Investigations into the Natural Variation of Pyrite Reactivity

Thesis submitted to the School of Chemical and Physical Sciences, Faculty of Science and Engineering, Flinders University in fulfilment of the requirements for the degree of Doctor of Philosophy

Owen D. Osborne

BTech (Forens&AnalytChem), BSc (Hons)

Flinders University, South Australia Faculty of Science and Engineering School of Chemical and Physical Sciences

June 2013

Declaration

"I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text."

on

Owen D. Osborne

Acknowledgements

I would first like to acknowledge that acknowledgements are hard, to say something meaningful about all of the people who have aided me and supported me over the past 5 or so years would be no small feat. So to anyone who I don't mention specifically, thank you, the journey wouldn't have been the same without you.

Primarily, I would like to thank my principal supervisor Associate Professor Claire Lenehan. I cannot thank you enough for the knowledge, guidance and support you have provided, from my undergraduate degree right through to the production of this tome. You are undoubtedly the person from whom I have learnt the most and your encouragement and positive attitude have been invaluable to my motivation and self-confidence.

Thank you to my co-supervisor Professor Allan Pring. The depth and breadth of your knowledge amazes me, and I have benefitted immensely from your expertise. The experience I have gained from working with you over the past few years has been invaluable.

To Dr Rachel Popelka-Filcoff, thank you for offering your expertise in the collection and analysis of my neutron activation analysis data, your enthusiasm and friendliness made learning from you a pleasure.

I would like to thank the staff at Adelaide Microscopy, in particular Aoife McFadden, for her help with sample preparation, data collection and for putting up with my numerous requests for instrument time.

I would like to acknowledge my fellow students, past and present, for making my time at Flinders that much more enjoyable. Special mention must go to Darko Bogdanovic for teaching me to use LabVIEW and introducing me to a music genre I can only describe as Serbian gypsy punk. To my longest serving office mates Christine Ta and Jessirie Dilag, thank you for your moral support, for feeding me, and generally looking after me, without you I would have probably lost the plot a long time ago. To my substitute office mates Rachel Hughes and Andrew Blok, thank you for your help and enduring friendship over the years. To my Mum, Dad, Brother and Sister, your support and confidence in me has always been beyond reproach, I love the lot of you.

The partners of postgraduate students have a very real and well established role; to provide unwavering support, absolute understanding and, at a very specific point, the statement *"just finish it already!"* spoken through gritted teeth, and I want to thank you, Kate for fulfilling your duties to perfection. I couldn't have done it without you.

So in the words of the great John Cleese: "And now for something completely different..."

Dedicated to my family.

Contents

Declaration	i
Acknowledgements	<i>ii</i>
Contents	V
Publications from this Thesis	viii
Summary	ix
Figures	xi
Tables	x ii
Equations	xiii
Mechanisms	xiv
Abbreviations	<i>xv</i>
Chemical abbreviations	xviii
Introduction	1
1.1 Introduction	2
1.2 Pyrite mineralogy	4
1.4 Previous studies	8
1.4.1 Reaction mechanism	8
1.4.2 Reaction with hydrogen peroxide	13
1.4.3 Studies examining the variation in rate of pyrite oxidation	14
1.5 Trace analysis	21
1.6 Reaction monitoring	22
1.7 Research overview	24
Determination of pyrite oxidation rates	25
2.1 Introduction	26
2.2 Materials and methods	28
2.2.1 A-ray unitablicity	20 28
2.2.2 Instrumentation	30
2.2.5 Optimisation	30
2.2.5 Pvrite sample preparation	
2.2.6 Sample analysis	32
2.2.7 Method validation	32
2.3 Results and discussion	33
2.3.1 Simplex optimisation of reagent concentrations	33
2.3.2 Flow rate optimisation	33
2.3.3 Calibration	34
2.3.4 Interference studies	34
2.3.5 Method validation	36
2.3.6 Application to real samples	37
2.4 Conclusion	41
Trace element analysis comparison.	42
3.1 Introduction	43
3.2 Materials and methods	45

3.2.1 Sample selection and preparation	45
3.2.2 Elemental analysis	47
3.2.3 Data Analysis	48
3.3 Results and discussion	49
3.3.1 Quality control data	49
3.3.2 Concentration data	52
3.3.3 Inconsistencies in the data	54
3.3.4 Statistical comparison of data	57
3.3.5 Examination of AI, Na and Ti results	59
3.3.6 Comparison to previously reported results	64
3.4 Conclusions	66
Analysis of trace clament composition and comisenducting type	67
Analysis of trace element composition and semiconducting type	07
4.1 Introduction	08 70
4.2.1 Neutron activation analysis.	
4.2.2 Semiconductor type	
4 2 3 Data treatment	
4.3 Results and discussion	
4.3.1 Neutron activation analysis results	
4.3.2 Trace element correlations	
4 3 3 Semiconducting properties	87
4.4 Conclusions	89
Geological origins and links to reactivity	91
5.1 Introduction	92
5.2 Materials and methods	96
5.2.2 Summary of sample information	00 96
5.2.2 Summary of sample mormation	
5.2.4 Scanning electron microscony	
5.2.4 Scanning electron microscopy	100
5.3.1 Particle size distribution	100 100
5 3 2 Homogeneity	101
5.3.3 Co/Ni and S/Se ratios	
5.3.4 Peactivity and formation conditions	 106
5.5.4 Reactivity and formation conditions	107
5.4 Conclusions	107
Conclusions and future work	108
6.1 Conclusions	109
6.2 Future directions	110
6.2.1 Samples from well documented origins	110
6.2.2 Method development	110
6.2.3 Total organic content	111
6.2.4 Synthetic pyrite samples	111
Appendix A	113
MURR Analysis:	113
ANSTO Analysis:	117
Appendix B	197
G20974 - Zeigler Mine, Sparta Randolph Co Illinois USA	127
G33033 - Ampliación a Victoria Mine, Navaiún, La Rioja, Spain	128
G32419 - Black Cloud Mine Leadville Colorado USA	

G29969 - Paulsens Mine, Wyloo, Western Australia	128
G23414 - Portland Limestone Quarry, Fermont Co., Colorado, USA	129
G32422 - Siglo XX Mine, Llallagua, Bolivia	129
G33797 - Huanzala Mine, Huallanca District, Dos de Mayo, Peru	129
G17012 - Poona Mine, Moonta, South Australia	130
G32427 - Ophir Hill Mine, Ophir, Tooele Co., Utah, USA	
References	131

Publications from this Thesis

- Osborne, O.D., Pring, A., and Lenehan, C.E., A simple colorimetric FIA method for the determination of pyrite oxidation rates. Talanta, 2010. 82(5), p.1809-1813.
- Osborne, O.D., Pring, A., Popelka-Filcoff, R.S., Bennett, J.W., Stopic, A., Glascock, M.D., and Lenehan, C.E., *Comparison of the relative comparator and k0 neutron activation analysis techniques for the determination of trace-element concentrations in pyrite.* Mineralogical Magazine, **2012**. 76(5), p.1229-1245.

Summary

Pyrite (FeS₂) is widely accepted to be the most abundant sulfide mineral on the surface of the planet and its abundance in mining waste is well established. The significance of pyrite lies in its potential to oxidise in the environment and cause a process called acid mine drainage. It has been observed that pyrites from different geographical locations will undergo oxidation at different rates, however, the reasons for this are not well understood. This thesis presents investigations into the proposed variation of pyrite reactivity and the mineral characteristics which may contribute to this variation.

A method for the rapid determination of the oxidation rate of naturally occurring pyrite samples was developed. The progress of the oxidation reaction was followed by measurement of the concentration of total dissolved Fe using flow injection analysis. Iron was determined using ultraviolet-visible detection after reaction with the colorimetric reagent 5-sulfosalicylic acid in the presence of ammonia. The calibration function was linear between 5 and 150mg.L⁻¹, and the detection limit was 0.46mg.L⁻¹. The relative standard deviation was typically less than 1% (n=10) and the measurement frequency was 60 per hour. The method was used to quantify the oxidation rate of 40 ground and cleaned pyrite samples (53μ m<x<106 μ m) from various international locations that were subjected to accelerated oxidation in acidic hydrogen peroxide. Results of these experiments showed over a 6-fold difference in oxidation rates across the pyrite samples.

Thirty pyrite samples from a range of geological locations were analysed using relative comparator and k_0 -NAA (neutron activation analysis) at MURR (University of Missouri Research Reactor, Columbia, Missouri, USA) and ANSTO (Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia) respectively. In general, statistical analysis of the trace element data for the two methods showed a good correlation, with the majority of elemental concentrations of paired data reported by MURR and ANSTO being indistinguishable at the 0.05 significance level. Comparison of results presented here for pyrite from Victoria Mine (Spain) compared well

with previously published NAA data. Both methods show applicability to the trace element analysis of pyrite.

The trace element data for the samples, collected by NAA was compared to their measured semiconductor types. The results showed that p-type samples generally had an abundance of hole donating impurities while n-type pyrites generally had an abundance of electron donating impurities. Semiconducting type was compared with the reactivity of the samples and no correlation was observed. Interestingly, the inclusion of elements common in clay and silicate layer minerals was found to correlate with sample reactivity. By investigating the geology of samples with large and small measured reactivities a trend emerged indicating that samples from sedimentary origins were significantly more reactive than those from higher temperature hydrothermal origins.

Figures

Figure 1.1 Image of oxidised pyrite.	4
Figure 1.2 Image of unoxidised pyrite.	_ 4
Figure 1.3 Pyrite unit cell structure.	_ 5
Figure 1.4 Image of cubic pyrite	_ 6
Figure 1.5 Image of pyritohedral pyrite.	_ 6
Figure 2.1 A simple flow injection manifold.	_ 27
Figure 2.2 FIA manifold for the determination of total iron concentration.	_ 29
Figure 2.3 Effect of flow rate on measured peak height.	_ 34
Figure 2.4 Effect of increasing acid concentration of sample matrix on pea	эk
height	_ 35
Figure 2.5 Comparison of FIA and ICP-MS methods for determination of	total
iron	_ 37
Figure 2.6 Unit cell dimensions for pyrite samples analysed by XRD.	_ 38
Figure 2.7 Rate constants for 40 pyrite samples	_ 40
Figure 3.1 Plot displaying the slope from linear regression of each element	nts
paired data set	_ 58
Figure 3.2 Scatter plots comparing AI concentration	_ 61
Figure 3.3 Scatter plots comparing Na concentration.	_ 62
Figure 3.4 Scatter plot comparing Ti concentrations.	_ 63
Figure 3.5 Plot comparing NAA trace element analysis of pyrite from Victor	oria
Mine	_ 65
Figure 4.1 Total concentration of impurities measured by NAA.	_ 81
Figure 4.2 Scatter plots comparing reactivity of pyrite samples with eleme	ental
concentration	_ 85
Figure 4.3 Scatter plots comparing log reactivity to log elemental	
concentration	_ 86
Figure 4.4 Reactivity of the pyrite samples categorised by semiconductivi	ty
type	_ 89
Figure 4.5 The log ₁₀ of the ratio of p-type dopants to n-type dopants,	
categorised by semiconductor type	_ 89
Figure 5.1 Scatter plot showing average particle length and area verses	
reactivity.	101
Figure 5.2 SEM pictures of 9 pyrite samples	103

Tables

Table 1.1 Common iron sulfide minerals.	_ 5
Table 2.1 Concentrations investigated during Multisimplex optimisation.	30
Table 2.2 Effects of selected interferants on peak height.	36
Table 2.3 Geological origin and crystal habit of each of the pyrite samples.	39
Table 2.4 Descriptive statistics for reactivity rates of 40 pyrite samples.	41
Table 3.1 Pyrite sample ID numbers and geographical origins.	46
Table 3.2 Quality control data for the NAA analysis of pyrite by ANSTO	50
Table 3.3 Quality control data for the NAA analysis of pyrite by MURR	51
Table 3.4 Overview of NAA elemental concentration data.	52
Table 3.5 Categorisation of unpaired elemental concentration data.	56
Table 3.6 Ratio of detected element concentration to the limit of detection	of
the alternate anlaysis for unpaired data.	56
Table 3.7 Results of paired t-test comparing elemental concentration data.	57
Table 3.8 Results of paired t-test comparing elemental concentrations of	
ANSTO with MURR (background subtracted)	63
Table 3.9 Trace element data from the NAA of pyrite from Victoria Mine	65
Table 3.10 Results of paired t-tests comparing NAA trace element	
concentration data for pyrite from Victoria Mine (G33033).	66
Table 4.1 Summary of elements analysed by each NAA facility.	71
Table 4.2 Trace elemental data from NAA analysis of 40 pyrite samples.	73
Table 4.3 Correlation coefficients of reactivity and trace element	
concentration	82
Table 4.4 Correlation coefficients of inter elemental correlations.	84
Table 4.5 Semiconductor type of the pyrite samples.	88
Table 5.1 Descriptive statistics for the 38 pyrite samples.	98
Table 5.2 Summary of the conditions of formation, semiconductor type and	ł
reactivity of the final 9 samples.	98
Table 5.3 Sample conditions of formation and selected elemental	
concentrations and ratios	105

Equations

Equation 1.1 Initial oxidation of pyrite by oxygen.	3
Equation 1.2 Oxidation of ferrous to ferric ions by oxygen.	3
Equation 1.3 Oxidation of pyrite by ferric ions.	3
Equation 1.4 Precipitation of iron hydroxide at pH>4.5.	3
Equation 1.5 Anodic reaction of sulfur during pyrite oxidation	_ 13
Equation 1.6 Cathodic reduction of ferric ion during pyrite oxidation.	_ 13
Equation 1.7 Cathodic reduction of dissolved oxygen during pyrite oxidat	ion.
	_ 13
Equation 1.8 Pyrite oxidation by hydrogen peroxide.	_ 13
Equation 1.9 Oxidation rate law	_ 15
Equation 1.10 Pyrite oxidation at pH>4	_ 17
Equation 1.11 Pyrite oxidation at pH>4 overall equation	_ 17
Equation 4.1 Formula for calculating the correlation coefficient between t	wo
data sets	
	_ 72

Mechanisms

Mechanism 1.1 Production of superoxide anion.	_ 9
Mechanism 1.2 Production of hydroperoxyl anion	_ 9
Mechanism 1.3 Dissociation of hydroxide anion.	_ 9
Mechanism 1.4 Dissociation of a second hydroxide anion.	10
Mechanism 1.5 Formation of an electropositive sulfur site.	10
Mechanism 1.6 Nucleophilic attack of the sulfur site by water.	10
Mechanism 1.7 Dissociation of a proton into solution.	10
Mechanism 1.8 Nucleophilic attack by a second water molecule.	10
Mechanism 1.9 Oxidation by nucleophilic attack by a third water molecule.	10
Mechanism 1.10 Dissociation of thiosulfate at high pH	11
Mechanism 1.11 Dissociation of sulfate at low pH	11

Abbreviations

%	percent
%RSD	percentage relative standard deviation
%v/v	percent volume for volume
%w/v	percent weight for volume
%w/w	percent weight for weight
°C	degrees Celsius
<	less than
>	greater than
Å	Angstrom
a	unit cell dimension
AAS	atomic absorption spectroscopy
AINSE	Australian Institute for Nuclear Science and Engineering
AMD	acid mine drainage
ANSTO	Australian Nuclear Science and Technology Organisation
BET	Brunauer-Emmett-Teller
BSE	backscattered electron
cm	centimetre
$cm^{-2} s^{-1}$	per centimetre per second
conc	concentration
CPS	counts per second
	direct current
e ⁻	electron
FDS	energy dispersive X-ray spectrometer
EME	electromotive force
e\/	electron volt
FIΔ	flow injection analysis
0	aram
9 h	bour
11 H 7	hertz
id	internal diameter
i.u. i f	in line filter
	inductively coupled plasma
	inductively coupled plasma atomic emission spectrometry
1CF - 1013	inductively coupled plasma mass spectrometry
K	Richar
KDar	kilomatra
km Ku	kilometre
ĸv	KIIOVOITS
LA-ICP-MS	laser adiation inductively coupled plasma mass
ITM	l eadville type mineralisation
	limit of detection
100	limit of quantitation

m	metre
М	molar
M⁻¹.cm⁻¹	per molar per centimetre
m ² .g ⁻¹	metres squared per gram
Ма	megaannum
mg	milligram
mg.L ⁻¹	milligrams per litre
min	minute
mJ	millijoule
mL	millilitre
mL.min ⁻¹	millilitres per minute
mm	millimetre
mmol.kg ⁻¹	millimole per kilogram
mol.kg⁻¹	mole per kilogram
mol.L ⁻¹ .min ⁻¹	moles per litre per minute
moles pyrite.h ⁻¹ .g ⁻¹	moles of pyrite per hour per gram
MURR	University of Missouri research reactor
mV	millivolt
MΩ	mega ohm
n-type	negative type
nA	nanoamp
NAA	neutron activation analysis
ND	not detected
nm	nanometre
OPAL	open pool Australian lightwater (reactor)
p-type	positive type
PAP	Pouchou and Pichoir
ppb	parts per billion
ppm	parts per million
PT	pressure and temperature
QC	quality control
RM	reference material
S	second
SEM	scanning electron microscope
SRM	standard reference material
UV	ultra violet
Unc.	uncertainty
USGS	United States Geological Survey
UV-VIS	ultra violet-visible
VS.	versus
WDS	wavelength dispersive spectroscopy
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
XRF	X-ray fluorescence
μL	microlitre
μm	micrometre
μM	micromolar

µM.h⁻¹.g⁻¹	micromolar per hour per gram
µM.L⁻¹	micrograms per litre
µmol.kg⁻¹	micromole per kilogram
µmol.L⁻¹.min⁻¹	micromolar per litre per minute
Ω ⁻¹ .cm ⁻¹	per ohm per centimetre

Chemical abbreviations

5-SSA	5-sulfosalicylic acid
CoS ₂	colbalt sulfide
Fe(OH)₃	ferric hydroxide
Fe(SSA) ₃	acidic iron-sulfosalicylic acid complex
Fe ²⁺	ferrous iron
Fe ³⁺	ferric iron
FeAsS	arsenopyrite
FeS ₂	pyrite / iron disulfide
FeSO ₄	iron sulfate
FeSO ₄ .7H ₂ O	melanterite
FeSSA	basic iron-sulfosalicylic acid complex
H⁺	proton
H ₂ O	water
H_2O_2	hydrogen peroxide
HCI	hydrocholric acid
HO_2^-	hydroperoxyl ion
NaCl	sodium chloride
O ₂	oxygen
O2 ⁻	superoxide anion
OH•	hydroxide radical
OH	hydroxide anion
PTFE	polytetrafluoroethylene
PVC	polyvinylchloride
S ₂ ²⁻	disulfide ion
$S_2O_3^{2-}$	thiosulfate
SO4 ⁻²	sulfate
ZnS	zinc sulfide