 

narrow-spectrum antibiotic treatment options, which are effective against a limited number of 

species, are promoted over broad-spectrum options, when appropriate.[175] 
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In certain clinical contexts, this strategy can conflict with measures that aim to improve patient 

outcomes by reducing the need for admission to hospital. One such strategy, the use of 

outpatient parenteral antibiotic therapy (OPAT) in place of inpatient antibiotics, is associated 

with reduced rates of hospital-acquired infections and improved quality of life measures.[176-

179] However, the requirement of a single daily dose in this model limits the range of suitable 

antibiotics. The most commonly used antibiotic for OPAT, ceftriaxone, has a broader spectrum 

than antibiotics administered in multiple doses per day, such as penicillins, that are often used 

in inpatient treatment.[176, 179] 

Ibrahim, Bryant and colleagues at the Murdoch Children’s Research Institute, Victoria, 

reported a RCT that compared clinical outcomes for children with moderate/severe cellulitis 

between those receiving short-course OPAT with ceftriaxone and short-course inpatient 

flucloxacillin.[89] Home treatment with intravenous (IV) ceftriaxone was shown to be 

equivalent clinically and more cost-effective than treatment in hospital with IV flucloxacillin, 

supporting an outpatient model becoming the standard of care for the IV treatment of 

moderate/severe cellulitis in children. 

The aim of this component of the project was to determine whether the benefits of OPAT for 

children with cellulitis are offset by greater disruption of commensal microbiology or increased 

selection of resistance carriage, compared to standard inpatient care. This chapter focused 

on the stool resistome and aimed to (1) determine the impact of antibiotics on the gut 

resistome, and 2) investigate whether acquisition of resistant bacteria is associated with 

microbiome changes. 

3.3. STATISTICAL ANALYSIS OF CHOICE RESISTOME 

Between-group resistome analysis was performed in Statistical Analysis Software (SAS) v9.04 

using a multivariate generalised linear mixed model that included adjustment for any antibiotic 

used prior to the intervention applied in the CHOICE study. Differences in overall resistome 

composition were assessed by permutational multivariate ANOVA (PERMANOVA). 

Correction for multiple hypothesis testing was performed using the Benjamini-Hochberg 

method. Summary statistics are given as mean ± standard deviation (SD) unless otherwise 

specified. The normality of dependent variables was assessed using the Shapiro-Wilk test. 

Clinical data were analysed using Fisher’s exact test for categorical data and the Mann-

Whitney U test for continuous data. 
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3.4. THE CHOICE COHORT AND INCLUSION CRITERIA FOR THIS 

STUDY 

The CHOICE study was a single-centre, open-label, randomised, controlled, non-inferiority 

trial that aimed to investigate the safety and efficacy of IV ceftriaxone (50 mg/kg once per day) 

administered at home compared to IV flucloxacillin (50 mg/kg every 6 h) in hospital for 

treatment of moderate/severe cellulitis in children.[89] Both IV ceftriaxone and IV flucloxacillin 

treatments were followed by switch to oral cephalexin per standard practice. Recruitment ran 

between January 2015 and June 2017 applying inclusion and exclusion criteria as previously 

described.[89, 180] Briefly, the inclusion criterion was moderate/severe cellulitis requiring IV 

antibiotics (e.g. due to rapid spread) and the exclusion criteria were complicated cellulitis (e.g. 

an undrained abscess), underlying comorbidities (e.g. immunosuppression), clinical instability 

or children younger than 6 months of age. Ethical approval was obtained from the Human 

Research and Ethics Committee of The Royal Children’s Hospital, Melbourne (approval no. 

HREC34254). Collection of faecal samples are described in detail in the CHOICE study.(98) 

Faecal samples were collected by participants at three time points: within 48 h of commencing 

IV antibiotics (T1), at 7-14 days (T2), and at 3 months (T3). Given that antibiotic treatments 

cannot normally be delayed, stool samples were mostly not available at a true zero time point, 

so sample collection of up to 48 h (T1) was considered to represent a baseline; a choice 

consistent with previous data.[181] 

Samples that did not have accessible sequence data were excluded from this component of 

the project. Participants who had their antibiotics changed due to lack of clinical improvement 

were excluded. Exceptions were made for inclusion in the T1 analysis where the T1 sample 

had been taken before the antibiotic treatment changed. 
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Figure 3.1. (A) Study design including time points where samples were collected and times 

at which participants were on their respective antibiotics. (B) Participation in the CHOICE 

study and subsequent gut microbiome and resistome study 

Of the 188 participants in the CHOICE study, 109 provided at least one faecal sample, and 

for 92 sufficient material was retained for microbiome analysis: 47 at T1 (0-48 h post-

antibiotics), 66 at T2 (7-14 days post-antibiotics) and 61 at T3 (3 months after antibiotics) 

(Figure 3.1). The characteristics of subjects that provided a faecal sample did not differ 

significantly from CHOICE participants who did not provide a sample (Table 3.1). 
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Table 3.1 Demographic and clinical characteristics of included participants and participants 

excluded due to unavailable sequencing data. 

 Included 

participants (n = 92) 
Excluded 

participants (n = 17)* 
P value 

Age (years), median (IQR) 4.7 (2.2-7.9) 5.6 (3.2-7.8) 0.59 

Age category, 6 months to <9 

years, no. (%) 
71 (77.2) 16 (94.1) 0.19 

Females, no. (%) 47 (51.1) 7 (41.2) 0.60 

Previous oral antibiotics, no. (%) 48 (52.2) 8 (47.1) 0.79 

Time between IV start and first 

stool collection (h), median (IQR) † 
22.0 (10.2-39.2) 22.2 (17.1-40.6) 0.49 

Duration of IV antibiotics (days), 

median (IQR) 
1.7 (1.0-2.1) 1.6 (1.0-2.3) 0.85 

Total duration of antibiotics 

(days), median (IQR) 
7.9 (6.5-9.0) 6.7 (6.0-8.4) 0.24 

*CHOICE participants who provided stools sample but for whom no sequencing data was available; † 

Excludes samples taken >48 h post IV 

Ceftriaxone (n = 50) and flucloxacillin treatment groups (n = 42) also did not differ significantly 

in their subject characteristics (Table 3.2). 

  



 

 58 

Table 3.2 Characteristics of participants with available stool data randomised to each 

treatment group. 

 Ceftriaxone (n = 50) Flucloxacillin (n = 

42) 
P value 

Age (years), median (IQR) 4.4 (1.7-10.2) 5.2 (2.4-7.0) 0.78 

Age category, 6 months to <9 years, 

no. (%) 
36 (72.0) 35 (83.3) 0.22 

Females, no. (%) 23 (46.0) 24 (57.1) 0.30 

Previous oral antibiotics, no. (%) 30 (60.0) 18 (42.9) 0.14 

Time between IV start and first stool 

collection (h), median (IQR) † 
24.3 (13.3-38.6) 22.4 (7.4-38.2) 0.38 

Duration of IV antibiotics (days), 

median (IQR) 
1.9 (1.0-2.1) 1.5 (1.0-1.8) 0.07 

Total duration of antibiotics (days), 

median (IQR) 
7.5 (6.0-9.0) 8.0 (6.8-8.9) 0.49 
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3.5. PRIOR ANTIBIOTIC USE IN THE COHORT 

Patients recruited to the CHOICE RCT were stratified by age and presence of periorbital 

cellulitis, but not prior antibiotic use.[89] As a large proportion of children received prior oral 

antibiotics with the potential for impact on their microbiome, the remainder of the analysis was 

adjusted for prior antibiotic use. Of all included participants in this microbiome study who had 

been exposed to antibiotics prior to enrolment (n = 48), 50% had received cephalexin, 27% 

flucloxacillin, 6% amoxicillin/clavulanic acid, 6% amoxicillin, 2% erythromycin, and 8% other 

or unknown antibiotics. Use of these prior oral antibiotics did not significantly differ between 

treatment groups (Table 3.3). Given the T1 stool samples representing baseline were 

collected up to 48 h after antibiotic initiation, a general linear regression model incorporating 

timing after first dose, treatment group, and prior antibiotic use was applied but it did not reveal 

any independent effect of baseline sample collection time on microbiome features (p > 0.05 

for all alpha and beta diversity metrics). Consequently, a model adjusted for prior antibiotic 

use only was applied. 

Table 3.3 Prior antibiotic use in each treatment group. 

Prior antibiotic Ceftriaxone (n = 30) 

% (n) 

Flucloxacillin (n = 18) 

% (n) 

Cephalexin 50.0 (15) 50.0 (9) 

Flucloxacillin 26.7 (8) 27.8 (5) 

Amoxicillin 3.3 (1) 11.1 (2) 

Amoxicillin and clavulanic acid 6.7 (2) 5.6 (1) 

Erythromycin 3.3 (1) 0 (0) 

Other 6.7 (2) 5.6 (1) 

Unknown 3.3 (1) 0 (0) 
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3.6. IMPACT OF ANTIBIOTICS ON TOTAL AND -LACTAM RESISTANCE 

IN THE GUT 

AMR carriage was investigated in 65 patients (38 for ceftriaxone and 27 for flucloxacillin) at 

T2. T2 samples were selected for metagnomic sequencing as it was the timepoint at which 

we expected to see a difference in resistome composition, should it occur. Samples at all 

timepoints were unable to undergo metagnomic sequencing due to financial and resource 

constraints. The number of AMR genes detected, designated AMR gene richness, was 

significantly higher in the flucloxacillin group compared to the ceftriaxone group (ceftriaxone 

261 ± 42 vs flucloxacillin 297 ± 28; p < 0.001; Figure 3.2A). No significant difference in the 

total ARG abundance was detected between treatment groups (ceftriaxone 5,390 ± 1,100 vs 

flucloxacillin 5,790 ± 1,100 rpkm; p = 0.17; Figure 3.2B). Resistome composition (estimated 

by beta diversity) also differed significantly between treatment groups (p = 0.001; Figure 3.2C). 

Dispersal of the resistome was not significantly different between groups. 

 

Figure 3.2 (A) Antibiotic resistance gene (ARG) richness was greater in the flucloxacillin 

group than the ceftriaxone group. (B) Total ARG abundance was not significantly different 

between treatment groups at T2. Bars represent mean and standard deviation. * p < 0.05. 

(C) Overall resistome composition, depicted by Sorenson transformed resistome data on a 

non-metric multidimensional scaling plot (nMDS) plot was different between treatment 

groups. Each point represents an individual’s resistome relative to others on the plot and the 

circle represents 80% confidence interval. 

Genes encoding ESBL and AmpC enzymes (identified using the Beta Lactamase Database) 

were compared between groups.[182] Of the 524 ARGs detected in the CHOICE cohort, 49 

were -lactamases and 16 were determined to be ESBL or AmpC genes (Table 3.4). Of these, 

eight genes (ampC, ampH, cepA, cfxA2, cfx6, CME-1, and VEB-6 and -7) were present in a 

sufficient number of samples for analysis, but none differed significantly in prevalence 

between treatment groups. 
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Table 3.4. Extended-spectrum -lactamases and ampC-like genes listed in the Beta 

Lactamase Database that were detected in the metagenome of stool samples at T2 by 
treatment group. 

 Ceftriaxone (n = 38) Flucloxacillin (n = 27) P value 

Gene prevalence, No. (%)    

CMY-2 5 (13.2) 2 (7.4) NA 

ampC1 29 (76.3) 22 (81.5) 0.68 

ampH 20 (52.6) 20 (74.1) 0.08 

ACI-1 3 (7.9) 3 (11.1) NA 

CARB-10 1 (2.6) 0 (0) NA 

cepA 16 (42.1) 18 (66.7) 0.05 

cfxA2 20 (52.6) 16 (59.3) 0.49 

cfxA4 4 (10.5) 0 (0) NA 

cfxA6 26 (68.4) 21 (77.8) 0.39 

CGA-1 1 (2.6) 2 (7.4) NA 

CME-1 8 (21.1) 9 (33.3) 0.25 

CTX-M-15 2 (5.3) 1 (3.7) NA 

CTX-M-27 2 (5.3) 2 (7.4) NA 

OXY-1-2 2 (5.3) 5 (18.5) NA 

VEB-6 30 (79.0) 23 (85.2) 0.51 

VEB-7 8 (21.1) 8 (29.6) 0.37 

NA, not applicable 
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3.7. ACQUIRED EXTENDED-SPECTRUM -LACTAMASE GENES IN THE 

GUT RESISTOME 

Presence of ESBL-producing bacteria were determined with a culture-based approach as 

previously described.[89] An ESBL-producing strain was defined as acquired if the patient had 

an available prior time point sample that was negative. This included eight participants, three 

of whom had acquired an ESBL by T2 (3 for ceftriaxone and none for flucloxacillin) and five 

by T3 (2 for ceftriaxone and 3 for flucloxacillin). A comparison of the microbiome of those who 

had acquired an ESBL with age-, time point-, and treatment-matched controls was made to 

determine if there was a difference in microbiome composition. There was no significant 

differences in any estimates of alpha or beta diversity between ESBL-positive samples and 

ESBL-negative controls. (Figure 3.3A-E). There was also no significant differences in copies 

of E. coli, a bacterial species frequently associated with ESBL carriage and whose genus was 

frequently detected in the cohort (Figure 3.3F). 
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Figure 3.3 Alpha diversity as estimated by (A) Pielou’s evenness, (B) Shannon-Wiener 

diversity, (C) Faith’s phylogenetic diversity and (D) richness was not significantly different 

between extended-spectrum -lactamase (ESBL) positive samples and negative age- and 

treatment-matched controls. Bars represent the mean and standard deviation of each group. 

(E) Microbiome composition depicted by weighted UniFrac distance of genus-level relative 

abundance data on a non-metric multidimensional scaling plot (nMDS) for ESBL positive case 

samples compared to negative controls. (F) Copies of E. coli in ESBL positive samples 

compared to negative controls. The dotted line represents the detection limit and bars 

represent the median and 95% confidence interval. 

To investigate whether the microbiome characteristics of the sample preceding the acquisition 

of an ESBL had useful predicative value, a comparison was made of the sample prior to ESBL 

acquisition to age-, time point-, and treatment-matched controls where no ESBL was 

subsequently detected. No statistically significant differences were observed between ESBL-

acquirers and controls. However, a trend towards a lower evenness (ESBL 0.74 ± 0.09 vs 

control 0.79 ± 0.08; p = 0.17), and Shannon-Wiener diversity (ESBL 5.3 ± 1.1 vs control 5.9 
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 ±1.1; p = 0.35) was found in the prior-samples for those who acquired an ESBL compared to 

those who did not (Figure 3.4A-D). Neither microbiome composition, (p = 0.86, Figure 3.4E) 

nor E. coli absolute abundance (Figure 3.4F) differed significantly between groups. 

 

Figure 3.4. Alpha diversity as estimated by (A) Pielou’s evenness, (B) Shannon-Wiener 

diversity, (C) Faith’s phylogenetic diversity, and (D) richness was not significantly different 

between prior-to-extended-spectrum -lactamase (ESBL)-acquired samples and negative 

age- and treatment-matched controls. Bars represent the mean and standard deviation of 

each group. (E) Microbiome composition depicted by weighted UniFrac distance of genus-

level relative abundance data on a non-metric multidimensional scaling plot (nMDS) for 

between prior-to-ESBL-acquired samples compared to negative controls. (F) Copies of 

Escherichia coli in between prior-to-ESBL-acquired samples compared to negative controls. 

The dotted line represents the detection limit and bars represent the median and 95% 

confidence interval. 
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Microbiota characteristics of T1 samples where ESBLs were detected at T2, and T2 samples 

where ESBLs were detected at T3 were also compared. Although, Shannon-Wiener diversity 

and evenness trended lower in the time point prior to ESBL acquisition, this did not achieve 

statistical significance (Figure 3.5A-E). There was no significant difference in the absolute 

abundance of E. coli between the ESBL-positive samples and the sample prior (Figure 3.5F). 

 

Figure 3.5 Alpha diversity as estimated by (A) Pielou’s evenness, (B) Shannon-Wiener 

diversity, (C) Faith’s phylogenetic diversity and (D) richness was not significantly different 

between extended-spectrum -lactamase (ESBL) positive samples and the sample collected 

prior to the positive culture result. (E) Copies of Escherichia coli in the sample prior to and 

the sample with an ESBL-positive culture result. The dotted line represents the detection 

limit. (F) non-metric multidimensional scaling plot (nMDS) plot depicting the change in 

microbiome composition between the sample prior to and the sample with an ESBL-positive 

culture result. Paired samples are the same colour with connecting lines. 
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Finally, the possible genotype of the acquired ESBLs was investigated. As described above, 

all -lactamase genes were screened for ESBL or AmpC candidacy (Figure 3.5).[182] Of the 

21 -lactamase genes detected in these samples, 11 were ESBL or AmpC genes and possible 

candidates for the phenotype detected in culture (ACI-1, AmpC1, AmpH, CepA, CIA-3, CME-

1, and VEB-1, -2, -6, -7 and -9). 

 

Figure 3.6 Possible genes conferring the extended-spectrum -lactamases (ESBL) 

phenotype in samples that acquired an ESBL during the study period. 

3.8. INTERPRETATION OF FINDINGS 

In summary, overall resistome composition was significantly different between the two 

treatment groups, and a higher ARG richness was found in the flucloxacillin group compared 

to the ceftriaxone group. No statistically significant relationships between the microbiome and 

ESBL carriage/acquisition were detected. 

Penicillin use has previously been linked with an increased gastrointestinal ARG 

richness.[183] However, this finding was from a study involving only a single child, and the 

effect observed was not compared to that of other antibiotics. In the current analysis, it is likely 

that the difference in resistome composition and ARG richness reflected the relative selective 

pressures exerted by the two antibiotics, as determined by their spectra of activity. In addition, 

third-generation cephalosporins have been found to be associated with the acquisition of -

lactam resistance.[61, 184] No significant intergroup difference in ESBL-producing bacteria 

was found in the culture component of the original RCT, nor was a greater detection of 

transmissible -lactam resistance genes in the sequencing analysis of the current study. As 

suggested for the RCT, this finding may be due to a lack of sufficient statistical power 

(insufficient experimental units) in relation to what is a relatively rare event, as well as 

differences in this study population compared to the previous report.[89] 
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Additional analysis was performed to determine whether microbiome composition predicted 

ESBL carriage or acquisition by ESBL-producing bacteria. Although not of sufficient statistical 

power to draw significant conclusions, a non-significant association between ESBL-positive 

samples the abundance of E. coli was observed with positive samples having a greater 

abundance than negative controls. Samples from the same patient collected prior to the ESBL-

positive sample did not have a statistically significant difference in microbiome composition. 

As shown previously, depletion of the microbiome can be associated with susceptibility to 

acquisition of multidrug resistant organisms.[66, 67] In this component of the project, 

microbiome depletion in the sample prior to culture-based detection of an ESBL in the stool 

might indicate an increased susceptibility to colonisation or an expansion of pathogens already 

present at low levels in the gut. Further investigation with a cohort large enough have sufficient 

statistical power is needed to confidently assess this relationship, as would be needed for 

comparisons with changes in the microbiome as addressed in Chapter 4. 
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4. GUT MICROBIOME IS TRANSIENTLY IMPACTED BY -

LACTAM ANTIBIOTICS IN CHILDREN WITH CELLULITIS 

4.1. CHAPTER SUMMARY 

Ensuring limited disruption to the infant and childhood microbiome has been shown to be 

important for a healthy immune development and disease prevention.[84, 85, 88] Therefore, 

in addition to determining the effect of each treatment on the selection for antimicrobial 

resistance, it is also important to ascertain how the microbiome composition would be affected. 

In Chapter 3, it was shown that two antibiotic treatments for paediatric cellulitis had differential 

effects on the gut resistome, which were likely reflective of changes to the microbiome. Using 

16S rRNA gene amplicon sequencing, the broad-spectrum treatment was observed to have 

significantly reduced species richness at T2 (7-14 days post-IV antibiotic) compared to the 

narrow-spectrum group. Evidence of microbiome recovery in the ceftriaxone group, with 

several diversity estimates significantly increasing by the T3 (3 months post-antibiotic) was 

also shown. Levels of E. coli significantly changed in the flucloxacillin group over the study 

period, and antibiotic treatment had a significant impact on the core members of the 

microbiome when comparing both between and within groups. However, the observed 

changes to the microbiome in both groups were transient, possibly due to the plasticity of the 

microbiome, which has been reported for healthy adults.[103, 185] 

4.2. INTRODUCTION TO THE CHAPTER 

Chapter 3 outlined the rationale and the goals of the CHOICE RCT as well as the aims for the 

CHOICE substudy undertaken in this project, so these are not repeated here. This component 

of the project focused on the stool microbiome and aimed to compare the longitudinal effects 

of a broad-spectrum and a narrow-spectrum antibiotic on the gut microbiome in children. 

4.3. STATISTICAL ANALYSIS OF CHOICE MICROBIOME 

Within-group and between-group microbiome analysis was performed in SAS using a 

multivariate generalised linear mixed model that included adjustment for any antibiotic used 

prior to the study intervention. Differences in beta diversity were assessed by permutational 

multivariate ANOVA (PERMANOVA), which evaluates differences in the distribution of the 

microbiome between groups. Correction for multiple hypothesis testing was performed using 

the Benjamini-Hochberg method. Summary statistics are given as mean ± SD is unless 

otherwise specified. Statistical significance is set at p < 0.05. 
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4.4. IMPACT OF DIFFERENT ANTIBIOTICS ON THE GUT MICROBIOME 

OVER TIME 

Analysis of the gut microbiome composition of patients randomised to receive either narrow-

spectrum flucloxacillin or broad-spectrum ceftriaxone was performed at and between each 

time point. At T1 (24 samples for ceftriaxone and 23 for flucloxacillin), treatment group was 

not significantly associated with differences in alpha diversity (p > 0.05; Figure 4.1A-D). This 

was consistent with expectations because samples had been taken within the first 48 h after 

IV antibiotic initiation. Although beta diversity was not significantly different, dispersion (a 

measure of the within-group variation in microbiome composition) was significantly greater in 

the ceftriaxone group compared to the flucloxacillin group (ceftriaxone 1.0 ± 0.7 vs 

flucloxacillin 0.5 ± 0.3; p = 0.01, Figure 4.1E), which is likely to be indicative of an early 

differential impact. 
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Figure 4.1 Alpha diversity between groups at each time point as estimated by (A) Pielou’s  

evenness, (B) Shannon-Wiener diversity, (C) Faith’s phylogenetic diversity and (D) richness. 

Overall microbiome composition between groups depicted by weighted UniFrac distance of 

genus-level relative abundance data on a non-metric multidimensional scaling plot (nMDS) 

at (E) T1, (F) T2, and (G) T3. Each point represents an individual’s microbiome relative to 

others on the plot and the circle represents 80% confidence interval. (H) Escherichia relative 

abundance between treatment groups at each time point. Bars represent mean and SD. * p 

< 0.05. 
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At T2, IV treatment had ceased for both groups, and patients had received at least 5 days of 

oral cephalexin. Forty-five of those who provided stool samples at T2 had available 16S 

sequencing data for microbiome analysis (27 for ceftriaxone and 18 for flucloxacillin). Between 

T1 and T2, no significant changes in microbiome composition were observed in either 

treatment group (Figure 4.1A-D). 

These findings are supported by the direct comparison between the groups at T2. There was 

no significant intergroup difference in evenness, Shannon-Wiener diversity or Faith’s 

phylogenetic diversity (Figure 4.1A-C). Only richness was significantly lower in the ceftriaxone 

group compared to the flucloxacillin group (flucloxacillin 252 ± 78 vs ceftriaxone 191 ± 94; p = 

0.046; Figure 4.1D). Beta diversity and dispersal were not significantly different between 

treatment groups at T2 (Figure 4.1F). 

At T3, participants had completed their antibiotic course and had not received antibiotics for 

at least 10 weeks. Sixty participants provided stool samples at T3 (34 ceftriaxone and 26 

flucloxacillin). By this time, there was no difference between treatment groups in alpha or beta 

diversity (Figure 4.1A-D,G). The difference in richness observed between groups at T2 was 

no longer present. 

No significant changes to alpha or beta diversity were observed between T2 and T3 within the 

flucloxacillin treatment group (Figure 4.1A-D). However, within the ceftriaxone group, 

evenness increased significantly (T2 0.76 ± 0.11 vs T3 0.83 ± 0.1; p = 0.012), as did Shannon-

Wiener diversity (T2 5.6 ± 1.2 vs T3 6.5 ± 1.1; p = 0.013) and richness (T2 183 ± 99 vs T3 

232 ± 104; p = 0.041). There were no significant changes in Faith’s phylogenetic diversity or 

beta diversity within the ceftriaxone group. 

Finally, no significant differences in alpha or beta diversity between T1 and T3 were observed 

within the flucloxacillin group. Within the ceftriaxone group, evenness increased significantly 

between T1 and T3 (n = 20; T1 0.75 ± 0.09 vs T3 0.81 ± 0.1; p = 0.028), but there were no 

significant changes in any other estimate of alpha diversity. There were also no significant 

changes in beta diversity within the ceftriaxone group. 

4.5. IMPACT OF DIFFERENT ANTIBIOTICS ON RELATIVE ABUNDANCE 

OF CORE ENTERIC GENERA OVER TIME 

Core genera present at and between each time point were analysed for changes in relative 

abundance. At T1, seven genera met the criteria to be classed as core and were analysed for 

intergroup differences (Bacteroides, Blautia, Erysipelatoclostridium, Faecalibacterium, 

unclassified Lachnospiraceae, uncultured Peptostreptococcaceae and Streptococcus). There 

were no significant differences in relative abundance within samples between treatment 

groups (all p > 0.05). 
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At T2, six genera were identified as core (Bacteroides, Blautia, Faecalibacterium, unclassified 

Lachnospiraceae, uncultured Peptostreptococcaceae and Streptococcus). 

Erysipelatoclostridium did not meet the criteria at T2 and so was not analysed at this time 

point. Direct comparison between the treatment groups at T2 showed that only the relative 

abundance of unclassified Lachnospiraceae differed, being higher in the ceftriaxone group 

(0.05 ± 0.05) compared to the flucloxacillin group (0.04 ± 0.03). However, after correction for 

multiple comparisons this was not statistically significant (p = 0.24). Between T1 and T2, there 

were no significant changes in the relative abundance of core genera in either treatment group. 

At T3, 11 genera were identified as being core members of the microbiome: Anaerostipes, 

Bacteroides, Blautia, Clostridium (sensu stricto 1), Faecalibacterium, Fusicatenibacter, 

unclassified Lachnospiraceae, uncultured Peptostreptococcaceae, Ruminococcus torques 

group, Streptococcus and Subdoligranulum. Anaerostipes, Clostridium (sensu stricto 1), 

Fusicatenibacter, Ruminococcus torques group and Subdoligranulum were included as they 

met the criterion for core genera at this time point. Direct comparison between the treatment 

groups at T3 showed no differences in genera relative abundance (all p > 0.05). 

No changes in the relative abundance of core genera were identified between T2 and T3 for 

either treatment group. Additionally, no changes were observed within the flucloxacillin group 

between T1 and T3. However, between T1 and T3, there was a significant increase in the 

relative abundance of Clostridium (sensu stricto 1) (T1: 0.007 ± 0.02; T3: 0.05 ± 0.08; p = 

0.025) within the ceftriaxone group. No other significant changes in the ceftriaxone group were 

observed between T1 and T3. 

4.6. IMPACT OF ANTIBIOTICS ON DETECTION OF SPECIFIC ENTERIC 

PATHOGENS OVER TIME 

To determine whether antibiotics caused reduction or enabled the expansion of pathogenic 

bacteria within the gut microbiota, the relative abundance of eight enteric genera. was 

assessed (Table 4.1). At T1, Escherichia, Klebsiella, Citrobacter, Enterobacter, 

Pseudomonas, Enterococcus and Staphylococcus, but not Acinetobacter were detected in 

stool samples. Escherichia was the only genera detected in a sufficient number of samples to 

be tested statistically at any time point and its relative abundance did not differ significantly 

between treatment groups at T1 (Figure 4.1H). 
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Table 4.1 Prevalence of potential pathogens throughout the study period. 

Pathogen T1 

N (%) 

T2 

N (%) 

T3 

N (%) 

 Ceftriaxone 

n = 24 

Flucloxacillin 

n = 23 

Ceftriaxone 

n = 27 

Flucloxacillin 

n = 18 

Ceftriaxone 

n = 34 

Flucloxacillin 

n = 26 

Escherichia 17 (70.8) 17 (73.9) 12 (44.4) 12 (66.7) 20 (58.8) 11 (42.3) 

Klebsiella 2 (8.3) 3 (13.0) 1 (3.7) 2 (11.1) 0 (0) 1 (3.9) 

Citrobacter 0 (0) 2 (8.7) 1 (3.7) 0 (0) 1 (2.9) 0 (0) 

Enterobacter 4 (16.7) 2 (8.7) 1 (3.7) 0 (0) 2 (5.9) 0 (0) 

Pseudomonas 0 (0) 1 (4.4) 0 (0) 0 (0) 0 (0) 0 (0) 

Enterococcus 5 (20.8) 1 (4.4) 9 (33.3) 4 (22.2) 0 (0) 0 (0) 

Staphylococcus 2 (8.3) 0 (0) 0 (0) 0 (0) 1 (2.9) 0 (0) 
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At T2, Escherichia, Klebsiella, Citrobacter, Enterobacter and Enterococcus were detected in 

the stool samples, but not Acinetobacter, Pseudomonas and Staphylococcus. Direct 

comparison between the treatment groups at T2 revealed no differences in the relative 

abundance of Escherichia. Between T1 and T2, the relative abundance of Escherichia did not 

significantly change in either of the treatment groups (Figure 4.1H). 

At T3, Escherichia, Klebsiella, Citrobacter, Enterobacter and Staphylococcus were detected 

in the stool samples, but not Acinetobacter, Pseudomonas and Enterococcus. Direct 

comparison between the treatment groups at T3 showed no differences in Escherichia relative 

abundance (Figure 4.1H). 

Between T2 and T3, no significant changes in Escherichia were observed within either 

treatment group. However, within the flucloxacillin group, Escherichia significantly decreased 

in relative abundance between T1 and T3 (T1 0.11 ± 0.17 vs T3 0.002 ± 0.004; p = 0.048) 

(Figure 4.1H). Relative abundance of Escherichia did not change significantly in the 

ceftriaxone group between T1 and T3. 

4.7. LONGITUDINAL EFFECTS OF EITHER ANTIBIOTIC ON THE STOOL 

MICROBIOME 

To investigate the impact of any antibiotic treatment for moderate-severe cellulitis on the stool 

microbiome of children, a small longitudinal sub-analysis was performed where samples were 

not split into treatment groups. No estimates of alpha diversity were significantly different 

between samples from any treatment group at T1 and T2 (p > 0.05, n = 29, Figure 4.2A-D). 

Beta diversity was also not significantly different between T1 and T2 (p = 0.80). Between T2 

and T3, evenness (T2 0.77  0.11 vs T3 0.84 ± 0.09; p = 0.003) and Shannon diversity (T2 

5.6 ± 1.2 vs T3 6.6 ± 1.0; p = 0.01) significantly increased but Faith’s phylogenetic diversity 

and richness did not significantly change (n = 35). Beta diversity was not significantly different 

between T2 and T3 (p = 0.21). Evenness significantly increased between T1 and T3 (T1 0.77 

 ±0.09 vs T3 0.83 ± 0.09; p = 0.005), but no other estimate of alpha diversity changed 

significantly between these time points (n = 32). Beta diversity was not significantly different 

between T1 and T3 (p = 0.35). 
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Figure 4.2 Changes in alpha diversity for all samples over the study period as estimated by 

(A) Pielou’s evenness, (B) Shannon-Wiener diversity, (C) Faith’s phylogenetic diversity and 

(D) richness. (E) Change in Escherichia relative abundance for all samples over the study 

period. * p < 0.05. 

Core taxa present in at least 80% of all samples were assessed for changes in relative 

abundance over time. There was no significant change in core taxa between T1 and T2 or T2 

and T3. Between T1 and T3, Anaerostipes (T1 0.02 ± 0.05 vs T3 0.07 ± 0.07; p = 0.002) and 

Blautia (T1 0.14 ± 0.18 vs T3 0.20 ± 0.13; p = 0.007) significantly increased in abundance. No 

other taxa significantly changed in relative abundance between T1 and T3. Escherichia 

significantly decreased in relative abundance between T1 and T2 (T1 0.08 ± 0.14 vs T2 0.01 

 ±0.03; p = 0.031) and T1 and T3 (T1 0.06 ± 0.14 vs T3 0.004 ± 0.02; p = 0.01) but did not 

significantly change in relative abundance between T2 and T3 (Figure 4.2E). 
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4.8. INTERPRETATION OF FINDINGS 

Most notably, a decrease in microbiota richness was recorded 7-14 days after the initiation of 

IV antibiotics, and a reduction in the relative abundance of unclassified members of the 

Lachnospiraceae family in the ceftriaxone group. A difference in microbiome dispersal 

between groups at T1 was also observed, most likely due to the combination of prior antibiotics 

and initiation of IV treatment, although prior antibiotic use was not different between treatment 

groups. These intergroup differences in microbiota composition had resolved by 3 months 

after the commencement of the IV treatment (T3) when compared to T1 and T2 time points. 

Within the ceftriaxone group, there was also a clear increase in evenness, Shannon-Wiener 

diversity and richness between T2 and T3. An increase in the relative abundance of 

commensal clostridium and microbiome evenness was also seen in the ceftriaxone group 

between T1 and T3. 

In this substudy, it was found that any antibiotic-induced changes to the microbiome 

composition were transient and were resolved by 3 months post treatment. Despite some early 

differences in composition between treatment groups, it was found that the evenness, 

richness, and diversity of the microbiome in the ceftriaxone group was restored between T2 

and T3. This differs to the findings of a recent study in neonates, which revealed that 

randomised treatment with broad-spectrum antibiotics for suspected early-onset neonatal 

sepsis significantly impacted the microbiome even up to 12 months post treatment compared 

to untreated controls.[90] There are several notable differences in the current study: (1) the 

participants were significantly older children (≥ 6 months of age), (2) antibiotic treatments with 

different spectrums were compared rather than making a comparison with a untreated control 

group, and (3) the RCT included consideration of the benefits of at-home treatment compared 

to hospital treatment. However, both studies highlight the importance of antimicrobial 

stewardship when considering treatment options for paediatric conditions. 

Some differences were identified in the relative abundance of core genera between and within 

treatment groups during the study period. Lachnospiraceae is a family of bacteria that contains 

many beneficial microbes, including Anaerostipes, Faecalibacterium, Blautia and 

Roseburia.[186] Many of the Lachnospiraceae that differed in abundance between treatment 

groups are currently unclassified, however, this family contributes to essential production of 

short chain fatty acids and has been shown to be important for bioavailability of nutrients and 

regulation of local inflammation.[186] In contrast, this family has also been associated with 

impaired glucose metabolism and the potential onset of prediabetes in children.[187] In this 

study, unclassified Lachnospiraceae were significantly greater in relative abundance in the 

ceftriaxone treatment group at T2 but not at T3. Given that this difference was transient, it is 
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not suspected to indicate a substantial risk. Clostridium (sensu stricto 1) was observed to 

increase in relative abundance between T1 and T3 only within the ceftriaxone group. 

Clostridium (sensu stricto 1) has previously been shown to increase with age and appears to 

be essential for modulating gut homeostasis during the entire lifespan.[188] Consequently, it 

was reassuring to see that the levels of this bacteria were restored by 3 months post treatment. 

Use of broad-spectrum antibiotics has been found to be associated with a higher risk of acute 

infection,[66, 189] due to a reduction in competitive exclusion, a phenomenon whereby 

commensal species prevent the expansion of pathogen populations by out-competing them 

for resources.[60] Given the observed reduction of alpha diversity between both treatment 

groups, the abundance of genera that contained common pathogens (including Escherichia, 

Citrobacter and the ESKAPE pathogens) were investigated at each time point. Most pathogen-

containing genera were detected at a low frequency across all samples for all time points and 

only Escherichia was detected frequently enough to be a focus for fuller investigation. 

However, this investigation did not reveal any significant differences in abundance of 

Escherichia between treatment groups at any time point. 

Both standard and OPAT therapies were found to be associated with significant, within-group, 

changes in microbiome characteristics. In the ceftriaxone treatment group, evenness 

significantly increased between T1 and T3. Within the flucloxacillin group, levels of Escherichia 

significantly decreased between T1 and T3. Changes in the levels of Escherichia in the 

flucloxacillin group between T1 and T3 most likely resulted from natural resistance to this 

antibiotic. Importantly, microbiome recovery from antibiotic treatment was found at 3 months 

post-therapy in both groups. This finding aligns with previous studies in adults that found that 

the microbiome can recover from antibiotic treatment in as little as 2-6 weeks.[103, 185] Given 

clinical concern regarding the potential long-term impact of these antibiotics on the gut 

microbiome,[172-174] it is encouraging that this was also found in a cohort of children. 
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5. ANTIMICROBIAL USE PATTERNS IMPACT THE STOOL 

RESISTOME OF RESIDENTS OF AGED-CARE FACILITIES 

5.1. CHAPTER SUMMARY 

Both young children and elderly people have a high risk of infection and the consequences of 

treatment failure due to an immature or weaker immune system, microbiome instability and 

high frequency of antibiotic use.[75-77] After looking at the impact of antibiotic exposure in 

children, investigating the same effect in those at the other end of the spectrum was the next 

step. Specially, those in residential aged-care facilities who experience multiple exposures 

may be at an even higher risk of AMR and antibiotic treatment failure.  

The GRACE study was set up to investigate how the residential aged-care environment 

influenced the risk of AMR transmission and carriage. This analysis specifically focused on 

how antibiotic use patterns contributed to this effect. Viable stool samples were collected from 

204 participants who consented to join the GRACE study. Of these, antibiotic use data was 

able to be obtained from the PBS for the 12 months prior to stool sample collection for 164 

participants who had provided a stool sample and for whom PBS data was available and 

consent had been given for access. Shotgun metagenomic sequencing was performed on all 

available samples and sequences were mapped to the comprehensive antibiotic resistance 

database (CARD) to generate a table of resistance genes.  

Antibiotics had been administered at least once for 61% of the cohort, with cephalosporins 

and penicillins the most common (n = 53 and 55, respectively). Antibiotic use was 

characterised in five ways: (1) number of times exposed, (2) days since most recent antibiotic, 

(3) total days exposed to antibiotics, (4) number of unique antibiotic classes given, and (5) 

type of antibiotic received. All measures of antibiotic use significantly impacted the total 

abundance of ARGs, but none significantly impacted the number of unique ARGs. Doxycycline 

had a significant impact, not only on its own resistance profile, but also on other resistance 

profiles.  

This component of the project demonstrated that antibiotic use has a significant impact on the 

resistome in permanent residents of aged-care facilities and extends beyond that of the 

antibiotic taken at the time. 
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5.2. INTRODUCTION TO THE CHAPTER 

Over 190,000 people reside in aged-care facilities in Australia.[190] They are among the most 

frail individuals in the Australian society, share a close space, often using the same dining and 

bathroom facilities, frequently attend hospital and are prescribed antibiotics at a much higher 

rate than the rest of the country.[2] According to data from the aged-care national antimicrobial 

prescribing survey (acNAPs), antibiotic stewardship has scope for improvement, with one in 

six prescriptions of antibiotics being written for "per resident need" and 20% of prescriptions 

indicating they are for prophylaxis, despite antibiotics rarely being recommended for this 

purpose.[4] Adding to their already heightened risk of the consequences of treatment failure, 

this population also experiences a high incidence of skin, respiratory and urinary tract 

infections.[4, 76, 96] Several studies have investigated the rates of carriage for multidrug 

resistant organisms (MDROs), such as ESBL, MRSA, VRE and CPE, in older people, both 

within and outside of aged-care facilities.[5, 191-194] However, all have used culture-based 

approaches and many have investigated these organisms during or after an infection. Those 

who have applied sequencing to their analysis usually perform whole genome sequencing on 

a MDRO that has been involved in an outbreak.[6-10] None of these studies consider that the 

gene causing the resistance might be present in other organisms that are not actively involved 

in an infection, but still pose a high risk to the individual. The GRACE study aimed to apply a 

metagenomic sequencing approach to assess the risk factors for antimicrobial resistance 

carriage in this high-risk population. The primary outcome of the component of GRACE 

analysis allocated to this project was to investigate how antibiotic use patterns in a cohort of 

aged-care residents in a multi-exposure environment was associated with two measures of 

the resistome: (1) number of unique antibiotic ARGs detected in the sample, and (2) total 

abundance of the ARGs detected in the sample. 

  



 

 80 

5.3. STATISTICAL ANALYSIS OF GRACE RESISTOME 

All statistical analysis was performed in SAS. Normal distribution of both number of unique 

ARGs and total abundance of ARGs was tested using the SAS procedure PROC 

UNIVARIATE. Number of unique ARGs was categorised into quartiles using the SAS 

procedure PROC RANK. Total abundance of ARGs was also categorised by first assigning a 

value below or equal to 900 (median of the peak in the histogram) as 0 and then assigning 

the remaining values 1 to 3 using PROC RANK. Days since most recent administering of an 

antibiotic was categorised into four groups: (1) not administered, (2) administered ≥180 days 

prior, 3) administered <180 to >30 days prior, and 4) administered ≤30 days prior. Total days 

exposed to antibiotics was estimated using the anatomical therapeutic chemical code defined 

daily dose (ATC/DDD) toolkit provided by the WHO[195] and grouped in to four categories: 

(1) no antibiotic exposure, (2) ≤ 15 days exposure in the 12 months prior to stool sample 

collection, (3) > 15 to < 90 days exposure, and 4) ≥ 90 days exposure. Ordinal logistic 

regression (SAS procedure PROC LOGISTIC) was used to determine the impact of each 

antibiotic use variable on the two ordinal resistome variables. Multiple comparisons underwent 

correction using the Benjamini-Hochberg method with an FDR rate of 5%. Statistical 

significance was set at p < 0.05. The data were visualised using R (v4.1.2) package "ggplot2" 

(v3.3.5). 

5.4. INTRODUCTION TO THE GRACE COHORT 

Five aged-care facilities were included in the study with these being run by three consenting 

not-for-profit, aged-care providers. All current residents of these facilities were assessed for 

eligibility (n = 403). Of these, 344 were eligible and approached to participate, and 279 

consented to join the study (Figure 5.1). A usable stool sample was provided by 204 

participants and 228 participants consented to the use of their Pharmaceutical Benefits 

Scheme (PBS) history.[196] Full details of the variables assessed in the GRACE study and a 

summary of the data collected are presented in the 2021 GRACE study report (Appendix B). 

In addition, a comparison between the GRACE cohort and the national data from a subset of 

the Registry of Senior Australians was performed to demonstrate that the GRACE cohort was 

representative of the residential aged-care population in Australia (Appendix C). 
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Figure 5.1 Recruitment to the GRACE study and inclusion in final analysis. *data do not 

include Site 1 due to a change in research nurse and recording protocols. 

Analysis of 164 participants who provided stool samples and for whom PBS data was available 

was performed to investigate the impact of antibiotic use patterns on the resistome and 

microbiome of aged-care residents. A summary of their baseline characteristics is given in 

Table 5.1. This cohort was mostly female with a median age of 88 years. They had been living 

in their current facility for a median of 703 days and had a median of five comorbidities as 

classified by the Rx-Risk method.[197] 
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Table 5.1 Clinical features of the GRACE participants (n = 164) included in the final analysis. 

Characteristic Value 

Age (years), median (95% CI) 88 (87-90) 

Time in care (days), median (95% CI) 703 (570-861) 

Sex, n (%)  

Male 46 (28) 

Female 118 (72) 

Site, n (%)  

1 12 (7) 

2 13 (8) 

3 87 (53) 

4 26 (16) 

5 26 (16) 

Number of Rx-Risk comorbidities, median (95% CI) 5 (4-6) 

Hospital admissions, median (95% CI)* 0 (0-0) 

* data on hospital admissions was missing for 6% of the cohort. 

5.5. ANTIBIOTIC USE PATTERNS PRIOR TO SAMPLE COLLECTION 

For the purpose of this analysis, an antibiotic-use event was defined prior to analysis to 

represent the dispensing of an antibiotic for an unknown infectious indication. Antibiotic use 

was considered in five main categories: (1) number of antibiotic use events, (2) days since 

last antibiotic, (3) total number of days exposed to antibiotics, (4) number of unique antibiotic 

classes administered, and (5) the type of antibiotic used (Figure 5.2). 
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Figure 5.2 History of antibiotic use (circles) for each participant in the GRACE study up to 

12 months prior to stool sample collection (triangle) (▲). Each row represents one participant. 

The length of the line represents the time between the most recent antibiotic use and stool 

sample collection. 

Of the 164 included participants, 61% (n = 100) had received at least one antibiotic in the 12 

months prior to collection. In total, 704 records of antibiotic dispensing were identified in this 

time frame, including 20 unique antibiotics. A median of four (IQR 1-8) antibiotics were 

administered per participant. Of those who received antibiotics, 66% (n = 66) of participants 

had received two or more unique antibiotics during the 12 months prior to sample collection, 

with the median of 2 (IQR 1-3) antibiotics. The median time between stool sample collection 

and the most recent antibiotic used was 62 (IQR 22-129) days. Of those who received at least 

one antibiotic in the 12 months prior to sample collection, the median number of days exposed 

to antibiotics (calculated using the ATC/DDD toolkit [196]) was 20 (IQR 6-48) days. Cephalexin 
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was the most commonly administered antibiotic among those who had received antibiotics, 

with 50% (n = 50) having at least one dose of cephalexin. This was followed by amoxicillin 

and clavulanic acid (40%, n = 40), amoxicillin (30%, n = 30), trimethoprim (29%, n = 29) and 

doxycycline (21%, n = 21). For analysis of resistome data, antibiotic use was also categorised 

based on their parent classes. Penicillins (55%, n = 55) and cephalosporins (53%, n = 53) 

were the most dispensed antibiotic classes in the cohort. The dispensed antibiotics arranged 

by parent classes is given Table 5.2. 

Table 5.2 Classification of antibiotics used in the GRACE study into parent classes. 

Parent class Antibiotics received in the GRACE cohort 

Cephalosporin Cephalexin, Cefaclor, Ceftriaxone, Cefuroxime 

Diaminopyrimidine Trimethoprim, Trimethoprim-sulphamethoxazole 

Fluoroquinolone Ciprofloxacin, Norfloxacin 

Lincosamide Clindamycin 

Macrolide Azithromycin, Erythromycin, Clarithromycin, Roxithromycin 

Nitrofuran Nitrofurantoin 

Nitroimidazole Metronidazole 

Penam (Penicillin) Amoxicillin, Amoxicillin and clavulanic acid, Flucloxacillin 

Sulphonamide Trimethoprim-sulphamethoxazole 

Tetracycline Doxycycline 

 

5.6. GUT RESISTOME COMPOSITION IN RESIDENTS OF AGED-CARE 

FACILITIES 
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In the stool resistome, 1,136 unique ARGs conferring resistance to 38 different antibiotic 

classes were detected, with a median of 274 (IQR 236-300) genes detected per participant. 

Genes from 254 AMR gene families were detected with the members of the OXA beta-

lactamase (n = 103) and resistance-nodulation-cell division antibiotic efflux pump (n = 100) 

families being the most common. The median total abundance of ARGs was 890 (IQR 727-

1324) rpkm. Genes conferring resistance to cephalosporins were the most common, but those 

conferring resistance to penicillins were the most abundant (Table 5.3). 

Table 5.3 Number of times received (%) for antibiotic classes received in the GRACE study 

and the corresponding number of ARGs and total abundance of ARGs for each class (median 

and IQR). 

Class Times received Number of ARGs Total abundance of 
ARGs (rpkm) 

Cephalosporin 53 (43) 81 (70-91) 245 (175-353) 

Diaminopyrimidine 29 (23) 8 (6-10) 6 (2-15) 

Fluoroquinolone 10 (8) 23 (19-28) 29 (17-50) 

Lincosamide (clindamycin) 4 (3) 16 (13-18) 48 (31-68) 

Macrolide 16 (13) 28 (24-33) 61 (43-95) 

Nitrofuran (nitrofurantoin) 8 (6) 0 (0-1) 0 (0-0.3) 

Nitroimidazole 
(metronidazole) 

5 (4) 0 (0-0) 0 (0-0) 

Penam/Penicillin 55 (44) 69 (60-78) 230 (160-328) 

Sulfonamide (cotrimoxazole) 7 (6) 3 (2-5) 2 (0.6-5) 

Tetracycline (doxycycline) 21 (17) 64 (56-71) 137 (106-196) 

 

5.7. NUMBER OF ANTIBIOTIC EXPOSURE EVENTS IS ASSOCIATED 
WITH A HIGHER ABUNDANCE OF ANTIBIOTIC RESISTANCE 

GENES 

A primary aim of this component of the project was to determine if the number of times 

participants were exposed to antibiotics was associated with ARG carriage. No statistically 

significant association between number of exposure events and number of unique ARGs was 

identified (Odds Ratio (OR) = 0.97, 95% CI = 0.94-1.01, p = 0.12, Figure 5.3A). However, a 
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statistically significant association between number of antibiotics exposure events and total 

ARG abundance was found (OR = 1.12, 95% CI = 1.06, 1.16, p < 0.001). Specifically, a higher 

number of exposure events was associated with a higher total ARG abundance (Figure 5.3B). 

 

Figure 5.3 Odds of a higher A) number of unique ARGs and B) total ARG abundance with 

three categories of number of exposure events. Circles and bars represent the odds and 95% 

confidence interval of the odds. Comparisons are of each category of number of exposure 

events (y axis) against the no antibiotic use category. 

This analysis was then repeated but adjusted for the four covariates (age, days in care, sex 

and site of residence) and the four most common comorbidities (depression, gastro-

oesophageal reflux disease, hypertension and pain). The number of unique ARGs was not 

found to be significantly associated with the number of exposure events, but there was a 

significant association in the odds of a higher total ARG abundance and a higher number of 

exposure events (OR = 1.12, 95% CI= 1.06-1.18, p < 0.001). 

5.8. MOST RECENT ANTIBIOTIC EXPOSURE HAS IMPACT ON TOTAL 

ARG ABUNDANCE 

Another key aim was to investigate how the time since most recent antibiotic exposure affected 

the resistome. There was no significant association between number of unique ARGs and 

days since most recent antibiotic exposure (p = 0.39, Figure 5.4A). However, a significant 

difference in the odds of having a higher total abundance of ARGs was observed between 

those who had received an antibiotic 30 days or less prior to stool sample collection and those 

who had not received an antibiotic during the study period (OR = 3.66, 95% CI = 1.67-8.02, p 

= 0.009, Figure 5.4B). Those who had been administered an antibiotic between 30 and 180 

days prior to stool sample collection (OR = 1.95, 95% CI = 0.91-4.19, p = 0.79), and those 

who had been administered an antibiotic ≥180 days prior (OR = 1.55, 95% CI = 0.61-4.00, p 
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= 0.62) did not have significantly different odds of having a higher total abundance of ARGs 

compared to those who were not exposed to antibiotics. 

 

Figure 5.4 Odds of a higher A) number of unique ARGs and B) total ARG abundance with 

three categories of recent antibiotic exposure. Circles and bars represent the odds and 95% 

confidence interval of the odds. Comparisons are of each category of recent antibiotic use (y 

axis) against the no antibiotic use category. 

Stepwise analysis adjusted for covariates revealed no significant associations between the 

number of unique ARGs and days since most the recent antibiotic exposure. However, total 

ARG abundance was found to be significantly associated with days since most recent 

antibiotic exposure. Specifically, the odds of a higher total ARG abundance were significantly 

different between those who had been administered an antibiotic within 30 days of stool 

sample collection and those who had no antibiotic exposure (OR = 3.58, 95% CI = 1.52-8.47, 

p = 0.01). 

5.9. NUMBER OF EXPOSURE DAYS INCREASES ARG ABUNDANCE IN 

THE GUT 

The total number of exposure days, as calculated using the ATC/DDD toolkit, was assessed 

for association with number of unique ARGs and total ARG abundance. Number of unique 

ARGs was not significantly associated with the number of exposure days (p = 0.33, Figure 

5.5A). However, the odds of having a higher total abundance of ARGs were significantly 

different between those who had received 90 days or more of antibiotic exposure in the 12 

months prior to stool sample collection and those who had not received an antibiotic (OR = 

5.42, 95% CI = 1.89-15.6, p = 0.01, Figure 5.5B). Those who had received 15 days or less of 

antibiotic exposure (OR = 1.12, 95% CI = 0.51-2.48, p = 0.03) and those who had between 15 

and 90 days of exposure (OR = 3.07, 95% CI = 1.46-6.48, p = 0.13) did not have significant 
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difference in the odds of having a higher total abundance of ARGs compared to those who 

had not been exposed to antibiotics. 

 

Figure 5.5 Odds of a higher A) number of unique ARGs and B) total ARG abundance with 

three categories of total days of antibiotic exposure in the 12 months prior to sample 

collection. Circles and bars represent the odds and 95% confidence interval of the odds. 

Comparisons are of each category of total antibiotic exposure (y axis) against the no 

antibiotic exposure category. 

Number of unique ARGs was not significantly associated with total days exposed to an 

antibiotic after adjusting for covariates. However, total exposed days was associated with 

different odds of a higher total ARG abundance. Specifically, those who had 90 days or more 

of exposure had significantly higher odds of a higher ARG abundance compared to those that 

had not been exposed (OR = 5.61, 95% CI = 1.73-18.2, p = 0.02). 

5.10. NUMBER OF UNIQUE ANTIBIOTIC CLASSES RECEIVED 

INFLUENCES THE RESISTOME 

The next step was to investigate if the number of unique antibiotic classes given per person 

impacted the resistome. Number of unique ARGs was not found to be associated with number 

of unique antibiotic classes given (OR = 0.90, 95% CI = 0.74-1.10, p = 0.31, Figure 5.6A). 

Total ARG abundance, however, was significantly higher in those who had received a greater 

number of unique antibiotic classes in the 12 months prior to stool sample collection (OR = 

1.59, 95% CI = 1.27-1.97, p < 0.001, Figure 5.6B). 
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Figure 5.6 Odds of a higher A) number of unique ARGs and B) total ARG abundance with 

three categories of number of unique classes in the 12 months prior to sample collection. 

Circles and bars represent the odds and 95% confidence interval of the odds. Comparisons 

are of each category of number of unique classes (y axis) against the no antibiotic exposure 

category. 

Number (a count) of unique ARGs were not significantly associated with any unique antibiotic 

class, even after removal of variation attributable to covariates. However, number of unique 

antibiotic classes were significantly associated with the odds of a higher total ARG abundance 

based on multivariate analysis (OR = 1.66, 95% CI = 1.30-2.12, p < 0.001). 

5.11. TYPE OF ANTIBIOTIC USED IS ASSOCIATED WITH A SHIFT IN 

THE STOOL RESISTOME 

The final possible association to be examined was that between the exposure to a class of 

antibiotics at least once in the study period and their effect on number of unique ARGs and 

total ARG abundance, both overall and for individual drug resistance profiles. Only the four 

most frequently used classes of antibiotics, cephalosporins, penicillins, diaminopyrimidines 

(trimethoprim) and tetracyclines (doxycycline), could be assessed for their impact due to small 

number of uses for other classes. No antibiotics were associated with a significant difference 

in the odds of a higher number of unique ARGs. However, cephalosporin use was associated 

with significantly higher odds of having a high total ARG abundance (OR = 2.4, 95% CI = 1.3-

4.4, p=0.005, Figure 5.7A). Diaminopyrimidine use was significantly associated with higher 

odds of a high diaminopyrimidine ARG abundance (OR = 3.6 , 95% CI = 1.8-7.3, p < 0.001, 

Figure 5.7B). No significant association between penicillin use and ARG abundance for any 

class was found (Figure 5.7C) Doxycycline use at least once during the 12 months prior to 

stool sample collection was associated with significantly higher odds of a high total ARG 

abundance (OR = 9.9 , 95% CI = 3.9-24.7, p < 0.001), high cephalosporin ARG abundance 

(OR = 2.5 , 95% CI = 1.1-5.7; p = 0.03), high penam ARG abundance (OR = 3.0 , 95% CI = 
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1.3-6.9, p = 0.01) and high tetracycline ARG abundance (OR = 22.9 , 95% CI = 8.1-64.3; p < 

0.001, Figure 5.7D). Adjusting for covariates did not change the significance of these 

outcomes. 

 

Figure 5.7 Impact of A) any cephalosporin use, B) any diaminopyrimidine use, C) any 

penicillin use or D) any tetracycline use at least once in the 12 months prior to sample 

collection on ARG abundance for all ARGs, cephalosporin ARGs, diaminopyrimidine ARGs, 

penam ARGs and tetracycline ARGs. Circles and bars represent the odds and 95% 

confidence interval of the odds. Comparisons are of each antibiotic class used against no 

antibiotic exposure. 

5.12. INTERPRETATION OF FINDINGS 

This component of the project demonstrated that antibiotic use classified by five measures 

significantly impacted the total abundance of ARGs but not the number of unique ARGs in a 

stool sample. Specifically, a higher number of exposures, a lower number of days since the 

most recent use of antibiotics, a higher number of total days of antibiotic use and a higher 

number of unique antibiotic classes used was associated with a higher total ARG abundance. 

Much of this is likely to be reflected in the microbiome, which is highly variable and low in 

diversity in older people.[94, 198] For this reason, it was unlikely to have seen a significant 

change in the number of unique ARGs, which reflects resistome diversity. 

Given the advanced age of the GRACE cohort and limited information on antibiotic use 

patterns in residential aged-care,[92] analysis of the resistome was less focused on acquiring 
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new resistant organisms, and more focused on an increase in abundance of resistance 

already present in the gut microbiome. Indeed, this phenomenon was observed in the GRACE 

cohort, with those who had antibiotic exposure more frequently and closer to the sample 

collection date having a higher total ARG abundance, indicating a selection for resistance. 

Use of doxycycline at least once in the 12 months prior to sample collection significantly 

impacted the total ARG abundance, as well as other antibiotic-specific resistance profiles, 

specifically penicillin and cephalosporin resistance. Tetracycline resistance is most often 

mediated by antibiotic efflux pumps that are also transmissible to other organisms through 

horizontal gene transfer.[26, 32] These efflux pumps occasionally are specific to tetracyclines, 

but quite often correspond to multidrug resistance, including to cephalosporins and 

penicillins.[199, 200] For example, certain strains of E. coli can have intrinsic resistance to 

tetracyclines due to regulation of efflux pumps such as the AcrAB-TolC complex.[199] This 

complex is a multidrug efflux pump shown to confer resistance to other antibiotics, such as 

ampicillin, cefotaxime and cefoxitin.[199, 201] Genes contributing to the functionality of this 

complex were identified in the gut resistome of GRACE participants. It is likely that the use of 

doxycycline selected for bacteria that carry these antibiotic efflux-type genes, which therefore 

is reflected in the total abundance of genes conferring resistance to tetracyclines, penicillins 

and cephalosporins. Cross resistance has been reported, with ceftriaxone use associated with 

VRE bloodstream infection.[202] The authors suggested that this may have been due to the 

lack of activity of ceftriaxone against Enterococcus spp., leading to a shift in the gut microbiota 

that allowed expansion of VRE and eventually infection.[202] It is suspected that a similar 

phenomenon occurred in the context of the current study, with doxycycline use selecting for 

E. coli and other resistant organisms that also carry genes encoding -lactamases and efflux 

pumps. The work described in Chapter 6 aimed to confirm these assumptions through an in-

depth analysis of the impact of antibiotics on the gut microbiome. 
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6. MICROBIOME DEPLETION FOLLOWING EXTENSIVE 

ANTIBIOTIC USE IN AGED-CARE RESIDENTS 

6.1. CHAPTER SUMMARY 

The analyses presented in Chapter 5 demonstrated that antibiotic exposure patterns are 

associated with significant resistome features. Based on the recognition that disruption to the 

microbiome creates a risk of AMR acquisition and increase in abundance,[64, 66, 67, 203] the 

antibiotic-mediated changes in the microbiome of aged-care residents was further 

investigated. The analysis again utilised a metagenomic-sequencing approach with the same 

measures of antibiotic use examined for their influence on the microbiome composition, 

specifically the presence and abundance of pathogens found in the gut. This revealed that all 

measures of antibiotic use significantly impacted species richness and Faith’s phylogenetic 

diversity. In particular, a higher number of exposures, a higher number of unique antibiotic 

classes, a higher number of total days exposed to antibiotics and a lower number of days 

since the most recent antibiotic exposure was significantly associated with a lower richness 

and Faith’s phylogenetic diversity. Beta diversity was also significantly impacted by all 

measures of antibiotic use. Use of any penicillin and doxycycline had a significant impact on 

species richness. Notably, no measures of antibiotic use significantly impacted the total 

abundance of Proteobacteria pathogens. The findings presented in this chapter supports the 

hypothesis that changes in the resistome would be reflected in the microbiome of GRACE 

participants and highlights the importance of maintaining a diverse commensal microbiological 

population in the gut. 

6.2. INTRODUCTION TO THE CHAPTER 

Antibiotic use has been repeatedly shown to significantly impact the commensal microbiome 

and a disruption of this microbiome. Elderly people, specifically those in residential aged-care 

facilities, have a high risk of complications due to repeated antibiotic us as discussed in 

Chapter 5.[2, 4, 76, 96] Importantly, research has shown that people in residential aged-care 

have a lower microbial diversity compared to those who live at home, and cannot recover as 

quickly from perturbations to their microbiome.[94, 198] Given that a robust commensal 

microbiome has been shown to protect against the acquisition and expansion of multidrug 

resistant organisms, a lack of this protective microbial community is likely to have detrimental 

effects.[66, 67] Previously, antibiotic use (characterised as number of exposure events, days 

since most recent antibiotic, total days exposed to antibiotics, number of unique antibiotic 

classes of antibiotics, and type of antibiotic given) was demonstrated to significantly impacted 

the gut resistome of GRACE participants. Specifically, these characteristics were associated 
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with significantly higher odds of a high total ARG abundance, which reflects the selection for 

resistant genotypes. Theorising that these changes were mediated by changes in the 

microbiome, the next step was to investigate how these same five characteristics impacted 

the microbiome and the abundance of potential pathogens. The aim of the work described in 

this chapter was to investigate the impact of the five selected antibiotic-use characteristics on: 

(1) alpha diversity, (2) beta diversity, and (3) the presence and abundance of potential 

pathogens. 

6.3. STATISTICAL ANALYSIS OF GRACE MICROBIOME 

All statistical analysis was performed in SAS and microbiome profiles were generated from 

metagenomic sequencing data. Normal distribution of Shannon-Wiener diversity, Pielou’s 

evenness, species richness and Faith’s phylogenetic diversity was tested using the SAS 

procedure PROC UNIVARIATE. Microbiome characterisation was performed on metaphlan 

data using alpha diversity and beta-diversity. Alpha diversity metrics were generated in R 

using the vegan[204] and phyloseq[205] packages and was measured using the following: i) 

Pielou’s evenness, ii) taxa richness, iii) Shannon-Wiener diversity and iv) Faith’s phylogenetic 

diversity (PD). Beta diversity was determined using a weighted UniFrac distance matrix.[206] 

Proteobacteria pathogen abundance was converted to ordinal categories by assigning rank 0 

to less than the median and ranking remaining 1-3. Kruskal-Wallis was used for analysis of 

alpha diversity metrics against antibiotic exposures. Permutational analysis of variance 

(PERMANOVA) on a weighted UniFrac distance matrix from species-level relative abundance 

data was used to assess a difference between microbiome composition. Ordinal logistic 

regression was used for statistical analysis of Proteobacteria pathogen abundance. Multiple 

comparisons were adjusted for using the Benjamini-Hochberg method with an FDR of 5%. An 

additional logistic regression model was performed which adjusted for confounding variables. 

These variables included age, sex, site of residence, days living in current residence and the 

most common Rx-Risk comorbidities in the GRACE cohort: depression, gastro-oesophageal 

reflux disease, hypertension and pain.[197] Statistical significance was determined when p < 

0.05. Data were visualised using R (v4.1.2) package "ggplot2" (v3.3.5). Mean and SD are 

reported as summary statistics. 

6.4. NUMBER OF ANTIBIOTIC EXPOSURES INFLUENCES THE 

RICHNESS OF THE MICROBIOME IN AGED-CARE RESIDENTS 

Four measures of alpha diversity (within-sample diversity) were assessed for their response 

to the number of antibiotic exposure events during the 12 months prior to stool sample 

collection (Figure 6.1). Number of exposure events was not significantly associated with 
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Shannon-Wiener diversity (p = 0.33) or Pielou’s evenness (p = 0.92). Species richness (p < 

0.001) and Faith’s PD (p < 0.001) were significantly associated with the number of exposure 

events. Those who had 7 or greater exposures had significantly lower richness and Faith’s PD 

(richness: 85  21, Faith’s PD: 12  2.3) when compared to those who had  no exposures 

(richness: 104  16, Faith’s PD: 14  1.9), 1 exposure (richness: 101  17, Faith’s PD: 14  

2.0), and between 2 and 6 exposures (richness: 99  19, Faith’s PD: 13  2.2). This analysis 

was adjusted for age, days in care, sex, site of residence, and the most common comorbidities, 

depression, gastro-oesophageal reflux disease, hypertension and pain. Adjustment did not 

change the statistical significance of results. 

 

Figure 6.1 Number of antibiotic exposure events compared to A) Shannon-Wiener diversity, 

B) Pielou’s evenness, C) species richness and D) Faith’s phylogenetic diversity. Each dot 

represents one individual. Black dot and error bars represent mean ± SD. ** p < 0.01, **** p 

< 0.0001. 

Number of exposure events was also assessed for its impact on beta diversity as measured 

by weighted UniFrac distance (Figure 6.2). Microbiome composition was significantly different 

between those who had no exposure and 7 or greater exposures (p < 0.001) and between 2 

and 6 exposures and 7 or greater exposures (p = 0.03). 
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Figure 6.2 Number of antibiotic exposure events and beta diversity measured by weighted 

Unifrac distance and displayed on a PCO plot. Each dot represents an individual. Intergroup 

differences in weighted UniFrac distance determined with PERMANOVA. Distance to centroid 

(PERMDISP) was not significantly different between groups (p > 0.05). 

6.5. RECENT ANTIBIOTIC USE SIGNIFICANTLY DEPLETES SPECIES 

RICHNESS 

The next step was to investigate the time in days since most recent antibiotic use for its effect 

on the same four measures of alpha diversity. As previously, there was no significant impact 

on Shannon-Wiener diversity (p = 0.42) or Pielou’s evenness (p = 0.60) (Figure 6.3). Species 

richness (p < 0.001) and Faith’s PD (p = 0.001) were significantly different between categories 

of days since most recent antibiotic exposure. Those who had no exposure had significantly 

higher species richness and Faith’s PD (richness: 104  16, Faith’s PD: 14  1.9) compared 

to those who had been exposed to antibiotics less than 30 days since sample collection 

(richness: 89  22, Faith’s PD: 12  2.4) and those who had been exposed between 30 and 

100 days since sample collection (richness: 94  18, Faith’s PD: 13  2.0). No change to 

significance was observed after adjusting for covariates. 
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Figure 6.3 Days since most recent antibiotic exposure compared to A) Shannon-Wiener 

diversity, B) Pielou’s evenness, C) species richness and D) Faith’s phylogenetic diversity. 

Each dot represents one individual. Black dot and error bars represent mean ± SD. * p < 

0.05, *** p < 0.001. 

To determine whether microbiome composition clustered by the most recent antibiotic use 

interval, beta diversity (as measured by weighted UniFrac distance) was compared between 

antibiotic use groups (Figure 6.4). Microbiome composition was significantly different between 

those who had no exposure and those who were exposed to antibiotics less than 30 days prior 

to sample collection (p = 0.002) and those who were exposed between 30 and 100 days prior 

to sample collection (p = 0.057). 

 
7 Actual p value is less than 0.05 (p = 0.0478). 
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Figure 6.4 Days since most recent antibiotic exposure and beta diversity measured by 

weighted Unifrac distance and displayed on a PCO plot. Each dot represents an individual. 

Intergroup differences in weighted UniFrac distance determined with PERMANOVA. Distance 

to centroid (PERMDISP) was not significantly different between groups. (p > 0.05). 
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6.6. TOTAL TIME EXPOSED TO ANTIBIOTICS IS ASSOCIATED WITH 

STOOL MICROBIOME COMPOSITION 

When assessing the effect of estimated total number of days exposed to antibiotics on alpha 

diversity, no significant impact was found for Shannon-Wiener diversity (p = 0.15) or Pielou’s 

evenness (p = 0.46) (Figure 6.5). Species richness (p < 0.001) and Faith’s PD (p < 0.001) 

were significantly different between categories of total exposed days. Those with greater than 

33 days of exposure had significantly lower richness and Faith’s PD (richness: 85  23, Faith’s 

PD: 12  2.5) compared to those with no exposure (richness: 104  16 , Faith’s PD: 14  1.9), 

11 days or less of exposure (richness: 101  17, Faith’s PD: 14  1.9) and between 11 and 33 

days of exposure (richness: 99  17 , Faith’s PD: 14  2.1). No change to significance was 

observed after adjusting for covariates. 

 

Figure 6.5 Total days of antibiotic exposure compared to A) Shannon-Wiener diversity, B) 

Pielou’s evenness, C) species richness and D) Faith’s phylogenetic diversity. Each dot 

represents one individual. Black dot and error bars represent mean ± SD. ** p < 0.01, **** p 

< 0.0001. 

Beta diversity was also significantly different for categories of total days of use. Microbiome 

composition measured by weighted UniFrac distance was significant different between those 

who had greater than 33 days of exposure and those who had no exposure (p < 0.001), 11 

days or less of exposure (p = 0.04) and between 11 and 33 days of exposure (p = 0.002). 
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6.7. HIGHER NUMBER OF UNIQUE ANTIBIOTIC CLASSES RECEIVED 

CORRESPONDS TO LOW MICROBIOME RICHNESS 

Number of unique antibiotic classes was also assessed for its impact on each of the four 

measures for alpha diversity (Figure 6.6). Neither Shannon-Wiener diversity (p = 0.12) or 

Pielou’s evenness (p = 0.57) were significantly impacted by the number of unique antibiotic 

classes received during the 12 months prior to stool sample collection. Species richness (p = 

0.002) and Faith’s PD (p = 0.007) were significantly impacted by the number of unique 

antibiotic classes exposed to. Species richness and Faith’s PD were significantly lower in 

those who had been exposed to 3 or greater classes of antibiotics (richness: 89  24, Faith’s 

PD: 13  2.7) compared to those with no exposure (richness: 104  16, Faith’s PD: 14  1.9) 

No change to significance was observed after adjusting for covariates. 

 

Figure 6.6 Number of unique antibiotic classes compared to A) Shannon-Wiener diversity, 

B) Pielou’s evenness, C) species richness and D) Faith’s phylogenetic diversity. Each dot 

represents one individual. Black dot and error bars represent mean ± SD. ** p < 0.01, **** p 

< 0.0001. 

Number of unique antibiotic classes was also assessed for an association with beta diversity. 

Microbiome composition was significantly different between those who had been exposed to 

3 or greater classes of antibiotics and those with no exposure (0.002) and exposure to 2 

classes of antibiotics (p = 0.01). 
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6.8. TYPE OF ANTIBIOTIC GIVEN IS WEAKLY ASSOCIATED WITH 

MICROBIOME COMPOSITION 

The four most frequently used antibiotics were assessed for their impact on each estimate of 

alpha diversity (Figure 6.7). Exposure to any diaminopyrimidine at least once in the 12 months 

prior to sample collection was associated with significantly lower Faith’s PD (13  2.2) 

compared to no use (14  2.1, p = 0.04). Exposure to any penam antibiotic was associated 

with significantly lower species richness (93  22, p = 0.005) and Faith’s PD (13  2.5, p = 

0.01) compared to those with no exposure to a penam (richness: 101  17, Faith’s PD: 14  

1.9). Exposure to any tetracycline was associated with significantly lower species richness (91 

 16) compared to those with no exposure to a tetracycline (100  19, p = 0.04). No significant 

impact on Shannon-Wiener diversity or Pielou’s evenness was found for any antibiotic 

exposure. 

 

Figure 6.7 A) Shannon-Wiener diversity, B) Pielou’s evenness, C) species richness, and D) 

Faith’s phylogenetic diversity with the use of trimethoprim, doxycycline, any penicillin and 

any cephalosporin in the 12 months prior to sample collection. Each dot represents one 

individual. Black dot and error bars represent mean ± SD 

Beta diversity as measured by weighted UniFrac distance was significantly different between 

those who had been exposed to any penam in the 12 months prior to enrolment compared to 

those who had not been exposed to a penam (p = 0.01). 
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6.9. ANTIBIOTIC USE AND PATHOGEN ABUNDANCE 

In clinical practice, gut pathogens from the Proteobacteria phylum pose the greatest risk to 

the health of individuals. These pathogens (n = 32) are listed in Table 6.1 below.  

Table 6.1 Pathogens from the Proteobacteria phylum summed for assessment of total 

abundance against antibiotic exposure categories. 

Acinetobacter johnsonii Klebsiella aerogenes 

Pseudomonas aeruginosa group Klebsiella michiganensis 

Stenotrophomonas acidaminiphila Klebsiella oxytoca 

Citrobacter amalonaticus Klebsiella pneumoniae 

Citrobacter braakii Klebsiella quasipneumoniae 

Citrobacter europaeus Klebsiella variicola 

Citrobacter farmeri Kluyvera ascorbata 

Citrobacter freundii Raoultella planticola 

Citrobacter koseri Raoultella terrigena 

Citrobacter pasteurii Hafnia alvei 

Citrobacter werkmanii Morganella morganii 

Citrobacter youngae Proteus mirabilis 

Enterobacter cloacae complex Aeromonas caviae 

Enterobacter mori Aeromonas media 

Escherichia coli Aeromonas veronii 

Escherichia marmotae Achromobacter insolitus 

 

To evaluate the risk of antibiotic exposure, pathogens from the Proteobacteria phylum (see 

abundance of listed pathogens in Figure 6.8 below) were summed for the total relative 

abundance per person (med = 0.28, range = 0-44) and this was assessed against number of 

exposure events, days since most recent antibiotic exposure, total days of exposure and 

number of unique classes exposed to. Proteobacteria pathogen abundance was not 

significantly impacted by any measure of antibiotic exposure. 
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Figure 6.8 Taxa bar plot for 164 GRACE stool samples depicting the relative abundance of 32 

Proteobacteria species known to be pathogenic in clinical practice. 

6.10. INTERPRETATION OF FINDINGS 

All five measures of antibiotic exposure significantly impacted the microbiome composition as 

measured by species richness and Faith’s phylogenetic diversity. A higher number of 

exposure events was significantly associated with lower species richness and lower Faith’s 

phylogenetic diversity. Consistent with what was observed in the resistome, both those who 

had been administered antibiotics within 30 days of sample collection and those who had 

received antibiotics between 30 and 100 days of sample collection had a significant impact on 

the microbiome. In younger adults, perturbations to the microbiome are short-lived, recovering 

within a few weeks.[103, 185, 207] In older people, the microbiome is already depleted due to 

lifestyle factors and physiological changes and appear to be more significantly impacted by 

antibiotic treatment.[94, 106, 198] It is therefore unsurprising that the effects of antibiotics were 

still observed in those who had received antibiotics within 30 to 100 days of sample collection, 

as well as those who had been exposed to one within 30 days. It is this effect that likely 

explains that 33 days or greater of equivalent antibiotic use was significantly associated with 

lower richness and Faith’s phylogenetic diversity when compared to no antibiotic use. Finally, 

number of unique antibiotic classes was significantly associated with species richness, Faith’s 

phylogenetic diversity and beta diversity. Unsurprisingly, the greatest difference was between  

those who had been exposed to 3 or greater classes of antibiotics and those who had not 

been exposed. This is most likely due to the increase in spectrum of activity covered by the 

variety of antibiotics used in the cohort, depleting more taxa. 
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Use of any diaminopyrimidine-class, penam-class, or tetracycline-class antibiotic was 

significantly associated with a change in microbiome composition. Use of any penam-class 

antibiotic was significantly associated with lower richness, Faith’s phylogenetic diversity and 

a difference in beta-diversity as measured by weighted UniFrac distance. In GRACE, the two 

most commonly used penam-class antibiotics were amoxicillin and amoxicillin-clavulanic acid. 

Although the effect of amoxicillin on the gut microbiome is extremely variable across the 

literature, many researchers report an increase in Enterobacteriaceae.[135, 185, 208, 209] In 

studies that investigated the impact of amoxicillin-clavulanic acid, Enterobacteriaceae have 

also been reported to increase in abundance, alongside a decrease in commensal organisms 

such as Bifidobacterium, although this also varies.[210, 211] Given the extreme variability 

among studies investigating the effects of amoxicillin and amoxicillin-clavulanic acid, it is 

difficult to determine whether the findings in the GRACE study are consistent with those of 

previous reports. However, no significant change in the abundance of Proteobacteria 

pathogens (which includes the family Enterobacteriaceae) was identified with the use of 

penam-class antibiotics in this study. Combined with the findings presented in Chapter 5, this 

analysis concludes that antibiotic use patterns in residents of aged-care facilities significantly 

impact both the resistome and the microbiome. 
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7. DISCUSSION AND FUTURE DIRECTIONS 

7.1. PROJECT RATIONALE 

Antibiotics are life-saving medications, but in recent times overuse and inappropriate use has 

led to a dramatic acceleration in antibiotic resistance. This is a serious risk to the efficacy of 

antibiotic treatment and treatment failure has already been associated with an increase in 

mortality and morbidity.[14-16] Currently, information on antibiotic resistance is captured 

primarily at the infection-stage, with several reports investigating rates of multidrug-resistant 

pathogens such as ESBLs, CPE and VRE.[2, 5, 8] This is essential for targeted stewardship 

policies to be placed in those communities that need them most, including hospitals and aged-

care facilities. However, a new theory has emerged that involves the commensal microbiome 

as a protective barrier against the acquisition of new resistant organisms from the external 

environment, as well as the proliferation of those already present in an individual’s 

microbiome.[212] Developments in sequencing technology has provided an opportunity to 

investigate the microbial response to exposures, such as antibiotic use, beyond but in 

conjunction with that of culture-based methods.[108, 111] Metagenomic sequencing is one 

such technique that sequences all DNA in a sample, and can be used to thoroughly examine 

the microbiome and collection of antibiotic resistance genes that are present, known as the 

resistome. This technology had not been used widely in clinical microbiome and resistome 

research until recently.[90, 117, 129, 133] 

This project involved applying a metagenomic sequencing technique to investigate the 

microbiome and resistome in two high-risk, antibiotic-exposed, clinical cohorts: the first from 

an RCT in children, and the other from an observational study in permanent residents of aged-

care facilities. These age groups were chosen because various factors put them at a high risk 

of infection and complication of treatment failure. In children, interference with the developing 

microbiome has been shown to lead to significant adverse events including sepsis and long-

term allergy and illness.[84, 85, 172-174] In older people, physiological factors such as 

immunosenescence, the gradual weakening of the immune system with age, have been 

associated with increased risk of infection.[77, 97] Permanent residents of aged-care facilities 

are thought to be at an even higher risk of this due to advanced age, frequent antibiotic use 

and increased frailty.[91, 92] This section briefly recaps the findings presented in each chapter 

and discusses their importance, strengths and limitations. 
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7.2. DISCUSSION OF FINDINGS 

7.2.1. THE CHOICE STUDY 

The component of the project presented in Chapter 3 investigated the impact of two antibiotic 

treatment regimens on the gut resistome as an extension of the CHOICE RCT. This trial 

compared the efficacy and safety of IV flucloxacillin in hospital compared to IV ceftriaxone 

administered at home in children who presented to the emergency department with severe 

cellulitis.[89] It also included a small culture-based component investigating presence of 

ESBLs in the gut. In this substudy, a significantly higher diversity of antibiotic resistance genes 

in the narrow-spectrum antibiotic group compared to the broad-spectrum antibiotic group was 

observed. This is likely because the narrow-spectrum of flucloxacillin was less deleterious in 

the microbiome, which was reflected in ARG richness, a phenomenon reported 

previously.[183] Composition of the resistome also clustered by randomised treatment group 

when measured by Sorenson distance, likely due to the same effect. No significant association 

was found between carriage of an ESBL and microbiome features in the sample collected 

prior to ESBL acquisition. In a previous study, the authors showed that a disruption to the 

microbiome increased the selection and expansion of pathogens already present in the gut at 

low levels but there were too few available samples to properly investigate this in the CHOICE 

study.[66]  

Chapter 4 presents an analysis of the differences in the microbiome both between groups and 

within groups longitudinally. Few intergroup differences were observed across the time points, 

with most changes occurring within groups over the study period. Microbiome shifts within the 

ceftriaxone group were most prominent, with a significant reduction in alpha diversity in the 

treated time points (T1 and T2) compared to the long-term follow up point (T3). This differs 

from a single earlier report that demonstrated an impact of broad-spectrum antibiotics, 

including third generation cephalosporins remains even up to 12 months post treatment.[90] 

The factors contributing to the differences in findings between that study and the current study 

are more fully discussed in Chapter 4 but these are mostly likely to be due to the age of the 

cohorts studied, with Reyman and colleagues studying neonates versus children of at least 6 

months of age in the CHOICE study. 

Investigating the impact of antibiotic use on the microbiome and resistome in a paediatric 

clinical cohort had a number of important benefits. Firstly, study antibiotics were randomised, 

thereby removing the confounding effect of variation in treatment exposures. This study 

population provides a real-world representation of the clinical use of the antibiotics 

investigated. These factors, in addition to the prospective collection of data and samples, 

strongly supports the unbiased and clinically relevant nature of the findings. By employing a 
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metagenomic strategy, the current study was able to define the impact of antibiotics, not only 

on target taxa, but on microbiota and resistome characteristics as a whole. This is important, 

given that assessments of the impact of antibiotics typically focus on changes in target 

pathogens and their development of resistance, and fail to consider the impact of antibiotics 

on non-target microbial populations, despite their potential clinical significance. 

The CHOICE study also had limitations that warrant consideration. First, around half of the 

study participants had some antibiotic exposure prior to enrolment. While this was accounted 

for in the analysis, it is likely to have contributed to greater variance in microbiome and 

resistome characteristics, and potentially reduced the ability to identify the effects of the study 

antibiotics. Second, the small number of children who acquired ESBL, while reassuring in 

relation to outpatient IV ceftriaxone use, prompts caution in interpretation of the findings from 

this sub-analysis, with a larger study required for this. Third, the collection of an initial faecal 

sample occurred after the initiation of IV antibiotics, as it would be unacceptable to delay the 

start of therapy. While appropriate randomisation was performed, and there were no 

differences in treatment group characteristics, analysis of a baseline faecal sample was not 

possible. 

7.2.2. THE GRACE STUDY 

While a cohort of children experienced a mild impact on their resistome and a transient impact 

on the microbiome following controlled, short-term antibiotic treatment, differences in the 

physiology and lifestyle of older people were likely to have a more pronounced effect. As 

detailed in Chapter 5, when assessing the impact of (1) number of antibiotic exposures, (2) 

most recent antibiotic use, (3) total days of antibiotic use, (4) number of unique antibiotic 

classes, and (5) type of antibiotic given, all these measures had a significant association with 

changes in the resistome. Specifically, all were associated with increased total abundance of 

resistance genes present in the sample, indicating a selection for resistant bacteria was likely 

to have been the underlying cause. This was likely due to the high frequency of antibiotic use 

in this population.[4] In this case, participants would have most probably been carrying 

resistant organisms asymptomatically in their gut microbiome, their expansion triggered by 

further antibiotic use. Doxycycline use was also associated with a higher abundance of 

tetracycline-resistance genes, as well as cephalosporin-resistance genes and penicillin-

resistance genes. As discussed in detail in Chapter 3, this is likely to be due to the multidrug 

spectrum of resistance conferred by some tetracycline-resistance genes, in particular 

multidrug efflux pumps that can expel tetracyclines, cephalosporins and penicillins from the 

bacterial cell.[199] It was then hypothesised that these shifts in the resistome would also be 

observed in the microbiome. 
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Indeed, antibiotic use as measured by the five characteristics listed above was significantly 

associated with reduced species richness and Faith’s phylogenetic diversity, as well as shifting 

the microbiome composition as measured by weighted UniFrac distance. This was likely to 

reflect a depletion of non-resistant species, therefore providing availability for resistant 

organisms to expand, as observed in the resistome analysis. Additionally, the use of any 

penicillin in the 12 months prior to sample collection was associated with a significant reduction 

in species richness and Faith’s phylogenetic diversity . While the reports of penicillin use on 

the microbiome vary significantly, the reduction in richness observed in this study was likely 

driven by those who used amoxicillin and clavulanic acid, which also has a broad spectrum of 

activity.[210, 211] 

GRACE, being a large-scale, observational study, had a number of important strengths. 

Firstly, due to a highly-competent and dedicated research nurse who spent significant time on 

recruiting participants to the study, the recruitment rate was 75%, providing an excellent 

sample size despite having to cease the study early due to the COVID-19 pandemic. 

Secondly, the GRACE study captured a large amount of data beyond that of antibiotic use 

history. This allowed robust analysis and the inclusion of models to adjust for any potential 

confounding effects. Thirdly, antibiotic use records from the PBS were validated using resident 

medication charts, considered the gold-standard for determining medication usage in aged-

care facilities. Although PBS data has been regularly used and validated by collaborators in 

the past, it was reassuring to see this reflected within the GRACE study data set.[92, 213, 

214] 

The GRACE study also came with a few clear limitations. While the high recruitment rate was 

a strength of the study, early cessation of recruitment was a major limitation. As a result of 

this, some data could not be recovered from participating aged-care facilities and the study 

could not reach its target recruitment number. GRACE participants were also all recruited from 

not-for-profit aged-care facilities in metropolitan Adelaide. It is possible that this led to an 

unavoidable bias in the results of the study, and that inclusion of regional/remote facilities 

and/or government run/for-profit facilities may have been a better representation of aged care 

in Australia. In particular, the inclusion of only well-regarded, not-for-profit, organisations may 

have influenced the representation of the microbiome in aged-care residents due to factors 

such as better or more staffing, and better food quality. Finally, although the GRACE study 

did validate the PBS data against the medication chart data to a limited degree, this did not 

cover the full 12-month period of data capture. It is therefore possible that records of 

prescribed antibiotics in the PBS did not all correspond with usage of the medication by the 

intended resident. 
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7.3. PROJECT LIMITATIONS 

In children, short-term, controlled antibiotic treatment had a limited impact on the resistome 

and a transient impact on the microbiome. In a cohort of aged-care residents this was not the 

case, and uncontrolled, repeated use of antibiotics was significantly associated with changes 

in both the resistome and the microbiome. Despite the differences in results between the 

cohorts, they shared some common limitations. 

Firstly, neither study had a clinical outcome to quantify the clinical risk of antibiotic-mediated 

changes to the microbiome and resistome. Although CHOICE was a RCT, the primary 

outcomes were the efficacy and safety of the assigned IV treatment group, measured by initial 

treatment failure and adverse events.[89] Despite stool samples being collected at 3 months, 

long-term factors such as representation to hospital or reinfection within a set time post 

treatment were not recorded. In other studies, use of antibiotics in childhood has been shown 

to lead to adverse long-term health outcomes, such as diabetes, asthma and IBS.[172-174] 

In the short term, inhibition of the developing microbiome has been associated with risk of 

sepsis.[84, 85] Infection in particular, whether cellulitis or otherwise, would have been useful 

data to capture as it directly corresponds to the risk of antibiotic resistance and the risk of 

disrupting the commensal microbiome. For GRACE it was not as simple. Data on 

comorbidities, hospitalisations and other healthcare factors were available for analysis, 

however, the general decline in health of those in residential aged-care facilities made it nearly 

impossible to determine directionality between antibiotic use and illness. For example, it was 

not possible to confirm if antibiotic use directly related to later illness through modification of 

the microbiome and immune function, or if antibiotics were used to treat pre-existing illness. 

In actuality, it is likely to be some of both, but this is an ongoing challenge for research in older 

populations. 

Secondly, neither study had a sufficient sample size to thoroughly investigate changes in 

pathogen abundance, nor to observe any potential overgrowth events if they occurred. 

Modification to the commensal microbiome, such as through antibiotic use, has been 

previously associated with the expansion of antibiotic resistant pathogens.[61, 66-68] 

However, these studies involved extremely high-risk participants such as those in the intensive 

care unit, as well as populations of people with known MDROs already present in the gut. It 

was anticipated that certain resistant pathogens may already be present, but the main aim 

was to investigate changes to the resistome as a whole in a group of individuals receiving their 

regular healthcare routines and behaving as they would normally. Particularly in the GRACE 

study, the variability in the composition of the microbiome was large, making it even more 

difficult to observe a specific change, such as an increase or decrease in pathogen 
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abundance. Nevertheless, a significant increase in the total ARG abundance in the resistome 

was observed, and even if this could not be attributed to a specific pathogen, it supports the 

hypothesis that the presence of resistance genes in organisms asymptomatically may be a 

subsequent risk to treatment efficacy. 

Thirdly, this project was significantly impacted by frequent changes to the Flinders University 

high-performance computing (HPC) environment. Known as DeepThought, the Flinders 

University HPC is a relatively young system that was still undergoing frequent changes and 

optimisation at the time of project completion. After completing one component of the GRACE 

analysis and all of the CHOICE analysis, a substantive change in the operation of the HPC 

was made requiring it to be restarted and for data to be fully reprocessed. As mentioned in 

Chapter 2, this also required some changes to the programs that could be used in this new 

environment. One main aim of this project was to show how metagenomic sequencing data 

could be used in a clinical context to support medical decisions. Consequentially, a limitation 

to this is that resistome analysis is a relatively new technology and still requires more 

development to ensure it can be used in a streamlined and consistent manner needed and 

expected in medical practice. 

Next, while the use of metagenomic sequencing in a clinical context is an emerging concept, 

the technology itself does have some limitations and alternative approaches are worth 

discussing. Culture-based approaches were not used in this thesis directly (although they 

were used in the CHOICE RCT). Culture-based microbiome analysis does have its benefits; 

it is relatively cheap to perform, can isolate microorganisms of clinical interest and can 

determine phenotypic characteristics such as antibiotic resistance profiles. The limitations of 

this method is that it is time-consuming to process and does not provide a snapshot of the 

microbiome and resistome as a whole within a clinical sample. Using a 16S rRNA gene 

sequencing approach does provide a picture of the microbiome at a moment in time relative 

to the research interest. It is low-cost compared to metagenomic sequencing and does not 

require significant computational resources to run. However, it is much lower resolution that 

metagenomic sequencing (only reliable up to the genus-level) and does not provide an output 

for investigating ARGs. Metagenomic sequencing provides a higher resolution than 16S rRNA 

gene sequencing (species-level) as well as allowing for analysis of antibiotic resistance 

analysis and functional analysis. However, the limitations of this approach are that it is more 

expensive to run and requires significantly more computational-resources to processs and 

analyse the output. In the context of this candidature, the use of metagenomic sequencing 

meant that I was unable to identify which bacteria a particular antibiotic resistance gene was 

from. In combination with the fact that this project did not use clinical isolates, a decrease in 

the accuracy and clinical relevance of the analysis shown may have occurred. One final 
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alternative would have been to perform whole genome sequencing on isolates grown from the 

clinical samples. However, while this approach does allow for assigning antibiotic resistance 

genes to bacteria present in the clinical samples, it is expensive and time-consuming to run. 

It also did not align with the research interests of this work, specifically the goal was to show 

how a robust, simple but informative microbiome/resistome analysis could be applied to 

clinical research and the benefits of doing so. The use of WGS is complex and does not 

provide an overall picture of the microbiome and resistome in a clinical sample. 

Finally, the impact of COVID-19 had a subtle but significant impact on the progress of the two 

main components of this project. Given the collaborators on the CHOICE study were 

paediatricians and infectious disease specialists, their time was significantly taken up by the 

various waves of COVID-19 that occurred in Melbourne. In GRACE, the impact occurred 

earlier on the study, with significant delays on DNA extraction kits which prevented sequencing 

analysis from occurring until much later in this project. While these issues affected the length 

of this project, they did not impact the quality of analysis. 

7.4. HOW THIS WORK CONTRIBUTES TO THE FIELD 

As indicated in Section 7.3, a logical next step is to investigate the association between the 

shifts in the microbiome and resistome with some clinical outcomes. Within our research group 

this work is currently in progress, specifically within the GRACE study team. One of these 

projects involves investigating the gut microbiome composition as a contributor to recurrent 

UTIs. This was performed on a subgroup of the GRACE cohort that had available pathology 

data and therefore clinical evidence of a UTI or bacteriuria, as well as an available stool 

sample and antibiotic use data. As previously mentioned, the main limitation of a cohort of 

older people is assuming the directionality of the relationship between antibiotic use and 

illness. In this case, both directions will be considered and assessed using subgroups. 

While including an infectious or clinical outcome to measure the effect of microbiome and 

resistome shifts is essential in the short term, this work has a much broader potential impact. 

As mentioned, one of the main goals of this project was to demonstrate the importance of 

including sequence analysis to support general medical decision-making. Until recently, 

sequencing analysis, particularly of the microbiome, has been a foreign concept to the medical 

community. Although whole genome sequencing is applied in some clinical contexts and in 

research contexts to assess the genetic-drivers of infectious outbreaks, metagenomic 

sequencing is not often included.[6-10] CHOICE was the perfect example of how 

metagenomic and microbiome data can be used to help inform medical decisions. Much like 

the Reyman and Leo studies, CHOICE applied a metagenomic sequencing-based approach 
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to investigate how a change in antibiotic treatment impacted the collection of resistance genes 

more broadly, in a cohort of people who were experiencing the relevant ailment at the time of 

the study.[90, 127] In the RCT, no significant impact on the efficacy or safety of either 

treatment was observed, but there was some evidence of ESBL acquisition in culture.[89] 

Subsequent analysis performed in this project demonstrated shifts in the microbiome within 

each group that ultimately resolved but may have allowed for the expansion of resistant 

organisms during the window of disruption. This type of data is paramount in considering both 

the immediate and later-life impact of antibiotic treatment, longevity and resistance in high-

risk individuals. One major hurdle in the integration of sequencing/microbiome data into 

medical decision-making is the complexity of not only the technology itself, but also the 

interpretation of the data that emerges. This project has made an excellent start and includes 

some suggestions for how this data might be displayed to be impactful to the medical 

community, but further work and discussion between those studying the microbiome and those 

in medical practice is essential. 

Overall, the main goal of this project was to advise how the efficacy of current antibiotics could 

and should be preserved and regulated. In older populations, such as those in aged-care, 

antibiotic stewardship has a long way to go.[4] Previous work by collaborators of our research 

group showed a significant increase in antibiotic use over time in the population of aged-care 

residents, which presents an unacceptable risk to future efficacy of treatment.[92, 214] 

GRACE in particular demonstrated a significant effect on the microbiome and resistome with 

antibiotic use as a whole, especially in those who had frequent and varied antibiotic treatment. 

The impact of doxycycline on the resistome was quite pronounced, impacting not only the 

resistance profile for its own antibiotic class, but also for other antibiotic classes. This is the 

first example of a metagenomic-sequencing-based approach to investigate changes in the 

resistome in permanent residents of aged-care facilities. Both major components of this 

project found that antibiotic use has consequences beyond the target infectious agent, and 

while there is no suggestion that antibiotics should not continue to be used, the evidence 

certainly reveals that overuse is having extensive, unintended consequences. Ultimately, this 

work described here is a guide as to how sequencing and microbiome analysis can be applied 

to medical decision-making and serves to support and educate others working to progress the 

wider application of metagenomic approaches. 
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APPENDIX A: SAMPLE CODE FOR PROCESSING OF 

METAGENOMIC SEQUENCING DATA 

Contents: Sample code of metagenomic sequencing data processing in the conda 

environment on Flinders HPC to generate microbiome and resistome output. 
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Metagenomics pipeline on DeepThought using conda environment: February 2022 (modified 

June 2022) 

Lucy Carpenter, Steven Taylor, Fredrick Mobegi, Jocelyn Choo, Lex Leong 

 

##1 Transfer files to directory 

#Files can now be transferred from the R drive to your directory on the HPC 

e.g. /RDrive/CMPH-SAHMRI/USER/DIRECTORY 

 

#Files can also be imported using the wget command if only a small number were 

sequenced 

wget [insert link to zip file] 

 

##2 (optional but encouraged) Match md5sum key with one generated on HPC to confirm 

correct file download 

for i in `ls *.gz | cut -f 1 -d "." | sort -u`; do md5sum "$i".fastq.gz > 

/scratch/user/username/project/md5/"$i"_md5.txt; done 

cat *_md5.txt > all_md5.txt 

#Confirm this key matches the one provided by the institution who sequenced the samples 

 

##3 Set up your conda environment (see 'conda_instructions' in R:\CMPH-

SAHMRI\Protocols\Downstream processing\HPC information) 

#Create a conda environment called SAHMRI_MHH (or whatever you would like to call it) to 

store all of your packages 

 

module load Miniconda3/4.9.2 

conda config --add channels defaults 

conda config --add channels bioconda 

conda config --add channels conda-forge 

conda create --name=SAHMRI_MHH python=3.9 

conda activate SAHMRI_MHH 
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#For up to metaphlan: 

conda install fastqc 

conda install multiqc 

conda install trimmomatic 

conda install bowtie 

conda install metaphlan 

 

#For resistome pipeline also add these: 

conda install cd-hit 

conda install idba 

conda install bbmap 

conda install prodigal 

conda install emboss 

conda install blast 

conda install -c r r-essentials 

conda install --channel conda-forge --channel bioconda --channel defaults rgi=5.2.1 #see 

instructions for installing this 

#When asked ensure you type y to confirm 

 

#On the headnode activate your environment using: 

conda activate SAHMRI_MHH 

#In a subscript activate your environment using: 

source activate SAHMRI_MHH 

#Deactivate your environment using: 

conda deactivate 

#Check your environments using: 

conda env list 

#For help, first activate your environment on the headnode, then use: 

[progam] --help #e.g. fastqc --help 
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#Remeber to always add the line to load miniconda in subscripts that need a conda 

environment 

#Scripts should look like this (noting that parameters can be different depending on the job): 

#!/bin/bash 

 

### Job name 

#SBATCH --job-name=[jobname] 

 

### Set email type for job 

### Accepted options: NONE, BEGIN, END, FAIL, ALL 

#SBATCH --mail-type=NONE 

 

### email address for user 

#SBATCH --mail-user=[FAN]@flinders.edu.au 

 

### Request nodes 

#SBATCH --ntasks=1 

#SBATCH --mem=50gb 

#SBATCH --time=100:00:00 

 

module load Miniconda3/4.9.2 

 

# Run the executable 

source activate SAHMRI_MHH 

[code] 

conda deactivate 
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##4 Perform QC checks on raw files using fastqc (fastqc.sub) 

mkdir fastqc 

fastqc -o /scratch/user/FAN/project/raw_files/fastqc -f fastq -t 16 

/scratch/user/FAN/project/raw_files/*.fastq.gz 

 

##5 Combine QC outputs using multiqc (multiqc.sub) 

cd fastqc 

multiqc . -o multiqc_outdir 

 

#What to look at? 

#A Per base sequence quality- want to trim so that anything in the red section (below a 

phred score of 20) is removed 

#B Tile quality- warm colours are bad, if there is lots of red you might want to lose that 

sample or get it re-sequenced 

#C Per sequence quality score- above 20 acceptable 

#D Per base sequence content- bases should even out and run parallel 

#E Adapter content- tells you what to get rid of 

##GC content and sequence duplication not important for metagen but important for WGS## 

 

##6 Trim raw reads (trimmomatic_array.sub) 

java -jar /home/FAN/.conda/envs/SAHMRI_MHH/share/trimmomatic-0.39-2/trimmomatic.jar 

PE -threads 4 -phred33 $r1 $r2 -baseout trimmed_fastq/$name.fastq.gz 

ILLUMINACLIP:adaptersPE.fa:3:30:10 SLIDINGWINDOW:4:20 MINLEN:50 HEADCROP:10 

#ILLUMINACLIP removes adapter sequences 

#HEADCROP removes a selected number of bases from the start of all sequences 

#SLIDING WINDOW scans X number of bases and trims whenever the quality drops below 

Y (SLIDINGWINDOW:X:Y) 

#MINLEN drops reads below a certain length from the cleaned output reads 
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##7 Repeat QC checks on trimmed reads (fastqc_trimmed.sub + mutliqc_trimmed.sub) 

mkdir trimmed_fastq/fastqc_trimmed 

fastqc -o /scratch/user/FAN/project/raw_files/trimmed_fastq/fastqc_trimmed -f fastq -t 16 

/scratch/user/FAN/project/raw_files/trimmed_fastq/*.fastq.gz 

cd /scratch/user/FAN/project/raw_files/trimmed_fastq/fastqc_trimmed 

multiqc . -o multiqc_outdir 

 

##8 Remove human reads from samples using bowtie (bowtie_human_array.sub) 

#First move the human reference genome to your scratch folder (only do this once) 

cp -R /RDrive/CMPH-GenomicsDB/human_reference_genome_grch38_for_bowtie 

/scratch/user/FAN 

#Steps are as follows 

#A Align paired reads to the human reference genome and keep those that DO NOT align 

#B Rename files to be consistent with our naming conventions 

#C Remove SAM files as they are not needed but take up a lot of space 

#D Align unpaired forward reads to human reference genome and keep those that DO NOT 

align 

#E As per D for unpaired reverse reads 

#F As per C for all unpaired reads 

bowtie2 -p 8 -x 

/scratch/user/FAN/human_reference_genome_grch38_for_bowtie/GRCh38_noalt_as -1 $r1 

-2 $r2 --local --un-conc-gz $PWD/bowtie_human/"$name"_P_HC > 

$PWD/bowtie_human/$name.sam 

mv $PWD/bowtie_human/"$name"_P_HC.1 $PWD/bowtie_human/"$name"_1P_HC.fq.gz 

mv $PWD/bowtie_human/"$name"_P_HC.2 $PWD/bowtie_human/"$name"_2P_HC.fq.gz 

rm $PWD/bowtie_human/$name.sam 

bowtie2 -p 8 -x 

/scratch/user/FAN/human_reference_genome_grch38_for_bowtie/GRCh38_noalt_as -U $r3 

--local --un-gz $PWD/bowtie_human/"$name"_1U_HC.fq.gz > 

$PWD/bowtie_human/"$name"_1U.sam 
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bowtie2 -p 8 -x 

/scratch/user/FAN/human_reference_genome_grch38_for_bowtie/GRCh38_noalt_as -U $r4 

--local --un-gz $PWD/bowtie_human/"$name"_2U_HC.fq.gz > 

$PWD/bowtie_human/"$name"_2U.sam 

 

rm $PWD/bowtie_human/"$name"_1U.sam 

rm $PWD/bowtie_human/"$name"_2U.sam 

 

##9 Convert fastq reads to fasta format (fq2fa_array.sub) 

#Steps are as follows 

#A Unzip paired reads, interleave forward and reverse paired reads, and convert to fasta 

format 

#B Unzip unpaired forward reads and convert to fasta format 

#C As per B for unpaired reverse reads 

 

fq2fa --merge --filter <(gunzip -c $r1) <(gunzip -c $r2) 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/"$name".fa 

fq2fa --filter <(gunzip -c $r3) 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/"$name"_1U.fa 

fq2fa --filter <(gunzip -c $r4) 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/"$name"_2U.fa 

 

#Move unpaired reads to separate folder 

mkdir fq2fa/unpaired 

mv *U.fa unpaired 

 

##10 Use metaphlan to generate table with taxa in each sample (metaphlan3_array.sub) 

#On the headnode (only need to do this once) 

rsync -av /RDrive/CMPH-GenomicsDB/chocophlan_v30 /home/FAN #Here you are moving 

the metaphlan database to your local folder 
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#In the metaphlan3_array subscript 

metaphlan $r1 --input_type fasta --bowtie2db /home/FAN/chocophlan_v30 --nproc 16 -o 

metaphlan_out/"$name".out --bowtie2out metaphlan_bowtie/"$name".bowtieout #In array 

subscript 

 

#Back on the headnode 

conda activate SAHMRI_MHH 

merge_metaphlan_tables.py *.out > project_metaphlan_table.txt #Here you are merging the 

outputs from all samples into one table 

conda deactivate 

 

###########STOP HERE IF YOU ONLY WANT METAPHLAN TAXA DATA########### 

 

 

#############CONTINUE WITH BELOW FOR RESISTOME ANALYSIS ############# 

 

##11 Build contigs using IDBA (idba_array.sub) 

idba_ud -r $r1 -o idba_test/$name --num_threads 20 --pre_correction 

 

##12 Combine all contig.fa files into one (combine_contigs.sub) 

mkdir contigs 

find . -type f -name "contig.fa" -exec bash -c ' DIR=$( dirname "{}" ); cp "{}" 

"$DIR"/"${DIR##*/}"_contig.fa' \; 

find . -type f -name '*_contig.fa' -exec cp {} 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/contigs \; 

awk 1 contigs/*contig.fa > contigs/project_contigs.fna 

cp contigs/project_contigs.fna . 
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##13 Use prodigal to identify protein coding regions (prodigal.sub) 

prodigal -i 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_contigs.

fna -o 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf.gff -

d 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf.fna -

p meta 

 

##14 Use cd-hit to identify non-redundant genes (cdhit.sub) 

cd-hit-est -i 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf.fna -

o 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr.f

na -c 0.95 -G 0 -aS 0.9 -g 1 -r 1 -T 16 -M 100000 

 

##15 Remove genes less than 100bp in length (rmsmls.sub) 

#Ensure removesmalls.pl is accessible 

perl /scratch/user/FAN/removesmalls.pl 100 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr.f

na > 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100.fna 

 

##16 Rename previously generated file (headnode) 

awk '/^>/{print ">gene" ++i; next}{print}' < project_orf_nr_n100.fna > 

project_orf_nr_n100_awk.fna 

 

##17 Translate nucleic acid sequence into amino acid sequence (transeq.sub) 

transeq -sequence 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100_awk.fna -outseq 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100_awk.faa 
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##18 Blast sequences against CARD database using RGI (rgi.sub) 

#Make a copy of the gene catalogue and remove asterisk from the end of each line in the 

copy (on headnode) 

cp project_orf_nr_n100_awk.faa project_orf_nr_n100_awk_nostar.faa 

sed -i 's/*//g' project_orf_nr_n100_awk_nostar.faa 

 

#Download and open database (only need to do this step once on headnode) 

wget https://card.mcmaster.ca/latest/data 

tar -xvf data ./card.json 

rgi load --card_json /scratch/user/FAN/card.json --local 

#In rgi.sub 

rgi main -i project_orf_nr_n100_awk_nostar.faa -o project_rgi.txt -t protein -n 8 --local 

 

##19 Build database for gene catalogue (bowtie_build.sub) 

bowtie2-build 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100_awk.fna 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100_awk_bowtie 

 

##20 Align interleaved paired forward and reverse reads to the database 

(bowtie_array_interleaved.sub) 

cd 

/scratch/user/carp0054/GRACE/GRACE_TruSeq/raw_files/trimmed_fastq/bowtie_human/fq2

fa 

mkdir bowtie 

bowtie2 -x 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_nr_

n100_awk_bowtie -p 4 -f --interleaved $r1 --local -S 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/bowtie/"$name".sam 

 

 

 



 

 138 

##21 Covert SAM output to RPKM counts (pileup.sub) 

mkdir rpkm 

for i in `ls *.sam| cut -f 1 -d\.`; do -e "pileup.sh in="$i".sam 

ref=/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_orf_

nr_n100_awk.fna rpkm=rpkm/"$i".rpkm"; done 

 

##22 Tidy output files (headnode) 

mkdir combine 

for i in `ls *.rpkm| cut -f 1 -d\.`; do sed '1,4d' "$i".rpkm > combine/"$i".tidyrpkm; done 

 

##23 Merge all RPKM outputs and tidy merged file (combine_alt.sub) 

#Copy "transpose.awk" to working file 

cd combine 

find . -name "*.tidyrpkm" -exec awk 'NR>1 {print FILENAME,$1,$6}' {} \; | sed 's/.\//''/' > 

raw_merge.txt 

awk -v OFS='/t' -f transpose.awk raw_merge.txt > Merged_Data_bowtie.txt  

sed -i 's/ \+ /\t/g' Merged_Data_bowtie.txt 

sed -i 's/\t0.0000/\t0/g' Merged_Data_bowtie.txt 

sed -i 's/.tidyrpkm//g' Merged_Data_bowtie.txt 

sed -i 's/target_id/gene/g' Merged_Data_bowtie.txt 

 

##24 Use R to generate final merged resistome table using rgi and bowtie outputs 

(left_join.sub) 

#On headnode 

mkdir left_join 

cp Merged_Data_bowtie.txt left_join 

cp 

/scratch/user/FAN/project/raw_files/trimmed_fastq/bowtie_human/fq2fa/idba/project_rgi.txt 

left_join 
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#Move left_join_for_rgi_bowtie.R into left_join folder and edit as instructed 

#In left_join.sub 

Rscript left_join_for_rgi_bowtie.R 

 

 

########################## END OF PIPELINE ########################### 
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APPENDIX B: GRACE STUDY STAGE 2 REPORT 

Contents: GRACE stage 2 descriptive report published November 2021 
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Introduction 
 
In keeping with trends globally, Australia is experiencing significant ageing of its population.1 
By 2031, 21% of Australians will be over 65 years of age.2 Of these, 6% are expected to live 
in residential aged care facilities (RACFs), rising to 30% for individuals over 85 years.2,3  
 
Residential aged care is recognised globally as a critical setting for monitoring antibiotic use 
and antimicrobial-resistant bacteria (AMR). High antibiotic prescribing rates,4 individual 
susceptibility to infections, and high care needs likely provide an ideal environment for AMR 
transmission between residents and dissemination into the wider community. Despite this, the 
prevalence of AMR in asymptomatic individuals and dispersal of these within the RACF 
environment, is largely uncharacterised. Limiting the development of effective measures to 
prevent the spread and impact of AMR in residential aged care.5,6  
 
The Generating evidence on Resistant bacteria in the Aged Care Environment (GRACE) study 
aimed to address five questions that are fundamental to developing strategies to reduce AMR 
carriage in RACF residents: 
 
1) What factors determine the types and levels of AMR carried by RACF residents?  
2) To what extent is there evidence of AMR transmission between RACF residents?  
3) Is interaction with the RACF built environment likely to facilitate AMR transmission?  
4) Do hospital visits for acute care significantly influence types and levels of AMR carriage?  
5) To what extent do ageing-associated changes in gut microbiology influence AMR carriage? 
 
GRACE was a cross-sectional study supported by a Medical Research Future Fund (MRFF) 
grant (GNT1152268) involving five aged care facilities in metropolitan Adelaide, Australia. 
Participants were invited to provide stool and oropharyngeal samples for metagenomic 
analysis to determine microbiome and resistome characteristics. Environmental samples were 
collected from sites within each facility to determine the role of the environment in AMR 
transmission. The study also accessed Pharmaceutical Benefits Scheme and Medicare 
Benefits Schedule data for consenting participants. Data on clinical care, facility management 
practices, including cleaning, provision of care, and staffing, were obtained directly from RACF 
providers.  
 
This report provides an overview of participant demographics, health status and comorbidities, 
medication and health system utilisation, facility characteristics, and a preliminary analysis of 
faecal and oropharyngeal microbiota composition and resistome. Analysis of environmental 
samples collected from participating sites is not included. Study data are presented prior to 
integrative analysis to address the five study aims.  
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Recruitment and Sample Collection 
 
Three residential aged care providers and five facilities participated in the GRACE study. 
Within these facilities, 403 residents met the study eligibility criteria and 344 were approached 
to participate. A total of 279 residents consented to the study, a final recruitment rate of 75% 
(excluding Site 1 as this data were not available) (Fig. 1, Fig. 2A). Eleven couples across four 
sites enrolled in the study. 
 
Of those who consented, 111 (39.8%) provided self-consent and 168 (60.2%) provided third-
party consent. Stool samples were collected from 213 participants, and 204 were of sufficient 
quality for sequencing. OP swabs were collected from 252 participants, of which 237 were of 
appropriate quality for sequencing. Primary reasons for being unable to collect a stool sample 
included cognitive impairment but self-toileting (n=23), staff unable to collect (n=20), refusal 
(n=15) and cessation of the study due to COVID-19 (n=8). Reasons for being unable to collect 
an OP swab included cessation of the study due to COVID-19 (n=6) and refusal (physical and 
verbal) (n=16) Both sample types were collected from 194 participants. 
 

 
Figure 0.1. GRACE study recruitment and sample collection. * Indicates data does not include Site 1. 
n=194 participants gave both sample types. 
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Two-hundred and seventy-three residents provided consent to access Medicare benefits 
schedule (MBS) and pharmaceutical benefits scheme (PBS) data via the Department of 
Human Services (DHS) (Appendix A/B). DHS data was not accessible for those who provided 
incorrect supporting documentation (n=14) or completed the consent form incorrectly (n=11 
for PBS and n=8 MBS). Finally, DHS could not provide PBS history for 20 participants and 
MBS history for 8 participants for reasons unknown to the study team. In total, 228 residents 
had accessible PBS data and 243 had accessible MBS data for analysis (Appendix B).  
 
Site 3 was the largest site with 148 consenting residents, followed by site 5 (n=47) and site 4 
(n=46) (Fig. 2B). Site 2 was the smallest site with 27 beds and 18 consenting participants. Site 
1 was a pilot site with 20 residents recruited out of 110 occupied beds at the time of 
recruitment. Data on eligibility and consent was not adequately recorded. Study recruitment 
ceased in March 2020 due to the COVID-19 pandemic. 
 

 
Figure 0.2. Recruitment per site’s total number of occupied beds for the GRACE study. Site 1 is not 
shown as this data was not collected (A). Percentage of total number of participants from each site 
(n=279) (B). 
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Chapter 1: Facility Characteristics 
Facility demographics 
All three aged care providers were not-for-profit organisations and sites were located in South 
Australian metropolitan areas. Site 1 was run by provider A, sites 2 and 3 were from provider 
B, and sites 4 and 5 were managed by provider C. 
 
Facility data was collected from all sites except for site 5 due to sudden cessation of the study 
from the COVID-19 pandemic, and therefore has limited variables available to report (Table 
1). Site 4 was the oldest site, opened in 1963, and site 2 was the youngest site, opened in 
2017. This was reflected in residents’ average length of stay, with site 2, having an average 
of 283 days and site 4 an average of 949 days. Of the five sites, three had a memory support 
unit (sites 1,3 and 5). All sites had shared or public toilets, with only site 4 reporting shared 
bath facilities. Cooking and laundry of personal clothing were done in-house for all sites, while 
laundry for linen was outsourced. 
 
 Table 2. Characteristics of facilities that participated in the GRACE study. 

 Site 1 Site 2 Site 3 Site 4 Site 5 

Provider A B B C C 

Year opened 2012 2017 2009 1963 NA 

Total beds (No.) 110 27 225 70 87 

Occupied beds at time of recruitment 
(No.) 

NA 27 220 70 86 

Single rooms (No.) 110 27 225 70 NA 

Shared rooms (No.) 0 0 0 0 NA 

Average length of stay (days)  

Past 12 months NA 283 624 949 NA 

Past 3 years NA 357 662 1022 NA 

Memory support unit (Y/N) Yes No Yes No Yes 

Shared bath facilities (Y/N) No No No Yes NA 

Shared/public toilets (Y/N) Yes Yes Yes Yes NA 

Animals/pets onsite (Y/N) Yes Yes Yes No NA 

Food cooked fresh onsite (Y/N) Yes Yes Yes Yes NA 

Internal laundry (Y/N)  

Personal laundry Yes Yes Yes Yes NA 

Linen No No No No NA 

 

NA = not available 
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1.2 Facility healthcare management and infection control 
Site 1 was the only site to report not having a hospital avoidance policy in place, and site 4 
was the only site to report having an antimicrobial stewardship policy in place at the time of 
recruitment. Two out of the four sites had a polypharmacy review policy (sites 1 and 3), and 
all participated in the aged-care national antimicrobial prescribing survey (acNAPS).  
 
No facility had hand sanitiser available inside resident rooms, and only site 1 reported having 
hand sanitiser available directly outside of resident rooms. Handwashing stations outside 
resident rooms ranged between 0.1 and 0.22 stations per room. All sites provided staff with 
formal hand hygiene training but only sites 2 and 3 reported having a dedicated infection 
prevention and control (IPC) nurse. As a result of COVID-19, all facilities in Australia must 
now appoint a nurse as the IPC site lead.  
 
All sites except Site 4 reported having an infectious outbreak in the past 12 months, with sites 
1 and 2 reporting a respiratory virus outbreak and sites 1 and 3 reporting a gastrointestinal 
virus outbreak.  
 

1.3 Facility cleaning 
Room cleans were performed weekly in all sites and high touch-point cleans performed daily 
in all sites except site 1, which reported daily to weekly touch-point cleans. All sites reported 
cleaning light switches, door handles, toilet seats, toilet flushes, and resident overways (Fig. 
3). Bed remotes and call bells were cleaned only in sites 1 and 2, and TV remotes were 
cleaned in all sites but site 4. Sink taps were cleaned in all sites but site 4, and walking frames 
were cleaned only in sites 1 and 3. 
 

 

Figure 0.3. Binary heatmap of surfaces reported as cleaned during high touch-point cleaning in each 
facility. Site 5 is not shown as this data was not available. 
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Chapter 2: Participant Characteristics 
2.1 Demographics 
Participants of the GRACE study were a median of 88.6 years old (IQR: 11.3, Fig. 4A) with 
participants at site 4 the youngest (med=85.4, IQR=16.3) and participants at site 2 the oldest 
(med=90.3, IQR=6.8) (Fig. 4B).  
 

 
Figure 0.4. Distribution of age and boxplot showing median, IQR and range of age within the entire 
GRACE population (A) and per site (B), with each dot representing an individual. 

 
Of the entire study cohort, 71.7% were female and 28.3% were male (Table 2). Ratio of males 
to females was consistent across enrolled participants in each site (Fig. 5A). Females enrolled 
in the GRACE study were generally older than males (females: med=89.4 years; males: 
med=85.8 years; Fig. 5B). 
 

 
Figure 0.5. Proportion of enrolled males and females per site (A) and age distribution of each sex (B). 
Dashed line represents the median age in years for each sex. 
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Table 3. GRACE participant characteristics. 

 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Total 20 (7.2) 18 (6.5) 148 (53.0) 46 (16.5) 47 (16.8) 279 (100) 

Sex       

Female 13 (65.0) 13 (72.2) 110 (74.3) 30 (65.2) 34 (72.3) 200 (71.7) 

Male 7 (35.0) 5 (27.8) 38 (25.7) 16 (34.8) 13 (27.7) 79 (28.3) 

Age (years)       

<70 1 (5.0) 0 (0) 4 (2.7) 4 (8.7) 0 (0) 9 (3.2) 

70-74 3 (15.0) 1 (5.6) 5 (3.4) 5 (10.9) 4 (8.5) 18 (6.5) 

75-79 2 (10.0) 1 (5.6) 13 (8.8) 5 (10.9) 5 (10.6) 26 (9.3) 

80-84 1 (5.0) 1 (5.6) 20 (13.5) 8 (17.4) 7 (14.9) 37 (13.2) 

85-89 4 (20.0) 6 (33.3) 38 (25.7) 11 (23.9) 16 (34.0) 75 (26.9) 

90-94 7 (35.0) 7 (38.9) 42 (28.4) 6 (13.0) 11 (23.4) 73 (26.2) 

95-99 2 (10.0) 2 (11.1) 21 (14.2) 5 (10.9) 4 (8.5) 34 (12.2) 

>100 0 (0) 0 (0) 5 (3.4) 2 (4.3) 0 (0) 7 (2.5) 

Memory support room       

Yes 6 (30.0) 0 (0) 29 (19.6) 0 (0) 1 (2.1) 36 (12.9) 

No 14 (70.0) 18 (100) 119 (80.4) 46 (100) 46 (97.9) 243 (87.1) 

Shared room       

Yes 0 (0) 0 (0) 0 (0) 0 (0) 6 (12.8) 6 (2.2) 

No 20 (100) 18 (100) 148 (100) 46 (100) 41 (87.2) 273 (97.8) 
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 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Time spent in care (days)        

<50 1 (5.0) 1 (5.6) 14 (9.5) 2 (4.3) 3 (6.4) 21 (7.5) 

50-99 1 (5.0) 0 (0) 11 (7.4) 3 (6.5) 2 (4.3) 17 (6.1) 

100-499 6 (30.0) 10 (55.6) 18 (12.2) 18 (39.1) 13 (27.7) 65 (23.3) 

500-999 2 (10.0) 7 (38.9) 55 (37.2) 6 (13.0) 14 (29.8) 84 (30.1) 

1000-1499 3 (15.0) 0 (0) 24 (16.2) 4 (8.7) 8 (17.0) 39 (14.0) 

1500-1999 6 (30.0) 0 (0) 11 (7.4) 4 (8.7) 1 (2.1) 22 (7.9) 

2000-2499 1 (5.0) 0 (0) 6 (4.1) 4 (8.7) 4 (8.5) 15 (5.8) 

2500-2999 0 (0) 0 (0) 5 (3.4) 1 (2.2) 1 (2.1) 7 (2.5) 

>3000 0 (0) 0 (0) 4 (2.7) 4 (8.7) 1 (2.1) 9 (3.2) 

Urinary catheter in situ       

Yes  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

No 20 (100) 18 (100) 148 (100) 46 (100) 47 (100) 279 (100) 

Urostomy       

Yes 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

No 20 (100) 18 (100) 148 (100) 46 (100) 47 (100) 279 (100) 

Vascular catheter in situ       

Yes 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

No 20 (100) 18 (100) 148 (100) 46 (100) 47 (100) 279 (100) 

Tracheostomy       
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 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Yes 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

No 20 (100) 18 (100) 148 (100) 46 (100) 47 (100) 279 (100) 

Colostomy/Ileostomy       

Yes 0 (0) 0 (0) 7 (4.7) 0 (0) 0 (0) 7 (2.5) 

No 20 (100) 18 (100) 141 (95.3) 46 (100) 47 (100) 272 (97.5) 

Receiving wound care^   n=147 n=45  n=277 

None 15 (75.0) 16 (88.9) 112 (75.7) 26 (56.5) 36 (76.6) 206 (73.8) 

Multiple 0 (0) 0 (0) 5 (3.4) 3 (6.5) 1 (2.1) 9 (3.2) 

Skin tear 0 (0) 0 (0) 7 (4.7) 6 (13.0) 2 (4.3) 15 (5.4) 

Pressure ulcer (grade 1-2) 0 (0) 1(5.6) 11 (7.4) 4 (8.7) 2 (4.3) 17 (6.1) 

Pressure ulcer (grade 3-4) 0 (0) 0 (0) 0 (0) 2 (4.3) 0 (0) 2 (0.7) 

Leg ulcer 2 (10.0) 1(5.6) 1 (0.7) 0 (0) 1 (2.1) 5 (1.8) 

Burn/scald 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Abrasion/graze 1 (5.0) 0 (0) 3 (2.0) 0 (0) 2 (4.3) 6 (2.2) 

Surgical 0 (0) 0 (0) 2 (1.4) 0 (0) 0 (0) 2 (0.7) 

Lesion 0 (0) 0 (0) 0 (0) 2 (4.3) 0 (0) 2 (0.7) 

Unspecified 2 (10.0) 0 (0) 6 (4.1) 2 (4.3) 3 (6.4) 13 (4.7) 

Known carriage of MDRO       

Yes 4 (20.0) 2 (11.1) 8 (5.4) 2 (4.3) 0 (0) 16 (5.7) 

No 16 (80.0) 16 (88.9) 140 (94.6) 44 (95.7) 47 (100) 263 (94.3) 
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 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Diet type^ n=19     n=278 

Normal 17 (85.0) 18 (100) 139 (93.9) 44 (95.7) 44 (93.6) 262 (93.9) 

Vegetarian 0 (0) 0 (0) 1 (0.7) 0 (0) 0 (0) 1 (0.4) 

Lactose free 1 (5.0) 0 (0) 7 (4.7) 1 (2.2) 2 (4.3) 11 (3.9) 

Gluten free 0 (0) 0 (0) 1 (0.7) 0 (0) 1 (2.1) 2 (0.7) 

Halal (no pork) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Hindu (no beef) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Lactose and gluten free diet 1 (5.0) 0 (0) 0 (0) 1 (2.2) 0 (0) 2 (0.7) 

Prescribed meal texture       

Regular 16 (80.0) 15 (83.3) 101 (68.2) 34 (73.9) 37 (78.7) 203 (72.8) 

Finger food 1 (5.0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.4) 

Soft 2 (10.0) 3 (16.7) 15 (10.1) 9 (19.6) 7 (14.9) 36 (12.9) 

Minced and moist 0 (0) 0 (0) 18 (12.2) 2 (4.3) 2 (4.3) 22 (7.9) 

Pureed 1 (5.0) 0 (0) 14 (9.5) 1 (2.2) 1 (2.1) 17 (6.1) 

Liquidised 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Prescribed liquid texture       

Normal/Thin 19 (95.0) 17 (94.4) 132 (89.2) 43 (93.5) 44 (93.6) 255 (91.4) 

Slightly thick 0 (0) 0 (0) 1 (0.7) 1 (2.2) 2 (4.3) 4 (1.4) 

Mildly thick 0 (0) 1 (5.6) 10 (6.8) 2 (4.3) 1 (2.1) 14 (5.0) 

Moderately thick 1 (5.0) 0 (0) 3 (2.0) 0 (0) 0 (0) 4 (1.4) 

Extremely thick 0 (0) 0 (0) 2 (1.4) 0 (0) 0 (0) 2 (0.7) 
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 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Prescribed nutritional supplement^ n=12  n=147   n=270 

Standard (fortified diet) 3 (15.0) 8 (44.4) 93 (62.8) 24 (52.2) 29 (61.7) 157 (56.3) 

High energy & high protein (HEP) 6 (30.0) 10 (55.6) 54 (36.5) 22 (47.8) 18 (38.3) 110 (39.4) 

Oral nutrition supplement 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

PEG nutrition supplement 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

HEP and oral nutritional supplements 3 (15.0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (1.1) 

 

^ missing data: receiving wound care, 0.7%; diet type, 0.4%; prescribed nutritional supplement, 3.2%.
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At the time of enrolment, study participants had resided in their facility for a median of 681 
days (IQR=878; Fig. 6A). Participants in site 1 had the longest length of stay (med=872, 
IQR=1454.5), and site 2 the shortest (med=457, IQR=146; Fig. 6B). This difference is likely 
affected by a facility’s age, with site 2 opening in 2017. 
 

 
Figure 0.6. Distribution and boxplot of length of time spent living at the participant’s current facility for 
the entire GRACE cohort with the distribution overlayed (A) and per site (B). 
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2.2 Diet type and supplementation 
There was no difference in food preparation and supply between sites, with all reporting that 
food is prepared and cooked fresh on-site (Table 1). Most participants did not have any 
specific dietary requirements (n=262, 93.9%; Table 2/Fig. 7A), and this was consistent across 
sites. Of those that did, lactose-free was the most common (n=11, 3.9%). Most participants 
were able to consume their meals with a regular texture (n=203, 72.8%), however soft (n=36, 
12.9%), minced and moist (n=22, 7.9%) and pureed (n=17, 6.1%) were also frequent (Fig. 
7B). No participant had liquidised meals. Liquid texture was consistent across sites, with most 
participants consuming normal/thin textured liquid (n=255, 91.4%), followed by mildly thick 
(n=14, 5.0%; Fig. 7C). No participants were prescribed percutaneous endoscopic gastrostomy 
(PEG) supplementation or oral supplementation alone. Most participants receive a standard 
fortified diet (n=157, 56.3%), with a large proportion also on a high energy high protein (HEP) 
diet (n=110, 39.4%; Fig. 7D).  
 
 

 
Figure 0.7. Dietary requirements of GRACE study participants per site for diet type (A), meal texture 
(B), liquid texture (C) and dietary supplementation method (D). 
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2.3 Care requirements  
No study participants had a urinary catheter, vascular catheter, tracheostomy, or urostomy at 
the time of enrolment. Seven participants (2.5%), all from site 3, had a colostomy or ileostomy 
and 71 (25.6%) were receiving wound care (Table 2). Of those receiving wound care, most 
were for a grade 1-2 pressure ulcer (n=17, 23.9%) followed by a skin tear (n=15, 21.1%). Nine 
participants (12.7%) were receiving care for more than one wound. Site 4 had the highest 
percentage of participants receiving wound care (n=18, 39.1%) and site 2 had the lowest (n=2, 
11.1%). Sixteen participants (5.7%) had carriage of an MDRO listed on their medical record. 
Of these, four were from site 1 (20% of enrolled participants from this site), two from site 2 
(11.1%), eight from site 3 (5.4%), two from site 4 (4.3%) and none from site 5. 
 
The Aged Care Funding Instrument (ACFI) assessment details the required levels of care for 
each of the three domains: Activities of Daily Living (ADL), Behaviour, and Complex Health 
Care (CHC) (Table 3, Appendix A). Most participants at each site were diagnosed with higher 
care needs for variables in the ADL category (classifications of C and D). Total ADL scores of 
high (C) were the most prevalent across the sites, (Fig. 8A) with a minimum 55.6% of 
participants at site 2, and maximum 72.3% at site 3. Collectively, the most diagnosed care 
level for each ADL variable for the entire cohort was C for Nutrition (77.4%), D for Mobility 
(67.4%), D for Personal Hygiene (88.9%), D for Toileting (74.6%), D for Continence, (83.5%), 
and C for Total ADL (66.0%).  

Participants at each site were diagnosed with a range of care needs for Behaviour, which was 
reflected in the Total Behavioural category (Fig. 8B). High care needs (C) were the most 
common in sites 1 (65.0%), 3 (50.0%) and 5 (46.8%). Most frequently, participants at site 2 
had moderate (B) care needs (55.6%). Site 4 was equally divided with 41.3% of participants 
classified as requiring moderate or high levels of behavioural care. Collectively, the most 
diagnosed care level for each Behavioural measure was C for Cognitive Skills (39.8%), A for 
Wandering (85.3%), D for Verbal (58.1%), A for Physical (49.8%), A for Depression (56.1%), 
and C for Total Behavioural (47.0%). The mean PAS-CIS score for the cohort was 9.6, with 
the lowest score at site 2 (8.1) and highest at site 1 (11.6). However, 48.8% of PAS-CIS scores 
for the cohort were recorded missing, likely due to cognitive impairment levels that were too 
high for the assessment to be done.  
 
Within the CHC domain, participants at each site were assessed for the level of assistance 
they required for Medication and Complex Health Care procedures, which was reflected in the 
Total CHC category (Fig. 8C). A minimum of 55.0% of participants required high care at site 
1, 61.1% at site 2, 65.5% at site 3, 65.2% at site 4, and 66.0% at site 5. Collectively, the most 
diagnosed care level for each factor of the Complex Health Care domain for the entire cohort 
was B for Medication (81.7%), D for Complex Health Care (63.4%), and C for Total CHC 
(64.5%). 
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Table 4. GRACE participant ACFI assessment for each facility, and the combined cohort.  

 Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Total Participants^ 20 (7.2) 18 (6.5) 148 (53.0) 

Activities of Daily 
Living (ADL) 
Domain 

A B C D A B C D A B C D 

Nutrition 2 (10.0) 2 (10.0) 11 (55.0) 4 (20.0) 0 (0) 2 (11.1) 15 (83.3) 1 (5.6) 1 (0.7) 6 (4.1) 121 (81.8) 19 (12.8) 

Mobility 0 (0) 1 (5.0) 8 (40.0) 10 (50.0) 0 (0) 0 (0) 5 (27.8) 13 (72.2) 2 (1.4) 3 (2.0) 33 (22.3) 109 (73.7) 

Personal Hygiene 0 (0) 3 (15.0) 1 (5.0) 15 (75.0) 0 (0) 0 (0) 0 (0) 18 (100) 0 (0) 3 (2.0) 4 (2.7) 140 (94.6) 

Toileting 0 (0) 3 (15.0) 5 (25.0) 11 (55.0) 0 (0) 0 (0.) 3 (16.7) 15 (83.3) 0 (0) 5 (3.4) 20 (13.5) 122 (82.4) 

Continence 3 (15.0) 2 (10.0) 0 (0.0) 14 (70.0) 2 (11.1) 3 (16.7) 1 (5.6) 12 (66.7) 10 (6.8) 2 (1.4) 4 (2.7) 131 (88.5) 

Total ADL 4 (20.0) 4 (20.0) 12 (60.0) - 1 (5.6) 7 (38.9) 10 (55.6) - 7 (4.7) 33 (22.3) 107 (72.3) - 

Behaviour Domain A B C D A B C D A B C D 

Cognitive Skills 0 (0) 7 (35.0) 4 (20.0) 8 (40.0) 0 (0) 10 (55.6) 6 (33.3) 2 (11.1) 3 (2.0) 28 (18.9) 61 (41.2) 55 (37.2) 

Wandering 14 (70.0) 0 (0) 1 (5.0) 4 (20.0) 14 (77.8) 4 (22.2) 0 (0) 0 (0) 126 (85.1) 6 (4.1) 4 (2.7) 11 (7.4) 

Verbal Behaviour 2 (10.0) 2 (10.0) 1 (5.0) 14 (70.0) 1 (5.6) 3 (16.7) 8 (44.4) 6 (33.3) 13 (8.8) 23 (15.5) 30 (20.3) 81 (54.7) 

Physical Behaviour 7 (35.0) 1 (5.0) 2 (10.0) 9 (45.0) 14 (77.8) 1 (5.6) 1 (5.6) 2 (11.1) 62 (41.9) 19 (12.8) 34 (23.0) 32 (21.6) 

Depression 10 (50.0) 5 (25.0) 1 (5.0) 3 (15.0) 2 (11.1) 11 (61.1) 4 (22.2) 1 (5.6) 83 (56.1) 30 (20.3) 17 (11.5) 17 (11.5) 

Behavioural PAS CIS 
(mean (SD))  11.6 (5.4) 8.1 (3.6)  9.3 (4.5)  

Total Behavioural 3 (15.0) 4 (20.0) 13 (65.0) - 5 (27.8) 10 (55.6) 3 (16.7) - 22 (14.9) 49 (33.1) 74 (50.0) - 

Complex Health 
Care (CHC) Domain A B C D A B C D A B C D 

Medication* 1 (5.0) 14 (70.0) 4 (20.0) - 1 (5.6) 15 (83.3) 2 (11.1) - 1 (0.7) 122 (82.4) 14 (9.5) 10 (6.8) 

Complex Health Care 1 (5.0) 0 (0) 8 (40.0) 10 (50.0) 1 (5.6) 1 (5.6) 2 (11.1) 14 (77.8) 0 (0) 11 (7.4) 44 (29.7) 92 (62.2) 

Total CHC 2 (10.0) 7 (35.0) 11 (55.0) - 3 (16.7) 4 (22.2) 11 (61.1) - 9 (6.1) 41 (27.7) 97 (65.5) - 
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Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Total Participants 46 (16.5) 47 (16.8) 279 (100) 

Activities of Daily 
Living (ADL) 
Domain 

A B C D A B C D A B C D 

Nutrition 0 (0) 5 (10.9) 37 (80.4) 4 (8.7) 0 (0) 4 (8.5) 32 (68.1) 8 (17.0) 3 (1.2) 19 (6.8) 216 (77.4) 36 (12.9) 

Mobility 0 (0) 0 (0.) 18 (39.1) 28 (60.9) 0 (0) 1 (2.1) 15 (31.9) 28 (59.6) 2 (0.7) 5 (1.8) 79 (28.3) 188 (67.4) 

Personal hygiene 1 (2.2) 2 (4.4) 6 (13.0) 37 (80.4) 0 (0) 1 (2.1) 5 (10.6) 38 (80.9) 1 (0.4) 9 (3.2) 16 (5.7) 248 (88.9) 

Toileting 1 (2.2) 2 (4.4) 14 (30.4) 29 (63.0) 0 (0) 3 (6.4) 10 (21.3) 31 (66.0) 1 (0.4) 13 (4.7) 52 (18.6) 208 (74.6) 

Continence 2 (4.4) 2 (4.4) 4 (8.7) 38 (82.6) 4 (8.5) 0 (0) 1 (2.1) 38 (80.9) 21 (7.5) 9 (3.2) 10 (3.6) 233 (83.5) 

Total ADL 3 (6.5) 16 (34.8) 27 (58.7) - 3 (6.4) 14 (29.8) 28 (59.6) - 18 (6.5) 74 (26.5) 184 (66.0) - 

Behaviour Domain A B C D A B C D A B C D 

Cognitive skills 3 (6.5) 16 (34.8) 23 (50.0) 4 (8.7) 2 (4.3) 16 (34.0) 17 (36.2) 9 (19.2) 8 (2.9) 77 (27.6) 111 (39.8) 78 (28.0) 

Wandering 42 (91.3) 1 (2.2) 0 (0) 3 (6.5) 42 (89.4) 0 (0) 0 (0) 2 (4.3) 238 (85.3) 11 (3.9) 5 (1.8) 20 (7.2) 

Verbal Behaviour 6 (13.0) 2 (4.4) 4 (8.7) 34 (73.9) 10 (21.3) 3 (6.4) 4 (8.5) 27 (57.5) 32 (11.5) 33 (11.8) 47 (16.9) 162 (58.1) 

Physical Behaviour 32 (69.6) 4 (8.7) 2 (4.4) 8 (17.4) 24 (51.1) 4 (8.5) 4 (8.5) 12 (25.5) 139 (49.8) 29 (10.4) 43 (15.4) 63 (22.6) 

Depression 7 (15.2) 20 (43.5) 12 (26.1) 7 (15.2) 5 (10.6) 15 (31.9) 15 (31.9) 9 (19.2) 107 (38.4) 81 (29.0) 49 (17.6) 37 (13.3) 

Behavioural PAS CIS 
(mean (SD)) 9.1 (4.0)  10.3 (4.3) 9.6 (4.4) 

Total Behavioural 7 (15.2) 19 (41.3) 19 (41.3) - 12 (25.5) 10 (21.3) 22 (46.8) - 49 (17.6) 92 (33.0) 131 (47.0) - 

Complex Health 
Care Domain (CHC) A B C D A B C D A B C D 

Medication* 0 (0) 40 (87.0) 5 (10.9) 1 (2.2) 1 (2.1) 37 (78.7) 6 (12.8) 0 (0) 4 (1.4) 228 (81.7) 31 (11.1) 11 (3.9) 

Complex healthcare 0 (0) 3 (6.5) 13 (28.3) 30 (65.2) 0 (0) 2 (4.3) 11 (23.4) 31 (66.0) 2 (0.7) 17 (6.1) 78 (28.0) 177 (63.4) 

Total CHC 1 (2.2) 15 (32.6) 30 (65.2) - 2 (4.3) 12 (25.5) 31 (66.0) - 17 (6.1) 79 (28.3) 180 (64.5) - 
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^ Missing data: nutrition, 1.8%; mobility, 1.8%; personal hygiene, 1.8%; toileting, 1.8%; continence, 2.2%; total ADL, 1.1%; cognitive skills, 1.8%; wandering, 1.8%; verbal 
behaviour, 1.8%; physical behaviour, 1.8%; depression, 1.8%; behavioural PAS CIS, 48.8%; total behavioural, 2.5%; medication, 1.8%; complex health care, 1.8%; total CHC, 
1.1%. 
* Indicates score of D only applicable for assessment prior to 2017 
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Figure 0.8. ACFI care needs for participants per site and in total. Assessments for the three domains 
of aged care subsidised by the ACFI are summarised as total proportions of participants per site. The 
domains are categorised as activities of daily living (A), behaviour (B), and complex healthcare (C). 
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2.4 Mental and behavioural diagnoses 
Participants cognitive function and mental health was captured via ACFI Mental and 
Behavioural Diagnosis records (Table 4). 
 

Table 5. GRACE participant Aged Care Funding Instrument (ACFI) mental diagnoses for each facility 
and the combined cohort. 

ACFI Diagnosis Site 1 
N (%) 

Site 2 
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

Dementia 
type (%) 

Dementia* 11 (55.0) 4 (22.2) 99 (66.9) 17 (37.0) 21 (44.7) 152 
(54.5) 

  

Alzheimer’s Disease  8 (40.0) 2 (11.1) 71 (48.0) 15 (32.6) 15 (31.9) 111 
(39.8) 

(73.0) 

Vascular dementia 0 (0.00) 2 (11.1) 23 (15.5) 1 (2.2) 5 (10.6) 31 (11.1) (20.4) 

Dementia in other 
diseases (eg 
Parkinson’s) 

1 (5.0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.4) (0.7) 

Multiple dementias 0 (0) 0 (0) 2 (1.4) 0 (0) 1 (2.1) 3 (1.1) (2.0) 

Other dementias  
(eg Lewy body) 

2 (10.0) 0 (0) 7 (4.7) 1 (2.2) 2 (4.3) 12 (4.3) (7.9) 

Delirium 0 (0) 0 (0) 9 (6.1) 1 (2.2) 6 (12.8) 16 (5.7) N/A 

Depression 11 (55.0) 10 (55.6) 69 (46.6) 32 (69.6) 36 (76.6) 158 
(56.6) 

N/A 

Psychoses 0 (0) 0 (0) 7 (4.7) 1 (2.2) 3 (6.4) 11 (3.9) N/A 

Neurotic disorders 3 (15.0) 4 (22.2) 52 (35.1) 14 (30.4) 12 (25.5) 85 (30.5) N/A 

Intellectual/developmental 
disorders 

0 (0) 0 (0) 5 (3.4) 0 (0) 0 (0) 5 (1.8) N/A 

Other disorders 1 (5.0) 0 (0) 0 (0) 0 (0) 3 (6.4) 4 (1.4) N/A 

Unknown 1 (5.0) 0 (0) 1 (0.7) 0 (0) 0 (0) 2 (0.7) N/A 

Cognitive impairment 
Category 

PAS-CIS PAS-CIS PAS-CIS PAS-CIS PAS-CIS  PAS-
CIS 

N/A 

Cognitive Impairment Score 
mean (SD) 

11.56 
(5.4) 

8.12 
(3.6) 

9.32 
(4.5)  

9.12 
(4.0) 

10.33 
(4.3)  

 9.56 
(4.4) 

N/A 

Impairment level n=19   n=147  n=44 n=274  

No or minimal 
impairment 

0 (0) 0 (0) 3 (2.0) 3 (6.5) 2 (4.3) 8 (2.9) N/A 

Mild impairment  7 (35.0)  10 
(55.6) 

28 (18.9) 16 
(34.8)  

 16 
(34.0) 

 77 
(27.6) 

N/A 

Moderate impairment 4 (20.0) 6 (33.3) 61 (41.2) 23 (50.0) 17 (36.2) 111 
(39.8) 

N/A 

Severe impairment 8 (40.0)  2 (11.1) 55 
(37.2)  

4 (8.7)  9 (19.2) 78 (28.0) N/A 

^ Missing data: Impairment level, <1.8%. 
* Three participants were diagnosed with multiple types of dementia. Multiple dementia types was not a specific 
ACFI diagnosis; thus the total percentage exceeds 100%. 
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Depression was diagnosed in 56.6% of GRACE cohort participants (n=158; Fig. 9A), ranging 
from 46.6% in site 2 participants to 76.6% for site 5 participants. Over half of the total 
participants had a dementia diagnosis (n=152, 54.5%) (Fig. 9B). The highest prevalence of 
dementia was among participants from site 3 (66.9%) and the lowest at site 2 (22.2%). Of the 
different classifications of dementia, Alzheimer’s disease was the most prevalent, accounting 
for 73.0% (n=111) of all dementia diagnoses. Vascular dementia was the next most prevalent 
(20.4% of dementia diagnoses, n=31 participants), followed by other dementias, such as Lewy 
body dementia (7.9% of dementia diagnoses, n=12 participants).  
 
 

 
Figure 0.9. Diagnosis of depression (A) and dementia (B) in the GRACE cohort. 

 
Of those with a known dementia diagnosis and PBS data available (n=123), 18 (14.6%) were 
supplied anti-dementia medication. Unusually, one participant was receiving anti-dementia 
medication but did not have a diagnosis of dementia reported. At least one antipsychotic 
medication was supplied to 18.7% (n=23) of participants diagnosed with dementia in the 12 
months prior to study enrolment. At least one anxiolytic was supplied to 30.9% (n=38) of 
participants with a dementia diagnosis in this period, and at least one hypnotic/sedative was 
supplied to 8.9% (n=11) of participants. 
 
Both depression and dementia were diagnosed in 29.4% (n=82) of participants and 18.2% 
were not diagnosed with either (n=51). Antipsychotics were supplied to 30 participants (13.6%) 
and antidepressants to 99 (43.4%) participants within 12 months before enrolment, regardless 
of a mental and behavioural diagnosis. Anxiolytics were supplied at least once to 57 (25.0%) 
participants, and hypnotics/sedatives were supplied at least once to 30 (13.6%) participants. 
No participants were supplied medications from all classes. Most frequently, participants were 
supplied both antidepressants and anxiolytics (n=13; Fig. 10A), and this was the same for 
participants with a dementia diagnosis (n=7; Fig. 10B). 
 



 
  

165 

 
Figure 0.10. Overlap between supply of antipsychotic, antidepressant, antidementia, anxiolytic and 
sedative medication for all GRACE participants who received at least 1 during the 12 months prior to 
enrolment (A) and all GRACE participants with these parameters and a dementia diagnosis (B). 

 
Cognitive impairment was inferred from a participant’s cognitive assessment included in the 
ACFI. Moderate cognitive impairment was the highest assessment for 39.8% (n=111) of the 
entire GRACE cohort (Fig. 11). Severe impairment was classified for 28.0% (n=78) of the 
cohort, followed by mild (27.6%; n=77) and no or minimal impairment (2.9%; n=8). Recorded 
levels of cognitive impairment were most severe in sites 1, 3, and 5, and minimal to mild in 
sites 2 and 4. 

 

 
Figure 0.11. Cognitive impairment levels per site and in total. 

A B 
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2.5 Comorbidities 
Participants of the GRACE study had their comorbidities inferred using the ACFI Aged Care 
Assessment Program (ACAP) diagnosis codes. Data on comorbidities was not available for 
participants in site 1 and was missing for one participant in site 3 (n=258). GRACE participants 
had a median of 11 medical conditions (excluding mental and behavioural conditions) per 
person (range = [2, 20]). Of all the medical conditions recorded for participants (excluding 
mental and behavioural diagnoses), the 5 most common included arthritis and related 
disorders (n=213, 82.6%), stress/urinary incontinence (n=180, 69.8%), hypertension (n=174, 
67.4%), diseases of the intestine (n=103, 39.9%), and other diseases of the digestive system 
not elsewhere classified (n=101, 39.1%; Table 5). The full list of conditions recorded for the 
GRACE cohort can be found in Appendix C. 

 
Table 6. Most prevalent medical conditions present in total GRACE study participants as determined 
from their ACFI data. 

 
Medical Condition 

Site 2  
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

 n=18 n=147 n=46 n=47 n=258 

Other arthritis and related disorders 
13  

(72.2) 
128 

(87.1) 
33 

(71.7) 
39 

(83.0) 
213 

(82.6) 

Stress/urinary incontinence 
9 

(50.0) 
106 

(72.1) 
31 

(67.4) 
37 

(78.7) 
180 

(69.8) 

Hypertension 
10 

(55.6) 
102 

(69.4) 
30 

(65.2) 
32 

(68.1) 
174 

(67.4) 

Diseases of the intestine 
10 

(55.6) 
65 

(44.2) 
11 

(23.9) 
17 

(36.2) 
103 

(39.9) 

Other diseases of the digestive system 
5 

(27.8) 
55 

(37.4) 
20 

(43.5) 
21 

(44.7) 
101 

(39.1) 

Osteoporosis 
7 

(38.9) 
54 

(36.7) 
12 

(26.1) 
15 

(31.9) 
88  

(34.1) 

High cholesterol 
6 

(33.3) 
58 

(39.5) 
7 

(15.2) 
15 

(31.9) 
86  

(33.3) 

Other health condition not elsewhere 
specified 

5 
(27.8) 

47 
(32.0) 

19 
(41.3) 

11 
(23.4) 

82  
(31.8) 

Deafness/hearing loss 
6 

(33.3) 
43  

(29.3) 
6 

(13.0) 
14 

(29.8) 
69  

(26.7) 

Other diseases of the nervous system 
3 

(16.7) 
33 

(22.4) 
11 

(23.9) 
20 

(42.6) 
67 

 (26.0) 

Heart disease 
4 

(22.2) 
43 

(29.3) 
8 

(17.4) 
5 

(10.6) 
60  

(23.3) 

Kidney and urinary system (bladder) 
disorders 

5 
(27.8) 

29 
(19.7) 

11 
(23.9) 

14 
(29.8) 

59 
 (22.9) 

Chronic lower respiratory diseases 
6 

(33.3) 
24 

(16.3) 
11 

(23.9) 
15 

(31.9) 
56 

 (21.7) 

Other heart diseases 
8 

(44.4) 
24 

(16.3) 
10 

(21.7) 
14 

(29.8) 
56 

 (21.7) 
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Diabetes mellitus-type 2 (NIDDM) 
2 

(11.1) 
26 

(17.7) 
10 

(21.7) 
14 

(29.8) 
52 

 (20.2) 

 

 
Of all signs and symptoms, the median recorded per person was 3 (range = [0, 10]). The 5 
most common signs and symptoms recorded for participants included falls (n=119, 46.1%), 
pain (n=118, 45.7%), oedema (n=107; 41.5%), bowel/faecal incontinence (n=98; 38.0%) and 
abnormalities of gait and mobility (n=53, 20.5%; Table 6).  
 
 
Table 7. Most prevalent symptoms and signs present in total GRACE study participants as determined 
from their ACFI data. 

 
Symptom/Sign 

Site 2  
N (%) 

Site 3 
N (%) 

Site 4 
N (%) 

Site 5 
N (%) 

Total 
N (%) 

 n=18 n=147 n=46 n=47 n=258 

Falls (frequent with unknown aetiology) 
12 

(66.7) 
73 

(49.7) 
15 

(32.6) 
19 

(40.4) 
119 

(46.1) 

Pain 
5 

(27.8) 
65 

(44.2) 
16 

(34.8) 
32 

(68.1) 
118 

(45.7) 

Oedema (not specified) 
3 

(16.7) 
66 

(44.9) 
10 

(21.7) 
28 

(59.6) 
107 

(41.5) 

Bowel/faecal incontinence 
3 

(16.7) 
63 

(42.9) 
13 

(28.3) 
19 

(40.4) 
98  

(38.0) 

Abnormalities of gait and mobility 
3 

(16.7) 
43 

(29.3) 
2 

(4.3) 
5 

(10.6) 
53 

 (20.5) 

 

 

2.6 Medication usage 
Participants with PBS data (n= 228) had been supplied with 311 different medications across 
the study period. Two-hundred and twenty-three participants had PBS data recorded in the 12 
months prior to enrolment. Polypharmacy is most commonly defined as the daily usage of 5 
or more medications.7 In the context of the GRACE study, we have defined polypharmacy as 
the supply of 5 or more medications in the month prior to enrolment, as we are unable to 
determine daily usage. Of the participants with accessible PBS data, 45.6% (n=104) were 
taking 5 or more medications during this time and 7.0% (n=16) were taking 10 or more. The 
median number of medications supplied during this period was 5 and ranged from 0 to 17. 
 
Medications used most frequently by GRACE participants included macrogol (n=82, 36.0%), 
furosemide (n=76, 33.3%), pantoprazole (n=69, 30.3%), and cephalexin (n=64, 28.1%). 
Appendix D contains a list of the top 10 most commonly used medications in GRACE 
participants. 
 

 

2.7 Antibiotic use and microbiological pathology services 
Systemic antibiotics were supplied 867 times in the 12 months prior to enrolment relative to 
each participant. Around 61% (n=139) of participants had been supplied at least one antibiotic 
in the 12 months prior to enrolment; 43% (n=98) had been supplied at least two antibiotics, 
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and 36% (n=82) had been supplied three or more. The antibiotics supplied to the most 
participants in the GRACE cohort included cephalexin (n=64; 28.1%), amoxicillin and 
clavulanic acid (n=20; 21.9%), trimethoprim (n=44; 19.3%), amoxicillin (n=36; 15.8%), and 
doxycycline (n=30; 13.2%; Fig. 12). Pathology services for microbiological testing were 
accessed at least once by 195 residents (80.3%) in the 12 months prior to enrolment. Of all 
residents who accessed a pathology service for microbiology (n=195), the most common 
reason was for a urine examination (n=122 residents, 62.6%), followed by detection of a virus 
or microbial antigen or microbial nucleic acid (3 or more tests; n=50 residents, 25.6%) and 
microscopy and culture to detect pathogenic micro-organisms from skin or other superficial 
sites (n=41 residents, 21.0%). 
 

 
Figure 0.12. Most frequently supplied antibiotics in the GRACE cohort up to 12 months prior to their 
enrolment. ‘n=’ refers to the number of residents who received this antibiotic at least once in this period. 

 

2.8 Access of healthcare services 
 
Eighty-eight participants (31.5%) had a known hospital separation (either from an emergency, 
elective admission or other) at least once in the 12 months prior to enrolment. Eighty-four 
participants had the full 12-month period of data available. Of these, the median number of 
hospital visits in the 12 months prior to enrolment per person was 1 (range = [1, 5]). Of all the 
hospital events recorded (n=123 events), 92 of them were emergency visits (74.8%), 17 were 
elective admissions (13.8%) and 14 were unknown (11.4%). In cases where the number of 
days spent in hospital was recorded (n=89 events), the median number of days was 4 (range 
= [1, 63]). Most frequently, the indication for an emergency visit was an infection (including 
urinary tract infections (UTI), pneumonia and cellulitis; n=22 events; 23.9% of emergency 
visits), followed by falls (n=18 events; 19.6%) and heart complications (including heart failure 
and myocardial infarction; n=12 events; 13.0%). Antibiotics were supplied for 44.6% (n=41) of 
emergency events and was unknown for 15.2% (n=14) of cases, reflective of the high 
proportion of attendances that were for infections. Elective admissions were most commonly 
for surgical procedures (n=7 events; 41.2% of elective admissions), stroke rehabilitation (n=3 
events; 17.6%) and falls (n=3 events; 17.6%). Antibiotics were prescribed in 6 (35.3%) cases, 
most likely prophylactically, and antibiotic use was unknown for 6 (35.3%) cases. Of all 
hospital events where antibiotics were prescribed (n=50), the most frequently given were 
amoxicillin with clavulanic acid (n=14 events; 28.0%) and ceftriaxone (n=10 events; 20.0%).  
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Of the 279 consenting participants in the GRACE study, MBS records could be accessed for 
243 (87.1%) participants in the 12 months prior to enrolment (Appendix B). Items were 
identified in patients with at least one instance recorded, and according to the Australian 
Government Department of Health Medicare Benefits Schedule Book. For professional 
attendance items, general practitioner attendance after-hours was the most frequent, 
occurring for 85.2% (n=207) of participants. Diagnostic imaging services applied to 51.4% 
(n=125) of participants. Of these services, diagnostic radiology was the most frequent, 
required by 40.7% (n=99) of participants, followed by ultrasound to 29.2% (n=71) of 
participants. Pathology services were the most frequently recorded service to participants, 
applying to 93.4% (n=227) of participants. Within the listed pathological services, patient 
episode initiations were the most frequent, occurring in 93% (n=226) of participants. Details 
of services accessed by participants can be found in Appendix E. 
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Chapter 3: Microbiome and Resistome Characteristics 
3.1 Microbiome composition of the stool 
 
The human microbiome is defined as the community of microorganisms that inhabit the 
various surfaces of our bodies. Metagenomic assessment of the stool microbiome was 
performed for 204 (95.8%) available samples. Across all stool samples, 11 phyla were 
detected, consisting of 187 genera, or 586 species. A median of 101 (range = [39, 157]) 
species were detected per person. Of these, four were detected in 98.5% samples and were 
considered the dominant phyla. These included Firmicutes (med = 48.3%, range = [5.5, 97.4]), 
Bacteroidetes (med = 17.8%, range = [0, 63.0]), Actinobacteria (med = 14.6%, range = [0, 
89.3]), and Proteobacteria (med = 0.94%, range = [0, 44.0]). Of the 586 species, 29 were 
present in at least 60% of individuals and at a relative abundance of at least 0.1% and were 
considered core (Fig. 13A, Appendix F). Species that were the most abundant included 
Bacteroides uniformis (med = 2.1%), Collinsella aerofaciens (med = 1.3%), and Anaerostipes 
hadrus (med = 1.2%). Species that were detected the most frequently among participants 
included Ruthenibacterium lactatiformans (prevalence = 99.5%), Gordonibacter pamelaeae 
(prevalence = 98.5%) and Eggerthella lenta (prevalence = 97.1%). Despite a core microbiome 
among participants, overall, microbiome compositions were highly dispersed (Fig. 13B), with 
a median distance to centroid of 0.13 (range = [0.002, 0.58]). Both core and non-core species 
contributed to this, with the relative abundance of core species ranging from 7.7 to 87.9%, 
(Fig. 13C).  
 

 
Figure 0.13. Frequency of species detected in the stool microbiome compared to their relative 
abundances (A). Principle Coordinates Analysis (PCoA) plot showing dispersion of the stool 
microbiome among participants, where each dot represents an individual’s microbiome relative to 
others (B). Taxa bar plot showing the distribution of 29 core species compared to non-core species in 
the stool microbiome of participants (C). 
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3.2 Microbiome composition of the oropharynx  
 
Metagenomic assessment of the oropharyngeal (OP) microbiome was available for 237 
(94.0%) samples collected from the GRACE study. Across the OP sample, 10 unique phyla 
were detected, consisting of 90 genera or 333 different species. The median number of 
species detected per person was 49 (range = [3, 154]). Of the phyla detected in the OP 
microbiome for the cohort, 4 were present in 77.6% of samples and were considered 
dominant. Firmicutes were the most abundant (med = 61.7%, range = [2.6, 100]), followed by 
Actinobacteria (med = 18.4%, range = [0, 79.2]), Bacteroidetes (med = 7.5%, range = [0, 
53.7]), and Proteobacteria (med = 0.6%, range = [0, 56.2]). Sixteen core genera, defined as 
those present in at least 60% of individuals and at a relative abundance of at least 0.1%, were 
identified in the OP microbiome of GRACE participants (Fig. 14A, Appendix F). Like the stool 
microbiome, overall, OP microbiome compositions were highly dispersed (Fig. 14B), with a 
median distance to centroid of 0.15 (range = [0.009, 0.45]). As per the stool samples, the 
relative abundance of all core species in the OP microbiome varied greatly and ranged from 
0 to 99.5% (Fig. 14C). Species that were the most abundant in the OP microbiome included 
Streptococcus salivarius (med = 10.5%), Streptococcus parasanguinis (med = 8.0%), and 
Veillonella atypica (med= 2.3%). Species that were detected the most frequently among 
participants included Streptococcus parasanguinis (prevalence = 97.0%), Rothia 
mucilaginosa (prevalence = 94.1%), and Streptococcus salivarius (prevalence = 91.6%). 
 

 
Figure 0.14. Frequency of species detected in the OP microbiome compared to their relative 
abundances (A). Principle Coordinates Analysis (PCoA) plot showing dispersion of the OP microbiome 
among participants, where each dot represents an individual’s microbiome relative to others (B). Taxa 
bar plot showing the distribution of 16 core species compared to non-core species in the OP microbiome 
of participants (C). 
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3.3 Resistome composition of the stool 
 
The resistome is the collection of ARGs that are carried in our microbiome. ARG are complex, 

for example they can confer resistance via more than one mechanism and to more than one 

drug class. Presence of ARG does not necessarily indicate that the bacteria carrying it will be 

an MDRO. This report describes the resistome as a whole; clinical assessment of resistance 

will be addressed in later analysis. 

 

A normalised count (rpkm) of stool metagenomic reads that aligned to the Comprehensive 

Antibiotic Resistance Database (CARD) was used to characterise the GRACE stool resistome. 

In total, 690 ARG were detected across 204 participants, which conferred resistance to 37 

different classes of antibiotics (Fig. 15A). Most frequently, ARGs conferring resistance to 

macrolides (n=137 genes), tetracyclines (n=134 genes), cephalosporins (n=125 genes) and 

penicillins (n=120 genes) were identified in the stool resistome of GRACE participants. ARGs 

conferring resistance to macrolides (med = 1659.5 rpkm) and peptides (med = 1530.4 rpkm), 

however, were the most abundant in the resistome (Fig. 15A). The median number of ARGs 

carried per person was 375 (range = [291, 437]) (Fig. 15B). Genes carried in the stool 

microbiome of the GRACE cohort conferred resistance to antibiotics via 6 different 

mechanisms, including antibiotic inactivation (n=235, 33.8%) and antibiotic efflux (n=219, 

31.5%; Fig. 15C). 

  

These genes could be classified into 108 ARG families, which describe the function of each 

ARG. Families that made up the largest proportion of all genes detected included resistance-

nodulation-cell division (RND) antibiotic efflux pumps (n=105, 15.2%), major facilitator 

superfamily (MFS) antibiotic efflux pumps (n=83, 12.0%), chloramphenicol acetyltransferases 

(n=29, 4.2%) and OXA beta-lactamases (n=27, 3.9%). The most abundant and frequently 

detected gene families were ATP-binding cassette (ABC) antibiotic efflux pumps (med = 

1611.0 rpkm), RND antibiotic efflux pumps (med = 946.2 rpkm), and vanR genes (med = 743.0 

rpkm; Fig. 15D).  

 

 

3.4 Resistome composition of the oropharynx 
 
Across 237 viable OP samples, a total of 424 ARGs were detected that conferred resistance 
to 38 different antibiotic drug classes. Genes conferring resistance to macrolides (n=118 
genes), tetracyclines (n=107 genes), peptide antibiotics (n=97 genes), and phenicol antibiotics 
(n=85 genes) were the most common. Genes conferring resistance to macrolides (med = 
1290.5 rpkm) and tetracyclines (med = 1033.4 rpkm) were the most abundant in the OP 
resistome (Fig. 16A). ARG richness per person was a median of 212 genes (range = [69, 315]) 
(Fig. 16B). Antibiotic efflux (n=189 genes) and target alteration (n=121 genes) were the most 
frequent of the 6 resistance mechanisms detected (Fig. 16C). 
 
ARGs in the OP resistome could be classified into 68 different ARG families (Fig. 16D). RND 
antibiotic efflux pumps (n=84, 19.8%) and major facilitator superfamily (MFS) antibiotic efflux 
pumps (n=74, 17.5%) made up the greatest proportion of all genes detected in the OP 
resistome. ABC antibiotic efflux pump (median rpkm = 1647.6) and ABC ribosomal protection 
protein (median rpkm = 355.6) families were the most abundant.  
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Figure 0.15. Median abundance (rpkm) of ARG that confer resistance to antibiotic drug classes in the 
stool resistome (n=12 antibiotic classes not shown as they are extremely rare) (A). Distribution of stool 
ARG richness per person (B). Proportion of antibiotic resistance mechanisms observed in the stool 
resistome (C). Prevalence and abundance of ARG families in the stool resistome with most abundant 
and clinically important gene families labelled (n=47 families not shown as median abundance = 0 rpkm) 
(D). *ABC = ATP-binding cassette; RND= resistance-nodulation-cell division. 
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Figure 0.16. Median abundance (rpkm) of ARG that confer resistance to antibiotic drug classes in the 
OP resistome (n=13 antibiotic classes not shown as they are extremely rare) (A). Distribution of OP 
ARG richness per person (B). Proportion of antibiotic resistance mechanisms observed in the OP 
resistome (C). Prevalence and abundance of ARG families in the OP resistome with most abundant 
gene families labelled (n=36 families not shown as median abundance = 0 rpkm) (D). *ABC= ATP-
binding cassette; RND= resistance-nodulation-cell division; MFS= major facilitator superfamily. 
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Conclusions  
 
Described in this report are the clinical, environmental, and microbiological characteristics of 
participants of the GRACE study. Our cohort consists of permanent residents of south 
Australian, not-for-profit, metropolitan aged-care facilities. Participants were aged between 58 
and 104 years, were mostly female and had been living in their current facility for between 3 
and 5399 days. Most participants had a normal diet with standard supplementation. Over half 
of our cohort had a diagnosis of dementia and this was the same for a diagnosis of depression. 
Antibiotics were frequently used in this cohort, making up 3 of the 10 most commonly used 
medications. Around a third of all participants had a known hospital visit during the captured 
period. Large inter-individual variation in the microbiome and resistome compositions were 
observed and genes conferring resistance to macrolides and tetracyclines were common. As 
shown in this report, participants of the GRACE study were subjected to a number of 
exposures which we propose has a significant impact on the microbiome and resistome, and 
therefore risk of AMR carriage, transmission, and poor health outcomes.  
 

Future Developments 
 
In this report, we have presented the results from the first 2 stages of the GRACE study: 1) 
participant recruitment and data collection, and 2) data cleaning and descriptive analysis.  

 
Going forward we will begin the third and final stage: 3) integrative analysis and clinical 
translation. We aim to use the data presented to here to determine how various exposures in 
the residential aged-care environment contribute to the acquisition and dispersal of AMR and 
answer the 5 research questions listed at the beginning of this document. We also aim to 
demonstrate that our study cohort is representative of those living in Australian aged-care 
facilities by publishing a cohort profile comparing our data to national averages. As a 
multidisciplinary team, we have the capacity to ensure that our findings are accessible and 
informative to other researchers, clinicians, as well as aged-care providers and policy makers. 
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Appendices 
Appendix B.A: Methods 
 

Ethics 

Ethical approval for the study was obtained from the Southern Adelaide Clinical Human 

Research Ethics Committee (HREC/18/SAC/244). Participants provided written informed 

consent themselves or where third-party consent was required, a legal guardian or family 

member with power of attorney provided consent on their behalf. 

 

Setting 

Three aged-care providers agreed to participate for a total of 5 sites included in the study. 

Recruitment started at site 1 in March 2019 and was ceased during recruitment at site 5 due 

to the COVID-19 pandemic in March 2020. Data was collected at the end of recruitment for 

each site by the study team.  

  

Recruitment of participants 

All residents living in participating aged-care facilities at the time of recruitment were invited 

to join in the study. Participants were not eligible to consent if: 1) they were in respite care at 

the time of recruitment, 2) they were receiving palliative/end-of-life care, 3) it was 

recommended by management that they not be approached, and 4) we were unable to contact 

next of kin where third-party consent was required. In addition, some participants were unable 

to be approached due to the COVID-19 pandemic, which caused the study recruitment at the 

last site to cease early. Participants who required third-party consent were identified by the 

participating facility and communicated to the study team.  

 

Data sources/measurements 

Facility data and participant demographical data were obtained from the facility records. 

Details of other data collected is explained below. 

 

Aged Care Funding Instrument (ACFI) assessment. 
The ACFI constitutes a series of questions and data collection instruments which determine 
the level of care a person requires upon admission to a residential aged care facility, and 
therefore how much funding that facility requires to facilitate the required level of care. The 
ACFI focuses on care needs related to day-to-day and high frequency needs for care. Three 
domains of residential care are subsidised by the ACFI: activities of daily living, behaviour, 
and complex health care. The metrics of assessment range from A to D, with A requiring the 
lowest level of care, to D requiring the most. The individual assessments within these domains 
are assigned specific ratings and are detailed below.  
 
Nutrition score: The level of assistance (independent OR supervision OR physical assistance) 
for tasks concerning readiness to eat (using utensils and cutting up/mixing food) and eating 
(putting food in mouth). A = No assistance, B = Supervision in one/both tasks or physical 
assistance in readiness to eat task, C = Supervision in one task and physical assistance in 
one task, D = Physical assistance with both tasks. 
Mobility score: The level of assistance (independent OR supervision OR physical assistance) 
for tasks concerning transfer of position (wheelchair usage, moving from chairs to wheelchairs 
to beds, etc.), or locomotion (walking, pushing a wheelchair, attachment or passing of mobility 
aids such as prosthetic limbs or braces). A = No assistance, B = Supervision or physical 
assistance in one task, C = Supervision in one task and physical assistance in one task, D = 
Physical assistance with both tasks. 
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Personal hygiene score: The level of assistance (independent OR supervision OR physical 
assistance) for tasks concerning dressing and undressing, washing and drying, and grooming. 
A = No assistance, B = Supervision in one task, C = Physical assistance in one task, D = 
Physical assistance in all tasks. 
Toileting score: The level of assistance (independent OR supervision OR physical assistance) 
for tasks concerning the use of a toilet (setting up to use the toilet), and toilet completion (the 
ability to appropriately manage the toileting activity). A = No assistance, B = Supervision in 
one task, C = Physical assistance in one task, D = Physical assistance in all tasks. 
Continence score: The presence and/or frequency of urinary and faecal incontinence. A = No 
episodes of incontinence or self-manages continence devices, B = Incontinent of urine less 
than or equal to once per day, or faeces once or twice per week, C = 2-3 daily episodes of 
urinary incontinence/passing of urine during scheduled toileting, or 3-4 weekly episodes of 
faecal incontinence/passing faeces during scheduled toileting, D = More than 3 daily episodes 
of urinary incontinence/passing of urine during scheduled toileting, or more than 4 weekly 
episodes of faecal incontinence/passing of faeces during scheduled toileting. 
Total domain activities of daily living score: The summarised assistance level required across 
all activities of daily living. A = Low, B = Medium, C = High. 
 
Cognitive skills score: The level of impairment determined from the Psychogeriatric 
Assessment Scale – Cognitive Impairment Scale (PAS-CIS). A = No or minimal impairment, 
B = Mild impairment, C = Moderate impairment, D = Severe impairment.  
Wandering score: Assessment of occurrence/frequency of problem wandering (repeated 
attempts to leave the service, or where presence is unwelcome or inappropriate). A = Problem 
wandering occurs less than 2 days per week, B = Problem wandering occurs at least 2 days 
per week, C = Problem wandering occurs at least 6 days in a week, D = Problem wandering 
occurs twice a day or more, at least 6 days in a week. 
Verbal behaviour score: Assessment of verbal refusal of care, verbal disruption (not related to 
an unmet need), paranoid ideation that disturbs others, or verbal sexually inappropriate 
advances directed at another person. A = Verbal behaviour occurs less than 2 days per week, 
B = Verbal behaviour occurs at least 2 days per week, C = Verbal behaviour occurs at least 6 
days in a week, D = Verbal behaviour occurs twice a day or more, at least 6 days in a week. 
Physical behaviour score: Assessment of physical conduct by a resident that is threatening 
and has the potential to physically harm another person, socially inappropriate behaviour that 
impacts on other residents, and being constantly physically agitated. A = Physical behaviour 
occurs less than 2 days per week, B = Physical behaviour occurs at least 2 days per week, C 
= Physical behaviour occurs at least 6 days in a week, D = Physical behaviour occurs twice a 
day or more, at least 6 days in a week.  
Depression score: Utilises the Cornell Scale for Depression (CSD) to evaluate symptoms 
associated with depression and dysthymia (chronic mood disturbance), and how these 
symptoms interfere with daily life. A = CSD score 0-8 and minimal or no symptoms, B = CSD 
score 9-13 and symptoms cause mild interference with daily function, C = CSD score = 14-18 
and symptoms cause moderate interference with daily function, D = Diagnosed depression, 
CSD score 19-38, and symptoms majorly impact daily function. 
Domain behavioural PAS CIS score: The level of impairment determined from the 
Psychogeriatric Assessment Scale – Cognitive Impairment Scale (PAS-CIS). Scale ranges 
from 0-21 (nil to severe impairment). 
Total domain behavioural score: The summarised impact level of resident behaviour across 
all forms of physical and non-physical behaviour to determine total dependency on care. A = 
Low, B = Medium, C = High. 
 
Medication score: The level of assistance required to take medication administered on a 
regular basis (including patches, oral administration, subcutaneous, intramuscular, and 
intravenous). A = No medication or self-manages medication, B = Application of patches at 
least weekly, or needs assistance with daily medication, C = Needs daily administration of a 
subcutaneous, intramuscular, or intravenous drug. Assessment prior to 2017 included an 
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option D for medication score. For these residents, scores A and B were the same, however 
there are some differences to the assignment of scores C and D. Specifically, C = Needs daily 
assistance with medications for between 6 and 11 minutes, and D = Needs greater than 11 
minutes of daily assistance and/or administration of a subcutaneous, intramuscular, or 
intravenous drug.  
Complex healthcare score: The assessed need for ongoing complex health care procedures 
and activities, with ratings relating to the technical complexity and frequency of the 
procedures. A = Score of 0 (no procedures), B = Score of 1-4 (assistance required with a low 
number of complex procedures), C = Score of 5-9 (assistance required with a moderate 
number of complex procedures), D = Score of 10+ (assistance required with a high number of 
complex procedures).  
Total domain complex health care score: The summarised assistance level required across 
all forms of complex health care to determine total dependency on care. A = Low, B = Medium, 
C = High. 
 

Mental and Behavioural Diagnoses 
To support the ACFI assessment, residents are also evaluated for diagnosis of a neurological 
impairment which may influence their care requirements, as determined by the ACFI. These 
diagnoses include dementia, mood disorders, psychiatric and neurotic disorders, and 
evaluations of cognitive impairment. Counts and proportions of residents were calculated from 
ACFI data. 
 
Comorbidities 
Physical comorbidities and signs and symptoms were determined using the ACAP code 
system which is part of the ACFI assessment as described above. Any medical conditions 
listed in the ACFI are required to be supported by evidence from a medical professional. 
 
PBS/MBS 
De-identified DHS-linked data was received in May 2021. PBS data was checked against the 

information available in resident medication charts for 41 participants. Of 134 medication 

entries for the available period, expectations were met in 81.3% of instances. PBS and MBS 

data were cleaned to ensure 12 months of pre-enrolment data was available for each 

participant. Drug classes were grouped and classified according to their ATC code and health 

services were classified based on their assigned category. 

 

Sample collection 

Stool samples and oropharyngeal (OP) swabs were collected from consenting residents, as 

well as environmental swabs of participant rooms and communal areas. Swabs taken in 

participant rooms included bed remotes, overways, door handles and toilet flushes. Swabs 

taken in communal areas include staff room door handles, staff phones, staff computer 

keyboards, medication trolleys, dining tables, servery benches, public toilet seats, public toilet 

flushes, public toilet door handles, wheelchairs and mechanical lifters. Stool samples were 

collected in 20ml tubes with DNA stabilisation buffer (Norgen, ON, Canada) and swabs were 

collected and placed in a 2ml screw-cap tube contained 400µl of Tris-EDTA (TE) buffer 

(Invitrogen). All samples were stored at -80°C until processing. 

 

Stool DNA extraction 

DNA was extracted from stool samples using the Qiagen PowerLyzer PowerSoil DNA Isolation 

Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions. Stool samples 

containing buffer were vortexed vigorously and 1 ml was transferred to a clean 2 ml tube. 

Samples were centrifuged for 20 min at 13,000 xg at 4°C and the supernatant was transferred 
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to a clean 2 ml screw-cap tube for storage. Faecal pellet was combined with 750 µl of bead 

solution and transferred to a glass bead tube. After adding 60 µl of cell lysis buffer, samples 

were incubated at 65°C for 10 min. Samples underwent bead-beating in a FastPrep®-24 

Homogenizer (MP Biomedicals, Santa Ana, CA, USA) for 2 pulses of 1 min at 6.5m/s and 

were centrifuged at 10,000 xg for 3 min at room temperature. Supernatant was discarded and 

250 µl of Inhibitor Removal Technology® (IRT) was added and vortexed for 5 s. Samples were 

incubated at 4°C for 10 min, centrifuged for 3 min at 10,000 xg at room temperature, and 600 

µl of supernatant was transferred to a clean 2 ml tube. Precipitation reagent was combined 

with the supernatant and the sample was centrifuged for 3 min at 10,000 xg at room 

temperature again before transfer of 750 µl supernatant to another clean 2 ml tube. High 

concentration salt solution was added to the supernatant and vortexed for 5 s. Then 675 µl of 

supernatant was added to a Spin Filter and centrifuged for 10,000 xg for 1 min at room 

temperature. Flow through was discarded and this step was repeated 2 more times. 500 µl of 

ethanol-based wash solution was added to the spin column and centrifuged at 10,000 xg for 

1 min at room temperature. Flow through was discarded and residual ethanol wash solution 

was removed from the spin column by a second centrifuge at 10,000 xg for 1 min. Spin 

columns were transferred to a clean 2 ml tube, 50 µl of UltraPure RNAse DNAse-free water 

was added and centrifuged for 1 min 10,000 xg at room temperature and repeated 2 more 

times to collect all DNA. Eluted DNA was stored at -80°C until further processing. 

 

Swab DNA extraction 

DNA from swabs was extracted using the ZymoBIOMICS miniprep kit (Zymo Research, Irvine, 

CA, USA). Swabs were spun down at 3374 x g for 5 min to collect all biological material and 

the resultant solution was added to a bead-beating tube containing 750 µl of lysis buffer. 

Samples underwent bead-beating for 1 min 5 times at a speed of 6.5m/s in a FastPrep®-24 

Homogenizer (MP Biomedicals) for a total of 5 min with 5 min rest in between each run. 

Samples were centrifuged at 10,000 x g for 2 min then 700 µl was added to the III-F filter in a 

clean tube and centrifuged at 8,000 x g for 1 min. Filtered solution was transferred to a clean 

tube and 2100 µl of DNA binding buffer was added. Samples were vortexed vigorously then 

800 µl of solution was added to a IICR filter and centrifuged at 10,000 x g for 1 min. Flow 

through was discarded and this process was repeated until all solution had been passed 

through the filter. After transferring the filter to a new tube, 400 µl of the first wash buffer was 

added to the filter and centrifuged at 10,000 x g for 1 min. Flow through was discarded then 

700 µl of a second wash buffer was added to the filter, centrifuged at 10,000 x g for 1 min and 

a final 200 µl of wash buffer was added to ensure all wash buffer had passed through. Filters 

were transferred to a new clean tube and 100 µl of dH2O at 60°C was added and incubated 

for 5 min. After centrifuging at 10,000 x g for 1 min, samples were added to a final spin column 

for purification and centrifuged at 16,000 x g for 3 min. For environmental swabs, the elution 

process was repeated 2 more times, then samples were concentrated and re-eluted in 75 µl 

of dH2O. DNA was stored at -80°C until further processing. 

 

Metagenomic sequencing  

Stool samples and OP swabs of sufficient DNA quality underwent metagenomic sequencing. 

DNA fragmentation of samples was performed with Nextera XT DNA Library Prep Kit 

(Illumina). Samples were sequenced at a depth of 5Gb on an Illumina Novaseq platform with 

150-bp paired-end reads. 
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Bioinformatic processing 

Paired-end sequences were quality filtered using Trimmomatic (version 0.39) and human 

reads were removed using Bowtie (version 2.3.5.1) using the NCBI human reference genome 

release GRCh38.8,9 Contigs were assembled de novo using IDBA-ud (version 1.1.3) and open 

reading frames were identified with MetaGeneMark (version 1.0).10,11 Non-redundant genes 

were extracted using CD-HIT (version 4.8.1) with parameters ‘-c 0.95 -aS 0.9’ (genes with 

>95% identity and aligned length covering >90% of shorter gene) and genes less than 100 bp 

in length were removed.12 A catalogue of 12,209,321 faecal genes and 2,334,932 OP genes 

were transcribed to amino acids using the European Molecular Biology Open Software Suite 

(EMBOSS v 6.6.0).13 Transcribed genes were mapped to antimicrobial resistance genes in 

the Comprehensive Antibiotic Resistance Database (CARD) using BLASTP (version 2.9.0) 

with the following parameters: ‘-evalue 1e-10 -qcov_hsp_perc 99 -max_hsps 1 -

max_target_seqs 1’.14 Alignment of non-redundant gene catalogue with human-cleaned reads 

was performed with Bowtie (version 2.3.5.1).9 Gene-length normalised read count calculation 

was performed and antimicrobial resistance gene quantification per sample was calculated in 

R (v4.0.2). Gene counts are reported as reads per kb of transcript, per million mapped reads 

(rpkm). Microbiome composition data was extracted from human-cleaned reads using 

MetaPhlAn (v3.0).15  

 

 

Statistical methods 

Raw data was cleaned and merged in Statistical Analysis Software (SAS) University Edition 

(v9.4) and exported for further processing. R (v4.0.2) and Prism (v9) was used for descriptive 

statistics and visualisation of data. Data was checked for normality and the appropriate metrics 

were reported depending on the outcome. 
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Appendix B.B: DHS data access 
 

Availability of PBS and MBS data for GRACE participants and reasons where access was not 
possible. 
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Appendix B.C: Comorbidities 
 
Full list of physical medical conditions and signs and symptoms with prevalence (number of 
residents) that affected the GRACE study cohort (classified by their ACAP categories). 
 

Condition 
ACAP 
code 

N % 

Certain infectious and parasitic diseases    

Tuberculosis 0101 2 0.8 

Poliomyelitis 0102 1 0.4 

Diarrhoea and gastroenteritis of presumed infectious origin 0104 1 0.4 

Unspecified/Unclassified infectious or parasitic disease 0199 5 1.9 

Neoplasms (tumours/ cancers)    

Colorectal (bowel) cancer 0203 18 7.0 

Lung cancer 0204 6 2.3 

Skin cancer 0205 21 8.1 

Breast cancer 0206 14 5.4 

Prostate cancer 0207 17 6.6 

Brain cancer 0208 2 0.8 

Non-Hodgkin’s lymphoma 0209 2 0.8 

Leukaemia 0210 2 0.8 

Other malignant tumours 0211 15 5.8 

Other neoplasms 0299 12 4.7 

Diseases of the blood and blood forming organs and immune 
mechanism 

   

Anaemia 0301 34 13.2 

Immunodeficiency disorder (excluding AIDS) 0303 1 0.4 

Other diseases of blood and blood forming organs and 
immune mechanism 

0399 15 5.8 

Endocrine, nutritional and metabolic disorders    

Disorders of the thyroid gland 0401 43 16.7 

Diabetes mellitus–type 1 (IDDM) 0402 8 3.1 

Diabetes mellitus–type 2 (NIDDM) 0403 52 20.2 

Diabetes mellitus–other specified/unspecified/unable to be 
specified 

0404 4 1.6 

Malnutrition 0405 7 2.7 

Nutritional deficiencies 0406 44 17.1 

Obesity 0407 9 3.5 
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Condition 
ACAP 
code 

N % 

High cholesterol 0408 86 33.3 

Other endocrine, nutritional and metabolic disorders 0499 22 8.5 

Diseases of the nervous system    

Meningitis and encephalitis (excluding ‘viral’) 0601 1 0.4 

Motor neurone disease 0603 2 0.8 

Parkinson’s disease 0604 24 9.3 

Transient cerebral ischaemic attacks 0605 27 10.5 

Brain disease/ disorders 0606 3 1.2 

Multiple sclerosis 0607 3 1.2 

Epilepsy 0608 7 2.7 

Cerebral palsy 0610 2 0.8 

Paralysis-non-traumatic 0611 8 3.1 

Other diseases of the nervous system 0699 67 26.0 

Diseases of the eye and adnexa    

Cataracts 0701 32 12.4 

Glaucoma 0702 38 14.7 

Blindness 0703 27 10.5 

Poor vision 0704 41 15.9 

Other diseases of the eye and adnexa 0799 31 12.0 

Disease of the ear and mastoid process    

Ménière’s disease 0801 11 4.3 

Deafness/hearing loss 0802 69 26.7 

Other diseases of the ear and mastoid process 0899 11 4.3 

Diseases of the circulatory system    

Heart disease 0900 60 23.3 

Angina 0903 6 2.3 

Myocardial infarction 0904 18 7.0 

Acute and chronic ischaemic heart disease 0905 41 15.9 

Congestive heart failure 0906 45 17.4 

Other heart diseases 0907 56 21.7 

Cerebrovascular disease 0910 6 2.3 

Subarachnoid haemorrhage 0911 2 0.8 

Intracerebral haemorrhage 0912 2 0.8 
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Condition 
ACAP 
code 

N % 

Other intracranial haemorrhage 0913 5 1.9 

Cerebral infarction 0914 5 1.9 

Stroke (CVA) 0915 45 17.4 

Other cerebrovascular diseases 0916 11 4.3 

Other diseases of the circulatory system 0920 9 3.5 

Hypertension 0921 174 67.4 

Hypotension 0922 18 7.0 

Abdominal aortic aneurysm 0923 5 1.9 

Other arterial or aortic aneurysms 0924 5 1.9 

Atherosclerosis 0925 3 1.2 

Other diseases of the circulatory system n.e.s 0999 35 13.6 

Diseases of the respiratory system    

Influenza and pneumonia 1002 15 5.8 

Acute lower respiratory infections 1003 8 3.1 

Other diseases of the respiratory system 1004 14 5.4 

Chronic lower respiratory diseases 1005 56 21.7 

Other diseases of upper respiratory tract 1099 7 2.7 

Diseases of the digestive system    

Diseases of the intestine 1101 103 39.9 

Diseases of the peritoneum 1102 2 0.8 

Diseases of the liver 1103 7 2.7 

Other diseases of the digestive system 1199 101 39.1 

Diseases of the skin and subcutaneous tissue    

Skin and subcutaneous tissue infections 1201 18 7.0 

Skin allergies 1202 31 12.0 

Other diseases of the skin and subcutaneous tissue 1299 34 13.2 

Diseases of the musculoskeletal system and connective tissue    

Rheumatoid arthritis 1301 8 3.1 

Other arthritis and related disorders 1302 213 82.6 

Deformities of joints/ limbs–acquired 1303 9 3.5 

Back problems–dorsopathies 1304 32 12.4 

Other soft tissue/ muscle disorders 1305 17 6.6 

Osteoporosis 1306 88 34.1 
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Condition 
ACAP 
code 

N % 

Other disorders of the musculoskeletal system and 
connective tissue 

1399 39 15.1 

Diseases of the genitourinary system    

Kidney and urinary system (bladder) disorders 1401 59 22.9 

Urinary tract infection 1402 46 17.8 

Stress/urinary incontinence 1403 180 69.8 

Other diseases of the genitourinary system 1499 34 13.2 

Congenital malformations, deformations and chromosomal 
abnormalities 

   

Down’s syndrome 1503 1 0.4 

Other chromosomal abnormalities 1504 1 0.4 

Other congenital malformations and deformations 1599 1 0.4 

Injury, poisoning and certain other consequences of external causes    

Injuries to the head 1601 5 1.9 

Injuries to arm/hand/shoulder 1602 20 7.8 

Injuries to leg/knee/foot/ankle/ hip 1603 23 8.9 

Amputation of the finger/thumb/hand/arm/shoulder–
traumatic 

1604 2 0.8 

Amputation of toe/ankle/foot/leg–traumatic 1605 9 3.5 

Fracture of neck 1606 6 2.3 

Fracture of rib(s), sternum and thoracic spine 1607 18 7.0 

Fracture of lumbar spine and pelvis 1608 26 10.1 

Fracture of shoulder, upper arm and forearm 1609 15 5.8 

Fracture at wrist and hand level 1610 7 2.7 

Fracture of femur 1611 33 12.8 

Fracture of lower leg and foot 1612 5 1.9 

Other injury, poisoning and consequences of external 
causes 

1699 8 3.1 

Symptoms and signs n.o.s or n.e.s    

Breathing difficulties/ shortness of breath 1703 17 6.6 

Pain 1704 118 45.7 

Nausea and vomiting 1705 5 1.9 

Dysphagia 1706 29 11.2 

Bowel/faecal incontinence 1707 98 38.0 

Unspecified urinary incontinence 1708 26 10.1 
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Condition 
ACAP 
code 

N % 

Retention of urine 1709 1 0.4 

Jaundice (unspecified) 1710 1 0.4 

Disturbances of skin sensation 1711 2 0.8 

Rash and other nonspecific skin eruption 1712 3 1.2 

Abnormal involuntary movements 1713 3 1.2 

Abnormalities of gait and mobility 1714 53 20.5 

Falls (frequent with unknown aetiology) 1715 119 46.1 

Confusion 1716 31 12.0 

Amnesia 1717 22 8.5 

Dizziness and giddiness 1718 15 5.8 

Restlessness and agitation 1719 4 1.6 

Irritability and anger 1721 4 1.6 

Speech and voice disturbances 1725 10 3.9 

Headache 1726 4 1.6 

Malaise and fatigue 1727 32 12.4 

Blackouts, fainting, convulsions 1728 3 1.2 

Oedema (not specified) 1729 107 41.5 

Symptoms and signs concerning food and fluid intake 1730 29 11.2 

Other symptoms and signs 1799 1 0.4 

Other health condition not elsewhere specified 1899 82 31.8 

 
n.e.s. = not elsewhere specified; n.o.c. = not otherwise classified 
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Appendix B.D: Most prevalent medications  
 
Top 10 most prevalent medications used by the GRACE cohort in the 12 months prior to 
enrolment in the study. N refers to the number of residents who were supplied each medication 
at least once. 
 

Medication ATC Code N (%) 

Macrogol A06AD15 82 (36.0) 

Furosemide C03CA01 76 (33.3) 

Pantoprazole A02BC02 69 (30.3) 

Cephalexin J01DB01 64 (28.1) 

Hypromellose and carboxymethylcellulose (eye drops/gel) S01XA20 57 (25.0) 

Amoxicillin and clavulanic acid J01CR02 50 (21.9) 

Paracetamol N02BE01 50 (21.9) 

Denosumab M05BX04 46 (20.2) 

Trimethoprim J01EA01 44 (19.3) 

Oxycodone N02AA05 42 (18.4) 
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Appendix B.E: MBS codes and usage 
 
List of healthcare services accessed by the GRACE cohort in the 12 month prior to enrolment 
(classified MBS category descriptions). N refers to the number of residents who accessed the 
service at least once. 
 

MBS category description MBS category 
code 

N  
(%) 

Professional attendances   

General practitioner attendances to which no other 
item applies 

A1 94 (38.7) 

Specialist attendances to which no other item 
applies 

A3 77 (31.7) 

Consultant psychiatrist attendances to which no 
other item applies 

A8 6 (2.5) 

Urgent attendance after hours A11 150 (61.7) 

Health assessments by general practitioners A14 157 (64.6) 

General practitioner management plans, team care 
arrangements, multidisciplinary care plans 

A15 197 (81.1) 

Domiciliary and residential management reviews A17 150 (61.7) 

Attendances by medical practitioners who are 
emergency physicians (private only) 

A21 9 (3.7) 

General practitioner after-hours attendances to 
which no other item applies 

A22 207 (85.2) 

Attendance by specialist in geriatric medicine A28 26 (10.7) 

Diagnostic imaging services   

Ultrasound I1 71 (29.2) 

Computerised tomography I2 59 (24.3) 

Diagnostic radiology I3 99 (40.7) 

Nuclear medicine I4 6 (2.5) 

Magnetic resonance imaging I5 13 (5.3) 

Pathology services   

Haematology services P1 167 (68.7) 

Chemical services P2 204 (84.0) 

Microbiology services P3 195 (80.3) 

Immunology services P4 27 (9.9) 

Tissue pathology P5 33 (13.6) 

Cytology services P6 6 (2.5) 

Genetic tests P7 3 (1.2) 

Simple basic pathology tests P9 2 (0.8) 
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Patient episode initiation P10 226 (93.0) 

Specimen referred testing P11 3 (1.2) 

Therapeutic services   

Surgical operative services T8 61 (25.1) 

Miscellaneous services   

Allied health services M3 155 (63.8) 
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Appendix B.F: Core stool and oropharyngeal taxa 

 
Prevalence and relative abundance of species identified as core in the stool and 
oropharyngeal microbiome of GRACE participants. 
 

Species name 
Prevalence 

% 
Median abundance 

(range), % 

Stool   

Roseburia faecis 63.2 0.10 (0, 30.9) 

Alistipes finegoldii 72.5 0.10 (0, 17.5) 

Clostridium leptum 90.2 0.12 (0, 4.7) 

Clostridium innocuum 95.1 0.13 (0, 13.3) 

Blautia wexlerae 77.9 0.13 (0, 16.6) 

Eubacterium eligens 62.7 0.14 (0, 13.6) 

Streptococcus salivarius 84.8 0.15 (0, 13.9) 

Flavonifractor plautii 90.7 0.16 (0, 6.4) 

Firmicutes bacterium CAG 83 68.6 0.17 (0, 13.5) 

Bacteroides thetaiotaomicron 78.9 0.18 (0, 12.2) 

Eubacterium hallii 76.0 0.20 (0, 12.5) 

Parabacteroides merdae 68.6 0.22 (0, 10.5) 

Escherichia coli 77.0 0.23 (0, 43.6) 

Dorea formicigenerans 69.6 0.24 (0, 6.3) 

Gordonibacter pamelaeae 98.5 0.28 (0, 5.4) 

Eubacterium siraeum 77.9 0.31 (0, 10.3) 

Bacteroides dorei 67.2 0.36 (0, 22.6) 

Fusicatenibacter saccharivorans 69.6 0.48 (0, 12.3) 

Blautia obeum 82.4 0.49 (0, 8.4) 

Ruminococcus gnavus 89.2 0.50 (0, 57.4) 

Ruthenibacterium lactatiformans 99.5 0.53 (0, 15.0) 

Parabacteroides distasonis 86.8 0.56 (0, 13.4) 

Alistipes putredinis 71.6 0.63 (0, 7.4) 

Bifidobacterium longum 70.1 0.73 (0, 60.2) 

Bacteroides vulgatus 73.0 0.96 (0, 31.2) 

Faecalibacterium prausnitzii 83.3 0.98 (0, 19.0) 

Eggerthella lenta 97.1 1.2 (0, 18.9) 

Anaerostipes hadrus 80.4 1.3 (0, 34.4) 

Bacteroides uniformis 87.3 2.1 (0, 28.2) 



 
  

193 

Oropharyngeal   

Prevotella salivae 60.3 0.11 (0, 4.1) 

Veillonella infantium 69.2 0.16 (0, 3.4) 

Actinomyces oris 73.4 0.26 (0, 29.9) 

Gemella haemolysans 74.7 0.27 (0, 40.5) 

Prevotella histicola 60.3 0.31 (0, 31.1) 

Streptococcus oralis 79.3 0.37 (0, 54.7) 

Prevotella melaninogenica 70.0 0.63 (0, 33.4) 

Veillonella parvula 84.0 0.67 (0, 42.0) 

Rothia dentocariosa 80.2 0.69 (0, 64.0) 

Gemella sanguinis 75.9 0.75 (0, 17.2) 

Veillonella dispar 75.1 0.84 (0, 21.9) 

Rothia mucilaginosa 94.1 1.4 (0, 57.8) 

Streptococcus mitis 84.4 1.6 (0, 93.4) 

Veillonella atypica 78.5 2.3 (0, 32.0) 

Streptococcus parasanguinis 97.0 8.0 (0, 45.9) 

Streptococcus salivarius 91.6 10.5 (0, 70.0) 
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Appendix B.G: Data completeness 
 
Data completeness in the GRACE dataset varies by data source and individual variables. We 
have presented the availability of data for variables reported throughout the text in the below 
table. 
 

Data Item 
Availability 

 % (N) 

Demographics  

Age  100 (279) 

Sex  100 (279) 

Memory support room  100 (279) 

Single or shared room 100 (279) 

Medical needs  

Urinary catheter in situ  100 (279) 

Urostomy 100 (279) 

Vascular catheter in situ 100 (279) 

Tracheostomy 100 (279) 

Colostomy/ileostomy  100 (279) 

Wound care (type) 99.3 (277) 

Carriage of MDRO  100 (279) 

Diet  

Diet type 99.6 (278) 

Meal texture 100 (279) 

Liquid texture 100 (279) 

Prescribed supplements 96.8 (270) 

ACFI: ADL  

Nutrition 98.2 (274) 

Mobility 98.2 (274) 

Personal hygiene 98.2 (274) 

Toileting 98.2 (274) 

Continence 97.8 (273) 

Total ADL score 98.9 (276) 

ACFI: Behaviour  

Cognitive skills 98.2 (274) 

Wandering 98.2 (274) 
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Verbal behaviour 98.2 (274) 

Physical behaviour 98.2 (274) 

Depression 98.2 (274) 

PAS-CIS score 51.3 (143) 

Total behaviour score 97.5 (272) 

ACFI: CHC  

Medication 98.2 (274) 

Complex healthcare 98.2 (274) 

Total CHC score 98.9 (276) 

ACFI: Mental and behavioural diagnoses  

Mental and behavioural diagnoses 100 (279) 

Impairment level 98.2 (274) 

ACFI: Comorbidities  

ACAP diagnosis codes 92.5 (258) 

DHS-linked data  

PBS 81.7 (228) 

MBS 87.1 (243) 

Sample availability for microbiome and resistome composition  

Oropharyngeal swab 84.9 (237) 

Stool sample 73.1 (204) 

Both 69.5 (194) 
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APPENDIX C: GRACE COHORT PROFILE MANUSCRIPT 

Contents: Manuscript of comparative analysis between GRACE participants and the ROSA 

historical cohort to assess representativeness currently available on medrxiv 

(https://doi.org/10.1101/2022.10.26.22281199).

https://doi.org/10.1101/2022.10.26.22281199
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ABSTRACT  

Purpose:  

The emergence of antibiotic-resistant bacteria represents a considerable threat to human health, 

particularly for vulnerable populations such as those living in residential aged care. However, 

antimicrobial resistance (AMR) carriage and modes of transmission remain incompletely 

understood. The Generating evidence on antimicrobial Resistance in the Aged Care 

Environment (GRACE) study was established to determine principal risk factors of AMR 

carriage and transmission in residential aged care facilities (RACF). 

Participants:  

Between March 2019 and March 2020, 279 participants were recruited from five South 

Australian RACFs. The median age was 88.6 years, the median period in residence was 681 

days, and 71.7% were female. A dementia diagnosis was recorded in 54.5% and more than two 

thirds had moderate to severe cognitive impairment (68.8%). Sixty-one percent had received 

at least one course of antibiotics in the 12 months prior to enrolment. 

Findings to date:  

To investigate the representation of the GRACE cohort to Australians in residential aged care, 

its characteristics were compared to a subset of the historical cohort of the Registry of Senior 

Australians (ROSA). This included 142,923 individuals who were permanent residents of 

RACFs on June 30th, 2017. GRACE and ROSA cohorts were similar in age, sex, and duration 

of residential care, prevalence of health conditions, and recorded dementia diagnoses. 

Differences were observed in care requirements and antibiotic exposure (both higher for 

GRACE participants). GRACE participants had fewer hospital visits compared to the ROSA 

cohort, and a smaller proportion were prescribed psycholeptic medications. 
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Future plans:  

Participant and built environment metagenomes will be used to determine microbiome and 

resistome characteristics. Individual and facility risk exposures will be aligned with 

metagenomic data to identify principal determinants for AMR carriage. Ultimately, this 

analysis will inform measures aimed at reducing the emergence and spread of antibiotic 

resistant pathogens in this high-risk population. 

 

KEYWORDS  

Infection control; geriatric medicine; microbiology 
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Abbreviations 

GRACE Generating evidence on antimicrobial Resistance in the Aged Care 

Environment 

ROSA Registry Of Senior Australians 

RACF Residential Aged Care Facility 

AMR Antimicrobial Resistance 

MDRO Multi-Drug Resistant Organism 

PBS Pharmaceutical Benefits Scheme 

MBS Medicare Benefits Schedule 

DHS Department of Human Services 

ACFI Aged Care Funding Instrument 

PAS-CIS Psychogeriatric Assessment Scales – Cognitive Impairment Scale 

GP General Practitioner 
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Strengths and limitations of this study 

• The GRACE study captured a diverse array of data; demographics, medications, 

personal and medical care, RACF management practices, as well as oropharyngeal, 

intestinal, and environmental metagenomic data, allowing detailed analysis of 

exposure-resistome relationships. 

• A high rate of participant recruitment (75% of eligible residents) was achieved, 

representing the spectrum of resident characteristics and care needs. This included a 

representative proportion of individuals with moderate or severe cognitive impairment.  

• The main limitation of this cohort resulted from the early cessation of recruitment, due 

to stringent facility access regulations resulting from the COVID-19 pandemic. While 

a high recruitment rate partially compensated in terms of cohort size, we were unable 

to complete recruitment at our fifth site or begin recruitment at two further sites.  

• Ethnic and linguistic data was not captured and so could not be compared between 

cohorts.   
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INTRODUCTION 

In keeping with trends globally, Australia is experiencing significant ageing of its population.1 

By 2031, 21% of Australians will be aged over 65 years.2 Of Australians over 65, 6% currently 

live in residential aged care facilities (RACFs), and of those 85 years and over, 30% do.2,3 The 

threat of increasing rates of infection caused by multidrug-resistant organisms (MDRO) is 

particularly serious in RACFs. High rates of antibiotic prescription, poor antimicrobial 

stewardship, and the potential for microbial transmission between residents, all contribute to 

growing rates of multidrug-resistant clinical isolates.4-6 However, the prevalence of 

antimicrobial resistance (AMR) in asymptomatic individuals (carried either by pathogens or 

commensal microbes), or the dispersal of MDRO within the RACF environment, is largely 

uncharacterised. Despite serious concerns about a growing inability to readily treat common 

infections, and the potential for RACF populations to contribute to AMR carriage within the 

wider community, sufficiently detailed data to support the development of effective measures 

to limit the spread of MDRO in aged care simply do not exist.  

The Generating evidence on Resistant bacteria in the Aged Care Environment (GRACE) study 

enrolled residents from five RACF located in metropolitan Adelaide, South Australia and aims 

to address five questions that are fundamental to developing strategies to reduce AMR carriage 

in RACF residents: 1) What factors determine the types and levels of AMR determinants 

carried by RACF residents? 2) To what extent is there evidence of AMR transmission between 

RACF residents? 3) Is interaction with the RACF built environment likely to facilitate AMR 

transmission? 4) Do hospital visits for acute care significantly influence types and levels of 

AMR carriage? 5) To what extent do ageing-associated changes in gut microbiology influence 

AMR carriage? 

To address these research questions, participants were invited to provide stool and 

oropharyngeal samples for metagenomic analysis to determine microbiome and resistome 
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characteristics. Environmental samples were also collected from areas within each facility. 

Metagenomic data will be related to a range of factors, including facility variables, resident 

demographics, morbidity, and polypharmacy data, to identify influences on AMR carriage and 

potential transmission.  

Prior to these analyses, we compared GRACE cohort characteristics with those of aged care 

residents within the national historical cohort of the Registry of Senior Australians (ROSA) 

which contains data for more than 2.8 million Australians aged over 65 who accessed 

government-subsidised aged services from 1997 to 2017.7 Our comparison assessed whether 

the GRACE cohort was representative of the wider Australian aged care population, and its 

validity as a basis to provide further insight. 
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COHORT DESCRIPTION 

Study design and population 

GRACE is a prospective, cohort study of permanent residents of RACFs recruited between 

March 2019 and March 2020. All eligible residents living in participating facilities at the time 

of recruitment and/or their next of kin were approached by a research nurse to provide informed 

consent. In addition to the consent form, study information was made available in the form of 

a video, a two-page brochure and on a website. Consent could be provided for one or all study 

procedures, including the collection of stool and/or oropharyngeal samples, collection of 

facility-level medical records and access to data held by the Medicare Benefits Schedule 

(MBS) and Pharmaceutical Benefits Scheme (PBS). Participants were not eligible if: 1) they 

were in respite care, 2) they were receiving palliative/end-of-life care, 3) it was recommended 

by management that they not be approached, and 4) we were unable to contact next of kin 

where third-party consent was required. Participants who required third-party consent, such as 

those with cognitive impairment, were identified by the participating facility and 

communicated to the study team. GRACE aimed to recruit 400 residents across 10 RACFs. 

However, due to the COVID-19 pandemic, and the imposition of strict facility entry 

restrictions, recruitment was ceased, resulting in a sample size of 279 residents from five 

facilities, with a mean recruitment rate of 75%. Site 1 was excluded from this mean as data on 

eligibility and participants who declined was not recorded. 

Of 403 residents assessed for eligibility, 344 were approached to join the study and 279 

consented to participate (Figure 1). Fifty-nine residents were ineligible and 65 declined to 

participate (excluding site 1). Of those who consented, 111 (39.8%) provided consent 

themselves, and 168 (60.2%) provided third-party consent. Two-hundred and seventy-three 

residents (97.8%) provided consent for Department of Human Services (DHS) data access, 

with MBS and PBS data available for 243 and 228 residents, respectively.  
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Data collection 

Participant and facility data were collected at the close of recruitment at each site and included 

facility medical records. Information held by the PBS and MBS from the DHS was requested 

after all recruitment was complete. Demographical data (including age and sex), as well as data 

on participant living arrangements (time spent in current facility, room type, room security) 

were collected from facilities. In addition, data on care requirements was collected from 

facilities via the Aged Care Funding Instrument (ACFI), a tool used on entry to an RACF to 

determine the funding needed for a person’s care.8 This includes three domains representing 

different areas of care needs: Activities of Daily Living, Cognition and Behaviour, and 

Complex Healthcare. Activities of Daily Living, includes details of care required for eating, 

showering, toileting and general mobility. Cognition and Behaviour domain measures the 

cognitive skills, verbal and physical behaviour, and mental health of individuals. Complex 

Healthcare considers the support residents need to manage their medications and health 

conditions. The ACFI also includes data on cognitive and behavioural conditions, which we 

have used to determine the presence of dementia in our cohort. Cognitive impairment scores 

pre-calculated using the Psychogeriatric Assessment Scales – Cognitive Impairment Scale 

(PAS-CIS) method were also obtained from the ACFI data.9 Details of hospitalisations in the 

12 months prior to enrolment, diet type and texture, and medical care data (wound care, medical 

devices) were collected from the facility records.  

Data collected from the PBS included medications prescribed during the 12 months prior to 

study enrolment for each participant. Specifically, data were obtained relating to medications 

that might directly or indirectly influence the microbiome and care needs (antibiotics, 

antivirals, antimycotics, medicines for constipation and acid-related disorders, insulin, 

antidiabetics, opioids, anti-inflammatories, corticosteroids, immunosuppressants, hormones, 
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lipid-modifying and beta-blocking agents, antidementia medication, antidepressants, and 

psycholeptics (includes antipsychotics, anxiolytics, sedatives/hypnotics)). Data collected from 

the MBS included general practitioner (GP) attendances, specialist attendances, allied health 

services, surgery, diagnostic imaging services, health assessments, and access of pathology 

services during the 12 months prior to study enrolment for each participant. Definitions and 

coding of these variables can be found in Supplementary Table 1. 

RxRisk is an established tool to determine a person’s actively managed health conditions using 

their medication data and was used to compare health conditions between GRACE and 

ROSA.10 In GRACE, RxRisk health conditions were able to be assessed for 228 participants 

as this relied on PBS data availability. Dementia is reported using both the RxRisk method and 

the ACFI diagnosis as per previously reported.7  

 

Comparison with the national aged care data  

Data from the National Historical Cohort of the Registry of Senior Australians (ROSA) was 

used to evaluate the extent to which the study cohort was representative of the national 

residential aged care population.7 ROSA includes Australians aged 65 years and over who 

accessed government-subsidised aged care services between 1997 and 2017. ROSA has 

integrated information from the aged care sector with various health care data sources. Datasets 

within ROSA include: Australian Institute of Health and Welfare’s National Aged Care Data 

Clearinghouse datasets, Australian Government Medicare Benefits Schedule (MBS) and 

Pharmaceutical Benefits Scheme (PBS), state health authorities’ hospitalisations (QLD, NSW, 

VIC, SA), and ambulance datasets (NSW, SA). All data were de-identified and integrated by 

approved agencies (Australian Institute of Health and Welfare, Centre for Health Record 

Linkage, Centre for Victorian Data Linkage, SA NT DataLink and Queensland Health’s 

Statistical Services Branch). Details of ROSA datasets, variables, definitions, and limitations 
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have been published previously.7 The June 30th, 2017 (latest available data at the time of the 

study), non-Indigenous national cohort of permanent residents of RACFs (n=142,923) was 

obtained from ROSA for comparison to the GRACE cohort. Analysis focusing on MBS 

subsidized health care services only included individuals without Department of Veterans’ 

Affairs cards (n=123,555), and analysis focusing on hospitalization records only included 

individuals living in NSW, VIC, SA, and QLD (n=125,351). 

 

Statistical Analysis 

Descriptive statistics were used to summarise characteristics of both GRACE and ROSA 

derived populations. For continuous data, median (IQR) was reported. For categorical data, 

percent and number of participants was reported. GRACE data was exported, cleaned, and 

analysed in Statistical Analysis Software (SAS) University Edition (SAS Studio v3.8/SAS 

v9.4).  
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FINDINGS TO DATE 

Demographics 

A comparison of participant clinical data between GRACE (n=279) and ROSA (n=142,923) is 

shown in Table 1. GRACE participants had a median age of 88.6 (IQR=81.8-93.2) years, which 

was similar to that of ROSA (med=87.4, IQR=81.6-91.7). GRACE and ROSA participants 

were mostly female (GRACE=71.7%, n=200; ROSA=68.4%, n=97,706), had a similar 

prevalence of dementia (GRACE=54.5%, n=152, ROSA=53.6%, n=76,594), and residents had 

been in their current facility for a similar period of time at recruitment/data collection (GRACE: 

med=681 days, IQR=252-1147; ROSA: med=689 days, IQR=283-1391). GRACE participants 

all lived in metropolitan facilities, run by not-for-profit organisations, whereas ROSA 

participants lived in a number of locations and organisation types. 

 

Care requirements 

Care requirements represented by the three ACFI domains were assessed for both datasets 

(Table 1). Activities of Daily Living (ADL) care requirements were greater in the GRACE 

cohort compared to ROSA, with 65.9% (n=184) having a high care requirement for this 

domain, compared to 54.3% in ROSA (n=77,552). Cognition and Behaviour care requirements 

for GRACE were less than those in ROSA, with 47.0% (n=131) and 60.3% (n=86,117) having 

a high care score, respectively. GRACE had a higher proportion of participants with a high 

care requirement for Complex Healthcare (64.5%, n=180) compared to the ROSA cohort 

(53.3%, n=76,228). 
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Utilisation of healthcare services subsidised by Medicare 

In the 12 months prior to enrolment/data collection, the proportions of the GRACE and ROSA 

cohorts that had accessed an MBS-subsidised healthcare service were similar (GRACE=100%, 

n=243; ROSA=99.4%, n=122,875). GRACE participants utilised GP services for non-urgent 

out of hours care most commonly (GRACE=85.5%, n=207; ROSA=54.7%, n=67,643; Table 

1). More GRACE participants accessed urgent out of hours GP services (61.7%, n=150) 

compared to ROSA (33.1%, n=40,904). Both cohorts accessed standard GP attendances 

similarly (GRACE=38.7%, n=94; ROSA=45.7%, n=56,465). GRACE participants had team 

care plans (in which multidisciplinary teams manage a case; GRACE=81.1%, n=197; 

ROSA=56.0%, n=69,213) and collaborative domiciliary and residential management reviews 

(in which a GP and pharmacist review ongoing medication for a resident; GRACE=61.7%, 

n=150; ROSA=33.7%, n=41,696) more commonly than those in the ROSA.  

GRACE and ROSA cohorts had a similar level of pathology service utilisation, with patient 

episode initiations the most frequently accessed service for each (GRACE=93.0%, n=226; 

ROSA=88.9%, n=109,896; Table 1). Of all pathology services captured, access of 

microbiology services differed most between the datasets (GRACE=80.3%, n=195; 

ROSA=65.0%, n=80,366). 
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Hospitalisations 

GRACE had a smaller proportion of participants with at least 1 hospitalisation recorded in the 

12 months prior to enrolment/data collection (31.5%, n=88) compared to ROSA (48.2%, 

n=60,409) The median number of hospitalisations per resident was similar (GRACE: med=1, 

IQR=1-2; ROSA: med=2, IQR=1-3; Table 1). GRACE also had a smaller proportion of 

participants with at least 1 emergency department presentation in the 12 months prior to 

enrolment/data collection (GRACE=26.2%, n=73; ROSA=44.7%, n=56,016). 

 

Medications 

At least 1 medication had been dispensed in the 12 months prior to enrolment/data collection 

for 97.8% (n=223) and 99.3% (n=141,893) of the GRACE and ROSA cohorts, respectively. 

GRACE participants were taking less medications per person (med=5, IQR=2-6) compared to 

ROSA (med=13, IQR=9-18; Table 1). Antibiotics were the most commonly supplied drug class 

to both cohorts during the 12 months prior to enrolment/data collection, but GRACE had a 

fewer number of participants who were supplied antibiotics (61.0%, n=139) compared to 

ROSA (74.5%, n=106,427). Psycholeptics were supplied to fewer participants in GRACE 

(31.1%, n=71) compared to ROSA (47.2%, n=67,465). 
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Table 8. Characteristics of GRACE study participants compared to the national population in ROSA. 

 GRACE  

(n=279) 
ROSA  

(n=142,923) 

Demographics   

Age, median (IQR) (years) 88.6 (81.8-93.2) 87.4 (81.6-91.7) 

Sex, % (n)   

Female 71.7 (200) 68.4 (97,706) 

Male 28.3 (79) 31.6 (45,217) 

Facility location, % (n) †   

Major city 100 (279) 70.1 (100,140) 

Outside major city 0 (0) 29.8 (42,525) 

Organisation type, % (n) †   

Government 0 (0) 4.0 (5,787) 

Not-for-profit 100 (279) 56.7 (80,992) 

For-profit 0 (0) 39.2 (55,958) 

Days lived in facility, median (IQR) 681 (252-1147) 689 (283-1391) 

Dementia diagnosis, % (n)* † 54.5 (152) 53.6 (76,594) 

Care requirements (ACFI)   

Activities of Daily Living, % (n)^ †   

High 65.9 (184) 54.3 (77,552) 

Medium 26.5 (74) 30.9 (44,157) 

Low 6.5 (18) 13.5 (19,280) 

Nil 0 (0) 0.6 (874) 

Cognition and behaviour, % (n)^ †   

High 47.0 (131) 60.3 (86,117) 

Medium 33.0 (92) 22.8 (32,629) 

Low 17.5 (49) 11.5 (16,502) 

Nil 0 (0) 4.6 (6,615) 

Complex healthcare, % (n)^ †   

High 64.5 (180) 53.3 (76,228) 

Medium 28.3 (79) 28.6 (40,863) 

Low 6.1 (17) 15.4 (22,066) 

Nil 0 (0) 1.9 (2,706) 



 

214 

Healthcare services, % accessed at least once in 12 months prior 

to enrolment (n)^ 
  

At least 1 healthcare service accessed, % (n) 100 (243) 99.4 (122,875) 

GP attendance  38.7 (94) 45.7 (56,465) 

GP attendance after hours  85.5 (207) 54.7 (67,643) 

Specialist attendance  31.7 (77) 27.4 (33,822) 

GP management plans, team care 

arrangements, multidisciplinary care plans 
81.1 (197) 56.0 (69,213) 

Collaborative domiciliary and residential management reviews 61.7 (150) 33.7 (41,696) 

Diagnostic imaging (any, per resident) 51.4 (125) 44.6 (55,126) 

Health assessments 64.6 (157) 44.8 (55,375) 

Geriatric medicine 10.7 (26) 7.3 (9,038) 

Urgent attendance after hours 61.7 (150) 33.1 (40,904) 

Medical practitioner (emergency physician) attendance 3.7 (9) 2.0 (2,516) 

Allied health services 63.8 (155) 42.2 (52,164) 

Surgical operations 25.1 (61) 22.9 (28,312) 

Psychiatrist attendance 2.5 (6) 3.4 (4,153) 

Pathology services   

Patient episode initiations 93.0 (226) 88.9 (109,896) 

Chemical 84.0 (204) 78.0 (96,374) 

Microbiology 80.3 (195) 65.0 (80,366) 

Haematology 68.7 (167) 57.9 (71,556) 

Tissue 13.6 (33) 12.3 (15,249) 

Immunology 9.9 (27) 6.7 (8,285) 

Cytopathology 2.5 (6) 1.7 (2,146) 

Genetics 1.2 (3) 0.5 (631) 

Simple basic tests 0.8 (2) 0.5 (622) 

Specimen referred 1.2 (3) 1.7 (2,067) 

Hospitalisation in the 12 months prior to enrolment   

Emergency department presentations per resident, median (IQR) 1 (1-1) 1 (1-3) 

At least 1 emergency department presentation, % (n) 26.2 (73) 44.7 (56,016) 

Hospital separations per resident, median (IQR) 1 (1-2) 2 (1-3) 

At least 1 hospital separation, % (n) 31.5 (88) 48.2 (60,409) 

Medications prescribed in the 12 months prior to enrolment^   

Medicines supplied per person, median (IQR) 5 (2,6) 13 (9,18) 
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At least 1 medication dispensed, % (n) 97.8 (223) 99.3 (141,893) 

At least 1 dispensed, % (n)   

Antibiotics 61.0 (139) 74.5 (106,427) 

Antivirals 1.8 (4) 1.8 (2,524) 

Antimycotics 0.4 (1) 0.5 (686) 

Medicines for constipation 36.0 (82) 45.1 (64,434) 

Medicines for acid-related disorders 49.1 (112) 51.5 (73,550) 

Insulin 7.5 (17) 6.6 (9,393) 

Antidiabetics 11.4 (26) 14.2 (20,262) 

Opioids 44.7 (102) 48.2 (68,819) 

Anti-inflammatory/antirheumatic 7.5 (17) 9.5 (13,649) 

Corticosteroids 14.9 (34) 16.2 (23,114) 

Other immunosuppressants 0.9 (2) 0.6 (911) 

Sex hormones 4.8 (11) 3.5 (4,973) 

Lipid-modifying agents 25.4 (58) 36.7 (52,409) 

Beta-blocking agents 26.3 (60 28.7 (40,969) 

Antidementia 8.3 (19) 10.3 (14,754) 

Antidepressants 43.4 (99) 48.3 (68,982) 

Psycholeptics 31.1 (71) 47.2 (67,465) 

 

* extracted from aged care funding instrument data 

^ missing data GRACE: activities of daily living care requirement, 1.1%; cognition and behaviour care 

requirement, 2.5%; complex healthcare care requirement, 1.1%; healthcare services, 12.9%; medications, 

18.3%. 

† missing data ROSA: facility location, 0.2%; organisation type, 0.1%; dementia diagnosis, 0.7%; activities of 

daily living care requirement, 0.7%; cognition and behaviour care requirement, 0.7%; complex healthcare care 

requirement, 0.7%.  
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Health conditions 

The median number of RxRisk conditions per participant did not differ between the two cohorts 

(both: med=5, IQR=3-7; Table 2). In GRACE, the most common RxRisk conditions included 

gastro-oesophageal reflux disease (49.1%, n=112), pain (44.7%, n=102) and depression 

(43.0%, n=98). Gastro-oesophageal reflux disease was also the most common condition in 

ROSA (49.0%, n=69,977), followed by depression (45.7%, n=65,351) and hypertension 

(43.1%, n=61,542). Compared to ROSA, the GRACE cohort had a higher proportion of 

participants being treated for osteoporosis/Paget’s disease (GRACE=23.7%, n=54; 

ROSA=15.6%, n=22,306) and hypothyroidism (GRACE=17.5%, n=40; ROSA=10.8%, 

n=15,450). Most conditions were similar in their prevalence between the two datasets. 
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Table 9. RxRisk-V health conditions for GRACE participants compared to ROSA. 

 GRACE  

(n=228) 
ROSA  

(n=142,923) 

RxRisk-V condition, % (n)^   

Gastro-oesophageal reflux disease 49.1 (112) 49.0 (69,977) 

Hyperlipidaemia 25.4 (58) 32.1 (45,927) 

Hypertension 40.4 (92) 43.1 (61,542) 

Ischaemic heart disease: hypertension 32.9 (75) 35.6 (50,863) 

Antiplatelets 19.3 (44) 19.1 (27,258) 

Depression 43.0 (98) 45.7 (65,351) 

Pain 44.7 (102) 41.2 (58,921) 

Anticoagulants 21.9 (50) 17.4 (24,838) 

Chronic airways disease 24.1 (55) 22.0 (31,493) 

Congestive heart failure 18.4 (42) 17.0 (24,362) 

Osteoporosis/Paget 23.7 (54) 15.6 (22,306) 

Psychotic illness 13.2 (30) 15.9 (22,680) 

Diabetes 15.0 (34) 15.4 (22,025) 

Steroid responsive disease 14.0 (32) 10.2 (14,525) 

Arrythmia 10.5 (24) 10.1 (14,389) 

Anxiety 17.1 (39) 14.5 (20,742) 

Glaucoma 11.0 (25) 11.3 (16,120) 

Ischaemic heart disease: angina 11.0 (25) 9.7 (13,812) 

Dementia 8.3 (19) 16.5 (23,520) 

Hypothyroidism 17.5 (40) 10.8 (15,450) 

Inflammation/pain 7.5 (17) 5.8 (8,247) 

Gout 7.0 (16) 5.9 (8,403) 

Parkinson’s disease 11.8 (27) 7.3 (10,435) 

Epilepsy 7.0 (16) 9.2 (13,167) 

Liver failure 0 (0) 0.1 (81) 

Incontinence 3.5 (8) 2.8 (4,063) 

Benign prostatic hyperplasia 3.1 (7) 2.8 (4,064) 

Malignancies 1.3 (3) 1.5 (2,174) 

Renal disease 2.6 (6) 1.1 (1,630) 

Hyperthyroidism 0 (0) 0.9 (1,304) 
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Allergies 0 (0) 0.6 (842) 

Migraine 0 (0) 0.6 (810) 

Irritable bowel syndrome 0.4 (1) 0.6 (831) 

Smoking cessation 0.4 (1) 0.4 (581) 

Pancreatic insufficiency 0 (0) 0.4 (547) 

Psoriasis 1.3 (3) 0.5 (655) 

Bipolar disorder 0 (0) 0.5 (675) 

Transplant 0 (0) 0.1 (145) 

Alcohol dependency 0 (0) <0.1 (39) 

Pulmonary hypertension 0 (0) <0.1 (37) 

Hepatitis B 0 (0) <0.1 (19) 

HIV 0 (0) <0.1 (38) 

Hyperkalaemia 0 (0) <0.1 (20) 

Malnutrition 0 (0) 0 (0) 

Tuberculosis 0 (0) <0.1 (<5) 

Hepatitis C 0 (0) <0.1 (10) 

Number of conditions per person, median (IQR) 5 (3,7) 5 (3,7) 

 

^ missing data GRACE, 18.3%. 

 

Additional GRACE datapoints  

Some characteristics could not be compared between the GRACE and ROSA cohorts and these 

are summarised in Supplementary Table 2. Most GRACE participants were staying in their 

own rooms (97.8%; n=273), with a small proportion also living in memory support areas 

(12.9%; n=36). Diet type and texture was highly conserved among participants, with 93.9% 

(n=262) reporting a normal diet, 72.8% reporting normal meal texture (n=203) and 91.4% 

(n=255) reporting a normal liquid texture. Most participants were receiving a standard fortified 

diet (56.3%; n=157), but a large proportion were receiving a high energy high protein 

supplemented diet (39.4%; n=110). Seven (2.5%) participants reported a colostomy/ileostomy. 

No GRACE participants reported a urinary catheter in situ, vascular catheter in situ, urostomy, 
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or a tracheostomy hence they are not included in Supplementary Table 2. Seventy-two (26.0%) 

participants were receiving wound care at the time of enrolment, with grade 1-2 pressure ulcers 

the most common wound being treated (6.5%; n=18). Using the pre-calculated PAS-CIS 

method, GRACE participants were most commonly assigned a moderate impairment score 

(39.8%; n=111), followed by severe (28.0%; n=78) and mild impairment (27.6%, n=77). Very 

few were assigned no to minimal impairment (2.9%; n=8).  



 

220 

STRENGTHS AND LIMITATIONS 

The primary strength of the GRACE study is the combination of comprehensive demographic, 

health care, health status, medical, pharmaceutical, and facility variables with intestinal and 

oropharyngeal microbiome and resistome data for permanent residents of RACFs. The research 

design developed to establish this cohort has enabled powerful opportunities for novel and 

extensive investigations currently underway into relationships between risk factors in aged 

care, current practices in aged care, intestinal health, and disease state outcomes. For example, 

future work will include investigations assessing associations between cognitive and 

behavioural diagnoses and the composition of the microbiota to measure the impact of 

variables in aged care on the increasing burden of cognitive decline. 

Another key strength from GRACE was the high rate of recruitment (75%) from residents and 

families of residents in RACFs. This was most likely attributable to the availability of a 

research nurse in the study team who personally and extensively communicated with residents 

and their families. For enhanced rates of recruitment, future studies may also benefit from 

dedicating significant resources towards communication strategies, particularly when 

involving elderly populations. 

A limitation of the GRACE study resulted from the impact of the SARS-CoV-2 (COVID-19) 

pandemic. However, whilst this affected the final sample size, the severity of the effect was 

dampened by the high recruitment rate of participants. In addition, the location of participating 

RACFs should be considered. These were exclusively in metropolitan areas and may therefore 

differ in their characteristics from those located in rural or more remote areas. Similarly, only 

not-for-profit aged care providers participated in the study, who may have had higher staffing 

capabilities and different approaches to food provisions compared to other types of facilities. 

Subsequent studies would benefit from a diversified cross-section of RACFs in both 



 

221 

geographical location and funding type. Data relating to resident ethnicity was also not 

captured.  

Specifically in relation to the emergence of antibiotic resistance, potential risk exposures, 

including high antibiotic use, high medication usage, a high proportion of health conditions 

experienced, and frequent access of after-hours GP services, were identified in the GRACE 

cohort, and were reflective of exposures in the wider residential aged care population.  

 

Collaboration 

The GRACE team have established a cohort with comprehensively detailed information on 

overall health, microbiome profiles, and medication use in RACFs. The primary aim for 

establishing this cohort was to investigate the existence and spread of resistant bacteria in 

residential aged care to help improve facility management, prevent the spread of harmful 

bacteria, and ultimately improve the health of aged care residents and the wider community. 

The authors welcome approaches from other researchers to discuss the potential for 

collaborative studies that utilise this valuable resource.  
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Figure Legends 

Figure 1. GRACE study recruitment and sample collection numbers. * data does not include 

site 1; NOK = next of kin; OP = oropharyngeal.  
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1. Health services, pathology, and medicines coding. 

Description Code 

Health Services MBS group code 

GP attendance to which no other item applies A01 

GP after hours attendances to which no other item applies A22 

Specialist attendance A03 

GP management plans, team care arrangements, multidisciplinary 

care plans 
A15 

Collaborative domiciliary and residential management reviews A17 

Diagnostic imaging^ I* 

Health assessments A14 

Geriatric medicine A28 

Urgent attendance after hours A11 

Medical practitioner (emergency physician) attendance to which no 

other item applies 
A21 

Allied health services M03 

Surgical operations T08 

Psychiatrist attendance A08 

Pathology Services MBS group code 

Patient episode initiations P10 

Chemical  P02 

Microbiology P03 

Haematology P01 

Tissue P05 

Immunology P04 

Cytopathology P06 

Genetics P07 

Simple basic tests P09 

Specimen referred P11 

Medicines ATC code 

Antibiotics J01* 

Antivirals J05* 

Antimycotics J02* 

Medicines for constipation A06* 

Medicines for acid-related disorders A02* 

Insulin A10A* 

Antidiabetics A10B* 

Opioids N02A* 

Anti-inflammatory/antirheumatic M01* 

Corticosteroids H02* 
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Other immunosuppressants L04* 

Sex hormones G03* 

Lipid-modifying agents C10* 

Beta-blocking agents C07* 

Antidementia N06D* 

Antidepressants N06A* 

Psycholeptics N05* 

 

^Any MBS group in the diagnostic imaging category 
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Supplementary Table 2. Additional characteristics of GRACE participants. 

 Total  

(n=279) 

Room detail  

Room type, % (n)  

Single 97.8 (273) 

Shared 2.2 (6) 

Memory support room, % (n)  

Yes 12.9 (36) 

No 87.1 (243) 

Diet  

Diet type, % (n)^  

Normal 93.9 (262) 

Vegetarian 0.4 (1) 

Lactose free 3.9 (11) 

Gluten free 0.7 (2) 

Lactose and gluten free 0.7 (2) 

Meal texture, % (n)  

Regular 72.8 (203) 

Finger food 0.4 (1) 

Soft  12.9 (36) 

Minced and moist 7.9 (22) 

Pureed 6.1 (17) 

Liquidised 0 (0) 

Liquid texture, % (n)  

Normal/Thin 91.4 (255) 

Slightly thick 1.4 (4) 

Mildly thick 5.0 (14) 

Moderately thick 1.4 (4) 

Extremely thick 0.7 (2) 

Prescribed supplementation, % (n)^  

Standard fortified diet 56.3 (157) 

High energy & high protein 39.4 (110) 

Oral supplement 0 (0) 

PEG supplement 0 (0) 

Multiple 1.1 (3) 

Medical Care  

Colostomy/ileostomy, % (n)  

Yes 2.5 (7) 

No 97.5 (272) 

Wound care, % (n)^  

Not receiving wound care 73 (205) 
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Receiving care for multiple wounds 3.2 (9) 

Skin tear 5.4 (15) 

Pressure ulcer (grade 1-2) 6.5 (18) 

Pressure ulcer (grade 3-4) 0.7 (2) 

Leg ulcer 1.8 (5) 

Burn/scald 0 (0) 

Abrasion/graze 2.2 (6) 

Surgical wound 0.7 (2) 

Lesion 0.7 (2) 

Unspecified 4.7 (13) 

Cognitive Impairment  

Cognitive impairment level, % (n)^  

None/Minimal 2.9 (8) 

Mild 27.6 (77) 

Moderate 39.8 (111) 

Severe 28.0 (78) 

 

^ missing data GRACE: diet type, 0.4%; prescribed nutritional supplement, 3.2%; receiving wound care, 0.7%; 

cognitive impairment level, 1.8%. 
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