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Abstract	

In this work liquid systems containing ionic species are investigated in order to further 

understand the forces that govern the surface structure of liquids. The distribution of ions 

along the surface normal, or charge distribution, is especially important in foam films 

(such as soap bubbles) where the electrostatic forces generated from the separation of 

charges at the liquid/air interfaces play a pivotal role in stopping the film from collapsing.  

Many powerful techniques for investigating surfaces require the samples to be measured 

under ultra-high vacuum. The volatile nature of liquids makes their use in these 

instruments difficult, especially so in the case of foam films which are already in a fragile, 

metastable state. Specialised equipment and experimental techniques are developed for the 

investigation of foam films under vacuum. A glass film holder is used to generate and 

hold the film. This film holder is held inside an enclosed cell designed to minimise the 

evaporation of solvent from the film and aid film stability. Variations to the setup are 

designed and tested which allow for greater stability of the foam film, along with the 

means to measure the films under altering conditions.  

Foam films of a cationic surfactant, hexadecyltrimethylphosphonium bromide, were 

investigated. A range of measurements were performed that demonstrated the thinning, 

and consequential surface rearrangement, of the foam film over time. These results also 

indicated a decrease in the surface potential upon foam film formation, partially owing to 

the reorientation of surfactant molecules at the surface. 

Foam films containing a non-ionic surfactant, dodecyldimethyl phosphine oxide, were 

also investigated using the above technique. These films were studied with no added 

electrolyte as well as added salts, where the anion was varied. Comparing the 

concentration depth profiles of the foam films to the corresponding bulk liquid surfaces 

for the various systems studied allowed for the determination as to how the liquid surface 

changes upon foam film formation. It was found that the addition of salt increased the 

surfactant adsorption at the surface of both the foam film and bulk liquid. Additionally, it 

was seen that while iodide was detected as a surface excess at the bulk liquid, chloride was 

not. Both are detected as a surface excess at the foam film surface. 
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Surfaces of ionic liquids were also investigated, as they represent a unique situation of a 

liquid being comprised totally of charged species. Thus, the charge distribution is not 

mediated by an additional species, as is the case with aqueous solutions. The effect of 

small amounts of water as a surface impurity in [C6mim][Cl] was investigated. Increasing 

the water content lead to an increase in the amount of anion adsorbed at the surface, 

indicating how forces other than the electrostatic interaction between ions governs surface 

structure. It was seen that for both protic and aprotic ionic liquids that the cation aliphatic 

chain length had a significant influence on the surface structure. Increasing the chain 

length caused increased adsorption of the cation, with subsequent cation reorientation at 

the surface. 
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of the project, along with a discussion of the experimental methods used as part of the 

project. Given that such a large portion of the project was involving the NICISS 

technique, a particularly in-depth discussion and review of the method is given in that 

chapter. 

The results chapters 3 – 7 are reformatted versions of the published peer-reviewed papers 

of the same title, while chapters 8 and 9 are reformatted versions of papers either under 

review or sent to journals for review. 

The author of this thesis was the primary author of all papers used as results chapters. All 

experimental work was completed by the author. Exceptions involve: Dr. V. Lockett who 

carried out the Karl Fisher titration to determine the water content in the aprotic ILs; and 

Dr. E. Carey who performed TFPB measurements (in addition to those completed by the 

author) in order to test data reproducibility. The author also completed all data evaluation, 

but acknowledges the input of the respective co-authors in the final interpretation of 

results. 
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