
Heuristic Algorithms in
Maker-Breaker Secure Domination

Games

A thesis submitted for the degree of
Masters of Science (Mathematics)

Patrick Dunn-Lawless

College of Science & Engineering

Flinders University

June 2023

Contents

Contents i

List of Figures iv

Summary vii

Declaration viii

Acknowledgements ix

1 Introduction 1

1.1 Graphs . 1

1.1.1 Notation . 2

1.2 Dominating Sets of Graphs . 3

1.2.1 Secure Domination . 4

1.3 Maker-Breaker games . 6

2 Algorithmic Approaches to Finding Dominating Sets 13

2.1 Determining the (Secure) Domination Number Algorithmically 13

2.2 Mixed Integer Linear Programming (MILP) Approaches . . . 16

2.3 Heuristic Algorithms . 18

3 Maker-Breaker domination games 23

i

CONTENTS ii

3.1 Definition and Key Results . 23

3.1.1 Maker-Breaker Secure Domination Game 27

3.2 3× 3 Grid Example . 30

4 Strategies and Simulation 39

4.1 Core Simulation Environment 39

4.2 What is a Strategy? . 42

4.3 Strategies for the Maker-Breaker Plain Domination Game . . . 43

4.3.1 Pairing Strategy . 44

4.3.2 Greedily Seeking New Neighbours 45

4.3.3 Greedily Seeking Enclaves 46

4.3.4 Drawing on the Erdős-Selfridge Criterion 47

4.4 Algorithms for the Maker-Breaker Secure Domination Game . 48

4.4.1 Preliminaries . 48

4.4.2 Random Selection of 2 Neighbours 49

4.4.3 Considering 2-Guarded Vertices 50

4.4.4 Considering Minimum Guarded Vertices 50

4.4.5 Using a Linear Programming Formulation 51

4.4.6 Hybrid Strategies . 53

5 Results 55

5.1 Hybrid Approach . 56

5.2 Comparing Strategies Against Each Other 59

5.3 Time Analysis . 65

5.4 Strategy Stealing . 69

6 Conclusions and Directions for Future Research 73

CONTENTS iii

Bibliography 76

List of Figures

1.1 Comparison of a minimal dominating set (left) and a minimum

dominating set (right) of the same graph. Set members are

highlighted in blue . 4

1.2 An comparison of a minimum plain dominating set (left) and

a minimum secure dominating set (right) 5

1.3 A simple game tree corresponding to a three turn game, each

turn corresponding to a binary choice between “left” or “right”.

The game history is labeled at each node 8

1.4 The first step of labeling the game tree, beginning at leaf vertices 8

1.5 The fully enumerated game tree for Maker moving first 9

1.6 Enumerated game tree for Breaker moving first 9

3.1 An example of a graph which admits a pairing dominating set,

as given by Duchêne et al. [23] 28

3.2 The labelling of the 3× 3 grid used in this section 30

3.3 The only possible configuration for which A and B have Form

3 (up to symmetry) . 33

3.4 The two possible configurations for |A∪B| = 7 (up to symmetry) 34

3.5 The two possible configurations for |A∪B| = 5 (up to symmetry) 34

iv

LIST OF FIGURES v

5.1 Examination of various hybrid strategies, their component

functions, and several other strategies for the secure domina-

tion game on square grids of various dimension 58

5.2 Examining various strategies for Maker and Breaker in the

plain domination game on the 7× 7 grid 61

5.3 Examining various strategies for Maker and Breaker in the

secure domination game on the 7× 7 grid 63

5.4 A logarithmic plot of the average game duration for vari-

ous Maker strategies against Breaker playing randomly in the

Maker-Breaker secure domination game on square grids of

various dimensions . 67

5.5 Various Maker strategies’ performance against strategy steal-

ing on square grids of differing dimension 71

5.6 Various Breaker strategies’ performance against strategy steal-

ing on square grids of differing dimension 72

Summary

This thesis considers the Maker-Breaker domination game, a special case of

Maker-Breaker games introduced in 2020 in which the winning sets are the

dominating sets of the underlying graph. Since these games always have a

theoretical winner, the majority of analysis in the literature has been towards

identifying graphs where a specific player has a guaranteed winning strategy.

However, little consideration has been given to how these games play out

when a winning strategy is not known to either player.

The Maker-Breaker domination game can be naturally extended by con-

sidering variants of dominating sets, and this thesis does so by considering

secure dominating sets. This extension has not previously been considered

in the literature. A simulation environment is designed whereby both play-

ers (Maker and Breaker) are assigned a play strategy, and the game unfolds

until one player wins. There is a stochastic element to the simulation envir-

onment, and so the simulation can be run many times to observe different

possible outcomes. The results of these simulations are analysed to see which

strategies are more successful. The strategies considered are based on various

heuristics and results in the literature. Most notably, these include a heur-

istic based on the Erdős-Selfridge criterion, a seminal result in positional

games literature, and also a recently proposed heuristic based on relaxations

of a mixed integer linear programming formulation for secure domination.

The analysis reveals that the proposed strategies can be categorised into one

vi

Summary vii

of three tiers, based on the degree of computational intensity and observed

level of success.

Declaration

I certify that this thesis does not incorporate without acknowledgement any

material previously submitted for a degree or diploma in any university; and

that to the best of my knowledge and belief it does not contain any material

previously published or written by another person except where due reference

is made in the text.

Patrick Dunn-Lawless

viii

Acknowledgements

I would like to thank my supervisors, Michael Haythorpe and Alex New-

combe, for their steady guidance and support throughout my studies. I

would also like to thank my family and my partner for their love and encour-

agement.

ix

Chapter 1

Introduction

1.1 Graphs

Graphs are commonly defined as a tuple (V,E), where V denotes a vertex

set, and E ⊆ V × V an edge set, representing connections between vertices.

In general, two vertices may have multiple edges between them, or an edge

may connect a vertex to itself. Edges may also be assigned weights to repres-

ent some cost of traversal or some other variable of interest. However, in this

thesis we restrict our focus to simple graphs, which have no multiple edges

between vertices, no looping edges from a vertex to itself, and no weights

associated with their edges.

Graphs are extensively used in a wide variety of applications [43, 46, 52, 53],

and there are many questions regarding graphs themselves that can be asked.

Some common questions are whether certain structures exist within a graph,

or whether the graph exhibits certain properties. The computation-based

difficulty of these questions can range from easy to intractable. In this thesis

we will be concerned with a certain kind of graph structure called a domin-

ating set, which will be discussed in Section 1.2.

1

1.1. Graphs 2

Certain games can be played on graphs, where the latter essentially con-

stitutes the game board. Depending on the rules of the game, the player(s)

may traverse or claim vertices or edges in pursuit of some goal, which itself is

often a particular graph structure. In this thesis we will consider a particular

kind of game called a Maker-Breaker game which may be played on graphs.

We will discuss Maker-Breaker games in Section 1.3

1.1.1 Notation

We now introduce notation which will be useful throughout the thesis.

If two vertices v, u are adjacent in a graph G, we write v ∼ u or equi-

valently u ∼ v. Nonadjacency is written as u ̸∼ v.

For a vertex v in the vertex set V of a simple graph G, the open neigh-

bourhood of v is N(v) := {u ∈ V |v ∼ u}. The closed neighbourhood of v is

N [v] = N(v) ∪ {v}.

A subset S of a vertex set V is said to be an enclave of a vertex v if N [v] ⊆ S.

The notion of neighbourhoods can be extended to sets. For some set of

vertices S, we define

N(S) =
⋃
s∈S

N(s), and N [S] =
⋃
s∈S

N [s].

A subset S of a graph’s vertices is said to be an independent set if

∀u, v ∈ S, u ̸∼ v.

A vertex set exhibiting some property P is said to be a maximal P-set if

the addition of any other available vertices would mean the resulting set no

1.2. Dominating Sets of Graphs 3

longer exhibits property P . Similarly, a minimal P-set is a set which no

longer exhibits property P on removal of any vertex.

A vertex x in a subset of vertices X is said to be redundant if

N [x] ⊂ N [X − {x}]

A matching in a graph is a subset of edges such that every vertex is an

endpoint of at most one edge . A matching M is a perfect matching if every

vertex is an endpoint of exactly one edge in M .

1.2 Dominating Sets of Graphs

Given a graph G = (V,E), a collection of vertices S ⊆ V is said to be a dom-

inating set of G if ∀v ∈ V, either v ∈ S or ∃w ∈ S such that v ∼ w. Given a

set S, a vertex v ∈ S is said to cover all vertices in N [v]. A dominating set

is thus a set that covers all vertices in V .

The concepts of domination and dominating sets are often attributed to

Ore, who first used the term in Chapter 13 of [45], and Berge, who had pre-

viously defined the concept under another name [6]. However, the concept

(and several of its variants) appeared with other names as early as the 19th

century [35], notably in the context of considering positions in chess games

[5].

The concept of a minimal dominating set was of interest to Ore. These

are dominating sets that cease to be dominating on the removal of any mem-

ber vertex. A related concept is that of a minimum dominating set. This is

a dominating set of the smallest possible cardinality in a given graph. Note

that all minimum dominating sets are minimal, but a minimal dominating

1.2. Dominating Sets of Graphs 4

set is not necessarily a minimum dominating set, an example of which is

given in Figure 1.1.

Figure 1.1: Comparison of a minimal dominating set (left) and a minimum
dominating set (right) of the same graph. Set members are high-
lighted in blue

The cardinality of a minimum dominating set for a graph is referred to as that

graph’s domination number. In their 1977 survey, Cockayne and Hedetniemi

[19] denoted this number as γ(G), which has since become the standard

notation. Computing γ(G) is known as the domination problem and was

shown to be an NP-hard problem in general [42]. Dominating sets and their

variations are often applied to issues of network coverage or facility location

[34, 4]. Following the survey by Cockayne and Hedetniemi, there was a

marked increase in research about dominating sets, and parameters such as

γ(G). By requiring further properties beyond domination, several variants of

domination that can be defined. As such, to avoid confusion we will at times

refer to the original form of domination as plain domination. The variant in

the following subsection is a major focus of this thesis.

1.2.1 Secure Domination

The subsequent years after Cockayne and Hedetniemi’s paper saw a con-

siderable increase in publications concerning domination. This is, in part,

credited to the wide variety of domination parameters that can be defined,

and their natural interpretations in real world applications [38]. We will

presently discuss a select few of these parameters.

1.2. Dominating Sets of Graphs 5

The vertex independence numbers, i(G) and α(G) denote the respective min-

imum and maximum cardinality of a maximal independent set. Berge showed

that every maximal independent set in a graph G is a minimal dominating

set of G [6], and so i(G) is also called the independent domination number of

G, and α(G) the independence number of G. A private dominating set S is a

dominating set such that for every u ∈ S,∃v /∈ S such that N [v] ∩ S = {u}.

The private domination number is the minimum cardinality of such a set,

and is written as γpvt(G). A well known result of Bollobas and Cockayne [9]

established that, for graphs with no isolated vertices, γ(G) = γpvt(G).

A secure dominating set S is a dominating set which satisfies the following

property: ∀t ̸∈ S, ∃s ∈ N(t) ∩ S such that {S \ {s}} ∪ {t} is a dominating

set. A common analogy used in the discussion of secure dominating sets is

that those members s ∈ S are guards supervising the locations t ̸∈ S. S is

then secure dominating if every location t has some adjacent guard which

can “relocate” to t, with the resulting configuration remaining a dominating

set. As seen in Figure 1.2, the same underlying graph can produce different

values for γ and γs (having values 1 and 2 respectively). By definition, all

secure dominating sets are dominating sets, and so γ ≤ γs for any graph.

Figure 1.2: An comparison of a minimum plain dominating set (left) and a
minimum secure dominating set (right)

This variant of domination was introduced and explored in a 2005 paper by

Cockayne [20]. The secure domination number γs(G) is the number of ver-

tices in the smallest secure dominating set of G. It is clear that calculating γs

1.3. Maker-Breaker games 6

is NP-hard in general, and Merouane and Chellali [44] proved that calculat-

ing γs(G) is NP-hard even for bipartite and split graphs. Despite this, there

have been various efforts to calculate the secure domination number exactly.

These approaches can be broadly distinguished as either Branch-and-Bound

/ Branch-and-Reduce algorithms [16, 51] or linear programming approaches

[17]. In particular, Burdett and Haythorpe [14] developed a binary program-

ming formulation of the secure domination problem, correctly calculating γs

for a collection of test graphs of manageable size, as well as identifying a

mistake in the results of [17].

1.3 Maker-Breaker games

Maker-Breaker games were first described by Erdős and Selfridge [24]. These

games are commonly represented as a hypergraph with vertex set V and a

finite set F ⊆ 2V of hyperedges. In this context, V is often referred to as

the board of the game. The game is typically played by two players (referred

to as Maker and Breaker) who take turns claiming vertices from V . Maker’s

objective is to claim all of the vertices in some hyperedge e ∈ F , winning the

game if successful. The hyperedges in F are said to make up the winning sets

of the game. Breaker’s objective is to prevent Maker’s victory, that is, claim

at least one vertex in every winning set. If Breaker achieves this, they are

said to win the game. Note that Maker and Breaker’s goals are complement-

ary, meaning a draw is not possible. Maker-Breaker games belong to the field

of study known as positional games, also called combinatorial game theory.

Combinatorial game theory is a vast and mathematically complex branch of

study, and a thorough discussion of it is beyond the scope of this thesis; how-

ever, we refer the interested reader to the seminal publication by Hefetz et al.

A common assumption made in this area of study is that both players have

1.3. Maker-Breaker games 7

infinite computational capabilities [39], and a common research question is

for which of the players a winning strategy exists. Such a strategy means

that for any sequence of moves their opponent makes, there is always some

response the player can make to ensure their victory. A logical result known

as Zermelo’s Theorem ensures that for any Maker-Breaker game, exactly one

player must have a winning strategy [7].

Maker-Breaker games are perfect-information games, meaning that each player

has complete knowledge of previous moves and their opponent’s objective.

Hypothetically, to check whether a player P has a winning strategy one could

examine every possible sequence of moves that a game permits. With this

goal, the initial position of the game can be thought of as the root of a tree.

The branches from this root correspond to the different possible first moves

a player can make (choices of the board’s vertices), with subsequent moves

branching from them in turn. This structure is called the game tree, and the

playing of the game can be thought of as the construction of a path from the

root of the game tree to a leaf, with each vertex in the path being a child of

the previous vertex. The leaves of this tree are the end states of the game,

when a winner has been determined.

Suppose P is playing against another player called Q. We can mark these

leaves according to their respective winners. Decrementing in depth from the

leaves, we can consider the decision making process of the players at each

turn. Recalling that Maker-Breaker games are perfect information games, if

a player has the opportunity to navigate to one of their winning end states,

it is sensible that they would do so. Furthermore, if all children of a given

node have the same marking, that node should also have the same mark-

ing. Applying these rules for all nodes is referred to as traversing the game

tree. We’ll now consider a simple example of this process with the game tree

1.3. Maker-Breaker games 8

displayed in Figure 1.3.

root

L

LL

LLL LLR

LR

LRL LRR

R

RL

RLL RLR

RR

RRL RRR

Figure 1.3: A simple game tree corresponding to a three turn game, each
turn corresponding to a binary choice between “left” or “right”.
The game history is labeled at each node

Suppose that we designate the Maker’s winning sets to be F= {LLL, LLR,

LRL, RLL}. We may then label these end states accordingly as in Figure

1.4, and work backwards to determine the game outcome.

root

L

LL

M M

LR

M B

R

RL

M B

RR

B B

Figure 1.4: The first step of labeling the game tree, beginning at leaf vertices

Our marking of non-leaf vertices is dependent on which player moves first.

The tree displayed in Figure 1.5 corresponds to Maker moving first. Hence,

the odd levels correspond to Maker’s turn, while the even levels correspond

to Breaker’s turn. For each vertex, the corresponding player makes the choice

leading to their victory if possible, and hence the vertex is labelled as a win

for that player if and only if its level corresponds with their turn, and at least

one of its child vertices is labelled as a win for them. Repeating this process

from the bottom level up, the entire tree can be labelled, and the player with

a winning strategy is revealed.

1.3. Maker-Breaker games 9

M

M

M

M M

M

M B

B

M

M B

B

B B

Figure 1.5: The fully enumerated game tree for Maker moving first

By inspecting the root of this tree, we observe that when Maker moves first,

they have a winning strategy. This is no longer the case, however, if Breaker

moves first. In this case, the resulting marked tree is displayed in Figure 1.6.

B

M

M

M M

B

M B

B

B

M B

B

B B

Figure 1.6: Enumerated game tree for Breaker moving first

Here we see when Breaker moves first, they have a winning strategy. This

example is deliberately simple to illustrate the backtracking technique. In it,

Maker’s objective can be described as “steering left” twice in the game tree.

The actual results we obtain regarding winning strategies in this instance are

somewhat obvious, as when Maker moves second they only have one turn.

The advantage of moving first, however, does extend to non-trivial games. In

particular, Hefetz et al. proved a valuable result for general Maker-Breaker

games which we restate here, as we will use it several times in this thesis.

1.3. Maker-Breaker games 10

Proposition 1.1. (restating of 2.1.6 in [39]) Let (V,F) be a hypergraph.

In the Maker-Breaker game over F , a player has a winning strategy moving

first if they have a winning strategy moving second.

The size of the game tree is exponential in the number of possible moves at

each turn, and so “brute-force” traversal quickly becomes intractible. Con-

sequently, a lot of results on winning strategies make use of probabilistic

arguments to specify conditions which ensure the existence of a winning

strategy, rather than attempting to explicitly construct the strategy itself

[7, 1].

A seminal result in this field which describes both a sufficient condition for

a winning strategy, and provides the strategy itself, is known as the Erdős-

Selfridge criterion [24]:

In the Maker-Breaker game played over F , for some hypergraph (X,F),∑
A∈F

2−|A| <
1

2
=⇒ Breaker has a winning strategy. (1.1)

Also,
∑
A∈F

2−|A| < 1 =⇒ Breaker has a winning strategy moving first.

(1.2)

A loose interpretation of this criterion is that if there are sufficiently few win-

ning sets, or if the winning sets are sufficiently large enough, then Breaker

always has the ability to claim vertices blocking them all before Maker can

guarantee a win. The proof of this result also provides a method for con-

structing such a winning strategy for Breaker, however in practice the method

is often intractable. We will discuss this method further in Section 3.1.

If a subset of the game board can be partitioned into pairs such that each

winning set contains at least one of the pairs, Breaker can win the game by

1.3. Maker-Breaker games 11

following what is called a pairing strategy [39]. According to this strategy,

whenever Maker claims a vertex, Breaker responds by claiming the other ver-

tex of the pair containing that Maker’s previous choice. This way, Breaker

will successfully occupy every winning set, winning the game.

Another common concept in the field of combinatorial games is that of

strategy stealing. Privately invented by John Nash [7] and first published by

Hales and Jewett [33], the idea is that a player with knowledge of their op-

ponent’s strategy will pre-emptively “steal” the vertex their opponent would

have wanted to claim next. Strategy stealing has been used to show the ex-

istence of winning strategies for various games, without ever specifying what

the strategy is [36, 33].

There has been recent interest in games on graphs for which the winning

sets are exactly the dominating sets of the graph, with numerous different

(but related) games being referred to as the domination game. The dom-

ination game described by Brešar et al. has come to be referred to as the

standard version [12, 23]. In this game, one player is referred to as Domin-

ator, and has the objective of constructing a dominating set in as few moves

as possible. Their opponent is referred to as Staller, and has the objective of

maximising the amount of moves before a dominating set is constructed by

Dominator. An additional requirement of the game is that each player may

only claim vertices which increase the total number of covered vertices (that

is, those vertices adjacent to either Dominator or Staller’s claimed vertices).

When both players adopt an optimal strategy, the number of vertices chosen

is called game domination number, and is written γg(G). Another useful

concept introduced by Brešar et al. is that of the imagination strategy. To

employ this strategy, one player “imagines” another game being played, and

plays an optimal strategy according to this imagined game.

1.3. Maker-Breaker games 12

Recently, a Maker-Breaker version of the domination game was described

by Duchêne et al. [23]. Adopting the naming convention of Brešar et al.,

this version assigns Dominator’s objective as to simply construct any domin-

ating set, and Staller’s to prevent any such construction. Players must only

choose free vertices (those not previously chosen) but beyond that there are

no restrictions on which vertex a player may choose. Several results from

Duchêne et al. are relevant to this thesis, and will be addressed in Chapter

3. It is easy to extend this concept to other variants of domination. In this

thesis we will consider secure domination in this context, which has previ-

ously not been explored in the literature.

The remainder of this thesis is laid out as follows. In Chapter 2, we re-

view the existing algorithmic approaches to solving the domination problem

and the secure domination problem. In Chapter 3, we look more closely at

the Maker-Breaker version of the domination game, and in Chapter 4, we de-

scribe a simulation approach to analysing the game. In Chapter 5 we present

experimental results arising from the simulation approach, and discuss their

implications. Finally, in Chapter 6 we give conclusions and discuss future

research work arising from this thesis.

Chapter 2

Algorithmic Approaches to

Finding Dominating Sets

2.1 Determining the (Secure) Domination Num-

ber Algorithmically

As mentioned in the previous chapter, finding the domination number and

the secure domination number are both NP-hard problems. Furthermore, it

is NP-complete to check whether a (secure) dominating set exists of cardin-

ality at most k, for k ∈ Z+. Any graph G = (V,E) contains a dominating

set. If nothing else, we can always take the whole set of vertices V and it will

satisfy the definition of a dominating set, and indeed a secure dominating

set. Checking whether a given subset of vertices constitutes a dominating

set is also efficient. We need only iterate over each of the subset’s members

and record each of their neighbouring vertices. After this, if the total set of

neighbouring vertices is equal to the entire vertex set V , then the subset is

dominating. This procedure has a runtime O(|V |∆), where ∆ is the max-

imum degree in the graph. Checking secure domination requires additional

constraints to be checked, but this is still achievable in polynomial time. For

13

2.1. Determining the (Secure) Domination Number
Algorithmically 14

checking if a set X ⊂ V is secure dominating, Burger et al. [17] outlined

an algorithm composed of three tests (arranged in order of computational

complexity) on a vertex set partitioned into five components. Notably, the

first of these test is to determine whether X is a plain dominating set.

In an attempt to solve the dominating set problem or one of its variants,

an unsophisticated approach might be to construct such a dominating set

and then show that no smaller set can satisfy the corresponding variant of

domination. However, developing an algorithm to show no such set exists

remains a computationally difficult task. There are various algorithmic ap-

proaches to solving the (secure) domination problem. Broadly speaking,

these approaches can be categorised as either exact algorithms, approxima-

tion algorithms, or heuristic algorithms. Exact algorithms are guaranteed to

solve the problem to optimality, and can be expected to produce an example

of a minimum (secure) dominating set, but are inefficient to run. The brute

force method to find the domination number γ(G) has exponential com-

plexity and is described below. Algorithms that improve on the brute-force

solution for calculating γ(G) exactly have been developed, but nonetheless

still take exponential time in the worst case [27]. Exact algorithms with the

purpose of enumerating every possible (secure) dominating set are similarly

intractible. Approximation algorithms are not guaranteed to solve the prob-

lem to optimality, but instead guarantee that they will find a solution which

lies within a bound (usually a multiplicative factor) of the optimal solution

in a polynomial amount of time. Finally, heuristic algorithms are designed

to be efficient to run, but give no guarantees at all about solution quality.

As such, it is common for heuristics to be run many times, with the best

solution so produced taken as the final output.

The most straightforward exact algorithm is to simply consider all possible

2.1. Determining the (Secure) Domination Number
Algorithmically 15

subsets of the vertices for sizes k = 1, 2, ..., until a valid (secure) dominating

set is found. This approach could also be adapted to enumerate all minimal

dominating sets. However, the runtime of this procedure is O(|V |∆2|V |),

and so this very quickly becomes intractable and is not useful for anything

beyond very small graphs.

The first improvement on the above naive approach was made by Grandoni

[31], and various others have since been developed [25, 48, 50]. Currently,

the best-known exact algorithm for plain domination is by van Rooij and

Bodlaender [51] which solves the dominating set problem in O(1.4969n) time

and polynomial space. For the plain domination problem, a greedy approx-

imation algorithm exists with an ln(n+ 1) margin of error [41].

In the following sections, we will highlight two algorithmic approaches in

particular which will be relevant to the later chapters of this thesis. First,

both the dominating set problem and the secure dominating set problem

can be formulated as mixed-integer linear programs (MILPs), allowing them

to be passed to a highly optimised solver. While still NP-hard to solve,

MILP problems have been the subject of intensive study for several decades

[8] and have the benefit of advanced tooling such as IBM’s CPLEX being

available to address them. Secondly, we will cover a recently described heur-

istic approach, which is based on iteratively solving the relaxation of the

MILP formulations, and using the outputs to select vertices for inclusion in

a (secure) dominating set.

2.2. Mixed Integer Linear Programming (MILP) Approaches 16

2.2 Mixed Integer Linear Programming (MILP)

Approaches

The dominating set problem admits a binary programming formulation as

follows. First, assign binary variables for each of the n vertices in the graph,

denoted xi, for i = 1, 2, . . . , n. For these variables, a value of 1 repres-

ents membership in the dominating set, and a value of 0 represents non-

membership. Denote by x the vector containing all such xi. The dominating

set problem is then equivalent to solving:

min
x

n∑
i=1

xi

subject to

∑
j∈N [i]

xj ≥ 1, ∀i = 1, 2, . . . , n, (2.1)

xi ∈ {0, 1}, ∀i = 1, 2, . . . , n. (2.2)

The intuition behind constraint (2.2) is that each vertex in the graph should

have at least one member of the dominating set in its closed neighbourhood.

Although the above formulation includes binary variables, CPLEX is non-

etheless able to successfully solve the problem for graphs with up to several

hundreds of vertices. Burger et al. [17] extended upon this and developed

a binary programming formulation for the secure domination problem. In

addition to the xi variables from the previous formulation, the authors intro-

duced new binary variables zkl, for k, l = 1, ..., n and k ̸= l. These variables

are assigned a value of 1 to indicate that a guard at vertex l is assigned to

move to a currently unoccupied vertex k in the current configuration of the

graph, and are assigned a value of 0 otherwise.

2.2. Mixed Integer Linear Programming (MILP) Approaches 17

The authors then proposed the following formulation for secure domination:

min
x

n∑
i=1

xi

subject to

n∑
j=1

aijxj ≥ 1, ∀i = 1, ..., n, (2.3)

n∑
l=1
l ̸=k

zkl ≥ 1− xk, ∀k = 1, ..., n, (2.4)

akl(xl − xk + 1) ≥ 2zkl, ∀k, l = 1, ..., n, l ̸= k, (2.5)∑
j=1
j ̸=k
j ̸=l

aijxj + aik ≥ zkl, ∀i, k, l = 1, ..., n, l ̸= k. (2.6)

This formulation involves n2+n binary variables and n3+n2+2n constraints.

Interestingly, Burger et al. [17] noted that simply submitting this formulation

to CPLEX provided superior performance to the previously best known ex-

act algorithms for the secure dominating set problem, and suggested that an

improved formulation may produce even greater performance. Subsequently

a superior formulation was provided by Burdett and Haythorpe in 2020 [14],

which we outline now.

Like that of Burger et al., Burdett and Haythorpe’s formulation also used

binary xi variables to denote set membership. However, instead of the bin-

ary variables zkl, Burdett and Haythorpe instead used continuous variables

yjk ≥ 0 to represent whether a guard at vertex j should be assigned to move

to vertex k. If so, then yjk > 0, otherwise yjk = 0.

Burdett and Haythorpe then proposed the following formulation for the se-

2.3. Heuristic Algorithms 18

cure domination problem.

min
x

n∑
i=1

xi

subject to∑
j∈N [i]

xj ≥ 1, ∀i = 1, ..., n, (2.7)

yij − xi ≤ 0, ∀i = 1, ..., n, ∀j ∈ N(i), (2.8)∑
k∈N [i]

xk −
∑

k∈N(i)∩N(j)

ykj ≥ 1, ∀i, j such that dist(i, j) = 2, (2.9)

∑
i∈N(j)

yij + xj = 1, ∀j = 1, ..., n, (2.10)

yij ≥ 0, ∀i = 1, ..., n, ∀j ∈ N(i), (2.11)

xi ∈ {0, 1}, ∀i = 1, ..., n. (2.12)

The authors implemented the above formulation in CPLEX. On standard

hardware, this allowed exact answers to be produced for a variety of graph

families with up to around 100 vertices. Burdett and Haythorpe’s formulation

comes with some advantages over its predecessor. Firstly, since the additional

variables are continuous, the formulation has n2 fewer binary variables than

that of Burger et al. and is accordingly much faster to solve. Secondly, it

involves a significant reduction in the number of constraints needed, now

O(m + n2), where m is the number of edges in the graph. As such, it

constitutes the best known exact algorithm for secure domination in the

literature.

2.3 Heuristic Algorithms

There are many heuristic algorithms for the different variants of the dom-

ination problem [3, 15, 37]. A very general procedure for constructing a

2.3. Heuristic Algorithms 19

minimal (secure) dominating set is described below in Algorithm 2.1. In the

following, we will discuss an adaptation of this procedure which allows many

different strategies to be defined for a Maker-Breaker domination game con-

text. This procedure consists of two phases. In the first phase, vertices are

iteratively added to the set S, and we call this the Bottom-Up phase. In the

second phase, vertices are considered for removal from S, and this is called

the Top-Down phase.

Algorithm 2.1 General procedure for constructing minimal (secure) dom-
inating sets

Inputs: An empty graph
Outputs: A minimal (secure) dominating set

S = {}
while S is not (secure) dominating do:

Use a selection function to pick a vertex v /∈ S
Add v to S

for v in S do
if S \ {v} is (secure) dominating then

Remove v from S

return S

The majority of heuristics for domination fit into the framework of Algorithm

2.1. Then, the major point of distinction between them is the selection func-

tions used to pick vertices for addition or removal. Selection functions can

range from trivial, random choices, to more sophisticated calculations. For

example, one such sophisticated calculation for the Bottom-Up phase selects

the vertex with the most previously uncovered neighbours. This is repeated

until the Bottom-Up phase is completed, and the number of vertices in the

dominating set can be inspected. Using this particular selection function is

actually known to be an approximation algorithm, and is close to the best

possible approximation algorithm for the case of general graphs [47], although

it is outperformed by approximation algorithms tailored for specific families

of graphs.

2.3. Heuristic Algorithms 20

In the upcoming adaptations, our focus will be on modifying the selection

function in the Bottom-Up phase. This is due to the nature of Maker-Breaker

games, where both players start with no claimed vertices and constructively

add to their set of claimed vertices throughout the game’s duration. Since

there is no functionality in Maker-Breaker games for vertices to be rescinded

by a player after claiming them, the Top-Down phase is not relevant here.

In any event, the primary purpose of the Top-Down phase is to ensure the

constructed (secure) dominating set is minimal, which is not something we

need to consider in the Maker-Breaker version of the domination game.

In [13], it was proposed that the MILP formulation of Burdett and Haythorpe

described in the previous section can be adapted to fit the framework of Al-

gorithm 2.1, to produce a heuristic for secure domination. Burdett proposed

that the most significant effort should go towards the Bottom-Up phase, with

the rationale being that if that phase is done well, then the set S may already

be close to optimal before the Top-Down phase begins. At each iteration of

the Bottom-Up phase, the MILP formulation is constructed, along with ad-

ditional constraints xv = 1 for any vertices v which are already contained

in S. Then, the binary constraints are relaxed to produce a linear program.

The linear program is solved (for instance, using CPLEX), with one of two

outcomes occurring. If the solution has all binary values for the x variables,

then the unit values correspond to the best possible secure dominating set

subject to the choices already made, and so this secure dominating set is

returned. Alternatively, if the solution has some x values strictly between 0

and 1, then the solution values themselves aid in selecting the next vertex.

Those variables with a value closer to 1 can be thought of as being more

desirable selections to form a dominating set, and those close to 0 as less

desirable. By removing the values corresponding to vertices already selected,

and normalising the remaining values, a probability mass function (PMF)

2.3. Heuristic Algorithms 21

is produced. An observation from the probability mass function can then

inform the next vertex to add to S, with the vertices corresponding to higher

solution values being selected with higher probability. Burdett also proposed

transforming the PMF, for instance raising the solution values to a constant

power (selected in advance), manipulating the relative weight given to the

higher or lower values. Once the new vertex is selected and added to S,

the formulation is updated and the process begins again, continuing until a

secure dominating set is found.

Burdett demonstrated that this heuristic, although an order of magnitude

slower than some of the best previous approaches, was able to find signi-

ficantly higher quality solutions. There was also some work done exploring

different options for the Top-Down phase which resulted in some minor ad-

ditional improvements. In Chapter 3, we will discuss the recently introduced

concept of the Maker-Breaker domination game, and introduce the secure

version of this game. Subsequently, in Chapter 4, we will detail how an ana-

logous approach to that proposed by Burdett can be used to aid the Maker

(or the Breaker) in their decision-making.

Finally, we conclude this chapter by noting that the approach advocated

by Burdett is applicable beyond just secure domination. In fact, it can be

applied to any variant of domination for which there exists a mixed-integer

linear programming formulation, as long as the following property is true:

any valid solution for the relaxation in which the xi variables are binary

corresponds to a dominating set of the desired variant. We note that this ex-

cludes the secure domination formulation by Burger et al. since it is possible

to obtain a valid solution for the relaxation where all the xi variables are

binary but the yij variables are not, and this may not correspond to a secure

dominating set. However, the standard formulation for the dominating set

2.3. Heuristic Algorithms 22

problem given at the start of Section 2.2 meets this condition, and hence a

heuristic for plain domination could be constructed following this approach.

Chapter 3

Maker-Breaker domination

games

3.1 Definition and Key Results

In Section 1.3, we discussed Maker-Breaker games in which two players,

Maker and Breaker, take turns claiming elements from the game board.

Maker is successful if they are able to claim every element from one of the

winning sets, while Breaker is successful if they prevent Maker from doing

so. It is common for Maker-Breaker games to be played on graphs, in which

case the elements being claimed could be edges or vertices (or both). Then,

the winning sets may correspond to various structures or objects within the

underlying graph. For example, in [18], Chvátal proposes the Hamiltonicity

game in which the elements being claimed are edges, and the winning sets

correspond to the Hamiltonian cycles in the underlying graph.

Along the same lines, in 2020 Duchêne et al. [23] proposed theMaker-Breaker

domination game. In this context, the elements being claimed are vertices in

a graph, and the winning sets F correspond precisely to the dominating sets

of the graph. As such, Maker is attempting to collect vertices constituting

23

3.1. Definition and Key Results 24

a dominating set while Breaker is trying to prevent it. Indeed, Duchêne et

al. refer to Maker as Dominator, and Breaker as Staller in this context. An

analagous game could be proposed for variants of domination, and indeed,

some publications have already appeared considering total domination in this

context [29, 11]. In this thesis, we consider secure domination in this con-

text, which thus far appears not to have been discussed in the literature. To

avoid confusion, we will often refer to the Maker-Breaker domination game

as the Maker-Breaker plain domination game, in order to contrast it with the

Maker-Breaker secure domination game. In their paper, Duchêne et al. also

proved several results regarding the Maker-Breaker plain domination game,

which are outlined below.

If the Erdős-Selfridge criterion is met, Breaker has a winning strategy. This

strategy is given by Hefetz et al. in their proof [39] of the Erdős-Selfridge cri-

terion, which we now paraphrase. To employ their winning strategy, Breaker

examines every winning set that is still active, that is, those winning sets for

which no vertices have yet been claimed by Breaker, and so are still a feasible

way for Maker to win the game. Those winning sets that do contain a vertex

which has been claimed by Breaker are herein referred to as neutralised, or

deactivated. Breaker considers the scenario in which Maker plays at random,

and calculates a quantitative measure of the “danger” of a winning set being

fully claimed by Maker:

danger(H) =
∑

A∈H,A∩B=∅

2−|A\M | (3.1)

Here, H is the hypergraph representation of the game, with M and B rep-

resenting the claimed vertex sets of Maker and Breaker respectively. At

each turn, Breaker should choose a vertex that gives the biggest reduction

in value for this danger function. In the case of multiple such candidate

vertices, Breaker may choose to claim any of these arbitrarily.

3.1. Definition and Key Results 25

If the Erdős-Selfridge criterion is met, then the above greedy algorithm is

guaranteed to be a winning strategy for Breaker, with execution time being

polynomial in the number of winning sets (not including the time taken to

enumerate the winning sets in the first place). Its usefulness is furthered in

the context of Maker-Breaker plain domination games, due to the fact that

these games have equivalent formulations for which either player can be as-

signed the role of Breaker.

In particular, Duchêne et al. applied the Erdős-Selfridge criterion to the

context of Maker-Breaker domination games. Their discussion assumed the

following result, stated without proof in [23]. For the sake of completeness,

we provide a proof here.

Proposition 3.1. Breaker wins the plain domination Maker-Breaker game

⇐⇒ Breaker fully claims the closed neighbourhood of a vertex v.

Proof. =⇒ : Assume Breaker has made their final move and won the game.

This means that there is some vertex which is adjacent to none of Maker’s

vertices. Call this vertex v. As Breaker has won, the neighbourhood of v

must be fully occupied by Breaker, otherwise Maker could still claim one of

v’s unoccupied neighbours.

⇐= : Breaker claiming the entire closed neighbourhood of v means Maker

has claimed no adjacent vertex to v and is no longer able to, so cannot form

a dominating set.

With this result in hand, Duchêne et al. were able to reformulate the Maker-

Breaker domination game M as an equivalent game M ′, with the player in

the role of Maker in M acting as Breaker in M ′, and vice versa. The winning

sets of M ′ are those subsets of V containing an enclave, that is, those sets

3.1. Definition and Key Results 26

of vertices containing at least one vertex’s entire closed neighbourhood. The

authors were then able to apply the Erdős-Selfridge criterion to M ′ to obtain

a winning condition for Maker in the original game M .

Proposition 3.2. [23] Let G be a starting position of the Maker-Breaker

domination game M and let δ be the minimum degree of G. If |V | < 2δ then

Maker has a winning strategy for the Maker-Breaker domination game on G,

even if they are the second player to move.

As the Erdős-Selfridge criterion provides an explicit winning strategy when

its conditions are met, this result provides an explicit winning strategy for

Maker on M . Even in situations for which the sufficient condition of the

Erdős-Selfridge criterion are not met, the strategy provided may still prove

to be a winning one. In Section 4.3, we will describe an adaptation of this

strategy that makes use of the above reformulation.

Duchêne et al. also considered the concept of a pairing dominating set. A

graph G = (V,E) admits a pairing dominating set if there exists a collection

of vertex pairs {{u1, v1}, . . . , {uk, vk}} where all the vertices are distinct, and

such that the union of the intersection of each pair’s neighbourhoods is V , i.e.

V = ∪k
i=1N [ui]∩N [vi]. If so, then there exists a winning strategy for Maker.

Specifically, Maker can win as long as it obtains at least one vertex from

each of the pairs. Since the vertices in the pairs are all distinct, Maker can

just observe what move Breaker makes at each iteration. If Breaker selects

a vertex from one of the pairs, Maker can immediately select the other ver-

tex if they haven’t already done so; otherwise, Maker can select any vertex.

Unfortunately, the authors also proved that it is NP-complete to determine

whether G admits a pairing dominating set.

Finally, Duchêne et al. also proved that deciding the outcome of a Maker-

Breaker domination game position is PSPACE-complete on bipartite and

3.1. Definition and Key Results 27

chordal graphs.

3.1.1 Maker-Breaker Secure Domination Game

We now formally define the Maker-Breaker secure domination game as fol-

lows.

Definition 3.3. For a given graph G with vertex set V , the Maker-Breaker

secure domination game is a Maker-Breaker game in which the underlying

hypergraph has vertex set V , and the set of hyperedges F contain all secure

dominating sets of G.

We now briefly consider the results of Duchêne et al. in the context of

the Maker-Breaker secure domination game. Unlike for plain domination,

Proposition 3.1 does not hold for secure domination. To be precise, the

result holds in only one direction; that is, if Breaker can fully claim an enclave

around a vertex v, then they win the Maker-Breaker secure domination game.

However, it is possible for Breaker to win without obtaining an enclave.

Specifically, Proposition 3.4 indicates the properties which allow Breaker to

win the Maker-Breaker secure domination game.

Proposition 3.4. For the Maker-Breaker secure domination game played on

graph G, if M is the set of vertices claimed by Maker, then Maker has not

yet won the game if either of the following are true.

(i) M is not a dominating set on G, or

(ii) There exists u, v, w ∈ V with dist(u, v) = 2, and {N [u]∪N [v]}∩M = w.

Since, by definition, any secure dominating set is also a dominating set, it is

no harder for Breaker to win an instance of the Maker-Breaker secure dom-

ination game [7] than it is for them to win the equivalent instance of the

Maker-Breaker plain domination game. The strategy of having the Maker

3.1. Definition and Key Results 28

obtain a vertex from each vertex pair in a pairing dominating set is not

sufficient to ensure a Maker win in the Maker-Breaker secure domination

game. Indeed, the example given in Duchêne et al. is a good counter-

example. They considered the graph displayed in Figure 3.1 and highlighted

(u1, v1), (u2, v2), (u3, v3) as a pairing dominating set. Any combination of

single vertices from the three pairs is indeed a dominating set; however, none

of them is a secure dominating set.

u1

v1

u3 v3

u2

v2

Figure 3.1: An example of a graph which admits a pairing dominating set,
as given by Duchêne et al. [23]

However, that is not to say that this kind of approach is without merit. In

many cases a pairing dominating set may indeed provide a winning strategy

for Maker. In the below result, we consider perfect matchings, which are

themselves special cases of pairing dominating sets.

Lemma 3.5. If the Maker-Breaker secure domination game is being played

on a graph G, and G contains a perfect matching, then there is a winning

strategy for the Maker regardless of who plays first.

Proof. Consider any perfect matching in G, and suppose that the Breaker

plays first. At each iteration, Maker observes which vertex is selected by

Breaker, and they then select the vertex which is paired with it in the per-

fect matching. Since G contains a perfect matching, it has an even number

of vertices, and hence the final move is made by Maker. Hence, at the end

of this process, Maker certainly possesses vertices which constitute a domin-

ating set, as per the discussion on pairing dominating sets in Duchêne et al.

Denote by S the set of vertices possessed by Maker. Then all that remains

is to ensure that S is also secure.

3.1. Definition and Key Results 29

Consider any vertex v not claimed by Maker, and denote by w its pair in

the perfect matching. It is clear that (S ∪w) \ v is also a dominating set, by

the same argument as in the previous paragraph. Hence, S is also a secure

dominating set, and hence this is a winning strategy for Maker.

Finally, if Maker plays first, the result from Proposition 1.1 implies there

is an analagous winning strategy for Maker.

Corollary 3.6. If the Maker-Breaker secure dominating game is being played

on a graph G = (V,E), and there is a vertex v ∈ V such that G \ v contains

a perfect matching, then there is a winning strategy for Maker if Maker plays

first.

Proof. Maker begins by claiming vertex v, after which the remaining situ-

ation is equivalent to that in Lemma 3.5.

In the following section, we consider a very simple instance of a Maker-

Breaker plain domination game. Specifically, we consider the 3× 3 grid, and

prove that a specific strategy guarantees a win for Maker. The 3× 3 grid is

a graph which satisfies Corollary 3.6, and so can be won by Maker if they

play first, even in the case of the Maker-Breaker secure domination game.

However, there is no immediate conclusion when Maker plays second. As

will be seen, the proof is surprisingly complex and involves the considera-

tion of many cases, even though the underlying graph is so small and we are

only considering plain domination. This highlights the complexity of ana-

lysing these games directly, and motivates our upcoming approach of using

simulation techniques to explore more complicated instances.

3.2. 3× 3 Grid Example 30

3.2 3× 3 Grid Example

In the upcoming Chapter 4, we describe various strategies that Maker or

Breaker could use to try to win an instance of Maker-Breaker domination

game. These strategies are broadly sensible and defensible approaches, but

establishing whether or not they can guarantee a win for a given instance

can be challenging. We will consider one of our strategies, which we call

neighbourhoodWatch (See Section 4.3.4), and show that it constitutes a

winning strategy for Maker in the case of the 3×3 grid. To aid the upcoming

proof, we establish some notation in advance. Throughout the proof it will

sometimes be necessary to refer to specific vertices, and so we will use the

labelling of the grid given in Figure 3.2:

1

4 5 6

7 8 9

2 3

Figure 3.2: The labelling of the 3× 3 grid used in this section

Although the theorem will be posed for Maker, it will convenient for us to

think of winning sets from the perspective of Breaker. As mentioned in

Proposition 3.1, a win for Breaker on a graph G is equivalent to Breaker

having fully claimed the closed neighbourhood N [v] for at least one vertex

v ∈ V (G). Hence, there are nine such minimal winning sets for Breaker in

the 3 × 3 grid1. We will refer to these as Ai for the vertices i = 1, . . . , 9

respectively. We will refer to Ai as having Form k if |N [i]| = k; hence, Ai

has Form 3 for i = 1, 3, 7, 9, Form 4 for i = 2, 4, 6, 8, or Form 5 for i = 5.

For a particular game state and a given (Breaker) winning set A we will

1We note that there are more than nine winning sets for Breaker, since any superset
of a closed neighbourhood is also a winning set. However, the nine closed neighbourhoods
are the minimal winning sets for Breaker.

3.2. 3× 3 Grid Example 31

use m(A) and b(A) to refer to the number of vertices of A which have been

claimed by Maker and Breaker respectively. Note that the game state itself

is abstracted from the notation here; it will always be clear from context

what the game state is. Finally, we define c(A) to be a measure of how

close Breaker is to fully claiming A, noting that if Maker claims even a single

vertex of A then it is impossible for Breaker to claim fully A. Hence:

c(A) :=

 |A| − b(A), if m(A) = 0,

∞, otherwise.

If c(A) = ∞ we will refer to A as having been neutralised by Maker. If all

c(A) = ∞ then Maker has won the game, whereas if c(A) = 0 for any A then

Breaker has won the game. If there is no winner yet, then there must be

some finite, positive value cmin = minA c(A), equal to the minimum number

of vertices Breaker still needs to claim to win the game. We will refer col-

lectively to those winning sets A such that c(A) = cmin as being the closest

winning sets (to being fully claimed by Breaker) at that game state.

neighbourhoodWatch, which will be introduced in more detail in Section

4.3.4, can be summarised as follows. Choose the available vertex v which is

contained in the greatest number of closest winning sets. If there is a tie,

break it by choosing the vertex which neutralises the most currently active

(Breaker) winning sets. If there is still a tie, choose from the remaining

choices uniformly by random.

We begin by establishing a minor result which will be useful in the proof

of the upcoming theorem.

Lemma 3.7. Suppose Breaker plays first in the 3 × 3 grid, and Maker fol-

lows the neighbourhoodWatch strategy. Then Maker will not claim a corner

vertex or the middle vertex on their first move.

3.2. 3× 3 Grid Example 32

Proof. Suppose that Breaker has made their first move, and now it is Maker’s

turn. Suppose that Maker chooses a corner vertex. Note that in the first

turn, choosing a corner vertex neutralises only three (Breaker) winning sets

(the minimum possible amount). Hence, this choice would only be made if

corner vertices were the only ones contained in the most closest winning sets.

However, this is impossible; it can easily be checked that each winning set

has at least two non-corner vertices, and since Breaker has claimed only one

vertex, at least one more must remain. Hence, Maker must not claim a corner

vertex. Then, suppose Maker claims the middle vertex; clearly, Breaker must

not have claimed the middle vertex in their first turn. However, in this case,

there must be at least one winning set A for which c(A) = 2 and A does not

contain the middle vertex. Hence, the middle vertex is not contained in the

most number of winning sets, so this situation is also impossible, completing

the proof.

We are now ready to establish the result.

Theorem 3.8. neighbourhoodWatch constitutes a winning strategy for Maker

in the Maker-Breaker plain domination game on the 3× 3 grid.

Proof. From Proposition 1.1, if Maker has a winning strategy as the second

player, they can extend this to a winning strategy as the first player. Hence,

we will assume that Breaker plays first.

Now, suppose that the game has played out and Breaker has won, with

Maker utilising the neighbourhoodWatch strategy; we will assume that the

game immediately stops once Breaker has claimed an enclave, say A. That is,

after Breaker’s final move we have c(A) = 0, but prior to that move c(A) > 0.

Hence, immediately before Maker’s final move we must have had c(A) = 1.

Furthermore, before Maker’s final move, there must be some other winning

set B ̸= A with c(B) = 1, or else Maker’s strategy would have instructed it

3.2. 3× 3 Grid Example 33

to neutralise A. Note that since there are only nine vertices in the 3×3 grid,

Breaker can only have claimed at most four vertices prior to Maker’s final

move. From here, there are two possibilities; either A∩B = ∅, or A∩B ̸= ∅.

We first examine the case of A ∩ B = ∅. By analysing the three differ-

ent forms of winning sets, it is clear that neither A nor B can have Form 5,

or else they will intersect with the other. Likewise, they cannot both have

Form 4. Hence, there are only two possibilities; either both have Form 3,

or one has Form 3 and the other has Form 4. However, in the latter case,

it implies that Breaker must have made at least five moves already before

Maker’s last move, which as mentioned above is impossible. Hence, both

A and B must have Form 3. Up to symmetry, this is only possible in the

configuration displayed in Figure 3.3. Hence we have c(A) = c(B) = 2, and

prior to Maker’s final move they have chosen three other vertices. From Fig-

ure 3.3 it is clear that these must be the three vertices outside of A ∪ B.

However, from Lemma 3.7 this is impossible. Hence, it must not be the case

that A ∩B = ∅.

A

B

Figure 3.3: The only possible configuration for which A and B have Form 3
(up to symmetry)

Therefore, A and B must overlap. It can be easily checked that for all pairs of

winning sets, their union occupies between five and seven vertices. Suppose

that |A∪B| = 7. Then Breaker must have chosen at least five vertices prior

to Maker’s final move, which as above, is impossible. Then, suppose that

|A ∪ B| = 6. There are only two possibilities; either the winning sets have

Form 3 and Form 5, or both winning sets have Form 4. These possibilities

3.2. 3× 3 Grid Example 34

are displayed in Figure 3.4.

A

B A

B

Figure 3.4: The two possible configurations for |A∪B| = 7 (up to symmetry)

If the winning sets have Form 3 and Form 5, then it is clear that Breaker

must have made four moves before Maker’s final move. Hence, Maker must

have chosen the three vertices not contained in A ∪B. However, since these

are all corner vertices, Lemma 3.7 implies this situation is impossible. Hence,

the winning sets must both have Form 4. Note that in this case there is pre-

cisely one corner vertex not contained in A ∪ B, refer to it as vertex v, and

the other two vertices as x and y. From Lemma 3.7 we know that v cannot

be claimed in Maker’s first move; without loss of generality, suppose that x is

claimed instead. For the second move, if v is contained in a closest winning

set then y is as well, and choosing y will neutralise two more winning sets (as

opposed to one for v). Hence, Maker must claim y in the second move, and

hence claim v in the third move. However, at the time of Maker’s third move,

v is not contained in any closest winning sets and so could not be chosen by

neighbourhoodWatch. Hence, this situation is also impossible.

The only remaining situation is that |A∪B| = 5. Hence, either the winning

sets have Form 3 and Form 4, or both winning sets have Form 3. These

possibilities are displayed in Figure 3.5.

A

B A

B

Figure 3.5: The two possible configurations for |A∪B| = 5 (up to symmetry)

3.2. 3× 3 Grid Example 35

Consider first the situation where both winning sets have Form 3. Due to

symmetry, we can assume without loss of generality that it is equivalent to

the situation displayed in the left configuration of Figure 3.5. After Breaker

makes their first move, Maker must claim a vertex not contained in A ∪ B,

and from Lemma 3.7 it cannot be a corner vertex or the middle vertex.

Hence, Maker must claim vertex 8 for their first move. However, this choice

would only be made if vertex 8 is contained in one of the closest winning

sets, and hence Breaker’s first move must have been to claim either vertex 4

or 6. Again, due to symmetry both choices are equivalent, so we will assume

Breaker claimed vertex 4 initially. Then, Breaker needs to claim either vertex

1, 2, 3 or 6 for their second turn. However, if Breaker claims vertices 1, 3 or

6, then neighbourhoodWatch instructs Maker to select vertex 2. If Breaker

claims vertex 2, then neighbourhoodWatch instructs Maker to select vertex

1. Hence, in all cases, Maker selects a vertex from A ∪ B for their second

turn, which is impossible.

Finally, consider the situation where the winning sets have Form 3 and Form

4. Again, due to symmetry, we can assume without loss of generality that it

is equivalent to the situation displayed in the right configuration of Figure

3.5. At this stage, we now need to consider all possible ways Breaker could

play, and show that in each case neighbourhoodWatch would instruct Maker

to choose a vertex in A∪B before their final move takes place. However, we

first make two observations which help to reduce the number cases.

Firstly, one complicating factor with this case is that Breaker could the-

oretically win in four moves, and hence it is conceivable that Breaker might

choose to claim a vertex outside of A ∪B in their first three moves and still

end up winning. However, we can eliminate this from consideration with the

following simple argument. It is clear that choosing a vertex from outside

3.2. 3× 3 Grid Example 36

A ∪ B does not assist Breaker; it does not contribute towards claiming all

of A, and none of those vertices are advantageous for Maker, so preventing

Maker from claiming them does not help Breaker. However, if Breaker claims

a vertex from outside A ∪ B, it prolongs the game and enables the Maker

to claim an extra vertex. Since these vertices must be outside A ∪ B, what

results is a stronger situation for the Maker than would have been possible if

Breaker had selected only from within A ∪B. Hence, this situation is never

beneficial for Breaker, and we do not need to consider it, if we can show that

the weaker situation for Maker nonetheless results in a Maker victory.

Secondly, recall that before Maker’s final move, we have c(A) = c(B) = 1.

It cannot be the case that it is the same vertex which remains from both

winning sets, or else neighbourhoodWatch will instruct Maker to claim it,

hence neutralising both A and B simultaneously. Hence, Breaker must have

claimed both overlapping vertices prior to Maker’s final move.

With the above observations in mind, it is clear that Breaker’s first three

moves must be to either claim (in some order) vertices 1, 2 and 3, or vertices

2, 3, and 5. We now consider this reduced set of cases.

If Breaker claims vertex 1 in their first turn, neighbourhoodWatch instructs

Maker to claim either vertex 2 or 4. Since vertex 2 is in A ∪B, Maker must

claim vertex 4. Then, Breaker must claim either vertex 2 or 3 next. In either

case, neighbourhoodWatch instructs Maker to claim a vertex from within

A ∪B (vertex 3 or vertex 2 respectively). Hence, this is impossible.

If Breaker claims vertex 2 in their first turn, neighbourhoodWatch instructs

Maker to claim either vertex 4 or 6. Since vertex 6 is in A ∪B, Maker must

claim vertex 4. Then, Breaker must claim vertex 1, 3, or 5 next. In each

3.2. 3× 3 Grid Example 37

case, neighbourhoodWatch instructs Maker to claim a vertex from within

A ∪B (vertices 3, 6 and 3 respectively). Hence, this is impossible.

If Breaker claims vertex 3 in their first turn, neighbourhoodWatch instructs

Maker to claim either vertex 4 or 6. Both of these are in A ∪ B, so this is

impossible.

If Breaker claims vertex 5 in their first turn, neighbourhoodWatch instructs

Maker to claim one of vertices 2, 4, 6 or 8. Since vertices 2 and 6 are in

A ∪ B, Maker claims either vertex 4 or vertex 8. Suppose Maker claims

vertex 4 as its first move. Breaker must then claim either vertex 2 or 3

next. In either case, neighbourhoodWatch instructs Maker to claim a ver-

tex from within A ∪ B (vertex 3 or vertex 6 respectively). Hence this is

impossible, and so Maker must claim vertex 8 as its first move. Breaker

must then claim either vertex 2 or 3 next. If Breaker claims vertex 2 as its

second move, neighbourhoodWatch instructs Maker to claim either vertex 1

or 3, both of which are in A ∪ B. If Breaker claims vertex 3 as its second

move, neighbourhoodWatch instructs Maker to claim vertex 2, which is also

in A ∪B. Hence, this is impossible as well.

We have now considered all possible cases and found that none of them

are possible. Hence, the initial assumption that Breaker has won the game

must be incorrect, completing the proof.

As we have seen, there is a considerable amount of case analysis required

for even this small graph example. To iterate over larger and larger graphs

in this manner is clearly infeasible. Interestingly, the neighbourhoodWatch

strategy which we employ effectively here is a (polynomial-time) adaptation

of the strategy implied by the Erdős-Selfridge criterion, and yet this graph

does not actually meet the conditions for Erdős Selfridge criterion.

3.2. 3× 3 Grid Example 38

As outlined in Section 1.3, the Erdős Selfridge criterion states that if∑
A∈F

2−|A| <
1

2
, then Breaker has a winning strategy in F (3.2)

In the plain domination game, these A ∈ F are exactly the dominating

sets of the game’s underlying graph. As mentioned in Section 1.2, however,

it is generally intractible to enumerate all dominating sets for all but the

smallest of graphs. However, the observation of Duchêne et al. in Proposition

3.1 states that each Maker-Breaker domination game F can be equivalently

represented as a game F ′ for which the Maker player of M is the Breaker of

M ′ and vice versa. Considering the “Maker-as-Breaker” formulation M ′ in

the context of the Erdős Selfridge criterion, the winning sets are all subsets

of the vertex set that contain an enclave. In this case, we have∑
A∈F ′

2−|A| ≥
∑
v∈V

2−|N [v]|, (3.3)

and in the 3× 3 grid,∑
v∈V

2−|N [v]| = 2−5 + 4× 2−4 + 4× 2−3 = 0.78125 >
1

2
. (3.4)

So, the condition for the criterion is not satisfied and yet the Breaker of

M ′ still has a winning strategy. We will attempt to investigate other such

strategies through a simulation-driven approach, outlined in the following

section.

Chapter 4

Strategies and Simulation

4.1 Core Simulation Environment

As seen in the previous chapter, exhaustively analysing an instance of the

Maker-Breaker domination game on anything but small graphs is likely to be

intractable. As a result, in order to examine a strategy’s performance with

any reasonable computation time, it must be done by restricting considera-

tion to some subet of all possible move sequences. One convenient means of

doing this is through simulated play, and this is the approach used in this

thesis. In the simulation model, we define operating procedures to represent

the decisions of Maker and Breaker, as well as procedures for representing

the game state. As both Maker and Breaker’s strategic approaches are of in-

terest, both players are fully simulated, and can play according to any valid

strategy one may define in the codebase. This allows a greater variety of

comparison between strategies compared to simply hardcoding a single ap-

proach for one player. In doing so, it is important to ensure that the design

of such a simulation environment is fair to both players.

The simulation can be run for a given graph, and a choice of Maker strategy

and Breaker strategy. Then, each simulated player will take turns claiming a

39

4.1. Core Simulation Environment 40

free vertex from the board according to their strategy until one of the players

has won the game and/or no free vertices remain. We have implemented this

simulation model in Python in order to examine the various strategies in

terms of their observed success rate against one another. We will also con-

sider the computational requirements of each strategy against their observed

successes. It is worth noting that fairness in the above respect is distinct from

the “fairness” of the underlying graph on which the game is played. Certain

graphs may be structurally favourable to either the Maker or the Breaker, in

which case one player may be able to win even with a much weaker strategy

than their opponent. In Algorithm 4.1, we describe the top level of the sim-

ulation. It accepts as input the graph, and the choice of strategies for the

Maker and Breaker. It then iteratively performs the process of simulating

turns until there is a winner of the game. Note that in Algorithm 4.1 the

Maker is the first to act; however, if the Breaker is to act first, the algorithm

can be modified accordingly. We will now discuss how the simulation model

Algorithm 4.1 (playGame)

The top-level routine for simulating gameplay between two players P and Q

Input: Graph, Maker Strategy, Breaker Strategy
Output: Winner of the simulation

while no player has won do:
Maker selects a vertex according to their strategy and the game state
check if Maker has now won the game
Breaker selects a vertex according to their strategy and the game state
check if Breaker has now won the game

return winner of the simulated game

determines whether a player has won the game or not. We first consider plain

dominating sets. As discussed in Section 2.1, we can evaluate if a vertex set

S is dominating by checking if all vertices in the graph have a neighbour in

S. If so, Maker has won the game. On the other hand, if there is any vertex

whose neighbours have all been selected by Breaker, then Breaker has won

the game.

4.1. Core Simulation Environment 41

For secure dominating sets, determining the winner is a more involved ques-

tion. In Algorithm 4.2 we outline a procedure for determining if a dominating

set is a secure dominating set. If so, the Maker has won the game. However,

it is more challenging to identify that the Breaker has won midway through

the simulation. To avoid this computational difficulty, we opt not to check

at each iteration to see if the Breaker has won the game. Instead, unless

otherwise stated, we only judge the Breaker to be the winner if there are

no more free vertices, and Maker still has not won the game. It is worth

Algorithm 4.2 (isSecure)
Checking if a dominating set is also secure dominating

Input: Game state
Output: Boolean value

SD = True
for each vertex v not claimed by Maker do:

find guard g of v that can move to v and preserve domination
if no such g exists then:

SD = False
break

return SD

noting that the manner in which Algorithm 4.2 (and others of its nature)

is implemented can have a significant impact in how quickly the simulation

runs. For example, rather than checking each vertex at each iteration, one

can store certain data and then cleverly update it each iteration, reducing

the overall computation time by up to an order of magnitude. However, such

implementation details are beyond the scope of this thesis, and so we omit

them here.

Clearly, on a given graph the choice of strategies for Maker and Breaker

is the major determining factor of how the simulation unfolds. As such,

the remainder of this chapter will be devoted to detailing various strategies

that can be employed in Algorithm 4.1. In Section 4.2, we will address the

4.2. What is a Strategy? 42

differences between what we refer to as strategies in this thesis, and the

conventional definition of strategy in positional games literature. Then, in

Sections 4.3 and 4.4 we will outline the strategies we have developed for the

simulation.

4.2 What is a Strategy?

As mentioned in Section 1.3, a primary concern in the study of positional

games is determining for which of the players a winning strategy exists. A

strategy for the first (second) player can be thought of as a mapping from the

set of all even (odd) length sequences of a graph’s vertices (corresponding to

the game’s play history) to a single vertex corresponding to the next move.

For example, after the kth turn, a partially played game has the move history

given by the sequence {v1, v2, . . . , vk}, and a strategy maps this sequence to

the next move corresponding to the vertex vk+1. This definition paraphrases

that in Appendix C of [7], which gives the total number of distinct strategies

for a given graph on N vertices to be equal to

⌊N/2⌋∏
i=0

(N − 1− 2i)
∏i

j=0(N−2j) = ee
NlogN/2+O(N)

(4.1)

When used in the sense of positional games, the term strategy corresponds to

a function which gives a specific, deterministic output for any possible game

state. However, the present work will loosen this definition to include func-

tions with nondeterministic output, and which indeed may not be optimal

(or at least, not provably optimal). Techniques with the aim of comparing

such strategies with one another will also be employed. These comparisons

are of interest particularly when there is no realistic hope of identifying op-

timal strategies. Instead of the purely deterministic definition of strategy,

our approach will be to consider many possible deterministic strategies at

each turn, and choose from them probabilistically. This approach is novel

4.3. Strategies for the Maker-Breaker Plain Domination
Game 43

in that it is positioned between deterministic strategies, which are the focus

in postitional game literature, and simulation-based techniques often used in

artificial intelligence approaches. Considering strategies in this probabilistic

way is similar to mixed strategies in traditional game theory, but applied to

this more combinatorial setting.

4.3 Strategies for the Maker-Breaker Plain

Domination Game

In this section we discuss some strategies for Maker or Breaker to employ

in the simulation. In addition to the upcoming strategies, either Maker or

Breaker (but not both simultaneously) can choose to use strategy stealing.

In such a case, the player will determine what move their opponent would

have chosen to make next if it were their turn, and make that move. This

can be employed regardless of which strategy their opponent is using, and in

fact, the player can choose to act as if their opponent is employing a differ-

ent strategy than they are in practice, and play as if they were stealing that

strategy.

Although most of the strategies discussed will be motivated from the per-

spective of either Maker or Breaker, in practice they may be employed by

either player. Of course, since the objectives of Maker and Breaker are differ-

ent, in some cases it is not sensible to do so; however, in those cases, stealing

the strategy may be effective. The distinction between employing a strategy

and stealing it is somewhat subtle, so we elaborate here. Suppose that em-

ploying a strategy calls for the player to consider their previous moves in

order to make their next choice. Stealing the strategy would instead have

that player consider their opponent’s previous moves. For the purposes of

this chapter, we will simply introduce each strategy, and will then comment

4.3. Strategies for the Maker-Breaker Plain Domination
Game 44

in Chapter 5 on the specific strategies where it is sensible for a particular

player to steal the strategy rather than employing it. In each case, we provide

a justification for why the strategy might be expected to perform well for at

least one of the players. In some cases, there are established results that

motivate the strategies, while for others a common-sense argument can be

made. The majority of strategies outlined in this section can be employed

very efficiently. However, we will also consider two more intelligent strategies

which are likely to be slower to run. In Chapter 5 we will compare the per-

formance of these strategies against one another in terms of both win rate,

and computational time.

4.3.1 Pairing Strategy

Algorithm 4.3 (tryNaiveMatching)
Claiming random neighbours of Q’s previous choices

Input: Game state
Output: Choice of free vertex

if Q has moved and Q’s most recent move has a free vertex as a neighbour
then

choose a free neighbour of Q’s most recent move
else
choose a free vertex with maximum degree uniformly by random
return choice of vertex

A pairing strategy is a reactive strategy defined by some collection of dis-

joint pairs of vertices {ai, bi}. When the opposing player claims a vertex in a

pair, the strategy is to choose the other vertex in the pair. As mentioned in

Section 3.1 if the graph admits a pairing dominating set S, Maker wins the

plain domination Maker-Breaker game by following a pairing strategy with

respect to S. The problem of identifying a pairing dominating set is NP-

complete [23], and so a player might naively attempt to achieve a matching

by claiming some neighbour of their opponent’s previous choice.

4.3. Strategies for the Maker-Breaker Plain Domination
Game 45

If the player using such a strategy moves first there are no previous moves to

consider and so the player may choose arbitrarily, for example claiming the

vertex with the maximum degree in the graph. We refer to this strategy as

tryNaiveMatching.

4.3.2 Greedily Seeking New Neighbours

Algorithm 4.4 (greedyForNewNeighbours)
Strategy for greedily increasing number of covered neighbours, used by player
P against opponent Q

Inputs: Game state
Outputs: Choice of free vertex

Choose an available vertex which would add the most new neighbours to
P ’s claimed vertex set
return choice of vertex

As discussed in Section 2.1, there is a greedy approximate algorithm for the

dominating set problem which involves iteratively choosing the vertex which

dominates the most new vertices. This can be readily adapted to a strategy

in the context of a Maker-Breaker domination game, claiming a vertex which

will maximally increase the number of vertices dominated at each turn. If

multiple such vertices exist, then one is chosen uniformly at random. This

strategy is referred to as greedyForNewNeighbours in this text. It should be

noted that in this new context, this algorithm is not guaranteed to produce

a dominating set. If Maker uses the strategy and there is some vertex in the

graph such that at each turn, no member of its closed neighbourhood offers

the most new vertices dominated, Maker will not claim any vertex in this

closed neighbourhood. Breaker can subsequently claim each of these vertices,

prevent a dominating set and win the game. Nonetheless, this strategy is

reasonably efficient, and seems likely to work well in general.

4.3. Strategies for the Maker-Breaker Plain Domination
Game 46

4.3.3 Greedily Seeking Enclaves

Algorithm 4.5 (decMin)
Strategy for claiming vertex from active neighbourhood closest to realisation,
used by player P against opponent Q

Inputs: Game state
Outputs: Choice of free vertex

Randomly select an available vertex from the closed neighbourhood closest
to being fully claimed by P
return choice of vertex

Algorithm 4.6 (decAll)
Strategy for claiming vertex which will reduce total proximity to being fully
claimed, used by player P against opponent Q

Inputs: Game state
Outputs: Choice of free vertex

Select an available vertex which will minimize the number of free vertices
in all neighbourhoods untouched by Q
return choice of vertex

If Breaker can fully claim an enclave, then no dominating set of any kind

can be constructed. A strategy that achieves this would then be a winning

Breaker strategy for both plain domination and secure domination Maker-

Breaker games. A simple approach for Breaker is to greedily choose the

vertex which will reduce the minimum number of free vertices in a closed

neighbourhood not yet occupied by Maker. This is a reasonably efficient

strategy and, as outlined above, gives Breaker an opportunity to quickly

claim an enclave if Maker overlooks their choice of vertices. This strategy

will be referred to as decMin.

A similar greedy strategy for Breaker is to choose the vertex which will

minimise the sum of free vertices in all active neighbourhoods. The inten-

tion of this approach is to quickly increment towards claiming an enclave, as

with decMin. However, by considering the total sum of free vertices Breaker

4.3. Strategies for the Maker-Breaker Plain Domination
Game 47

may be able to employ a “hedged” approach that is more resilient against

which seek to block enclaves from being claimed. By reducing the overall

sum of free vertices, Breaker is working towards multiple enclaves at once,

challenging Maker to have to block them all before Breaker can claim one.

4.3.4 Drawing on the Erdős-Selfridge Criterion

Algorithm 4.7 (neighbourhoodWatch)
Strategy for playing according to a danger function, giving preference to those
closed neighbourhoods closest to being fully claimed by opponent, used by
player P against opponent Q

Inputs: Game state
Outputs: Choice of free vertex

Identify those vertices that intersect with the highest number of active
neighbourhoods closest to realisation by Q
if there are multiple such vertices then

identify which of those vertices intersect with the greatest number of
active neighbourhoods (in addition to those closest to realisation)
if there are multiple of these vertices as well then

choose one uniformly at random
return choice of vertex

In the strategies described thus far, we have essentially attempted to provide

a “score” indicating how valuable each vertex is to the player, and the player

then chooses one of the most valuable vertices to claim. However, these scores

have been fairly blunt. Ideally, at any given game state, the player would

like to analyse all remaining winning sets. Recall that if the Erdős-Selfridge

criterion is met, there is a winning strategy for the Breaker, which can be

identified by considering all remaining winning sets and selecting a vertex

which eliminates large numbers of these at each step. When the criterion

is met, the proof concludes that by the end of the game, all winning sets

will be eliminated. However, attempting to employ such an approach in the

simulation is intractable, since it requires identifying all remaining winning

sets at each turn. In particular, it is known that graphs may contain an

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 48

exponential number of minimal dominating sets [26].

Nonetheless, motivated by this approach, we propose a compromise strategy

along the same lines, but from the perspective of Maker. At each turn, the

player is to select a vertex that occupies the greatest number of those closed

neighbourhoods which are the closest to being fully claimed by Breaker. If

there are multiple such vertices, preference will be given to the one which in-

tersects with the most other closed neighbourhoods still untouched by Maker.

If there are still multiple such vertices, one of them is chosen uniformly by

random.

Although considerably slower to run than the other strategies listed so far in

this section, this approach can still be carried out in polynomial time, and

gives a much more nuanced measurement of which vertices are important to

be claimed at each step. In Chapter 5, we will explore whether this strategy

results in a significant enough improvement in results to justify the extra

time taken compared to the simpler strategies.

4.4 Algorithms for the Maker-Breaker Secure

Domination Game

4.4.1 Preliminaries

Of course, the plain domination strategies outlined in Section 4.3 may also

be employed in the Maker-Breaker secure domination game. Maker requires

a dominating set to achieve a secure dominating set, and so preventing a

dominating set implies a win for Breaker. A strategy for the Maker-Breaker

secure domination game may be divided into two separate stages. The first

of which aims to achieve a dominating set, and the second aims to extend

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 49

this to a secure dominating set. Existing strategies for the Maker-Breaker

plain domination game could be paired with a “second stage” strategy to de-

termine how Maker proceeds upon constructing a plain dominating set, and

we discuss this at the end of this chapter. However, first we need to develop

strategies with the particular features of secure domination in mind. We note

that secure domination strategies may also be used in the plain domination

game, and we will explore their effectiveness in Chapter 5.

The following definitions are relevant to the strategies in this section.

Two vertices u, v in a graph G are said to be 2-neighbours if dist(u, v) = 2,

i.e. the shortest path between them consists of exactly two edges.

In the context of examining whether a set S is a secure dominating set of G,

we say that a vertex v ̸∈ S is 1-guarded if |N [v] ∩ S| = 1. In other words,

there is only one guard vertex supervising v. The term 2-guarded is defined

analogously.

4.4.2 Random Selection of 2 Neighbours

Algorithm 4.8 (random2Neighbour)

Inputs: Game state
Outputs: Choice of free vertex

Claim a free 2-neighbour of a previous choice of P . If no such option exists,
choose free vertex at random
return choice of vertex

In the secure domination context there is the added requirement relating to

guard movement. At the site of such a move, a guard vertex is essentially

traded with one of its neighbours (the site of the guard’s new location) to

construct a new subset S. This means the guard’s new neighbours may have

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 50

previously been 2-neighbours, some 1-neighbours may now be 2-neighbours,

and some previous 2-neighbours may have become 1-neighbours. To preserve

domination under a guard relocation, all of these vertices must remain dom-

inated. It follows that strategies for secure domination Maker-Breaker games

may benefit from considering the 2-neighbourhoods of the board’s vertices.

4.4.3 Considering 2-Guarded Vertices

Algorithm 4.9 (greedyFor2Guarding)

Inputs: Game state
Outputs: Choice of free vertex

Greedily choose a vertex that will produce the biggest increase in 2-guarded
vertices
if multiple such vertices exist then

choose one uniformly at random
return choice of vertex

If every non-Maker vertex is 2-guarded, then Maker has achieved a secure

dominating set. Even when this is not possible, vertices which are 2-guarded

are valuable as they do not prohibit adjacent guards from moving elsewhere

to satisfy the secure domination condition.

4.4.4 Considering Minimum Guarded Vertices

Algorithm 4.10 (minGuardedNeighbour)

Inputs: Game state
Outputs: Choice of free vertex

Claim the free neighbour of a previous choice of Q with the fewest current
guards.
if multiple such vertices exist then

choose one uniformly at random
return choice of vertex

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 51

Algorithm 4.11 (minGuardedFreeVert)

Inputs: Game state
Outputs: Choice of free vertex

Claim the free vertex with the fewest current guards.
if multiple such vertices exist then

choose one uniformly at random
return choice of vertex

Unlike in the plain domination case, a vertex having an adjacent guard can

still represent a threat to Maker in the Maker-Breaker secure domination

game, as that guard may need to move. As such, an adaptation of the greedy

enclave seeking strategy for the secure domination case may be to greedily

choose a vertex (whether a free neighbour of a previous choice or simply a

free vertex) with the minimum number of guards in its neighbourhood. In

practice, this means the choice of vertex will have zero or one adjacent guard,

as all non-guard vertices having two adjacent guards implies a Maker victory.

4.4.5 Using a Linear Programming Formulation

Algorithm 4.12 (bh19LP)
Strategy based on the LP formulation for player P , with opponent Q

Inputs: Game state
Outputs: Choice of free vertex

Build relaxed formulation from Burdett and Haythorpe [14]
Add constraints for vertex play history, xQ = 0, xP = 1
Solve linear program with CPLEX
Process and normalise xi values of solution
Select a free vertex probabilistically according to the xi values
return choice of vertex

As discussed in the context of plain domination in Section 4.3, it may be

beneficial to consider a more nuanced approach to scoring the vertices. Un-

fortunately, the additional requirements of secure domination mean that an

equivalent strategy to Algorithm 4.7 would likely be at least an order of mag-

nitude slower again to run. Instead, we now propose an alternative approach

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 52

to obtaining a score for the vertices. As with Algorithm 4.7, this approach

is significantly slower than the simple strategies described earlier in this sec-

tion, but seems likely to provide a much more nuanced measurement of which

vertices are important to be claimed at each step. We will investigate the

effectiveness of this strategy in Chapter 5.

Recall that a mixed-integer linear programming formulation for secure dom-

ination was given in [14]. The formulation could be modified to accommod-

ate a partially-completed Maker-Breaker secure domination game, by fixing

variables corresponding to Maker’s choices to be equal to one, and fixing vari-

ables corresponding to Breaker’s choices equal to zero. The result of solving

this formulation would be to find an optimal secure dominating set which

includes the choices of Maker, and none of the choices of Breaker, if such a

set exists. Although the optimality is not directly relevant in the context of

Maker-Breaker games, it seems reasonable to expect that a secure domin-

ating set which requires fewer vertices to be claimed is easier for Maker to

achieve. Meanwhile, if the formulation has no solution then Breaker has won

the game. However, solving the formulation requires an integer programming

solver, and hence becomes intractable for larger instances.

Instead, after fixing variables according to the choices so far of Maker and

Breaker, we can then relax the integer constraints in the formulation, instead

constraining those variables to lie in the continuous interval [0,1]. We will

use the name bh19LP to refer to the strategy involving the relaxed version of

the formulation. Since it just involves solving a linear program, it can be run

in polynomial time using standard software such as CPLEX. What results is

not a secure dominating set (unless the solution happens to be binary), but

nonetheless has some meaning. If, in the solution, one variable has a signific-

antly larger value than another, then it seems reasonable to expect the vertex

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 53

corresponding to the former is more “valuable” than the vertex correspond-

ing to the latter when seeking a secure dominating set. Although nothing

has been definitively shown in the literature, values resulting from solving

bh19LP have been effectively employed to provide a heuristic approach for

finding minimal or near-minimal secure dominating sets [13]. We will use

these values to provide scores for the vertices. As discussed in Section 2.2,

these values can be processed, for example raised to some power to accen-

tuate or obfuscate differences in values. In our implementation, we chose to

raise the values to the power of 2. The resulting collection of values is then

normalised and used as a probability mass function informing the player’s

next choice.

Using the Secure Domination LP Strategy for Plain Domination

It is worth noting that the strategy described in Algorithm 4.12 can be ad-

apted to the plain domination case. Note that the constraints in Algorithm

4.12 include those from [14], as well as the constraints relating to the play

history. Instead, the constraints (2.1) and (2.2) of Burdett and Haythorpe’s

formulation (numbered as they appear in Section 2.2) can be combined with

the constraints relating to play history to give a version of bh19LP which is

designed specifically for plain domination. We will refer to this strategy as

bh19LP d.

4.4.6 Hybrid Strategies

As mentioned in Subsection 4.4.1, strategies for the plain domination game

can be employed in the secure domination game. However, strategies de-

signed with Maker’s plain domination objective in mind should not be ex-

pected to perform as well in a secure domination context. Instead, if a

dominating set is achieved, Maker could then switch to a second strategy

4.4. Algorithms for the Maker-Breaker Secure Domination
Game 54

intended to “secure” their existing dominating set. It will be shown that

hybrid strategies of this type can achieve superior performance over either of

the individual strategies they are comprised of.

By distinguishing between a “dominating” stage and a “securing” stage,

various combinations of strategies are available. Combining plain domination

strategies such as greedyForNewNeighbours, neighbourhoodWatch with a

second stage is of interest. We will discuss these choices further in Section

5.1.

Chapter 5

Results

In this chapter, we will look at results produced by the simulation model de-

scribed in Chapter 4. All results are produced by performing 1000 simulated

games per instance (i.e. for each combination of graph, Maker strategy, and

Breaker strategy). We adopt the convention that Maker plays first in all of

our experiments.

The experiments will be conducted on grid graphs of various sizes. Grid

graphs have been used extensively in the literature around domination and

its variants, and in that context they possess surprisingly intricate and com-

plex properties. For example, the complete characterisation of domination

numbers of m × n grid graphs was derived over a 27-year period [40, 32,

21, 49, 2, 30], and consists of 23 special cases before settling into a stand-

ard formula for m,n ≥ 16. For secure domination, the domination numbers

are only known for m,n ≤ 10. These instances provide an interesting and

complex, but also consistent test bed for our experiments. We will consider

the strategies outlined in Sections 4.3 and 4.4. However, although those

strategies can always be played for either player, in practice some of them

are only sensible for a certain player. For example, the neighbourhoodWatch

strategy is designed for Maker, to try to prevent Breaker from obtaining an

55

5.1. Hybrid Approach 56

enclave. If the Breaker were to employ the neighbourhoodWatch strategy,

it would try to prevent Maker from obtaining an enclave, but Maker is not

attempting to do so, and it is not beneficial to Maker even if it occurs by

chance. As such, this strategy is nonsensical for Breaker to employ. However,

it could be sensible for Breaker to steal the neighbourhoodWatch strategy;

that is, to consider what choice Maker would make, and then claim that

choice for themselves. With this in mind, in the experiments that follow,

rather than considering nonsensical strategy choices for each player, when

sensible we will instead have the players employ the strategy stealing ver-

sions of those strategies.

In particular, the decAll, decMin and minguardedFreeVert strategies are

designed for Breaker. Hence, in the upcoming experiments, Maker will

only use the strategy stealing version of those strategies. Likewise, the

neighbourhoodWatch, tryNaiveMatching, bh19LP and bh19LP d strategies

are designed for Maker, so Breaker will only use strategy stealing versions of

those strategies.

5.1 Hybrid Approach

As discussed in Section 4.4, it is possible to use strategies designed for the

plain domination game in the secure domination game, and vice versa. We

will investigate how effective this approach is in this chapter. In particular, in

Section 5.2 it will be seen that the strategies designed for secure domination

perform no worse in the Maker-Breaker plain domination game than those

strategies designed with plain domination in mind. Strategies designed for

plain domination, however, do not perform as strongly in the secure dom-

ination game. It follows that for the secure domination game, these plain

domination strategies might benefit from being extended as hybrid strategies.

5.1. Hybrid Approach 57

To examine the effectiveness of the hybrid approach, we now conduct the

following experiment. We run simulations of the Maker-Breaker secure dom-

ination game on square grids of increasing size, where Breaker’s strategy

is fixed to be random choice. For Maker, we consider various different

plain domination strategies, secure domination strategies, and also three hy-

brid strategies. In particular, the plain domination strategies considered

are greedyForNewNeighbours, neighbourhoodWatch, and bh19LP d. The

secure domination strategies considered are greedyFor2Guarding, bh19LP

and tryNaiveMatching. The three hybrids are given a suffix of h, and in

each case they utilise one of the plain domination strategies until a domin-

ating set is found, at which point they switch to greedyFor2Guarding. In

addition to the above, we also include randomChoice as a Maker strategy

to give a baseline comparison. The results of the simulation, displayed in

Figure 5.1, are quite striking. We note first that the standalone secure

domination strategy of greedyFor2Guarding was actually outperformed by

randomChoice. Clearly, this is not a useful strategy to employ by itself. Des-

pite this, however, it appears to offer some value when used as part of a hybrid

strategy. The hybrid versions of both neighbourhoodWatch and bh19LP d

significantly outperformed their respective standalone versions, while the hy-

brid version of greedyForNewNeighbours gave almost identical performance

to the standalone version. However, by far the most effective strategies here

were the standalone secure domination strategies, tryNaiveMatching and

bh19LP. It seems that for secure domination, it is sensible to restrict our con-

sideration to standalone secure domination strategies and hybrid strategies.

In the interests of providing a detailed analysis, we will retain most of the

standalone plain domination strategies in the upcoming section; however,

given the extremely weak performance of greedyFor2Guarding as a stan-

dalone strategy, we will remove it from consideration. As such, it will con-

5.1. Hybrid Approach 58

Figure 5.1: Examination of various hybrid strategies, their component func-
tions, and several other strategies for the secure domination game
on square grids of various dimension

5.2. Comparing Strategies Against Each Other 59

tinue to exist in our simulations only in the sense that it is employed in the

second stage of the hybrid strategies.

5.2 Comparing Strategies Against Each Other

As a means of examining the quality of various heuristic algorithms, their ex-

perimental win-rate against one another was calculated. Not only might this

provide insight into which strategies are generally strong (i.e. win more often

than not against other strategies) for a particular player, interesting relation-

ships may exist between specific strategies, with a generally strong strategy

perhaps being defeated by a generally weaker strategy. In certain cases,

results such as these may potentially highlight properties of the strategies

themselves, the rules of the game, or properties of the underlying board.

Both the secure and plain domination versions of the game were considered

in this way on the 7× 7 grid as the game board. This graph does not admit

a perfect matching, and so the theoretical winner is not obvious. The results

of the simulations are displayed in Figures 5.2 and 5.3 for the plain and se-

cure domination game respectively. We note that in Figure 5.2, results are

included for some hybrid strategies. However, since Figure 5.2 corresponds

to the plain domination game, the hybrid strategies are equivalent to the

standalone plain domination strategies; we include them here only for easy

comparison with the upcoming Figure 5.3, where the secure domination game

will be considered. The two figures are quite revealing, and we now discuss

various insights gained from analysing them.

First of all, we note that the simulated results are just for a particular game

board, the 7×7 grid. It is perhaps interesting to consider whether this board

favours one player or another, but it is not immediately obvious how to do

this. Of course, in a theoretical sense any given game board has exactly one

5.2. Comparing Strategies Against Each Other 60

winning player; indeed, since the 7× 7 grid graph G contains a vertex v such

that G \ v has a perfect matching, and Maker plays first in our experiments,

Corollary 3.6 implies that there is a winning strategy for Maker. But, if the

winning strategy is not known, this may not reflect the reality of playing the

game. It is conceivable that a game board may have a theoretical winner,

say Maker, but that employing almost any strategy other than the winning

strategy leads to a Breaker win. In such a case, it would perhaps be accur-

ate to say that the game board favours Breaker, even though Maker is the

theoretical winner.

A simple measure of favourability could be to consider the results when both

Maker and Breaker play randomly, which according to Figure 5.2 would sug-

gest that the 7 × 7 grid is heavily favoured towards Breaker. However, it

can be seen in the same figure that Maker has significant success with some

other strategies, regardless of which strategies Breaker employs. On the other

hand, when Maker does not employ these “good” strategies, it seems to lose

most of the time. Clearly, the question of which player is favoured by the

game board is complicated to answer. Perhaps the most accurate statement

here is that Maker requires a good strategy to be successful; if both players

employ poor strategies, Breaker seems to be successful. We will explore the

question of board favourability further in Section 5.4

5.2. Comparing Strategies Against Each Other 61

Figure 5.2: Examining various strategies for Maker and Breaker in the plain
domination game on the 7× 7 grid

It is clear that neighbourhoodWatch is an almost undefeated Maker strategy

in the observed simulation. In fact, the only Breaker strategies that appears

to have won any significant number of games are minguardedNeighbour

and the strategy stealing version of bh19LP. This suggests that while no

longer a guaranteed winning strategy as in the 3 × 3 grid (see Theorem

3.8), neighbourhoodWatch is still a strong strategy for the plain domination

game on this larger grid graph. The second strongest Maker strategy ap-

pears to be bh19LP, a strategy designed with the secure domination game in

mind. This is interesting as the strategy only considers the secure domin-

ation LP formulation, yet nonetheless performs well here in the plain dom-

ination setting. The third strongest Maker strategy is tryNaiveMatching,

which performs well (≥ 60% observed win rate) against all strategies ex-

5.2. Comparing Strategies Against Each Other 62

cept for Breaker’s strategy stealing versions of neighbourhoodWatch and the

variations of bh19LP. This suggests that on the 7 × 7 grid graph, pairing

strategies are promising approaches for Maker.

Regarding strategies for Breaker, the stealing versions of the most successful

Maker strategies appear to be successful, except for tryNaiveMatching. It is

perhaps unsurprising that tryNaiveMatching is relatively unsuccessful here,

as the strategy involves claiming adjacent vertices to your opponent’s pre-

vious choice. The standard (non-stealing) version of this is not particularly

useful for Breaker, as it will claim a vertex which has already been dom-

inated; for this reason, we identified this strategy as one where the Breaker

should employ the strategy-stealing version. However, that version will cause

Breaker to select vertices next to its previous choices, with no regard for what

Maker has done, including if Maker has already claimed a vertex in the sur-

rounding area. If Maker is foolish, Breaker will quickly claim an enclave and

win the game, but if Maker plays intelligently then Breaker is unlikely to

be successful. This is reflected in Figure 5.3, where we see the strategy is

roundly defeated by Maker strategies which react to Breaker’s moves, but is

otherwise successful for Breaker.

5.2. Comparing Strategies Against Each Other 63

Figure 5.3: Examining various strategies for Maker and Breaker in the secure
domination game on the 7× 7 grid

Turning our attention now to Figure 5.3, in general Breaker is observed to

be successful much more frequently in the Maker-Breaker secure domination

game than in the Maker-Breaker plain domination game. This is not surpris-

ing, of course; to successfully win the secure domination game, Maker has to

win the plain domination game in addition to satisfying other criteria.

The hybrid greedyForNewNeighbours h has little success for Maker even

against random Breaker play. The stealing version of decAll is similarly

unsuccessful. Comparatively speaking, the stealing of decMin appears to

better retain its success rate in the Maker-Breaker secure domination game,

as does minguardedNeighbour. The latter also largely retains its appar-

5.2. Comparing Strategies Against Each Other 64

ent quality as a strategy for both Maker and Breaker. Perhaps the most

drastic difference from the plain domination game is the reduced success

of neighbourhoodWatch, now losing much more often than winning. As

seen previously, though, its hybrid version performs markedly better. The

tryNaiveMatching and bh19LP strategies are by far the strongest strategies

for Maker, and exhibit some interesting comparative results. While bh19LP is

almost always defeated by Breaker employing minGuardedNeighbour or the

strategy stealing version of tryNaiveMatching, it appears tryNaiveMatching

performs quite well against each of these Breaker strategies. However, bh19LP

is the only Maker strategy to exhibit strong performance against Breaker

stealing the neighbourhoodWatch strategy (or its hybrid).

There are several effective strategies for Breaker in this instance, but the

only one which does not seem to have a weakness is the strategy stealing

version of bh19LP. The only Maker strategy which was even remotely com-

petitive was the hybrid version of bh19LP d. It is perhaps fascinating to note

that the strategy stealing versions of good Maker strategies appear to provide

better options for Breaker than their own dedicated strategies, which we de-

signed with Breaker’s objectives in mind. Again, one possible interpretation

of this is Maker requires a good strategy to be successful on this instance,

which leaves them susceptible to having their strategy stolen.

There are some interesting results for specific strategy pairs. The choice

of minguardedNeighbour is only modestly successful for Maker, while the

strategy stealing version of tryNaiveMatching is very successful for Breaker.

Yet, the combination of the two leads to an unexpectedly strong result for

Maker. A possible explanation for this might be that the selection functions

for both strategies give preference to neighbours of vertices which have been

previously chosen by Breaker, which increases the likelihood that both play-

5.3. Time Analysis 65

ers choose adjacent vertices. As discussed earlier, this is typically beneficial

for Maker as it means Breaker is more likely to claim vertices which have

already been dominated.

Another interesting case is when Maker chooses the strategy stealing ver-

sion of decMin and Breaker chooses random2Neighbour. The former is a

poor performing strategy for Maker, and the latter performs moderately well

for Breaker, but their combination leads to around a 90% win rate for Maker.

Analysing these two strategies, we see that Breaker will want to choose ver-

tices which are a distance of two away from one of their previous choices.

Meanwhile, Maker is stealing the strategy where Breaker tries to claim an

enclave if possible. As such, Maker gets to follow along with Breaker, neut-

ralising these potential enclaves as they arise, resulting in likely success for

Maker. Unsurprisingly, this was also a very effective combination of strategies

for Maker in the plain domination setting.

5.3 Time Analysis

Every strategy given in Chapter 4 of this thesis can be run in polynomial

time. However, since some strategies are more sophisticated than others,

it should be expected that there will be significant differences in how long

they take to perform their calculations. We now seek to analyse how long

the strategies take to run. However, it is not immediately obvious how such

an analysis should be undertaken. One might think that we could simply

employ two timers (one for Maker, one for Breaker) and toggle them on and

off whenever one player is executing their strategy. Then, the individual

times for each player can be reported. However, there is a significant issue

with this approach; the strategy employed by the opponent can have an im-

pact on how many moves are required to finish the game. For example, if

5.3. Time Analysis 66

Breaker makes poor choices, Maker might be able to obtain a dominating set

much quicker. This would mean that for two different Breaker strategies, a

given Maker strategy would report two very different times. Alternatively,

we could take an average of the time taken per move, but it might be the

case that a good strategy enables the player to finish earlier. For example,

when the bh19LP strategy is employed (either by Maker, or by Breaker using

the strategy stealing version), if Breaker has been successful then the LP of-

ten returns an infeasible result, which may allow the game to be terminated

early. This is a unique benefit of using bh19LP (the strategy stealing version

is the only Breaker strategy that allows us to terminate early) that would be

disguised by reporting average time per turn.

Given it is unclear how best to report the time taken for a strategy, we have

conducted the following experiment on the secure domination game. We fix

the Breaker strategy to be randomChoice, and consider a collection of Maker

strategies over grid graphs of increasing size. Then, we simply report the av-

erage time taken for the entire simulation to conclude. Although this time

includes both players and other overheads from the simulation, it is at least

consistently counted across all Maker strategies, allowing for direct compar-

isons. Since Breaker always plays randomly, no advantage or disadvantage is

imparted to a particular Maker strategy. Also, since randomChoice is a very

fast strategy, the bulk of the differences in runtime should be attributable

to the Maker strategy. The results are displayed in Figure 5.4, where the

vertical axis (corresponding to time taken) is on a logarithmic scale.

5.3. Time Analysis 67

3 4 5 6 7 8 9 10 11 12

1

3

8

21

55

150

400

1,100

3,000

x dimension of square grid graph

A
ve
ra
ge

ga
m
e
d
u
ra
ti
on

(m
s)

bh19LP
bh19LP d
bh19LP dh

neighbourhoodWatch
neighbourhoodWatch h
greedyForNewNeighbours
greedyForNewNeighbours h

maxDegree
randomChoice

greedyFor2Guarding
tryNaiveMatching

decAll
decMin

Figure 5.4: A logarithmic plot of the average game duration for various
Maker strategies against Breaker playing randomly in the Maker-
Breaker secure domination game on square grids of various di-
mensions

5.3. Time Analysis 68

In Figure 5.4 there appears to be three “tiers” of strategies, in terms of

how quickly they run. Clearly, bh19LP and its variants are by far the

slowest strategies considered in this thesis. This is unsurprising consider-

ing that, at each iteration, these strategies involve first constructing a lin-

ear program with a considerable number of constraints, and then sending

it to be solved by an external program. We have seen that bh19LP has dis-

played strong performance in various simulations, but this should be balanced

against its computational overhead if time is an important consideration. The

neighbourhoodWatch strategy (and its hybrid version) are the next-slowest,

followed by tryNaiveMatching. These two strategies comprise the second

tier of strategies in terms of time taken. Both of these strategies were seen

to be effective in the previous section, although further analysis is required

to see if tryNaiveMatching remains as effective in general graphs without

perfect matchings. The following scenario may also result in decreased suc-

cess of tryNaiveMatching as a Maker strategy. If the game is played on a

graph in which a low-degree vertex v has neighbours of high degree, a clever

Breaker player might select each of these high degree neighbours, and at

each turn Maker’s response using tryNaiveMatching would have relatively

low probability of selecting v. Having selected all of these high degree neigh-

bours, Breaker can then claim v and achieve an enclave, winning the game.

Finally, the remaining strategies make up the third tier; however, while these

strategies are quick to run, they were for the most part unsuccessful in the

previous section.

Perhaps unsurprisingly, there appears to be an inverse relationship between

the success rate of strategies, and their efficiency. Of course, the exact time

taken for these strategies does depend on how efficiently they are implemen-

ted, but such discussions are beyond the scope of this thesis. For Maker,

it is arguable whether bh19LP is worthwhile, given it performs similarly to

5.4. Strategy Stealing 69

tryNaiveMatching but takes at least an order of magnitude longer. For

Breaker, bh19LP is so successful that it is perhaps worth the extra time, at

least in the secure domination version of the game.

5.4 Strategy Stealing

As discussed in Section 5.1, an interesting property to consider is to what

extent the graph on which the game is played favours a particular player. In

the combinatorial sense, a Maker-Breaker game on a given board admits a

winning strategy for exactly one player, and so (if it is known for which player

this holds) a certain binary classification can be made accordingly. However,

this form of favouritism may not be reflected in the stochastic sense. For

example, the game of Hex can be thought of as a Maker-Breaker game, and

has been shown to be a first-player win on the 11 × 11 board. However,

the exact winning strategy is not known. Hex continues to be an active

competitive board game for both human and computer players, suggesting

that this theoretical favouritism has not yet surfaced in real-world play to

the point of rendering the game obsolete. One study has reported a first

player win percentage of 62.8% [10]. As such, it certainly seems that the first

player has some advantage in a stochastic sense, but not a massive advantage.

It is not immediately clear how to characterise which player has the ad-

vantage for a given game board. As discussed earlier, simply having both

players make random selections and analysing the outcome does not neces-

sarily give meaningful information for how the game will unfold when the

players play intelligently. Instead, we propose the following experiment. We

will analyse the outcome of having one player employ a strategy, while their

opponent employs the strategy stealing version of the same strategy. This

seems like a relatively “fair” experiment, since both players will be trying to

5.4. Strategy Stealing 70

do the same thing. In addition, it will allow us to analyse how susceptible

certain strategies are to being stolen. We will choose specific strategies which

are sensible for one player to employ, and the other to steal.

In particular, we consider first consider neighbourhoodWatch (and its hybrid

version), tryNaiveMatching, and bh19LP as Maker strategies, while Breaker

employs the corresponding strategy stealing variants. These were run on

grid graphs of increasing size, with the results displayed in Figure 5.5. Like-

wise, we consider Breaker choosing the minguardedNeighbour, decMin and

decAll strategies, while Maker employs the corresponding strategy stealing

variants. These were run on grid graphs of increasing size, with the results

displayed in Figure 5.6.

We observe that as the size of the graph increases, the success rate for Maker

decreases. There is a sensible interpretation for this; as the graph grows lar-

ger, Maker has more work to do since the entire graph needs to be dominated,

whereas Breaker still only needs to gain an enclave for one vertex. For most

of the strategies considered, the win rate for Maker appears to be heading to-

wards zero; however, interestingly, it seems that tryNaiveMatching is much

less susceptible to strategy stealing than the other strategies. As discussed

back in Section 5.2, when both players employ tryNaiveMatching, an odd

situation occurs where the Maker and Breaker end up picking vertices next

to each other for the entire game, leading to a situation where Breaker is less

likely to claim an enclave.

5.4. Strategy Stealing 71

Figure 5.5: Various Maker strategies’ performance against strategy stealing
on square grids of differing dimension

5.4. Strategy Stealing 72

Figure 5.6: Various Breaker strategies’ performance against strategy stealing
on square grids of differing dimension

Chapter 6

Conclusions and Directions for

Future Research

In this thesis, several heuristic strategies for both the Maker-Breaker plain

domination and secure domination games were developed and examined in

an experimental context. Various measures for quality were defined, and

these strategies were compared to one another according to these. Square

grids of various sizes were exclusively used in the simulations, and so nat-

urally an avenue of future research would be to perform these evaluations

on various other graph families of interest to see what impact this has on

results. A few examples might be random graphs, graphs that do not ad-

mit a perfect matching, or graphs with a higher variance in vertex degree.

It is of interest to expand the scope of consideration as the “generality” of

heuristic strategies is another measure that could be used to indicate quality.

The tryNaiveMatching strategy proved to be a successful, efficient Maker

strategy for the secure domination game on various square grids, however a

scenario was outlined in which the graph’s structure allows the strategy to

be exploited by a clever Breaker player. Whether the more computation-

ally expensive bh19LP or neighbourhoodWatch h are more resistant to such

exploitation on a variety of graphs would be an interesting future experiment.

73

6. Conclusions and Directions for Future Research 74

Hybrid strategies that adapt heuristics for Maker in the plain domination

game to the secure domination (or other variant of domination) game are

another area of interest. In this thesis these strategies were broken into

two stages, the second initiating after Maker has achieved a dominating set.

This thesis only examined three first stage strategies and one second stage

strategy. Different combinations of both first and second stage strategies (or

the introduction of additional stages) may be an interesting avenue of future

research. In addition to the choices of the strategies that make up the hy-

brid, the point at which the transition between stages occurs might also be

subject to experimentation, allowing the second stage to begin early once it

becomes apparent the first stage will be successful.

Several interesting relationships between various heuristics were observed

in Chapter 5. As these are experimental observations, a natural next step

would be to work towards establishing proofs regarding these relationships.

tryNaiveMatching as a Maker strategy seemed particularly resistant to

strategy stealing. The intuition behind this might be extended to include

other Maker strategies whose selection functions gave preference to the neigh-

bours of Breaker’s previous choices. On graphs that possess certain struc-

tures, one heuristic strategy may be provably superior to another.

Since the strategies we have employed are stochastic in nature, there is also

scope to take some kind of combination of multiple strategies, hopefully

leveraging the benefits of each of them. It seems natural to assume that

strategies which make decisions which are generally good at any stage of

the game would would be amenable to this kind of approach. Conversely,

strategies which require a particular plan to be followed for a long period

would be unsuitable for this.

6. Conclusions and Directions for Future Research 75

The domination game is noteworthy due to the “interchangeablity” of the

players under equivalent formulations. Similar formulations for secure dom-

ination or other variants are desirable as they allow the application of general

Maker-Breaker game results for one player to be applied to both players in

these games. Characterising a Maker-Breaker game beyond the player who

possesses a guaranteed winning strategy is still a difficult endeavour, how-

ever the observed performance of heuristic strategies may provide additional

insight into the complex properties these games possess.

Bibliography

[1] Alon, N. and Spencer, J. H., 2016. The probabilistic method. John Wiley

& Sons.

[2] Alanko, S., Vercals, S., Isopoussu, A., Österg̊ard, P.R., Pettersson,

V., 2011. Computing the domination number of grid graphs. Electronic

Journal of Combinatorics, p.141.

[3] Alzoubi, K.M., Wan, P.J. and Frieder, O., 2002. Distributed heuristics

for connected dominating sets in wireless ad hoc networks. Journal of

Communications and Networks, 4(1), pp.22-29.

[4] Balasundaram, B. and Butenko, S., 2006. Graph domination, coloring

and cliques in telecommunications. Handbook of optimization in telecom-

munications, pp.865-890.

[5] Ball, W.R., 1893. Mathematical Recreations and Essays. Bulletin des

sciences mathématiques, 17, pp.105-107.

[6] Berge, C., 1958. La theorie des graphes et ses applications. Dunod.

[7] Beck, J., 2008. Combinatorial games: tic-tac-toe theory (Vol. 114). Cam-

bridge: Cambridge University Press.

[8] Bixby, R.E., 2012. A brief history of linear and mixed-integer program-

ming computation. Documenta Mathematica, 2012, pp.107-121.

76

BIBLIOGRAPHY 77

[9] Bollobás, B. and Cockayne, E.J., 1979. Graph-theoretic parameters con-

cerning domination, independence, and irredundance. Journal of Graph

Theory, 3 (3), pp.241-249.

[10] Brausen, H., Hayward, R.B., Müller, M., Qadir, A. and Spies, D., 2011.

Blunder Cost in Go and Hex. Advances in Computer Games, 13, pp.

220-229.

[11] Brešar, B., Henning, M.A., Klavžar, S. and Rall, D.F., 2021. Domination

games played on graphs. Berlin: Springer.

[12] Brešar, B., Klavžar, S. and Rall, D.F., 2010. Domination game and

an imagination strategy. SIAM Journal on Discrete Mathematics, 24 (3),

pp.979-991.

[13] Burdett, R., 2020. Exact and heuristic algorithms for secure domination

in graphs. (Honours thesis, Flinders University, South Australia, Aus-

tralia).

[14] Burdett, R. and Haythorpe, M., 2020. An improved binary programming

formulation for the secure domination problem. Annals of Operations Re-

search, 295 (2), pp.561-573.

[15] Bouamama, S. and Blum, C., 2021. An improved greedy heuristic for the

minimum positive influence dominating set problem in social networks.

Algorithms, 14 (3), p.79.

[16] Burger, A. P., De Villiers, A. P. and Van Vuuren, J.H., 2013. Two Al-

gorithms for Secure Graph Domination. Journal of Combinatorial Math-

ematics and Combinatorial Computing, 85, pp.321-339.

[17] Burger, A.P., De Villiers, A.P. and Van Vuuren, J.H., 2013. A binary

programming approach towards achieving effective graph protection. Pro-

ceedings of the 2013 ORSSA annual conference, pp.19-30.

BIBLIOGRAPHY 78

[18] Chvátal, V. and Erdös, P., 1978. Biased positional games. Annals of

Discrete Mathematics, 2, pp.221-229.

[19] Cockayne, E.J. and Hedetniemi, S.T., 1977. Towards a theory of dom-

ination in graphs. Networks, 7 (3), pp.247-261.

[20] Cockayne, E.J., Grobler, P.J.P., Grundlingh, W.R., Munganga, J. and

Van Vuuren, J.H., 2005. Protection of a graph. Utilitas Mathematica, 67.

[21] Chang, T.Y. and Clark, W.E., 1993. The domination numbers of the

5Ön and 6Ön grid graphs. Journal of graph theory, 17 (1), pp.81-107.

[22] Davis, M. and Putnam, H., 1960. A computing procedure for quantific-

ation theory. Journal of the ACM (JACM), 7 (3), pp.201-215.

[23] Duchêne, E., Gledel, V., Parreau, A. and Renault, G., 2018. Maker-

Breaker domination game. arXiv preprint arXiv:1807.09479.

[24] Erdős, P. and Selfridge, J.L., 1973. On a combinatorial game. Journal

of Combinatorial Theory, Series A, 14 (3), pp.298-301.

[25] Fomin, F.V., Grandoni, F. and Kratsch, D., 2005. Some new techniques

in design and analysis of exact (exponential) algorithms. Bull. EATCS,

87, pp.47-77.

[26] Fomin, F.V., Grandoni, F., Pyatkin, A.V. and Stepanov, A.A., 2005.

Bounding the number of minimal dominating sets: a measure and con-

quer approach. In Algorithms and Computation: 16th International Sym-

posium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005.

Proceedings 16 (pp. 573-582). Springer Berlin Heidelberg.

[27] Fomin, F.V., Grandoni, F., Pyatkin, A.V. and Stepanov, A.A., 2008.

Combinatorial bounds via measure and conquer: Bounding minimal dom-

inating sets and applications. ACM Transactions on Algorithms (TALG),

5 (1), pp.1-17.

BIBLIOGRAPHY 79

[28] Fomin, F.V., Grandoni, F. and Kratsch, D., 2009. A measure & con-

quer approach for the analysis of exact algorithms. Journal of the ACM

(JACM), 56 (5), pp.1-32.

[29] Gledel, V., Henning, M.A., Iršič, V. and Klavžar, S., 2020.

Maker–Breaker total domination game. Discrete Applied Mathematics,

282, pp.96-107.

[30] Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S. (2011). The domin-

ation number of grids. SIAM Journal on Discrete Mathematics, 25 (3),

pp.1443–1453.

[31] Grandoni, F., 2006. A note on the complexity of minimum dominating

set. Journal of Discrete Algorithms, 4 (2), pp.209-214.

[32] Hare, E.O.M., 1989. Algorithms for grids and grid-like graphs(Ph.D.

thesis, Clemson University, South Carolina, United States of America).

[33] Hales, A.W. and Jewett, R.I., 1963. Regularity and positional games.

Transactions of the American Mathematical Society, 106 (2), pp.222-229.

[34] Haynes, T.W., Hedetniemi, S. and Slater, P., 1998. Fundamentals of

domination in graphs. CRC press.

[35] Haynes, T.W., Hedetniemi, S.T. and Henning, M.A. eds., 2020. Topics

in domination in graphs (Vol. 64). Cham: Springer.

[36] Hayward, R.B. and Toft, B., 2019. Hex: The full story. CRC Press.

[37] Hedar, A.R. and Ismail, R., 2012. Simulated annealing with stochastic

local search for minimum dominating set problem. International Journal

of Machine Learning and Cybernetics, 3, pp.97-109.

[38] Hedetniemi, S.T. and Laskar, R.C., 1991. Bibliography on domination

in graphs and some basic definitions of domination parameters. Annals

of discrete mathematics, 48, pp.257-277.

BIBLIOGRAPHY 80

[39] Hefetz, D., Krivelevich, M., Stojaković, M. and Szabó, T., 2014. Posi-

tional games (Vol. 44). Basel: Birkhäuser.

[40] Jacobson, M.S. and Kinch, L.F., 1983. On the domination number of

products of graphs: I. Ars Combinatoria, 18, pp.33-44.

[41] Johnson, D.S., 1973, April. Approximation algorithms for combinatorial

problems. Proceedings of the fifth annual ACM symposium on Theory of

computing (pp. 38-49).

[42] Kann, V., 1992. On the approximability of NP-complete optimiza-

tion problems (Ph.D. thesis, Royal Institute of Technology, Stockholm,

Sweden).

[43] Majeed, A. and Rauf, I., 2020. Graph theory: A comprehensive survey

about graph theory applications in computer science and social networks.

Inventions, 5 (1), p.10.

[44] Merouane, H.B. and Chellali, M., 2015. On secure domination in graphs.

Information Processing Letters, 115 (10), pp.786-790.

[45] O. Ore, Theory of Graphs (Vol 38), American Mathematical Society

Colloquium Publications.

[46] Phillips, J.D., Schwanghart, W. and Heckmann, T., 2015. Graph theory

in the geosciences. Earth-Science Reviews, 143, pp.147-160.

[47] Siebertz, S., 2019. Greedy domination on biclique-free graphs. Informa-

tion Processing Letters, 145, pp.64-67.

[48] Schiermeyer, I., 2008. Efficiency in exponential time for domination-type

problems. Discrete Applied Mathematics, 156 (17), pp.3291-3297.

[49] Spalding, A., 1998. Min-Plus Algebra and Graph Domination. (Ph.D.

thesis, University of Colorado, Colorado, United States of America)

BIBLIOGRAPHY 81

[50] van Rooij, J.M. and Bodlaender, H.L., 2008. Design by measure and

conquer, a faster exact algorithm for dominating set. arXiv preprint

arXiv:0802.2827.

[51] van Rooij, J.M., 2011. Exact exponential-time algorithms for domination

problems in graphs. BOXpress.

[52] Vecchio, F., Miraglia, F. and Rossini, P.M., 2017. Connectome: Graph

theory application in functional brain network architecture. Clinical

neurophysiology practice, 2, pp.206-213

[53] Xue, H.L., Liu, G. and Yang, X.H., 2016. A review of graph theory

application research in gears. Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, 230 (10),

pp.1697-1714.

	Contents
	List of Figures
	Summary
	Declaration
	Acknowledgements
	Introduction
	Graphs
	Notation

	Dominating Sets of Graphs
	Secure Domination

	Maker-Breaker games

	Algorithmic Approaches to Finding Dominating Sets
	Determining the (Secure) Domination Number Algorithmically
	Mixed Integer Linear Programming (MILP) Approaches
	Heuristic Algorithms

	Maker-Breaker domination games
	Definition and Key Results
	Maker-Breaker Secure Domination Game

	3 3 Grid Example

	Strategies and Simulation
	Core Simulation Environment
	What is a Strategy?
	Strategies for the Maker-Breaker Plain Domination Game
	Pairing Strategy
	Greedily Seeking New Neighbours
	Greedily Seeking Enclaves
	Drawing on the Erdős-Selfridge Criterion

	Algorithms for the Maker-Breaker Secure Domination Game
	Preliminaries
	Random Selection of 2 Neighbours
	Considering 2-Guarded Vertices
	Considering Minimum Guarded Vertices
	Using a Linear Programming Formulation
	Hybrid Strategies

	Results
	Hybrid Approach
	Comparing Strategies Against Each Other
	Time Analysis
	Strategy Stealing

	Conclusions and Directions for Future Research
	Bibliography

