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SUMMARY

Background: Chronically disturbed or reduced sleep is associated with adverse health outcomes.
Pulse wave amplitude (PWA)-drops during sleep indicate that vasoconstriction responses detectable
using pulse oximetry could be associated with cardiovascular disease and be useful clinical markers

of sleep disruption.

Objectives: To develop an automated PWA-drop detection algorithm for exploration of 1) the
relationship between PWA-drops and clinical cardiovascular outcomes in general population

samples and 2) the disruption of sleep due to environmental noise.

Methods: An automated algorithm to detect PWA-drops from pulse-oximeter photoplethysmogram
responses was developed, incorporating inter-pulse baseline de-trending and moving average-
based criteria for detecting the onset, offset, duration and area under curve (AUC) of each PWA-
drop, and the number of drops per hour of sleep. Effects of noise on traditionally scored
electroencephalogram (EEG) sleep arousals >3-sec and PWA-drops were studied during two nights
of sleep experiments in 25 participants (11 males, aged 26.5+16.4 years, range: 18-75 years and 14
females, aged 24.119 years, range: 19-55 years) exposed to 20-sec environmental noise stimuli
(windfarm and traffic noises) at levels ranging from 33 to 48 dB(A). Associations between sound
pressure level and PWA-drops, controlled for noise type and conventionally scored sleep stage,
were investigated using survival analysis. To explore the relationship between PWA-drops and
cardiovascular pathophysiology, two large-population based cohorts were also studied: the
HypnolLaus cohort of 2162 individuals who underwent home-based sleep studies from a general
population in Lausanne, Switzerland; and the Men Androgen Inflammation Lifestyle Environment
and Stress (MAILES) cohort which included home-based polysomnography from 752 men in
Adelaide, Australia. A possible association between PWA-drop features (number of PWA-drops per
hour, mean duration and mean AUC), and prevalent hypertension and/or cardiovascular disease in

these cohorts was explored using multivariate-adjusted logistic regression analysis.

Results: PWA-drops were more sensitive predictors of the presence versus absence of noise stimuli
than traditionally scored EEG arousals at lower sound pressure level during stage 2, 3 and REM
sleep (Control vs 48 dBA: HRpwa = 2.9 [2.2 — 3.8] and HReec = 2.5 [1.5 — 4.2], Control vs 39 dBA:
HRpwa = 1.5 [1.1 — 2.0] and HReeg = 1.1 [0.6 — 2.1], Control vs 33 dBA: HRpwa = 1.1 [0.8 — 1.5] and
HReec = 0.6 [0.3 — 1.3], respectively). The mean AUC of PWA-drops was the only feature consistently
associated with the hypertension prevalence in both the HypnoLaus and MAILES cohorts (OR
[95%CI] = 1.42 [1.03-1.96] and OR = 1.84 [1.10-3.08], respectively, pooled cohorts OR = 1.58 [1.21-
2.07]). However, no consistent association was observed from pooled datasets between the
prevalence of cardiovascular disease and PWA-drop features (number of PWA-drops per hour: OR
=0.73 [0.46-1.17], mean duration: OR = 0.82 [0.53-1.28], and mean AUC: OR = 0.90 [0.55-1.47]).

vil



Conclusions: Automatically scored PWA-drops during sleep are a sensitive marker of
cardiovascular system activation responses to noise and in two large population cohorts are
associated with hypertension. Further studies are clearly warranted to better understand the nature
of potential causal relationships between prolonged environmental noise exposure, cardiovascular
disturbances in sleep more generally, and potential long-term adverse health effects such as

hypertension.
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CHAPTER 1 - OVERVIEW

1.1 Introduction

When asleep, the human body is in a vulnerable state and thus autonomic nervous system regulated
“fight-or-flight” responses are potentially vitally important for surviving local and environmental
threats that may arise during sleep. A major component of this response is a transient blood pressure
surge necessary to support increased cardiovascular and metabolic system activity. Blood pressure
surges are achieved partly via changes in heart rate and stroke volume, but predominantly via
vasoconstriction in peripheral skin vascular beds that shunts blood away from the periphery towards

the heart, lungs, active muscles and brain (Schnall et al., 1999).

Subtle markers of sleep microstructure associated with these cardiovascular responses are
potentially more sensitive markers of sleep disturbance than ftraditional direct
electroencephalographic markers of sleep stage changes or cortical micro-arousals (Grote and Zou,
2017). Whilst these episodes of autonomic disturbance might be critical for survival, over-activation
of the cardiovascular system might increase risk factors for hypertension and cardiovascular
disease. Therefore, one of the main purposes of this project was to assess if finger vasoconstriction
could be a marker of cardiovascular system activation which increases the risk of developing
hypertension and cardiovascular disease. Moreover, finger vasoconstriction could also be a
sensitive marker of noise disturbance during sleep and thus potentially a useful marker of sleep

disturbance to acoustic stimuli, which were also investigated in this project.

1.2 Overview of the sleep process

Clear distinction exists between physiological states whilst awake and asleep and thus this review
starts with an overview of the sleep as conventionally scored using current American Association of
Sleep Medicine (AASM) criteria (Berry et al., 2012).

1.21 Measuring sleep: Polysomnography

Polysomnography (PSG) is considered the gold standard measurement of sleep and
simultaneously records multiple physiological parameters such as brain electrical activity with at
least one electroencephalogram (EEG) channel, left and right electro-occulograms (EOGs), an
electromyogram (EMG) usually from the chin, an electrocardiogram (ECG), and usually arrange
of respiratory-related signals including oximetry to assess breathing during sleep. Although often
not recorded, a useful signal also available through oximetry is a finger photoplethysmogram
(PPG) (Figure 1), which represents the pulsatile component of light transmittance through the

finger vascular bed underneath the oximeter probe.
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Figure 1: Polysomnography set-up. A) a 5 s example of an electroencephalogram signal from one

lead on top of the head (called F3 in the 10-20 system of polysomnography), B) a 5 s example of

an electrocardiogram signal from two leads positioned on the chest, one on the top left and one on
the bottom right (ECG lead Il), and C) a 5 s example of a photoplethysmogram signal recorded

from a finger pulse oximeter.

1.2.2 Sleep Structure

Sleep structure is manually scored according to standardised scoring rules originating from the
1960s (Kales and Rechtschaffen, 1968). Sleep is typically scored in 30-second long epochs
classifying sleep macro-structure into non-rapid eye movement (NREM) sleep divided into 3

stages N1, N2 and N3, and rapid eye movement (REM) sleep (Figure 2):

e N1 corresponds to light sleep during which brain activity begins to slow down (theta
activity, frequency band between 3 and 8 Hz) from wake (low amplitude with faster alpha
waves, frequency band between 8 and 12 Hz). N1 usually occupies around 5% of the
total sleep time.

¢ N2 is characterised by the appearance of K-complexes (transient EEG slow wave activity)
and short bursts of EEG spindles (bursts of 12-14 Hz activity) and typically makes up
approximately 50% of sleep.

e N3 is commonly referred to as “deep sleep” or slow wave sleep (SWS) and occupies
around 20 - 25% of the total sleep time. N3 is characterised by large amplitude slow wave

activity (0.5-2 Hz) and is considered to be the most restful stage of sleep (Muzet, 2007).



Sleep Stages

o REM sleep is characterised by more active brain-wave activity than in N2 and N3 and is
accompanied by characteristic rapid eye movements. REM occurs for 20 - 25% of the
total sleep time and is strongly associated with daytime mental functioning and memory

processing (Muzet, 2007).

Sleep is typically composed of multiple sleep cycles lasting between 40 to 90 min, repeating 4 to
6 times over a full night of sleep, as shown in Figure 2. Two distinct features can be distinguished
in each sleep cycle: 1) an ascending slope, where sleep stages change from stage 1 towards
stage 3, and 2) a descending slope, where sleep changes from deeper to lighter stages (sleep
stages 3 toward stage 1 and REM). Periods of N3 typically become shorter cycle after cycle,

whereas periods of REM usually lengthen.
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Figure 2: Example of a hypnogram.

However, conventional sleep scoring in 30-seconds epochs does not capture more subtle
changes that occur during sleep and fails to predict important clinical outcomes such as adverse

cardiovascular events (Rosenthal and Dolan, 2008).
1.2.3 Cardiovascular system during sleep

The autonomic nervous system (ANS) has two main branches which both control the
cardiovascular system, typically with antagonistic effects, through the parasympathetic nervous
system and the sympathetic nervous system (SNS). The ANS maintains body homeostasis and
allows the body to respond to changes in the environment. The parasympathetic nervous system

predominantly operates to conserve and store energy, whilst the SNS dominate “fight-or-flight”



responses (McCorry, 2007). These systems operate largely unconsciously to regulate the
physiology of the body, including heart hate (HR) and skin vasomotor responses underpinning
finger pulse wave amplitude (PWA). HR is controlled by both the parasympathetic nervous
system and the sympathetic nervous system whilst PWA is mainly controlled by the sympathetic

nervous system (Grote and Zou, 2017, Di Nisi et al., 1990).

As sleep deepens towards slow wave sleep, an increase in heart rate period can be observed
(Silvani, 2008), which is attributed to an increase in parasympathetic activity (Grote and Zou,
2017, Baust and Bohnert, 1969), coupled with a decrease in arterial blood pressure of about 10%
(Silvani et al., 2016, Silvani and Dampney, 2013). In REM sleep, ANS activity varies greatly with
phasic changes in sympathetic and parasympathetic discharge (Zoccoli and Amici, 2020). While
the neuronal/physiological mechanism of these changes are unclear (Silvani et al., 2016), they
are clearly observable with non-invasive markers derived from ECG and photoplethysmography
sensors. Cardiovascular changes are prominent enough for some groups to have investigated
markers of sleep depth and quality based only on ECG leads (Thomas et al., 2018, Lee et al.,
2014, Brandenberger et al., 2001, Thomas et al., 2005).

Interestingly, when normal NREM expression is prevented, the sympathetic activity remains as
high as wakefulness (Zoccoli and Amici, 2020). This results in over-activity of the sympathetic
nervous system during NREM sleep and could potentially represent a risk factor for

cardiovascular disease.

1.2.4 Pulse wave signal

Photoplethysmography is a non-invasive and inexpensive simple optical technique used to
detect volumetric changes in peripheral blood circulation, usually at the finger. The PWA-drop
derived from photoplethysmography, occurs due to a decrease of blood flow in the finger which
is mostly due to increased skin sympathetic activation and vasoconstriction (Grote and Zou,
2017), and corresponds to a marked decrease in the PWA signal, lasting around 30 - 40 seconds,

as shown in Figure 3.
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Figure 3: Example of a PWA-drop.

While there is a great potential for PWA-drops to contain valuable information about the
cardiovascular system during sleep (Terrill, 2020), this signal has received very little attention
compared to ECG signals. The potential of PWA-drops as a marker of sleep disturbance has
been mostly studied in response to acoustic stimuli (Griefahn, 2017, Catcheside et al., 2002,
Schnall et al., 1999) or apnoeic events (Grote et al., 2003). A small number of studies have
investigated associations between pulse wave amplitude markers and clinical outcomes (Hirotsu
et al., 2020, Grote et al., 2011). Thus, while PWA markers have the potential to provide a useful

marker of cardiovascular health, stronger evidence is required to support potential clinical utility.



2.1

CHAPTER 2 - LITERATURE REVIEW

Pulse wave amplitude drop detection

Few algorithms have been developed to automatically detect PWA-drops (Betta et al., 2020,
Grote et al., 2011, Pillar et al., 2002). Pillar et al. (2002) developed their algorithm on a scored
dataset of 40 patients where a PWA-drop was scored when the amplitude signal decreased by
at least 50% relative to the baseline. Betta et al. (2020) used a dataset of 16 participants with
two human scorers. The threshold for scoring a PWA-drop was defined as an instant when the
pulse wave amplitude signal decreased by at least 30% relative to the baseline. Grote et al.
(2011) developed a matching pursuit algorithm for cardiovascular risk assessment with multiple
variables, one of which was a decrease of 30% or more in pulse wave amplitude signal compared
with the baseline. However, no detection validation was done on this variable alone. Largely
arbitrary cut-offs with no established “gold standard” methodology or clinical outcomes potentially
related to vasoconstrictor responses makes it difficult to decide what approach may be clinically
more useful. Betta et al. (2020) are the only group to have validated an algorithm solely based

on automated PWA-drop detection.

2.2 Mortality and cardiovascular risk associated with disturbed sleep

Sleep is a fundamentally important biological process underpinning good health. Evidence
suggests that sleep is involved in systemic metabolic regulation and tissue growth and repair, for
example, glucose regulation (Spiegel et al., 1999) or cortisol secretion (Vgontzas et al., 2004).
Collectively, these experimental studies suggest that chronically disturbed or reduced sleep

could impact on morbidity and mortality (Hillman et al., 2006).

Epidemiological studies suggest that a reduced total sleep time, reduced slow wave sleep, and
a high number of awakenings are associated with a greater risk of hypertension, cardiovascular
events and all-cause mortality (Zinchuk et al., 2018, Javaheri et al., 2018, Kendzerska et al.,
2014). Furthermore, multiple sleep disorders, such as sleep disordered breathing (Shahar et al.,
2001, Grote et al., 1999, Nieto et al., 2000), insomnia (Bertisch et al., 2018, Chen et al., 2013)
and restless leg syndrome (Li et al., 2018), have all been associated with a greater risk of adverse

health outcomes such as hypertension or cardiovascular disease.

Only one up-to date study showed an association between PWA-drop characteristics and
hypertension and cardiovascular events (Hirotsu et al., 2020). The number of PWA-drops per
hour (index), the mean duration of PWA-drops and the mean area under the curve were shown
to be associated with cardiometabolic outcomes. Furthermore, the mean normalised (with total

sleep time) number of PWA-drop per hour lowest quartile had significantly higher odds ratio for



hypertension, cardiovascular events and diabetes compared to those in the highest quartile.
Similar results have been observed by Sommermeyer et al. (2014), where a lower number of

PWA-drops per hour was associated with an increased cardiovascular risk.

2.3 Impact of environmental noise on sleep

Environmental noise has been associated with cardiovascular damage and sleep disturbance as

depicted in Figure 4 and is a growing concern for public health (World Health, 2018, Ahn et al.,

2015).
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Figure 4: Human health issues due to environmental noise.

231 Cardiovascular risk associated with environmental noise exposure

during sleep

Environmental noise is commonly quantified by its sound pressure level measured in dB(A).
Guidelines recommend not exceeding 45 dB(A) more than 10 to 15 times a night and/or a
threshold above 30 dB(A) for long periods during the night (Ahn et al., 2015). Road traffic noise
(RTN) is the most common environmental noise as more than 30% of the EU population is
exposed to RTN exceeding 55 dB(A) during night time (Berglund et al., 1999). New guidelines
from the WHO recommend reducing RTN below 45 dB(A) Lnght as higher levels have been
associated with adverse effects on sleep (World Health, 2018). Recently wind farm noise has
been reported to be associated with sleep disturbance at sound pressure levels above 40-45
dB(A) (Basner and McGuire, 2018).

The two main acoustic characteristics of wind turbine noise (WTN) that could potentially be the
most problematic for sleep disturbance are low-frequency content and amplitude modulation.

Little is known about the physiological impacts of these two WTN characteristics during sleep.



Smith et al. (2020) appear to be the only research group to have studied the effect of WTN
amplitude modulation on sleep and suggested that this noise component could be one

characteristic of the noise particularly disturbing to sleep.

Several studies speculate that chronic exposure to noise could affect metabolic and
cardiovascular system health (Munzel et al., 2018, Basner et al., 2014, Babisch, 2011, Berglund
et al.,, 1999). Potentially permanent metabolic changes could promote a higher risk of
cardiovascular disease, myocardial infarction or stroke (Basner et al., 2014, Babisch, 2011)
and/or chronic disorders such as increased risk of hypertension, ischemic heart diseases and
atherosclerosis (Munzel et al., 2018, Basner et al., 2014, Babisch, 2011, Berglund et al., 1999).
Basner et al. (2014) observed that autonomic arousal, potentially one of the main risk factors for
cardiovascular disease, could be caused by noise at 33 dB(A) and would probably depend on
the frequency of occurrence of events. Héritier et al. (2017) also noted that the intermittency of
traffic events above the background level could be an important trigger for cardiovascular

disease.

To date, noise-related sleep disturbance has been mainly assessed by subjective measures
(Pirrera et al., 2010), where people are requested to recall and answer questions regarding their
previous night’s sleep. Questionnaire measurement depends on how well the person remembers
the night and are subject to potential participant and recall bias (Ohrstrém and Sk&nberg, 2004).
Thus, it is difficult to conclude with subjective measurements if self-reported sleep disturbance
reflects that individuals are more sensitive to noise, or if they associate wake with hearing
unwanted noise (Muzet, 2007). Therefore, objective measurements such as EEG to objectively
determine sleep stages and awakenings, and potentially electrocardiogram and finger pulse
oximetry related responses may be more useful and reliable markers of sleep disturbance due

to noise.

23.2 Objective responses to environmental noise

Autonomic or cortical responses to noise during sleep such as heart rate (HR), vasoconstriction,
event-related EEG arousals and awakenings seem to depend on acoustical characteristics,
however their relative prominence is not well known (Smith, 2017, Basner et al., 2014). It might
be an advantage to use the number and acoustic properties of single noise events to better
predict nocturnal sleep disturbance (Basner et al., 2010). Moreover, the difference in sound
pressure levels between noise stimuli and background noise, as well as the time interval between
two noise events influence physiological responses (Berglund et al., 1999). Arousals,
awakenings and body movements, among other parameters are physiological events that occur
during normal nights and only become a problem when frequent (Basner et al., 2014). However,

high variability among individual physiological reactions are problematic for establishing fixed



limit values to be defined for the activation of the autonomic nervous system when exposed to

traffic noise (Basner et al., 2010).

2.4 Markers of noise-induced sleep disturbances

241 Physiological macro-structure responses

Vallet et al. (1983) observed a reduction in deep sleep duration in response to noise exposure
due to an increased number of awakenings and sleep state changes. These authors observed
that the average traffic noise level that provoked an awakening was 50.3 dB(A) while for a sleep
state change 48.5 dB(A) was sufficient. The higher the noise level, the more the sleep was likely
to be disturbed (Vallet et al., 1983).

Griefahn et al. (2006) found that traffic noise at levels equal to or above 39 dB(A) affected slow
wave sleep (SWS) latency, wake after sleep onset (WASO), sleep efficiency, and the percentage
of time spent in wakefulness and stage 1. Eberhardt et al. (1987) found SWS was reduced to
22% (5 min) from the baseline quiet condition and delta wave activity decreased by 10%,
indicating slow wave activity and a corresponding higher susceptibility to noise disturbance
during sleep. Additionally, 108 changes to lighter sleep were recorded and only 18 were
associated with traffic noise. Furthermore, Basner et al. (2018) reported that sleep disturbance
due to noise includes reduced sleep continuity, delayed sleep onset, awakenings, reduced N3
and REM sleep. Changes in the macrostructure of sleep are subtle and EEG likely contains more
information such as micro-arousals and K-complexes that may help to better inform sleep

disturbance effects.
242 Cardiovascular system responses

Cardiovascular surges in response to noise stimuli are another area of study in noise-induced
sleep disturbance that have been associated with an increased risk of cardiovascular disease
(Basner et al., 2014). Autonomic nervous system activation responses to noise stimuli do not

appear to habituate, even after a long exposure time (Muzet, 2011).

Cardiovascular responses depend on the sleep stage in which noise events occur. Griefahn et
al. (2017) found that cardiac noise-induced responses (HR and vasoconstriction) were more
pronounced in Stage 2 and REM sleep compared to deep or SWS. However, waking from deep
sleep induced a stronger response than waking up from lighter stages such as REM or Stage 1.
Johnson et al. (1967) found that HR responses due to noise, with a tone of 1000 Hz at 30-35 dB
above the hearing threshold, were less sensitive in SWS compared to Stage 2 and REM sleep.
Bach et al. (1991) presented three different noises during the night, one of a car at 64 dB(A), one
of a motorcycle at 67 dB(A) and one of a truck at 71 dB(A). The results showed that the HR
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noise-induced responses were larger and more frequent in Stage 2 and in REM sleep compared
to SWS. Whilst finger PWA noise-induced responses were only larger and more frequent in
Stage 2 compared to SWS. On the other hand, Tassi et al. (2010) reported that HR responses
were not dependent on sleep stages and the PWA response rate decreased during REM sleep
compared to Stage 2 and SWS. Nevertheless, as suggested by Johnson et al. (1967), during
REM sleep the PWA evoked response rates could be smaller due to more frequent spontaneous
PWA responses which could then “block” the evoked responses. Tassi et al. (2010) also found
that PWA responses were larger in SWS than Stage 2 and REM sleep for noise at 50 dB(A) Laeg
with peaks at 66 dB(A). This is possibly because individuals were awakened multiple times and
the average response could then have been larger in SWS (Griefahn, 2017). Nonetheless, a
significant drop in PWA was observed in Stage 2, SWS and REM sleep by multiple research
groups (Johnson and Lubin, 1967, Bach et al., 1991, Tassi et al., 2010). Furthermore, Griefahn
et al. (2017) observed that autonomic arousal started before noise onset, for example the HR
was particularly disturbed by noise during sleep, at least in the case of full awakenings, if noise
occurred during a spontaneous arousal, suggesting that noise onset during brief arousals may

promote progression to full awakenings.

Keefe et al. (1971) reported that PWA responses showed a 10 dB(A) lower threshold than the
HR response. Di Nisi et al. (1990) showed that the HR and PWA responses were proportional to
the noise intensity regardless of the noise types. For instance, airplane (67.7 dB(A)) and railway
(68.2 dB(A)) noise had larger responses compared to truck (61.9 dB(A)) and motorcycle noise
associated with pass-by events (52.7 dB(A)). Similarly, Tassi et al. (2010) found that the PWA
response and the PWA latency (from the start of the response to the minimum amplitude of the
drop) both gradually increased as a function of noise intensity. However, the PWA minimum
varies between experiments, with values between 37 and 40% drop from baseline for train noise
exposure ranging from 51 to 66 dB(A) (Tassi et al., 2010), and between 45 and 65 % drop for
exposure to different types of transportation noise, ranging from 52 to 69 dB(A) (Di Nisi et al.,
1990).

2.5 Pulse wave amplitude drop — a more subtle marker of noise
disturbance

HR and PWA responses are mediated by different parts of the autonomic nervous system. The
HR response is influenced by the parasympathetic and sympathetic nerves innervating the heart
itself whilst PWA responses appear to be innervated mostly by sympathetic nerves supplying

skin vascular beds.

However, during sleep, the HR and PWA responses seem to be closely related: when HR
accelerates, PWA also tends to fall (Di Nisi et al., 1990). It has been hypothesised that the HR

response could be an indicator of a stress response to noise, whereas the PWA response may
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be more closely related to both cardiovascular and auditory protective mechanisms such as the
auditory reflex (Kryter and Poza, 1980). These differences could explain why the PWA response
appears to be more sensitive to noise, the threshold being 10 dBA lower than the HR response
in Stage 2 and SWS (Keefe et al., 1971).

Di Nisi et al. (1990) reported that they could not establish a clear relationship between the HR
and PWA responses to transportation noise-exposure stimuli during wake. However, during
sleep, the authors showed that the HR and PWA responses to noise were similar as shown in
Figure 5. PWA decreases seem to be an indication of activation due to noise-exposure. Similarly,
during sleep, HR acceleration might be associated with stimuli “rejection”, in this case, noise
stimuli. HR and PWA arousal rates due to noise-exposure are still different during sleep, even if

their responses are more related.
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Figure 5: Cardiovascular responses due to noise during sleep. At the top is an example of PWA

signal in response to noise and at the bottom is an example of the heart rate in response to noise

The HR response during sleep is either biphasic or triphasic. The HR accelerates for 3 - 5 s after
noise onset (Catcheside et al., 2002) and then reaches its maximum, which may be limited by
inhibition of the PNS. Then, the HR decelerates and reaches its minimum 8 - 10 s after noise
onset, which could be explained by an increase in activity of the SNS (Jordan et al., 2003).
Finally, HR returns to steady baseline, or in case of a triphasic response, accelerates a little more

before returning to a stable baseline (Griefahn, 2017).

Skin vasoconstriction produces a drop in PWA around 3 s after noise onset, to between 20 - 50%

below baseline amplitude. The minimum of the drop is reached approximately 10 s after noise
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onset before finally returning back to baseline after around 30 - 40 s (Griefahn, 2017, Jordan et
al., 2003, Catcheside et al., 2002). Johnson et al. (1967) scored a PWA response when it
decreased by at least 20% from baseline for more than two heart beats and occurred within 2 -

6 beats after noise onset.

Bach et al. (1991) reported that the PWA showed a response to noise more frequently than the
HR but had a longer latency. A PWA response is also more visible due to its decay of
approximately 30 s, which is much longer than the HR response which accelerates only for a few
beats over approximately 5s (Catcheside et al., 2002). Relative changes in finger PWA response
were significantly greater than other cardiovascular parameters such as the finger pulse arrival
time (PAT), pulse transit time (PTT) or pulse wave velocity (PWV) (Catcheside et al., 2002).
Furthermore, Catcheside et al. (2002) noted significant changes in PWA after noise-exposure

without any visually discernible EEG changes.

Therefore, these results suggest that the PWA and HR could be sensitive sleep disturbance
markers to environmental noises, particularly changes in PWA given close relationships with
sympathetic nervous system activation underpinning skin vasoconstriction responses that
dominate cardiovascular activation and blood pressure responses to transient sensory

disturbances in sleep.

2.6 Synthesis and research aims

The macro-structure of sleep does not capture potentially more clinically informative more subtle
physiological changes in sleep. Whilst relationships might not be causal, environmental noise
such as road traffic noise has been associated with cardiovascular diseases. Therefore, objective
measurement of cardiovascular changes such as finger vasoconstriction could be a useful
marker of sleep disturbances and adverse health effects due to nocturnal environmental noise
exposures as well as a marker of activation of the sympathetic nervous system. Therefore, this
thesis focusses on the use of finger PPG recordings to assess pulse wave amplitude (PWA)-
drops to assess sleep disturbance in response to environmental noise as well as cardiovascular

disturbances in sleep. The aims of the work described in this thesis were to:

e Develop and validate an automated algorithm for detecting PWA-drops (vasoconstriction)
in the PPG signal.

e Prospectively investigate the value of PWA-drops for predicting hypertension and
cardiovascular events in large general population datasets.

¢ Investigate sleep disruption by different types of environmental noise to establish if dose-
response relationships exist between PWA-drop occurrence and sound pressure level,

noise types and sleep stages in which noises occur.

12



CHAPTER 3 - DEVELOPMENT OF PULSE WAVE AMPLITUDE

3.1

DROP DETECTION ALGORITHM

Introduction

This chapter presents the development and validation of a reliable algorithm for automated
detection of PWA. Such an algorithm can be used for systematically evaluating vasoconstriction
responses over full-night sleep recordings and for exploration of large cohort datasets. Two
algorithms were developed based on separate detection principles and their performance was

evaluated on a human scored dataset.

3.2 Methodology

The main difference between the algorithms was in evaluating the envelope over the pulse-

oximeter photoplethysmogram (PPG) signal, which forms the basis for finding PWA-drops.

3.21 Envelope algorithm (Algorithm 1)
The PWA-drop is characterised by a well-defined quick decay from the baseline PPG signal

before each drop occurrence, followed by a slow return to baseline, as shown in Figure 6A. The
main outcome of the algorithm is PWA-drop area under the curve (AUC). The functioning of the

algorithm in more details is as follows

1. The PPG signal is filtered using low-pass 3rd order Butterworth filter with a cut-off

frequency at 100 Hz in order to remove extraneous signal noise.

2. The envelope around the filtered PPG signal is determined by an adaptive trpiw second
long non-overlapping windows (w1,2,..n) in which the minima and maxima of the signal

are found, as shown in Figure 6A.

3. The envelope of the signal, shown in Figure 6B, is then found by interpolating the curve
through the minima and maxima points on the finger pulse wave (FPW). The envelope is

then smoothed using a 7-point moving average filter.

4. As shown in Figure 6C, the PPG magnitude is derived by subtracting the lower signal
envelop from the upper envelope. The FPW magnitude is identical to peak-to-trough

distance of the PPG individual peaks.

5. In the last step, the PWA-drops are found and characterised using the PPG magnitude,
as illustrated in Figure 6D. The PWA-drop is defined by three points, namely, FPW
response start, FPW response end and FPW response minima. These points are found

on a point-by-point comparison along the length of the FPW magnitude curve. A PWA-
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drop start point, FPWs, ,, where n indicates an arbitrary position along the curve, satisfies
FPW, > FPW,.1. When such a point is found, the FPW response minimal point (FPWu)
can be found as the first point from FPWs, onwards which satisfies FPW, < FPW+1.
Lastly, the FPW response end-point (FPWE,) is found as the first point from FPWy
onwards which satisfies FPW, > FPW,.1. After FPWE ,is defined the search continues for
the next set of FPW response characteristic points repeatedly until the end of the FPW

magnitude signal.

For the PWA-drop, characterised by the three points, to be recognised as valid the

following conditions had to be satisfied:

o FPWuy,< 0.9xFPWs, (The drop has to be at least 10% lower than the starting

point value)

o FPWEe, < FPWs,(The FPW response end point cannot be bigger than PWA-drop
starting point)

o FPWuy,>0.1x FPWs,, (This condition is for removing artefacts such as movement

or when the device fell off and the signal was zero)
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Figure 6: Schematics showing the 4 main stages of the vasoconstrictive response search and
characterisation algorithm.

3.2.2 Moving window algorithm (Algorithm 2)

Pre-processing of the signal

The PPG signal is pre-processed to clean and prepare the signal for PWA-drop detections
(Figure 7). Raw data were filtered using a Butterworth low-pass filter with a cut-off frequency
of 40 Hz, since there is no or minimal physiologically relevant information above that
frequency (Binghe and Jinglin, 1998). Then, the first derivative of each signal sample is used
to find the peaks and trough points of each pulse waveform (Xu et al., 2007). Finally, a cubic
spline was fitted and subtracted from the original signal to remove the floating baseline so
that the remaining signal reflects pulsatile amplitude changes above a stationary zero
baseline.
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Figure 7: Pre-processing steeps
of the PPG signal.

Algorithm detection (Fiqure 8)

Two moving average windows were applied to the pre-processed signal to find PWA-drops and
determine their size. Each window lasted 7 pulses and measured the mean baseline amplitude
and mean decreased amplitude, respectively. As the amplitude of the PWA signal can vary
rapidly, the 7 pulse windows were found to allow for detection of changes in the fast varying
PWA-signal yet rejecting the non PWA-signal changes. The ratio between the mean baseline
amplitude and mean decreased amplitude formed the amplitude ratio where PWA-drop was

identified if the amplitude ratio was < 75%.

This threshold was shown to demonstrate the most consistent performance in terms of F1-score,
as shown in a sensitivity analysis presented in Figure A-1 and Figure A-2. Another crucial ratio
was the ratio between the end of the PWA-drop and baseline which had to be > 80% for a valid

PWA-drop. This cut-off criteria was chosen according visual inspection of PWA-drops.
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So detected PWA-drops where then characterised in terms of their length and area under the

curve (see Figure 10) which was calculated as follows:

Area Max drop — Area drop
Mean MBA

)

AUC = ( )* 100,

where Area Max drop and Area drop are defined in Figure 9, and Mean MBA is the mean

amplitude baseline.
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Figure 10: Parameters of one detected PWA drop by the
algorithm.

3.23 Validation of the algorithms in a clinical dataset

PSG recordings and manual scoring

Both algorithms were validated on the PPG-data extracted from PSG overnight recordings of 16
patients (mean = SD age 50.9 + 6.3 years, 13 females) randomly sampled from the HypnoLaus
Sleep Cohort database, Switzerland (Heinzer et al., 2015). This scored PPG dataset was scored
by two scorers who visually inspect the signals and identified PWA drops where a minimal 30%
reduction in the signal was observed. A “consensus” dataset was created from both scorers to

evaluate the performance of each algorithm.
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Comparison of scorers and alqorithms

The degree of agreement between scorers was assessed via percentage overlap (%) (Equation
2); where perfect agreement would have a 100% overlap and complete disagreement 0% overlap
(Figure 11).

Intersection
—) * 100, &

Percentage overlap = ( Union

where Intersection is the overlap length between the PWA-drops as shown in Figure 11, and

Union is the total length of both PWA-drops as shown in Figure 11.

@ Intersection
Union

Scorer 1 detection |

l l
|
Scorer 2 detection

Figure 11: Description of percentage overlap.

Algorithm performance was assessed using a contingency table which was constructed by
calculating the number of true positive (TP), false positive (FP) and false negative (FN). ATP
was defined if a PWA-drop detected by an algorithm which overlapped with scorers’ detection for
at least the percentage overlap (0 to 100%). Subsequently, any drops that did not meet these
criteria were considered as an FN (if missed) or an FP (if detected by an algorithm but not scored
by scorers). This overlapping analysis rewards PWA-drops detected that align perfectly with the
other human scoring. As PWA-drops are relatively rare, the number of true negative (TN), used
generally for the computation of specificity, was not calculated. In this case, the total length of
data not determined as PWA-drops by either scorer would be defined as TN and then provide a
bias specificity (Yetton et al., 2016, Warby et al., 2014). The algorithm performance was ultimately

evaluated using F1-score which is based on recall and precision measures:
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TP , ()
Recall = TP+ FN - fraction of true PWA drops detected /scored
Precision = L = fraction of detections that are correct “@
TP+ FP
From these two measures, the F1-score was computed as follows:
recall = precision (5)

F, =2
! i (recall + precision

The F1-score ranges from 0, representing random, and 1, representing perfect classification.
The grand average score was obtained by the arithmetic mean of the F1-scores of all

participants.

The inter-scorer agreement was also assessed via the F1 score. This was done by evaluating
the degree of agreement between the scorers, measured in percentage overlap (see Equation 2
and Figure 11), with respect to only one of the scorer’s ratings which were treated as “gold
standard” or absolute truth. Treating one scorer rating as being correct, allowed the formation of
contingency tables and then on calculation of F1 score. This also provided an indication of the

optimal percentage overlap between the scorers for declaring valid PWA-drops.

3.3 Results

3.31 Algorithms and human scorer PWA-drop detection

Figure 12 shows a comparison of both scorers’ detection. The threshold was chosen at 20%
when both macro-averaged F1-score curves (= 0.66) started to decrease, indicating that the

detection of both scorers started to differ.
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Figure 12: The F1-score curves with standard deviation as a function of the percentage overlap

(%). To construct each curve the scorer’ scorings were compared in A) with Scorer 2 as reference,

and in B) with Scorer 1 as reference. Values are mean + SD.

Table 1: Summary PWA-drop detection by both algorithms and human scorers for all overnight

recordings.
- Scorer . Envelope M.oving
Participants| Scorer 1 Scorer 2 CONSENSUS All scoring algorithm wmd_ow
algorithm

1 396 81 80 397 217 150
2 29 25 18 36 40 19
3 109 92 66 136 219 159
4 89 95 59 125 218 88
5 224 226 185 267 296 268
6 287 139 111 315 392 340
7 241 231 212 261 285 225
8 414 231 229 423 453 375
9 127 297 118 306 359 259
10 89 87 62 114 227 147
11 255 321 234 342 352 251
12 346 379 338 583 532 505
13 69 105 48 126 293 204
14 186 335 167 354 278 243
15 146 228 132 241 197 154

Total 3007 3068 2059 4027 4358 3387
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The number of PWA-drops detected are shown in Table 1 for the all overnight recordings (lights
‘on” to lights “off’). Agreement between scorers is declared at 20% overlap threshold, the

threshold being optimal at 20%.

Scorer 2 generally detected longer arousals than Scorer 1, the mean length of all arousals during

all the sleep recordings were 9.0+5.3 s and 15.9+7.8 s for Scorers 1 and 2, respectively.

3.3.2 Algorithm performance

A consensus dataset was created with 20% overlap as a minimum to determine an agreement
between scorers. The moving window algorithm (Algorithm 2) seemed to perform slightly better
overall for all overnight recordings at an overlap of 20% than the envelope algorithm (Algorithm
1) (Figure 13). Nonetheless, standard deviations of both algorithms crossed between 0% and

20% in all cases.

The fraction of all detections from the moving window algorithm that were correct (Precision) for
20% overlap was systematically higher than the envelope algorithm (Table A-1). However, the
fraction of true PWA-drops the moving window algorithm detected (Recall) was systematically
lower than the envelope algorithm in all cases (Table A-1). Therefore, the moving window
algorithm detected fewer false negatives and more false positives than the envelope algorithm.
Nevertheless, the standard deviations of precision and recall for both algorithms systematically
crossed at 20% overlap. The average length of the PWA-drops detected by the envelope
algorithm and the moving window algorithm were 31.6+18.0 s and 19.5+£8.3 s, respectively. In
comparison, the average lengths of the consensus PWA-drops scoring were 13.5+5.9 s and

12.116.2 s for the agreement between scorers and for the overall scoring, respectively.
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Figure 13: The F1-score curves with standard deviation as a function of percentage overlap (%) during all
sleep recordings. A) the “consensus” scoring agreement between scorers was the reference to construct the
curves of both algorithms, and B) all scored PWA-drops of both scorers was the reference to construct the
curves of both algorithms. Algorithm 1 is the envelope algorithm; Algorithm 2 is the moving window algorithm.

Values are mean + SD.

3.4 Discussion

This study developed two algorithms for automated detection of finger pulse wave amplitude

(PWA)-drops and compared them against human scored data.

To best define the detection of a PWA-drop, the results from two expert human scorers were
compared. The percentage overlap corresponding to the best agreement between scorers was
determined by plotting the average F1-score curves between the two scorers as a function of
percentage overlap. A percentage overlap threshold of 20% was chosen in this study as the
mean of the F1-score curves was unchanged until 20% overlap. After 20% overlap the difference
between the two mean F1-score curves starts to decrease. The two human scorings were then
used as a gold standard to assess the performance of both PWA-drop detection algorithms. Betta
et al. (2020) have already used this dataset for validation and chose a percentage overlap of at
least 10% which is relatively low, 10% of the mean length arousals for Scorer 1 = 0.9+0.5 s and
Scorer 2 = 1.5+0.7 s for all overnight recordings. Moreover, the same percentage overlap was
applied for each scorer, despite the differences in the lengths of the scored PWA-drops for Scorer

1 and Scorer 2. The approach described in this chapter instead considered the union between
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the scored and algorithm-detected PWA-drops as well as a “consensus” dataset. The percentage
overlap in this study was also chosen using a novel and robust approach that considered the F1-

score rather than an arbitrary choice.

The moving window algorithm seems to perform slightly better than the envelope algorithm when
compared to the two expert scorers with 20% overlap. This difference might be due to a lower
amplitude threshold in the envelope algorithm which would find more false positives (detected
by the algorithm but not by the scorer) than the moving window algorithm. It could also be
explained by somewhat different algorithm approaches, where the envelope algorithm uses the
envelope of the signal to determine the amplitude of a drop and the moving window algorithm
uses the peak amplitudes of each pulse in the windows to calculate the amplitude ratio used for
PWA-drop detection.

PWA-drop detection still relies largely upon human scoring which suffers from variable intra- and
inter-scorer agreement. It is also a time-consuming process, making it impractical for use on

large datasets.

Transient pulse wave amplitude reductions as a marker of autonomic activation is potentially
more useful for identifying physiological disturbances during sleep than conventional EEG
approaches. Therefore, a PWA-drop algorithm could be very useful for automatically detecting
cardiovascular reactions to various stimuli or symptoms of cardiovascular disease to help
advance evidence-based clinical practice and further research into sleep disturbance

mechanisms and outcomes.
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CHAPTER 4 — ASSOCIATIONS BETWEEN CARDIOVASCULAR
PATHOPHYSIOLOGY AND PULSE WAVE AMPLITUDE DROPS
DURING SLEEP

4.1 Introduction

The aim of this chapter is to present the exploration of two cohort datasets in terms of the
association between PWA-drop based metrics and cardiovascular endpoints. We hypothesised
that PWA-drop based markers would be predictive of hypertension and cardiovascular events.
One of the datasets has already been analysed by Hirotsu et al. (2020) using a different detection
algorithm and thus this analysis was also designed to serve as a cross validation of PWA-drop

approaches more generally using an independent but similar algorithm approach.

4.2 Methodology

4.21 Study design and participants

Two population-based studies were used in this investigation, the Men Androgen Inflammation
Lifestyle Environment and Stress (MAILES) (Grant et al., 2014) and the HypnoLaus Sleep cohort
study (Heinzer et al., 2015).

MAILES cohort

The MAILES was a cohort study to assess the association of sex steroids, inflammation,
environmental and psychosocial factors with cardio-metabolic disease risk in men (Grant et al.,
2014). This cohort was created by harmonising two studies: the Florey Adelaide Male Ageing
Study (FAMAS) and eligible (at least 35 years old) male participants of the North West Adelaide
Health Study (NWAHS). Two clinical assessments occurred in 2002-06 (n=2563) and 2007-10
(n=2038). In 2010, MAILES participants completed a CATI survey (n = 1,629). Of these
participants, 184 responded “yes” to “Have you ever been diagnosed with obstructive sleep
apnoea with a sleep study?” and 1,445 men responding “no” were invited to undergo a sleep
study, with 75.2% agreeing (Appleton et al., 2016). The home-based polysomnography sub-
study (Embletta X100, Embla Systems) was conducted in 2010 and 2011 with 837 completed
successful studies, and 752 had finger oximetry recorded. Finally, after artefacts exclusion (e.g.
ectopic beats, probe off, movement artefacts, hypnogram issues) 738 valid studies were included
in this analysis. The polysomnography recording included measures of electroencephalogram
(EEG), electrooculogram (EOG), electromyography (EMG), nasal pressure, thoracic and
abdominal efforts, oximetry, and body position. One experienced sleep technician performed
manual scoring of all PSGs according to the 2007 American Academy of Sleep Medicine (AASM)

alternative criteria (Iber et al., 2007).
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HypnoLaus cohort

Participants from the population based Colaus/PsyColaus cohort study in Lausanne,
Switzerland were invited to take partin the HypnoLaus Sleep cohort study (Heinzer et al., 2015).
HypnolLaus was a cohort study to investigate the prevalence of sleep-disordered breathing in the
general population. Participants had biomedical clinic assessments and were equipped with a
PSG recorder (Titanium, Embla Flaga, Reykjavik, Iceland). All sleep recordings were home-
based with a total of 2162 participants with 2146 valid studies including EEG, EOG, EMG,
electrocardiogram (ECG), airflow (nasal cannula), thoracic and abdominal efforts, snoring, body
position, oxygen saturation (SpO-), and oximetry (Hirotsu et al., 2020). Two experienced sleep
technicians performed manual scoring of all PSGs according to 2007 American Academy of
Sleep Medicine (AASM) alternative criteria (Iber et al., 2007).

Cohort outcomes

In both studies, apnoeas were defined as complete cessations of airflow, measured using nasal
cannula pressure, lasting =2 10 s and hypopnea as > 50% decrease in nasal pressure (or in both
thoracic and abdominal excursions) with an associated = 3% oxygen desaturation or an EEG
arousal (Iber et al., 2007). The apnoea hypopnea index was defined as the number of apnoea
and hypopneas per hour of sleep. In both cohorts, diabetes was defined when fasting plasma
glucose levels were = 7.0 mmol/L or diabetic medication use, and hypertension was defined as
systolic blood pressure = 140 mmHg and/or diastolic blood pressure = 90 mmHg, and/or use of

anti-hypertensive medication.

4.2.2 Detection of pulse wave amplitude (PWA)-drops

PWA-drops were identified using the moving window algorithm described in Chapter 3 when the
amplitude ratio was < 75%. Mean PWA-drop duration and area under the curve (AUC) and PWA-
drop index were then estimated. The PWA-drop index is the total number of PWA-drops during

sleep divided by the total sleep time.

423 Covariates

Questionnaire and physical examination were used at the time of the polysomnography study to
determine age, sex, and body mass index (BMI). Smoking status (non-smoker, former smoker
and current smoker) and alcohol consumption (number of drinks per week) were also assessed
at the time of the PSG study for the HypnoLaus cohort. However, the MAILES cohort recorded
smoking status and alcohol consumption anytime during the 4 years leading up to the PSG study.
Total sleep time, AHI, number of PWA-drops, diabetes and, in the case of cardiovascular events,

hypertension were also included as potential confounders.
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424 Outcome assessment

Hypertension and previous cardiovascular (CV) events were the outcomes of interest. A previous
CV event was defined as a doctor diagnosed myocardial infarction, stroke or acute coronary
syndrome. Systolic blood pressure, diastolic blood pressure and cardiovascular events were
assessed at the time of the PSG study in HypnoLaus, and within the 4 years preceding the PSG
study in MAILES.

4.2.5 Statistical analysis

Multivariate-adjusted logistic regression analysis was used to identify associations between
prevalent hypertension or cardiovascular events (dependent variables) and PWA-drop features
(mean AUC, mean duration and PWA-drop index) (independent variables). Associations
between cardiovascular events and PWA-drop features were assessed individually in separate
models. In total 6 models were performed. Confounders (age, sex, BMI, smoking status, AHI,
total sleep time, alcohol consumption) were identified based on previous literature (Hirotsu et al.,
2020) and were included in all models. When testing the PWA-drop mean AUC and mean
duration, models were additionally adjusted for the number of PWA-drops due to an inverse
correlation between them, to maintain comparability with previous work (Hirotsu et al., 2020).
Associations between PWA-drop features and cardiovascular events were furthermore adjusted

for diabetes and hypertension.

PWA-drop features were treated as continuous variables and were tested for non-linearity using
restricted cubic splines in the “rms” R package. For linear associations, the findings were
summarised using quartiles of the PWA-drop features for comparison with previously published
associations. Each model was assessed in both cohorts (HypnoLaus and MAILES) separately

and combined.

Interactions between PWA-drop features and sex were also performed since MAILES was a
male only cohort whilst HypnoLaus included both males and females. Interactions between PWA-
drop features and apnoea hypopnea index were also examined as OSA has been found to be
associated with PWA-drop occurrence (Schnall et al., 1999). Moreover, interactions between
PWA-features and the studies on the pooled dataset were also examined. Multi-collinearity
among independent variables was avoided using a variance inflation factor (VIF) < 5 through
linear regression analysis. Influences of outliers were assessed graphically using the model
residual distribution. Predictive performance of the model was assessed using the Harrell's C-
index (area under the ROC curve) and Somers’ Dxy indices corrected for optimism using
bootstrapping (Newson, 2010). The models were compared to a model containing only the
confounder variables using a likelihood ratio test. Results are expressed as odds ratios (ORs)

with 95% confidence intervals (Cls). Null hypotheses were rejected when p < 0.05.
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4.3 Results

4.3.1 Baseline characteristics

The combined cohort dataset had 2914 participants; 2162 from HypnoLaus cohort and 752 from
MAILES cohort, where 30 (1.0%) participants were excluded due to missing hypnogram data
and/or insufficient PWA signal quality. The MAILES cohort had higher mean age, BM|, alcohol
consumption, total sleep time, AHI and a lower percentage of non-smokers, as shown in Table
2. The proportion of diabetic participants were similar in both cohorts. 44% (n = 1277) and 6% (n
= 180) of the pooled dataset had hypertension and a CV event, respectively. The proportion of
participants with hypertension and CV events was higher in the MAILES cohort. Additionally, a
total of 23 (0.8 %) and 144 (5.0%) participants had missing data on the hypertension and CV

event, respectively.

Table 2: Baseline characteristics of study participants.

HypnolLaus MAILES Total
(N=2146) (N=738) (N=2884)
Sex
Male N = 1050 (49%) N =738 (100%) N =1788 (62%)
Female N = 1096 (51%) N =0 (0%) N = 1096 (38%)
Age (years)
Mean (SD) 59 (11) 61 (11) 59 (11)
BMI (kg/m?)
Mean (SD) 26 (4.4) 29 (4.1) 27 (4.4)
Missing N =13 (0.6%) N =0 (0%) N =13 (0.5%)
Alcohol consumption (numbers
of drink per week)
Mean (SD) 6.5 (7.9) 8.2 (11) 7.0 (8.8)
Missing N =0 (0%) N =1(0.1%) N =1 (0.0%)
Smoking status
Never N =878 (41%) N =269 (36%) N = 1147 (40%)
Current N = 395 (18%) N =112 (15%) N = 507 (18%)
Former N =850 (40%) N = 342 (46%) N =1192 (41%)
Missing N =23 (1.1%) N =15 (2.0%) N =38 (1.3%)

Total sleep time (hours)

Mean (SD) 6.7 (1.2) 7.7 (1.3) 6.9 (1.3)
Missing N =0 (0%) N =10 (1.4%) N =10 (0.3%)
AHI (events/hour)
Mean (SD) 9.1 (13) 15 (14) 11 (13)
Missing N =0 (0%) N=1(0.1%) N =1(0.0%)
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HypnolLaus MAILES Total
(N=2146) (N=738) (N=2884)
Number of PWA-drops (Asleep)
Mean (SD) 250 (120) 190 (100) 230 (120)
PWA-drop mean AUC (%s)
Mean (SD) 650 (110) 600 (85) 640 (110)
PWA-drop mean Duration (s)
Mean (SD) 22 (2.9) 21 (2.6) 22 (2.8)
PWA-drop mean Index
(events/hour)
Mean (SD) 37 (16) 30 (15) 35 (16)
Hypertension
No N = 1259 (59%) N = 326 (44%) N = 1584 (55%)
Yes N =886 (41%) N =391 (53%) N = 1277 (44%)
Missing N =2(0.1%) N =21 (2.8%) N =23 (0.8%)
Diabetes
No N = 1933 (90%) N =651 (88%) N = 2584 (90%)
Yes N =211 (10%) N =69 (9%) N =280 (10%)
Missing N =2 (0.1%) N =18 (2.4%) N =20 (0.7%)
CV event
No N = 1928 (90%) N = 632 (86%) N = 2560 (89%)
Yes N = 88 (4%) N =92 (12%) N =180 (6%)
Missing N =130 (6.1%) N =14 (1.9%) N = 144 (5.0%)

The distribution of PWA-drop features during sleep for both cohorts is shown in Figure 14. On
average, 3516 PWA-drops occur per hour with a mean AUC of 640+110 %s and a mean duration

of 22+2.8 s. The mean number of PWA-drops was higher in HypnoLaus (250) than MAILES (190)
however the standard deviation was higher in the HypnoLaus cohort.
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Figure 14: Histograms showing the distribution of PWA-drop features during sleep for both
cohorts. A) PWA-drop index B) PWA-drop mean duration C) PWA-drop mean AUC.

4.3.2 Pulse wave amplitude drops and prevalence of hypertension

A higher AUC of PWA-drops was significantly associated with 84% increased odds of prevalent
hypertension in the MAILES cohort (Quartile 4 vs Quartile 1: 1.84 (1.10-3.08)) (Figure 15B and
Figure 15E) and 42%, HypnoLaus cohort (Q4 vs Q1: 1.42 (1.03-1.96)) (Figure 15A and Figure
15D) and 58% in pooled dataset (Q4 vs Q1: 1.58 (1.21-2.07)) (Figure 15C and Figure 15F), as

well as in linear increase of odds ratio (p = 0.031, p = 0.009 and p = 0.001 respectively).
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Figure 15: PWA-drop mean AUC and hypertension. Linear (A-C) and quartiles (D-F) odds ratios with

95% confidence intervals.

The highest quartile (Q4 vs Q1: 1.29 (1.01-1.66)) for the PWA-drop mean duration in participants

from pooled datasets was statistically significant (Figure 16C, Figure 16F and Table B-4) as well

as linearly (p = 0.005 and see in Table B-6) suggesting an increased odds of hypertension for

longer PWA-drops.
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Figure 16: PWA-drop mean duration and hypertension. Linear (A-C) and quartiles (D-F) odds

ratios with 95% confidence intervals.
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The linear prediction of prevalent hypertension in the HypnoLaus cohort was not significantly

associated with the PWA-drop mean index (p = 0.082 and see Table B-6), however the highest

quartile in the HypnoLaus cohort was statistically significant (Q4 vs Q1: 0.65 (0.48-0.86)) (Figure

17A, Figure 17D and Table B-4).
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Figure 17: PWA-drop mean index and hypertension. Linear (A-C) and quartiles (D-F) odds ratios

with 95% confidence intervals.

In the HypnoLaus cohort, the PWA-drop mean AUC association with hypertension prevalence

was found using the moving window algorithm developed in Chapter 2 and the algorithm from

Hirotsu et al. (2020) as shown in Table 3. However, PWA-drop mean duration and index were

only significantly associated with hypertension using the algorithm from Hirotsu et al. (2020).

Table 3: Algorithm comparison in terms of PWA-drop features and hypertension prevalence in the

HypnoLaus cohort. Odds ratio with 95% confidence intervals.

Moving window Hirotsu et al. (2020)
Hypertension prevalence algorithm algorithm
OR OR
[95% CI] [95% CI]
PWA-drop index (10 events/h decrease) [0 919'?16 13] 1 011'?1612]
PWA-drop mean duration (1 s increase) [0 91991307] 1 012'?16 10]
PWA-drop mean AUC (10 %s increase) . o 031 . o 021
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The likelihood ratio test between models with and without PWA-drop features (Table 4) suggests
that the mean AUC and mean duration are two factors that improve predictive performance of
the model in the pooled dataset. However, there is a lack of consistency in the results between
MAILES and HypnolLaus.

Table 4: Likelihood ratio test with and without PWA-drop features included in the models with

hypertension prevalence.

Hypertension prevalence HypnoLaus MAILES Pooled

PWA-drop mean AUC x>=6.85p=0.009 | y>=4.85p=0.028 | y* =14.00, p < 0.001

PWA-drop mean duration | y2=2.14,p=0.144 | x2=3.47,p=0.062 | y?=7.14,p =0.008

PWA-drop index x>=290,p=0.088 | y2=0.44,p=0.506 | x?=0.93,p=0.335

4.3.3 Pulse wave amplitude drops and previous cardiovascular events

Participants with a lower PWA-drop index showed a decrease in odds ratio associated with CV
event prevalence in the HypnoLaus study (Q4 vs Q1: 0.40 (0.20-0.81)) (Figure 18A, Figure 18D
and Table B-5) although the linear association was not significant (p = 0.058 and see Table B-
6). However, in the pooled dataset (Q4 vs Q1: 0.73 (0.46-1.17)) and MAILES cohort (Q4 vs Q1:
1.56 (0.77-3.19)) no association was observed between PWA-drop index and CV event

prevalence and there were also no linear associations (p = 0.336 and p = 0.066 respectively).
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Figure 18: PWA-drop mean index and CV events. Linear (A-C) and quartiles (D-F) odds ratios with 95%

confidence intervals.
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In the HypnoLaus cohort, the PWA-drop index was associated with cardiovascular events only

with the algorithm from Hirotsu et al. (2020) as shown in Table 5.

Table 5: Algorithm comparison in terms of PWA-drop features and CV events in the HypnolLaus

cohort. Odds ratio with 95% confidence intervals.

Moving Window | Hirotsu et al. (2020)
. . algorithm algorithm
Previous cardiovascular events OR OR
[95% CI] [95% CI]

. 1.15 1.11
PWA-drop index (10 events/h decrease) [0.99-1.32] [1.00-1.25]
PWA-drop mean duration (1 s increase) 0 914'?11 09] [0 917'?1513]

o o ; 1.01 1.01
PWA-drop mean AUC (10 %s increase) [0.99-1.03] [1.00-1.03]

No significant association was observed between CV events and mean duration and mean AUC
(see Figure B-1 and Figure B-2) and none of the PWA-drop features significantly improved the

model performance (see Table B-1).

434 Model validation and specification

All model associations between hypertension prevalence and PWA-drop features (see Table B-
2), were validated with all optimism (O) < 1% and specified all C-index > 0.79 and all Dxy > 0.58
for the pooled dataset. Predictive performance for cardiovascular events and hypertension
prevalence was similar (Table B-3) with all optimism (O) = 3% and specified all C-index > 0.81

and all Dxy > 0.62 for the pooled dataset.

4.4 Discussion

This chapter investigated the association between hypertension, CV event prevalence and
multiple PWA-drop features. The results suggest that the PWA-drop mean AUC could be a
reliable predictor for hypertension independent of total sleep time, apnoea hypopnea index and

other clinical and life-style related covariates.

Hirotsu et al. (2020) used another PWA-drop detection algorithm to analyse the data from the
HypnolLaus cohort and found significant associations between hypertension prevalence and
PWA-drop mean AUC, mean duration and PWA-drop index. In this study using a different
algorithm, only the PWA-drop mean AUC was significantly and consistently associated with
hypertension prevalence. Since there is no “scorer consensus” on the PWA-drop definition there
is inevitably some uncertainty surrounding algorithm performance. However, both algorithms

showed the same general trends towards associations of PWA-drop mean AUC with
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hypertension prevalence in the HypnolLaus dataset. The algorithm used in this thesis also
showed these trends independently in the MAILES dataset, although with overall smaller effect
sizes which could be due to lower numbers of cardiovascular events and demographic
differences (in BMI and gender). However, a significant association between PWA-drop AUC
and hypertension prevalence independent of which algorithm is used, supports that PWA-drops
are a useful risk marker of hypertension. This finding is in accordance with previous knowledge

relating sympathetic activity with hypertension (Timio et al., 1997).

No association was observed between CV event prevalence and PWA-drop mean AUC and
PWA-drop mean duration. The PWA-drop index was associated with CV event prevalence in the
HypnolLaus cohort only. Surprisingly, an opposite trend was observed in the MAILES cohort
although this was not statistically significant. This could reflect population differences between
cohorts (e.g. gender, BMI, alcohol consumption and apnoea hypopnea index). The PWA-drop
index has previously been shown to be a predictor of cardiovascular risk (Sommermeyer et al.,
2014) where a lower PWA-drop index (evaluated per hour) was associated with lower
cardiovascular risk in a cohort of 520 participants from northern Europe. Furthermore, patients
with previous CV events generally tend to get treated to prevent another event that could lead to
death, which might be the reason why no association was found between PWA-drop features
and CV event prevalence. In comparison, patients with hypertension do not get treated

systematically because hypertension is not as related to death as CV events.

In summary, the work presented in this chapter supports that the PWA-drop mean area under
the curve is associated with prevalent hypertension suggesting that PWA-drops could be useful
clinical marker. Future work to examine PWA features predictive of future events in longitudinal
studies, larger other cohorts and with targeted treatments would be useful to help clarify the
potential role of frequent cardiovascular activation responses in contributing to cardiovascular

disease.
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5.1

CHAPTER 5 — PULSE WAVE AMPLITUDE DROPS IN
RESPONSE TO ENVIRONMENTAL NOISE DURING SLEEP

Introduction

Noise can provoke autonomic and cortical nervous system responses and thus PWA-drops, HR
changes and EEG arousals could be sensitive sleep disturbance markers of environmental noise
disturbance. The aim of this chapter was to explore these sleep disturbance markers in a small
pilot study (N = 24) in which participants were exposed to a range of environmental noises at
various sound pressure levels. The noise samples included wind farm noise as this has recently

been associated with sleep problems and complaints, yet the evidence to support this is poor.

5.2 Methodology

5.21 Data collection

Participants and experimental conditions

Twenty-four individuals, including 11 males (26.4 + 16.3 years, age range: 18 - 75 years) and 13
females (24.4 £ 9.3 years, age range: 19 - 55 years) were recruited for a one-night sleep study.
Participants were screened to select good sleepers with normal hearing and without significant
medical and/or psychiatric conditions. Basic auditory assessments were conducted via an
audiometer for assessing hearing acuity. Participants’ lights out time was determined by
averaging habitual bedtime from a one week’s sleep diary kept at home prior to the laboratory

study. Wake-up time was not controlled.

Physiological recordings

For the sleep study, participants were instrumented with polysomnography (PSG) equipment
including electroencephalogram (EEG; F3, F4, C3, C4, Cz, O1 and O2), electro-oculogram
(EOG; E1 and E2), chin electromyogram (EMG), leg movements (leg EMG), electrocardiogram
(ECG) and finger pulse oximetry. Simultaneous acoustic and sleep study recordings were time-

locked via timing marks recorded simultaneously on both devices.

Auditory tones and controls

For the sleep study, a battery of block-randomised noise stimuli of 20 seconds duration,
interspersed with 20-second silent periods were presented only when participants were asleep
(at least 5 minutes into sleep at the start of the protocol and after at least 1 minute of stage 2 or
deeper sleep on any subsequent return to sleep after an awakening). The 20 s noise battery
during sleep included noise levels ranging from 33 to 48 dB(A), in 3 dB(A) increments, of the

following noise types:
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¢ ftraffic noise short range (TFN short-range) recorded 20 m from a main road,
¢ fraffic noise long range (TFN long-range) recorded 700 m from a main road,

e WFN with amplitude modulation (AM) (WFN AM) recorded 3.3 km from a South Australian

wind farm,
o WFN without AM (WFN NOAM) recorded 3.3 km from the same wind farm,
e “Swish” — WFN AM recorded 500 m from the same wind farm,
¢ silence (background noise control).

During wakefulness, participants were exposed to either silence or WFN AM at 33 dB(A) in
random order. The lowest sound pressure level was set at 33 dB(A) to ensure a minimal 10 dB(A)
difference between the background noise (23 dB(A)) and noise stimuli. Each noise stimuli was
ceased if the participant woke during the night (any EEG return to wake lasting 15 seconds or
more) until the participant fell back to sleep, at which point the noise battery was re-started. An
independent qualified sleep technician, blinded to the study aims and conditions, scored the

sleep data according to American Academy of Sleep Medicine (AASM) criteria.

5.2.2 Cardiovascular markers

The R-wave peaks in the ECG signal were detected with the Hamilton-Tompkins algorithm
(Hamilton and Tompkins, 1986) from where the instantaneous beats-per-minute (BPM) were
evaluated. Given that the instantaneous beat-to-beat measures of HR and PWA occur at
unevenly spaced R-R intervals, a cubic spline interpolation was used to align the responses

relative to the noise onset to allow for ensemble averaging.

To help account for substantial variability in signals from heart beat-to-beat and over time, HR
and PWA signals were normalised by expressing values as a percentage of the preceding 5 or
10 seconds prior to stimuli onset baseline for HR and PWA, respectively. Note that 20 seconds

out of 30 seconds represents the stimuli length.

5.2.3 Statistical analysis

The hazard ratios for sound pressure level and noise type groups, as compared with silent
controls, and the corresponding confidence intervals were estimated with the use of a stratified
Cox proportional-hazard model. Survival curves for each group were estimated with the use of
the Kaplan—Meier method and pairwise comparison was performed using the log-rank test. Rates
at fixed time points were derived from the Kaplan—Meier estimate, along with their corresponding

95% confidence interval. Null hypotheses were rejected when p < 0.05.
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The survival curves using the Kaplan-Meier method were estimated for the following groups:

e 7 groups of sound pressure level: Silence/Control, 33 dB(A), 36 dB(A), 39 dB(A), 42
dB(A), 45 dB(A) and 48 dB(A),

e 6 groups of noise type: Silence/Control, TFN short-range, TFN long-range, WFN AM,
WFN NOAM and “Swish”,

e 3 groups of sleep: Stage 2, Stage 3 (deep sleep) and REM sleep.

Survival curves show the probability of a response, PWA-drop or EEG arousal, occurring up until
a specific point in time. When a survival curve decreases more abruptly than another, it means
that participants experienced more PWA responses due to noise in this condition than the other
condition. Numbers at risk were also determined to show the absolute number of participants still
event-free and still at risk each 5 seconds out of the total 40 second period of analysis. The Cox
proportional hazards regression model allows testing for differences in survival times of multiple
groupings of predictor variables. Cox regression models were performed at 5 second cut-off time
values. The sound pressure levels (SPLs) of the noise, the noise types and the sleep stages in
which the noise occurred used in the Kaplan-Meier method were studied as potential predictors
of evoked PWA responses. The hazard ratio of each variable relative to the relevant reference
category is an indicator of predictive utility, where a hazard ratio significantly below 1 or above 1
indicates a predictor of reduced or increased incidence of the selected outcome event,
respectively. Statistical analysis was performed using packages Survival version 2.44-1.1 and

Survminer version 0.4.6 in R.

5.3 Results

5.31 Characteristic PWA and HR responses

This section presents results of the two cardiovascular marker responses occurring during Stage
2, Stage 3 and REM sleep grouped into “quiet” and “loud” conditions for one participant as an
example. Table 6 shows the number of delivered noise samples which triggered a PWA-drop
within the first 5 seconds after noise onset. The 5 second cut-off value was chosen because it
was previously shown that PWA-drops occur within that time frame (Griefahn, 2017, Catcheside
et al., 2002). PWA-drops occurred in response to 17% of the noise stimuli with no statistically

significant difference in propensity between “quiet” and “loud” groups (Fisher’s test, p = 0.404).
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Table 6: Summary of the PWA-drops in “quiet” and “loud” groups occurring in Stage 2, Stage 3
and REM sleep for one participant.

Total N Present Absent
“Quiet” (33-39 dB(A)) 246 38 (15.4%) 208 (84.6%)
“Loud” (42-48 dB(A)) 250 46 (18.4%) 204 (81.6%)
Total 496 84 (16.9%) 412 (83.1%)

In the “quiet” and “loud” conditions, the average PWA responses, when present 5 seconds after
noise onset, were similar with a decrease of approximately 50% amplitude compared to the
baseline, as shown in Figure 19. All PWA-drops in this figure were centred with their beginning
attime O (see Figure 19A and Figure 19C). They were then assemble averaged, and the resulting
signals are shown in Figure 19B and Figure 19D. The HR response showed a brief transient
acceleration of around 6% up to approximately 5 seconds after noise onset, then returned to

baseline around 10 seconds after noise onset.
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Figure 19: Typical PWA and HR in response to “quiet” (A and B) and “loud” (C and D) noise stimuli
together with a spectrogram showing all responses during Stage 2, Stage 3 and REM sleep when
a PWA-drop was present 5 seconds after noise onset. Time 0 indicates onset of a 20-second long

noise stimuli.
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In the case where a PWA response was not present 5 seconds after noise onset, the two
cardiovascular markers both fluctuated around the baseline with minimal indication of systematic

changes temporally related to the noise onset.

5.3.2 Survival probability of PWA-drops for SPLs

Table 7 summarises the results from a pairwise comparison of PWA-drop occurrence for the SPL
factor at 5 seconds after noise onset. The SPL factor seems to impact PWA responses during
the 5 first seconds after noise onset, however only SPLs equal or higher than 39dBA were

significantly different from the control.

Table 7: P-values of a pairwise comparison between noise levels at 5 seconds after noise

onset.

Control 33dBA 36dBA 39dBA 42dBA 45dBA
33dBA 0.4015 - - - - -
36dBA 0.1812 0.5590 - - - -
39dBA 0.0050 0.0665 0.1924 - - -
42dBA 3.9e-05 0.0024 0.0126 0.2289 - -
45dBA 5.2e-13 2.1e-09 5.0e-08 3.8e-05 0.0039 -
48dBA < 2e-16 4.4e-13 1.6e-11 5.0e-08 2.5e-05 0.1924

A Cox regression model performed with SPL showed that SPLs above 39 dB(A) showed
statistically significantly higher hazard ratios compared to silence (p < 0.05) as shown in Figure
20. The figure also shows an increasing hazard ratio with increasing SPL. At 33 dB(A), the hazard
ratio was not statistically significantly different compared to control (p = 0.39), but at 39 dB(A)
and 48 dB(A), the hazard ratios were 50% and 190% compared to control, respectively (p =
0.003 and p <0.001). This means that a PWA-drop had 50% and 190% more chance of occurring
during the first 5 seconds after a noise onset at 39 dB(A) and 48 dB(A), respectively, compared
to silence. In comparison, a Cox regression model was also performed with EEG arousals (Figure
21), where only SPLs at 42 dB(A) and 48 dB(A) SPLs were associated with a significantly higher

probability of provoking a EEG arousal within first 5 seconds of noise onset (p < 0.05).
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Figure 20: Comparison between PWA-drop hazard ratios for environmental noise at several sound
pressure levels. Squares represent point estimates; bars represent 95% confidence limits. Ratios

more than 1 indicate that PWA-drops occur more often with noise than when no noise is played

during sleep.
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Figure 21: Comparison between EEG arousal hazard ratios for environmental noise at several
sound pressure levels during sleep. Squares represent point estimates; bars represent 95%
confidence limits. Ratios more than 1 indicate that EEG arousals occur more often with noise than

when no noise is played.
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Another Cox regression model was performed adjusted for grouped noise SPLs, also with a cut-off

value of 5 seconds. The SPL groups were as follows:

e control with “silence”,
e “quiet” with SPLs between 33 dB(A) and 39 dB(A),
e “loud” with SPLs between 42 dB(A) and 48 dB(A).

In both groups the PWA-drop occurrence was significantly higher compared to the control (hazard
ratio = 1.3, p = 0.03 for “quiet” and hazard ratio = 2.4, p < 0.001 for “loud”). The corresponding

Kaplan-Meier curves are shown in Figure 22, demonstrating that PWA-drop responses occurred

14%, 8% and 6% of the time for “loud”, “quiet” and control conditions, respectively. After 5 seconds,

the survival differences between groups clearly reduce and diminish by around 20 seconds, which

is the time when the noise samples stopped playing. At that time, the PWA-drop responses occurred

for 24%, 23% and 24% for “loud”, “quiet” and control groups.
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Figure 22: Kaplan-Meier survival curves for PWA-drop occurrence after noise onset adjusted for 3

sound pressure level groups; silence (control), “quiet” and “loud”. Each noise stimulus lasted 20 s

after which there was 20 s of silence prior to the next noise stimulus.

The survival functions for noise levels appear to converge after 20 seconds suggesting that

noise-evoked and spontaneous responses may not be additive. This could potentially indicate

that noise-evoked responses reduce subsequent spontaneous response probability, or that

noise-evoked response probability is relatively low and thus potentially difficult to distinguish from

that of more common spontaneous responses over time.



5.3.3 Survival probability of PWA-drops for noise type

Another Cox regression model was performed on the noise types with their associated level
groups (“quiet” or “loud”), as shown in Figure 23. These results suggest that wind farm noise with
and without amplitude modulation only affected PWA responses in the “loud” condition. “Swish”

noise, TFN short-range and TFN long-range affected the responses for all group level conditions.
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Figure 23: Comparison between PWA-drop hazard ratios for different noise types with their
associated level group. Squares represent point estimates; bars represent 95% confidence limits.
Ratios more than 1 indicate that PWA-drops occur more often with noise than when no noise is

played during sleep.

Kaplan-Meier plots (Figure 24) revealed that all noise types are associated with an increased
probability of PWA-drops after noise onset relative to control. PWA responses occurred 205 times
(14%) of all traffic noise short-range presentations at 5 seconds after noise onset and was the
noise type with the most PWA responses. On the other hand, wind farm noise with amplitude
modulation was the type of noise with the least PWA responses at 5 seconds after noise onset;

113 times (8%). Moreover, as seen with the pairwise comparison between noise types (

Table 8), all noise types showed statistically significant differences compare to control except for

the wind farm noise with amplitude modulation.
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Figure 24: Kaplan-Meier survival curve showing PWA-drop occurrence after noise onset (20 s stimuli
followed by 20 s of silence) adjusted for 7 noise types; silence, WFN NOAM, WFN AM, TFN short-range,

TFN long-range and “Swish”.

Table 8: P-values of a pairwise comparison between noise types at 5 seconds after noise onset.

Control Swish TFN Long-Range | TFN Short-Range | WFN AM
Swish 1.2e-05 - - - -
TFN Long-Range | 6.3e-07 0.5699 - - -
TFN Short-Range| 9.3e-12 0.0149 0.0637 - -
WFN AM 0.0990 0.0063 0.0009 2.7e-07 -
WFN NOAM 4.9e-05 0.7166 0.3710 0.0063 0.0149
534 Survival probability of PWA-drops controlled for sleep stage

Multiple Cox regression models were examined to test the effects of noise type and level (“quiet”

or “loud”) for three sleep stages (Stage 2, Stage 3 and REM sleep). Both Stage 2 and Stage 3

showed overall statistically significant effects of noise types and associated levels (p < 0.001).

Within sleep Stage 2, all noise types showed a higher hazard ratio than the reference case of

silence (control), except for wind farm noise with and without amplitude modulation for the “quiet”

condition (Figure 25). Moreover, for sleep Stage 3, only the “loud” condition showed a higher

hazard ratio than the reference silence in the same sleep stage (Figure 26). However, during

REM sleep, there were no statistically significant differences compare to the silence reference

for any “loud” or “quiet” noise type (Figure 27).
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Figure 25: Comparison between PWA-drop hazard ratios for different noise types with their associated level
group during sleep Stage 2. Squares represent point estimates; bars represent 95% confidence limits. Ratios

more than 1 indicate that PWA-drops occur more often with noise than when no noise is played during sleep.
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Figure 26: Comparison between PWA-drop hazard ratios for different noise types with their
associated level group during sleep Stage 3. Squares represent point estimates; bars represent
95% confidence limits. Ratios more than 1 indicate that PWA-drops occur more often with noise

than when no noise is played during sleep.
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associated level group during REM sleep. Squares represent point estimates; bars represent 95%

confidence limits. Ratios more than 1 indicate that PWA-drops occur more often with noise than

when no noise is played during sleep.

The Kaplan-Meier curves of sleep stage effects support that PWA responses occurred the least

frequently during sleep Stage 3 (Figure 28). Sleep Stage 2 seems to be the sleep stage with the

highest propensity for PWA responses during the first 5 seconds after noise onset, followed by

REM sleep and finally sleep Stage 3. The survival functions for sleep Stage 3 do not merge after

20 seconds unlike those for Stage 2 and REM sleep suggesting that PWA occurrence is strongly

dependent on sleep stage, with less frequent PWA responses in Stage 3 compared to Stage 2

and REM sleep.
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Figure 28: Kaplan-Meier survival curve showing PWA-drop occurrence after noise onset (20 s stimuli

followed by 20 s of silence) adjusted for 3 sleep stages; Stage 2, Stage 3 and REM sleep.

The pairwise comparison between sleep stage at 5 seconds after noise onset showed that Stage
2 seems to be the sleep stage when noise has the highest impact on PWA responses during the
5 first seconds after noise onset (Stage 2 vs Stage 3: p < 2e-16 and Stage 2 vs REM sleep: p =
7.5e-06). However, pairwise comparisons between sleep stages at 20 seconds after noise onset
showed that Stage 3 had the lowest propensity for PWA response (Stage 3 vs Stage 2: p < 2e-
16 and Stage 3 vs REM sleep: p < 2e-16).

5.4 Discussion

The principal finding of this study was that environmental noise with an SPL of 39 dB(A) SPL or
higher evokes more PWA-drops than occur without noise presentations during sleep. The PWA-

drops generally seem to occur in the first 5 seconds after noise onset.

The amplitude of the average PWA response decreased for a period greater than 30 seconds,
and the average HR response accelerated to its maximum around 5 seconds and then
decelerated back to baseline within around 10 seconds, consistent with previous findings
(Griefahn, 2017, Tassi et al.,, 2010, Catcheside et al., 2002). These results likely reflect
sympathetic nervous system activation which largely controls PWA and HR responses (Di Nisi
et al.,, 1990). Moreover, the magnitude of signal decrease (approximately 50%) for the PWA
response was similar to previous findings (Catcheside et al., 2002) despite substantially lower
SPLs and stimuli type used in this study 33 to 48 dB(A) versus 54 to 90 dB (Catcheside et al.,

2002). Furthermore, no strong differences between “quiet” and “loud” noise groups are also
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consistent with an “all or none” PWA response phenomenon.

The strong relationship between SPL and PWA response is perhaps not surprising given previous
findings (Griefahn, 2017) and is consistent with an increased likelihood of response with
increasing SPLs shown by Catcheside et al. (2002) and Tassi et al. (2010). Moreover, the PWA

response seems to be more sensitive at lower SPLs than evoked EEG arousals.

In this study, short-range traffic noise was found to have the highestimpact on the PWA response.
This noise type has a spectrum dominated by mid-frequency energy. On the other hand, wind
farm noise with low-frequency amplitude modulation showed the least impact on the PWA

response.

During deeper sleep (Stage 3), fewer PWA responses were present compared to Stage 2 sleep
which was in accordance with previous findings (Griefahn, 2017, Muzet, 2007) suggesting a
lower cardiovascular response threshold during deep sleep. Moreover, in REM sleep, results by
noise types separated in groups of “quiet” and “loud” conditions were not statistically significant,
which may be due to a smaller number of events during this stage. However, PWA responses

were more likely to occur 5 seconds after noise onset during sleep Stage 2.

In summary, this study supports that PWA-drops are a more sensitive marker of noise
disturbances during sleep compared to heart rate changes and EEG responses. SPL seems to
be the most influential factor on PWA responses. Nonetheless, the noise type and sleep stage
also seem to have an impact on the PWA response. Future work to examine a larger population
exposed to more different noise types would be useful to help establish which component of the
noise (amplitude modulation, low frequency, etc.) is the most influential on the cardiovascular

system during sleep.
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CHAPTER 6 — CONCLUSION AND FUTURE WORK

Two algorithms were developed and assessed against consensus scoring of two expert human
scorers. The moving window algorithm was chosen for this study due to a slightly higher F1-
score in the consensus dataset. This algorithm could overcome issues of intra-scorer variability,
increase the efficiency of detecting PWA-drops, operate independently of conventional sleep
stage scoring and demonstrate more consistent detection than human scorers. However, the
absence of general guidelines poses issues about the definition of a PWA-drops as a threshold
of 30% amplitude decrease is inevitably somewhat arbitrary. A lower amplitude decrease
threshold would potentially be less conservative and allow the assessment performance of
algorithm detection for even more subtle PWA response changes. However, a threshold set too
low relative to beat-to-beat pulse wave amplitude and device measurement variability would
likely detect substantially more events that may or may not be clinically informative regarding
real underlying autonomic responses during sleep. Whilst beyond the scope of the work
presented in this thesis, ultimately, a more systematic evaluation to explore relationships
between response detection thresholds and clinical endpoints such as incident hypertension and

cardiovascular events is likely to be needed to further refine these methods.

Whether or not PWA-drops could be a marker of cardiovascular risk was investigated via the
analysis of two large cohort datasets; MAILES and HypnolLaus. The use of the HypnolLaus cohort
was designed to help cross-validate the results of association between PWA-drop features and
prevalent hypertension and cardiovascular disease found previously (Hirotsu et al., 2020). The
PWA-drop mean area under the curve was associated with hypertension and was found to be
the most consistent PWA-drop feature across the MAILES and HypnolLaus study datasets.
However, no consistent findings were observed between PWA-drop features and prevalent
cardiovascular disease across datasets. Differences between populations such as body mass
index, apnoea-hypopnoea index as well as gender in the two cohorts might help to explain why
no consistent findings were found between datasets except for PWA-drop mean area under the
curve. The MAILES study was a cohort of only men from Australia and HypnolLaus was a
Lausanne Switzerland population-based cohort. The relatively small number of previous
cardiovascular events limiting study power might also help to explain these findings. Therefore,
a more uniform and bigger dataset might be needed to more definitively establish if associations
exist between PWA-drop features and prevalent cardiovascular disease. Nevertheless, the
PWA-drop mean area under the curve was consistently associated with prevalent hypertension
and suggests that PWA-drops could be a useful clinical marker of cardiovascular disturbance
during sleep and future adverse outcome risks. These findings clearly warrant further studies in

larger and longitudinal cohort studies.
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The dose-response relationship between environmental noise evoked PWA-drops was
investigated to examine PWA-drops as a marker of noise-induced sleep disturbance. Noise
characteristics, such as sound pressure levels and type, as well as sleep staging were
investigated as potential mediators in the dose-response between PWA-drop and noise. It was
found that in comparison to heart rate and EEG arousal responses, PWA-drops occurred more
often at lower sound pressure levels and, showed longer duration and larger amplitude
responses compared to heart rate changes and EEG responses, supporting that PWA-drops are
a more sensitive marker of noise disturbances during sleep. Noise sound pressure levels
appeared to be the most influential factor on PWA-drops compared to noise types or the sleep
stage in which noise occurred. The main limitation of this part of the study was that the sample
size may not have been sufficient to reliably determine which noise types and which specific
sound pressure levels had the largest effect on PWA-drops. Thus, it was not possible to
definitively establish if wind farm noise, with or without amplitude modulation, had a differential
effect on PWA-drops compared to traffic noise. Thus, further studies are needed to help establish
if the amplitude modulation component of wind farm noise has a significant impact on the

cardiovascular system during sleep.

In conclusion, finger photoplethysmography is a simple, non-invasive, affordable and already
widely available method from which PWA-drops can be derived. The algorithm developed and
validated in the first chapter was used to determine the potential utility of PWA-drops as a marker
of sleep disturbance in response to noise as well as a marker of the cardiovascular system during
sleep associated with cardiovascular pathophysiology. PWA-drops during sleep appear to be a

reliable marker of cardiovascular system disturbances during sleep.

Although the results of this project support that PWA-drops are a reliable marker of
cardiovascular disturbances during sleep, more work is required to further examine if PWA-drop
features are associated with prevalent and incident hypertension and future cardiovascular
events. Moreover, future studies should also examine relationships between noise exposure and
cardiovascular outcomes to explore the potential of noise-induced PWA-drops as a marker of
increased cardiovascular risk. Furthermore, a larger population exposed to different noise types
should be studied to try to determine if noise characteristics (low-frequency, high-frequency,

amplitude modulation, etc.) influence PWA responses and cardiovascular outcome risks.
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APPENDIX A

Different amplitude ratio thresholds were applied to determine which one was the most appropriate.

First of all, all standard deviations from the 2 different F1-score curves cross as shown in Figure A-

1.

A’ B
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Figure A-1: The F1-score curves with standard deviation as a function of percentage overlap (%)
during all sleep recordings. A) the “consensus” scoring agreement between scorers was the
reference to construct the curves of both algorithms, and B) all scored PWA-drops of both scorers

was the reference to construct the curves of both algorithms.

Another clearer figure was created with only the average F1-score curves to more easily observe
the differences in amplitude ratio thresholds (Figure A-2). For the scoring agreement between
scorers, the 70% amplitude ratio threshold had the higher mean F1-score curve (Figure A-2A)
however, the 75% amplitude ratio threshold had a higher mean F1-score curve for the all scored
PWA-drops from both scorers (Figure A-2B). Therefore, the 70% amplitude ratio threshold was more
conservative than the 75% one. However, to be less conservative and to allow broader analysis in

the future, the 75% amplitude ratio was retained as the amplitude ratio threshold.
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Figure A-2: The F1-score curves as a function of percentage overlap (%) during all sleep
recordings. A) the “consensus” scoring agreement between scorers was the reference to construct
the curves of both algorithms, and B) all scored PWA-drops of both scorers was the reference to

construct the curves of both algorithms.
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Table A-1: Performance of both algorithms for the percentage overlap of 20% expressed with

mean and standard deviation.

F1-Score Precision Recall
Overlap Threshold (20%)
Mean (£ SD)
Envel gorith 0.49 0.37 0.81
. nvelope algorithm
The scoring be a9 (£0.17) (£0.17) (£0.10)
agreement of both

scorers Moving window 0.51 0.42 0.71
algorithm (£ 0.19) (£ 0.20) (£ 0.19)

0.64 0.62 0.70
Envelope algorithm (+0.15) (+ 0.20) (0.13)

All scored PWA-
drop of both 0.64 0.71 0.62
scorers Moving window ' ' '

algorithm (£ 0.16) (£0.18) (£0.18)

57




APPENDIX B
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Figure B-1: PWA-drop mean AUC and CV events. Linear (A-C) and quartiles (D-F) odds ratios

with 95% confidence intervals.
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Figure B-2: PWA-drop mean duration and CV events. Linear (A-C) and quartiles (D-F) odds ratios

with 95% confidence intervals.
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Table B-1: Likelihood ratio test with and without PWA-drop features included in the models with

CV event prevalence.

CV event prevalence

HypnolLaus

MAILES

Pooled

PWA-drop mean AUC

¥2 =0.48, p = 0.487

x?=0.26, p=0.609

¥2=0.07, p =0.794

PWA-drop mean duration

x2=0.12,p=0.734

¥2=151,p=0.220 | 2

= 0.40, p = 0.527

PWA-drop mean index

x?=3.83,p=0.050

x?=3.58,p=0.059

¥ =0.67,p=0.412

Table B-2: Predictive performance of the models for hypertension prevalence associated with
PWA-drop features using C-index (C) and Somers’ Dxy indices corrected for optimism (O) using
bootstrapping.

Hypertension prevalence

HypnoLaus

MAILES

Pooled

C =0.80, Dxy = 0.60

C=0.74,Dxy = 0.48

C=0.79, Dxy = 0.59

PWA-drop mean AUC
P and O = 0.01 and O = 0.03 and O < 0.01
PWA-drop mean duration C =0.80, Dxy = 0.60 C=0.74,Dxy = 0.48 C=0.79, Dxy = 0.58
and O <0.01 and O =0.03 and O <0.01
and O <0.01 and O =0.03 and O <0.01

Table B-3: Predictive performance of the models for CV event prevalence associated with PWA-
drop features using C-index (C) and Somers’ Dxy indices corrected for optimism (O) using

bootstrapping.

CV event prevalence HypnolLaus MAILES Pooled
PWA-drop mean AUC C=082,Dxy=065 | Cc=0.75Dxy=050 | C=0.81,Dxy=0.62
and O = 0.04 and O = 0.07 and O = 0.03
PWA-drop mean duration C=0.82, Dxy =0.65 C=0.75, Dxy =0.50 C =0.81, Dxy = 0.62
and O = 0.04 and O = 0.07 and O =0.03
PWA-drop mean index C=0.82,Dxy=0.65 C=0.74,Dxy =0.48 C=0.81, Dxy =0.62
and O =0.03 and O = 0.06 and O =0.03
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Table B-4: Hypertension prevalence and PWA-drop features. Odds ratio by quartiles with 95%

confidence intervals for the moving window algorithm developed in the second chapter.

PWA-drop mean AUC

PWA-drop mean duration

PWA-drop mean index

Hypertension OR OR OR
[95% CI] [95% Cl] [95% Cl]

Q1 1.00 1.00 1.00

Qz 0.97 0.95 0.66
[0.72-1.30] [0.71-1.27] [0.49-0.88]

HypnoLaus a3 1.00 0.98 0.94
[0.74-1.35] [0.72-1.33] [0.70-1.25]

a4 1.42 1.15 0.65
[1.03-1.96] [0.85-1.56] [0.48-0.86]

Q1 1.00 1.00 1.00

az 0.96 115 1.20
[0.59-1.56] [0.72-1.83] [0.75-1.94]

MAILES Q3 1.41 1.71 1.44
[0.85-2.33] [1.07-2.74] [0.90-2.33]

a4 1.84 1.41 1.30
[1.10-3.08] [0.87-2.28] [0.80-2.11]

Q1 1.00 1.00 1.00

az 0.99 1.10 0.91
[0.77-1.28] [0.86-1.41] [0.71-1.16]

Pooled a3 1.22 1.15 0.95
[0.94-1.57] [0.89-1.48] [0.75-1.22]

a4 158 1.29 0.95
[1.21-2.07] [1.01-1.66] [0.74-1.22]
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Table B-5: CV event prevalence and PWA-drop features. Odds ratio by quartiles with 95%

confidence intervals for the moving window algorithm developed in the second chapter.

PWA-drop mean AUC | PWA-drop mean duration PWA-drop mean index
CV event OR OR OR
[95% CI] [95% CI] [95% CI]
Q1 1.00 1.00 1.00
Q2 0.58 1.11 0.51
[0.29-1.20] [0.56-2.17] [0.28-0.94]
HypnolLaus Q3 0.95 0.54 0.57
[0.48-1.88] [0.25-1.19] [0.30-1.08]
Q4 1.11 1.10 0.40
[0.57-2.15] [0.58-2.10] [0.20-0.81]
Q1 1.00 1.00 1.00
Q2 1.32 0.44 1.83
[0.67-2.58] [0.22-0.87] [0.95-3.53]
MAILES Q3 1.08 0.50 1.10
[0.54-2.15] [0.25-0.97] [0.54-2.25]
Q4 0.87 0.71 1.56
[0.41-1.84] [0.38-1.34] [0.77-3.19]
Q1 1.00 1.00 1.00
Q2 0.83 0.72 0.94
[0.53-1.31] [0.45-1.15] [0.62-1.41]
Pooled Q3 0.86 0.56 0.62
[0.53-1.38] [0.34-0.91] [0.38-1.01]
Q4 0.90 0.82 0.73
[0.55-1.47] [0.53-1.28] [0.46-1.17]

Table B-6: Hypertension and CV event prevalence associated with PWA-drop features. Odds ratio

with 95% confidence intervals for the moving window algorithm developed in the second chapter.

Hypertension CV event
Moving window algorithm OR OR
[95% CI] [95% CI]
. 1.06 1.15
PWA-drop index (10 events/h decrease) 0.99-1.13] [0.99-1.32]
HypnoLaus PWA-drop mean duration (1 s increase) 0 919?1307] 0 914'?11 09]
PWA-drop mean AUC (10%s increase) . 011'?11 - 0 91é?11 03
PWA-drop index (10 events/h decrease) 0 806.?1608] 0 703'?160 1]
MAILES PWA-drop mean duration (1 s increase) 0 919'?17 14] 0 806-91503]
PWA-drop mean AUC (10%s increase) . 011'?1305] 0 906?1902]
PWA-drop index (10 events/h decrease) 0 917'?1309] 0 914'?14 16]
, : 1.04 0.98
Pooled PWA-drop mean duration (1 s increase) [1.01-1.08] 0.93-1.04]
PWA-drop mean AUC (10%s increase) . 011'?1203] 0 905?190 .
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