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Abstract  

Catastrophic floods and runoff events are increasingly prevalent due to the influence of anthropogenic 

climate change and variability. Evapotranspiration (ET), the process that governs the exchange of water 

and energy between the atmosphere, land surface, and groundwater, plays a crucial role in the simulation 

of runoff within hydrological models. However, accurately estimating ET remains a significant challenge 

for these models. Presently, many hydrological models rely heavily on potential evapotranspiration (PET) 

models, as observed ET data is often limited. PET refers to the maximum possible water loss from the soil 

and vegetation to the atmosphere when water is not limited. PET estimation is challenging due to the 

complexity of the processes involved and the various sources of uncertainty.  

The main source of uncertainty in PET simulation is neglecting the impact of CO2 on plant water use, which 

leads to inaccurate runoff simulation. In response to the rising CO2 concentration, plants close their stomata 

and decrease stomatal conductance (gs), which can reduce the amount of water loss through transpiration. 

A decrease in plant transpiration and an increase in water use efficiency can result in greater antecedent 

soil moisture and, therefore, increased runoff. Hence, runoff simulations need to consider the relative role 

of climate change in ecosystems through the PET equation. However, the response of plants to CO2 varies 

significantly between different biomes and plant species around the world. In addition, the effects of CO2 

on plant physiology and morphology have complex interactions with other environmental variables such 

as air temperature (TA), radiation (R), vapour pressure deficit (VPD), and soil water content (SWC). 

Therefore, the response of plants to CO2 is characterised by high uncertainty with significant knowledge 

gaps. 

In the first and second chapters of this thesis, the mixed generalised additive model (MGAM) as a nonlinear 

machine learning technique investigates the plants' response to CO2 and environmental variables. MGAM 

analyses the direct and interactive effects of CO2 and environmental variables on gs with appropriate sets 

of statistical covariates between variables. Using eddy covariance flux tower datasets for different 

vegetation types including crop, deciduous broad-leaf forest, evergreen needle-leaf forest, and grass, shows 

that MGAM improved gs simulation by up to 50% increase in Nash-Sutcliffe Efficiency (NSE) compared 

with conventional gs simulation models. The MGAM model highlighted the interactive effects of CO2, 

VPD, and SWC for crops and grasses. The interactive effects of CO2, VPD, and TA were identified as 

important for trees and grasses. In the third chapter of this thesis, the simulated gs by MGAM was added to 

the Penman-Monteith PET equation to incorporate vegetation response to environmental variables as a part 

of the PET equation. The modified PET improved runoff simulation up to a 13% increase in NSE, especially 

in wet conditions when the role of PET is more significant in runoff fluctuation. The results of this study 

show that conventional PET models need modification by considering the vegetation response to interactive 

effects of environmental variables through gs simulation. This modification leads to a more accurate 

estimation of water balance elements especially under wet climatic conditions. 
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1.1 Introduction and overview    

For millions of years, plants have pulled carbon out of the atmosphere through 

photosynthesis. Since the start of the Industrial Revolution in 1750, the burning of coal 

and oil has released a growing percentage of previously buried carbon back into the 

atmosphere. In the 1960s annual carbon dioxide (CO2) emission was estimated at 11 

billion tons per year, while it increased to 36.6 billion tons in 2022 (Friedlingstein et al., 

2022). Based on the published evidence in the Intergovernmental Panel on Climate 

Change (IPCC), rising atmospheric CO2 concentrations trap long-wave solar radiation, 

inducing warming of the earth’s surface (Change, 2013). During the late 19th and early 

20th centuries (1880-1950 in Fig. 1) both global temperature and atmospheric CO2 have 

increased slowly; temperature increased by an average of 0.04° C per decade and 

atmospheric CO2 levels rose by around 20 ppm (Lindsey, 2023). There was a rapid change 

in temperature and atmospheric CO2 from the late 1950s to 2020; the CO2 climbed nearly 

100 ppm (5 times as fast) and the rate of warming averaged 0.14° C per decade (Lindsey, 

2023).  The increase in the air and ocean temperature at a global scale resulted in an 

extensive reduction in ice cover and snow and rising sea levels. The long-lasting changes 

in temperature and CO2 are defined as global climate change, which in turn causes 

extreme weather events such as floods, droughts, and bushfires (Abbass et al., 2022).   

The increase in surface temperature caused by global warming increases atmospheric 

moisture holding capacity and accelerates precipitation (Kim et al., 2023). There has been 

an increase in the frequency and magnitude of extreme precipitation events in the early 

twenty-first century, faster than previously anticipated (Kim et al., 2023). Consequently, 

catastrophic floods and stormwater events have resulted from these increases in 

precipitation. As a result of anthropogenic climate change and variability, biodiversity, 

ecosystem functioning, and human well-being are threatened (Abbass et al., 2022; 
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Abrahms et al., 2023). There is an estimated global socio-economic cost of US$143 

billion per year as a result of extreme events associated with climate change in the last 

twenty years. Human life accounts for 63% of this cost (Newman & Noy, 2023).  

 

Figure 1 Global average temperature and atmospheric carbon dioxide. Yearly temperature 

compared to the twentieth-century average (red bars mean warmer than average, blue bars mean 

colder than average) from 1850–2022 and atmospheric carbon dioxide amounts (grey line). 

Adapted from reference (Lindsey, 2023). 

The increase in annual precipitation caused by rising atmospheric CO2 leads to higher 

runoff and frequent flooding (Cui et al., 2020). However, in some regions, runoff changes 

are not solely influenced by atmospheric processes. In response to the rising atmospheric 

CO2 concentration, plants close their stomata, which can reduce the amount of water loss 

through transpiration. A decrease in plant transpiration and an increase in water use 

efficiency can result in greater antecedent soil moisture and therefore increased runoff 

even in the absence of precipitation changes (Fowler et al., 2019). Hence, the runoff 

simulations for flood management need to consider the relative role of climate change in 

ecosystems through both soil evaporation and plant physiological responses through 

transpiration, otherwise known as evapotranspiration (ET). The process of water loss 
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from soil and plants encapsulates the complexity of hydrological cycles under changing 

climatic conditions. The uncertainty associated with ET estimation is one of the main 

limitations of accurate runoff simulation (Zhao et al., 2019).  

Most hydrological models use potential ET (PET) as a basis for running runoff 

simulations (Pimentel et al., 2023). PET refers to the amount of water that would be 

evaporated and transpired by vegetation if sufficient water were available (Peiris & Döll, 

2023). A literature review identifies approximately 50 different PET estimation methods, 

which are divided into three categories as follows: 1) ET as a function of air temperature 

(TA) only (such as Hargreaves-Samani), 2) ET as a function of TA and radiation (R) 

(such as Priestly & Taylor), and 3) combinations that are affected by TA, R, wind speed 

(U), and humidity (hs) (such as Penman-Monteith) (H. Hargreaves & A. Samani, 1985; 

Monteith, 1965; Oudin et al., 2005; Priestley & Taylor, 1972). Among many PET 

methods, the Penman-Monteith PET method offers accurate yet simple approximations 

to the more complex climate model systems (McMahon et al., 2013; Milly & Dunne, 

2016). Despite this, plant responses to CO2 and climate variables are neglected in all PET 

simulation models, resulting in inaccurate estimation of runoff in hydrological models 

(Peiris & Döll, 2023; Zhou et al., 2023). Therefore, understanding vegetation response to 

CO2 environmental variables in the PET equation is crucial for improving runoff 

simulation. This has been discussed in more detail in Chapter 4 of the thesis. 

1.2 Plant response to CO2  

The stomata, the small pores on leaf surfaces, are responsible for the exchange of gases, 

mainly water vapour and CO2, between the leaf and the atmosphere (Fig. 2) (Hetherington 

& Woodward, 2003). Despite occupying only 5% of the leaf surface, stomata exert major 

influences on the water and carbon cycle of the planet (Hetherington & Woodward, 2003). 

At the global scale, there is approximately 110,000 km3 yr-1 of precipitation, while 
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evaporation and transpiration (ET) are approximately 70,000 km3. The highest rates of 

transpiration occur in tropical areas with uniform and warm forests with 32,000 km3 yr-1 

of water vapour passing through stomata, which is double the amount of water vapour in 

the atmosphere (15,000 km3 yr-1) (Hetherington & Woodward, 2003).  

 
Figure 2 Stomata on the surfaces of leaves control the gas exchange water vapour and CO2 

between the interior of the leaf and the atmosphere (Evolution., 2017). 

Elevated CO2 has two distinct physiological effects on plants as demonstrated in Figure 

3. Firstly, plants can reduce their stomatal conductance (gs) by closing their stomata in 

response to rising CO2. Since atmospheric CO2 levels are increasing, a lower conductance 

is required to maintain the carbon flux necessary for sustaining photosynthesis. Therefore, 

reduced conductance results in less water loss through transpiration, which in turn 

increases soil water content (SWC) and global runoff (Fig. 3a). Secondly, rising CO2 

increases vegetation biomass and vegetation cover or canopy leaf area (LAI), which 

reduces the impact of stomatal closure on transpiration while increasing transpiration. 

Therefore, increased transpiration reduces the SWC and runoff (Fig 3b). In regions with 

high levels of vegetation cover, the first effect of CO2 on plants is dominant. Therefore, 

increased CO2 primarily causes stomatal closure and decreased transpiration rather than 

increased LAI and vegetation biomass (Zhou et al., 2023). In addition, the changes in LAI 

due to elevated CO2 is limited by many other factors such as water and nitrogen deficiency 



12 

 

or heat damage (Ågren, 1983; Liu et al., 2023; Warren et al., 2011; Zhou et al., 2023). 

Therefore, it is generally agreed that the decreasing effects of CO2 on transpiration are 

not offset by an increase in LAI (Tor-ngern et al., 2015). 

 

Figure 3 Elevated CO2 can cause two different physiological effects on plants: a) Rising CO2 

reduces the ET, and consequently increases soil water content (SWC) and runoff, b) Rising CO2 

increases leaf area index (LAI) and evapotranspiration (ET), and consequently decreases SWC 

and runoff. The first effect of CO2 is more dominant than the second one. 

1.3 Uncertainty in plant response to CO2  

Plants adjust their physiological performance in response to any changes in climate and 

environmental conditions to improve their growth or survival under extreme conditions 

(Gimeno et al., 2016). Although stomata typically close in elevated CO2, the magnitude 

of this response can vary. Stomatal optimisation theory suggests that stomatal opening to 

allow CO2 uptake inevitably comes at the expense of H2O loss (Cowan & Farquhar, 

1977). Thus, stomata should maximise photosynthetic uptake minus the carbon cost of 

water used in transpiration. This optimisation theory has been applied many times to 

successfully predict stomatal response to environmental conditions (Arneth et al., 2002; 

Buckley & Schymanski, 2014; Katul et al., 2010; Vico et al., 2013). Nevertheless, 
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optimisation theory has failed to predict the correct response of the plant to CO2 under all 

conditions (Lloyd & Farquhar, 1994; Manzoni et al., 2011; Manzoni et al., 2013; Medlyn 

et al., 2011). The response of plants to CO2 varies significantly between different biomes 

and plant species around the world. Therefore, the response of plants to CO2 is 

characterised by high uncertainty with significant knowledge gaps. It has been shown that 

there is a significant difference between gs response to CO2 between shrubs, herbs, and 

trees (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007). Experimental studies have 

shown no sensitivity of gs to elevated CO2 in some tropical biomes (Wesolowski et al., 

2020). The average percentage reduction in gs by elevated CO2 varies by vegetation type 

from 50% in dense meadows, to 15% in broadleaved forests, and to less than 10% in 

coniferous forests (Körner et al., 2007). There is some evidence that mature forests in mid 

and high latitudes exhibit a much smaller response of gs to CO2 than young trees (Gimeno 

et al., 2018; Körner et al., 2005). In contrast, some studies have claimed that younger 

trees' assimilation and transpiration rates increase rapidly to a maximum rate and then 

stay constant or decline as the vegetation matures, and this process is independent of CO2 

concentrations (Donohue et al., 2017). The response of gs to CO2 for different vegetation 

types has been discussed in Chapter 3 of the thesis. 

1.4 Uncertainty in plant response to interactive effects between 

CO2 and environmental variables 

The effects of CO2 on plant physiology and morphology overlap with those of other 

environmental variables (Xu et al., 2013). The global TA is expected to increase in the 

future, while relative humidity (hs) is expected to decrease (Arias et al., 2021). There is 

a strong relationship between vapour pressure deficit (VPD) and TA and both are 

expected to increase in the future (Park Williams et al., 2013). Despite large spatial 

variability, precipitation is expected to increase on average (Arias et al., 2021). The joint 
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influence of changes in CO2 and other variables on gs must be considered due to the 

interactions between environmental variables (Vicente-Serrano et al., 2022). Precipitation 

impacts on gs are reflected by SWC and VPD (Kimm et al., 2020). In response to VPD, 

plants close their stomata to prevent excessive water loss, which reduces gs, but this 

reduction is alleviated by high levels of CO2 (De Kauwe et al., 2021; Yuan et al., 2019). 

Moreover, plant response to VPD is highly dependent on plant species, leaf 

characteristics, and plant height (Lansu et al., 2020). The response of plants gs to TA is 

also complex. Through the control of transpiration and cooling effects, stomata play a 

crucial role in preventing leaf surfaces from reaching excessive TA (Damour et al., 2010). 

There is evidence that high TA causes an increase in gs to provide evaporative cooling to 

the leaf when there is enough available water (Urban et al., 2017). Therefore, plants can 

endure very high TA by dissipating heat through conduction, convection, and evaporative 

cooling (Marchin et al., 2022). When TA is high and VPD is increased, there is a severe 

drought, resulting in the hydraulic failure of the plant water transport system (Adams et 

al., 2017). As a result, plants come closer to the critical temperature threshold, causing 

the tree’s crown to become thinner, which leads to tree death (Marchin et al., 2022). Thus, 

an increase in TA causes an increase in gs up to the threshold TA; TA in exceedance of 

the threshold value may degrade reserved soil water during long heat episodes and cause 

leaf cell mortality and a decrease in gs (Urban et al., 2017). This response of plant gs to 

TA is more severe at higher VPD (Purcell et al., 2018; Urban et al., 2017). Drought 

integrates atmospheric and soil drying but is often identified in terms of soil water 

availability (Schwalm et al., 2012). VPD and SWC are often correlated and both affect 

the fluctuation in gs of plants (Sulman et al., 2016). A reduction in SWC intensifies the 

effects of VPD on decreasing gs (Kimm et al., 2020; Sulman et al., 2016).  
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There are several empirical models to simulate gs as a function of SWC, VPD and other 

environmental variables. In these models, multiple linear regression is used to quantify 

the trends in the attribution of gs variance to key environmental variables (Kimm et al., 

2020; Sulman et al., 2016). Various other empirical and semi-empirical models for gs 

simulation are widely used in land surface models (LSMs), described in section 1.5. The 

interactive effects of environmental variables on gs have been discussed in Chapter 3 of 

the thesis. 

1.5 Land surface models (LSMs) in gs simulation 

In the face of a world that is rapidly changing both physically and economically, LSMs 

serve as a useful tool for informing policy about land use and water use management. The 

LSMs links climate, soil, water, and vegetation to describe energy and water exchanges. 

Modelling vegetation physiology and soil biogeochemistry is a part of the LSMs; the 

physical structure of vegetation and the process of photosynthesis affect the exchange of 

momentum, energy, water, and CO2 at the land-atmosphere boundary. For LSMs to 

simulate vegetation response to climate, understanding how photosynthesis, transpiration, 

and gs interact through stomata is crucial (Blyth et al., 2021). The gs simulation in most 

of the LSMs can be categorized into semi-empirical and empirical approaches. Most gs 

models are semi-empirical approaches, combining physiological hypotheses and 

empirical functions (Damour et al., 2010). All semi-empirical LSMs incorporate net 

photosynthesis rate (An) and gs relationships as a constraint to couple carbon and water 

processes. Consequently, due to the coupling between An and gs, these models are 

expected to have high gs simulation accuracy. Nevertheless, measurements of An are 

complicated and require extensive experiments or instruments that measure 

photosynthetic gas exchange and chlorophyll a fluorescence over the same area in plants 

sample (Luo et al., 2016).  
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The empirical gs simulation models have different structures that are independent of An 

as a variable, simplifying the input data processing. However, empirical models are 

dependent on the stress functions of each environmental factor such as R, TA, VPD, 

SWC, and CO2. These models assume that environmental factors, are independent 

without any synergistic interactions (Jarvis et al., 1976). The stress functions of 

environmental variables have different structures with heavy parameterization (Qi et al., 

2023). Initially, empirical models hypothesized that the change in CO2 concentration was 

very small and could be ignored (Li et al., 2014). However, CO2 levels have increased as 

a result of global climate change, which both directly and indirectly affects agriculture 

and hydrology by lowering gs (Stocker, 2014). Consequently, more researchers are 

engaging in the analysis of how gs responds to CO2 by utilising piecewise linear functions 

(Morison, 1998). Moreover, studies have demonstrated that as CO2 levels increase, the 

rate of decreasing gs gradually lessens. Based on the analysis of physiological and 

biochemical mechanisms of stomatal activity associated with changing CO2, the 

hyperbolic model for the response of gs to CO2 was developed, which reflects a more 

realistic simulation of the gs-CO2 interrelationship (Li et al., 2019).  

There are several limitations to conventional (semi-empirical and empirical) gs simulation 

models, including the need for previous experimental work focussing on the effect of 

different environmental variables on plants (Table 1). This process involves several 

calibrated parameters, which are difficult to quantify as they are determined through 

regression analysis and a complex calibration process with existing datasets. These 

models, therefore, may not fully capture stomatal response under notable changes in 

climate conditions compared to the datasets on which these parameters are calibrated 

(Powell et al., 2013; Saunders et al., 2021). As a result, conventional models require re-

parameterisation to be suitable for any changes in vegetation phenology or physiology 
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caused by the variation in climate and growing season (Oliver et al., 2022; Trugman et 

al., 2018). The structure of empirical and semi-empirical LSMs in gs simulation has been 

discussed in Chapter 2 of the thesis. 

Table 1 The empirical and semi-empirical models in gs simulation in LSMs. 

 LSMs Limitations of the equation  

Empirical Community Land Model (CLM) • Dependency to An variable that 

requires extensive experiments and 

measurement. 

• Ignoring variations in vegetation 

responses to environmental 

variables.  

Joint UK Land Environment Simulator 

(JULES) 

Lund-Potsdam-Jena managed Land 

(LPJmL) 

Semi-

empirical 

JSBACH • Heavy parameterization and 

calibration. 

• Assumption that environmental 

variables are independent without 

any synergistic interactions. 

Noah 

 

1.6 Machine learning (ML) in hydrology and evapotranspiration  

Machine learning (ML) models have become popular in earth sciences in recent years, 

enabling the discrete classification and estimation of important dynamic variables such 

as carbon fluxes, precipitation, and river discharge; but also, geospatial variables that are 

hard to map, such as forest cover, and soils (Koppa et al., 2022). ML models can make 

full use of the available data, learn complex patterns and relationships between variables 

and maintain greater consistency with the input data (Zhao et al., 2019). The backbone of 

all ML models is statistical models which, provide the methodologies and principles of 

ML models and allow us to interpret the results of these models (Bzdok et al., 2018; 

Reichstein et al., 2019).  
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One of the initial branches of ML is known as artificial neural networks (ANNs) inspired 

by the human brain’s neural structure (Sakunthala et al., 2017). The mathematical 

operations are performed through series of neurons (nodes) that are organized into 

different layers, such as input and output layers, and hidden layers, which connect the 

input and output layers (Kalu et al., 2022). Despite numerous advantages, ANNs have 

several limitations such as a slow learning process which, leads to time-consuming 

training, and complex structure, which makes it difficult to define the necessary number 

of neurons and layers (Sakunthala et al., 2017). One of the newest ML approaches is 

known as random forests (RF) or random decision trees. RF is useful for classification, 

regression tasks, and prediction with various variables. Although RF accuracy and robust 

results are the advantages of this model, a large number of variables might make RF 

useless and sluggish (Nguyen, 2015; Ziegler & König, 2014). In addition, in the presence 

of outliers and skewed distributions, the RF performance may not be accurate (Latif & 

Ahmed, 2023; Nguyen, 2015). Another ML model that has been used widely in 

hydrological studies is the support vector machine (SVM). SVM is relatively memory 

efficient for classification and regression tasks for a high number of variables (Latif & 

Ahmed, 2023). SVM is not suitable for datasets with missing values, and the complex 

training process makes it an inefficient model for large size of datasets (Patle & Chouhan, 

2013). Addressing the limitation of each ML model requires the improvement of the 

underlying statistics. An important statistical development in the last decade is the 

introduction of generalized linear models (GLM) and multiple linear regression (MLR), 

which provides progression in the application in hydrology and environmental research 

(Ravindra et al., 2019). These models are applied to predict an outcome (dependent 

variable) as a function of one or more predictors (independent variables), which are 

correlated with the outcome (Ravindra et al., 2019). The main restrictions of GLMs and 
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MLRs are that these models cannot handle multiple outcome variables simultaneously; 

and if the observations are not independent of each other, they will give biased standard 

error in their estimations and consequently misleading statistical inference (Wu & Little, 

2011). A generalized additive model (GAM) is a statistical modelling technique that 

extends the GLM concept and addresses the limitations of GLMs (Ravindra et al., 2019). 

GAMs can capture nonlinear and complex relationships that GLMs cannot. GAM 

provides a structure for generalizing GLMs by allowing the additivity of nonlinear 

functions of the variables (Wood et al., 2016). GAM offers an open-ended solution in 

case of considerable noise in the predictor variables. It also exhibits the best fit in the case 

of nonlinear relationships between the predictor and the independent variable (Wood, 

2016; Wood, 2017). 

In recent years, there has been an increase in the application of ML theories in 

hydrological and climatic analysis (Kalu et al., 2022). The data-driven stochastic 

techniques that integrate ML present advantages over physically-based techniques in 

hydrological interactions. The advantages of ML are easily determined in the operation 

of data-driven techniques towards parameter estimations, calibration procedures, and its 

efficiency in handling different sources of uncertainties better than their physically-based 

counterparts (Kalu et al., 2022). ML models promise to show notable progress in 

monitoring the multi-scale climatic influences on sub-regional and continental hydrology, 

simulation of rainfall-runoff, agriculture, groundwater, and other multi-physical trends 

(Tikhamarine et al., 2020).  

In order to evaluate the literature and identify the application of ML and statistical 

analysis in hydrology and evapotranspiration, keyword co-occurrence analysis was 

employed. The keyword analysis was performed using VOSViewer™ software, version 

1.6.20 (Leiden University, The Netherlands). The following keywords were used in the 
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analysis for searching journal articles: hydrology, machine learning, statistical analysis, 

linear model, nonlinear model, artificial neural networks, support vector machine, and 

random forests. Based on the Scopus database, 1597 journal articles published between 

2014 to 2024 (last ten years) were selected. The results of the co-occurrence and total 

links are presented in Figure 4. Different colours represent different clusters that have 

more links together, while the size of each circle is proportional to the occurrence of the 

keyword. The analysis was conducted first on the application of ML in hydrology (Fig. 

4a), and then the result was narrowed down to the application of ML in evapotranspiration 

(Fig. 4b). The analysis result showed SVM and RF as the most common ML models in 

hydrology, ANNs along with linear and multiple linear have been used in many studies 

while the nonlinear regression analysis and GAM were the least evaluated models for the 

hydrology studies. The analysis also revealed that most of the ML models have already 

been used to estimate evapotranspiration (ET), but there is a gap in applying nonlinear 

regression analysis and GAM in ET studies. ET estimation requires multiple interacting 

hydroclimatic variables that affect different aspects of plant physiology in a highly 

nonlinear manner at multiple timescales (Koppa et al., 2022). Therefore, the capability of 

GAM in addressing the nonlinear functions between various variables raises the 

assumption that this model could be the best fit for the nonlinear nature of the ET 

estimation. 
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a) 

 

b) 

 

Figure 4 The results of keywords co-occurrence analysis in hydrology fields, among 1597 journal articles published between 2014-2024 in the Scopus database, 

using VOSViewer™ software. Different colours show different clusters that have more links together, and the size of each circle is proportional to the occurrence 

of the keyword, a) links to show the applied ML in hydrology studies, b) links to show the applied ML in evapotranspiration (ET) studies.
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1.7 Knowledge gap and objectives 

There are several approaches for simulating and predicting ET and gs since they are key 

elements of the global water cycle. The physically-based approaches derive ET and gs 

empirically using climate variables; these models are easy to interpret, but they use fixed 

environmental variables for simulation for all vegetation types and disregard variations in 

vegetation responses to environmental variables (Dombrowski et al., 2022). As a result, 

conventional models must be re-parameterised to accommodate changes in vegetation 

phenology or physiology caused by climatic and growing season variations (Oliver et al., 

2022). Another limitation of conventional models is that they do not optimally extract 

information from data, and their heavy characterisation and parameterisation are limited by 

fitting to the existing dataset, which inhibits their generalisation (Liu & Mishra, 2017; Zhao et 

al., 2019). Although ML algorithms cover the limitations in conventional models, their inability 

to be interpreted hinders their understanding (Koppa et al., 2022). Therefore, we need to 

combine conventional models with ML algorithms as ‘Hybrid’ models to preserve the 

advantages of conventional models, such as physical consistency and interpretability, as well 

as those of ML algorithms, such as more realistic data-driven formulations of processes that 

are not fully understood. Furthermore, considering differences in vegetation response to 

environmental variables, the ML model should include appropriate sets of statistical covariates 

with high nonlinear interaction between environmental variables in ET and gs simulation.  

Another knowledge gap discussed in this thesis is the neglect of the vegetation’s response to 

environmental variables in runoff simulations by hydrological models. The moisture transport 

away from the evaporating surface is presented by PET equations in hydrological models. The 

PET equations link moisture transport to meteorological data, including TA, R, and VPD 

(Pimentel et al., 2023). However, the vegetation response to CO2 and climate variables, which 

are presented as gs, is overlooked in PET equations (Ballarin et al., 2023; Yang & Roderick, 
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2019). The modification of PET by adding gs as a function of CO2 has been investigated by 

several studies, which have shown improvements in runoff simulations at a global scale 

(Ballarin et al., 2023; Yang et al., 2019; Zhang et al., 2023). However, the gs variable in 

modified PET is assumed to be a linear function of CO2. This does not align with the nonlinear 

CO2-gs function in the real environment (Li et al., 2019). Additionally, the interactive effects 

of environmental variables such TA, R, VPD, and SWC on gs are not included in the PET 

equation, despite their significant influence on plants gs (Greve et al., 2017; Milly & Dunne, 

2016; Zhou et al., 2023). Thus, more work is required to firstly understand whether vegetation 

response could be more accurately simulated in a PET equation that includes these variables; 

and secondly if this modification in PET equation can improve runoff simulation accuracy. 

This research work had two aims. First, it aimed at simulating gs using a nonlinear ML model 

along with physical constraints in order to achieve realistic results. The combined model 

preserves the advantages of both physical models (physical consistency and interpretability) 

and ML models (data adaptability and more realistic data-driven formulation). The MGAM as 

a nonlinear ML model is used for this aim as it may be capable of gs simulation through optimal 

extraction of information from observed data. In addition, it can analyse the realistic, nonlinear 

interaction between environmental variables with appropriate sets of statistical covariates in gs 

simulation. The second overall aim of this study is to investigate the role of gs in a modified 

PET equation, which incorporates the vegetation response to environmental variables. As PET 

is an important term in hydrological models for runoff simulation, the modified PET is assumed 

to improve the runoff simulation accuracy. In this aim, the vegetation response to 

environmental variables is simulated through gs and then incorporated into the PET equation 

for runoff simulation improvement. 

The following research objectives were determined to achieve the research aims. 
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1. Improving the gs simulation by Mixed Generalised Additive Model (MGAM) as a 

nonlinear ML. 

a. Objective 1: Comparison between conventional models and MGAM for gs simulation 

(addressed in Chapter 2) 

b. Objective 2: Global sensitivity analysis of different gs simulation models (addressed 

in Chapter 2) 

c. Objective 3: Generalization of MGAM in gs simulation for different vegetation types 

(addressed in Chapter 3) 

2. Enhancing the runoff simulation by including gs in the PET equation. 

a. Objective 1: Comparison between conventional PET simulation model and modified 

PET model by adding simulated gs by MGAM (addressed in Chapter 4) 

b. Objective 2: Comparison between runoff simulation by conventional PET and 

modified PET (addressed in Chapter 4) 

c. Objective 3: The role of CO2 and environmental variables on runoff simulation for 

different climate conditions (wet and dry conditions) (addressed in Chapter 4) 

To address the first aim of this research, the MGAM model was trained to learn the 

relationship between VPD, CO2, R, TA, and SWC for gs simulation (addressed in Chapter 

2). The direct and interactive effects of environmental variables on gs were measured by 

smooth and tensor functions in MGAM. Then the results of the gs simulation by the MGAM 

model were tested against observed gs data and compared with the results of the 

conventional models (semi-empirical and empirical models). The global sensitivity 

analysis presented the sensitivity of gs to direct and interactive effects of key environmental 

variables in MGAM and conventional models. Moreover, the difference in vegetation 

response to environmental variables, which is overlooked in conventional models, was 

highlighted by the different structures of MGAM model for each vegetation type, including 
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crop (CRO), deciduous broad-leaf forest (DBF), evergreen needle-leaf forest (ENF), and 

grass (GRA) (addressed in Chapter 3). Visualisation methods in ML models were applied 

to MGAM to show the contribution of each environmental variable in gs simulation. The 

interactive effects between key environmental variables in gs fluctuation, which is 

neglected in conventional models, were presented in MGAM visualisation.  

To address the second aim, the simulated gs by MGAM has been added to the Penman-

Monteith PET equation (PETPM), to incorporate vegetation response to environmental 

variables as a part of the PET equation (addressed in Chapter 4). The modified PET 

(PETMGAM) is expected to improve runoff simulation, especially in wet conditions when 

the role of PET is more significant in runoff fluctuation. Therefore, the GR4J rainfall-runoff 

model was used to compare runoff simulation by PETMGAM and PETPM with observed 

runoff values in different climate conditions of dry, wet, and extreme wet. Then the 

sensitivity analysis of PET determined the contribution of key environmental variables in 

PET simulation for different climate conditions to interpret the performance of PET models 

in runoff simulations. 

1.8 Thesis outline 

Table showing each chapter’s title and type of publication. 

Chapter title Chapter Type 

Introduction and literature review 1 research overview 

/literature review 

Paper 1: Evaluating CO2 effects on semi-empirical and empirical 

stomatal conductance simulation in land surface models 

2 research output 

(published) 

Paper 2: The Impact of Environmental Variables on Canopy 

Conductance: Advancing Simulation with Nonlinear Machine 

Learning Model 

3 research output 

(published) 

Paper 3: Enhanced runoff simulation: improved 

evapotranspiration via vegetation response to climate conditions 

utilizing machine learning 

4 research output (to be 

submitted to a peer-

reviewed journal) 

Conclusion and outlook 5 conclusion 
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Nomenclature 

An Net photosynthesis rate (μmol/m2s) 

Cs Atmospheric carbon dioxide concentration (μmol CO2 mol-1) 

Ci Intercellular carbon dioxide concentration (μmol CO2 mol-1) 

gs Stomatal conductance (mol/m2s) 

hs Relative humidity 

iWUE Intrinsic water use efficiency (μmol CO2/mol H2O) 

L* CO2 compensatory point (μmol CO2 mol-1) 

LAI Leaf area index (m2/m2) 

R Net radiation (W/m2) 

S Soil water content (m3/m3) 

Tair Air temperature (°C) 

Tm, T0 Maximum and minimum air temperature (°C) 

VPD Vapour pressure deficit (kPa) 

a, a1-a4, D0, gmin, g0, g1, L, m Calibration parameters 

CLM Community Land Model 

JULES Joint UK Land Environment Simulator 

LPJmL Lund-Potsdam-Jena managed Land 

MCMC Markov-Chain Monte Carlo 

NSE Nash-Sutcliffe efficiency coefficient 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 

 

2.1 Abstract 

Ongoing changes in climate and carbon dioxide (Cs) in the atmosphere have profound effects 

on plant transpiration and, consequently, on the water balance. Land surface models (LSMs) 

reflect plant response to these changes by simulation of stomatal conductance (gs). However, 

the plant response is not well understood and varies with climate. In this study, the simulation 

of gs within different LSMs is reviewed and a new approach, a Mixed Generalized Additive 

Model (MGAM) for gs simulation, is developed. The alternative gs estimation is proposed as 

a solution for the high parameterisation uncertainty in semi-empirical gs simulation models, 

and high dependency on mathematical functions for environmental stress factors in empirical 

gs simulation models. MGAM has high Pearson and Spearman correlations (87% and 85%, 

respectively) and efficiency coefficients (71%), with low error values (0.07 mol/m2s) in gs 

simulation. The global sensitivity analysis of the MGAM approach shows the necessity of 

considering the interaction between Cs and other key climate variables in gs simulation. The 
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high accuracy and low uncertainty to the first-order key climate factors in gs simulation 

highlight the MGAM model's importance in future studies. 

2.2 Introduction 

The increase in atmospheric carbon dioxide concentration (Cs) has global direct and indirect 

effects on the earth system (Yiqi et al., 1999). The Cs has increased from 275 to 415 ppm since 

the industrial revolution in 1760. The change in the Cs has profoundly affected the climate 

system and earth’s primary productivity (Friedlingstein et al., 2020). High levels of Cs may 

inhibit photorespiration and increase the net photosynthesis rate (An) hence providing better 

growth and yield productivity (Ahmed et al., 2019). Additionally, Cs significantly stimulates 

light-saturated photosynthesis and reduces transpiration, which collectively leads to higher 

light-use efficiency and water use efficiency (WUE) in plants, consequently changing 

ecosystem water balance  (Reinecke et al., 2021; Yiqi et al., 1999). Therefore, an accurate 

simulation model to clearly reveal the effects of Cs on plants is highly required.  

In plants, stomata consist of microscopic pores formed by a pair of guard cells that control the 

exchange of water, energy and Cs between leaf and atmosphere via regulating stomatal 

conductance (gs) (Wu et al., 2021). The elevated Cs effects on gs is highly variable between 

climates (Li et al., 2019; Yang et al., 2021; Yang et al., 2019; Zhang et al., 2021) and vegetation 

(Donohue et al., 2017; Zhu et al., 2021), which is not well understood. The effect of Cs on gs 

has been shown contradictory in different studies leading to uncertainty in gs simulation. For 

example, a reduction in gs or transpiration rate has been claimed to be caused by increasing Cs 

(Faralli et al., 2019; Gimeno et al., 2016; Leuzinger, 2007; Lin et al., 2001; Ward et al., 2012). 

In contrast, others have argued that a Cs increase does not significantly reduce the gs (Uddling 

et al., 2009; Walker et al., 2019). Moreover, increasing leaf area index (LAI) by elevated Cs 

may offsets the reduction in gs in unmature plants (Duursma et al., 2016; Norby & Zak, 2011; 

Purcell et al., 2018). The effect of Cs on gs is more complex due to interactions of Cs and other 
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climate variables such as atmospheric water vapour, net radiation (R), or air temperature (Tair) 

(Arora et al., 2020; Ceppi & Gregory, 2017; De Kauwe et al., 2021; Haworth et al., 2013; Liao 

et al., 2021; Medlyn et al., 2001). Several studies have claimed that high vapour pressure deficit 

(VPD) outweighs the decreasing effect of Cs on gs (Flexas et al., 2004; Morgan et al., 2004; Xu 

et al., 2016). Moreover, in some locations with dry conditions and high temperature, Cs has an 

increasing effect on gs (Purcell et al., 2018).  

The dynamic vegetation response to climate variables (e.g., humidity, VPD, temperature and 

Cs) has been introduced into various land surface models (LSMs) since the early 2000s (Blyth 

et al., 2021; Damour et al., 2010; Lei et al., 2014; Liu & Mishra, 2017; Reinecke et al., 2021). 

The gs simulation in LSMs can be categorised into semi-empirical and empirical approaches. 

The semi-empirical approaches integrate biological, physical, and biochemical processes in 

plants (Lawrence et al., 2020; Lawrence et al., 2019). The semi-empirical gs simulations are 

constrained due to large uncertainties caused by model parameterisations (Jiménez et al., 2011; 

Seneviratne et al., 2010). In addition, gs simulations with this approach do not account for 

important stress processes related to plant hydraulics such as water, humidity, or the Cs effect 

(Green et al., 2019; Wang et al., 2009). Vegetation responds differently to climate variables 

and Cs changes (Xu et al., 2016). However, the sensitivity of gs to Cs and environmental 

conditions is not well-established in semi-empirical gs simulation approaches (Franks et al., 

2017; Jarvis et al., 1976; Konings et al., 2017). Alternatively, empirical gs simulations use 

statistical correlations between gs, environmental factors, and transpiration (Li et al., 2019; Pan 

et al., 2015). The empirical gs simulation includes simplifying assumptions and does not 

consider the net photosynthesis rate (An), while the An is generally part of the semi-empirical 

approaches (Damour et al., 2010). Empirical gs simulation models usually do consider the stress 

functions of plants; however, the definition of appropriate stress functions is challenging in 

these models. For example, Noah LSM includes a Jarvis empirical gs simulation model (Jarvis 
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et al., 1976), in which multiplicative combinations of stress functions (e.g., R, Tair, soil 

moisture, and VPD) are applied to scale down stomatal conductance from the optimal condition 

(Kumar et al., 2011). The equations of these stress functions vary among different studies 

(Granier & Loustau, 1994; Wang et al., 2020; Wang et al., 2016; Zeppel et al., 2008). The Cs 

effect on leaf stomatal conductance can also be added into a Jarvis type model. However, the 

addition of Cs effects on gs simulation as a simple linear or hyperbolic function is another 

challenging issue in these models (Li et al., 2019).  

Despite extensive research on LSMs, large uncertainties still exist in quantifying the magnitude 

of environmental variables on gs (Friedlingstein et al., 2020). The large discrepancy among 

independent studies can be attributed to deficiencies in model structures, lack of sufficient 

measurements, ill-calibrated model parameters, and uncertainty in forcing data (Pan et al., 

2020). The uncertainty sources not only stem from meteorological conditions and soil moisture 

but are also intensified by the physiology and structure of vegetation (Best et al., 2015; Damour 

et al., 2010). Knowledge of the uncertainties in the gs and transpiration estimated from different 

sources is a prerequisite for future water balance prediction (Blyth et al., 2021).  

The objective of this study is to evaluate and improve leaf stomatal conductance gs simulation 

in LSMs. The data from the Free-Air Carbon dioxide Enrichment (FACE) experiment with leaf 

level measurement of gs by (Duursma et al., 2016) and (Gimeno et al., 2016) is used in this 

study. We first review gs simulation in semi-empirical and empirical approaches in different 

LSMs to identify the sources of uncertainty and sensitivity to Cs changes and climate variables. 

Then we propose a new Mixed Generalized Additive Model (MGAM) for the gs simulation 

with lower uncertainty and capable of accounting for the interactions of various environmental 

influences on gs. The aim of this research is to provide an alternative solution for future LSM 

model development through the study of vegetation responses to key climate interactions. The 
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results of this analysis will allow us to predict the effects of anthropogenic climate change on 

water balance.  

2.3 Methodology and data sources 

2.3.1 Overview of approaches to gs estimation 

The gs is a key variable in hydrological modelling of plant water use (Wu et al., 2021). The 

stomatal regulation of gs and transpiration in plants are quantified by LSMs (Blyth et al., 2021). 

The LSMs incorporate Cs effects on gs by semi-empirical and empirical modelling approaches, 

as presented in Table 1.  

Table 1 The gs simulation equations in LSMs and MGAM with calibrated parameters  

Eq. #  gs approaches in different LSMs Equation  Calibration 

parameters 

Calibration 

results 

1 

S
e
m

i-
em

p
ir

ic
a
l 

g
s 
a

p
p

r
o
a
c
h

e
s 

 

CLM4.5-gs-Eq.1 

based on (Collatz et al., 1991; 

Oleson et al., 2013) 

𝑔𝑠 = 𝑚
1.6 × 𝐴𝑛

𝐶𝑆
ℎ𝑠 + 𝑏𝐵 

𝐵 = 

{
 

 
1              𝑆 ≥ 𝑆𝑐𝑟𝑖𝑡

𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

      𝑆𝑤𝑖𝑙𝑡 < 𝑆 < 𝑆𝑐𝑟𝑖𝑡

0               𝑆 ≤ 𝑆𝑤𝑖𝑙𝑡

 

𝑚 

𝑏 (mol/m2s) 

9 

0.01 

2 CLM5-gs-Eq.2  

based on (Ball, 1987; Medlyn et al., 

2011) 

𝑔𝑠 = 𝑔0 + 𝑔1
1.6 × 𝐴𝑛 × ℎ𝑠

𝐶𝑆
 

𝑔0 (mol/m2s) 

𝑔1 

0.0009 

8.01 

  3 CLM5-gs-Eq.3  

based on (Brooks & Farquhar, 1985; 

Leuning, 1990; Leuning, 1995) 

𝑔𝑠 = 𝑔0 + 𝑔1
1.6 × 𝐴𝑛

(𝐶𝑆 − 𝐿
∗)(1 +

𝑉𝑃𝐷
𝐷0

)
 

𝐿∗ = 42.7 + 1.68 × (𝑇𝑎𝑖𝑟 − 25)

+ 0.012 × (𝑇𝑎𝑖𝑟 − 25)
2 

𝑔0 (mol/m2s) 

𝑔1 

𝐷0 (kPa) 

-0.06 

6.7 

3.87 

4 CLM5-gs-Eq.4  

based on (Arneth et al., 2002) 

𝑔𝑠 ≈ 𝑔0 + (1 +
𝑔1

√𝑉𝑃𝐷
)
1.6 × 𝐴𝑛
𝐶𝑆

 
𝑔0 (mol/m2s) 

𝑔1(kPa0.5) 

-0.029 

4.29 

5 JULES-gs-Eq.5  

based on (Best et al., 2011; Cox et 

al., 1998) 

𝑔𝑠 =
1.6 × 𝐴𝑛
𝐶𝑆 − 𝐶𝑖

 

 

- 

 

- 

6 JULES-gs-Eq.6 

based on (Best et al., 2011; Cox et 

al., 1999) 

𝑔𝑠 =
1.6 × 𝐴𝑛
𝐶𝑆 − 𝐶𝑖

   ,    𝐶𝑖 =  𝑥 × 𝐶𝑆  𝑥 0.78 
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Eq. #  gs approaches in different LSMs Equation  Calibration 

parameters 

Calibration 

results 

   7 LPJmL-gs-Eq.7 

based on (Haxeltine & Prentice, 

1996; Sitch et al., 2003) 

𝑔𝑠 = 𝑔𝑚𝑖𝑛 +
1.6 × 𝐴𝑛
𝐶𝑆(1 − 𝐿)

 

 

𝑔𝑚𝑖𝑛 (mol/m2s) 

𝐿 

-0.09 

0.83 

   8 

 

E
m

p
ir

ic
a
l 

g
s 
a

p
p

ro
a
c
h

e
s 

JSBACH-gs-Eq.8 

based on (Knauer et al., 2015) 

𝑔𝑠 = 𝛽 ×
1.6× 𝐴𝑛𝑚𝑎𝑥

𝐶𝑆−𝐶𝑖
   ,       𝐶𝑖 =  𝑥 × 𝐶𝑆  

𝛽 = 1 − а1 × 𝑒𝑥𝑝(а2  ×
𝑆𝑚𝑎𝑥 − 𝑆

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
) 

𝑥 

а1 

а2 

0.84 

0.41 

0.61 

9 Noah-gs-Eq.9 

based on (Jarvis et al., 1997; Jarvis et 

al., 1976; Kumar et al., 2011; Li et 

al., 2019) 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑉𝑃𝐷) × 𝑓(𝑆) × 𝑓(𝐶𝑆) 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × exp(−а1  × 𝑉𝑃𝐷) × 

1 − а2 × exp(а3  ×
𝑆𝑚𝑎𝑥 − 𝑆

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
)

×
1

1 + а4  × (
𝐶𝑆
а5
− 1)

 

а1  

а2 

а3 

а4 

а5 

0.38 

0.052   

2.12  

0.38 

397 

10  MGAM-gs-Eq.10 𝑔𝑠 = 𝑠(𝐶𝑠) +  𝑠(𝑉𝑃𝐷) +  𝑠(𝑆) +  𝑠(𝑇𝑚) +  𝑠(ℎ𝑠)

+ 𝑡𝑖(𝑉𝑃𝐷, 𝑇𝑚, 𝐶𝑠) 

- - 

 

2.3.2 Semi-empirical gs simulation approaches 

A common assumption in the semi-empirical gs simulation approach is the “big leaf” theory, a 

representation of the leaf-level photosynthesis that treats the canopy like one big leaf (Farquhar, 

1989). The equation CLM5-gs-Eq.2 (Table 1) is a well-known semi-empirical gs simulation 

model developed by Ball et al. (1987) and is used in the LSM ”Community Land Model” 

(CLM) (Ball, 1987). In this method, gs responds to An, relative humidity (hs), and Cs. The 

CLM5-gs-Eq.2 method has been criticised for its use of inaccurately simulated An values 

(Damour et al., 2010). Therefore, Leuning (1990; 1995) modified the CLM5-gs-Eq.2 method 

by adding the CO2 compensatory point (L˟) and replacing the hs with VPD to form the CLM5-

gs-Eq.3 method. This method was further improved to CLM5-gs-Eq.4 by modifying the 

incorrect gs simulation when Cs is equal to L˟ (Arneth et al., 2002).  
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The Joint UK Land Environment Simulator (JULES) uses a big leaf approach in JULES-gs-

Eq.5, where gs is connected to leaf-air CO2 exchange, so the intercellular carbon dioxide (Ci) 

variable is added to the equation (Cox et al., 1999) (Table 1). In other studies, the Ci is replaced 

by a function of Cs; 𝐶𝑖 =  𝑥 × 𝐶𝑠, where 𝑥 is a calibrated parameter (Knauer et al., 2015; Knorr, 

2000). This replacement was implemented in JULES-gs-Eq.6 and used in cases where the Ci is 

not available. The Lund-Potsdam-Jena managed Land (LPJmL) model uses a similar approach 

to JULES. However, the gmin has been added as a vegetation specific minimum stomatal 

conductance (Table 1), which should be calibrated for different vegetation types (Sitch et al., 

2003). 

In all semi-empirical LSMs, an An and gs relationship is included as a constraint to couple 

carbon and water processes. However, LSMs have different representations of the An and gs 

relationship, particularly in the capability for simulating the CO2 concentration effect. 

Moreover, the coupling or decoupling of gs and An is still debated among different studies 

(Ameye et al., 2012; Collatz GJ et al., 1992; Drake et al., 2018; Krich et al., 2022; Schulze et 

al., 1973; Tuzet et al., 2003; J. Urban et al., 2017; von Caemmerer & Evans, 2015; Yun et al., 

2020). Therefore, for comparing semi-empirical LSMs in gs simulation, we have assumed gs is 

unknown and all other parameters, including An and climate variables, are known as input in 

the gs simulation equations in Table 1. 

2.3.3 Empirical gs simulation approaches 

In empirical models, various interconnections between plant components and environmental 

conditions are defined via empirical mathematical concepts for the gs simulation. These models 

estimate gs independent of the An variable. The result of empirical gs models strongly depends 

on the quality of the observed input data (Jaiswal et al., 2020). The effects of environmental 

conditions on plants are computed as stress functions. One of the empirical gs simulation 

models is the Jarvis equation integrated in the Noah LSM, which estimates gs directly by 
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reducing a maximum gs for the optimal environmental condition using stress functions of actual 

environmental conditions (Liu et al., 2019). In this research, different forms of stress functions 

were reviewed from various studies (Table S1). Most versions of the Jarvis equation treat Cs 

effects on gs as a simple linear process, except the model used by Li et al. (Li et al., 2019). 

Another empirical gs simulation model is JSBACH-gs-Eq.8 (Table 1). This model uses a 

maximum value of An (without stress) instead of variable An and has a soil moisture stress 

function (Knauer et al., 2015). The soil moisture stress function in JSBACH has been modified 

in this study based on different soil moisture stress functions in Table S1. 

2.3.4 MGAM for gs simulation  

MGAM is a powerful modelling technique to simulate complex nonlinear relationships 

between variables and responses (Wood et al., 2016). This approach is used when at least one 

parameter or variable appears to be nonlinear. The MGAM simulation process is based on 

developing multiple nonlinear functions to predict the outcome of the dependent or 

independent variables and parameters with the help of the degree of relationship among them. 

MGAM uses flexible regression functions (smoother function), which model the relationships 

between covariates and outcomes where the shape of the function itself varies between different 

groups of datasets (Hastie et al., 2009). Apart from the regular smooth function (S) to reflect 

the nonlinearity of variables, a tensor function (ti) can be used when the interaction between 

variables is statistically significant. The generic form of the MGAM model is 

𝑓(𝑥) =  ∑𝛽𝑘𝑏𝑘(𝑥)

𝐾

𝑘=1

 

 

(11) 

where, 𝑓(𝑥) is a smoother function,   𝑏𝑘 are basis functions, 𝛽𝑘 are corresponding coefficients, 

and K is referred to as basis size or basis complexity. The coefficients of the basis functions 

are optimised to ensure the appropriate complexity of the models. The large basis size could 
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lead to overfitting, but it is counteracted by a penalty term, to maximise the penalised log-

likelihood as in Eq. 12.  

𝐿𝜌 =  𝐿 −  𝜆𝛽𝑇𝑆𝛽 (12) 

where, 𝐿𝜌 is penalised log-likelihood, L is the model likelihood, S is the penalty matrix, 𝛽𝑇𝑆𝛽 

is the penalty term for vector 𝛽, and 𝜆 controls the trade-off between log-likelihood and penalty 

term (Wood, 2016). 

At a low value of λ=0, the penalty has no effect, and the model is too complex with high 

wiggliness, but at high values of λ→∞, the penalty is high resulting in a simple linear model 

(Hastie et al., 2009; Wahba, 1990). The ‘nls’ and ‘mgcv’ packages in R are used for MGAM-

gs simulation in this study (Baty et al., 2015; Wood et al., 2016).  

The structure of gs simulation in MGAM can be described as Eq. 13.  

𝑔𝑠 = ∑ 𝑓(𝑥𝑚)

𝑀

𝑚=1

 
 

(13) 

where, 𝑀 are the effective variables on gs (e.g., climate variables, Cs, and soil moisture). Each 

of the effective variables has the smoother function 𝑓(𝑥) (Eq. 11), which contains basis 

functions with relevant coefficients.  

2.4 Description of the dataset and the case study  

The input data of this study were collected from the Western Sydney University website 

(Duursma, 2015; Duursma et al., 2016). The data is the result of the Eucalyptus FACE 

experiment (EucFACE) with Eucalyptus-dominated mature woodland in western Sydney 

(Australia, 33°37´S, 150°44´E, 30 m a.s.l.) from October 2012 to November 2013 (Duursma 

et al., 2016). The case study is characterised as a humid temperate-subtropical transitional 

climate (Duursma et al., 2016; Gimeno et al., 2016). The mean annual precipitation is 800 mm 
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and the mean annual temperature is 17 °C from 1881 to 2014; the estimated potential 

evapotranspiration (PET) is 1350 mm from 1950 to 2000 (Duursma et al., 2016; Zomer et al., 

2008). The soil at this site is loamy sand with more than 75% sand content in the top 50 cm, 

and sandy clay loam with more than 30% silt and clay from 50 to 300 cm depth (Crous et al., 

2015; Duursma et al., 2016).  

The EucFACE consisted of six 25 m diameter circular plots (rings), each ring having 39 ± 3 

canopy trees, with approximately 17 dominant and co-dominant canopy-forming trees. Seven 

campaigns of leaf gas exchange and water potential measurements were performed. The leaf-

level CO2 and H2O exchange measurements were performed with four open-flow portable 

photosynthesis systems (Li-6400, Li-Cor, Inc., Lincoln, NE, USA). The An and gs were 

measured under 1800 µmol m-2 s-1 photon flux density (provided by the in-built Li-6400 red-

blue LED lamp). The Cs level was increased gradually from ambient level (390 μmol CO2 mol-

1) to elevated level (540 μmol CO2 mol-1), starting from September 2012, and reached to full 

operation model in February 2013. Three rings were exposed to elevated Cs, while the three 

ambient rings were used as control plots. The elevated Cs does not affect LAI of the mature 

trees in the case study (Duursma et al., 2016). This study focuses on 160 observed data points 

over 11 days, which had all the necessary variables for both the semi-empirical and empirical 

gs simulation models (the rest of the data does not contain all variables). The main objective of 

this study is finding the effects of CO2 changes on gs, and available data had the full coverage 

for the CO2 range from ambient to elevated level and covered all seasons 2012-2013. 

2.5 Calibration and validation processes of gs simulation models 

2.5.1 MCMC-Bayesian calibration  

Bayesian inference is an important approach for calibration, especially in complex 

environmental and ecological models (Speich et al., 2021). The Markov-Chain Monte Carlo 
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(MCMC) algorithm is the methodological backbone of the Bayesian approach (Speich et al., 

2021). The evaluation of parameterisation in Bayesian theory is based on the likelihood as the 

goodness of fit. The likelihood p(D|θ) is defined as a probability of observation data (D) 

occurring given the model parameterisation with θ. The term θ represents different 

parameterisations of the model. The best choice for θ is the value with the highest likelihood 

(maximum likelihood estimation) defined in Eq. 14 (Hartig et al., 2012). 

𝑝(𝐷|θ) ∝  𝑒
−|𝑀(θ)−𝐷|2

2×𝜎2  
(14) 

where, 𝑀(θ), are the model prediction results from the parameterisation θ, D is the observed 

data, and σ is the standard deviation of the error. 

Moreover, additional independent information related to parameters should be investigated in 

the parameterisation. We have used Bayes theory to merge independent information into the 

likelihood function, as shown in Eq. 15. 

𝑝(𝜃|𝐷) =  
𝑝(𝐷|θ) × 𝑝(θ)

𝑝(𝐷)
 

(15) 

where, 𝑝(𝜃|𝐷) is posterior density (or probability density) that summarises the information for 

probable values of θ. The posterior density (𝑝(𝜃|𝐷)) depends on the likelihood (𝑝(𝐷|θ)), and 

a new term of 𝑝(θ) that is called the prior. In each iteration, this new information will be 

merged with the existing information by using the posterior distribution from the old data as 

the prior for the new data (Hartig et al., 2012).  

The posterior density calculation in Bayesian inference is computationally demanding due to 

its high dimensionality. Therefore, MCMC was used to generate a sample of data from the 

posterior distribution to solve this problem. The MCMC performs a random walk in parameter 

space by the stochastic Markov process. The Markov process was chosen such that the 

probability of each parameter combination is proportional to its posterior density. There are 
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different algorithms for the Markov process, such as Metropolis-Hastings, Gibb’s sampling, 

Sequential Monte Carlo, or Differential Evolution (DEzs) (Speich et al., 2021). The DEzs 

process was chosen in this study as the MCMC algorithm as it is more efficient than other 

methods. In DEzs, different datasets run in parallel; therefore, choosing an appropriate scale 

and orientation of the distribution is more efficient than other Markov algorithms (ter Braak & 

Vrugt, 2008). The ‘BayesianTools’ and ‘mcmc’ packages in R are used for the calibration 

process in this study (Geyer & Johnson, 2020; Hartig et al., 2019).   

2.5.2 Cross-validation technique  

160 observed data points were used in this study for the gs simulation. 80% of the data was 

used to train the models and for the calibration processes, while 20% was used to test the 

models. A 10th fold cross-validation was used with ten iterations. The training data were 

randomly split into 10 folds, and the model was trained by 9 folds, then it was validated by the 

remaining 10th fold. The ‘caret’ package in R was used for the cross-validation (Kuhn, 2021). 

2.6 Intrinsic Water Use Efficiency response from gs models 

The intrinsic Water Use Efficiency (iWUE) is defined as the ratio of carbon assimilation 

(μmol/m2s), An, over gs (Eq. 16), which is used to measure the adaptability of plants to changes 

in environmental conditions (Zhang et al., 2019).  

iWUE =  
𝐴𝑛
𝑔𝑠

 
(16) 

The iWUE has received considerable attention due to the recent increase in iWUE in many 

ecosystems. Several observational (Keenan et al., 2013; Mastrotheodoros et al., 2017) and 

theoretical (Knauer et al., 2017) studies attributed this phenomenon to rising Cs (Zhang et al., 

2019). In LSMs, iWUE is a new index that reflects plants’ adaptability to changing 

environmental conditions (Blyth et al., 2021; Zhang et al., 2019). 
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In this study, the observed An and simulated gs for the various referenced models were used to 

estimate iWUE. The response of iWUE to the Cs scenarios is calculated from different gs 

simulation models. 

2.7 Sensitivity analysis  

The Sobol sensitivity analysis is used to determine how much of the variability or the 

uncertainty of the output model depends on each of the input indices (variables and 

parameters). Also, it determines if these indices act singularly or if there are interactions 

between different indices. The Sobol method is a variance-based uncertainty and sensitivity 

analysis that represents the first, second, and total order of variance-based estimators to 

understand how output variance is attributed to individual indices or the interaction between 

indices (Puy, 2021). 

It is a common approach to measure local sensitivity (or one-at-a-time analysis) to define the 

model output changes in terms of one-index variation when all other indices are maintained at 

a fixed value (Saltelli et al., 2019). This approach does not sufficiently identify the interactions 

between indices. The Sobol method (as a global sensitivity analysis) fills this gap by studying 

the interactions of uncertain parameters on the output of the simulation model, even for 

nonlinear systems (Saltelli et al., 2008). The Sobol method perturbs input indices based on their 

ranges and then defines the model output uncertainty using variance as in Eq. 17 (Puy, 2021; 

Saltelli et al., 2008). 

V(y) =  Vxi[Ex~i(y|xi)] + Exi[Vx~i(y|xi)] (17) 

where, 𝑉𝑥𝑖[𝐸𝑥~𝑖(𝑦|𝑥𝑖)] and 𝐸𝑥𝑖[𝑉𝑥~𝑖(𝑦|𝑥𝑖)] are the first-order effects of the 𝑥𝑖 and residual, 

respectively, E(.) and V(.) are the mean and variance operators, 𝑦 = 𝑓(𝑥) is a scalar output and 

𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑘 are uncertain inputs parameters,  𝑥~𝑖 denotes all parameters except 𝑥𝑖. 𝑉(𝑦) 
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can be decomposed to all partial variances up to the kth order as Eqs. 18-19 (Saltelli et al., 

2008). 

V(y) =  ∑Vi
i=1

+∑∑Vij +⋯+ V1,2,…,k
i<ji

 
(18) 

where, 

Vi = Vxi[Ex~i(y|xi)] ,    

Vij = Vxi,xj[Ex~i,j(y|xi, xj)] − Vxi[Ex~i(y|xi)] − Vxj[Ex~j(y|xj)]        

 

(19) 

The Sobol indices are then calculated as Eq. 20 (Saltelli et al., 2008). 

Si =
Vi

V(y)
 ,    Sij =

Vij

V(y)
 (20) 

where, 𝑆𝑖 is the first-order effects of 𝑥𝑖, and 𝑆𝑖𝑗 is the second-order effect of (𝑥𝑖, 𝑥𝑗).  

Total order index 𝑇𝑖, which is the first-order effects of 𝑥𝑖 and its interactions with all other 

parameters can be measured by Eq. 21 (Saltelli et al., 2008). 

Ti = 1 −
Vx~i[Exi(y|x~i)]

V(y)
=
Ex~i[Vxi(y|x~i)]

V(y)
 

(21) 

As an example, for a three-dimensional model, the total-order index of 𝑥1 is the sum of the 

first, second, and third-order effects of 𝑥1 as in Eq. 22.  

T1 = S1 + S1,2 + S1,3 + S1,2,3 (22) 

  

The methodology used in this study has been summarised in Fig. 1. The input data was divided 

to train and test data for calibration and test of gs simulation approaches in different LSMs. The 

input data, including An, climate variables, and calibrated parameters, were defined for each gs 

simulation approach in LSMs. MCMC-Bayesian calibration process was performed for gs 

simulation in semi-empirical and empirical models. The calibration process requires a 
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calibration range for each fitted parameter in semi-empirical and empirical models (Fig. S1). 

The 10th fold cross validation process was performed for all simulation models. MGAM is 

independent of An and MCMC-Bayesian calibration. The differences between the various gs 

simulation approaches in LSMs and MGAM are evaluated through gs simulation, iWUE 

estimation, and global sensitivity analysis. 

 

Figure 1 Conceptual diagram of the methodology. The gs simulation in semi-empirical and empirical 

models depend on the An variable and calibration process. All gs simulation models were validated by 

10th fold cross validation, and compared by gs simulation, iWUE estimation, and global sensitivity 

analysis. 

 

2.8 Results  

2.8.1 gs simulation results 

The calibration process for semi-empirical and empirical gs simulation models has been 

performed with the Bayesian and MCMC method (Table 1). The results of the gs simulation 
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for all models were compared with the observed gs values for both the training and testing data 

(Fig. 2). Simulation performance was measured by assessment criteria such as correlation 

coefficients (Pearson, Spearman, and Kendall), Nash-Sutcliffe efficiency coefficient (NSE), 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) (Fig. 3).  The semi-

empirical gs simulation approaches performed well based on all the assessment criteria for 

testing and training. The coefficient values for Pearson, Spearman, Kendall, and NSE for test 

data were 88-97%, 91-97%, 75-89%, and 73-94%, respectively. The error values for semi-

empirical gs simulation models were 0.03-0.07 and 0.02-0.05 (mol/m2s) for RMSE and MAE, 

respectively. The results of the empirical gs simulation models showed a lower accuracy 

compared to the semi-empirical gs simulation models. The JSBACH-gs-Eq.8 showed 82%, 

76%, 59%, and 66% for Pearson, Spearman, Kendall, and NSE coefficient, respectively, while 

these values for the Noah-gs-Eq.9 were 73%, 71%, 53%, and 52%, respectively. The JSBACH-

gs-Eq.8 RMSE and MAE values were respectively 0.08 and 0.06 (mol/m2s), while Noah-gs-

Eq.8 error values were respectively 0.11 and 0.09 (mol/m2s).  

The results of the MGAM-gs simulation model in correlation and efficiency coefficients were 

87%, 85%, 65%, and 71% for respectively Pearson, Spearman, Kendall, and NSE coefficients 

in test data. The error values in the MGAM-gs model were 0.07 and 0.06 (mol/m2s) for 

respectively RMSE and MAE. This demonstrates that the MGAM-gs simulation model has 

better results than the empirical gs simulation approaches for the test data. It is worth noting 

that all models shown in Fig. 3 have been cross-validated, so there is no overfitting or 

underfitting between the training and test results. The slight improvement in test data for the 

MGAM model may result from model performance on unseen and randomly chosen test 

datasets or a low number of test data samples.  
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Figure 2 Simulated (black line) and observed (red line) gs for 11 days (columns) and ten different gs simulation approaches (rows).
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         Figure 3 Performance of gs simulation approaches as measured by six criteria for a) training; and b) testing. 

 

2.8.2 The impact of gs on iWUE 

The scatter plot in Fig. 4 confirms that elevated Cs will increase the iWUE as expected. The 

iWUE for all gs simulation models increased by 18 to 25% for the Cs gradual rise from 390 to 

540 μmol CO2 mol-1. The results for the semi-empirical gs simulation models of iWUE for both 

scenarios show a better fit. However, for the gs values less than 0.1 mol/m2s, the simulated 

iWUE was lower than the observed iWUE, especially for CLM4.5-gs-Eq.1 and CLM5-gs-Eq.2. 

A similar result was observed for the gs less than 0.1 mol/m2s in JSBACH-gs-Eq.8, Noah-gs-

Eq.9, and MGAM-gs-Eq.10. However, the dispersion was mostly located in the lower part of 

the iWUE-gs curve, while the upper part of the curve was more concentrated for both simulated 

and observed iWUE, expect few points for elevated Cs in Noah-gs-Eq.9.   
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Figure 4 The iWUE related to the observed and simulated gs for both ambient and elevated Cs scenarios. 

The pink and green squares are observed values for respectively ambient and elevated Cs scenarios. The 

pink and green dots are simulated values for respectively ambient and elevated Cs scenarios. 

 

2.8.3 Sensitivity analysis of gs to control indices  

The variance-based sensitivity analysis of gs to control indices (all parameters and variables) 

in each gs simulation approach was performed (Fig. 5 and Table 2). The first-order effects of 

indices (Si), which define the dominating indices in the gs uncertainty, are shown in red bars in 

Fig. 5. The second (Sij) and total order effects (Ti), which define the effects of the interaction 

of two and all indices, are shown in green, and purple bars, respectively (Eqs. 18-19). In this 

part, all input indices have been perturbed (Fig. S1), and then the most effective indices, which 

contribute to the gs variability have been ranked among different variables (e.g., An, hs, S, VPD, 

Ci, Cs, Tm) and calibrated parameters (e.g., a, a1-a4, D0, gmin, g0, g1, L, m) for each gs simulation 

equation. Sensitivity values lower than 0.05 were eliminated to distinguish the dominating 
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indices better from the unimportant ones (Zhang et al., 2015). Hence, the Ti values in some 

indices were higher than the sum of Si and Sij.    

All semi-empirical gs simulation approaches show high sensitivities to the indices (Table 2). 

The first-order effects of indices are high, 75% to 94%. The high value of Si in semi-empirical 

gs simulation models was attributed to calibrated parameters such as b and m in CLM4.5-gs-

Eq.1, g0 in all CLM5-gs-Eq.2-3-4, a in JULES-gs-Eq.6, and gmin and L in LPJmL-gs-Eq.7. An 

also had high effects on gs variance in all semi-empirical gs simulation models (except LPJmL-

gs-Eq.7). The gs sensitivity in semi-empirical gs simulation models was significantly affected 

by calibrated parameters, which shows the high gs uncertainty to calibrated parameters. There 

was no effective interaction (second-order sensitivity) between variables in these approaches.   

The gs sensitivity in JSBACH-gs-Eq.8 was highly affected by the calibrated parameter (a1). The 

Si value was 0.86. However, there was no effective interaction between indices for gs variation. 

The gs sensitivity in Noah-gs-Eq.9 was different because gs was less sensitive to indices (Si = 

0.33). The key control indices in Noah-gs-Eq.9 were the calibrated parameter (a2) and the S 

variable. There was little interaction between VPD-a2 and VPD-S, which was negligible. 

The MGAM-gs-Eq.10 model was expected to have a different sensitivity of gs to input 

variables. We have obtained the basis functions in MGAM by testing all possible combinations 

of environmental variables, and the combination with the highest simulation accuracy has been 

suggested in Table 1. The basis functions, which illustrate the influence of interactive 

environmental effects on gs, vary based on the type of vegetation since, as reported previously, 

each type of vegetation is sensitive to the specific interactive environmental effects (Kimm et 

al., 2020; Yang et al., 2022). As a result, sensitivity analyses for different basis functions are 

not necessary for this type of vegetation. The MGAM had lower first-order sensitivity (Si=0.33) 

to key climate variables, such as VPD, Tm, Cs, hs, and S. The gs variation was more sensitive 
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to VPD and Tm, while other variables indirectly affected gs due to their interactions. The 

MGAM also has considerable interaction between VPD-Cs and VPD-Tm as second-order 

sensitivity.  

Table 2 Sum of Si and Sij values for different gs simulation models. The Si defines the direct effects of 

dominating indices in gs sensitivity, and the interactions of indices are shown by Sij.  

 CLM4.5-

gs-Eq.1 

CLM5-

gs-Eq.2 

CLM5-

gs-Eq.3 

CLM5-

gs-Eq.4 

JULES-

gs-Eq.5 

JULES-

gs-Eq.6 

LPJml-

gs-Eq.7 

JSBACH-

gs-Eq.8 

Noah-gs-

Eq.9 

MGAM-

gs-Eq.10 

Sum of Si 0.75 0.8 0.88 0.85 0.8 0.85 0.94 0.86 0.33 0.33 

Sum of Sij 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.19 0.33 
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Figure 5 Sensitivity analysis (Si, Sij, and Ti) of gs to different indices. The zero and one along the y-axis 

indicate insensitivity and sensitivity of gs to indices, respectively. Sensitivities of less than 0.05 have 

been eliminated. The Si shows the direct effects of indices in the gs uncertainty, Sij shows interactions 

of two indices and Ti is the sum of all direct and interactions effects of indices.  

2.9 Discussion    

2.9.1 Semi-empirical and empirical gs simulation approaches 

In this study, the semi-empirical gs simulation models appear to have high accuracy in gs 

simulation performance. This result is not surprising because these gs equations contain the An 
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variable, which is highly correlated with gs and directs stomatal behaviour (Radin et al., 1988). 

However, the large uncertainties to parameterisation and the An variable, simplification of tree 

canopy as a big-leaf in semi-empirical gs simulation models constrains semi-empirical gs 

simulation models in global scale (Blyth et al., 2021; Zhang et al., 2020). In contrast, the 

empirical gs simulation models, such as Noah-gs-Eq.9 and JSBACH-gs-Eq.8, have reduced the 

uncertainties and limitations of semi-empirical gs simulation models. However, finding the 

appropriate mathematical functions regarding environmental factors and complex calibration 

processes affects the efficiency of empirical models in gs simulation (Knauer et al., 2015; 

Lhomme et al., 1998). Moreover, applying the proper value for gsmax and Anmax in Noah-gs-

Eq.9 and JSBACH-gs-Eq.8, respectively are other limitations of these models. 

As mentioned above, the limitations of semi-empirical and empirical gs simulation approaches 

call for a new method for gs simulation. The MGAM-gs simulation model does not require the 

An variable and calculates gs directly from environmental variables, bypassing the need for 

ranges of unknown fitted parameters in the MCMC-Bayesian calibration process, gsmax, and 

Anmax values. Climate variables (e.g., Cs, hs, VPD, Tm) and soil water content (S) were used to 

simulate gs in this new approach. The MGAM-gs model has the following advantages: it relaxes 

the assumptions and limitations of semi-empirical gs simulation models; it simulates gs 

independent of the An variable; it can simulate gs accurately. As a result, there is less first-order 

uncertainty regarding key climate variables compared to semi-empirical models, and more 

complex mathematical concepts regarding stress functions are removed from empirical models. 

2.9.2 The impact of gs on iWUE  

The gs impact on iWUE gives another viewpoint to the gs simulation model's performance. In 

all models, the iWUE was enhanced when Cs increased. However, there were some differences 

depending on the gs value (higher or lower than 0.1 mol/m2s). Similar results have been 

reported (Li et al., 2017; Mathias & Thomas, 2021; Zhang et al., 2019), suggesting iWUE 
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improvements in Cs enrichments scenarios. However, there was no identification of the 

different impact of gs on iWUE regarding gs values. To the best of our knowledge, it is the first 

time that the impact of gs on iWUE has been evaluated based on the different values of gs. The 

results show that most of the LSMs underestimate simulated iWUE, for gs value less than 0.1 

mol/ m2s. However, they performed better at higher gs values. The underestimation of the 

simulated iWUE for low gs values (gs lower than 0.1 mol/m2s) was greater using JSBACH-gs-

Eq.8, Noah-gs-Eq.9, and MGAM-gs-Eq.10. Noah-gs-Eq.9 has shown both overestimation and 

underestimation for the simulated iWUE at low gs values, especially for the elevated Cs 

scenario.  

2.9.3 The importance of sensitivity analysis of gs simulation approaches 

The gs sensitivity analysis results, presented in section 3.3, and the key controlling indices that 

affect gs variance were identified for each gs simulation approach. The semi-empirical gs 

simulation models showed high first-order sensitivity to calibrated parameters and the An 

variable. The sensitivity of gs to calibrated parameters, which change by vegetation type, makes 

these models computationally demanding. However, these models did not show any interaction 

between variables as second-order sensitivity (Fig. 5). Jiménez et al. (2011) applied an 

intercomparison of LSMs output and highlighted the difficulties in using LSMs models and the 

necessity of improve formulations to cope with model uncertainties (Jiménez et al., 2011). 

Blyth et al. (2021) have suggested that LSMs need improvements to represent important 

processes in the real world such as interactions between climate variables and vegetations  

(Blyth et al., 2021).  

The new MGAM-gs simulation approach can define interaction between key climate variables' 

effects on gs which has consistency to the real world. The sensitivity analysis results in Fig. 5 

and Fig. S1 for MGAM-gs-Eq.10 show that VPD and Tm are key climate variables, which affect 

gs variation, in addition to the interaction between VPD-Tm and VPD-Cs. The increase in VPD 
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causes a reduction in gs values (Fig. S1 for MGAM-gs-Eq.10), which confirms previous studies 

(Creese et al., 2014; Inoue et al., 2021; Jiao et al., 2019). In higher VPD conditions, the guard 

cells (two cells that surround a stoma) are vulnerable to turgor loss and close the stomata to 

decrease the conductance of gas diffusion and water loss via stomata (Inoue et al., 2021). The 

Tm variable increases gs for a small margin (Fig. S1). The increase in gs by Tm can be explained 

by mesophyll conductance increase, which supplies more water for evaporation and increases 

guard cell turgor and stomata aperture (Josef Urban et al., 2017). When gs is increased (by a 

high temperature), the trees increase their rate of evaporative cooling to survive in hot and dry 

conditions (Josef Urban et al., 2017). Since the increase in temperature enhances the VPD, the 

interaction between VPD-Tm on gs is important (von Caemmerer & Evans, 2015). The global 

sensitivity analysis of MGAM-gs-Eq.10 shows the interaction between VPD-Tm (Fig. 5). The 

interaction between VPD-Tm was shown in several studies; when VPD is high the effect of 

temperature on gs is larger than when VPD is low (Purcell et al., 2018; Josef Urban et al., 2017). 

Another interaction between climate variables that affect gs simulation in MGAM is VPD-Cs 

interaction (Fig. 5). Many studies have shown that elevated Cs cause a reduction in gs. However, 

for the higher Cs values increased VPD offsets this reduction (Flexas et al., 2004; Xu et al., 

2016). The interaction of VPD-Tm and VPD-Cs is justified based on the literature review, as 

shown above. However, the plant physiological mechanisms are complex and require 

continuous datasets with a higher quantity and well-controlled environment that is hard to 

achieve (Josef Urban et al., 2017).  

2.9.4 Towards a robust approach in Cs-gs simulation 

The effects of Cs and other climate variables' interactions on gs and transpiration changes are 

still debated (Nadal-Sala et al., 2021). The semi-empirical and empirical gs simulation models 

have different viewpoints in reflecting Cs effects on gs. The Jarvis equation uses a linear 

function to present this relationship (Jarvis et al., 1976). Wang et al. (2005) produced a 



59 

 

hyperbolic model to represent gs response to Cs concentration. They found that the rate of 

decreasing gs gradually lessened with Cs increase (Wang et al., 2005). Li et al. (2019) compared 

versions of the Cs-gs relationship to find the best physiological and theoretical relationship. 

They used a combination of linear and hyperbolic equations as a modified-hyperbolic model 

to improve the accuracy and reliability of Cs-gs estimation (Li et al., 2019). This study selected 

the modified-hyperbolic in the Jarvis equation in Noah-gs-Eq.9 because it had better result than 

other Cs-gs simulation approaches (Table 1 and S1).  

It is worth noting that in several studies, the understanding of the plant response to Cs changes 

was through the assumption of keeping other variables at a fixed level (Massmann et al., 2019). 

This assumption is far from the real-world processes due to the interaction between the 

different variables. The MGAM-gs model can reflect the combinational effects of key climate 

variables on gs changes. Although this new approach highlights the interaction of VPD-Cs and 

VPD-Tm in gs variation, more details should be linked to vegetation growth stages. However, 

due to the absence of a comprehensive and continuous dataset for a whole year, justification of 

the climate interactions by Cs through the whole growth period of a plant was not possible. 

Therefore, more studies on the MGAM approach are suggested for different climates and 

vegetation types.  

2.10 Conclusion  

The intercomparison of gs models and their global sensitivity analysis showed the high 

sensitivity and dependency of semi-empirical gs simulation models to parameterisation and An. 

This makes it difficult to extend these models to a global scale. To improve gs simulation, the 

complex climate-vegetation interactions should be understood. The gs simulation in empirical 

models considered climate variables effects on vegetation. However, their calibration process 

and complex plants’ stress functions make it challenging to use them in new locations with 

different climates.  
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The introduced approach of MGAM-gs captures important processes in real-world soil-

atmosphere-vegetation interactions, while maintaining an appropriate level of parsimony to 

permit global-scale simulations without requiring ranges for fitted parameters by the MCMC-

Bayesian calibration process. MGAM can represent the interaction of different key climate 

variables in gs simulation, accomplished by global sensitivity analysis. This achievement 

improves our understanding of gs simulation from individual indices level to understanding the 

gs variation affected by indices interactions. A robust, nonlinear gs simulation with MGAM-gs 

highlights the effects of VPD-Cs and VPD-Tm interaction on gs value. This new approach 

provides an alternative method for land surface modelling of transpiration simulation and water 

balance prediction. Further MGAM testing with comprehensive data for more vegetation types 

at the global scale and the full plant growth stage is required. 
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Supplementary Information 

Table S1 Environmental stress functions in the Jarvis gs model 

Eq. # Reference 𝒈𝒔 equation Stress functions  

S1  (Wang et al., 2014) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑇𝑎𝑖𝑟)

× 𝑓(𝑆) 

𝑓(𝑅) =
𝑅

𝑅 + а1
×
𝑅𝑚𝑎𝑥 + а1
𝑅𝑚𝑎𝑥

 

𝑓(𝑉𝑃𝐷) = exp (−а2 × 𝑉𝑃𝐷) 

𝑓(𝑇) = 1 − а3 × (𝑇0 − 𝑇𝑎𝑖𝑟) 

𝑓(𝑆) =
1

1 + (𝑆 𝑆𝑚
⁄ )

а4
 

S2  (Whitley et al., 2009) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑆) 𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑉𝑃𝐷) = а2 × 𝑉𝑃𝐷 × exp (−а3 × 𝑉𝑃𝐷) 

𝑓(𝑆) =  

{
 

 
1              𝑆 ≥ 𝑆𝑐𝑟𝑖𝑡

𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

      𝑆𝑤𝑖𝑙𝑡 < 𝑆 < 𝑆𝑐𝑟𝑖𝑡

0               𝑆 ≤ 𝑆𝑤𝑖𝑙𝑡

 

S3  (Guyot et al., 2017) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑆) 𝑓(𝑅) =
𝑅

𝑅 + а1
 

𝑓(𝑉𝑃𝐷) = exp (
−а2

𝑉𝑃𝐷 + а3
× (𝑉𝑃𝐷 − 𝑉𝑃𝐷𝑚𝑎𝑥)

2) 

𝑓(𝑆) =
1 + exp (а4 × 𝑆)

1 + exp (−а5 × (𝑆 − 𝑆𝑤𝑖𝑙𝑡))
 

S4  (Whitley et al., 2013) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑆) 𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑉𝑃𝐷) = exp (
−а2

𝑉𝑃𝐷 + а3
× (𝑉𝑃𝐷 − 𝑉𝑃𝐷𝑚𝑎𝑥)

2) 

𝑓(𝑆) = 𝑚𝑖𝑛 {1,
𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

} 

S5  (García-Santos et al., 

2009) 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷) 𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑉𝑃𝐷) = exp (−а2 × 𝑉𝑃𝐷) 

S6  (Harris et al., 2004), 

(Rodrigues et al., 

2016)  

 

 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑇𝑎𝑖𝑟)

× 𝑓(𝑆) 

 

 

 

𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑉𝑃𝐷) = exp (−𝑘2 × 𝑉𝑃𝐷) 

𝑓(𝑇) = [
(𝑇𝑎𝑖𝑟−𝑇0)×(𝑇𝑚−𝑇𝑎𝑖𝑟)

(а3−𝑇0)×(𝑇𝑚−а3)
]
𝜏
, 𝜏 =

(𝑇𝑚−а3)

(а3−𝑇0)
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Eq. # Reference 𝒈𝒔 equation Stress functions  

  

 𝑓(𝑆) =  

{
 

 
1              𝑆 ≥ 𝑆𝑐𝑟𝑖𝑡

𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

      𝑆𝑤𝑖𝑙𝑡 < 𝑆 < 𝑆𝑐𝑟𝑖𝑡

0               𝑆 ≤ 𝑆𝑤𝑖𝑙𝑡

 

S7  (Granier & Loustau, 

1994) 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(ℎ𝑠) × 𝑓(𝑆) 𝑓(𝑅) = а1 ×
𝑅

𝑅 + а2
 

𝑓(ℎ𝑠) =
1 − (а3 × ℎ𝑠)

1 + (а4 × ℎ𝑠)
 

𝑓(𝑆) = 1 − а5 × exp(а6 × ((
𝑆𝑚𝑎𝑥 − 𝑆

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
)) 

S8  (Stewart, 1988) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(ℎ𝑠) × 𝑓(𝑇𝑎𝑖𝑟)

× 𝑓(𝑆) 

𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(ℎ𝑠) = 1 − (а3 × ℎ𝑠) 

𝑓(𝑇) = [
(𝑇𝑎𝑖𝑟 − 𝑇0) × (𝑇𝑚 − 𝑇𝑎𝑖𝑟)

(а3 − 𝑇0) × (𝑇𝑚 − а3)
]
𝜏

, 𝜏 =
(𝑇𝑚 − а3)

(а3 − 𝑇0)
 

𝑓(𝑆) = 1 − 𝑘6 × S 

S9  (Lhomme et al., 

1998) 

𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑇𝑎𝑖𝑟) × 𝑓(𝑉𝑃𝐷) 𝑓(𝑅) =
(1 + 0.001 × а1) × 𝑆

а1 + 𝑅
 

𝑓(𝑇) = 1 − а2 × (24.8 − 𝑇𝑎𝑖𝑟)
2 

𝑓(𝑉𝑃𝐷) = 1 − а3 × 𝑉𝑃𝐷 

S10  (Sommer et al., 2002) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑇𝑎𝑖𝑟) × 𝑓(𝑉𝑃𝐷) 𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑇) = [
(𝑇𝑎𝑖𝑟 − 𝑇0) × (𝑇𝑚 − 𝑇𝑎𝑖𝑟)

(а3 − 𝑇0) × (𝑇𝑚 − а3)
]
𝜏

, 𝜏 =
(𝑇𝑚 − а3)

(а3 − 𝑇0)
 

𝑓(𝑉𝑃𝐷) = exp (−а2 × 𝑉𝑃𝐷) 

S11  (Li et al., 2019) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑇𝑎𝑖𝑟) × 𝑓(𝑉𝑃𝐷)

× 𝑓(𝑆) × 𝑓(𝐶𝑆) 

𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑇) = 1 − а2 × (25 − 𝑇𝑎𝑖𝑟)
2 

𝑓(𝑉𝑃𝐷) = 1 − а3 × 𝑉𝑃𝐷 

𝑓(𝑆) =  

{
 

 
1              𝑆 ≥ 𝑆𝑐𝑟𝑖𝑡

𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

      𝑆𝑤𝑖𝑙𝑡 < 𝑆 < 𝑆𝑐𝑟𝑖𝑡

0               𝑆 ≤ 𝑆𝑤𝑖𝑙𝑡

 

𝑓(𝐶𝑆) =
1

1 + а4 × (
𝐶𝑆
а5
− 1)

 

S12  (Kumar et al., 2011) 𝑔𝑠 = 𝑔𝑠𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑉𝑃𝐷)× 𝑓(𝑇𝑎𝑖𝑟)

× 𝑓(𝑆) 

𝑓(𝑅) =
𝑅

1000
×
1000 + а1
𝑅 + а1

 

𝑓(𝑇) = 1 − а2 × (25 − 𝑇𝑎𝑖𝑟)
2 
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Eq. # Reference 𝒈𝒔 equation Stress functions  

𝑓(𝑉𝑃𝐷) = 1 − а3 × 𝑉𝑃𝐷 

𝑓(𝑆) =  

{
 

 
1              𝑆 ≥ 𝑆𝑐𝑟𝑖𝑡

𝑆 − 𝑆𝑤𝑖𝑙𝑡
𝑆𝑐𝑟𝑖𝑡 − 𝑆𝑤𝑖𝑙𝑡

      𝑆𝑤𝑖𝑙𝑡 < 𝑆 < 𝑆𝑐𝑟𝑖𝑡

0               𝑆 ≤ 𝑆𝑤𝑖𝑙𝑡
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Figure S1 The variability of normalised gs for each index range in gs simulation models. The data points are perturbed each 

index by global sensitivity analysis and the red dots are the average of gs. 
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3.1 Abstract   

Surface conductance (Gs) is a key factor in the Penman-Monteith (PM) equation; the 

interaction between environmental variables such as CO2 concentration, air temperature (TA), 

vapor pressure deficit (VPD), soil water content (SWC), and net radiation (R) affects Gs, 

evapotranspiration and thus impacts the hydrological cycle. These interactions are highly 

nonlinear and vary among different vegetation types. However, conventional Gs simulation 

models use fixed interactions between environmental variables in their equations for all 

vegetation types. Moreover, the characterisation and parameterisation of conventional Gs 

models is highly uncertain due to the high spatiotemporal variability in key environmental 

variables and plant parameters, which inhibits their generalisation. This study investigates 

whether Gs could be estimated more accurately by nonlinear statistical techniques that capture 

the multiple interactions between the environmental variables that affect Gs for each vegetation 

type. We compare mixed generalized additive model (MGAM) for Gs simulation with semi-

empirical and empirical models at 20 eddy covariance flux tower sites with four different 

vegetation types at daily and monthly timescales. The results show that the Nash-Sutcliffe 

Efficiency (NSE) in Gs simulation increased by up to 50% in MGAM model in comparison to 

the semi-empirical and empirical models. The MGAM model highlighted the interactive effects 

of CO2, VPD, and SWC for crops and grasses. The interactive effects of CO2, VPD, and TA 

were important for trees and grasses. The results from this study expand our understanding of 

the ability of Gs simulation models to identify and include the interactive effects of crucial 

environmental variables on plant transpiration and hydrological processes.   

Key words: Surface conductance (Gs); Evaporation and transpiration (ET), Semi-empirical 

Model; Machine Learning (ML); Penman–Monteith (PM); Eddy Covariance Flux Tower. 
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3.2 Introduction 

Evaporation and transpiration (ET) play a key role in hydrological processes as they return 

over 60% of global precipitation from the land surface to the atmosphere, and over 95% in arid 

climates (Koutsoyiannis, 2020; Zhan et al., 2019). ET plays an important role in driving land 

surface and atmosphere interactions because it links the water, energy, and carbon cycles (Hou 

et al., 2021; Yang et al., 2022). As the primary form of land-surface and atmosphere vapour 

exchange and accompanying processes with primary production, ET provides insight into both 

hydrological and biological processes (Lu et al., 2003; Zhang et al., 2021). Approximately 90% 

of the water that is absorbed by vegetation is consumed by transpiration through stomata in the 

leaves (Zang et al., 2012). Consequently, accurate estimations of ET and stomatal conductance 

(gs) are important in the planning and implementation of irrigation and water conservation (Hou 

et al., 2021). While numerous studies have estimated ET and gs, still there are some limitations 

in accurately capturing the dynamics of ET and gs from leaf to ecosystem scale as surface 

conductance (Gs) due to the complex relationships between climate and vegetation (Page et al., 

2018; Zhang et al., 2019). Despite the widespread use of the Penman–Monteith equation (PM) 

(Monteith, 1965) to simulate ET, the estimation of Gs in this equation remains a challenge 

(Ershadi et al., 2015; Li et al., 2019; Zhao et al., 2019). For a Gs simulation model to be 

appropriate, it should incorporate multiple interactions of the environmental variables in a 

highly nonlinear manner, which is a difficult endeavour and requires complex statistical 

analysis (Green et al., 2020; Koppa et al., 2022; Liao et al., 2021).  

Conventional approaches (e.g., semi-empirical and empirical models) can estimate ET and Gs 

by flux-based models (which use the residual term in energy balance equation) and physical-

based models with empirical equations based on vegetation and climate data (Ershadi et al., 

2014; Lei et al., 2014; Polhamus et al., 2013; Zhao et al., 2019). These well-established models 

are easy to interpret but do not optimally extract information from data (Liu & Mishra, 2017; 
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Zhao et al., 2019). Furthermore, the high spatiotemporal variability in key plant parameters 

associated with Gs complicates the characterisation and parameterisation of these models and 

thus inhibits their generalisation (Abramowitz et al., 2007; Chitsaz et al., 2023; Dou & Yang, 

2018; Green et al., 2020; Polhamus et al., 2013). Another limitation of conventional models 

(semi-empirical Gs simulation models) is the use of fixed environmental variables for Gs 

simulation for all vegetation types, ignoring differences in vegetation response to 

environmental variables (Dombrowski et al., 2022). Although conventional models have 

several calibrated parameters related to specific vegetation types, simulated Gs show large 

uncertainties to these parameters, which limits robustness in Gs simulation accuracy (Pan et al., 

2020). In addition, these calibrated parameters are often determined through fitting on the 

existing dataset; therefore, they run the risk of not fully capturing vegetation response under 

the notable changes in climate conditions compared to the datasets on which these parameters 

are calibrated (Saunders et al., 2021). As a result, conventional models require re-

parameterisation to be suitable for any changes in vegetation phenology or physiology caused 

by the variation in climate and growing season (Oliver et al., 2022).  

Several studies have applied conventional Gs simulation models to demonstrate the interactive 

effects of vapour pressure deficit (VPD) and CO2 on Gs (De Kauwe et al., 2021; Yuan et al., 

2019). However, recent studies have indicated that this interaction is complex since it is also 

influenced by environmental conditions such as drought and water stress (Birami et al., 2020; 

Gattmann et al., 2021). Water stress indices, such as soil water content (SWC), are included in 

some semi-empirical Gs simulation models, but as discrete levels to assume a linear relation 

between soil moisture levels and Gs (Novick et al., 2016). However, including other climate 

variables, such as VPD and CO2, at a continuous level leads to a partial comparison in these 

models (Kimm et al., 2020). Therefore, the comprehensive comparison of environmental 

variables individually and interactively is necessary for Gs simulation.   
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With large amounts of observed data accumulated in recent years, machine learning (ML) 

models have become increasingly prevalent in Gs simulation (Jung et al., 2019; Koppa et al., 

2022; Zhao et al., 2019). ML models can learn complex patterns and relationships between 

variables and maintain greater consistency with the input data (Reichstein et al., 2019). The 

ML algorithm is robust in dynamic environments since it adapts to changes in data distribution 

over time. ML models are trained by measuring dynamic variables such as soil moisture, 

carbon fluxes, and precipitation in situ to enhance the accuracy and generalisation of estimating 

Gs and ET (Jung et al., 2019; Koppa et al., 2022). While ML models offer some advantages 

over conventional models for estimating Gs, combining ML with physical constraints has the 

potential to yield more promising results than simply replacing conventional models with ML 

(Reichstein et al., 2019). Combined models preserve the advantages of both physical models 

(physical consistency and interpretability) and ML models (data adaptability and more realistic 

data-driven formulation) and accurately estimate Gs (Zhao et al., 2019). However, analysis of 

the realistic, nonlinear interaction between environmental variables requires appropriate sets 

of statistical covariates in Gs simulation, considering differences in vegetation response to 

environmental variables. 

This study used a nonlinear statistical model to simulate Gs, considering the interactive effects 

of key environmental variables by quantifying the relationships between their covariates and 

the predicted Gs. First, we used an inverted PM equation to estimate Gs from observed data of 

20 eddy covariance flux tower sites with different vegetation types at both daily and monthly 

timescales. Then we applied the mixed generalised additive model (MGAM) to optimise the 

learning of the relationship between VPD, CO2, net radiation (R), air temperature (TA), and 

SWC at the continuous level for Gs simulation. We tested the results of the MGAM model 

against observed Gs data and compared with the results of the semi-empirical and empirical 

models. The MGAM highlighted the key environmental variables for each vegetation type by 
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meeting the physical constraints. The different models (MGAM with different combinations of 

environmental variables) found the sensitivity of Gs simulation to direct and interactive effects 

of key environmental variables. In addition, MGAM visualisation by SHapley Additive 

exPlanations (SHAP) analysis shows both direct and interactive effects of key environmental 

variables on Gs fluctuations.  

3.3 Data and methodology 

3.3.1 Forcing data 

This study utilised the Ameriflux sites (20 sites), which measure surface fluxes such as latent 

heat flux (LE), sensible heat flux (H), and soil heat flux (G), in addition to all required 

meteorological data for Gs simulation, including CO2, VPD, TA, SWC, wind speed (U), and 

vegetation height (h). A variety of representative biomes were presented by eddy covariance 

flux towers, including crop (CRO), deciduous broad-leaf forest (DBF), evergreen needle-leaf 

forest (ENF), and grass (GRA). Five sites were selected for each vegetation type at different 

locations in the United States and Canada (Table 1 and Fig. 1). Data were collected from each 

flux tower site at a daily timescale. Shortwave radiation conditions below 500 Wm-2 were also 

excluded to avoid data for cloudy days, morning dew and evaporation on the plant surfaces, 

which minimize the effects of soil evaporation (Griebel et al., 2020; Kimm et al., 2020; Nelson 

et al., 2020; Nie et al., 2021; Zhou et al., 2013). Due to the lack of energy balance closure in 

flux tower data, the Bowen ratio closure correction technique was used (Ershadi et al., 2014; 

Wehr & Saleska, 2021). 
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Figure 2 Location of the flux tower sites in the USA and Canada with four groups of 

vegetation types, including crop (CRO), deciduous broad-leaf forest (DBF), evergreen 

needle-leaf forest (ENF), and grass (GRA). 
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Table1 Basic information for each Flux tower site for four groups of vegetation types: crop (CRO), deciduous broad-leaf forest (DBF), evergreen 

needle-leaf forest (ENF), and grass (GRA). 

 Site 

name 

Years Latitud

e 

Longitud

e 

Elevation Vegetation 

Average age 

(year) 

Average 

annual 

PR (mm) 

Average 

annual 

TA (°C) 

Vegetation 

height (m) 

Vegetation References 

C
R

O
 

US-

ARM 

2003-2020 36.60 -97.48 314 - 843 14.7 4.5 Winter wheat, corn, soy, alfalfa  (Raz-Yaseef et al., 2015) 

US-Bi2 2017-2021 38.10 -121.53 -5 - 338 16.0 5.1 Ccorn  (Rey-Sanchez et al., 

2021) 

US-Ro5 2017-2020 44.69 -93.05 283 - 879 6.4 3.5 Corn/soybean   (Chu et al., 2021) 

US-Ro6 2017-2021 44.69 -93.05 282 - 879 6.4 2.3 Corn/soybean   (Chu et al., 2021) 

US-Tw2 2012-2013 38.09 -121.64 -5 - 421 15.5 5.2 Twitchell Corn  (Knox et al., 2015) 

D
B

F
 

CA-Cbo 1994-2020 44.31 -79.93 120 100 876 6.6 44 Red maple, white pine, large-tooth aspen and 

white ash 

 (Gu et al., 1999) 

CA-TPD 2012-2017 42.63 -80.55 260 90 1036 8.0 36.6 White oak, red maple, beech, ash, pine   (Beamesderfer et al., 

2020) 

US-

MMS 

1999-2020 39.32 -86.41 275 80-90 1032 10.8 46 Acer saccharum, Liriodendron tulipifera, 

Quercus spp. 

 (Roman et al., 2015) 
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US-Moz 2004-2019 38.74 -92.20 219 85-180 986 12.1 30 Mixture of abandoned agricultural fields, 

plantations, second-growth hardwood forests 

(white oak, sugar maple, hickory). 

 (Wood et al., 2018) 

US-xBR 2017-2021 44.06 -71.28 232 90-150 1246 5.6 35.68 Red maple, sugar maple, and beech  (Fer & Dietze, 2018) 

E
N

F
 

CA-LP1 2007-2020 55.11 -122.84 751 80-110 570 2.0 26 Pure lodgepole pine  (Brown et al., 2012) 

CA-TP3 2002-2017 42.70 -80.34 184 45 1036 8.0 16 White pine  (Arain et al., 2022) 

US-GLE 2005-2020 41.36 -106.23 3197 400  1200 0.8 24.4 Abies lasiocarpa, Picea engelmannii_Pinus 

contorta 

 (Frank et al., 2014) 

US-Me2 2002-2020 

44.45 -121.55 1253 

67 523 6.2 32 Ponderosa pine trees and scattered incense 

cedars 

 (Kwon et al., 2018) 

US-NR1 1998-2016 40.03 -105.54 3050 97 800 1.5 21.5 Subalpine fir, Englemann spruce, lodgepole 

pine, aspen, limber pine 

 (Burns et al., 2015) 

G
R

A
 

US-A32 2015-2017 36.81 -97.81 335 - 889 33.9 3.77 Grass  (Chu et al., 2021) 

US-KLS 2012-2019 38.77 -97.56 373 - 812 12.0 3 Grass  (Chu et al., 2021) 

US-ONA 2015-2020 27.38 -81.95 25 - 1268 22.3 2.8 Grass  (Silveira, 2021) 

US-Ro4 2014-2021 44.67 -93.07 274 - 879 6.4 2.6 Grass  (Griffis et al., 2011) 

US-Snf 2018-2020 38.04 -121.72 -4 - 381 24.6 3.49 Grass  (Chu et al., 2021) 
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3.3.2 Deriving Gs by inverting Penman–Monteith equation 

The Penman model was originally developed to estimate the potential evaporation from open 

and saturated land surfaces (Penman, 1948). To describe the effects of partially closed stomata 

on evaporation under water stressed conditions, the model was generalised by incorporating a 

surface resistance term in the form of Eq. 1 and Eq. 2 (Monteith, 1965).  

 

𝐿𝐸 =  
Δ(𝑅 − 𝐺) +  𝜌𝐶𝑝𝐺𝑎𝑉𝑃𝐷

Δ +  𝛾(1 + 
𝐺𝑎
𝐺𝑠
)

 
(1) 

 

 

𝐺𝑠 = 
𝐺𝑎𝛾

Δ(𝑅 − 𝐺) +  𝜌𝐶𝑝𝐺𝑎𝑉𝑃𝐷
𝐿𝐸 − (Δ + 𝛾)

 
(2) 

where, 𝐿𝐸 is latent heat flux (Wm-2), Δ is the slope of the saturation vapor pressure-temperature 

curve (Pa °C-1), 𝑅 and G are net radiation and soil heat flux (Wm-2), 𝜌 is air density (kg m-3), 

Cp is specific heat capacity of dry air (J kg-1 °C-1), VPD is vapor pressure deficit (Pa), 𝛾 is the 

psychrometric constant (Pa °C-1), Gs and Ga are surface conductance and aerodynamic 

conductance (m s-1).  

The aerodynamic conductance used in the standard PM model is defined in Eq. 3 (Thom, 1972). 

𝐺𝑎 = 
𝑘2 × 𝑈

[1𝑛 (
𝑧 − 𝑑
𝑧𝑚

) ln (
𝑧 − 𝑑
𝑧ℎ

)]
 

(3) 

where, z is the wind speed measurement height (m), U is wind speed (m s-1), 𝑘 = 0.41 is the 

von Karman’s constant, 𝑑 = 0.67 × ℎ is displacement height, h is the canopy height (m), 𝑧𝑚 =

0.123 × ℎ, and 𝑧ℎ = 0.0123 × ℎ.  
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3.3.3 Semi-empirical and empirical Gs simulation models 

We used the modified Medlyn model (MM) and Jarvis as semi-empirical and empirical Gs 

simulation models, respectively. The MM is an optimality-theory model which systematically 

estimates Gs at ecosystem scale (Lin et al., 2018; Medlyn et al., 2011; Nguyen et al., 2021; Nie 

et al., 2021). The MM is presented in Eq. 4. 

𝐺𝑠 = 𝑔0 + 𝑔1 × ( 
𝐺𝑃𝑃

𝑉𝑃𝐷𝑚
)  

(4) 

where, GPP is gross primary productivity (µmol m-2 s-1), VPD (Pa), g0 (mol m-2 s-1), g1 (Pam 

mol µmol-1), and m are fitted parameters. If m=0.5, this approach is equivalent to the Medlyn 

model, while if m=1, it is equivalent to Leuning’s model (Lin et al., 2018). The fitted 

parameters of the MM model are calibrated by Bayesian Markov-Chain Monte Carlo (MCMC) 

(Speich et al., 2021). The ‘BayesianTools’ and ‘mcmc’ packages in R (Geyer & Johnson, 2020; 

Hartig et al., 2019) are used for the calibration process in this study. 

The Jarvis model is an empirical model to simulate Gs (Bai et al., 2019; Stewart, 1988). In 

Jarvis model Gs is a function of environmental variables with heavy parameterisation (Jarvis et 

al., 1976; Qi et al., 2023). This model (Eq. 5) represents the effects of each environmental 

variable independently, through Eq. 6-10. 

𝐺𝑠 = 𝐺𝑠 𝑚𝑎𝑥 × 𝑓(𝑅) × 𝑓(𝑇𝐴) × 𝑓(𝑉𝑃𝐷) × 𝑓(𝑆𝑊𝐶) × 𝑓(𝐶𝑂2) (5) 

𝑓(𝑅) =  
𝑅

1000
×
1000 + 𝑎1
𝑅 + 𝑎1

 
(6) 

𝑓(𝑇𝐴) =  1 − 𝑎2 × (𝑇𝑚𝑖𝑛 − 𝑇𝐴)
2 (7) 

𝑓(𝑉𝑃𝐷) =  exp(−𝑎3 × 𝑉𝑃𝐷) (8) 

𝑓(𝑆𝑊𝐶) =  1 − 𝑎4 × exp (𝑎5 ×
𝑆𝑊𝐶𝑚𝑎𝑥 − 𝑆𝑊𝐶

𝑆𝑊𝐶𝑚𝑎𝑥 − 𝑆𝑊𝐶𝑚𝑖𝑛
) 

(9) 
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𝑓(𝐶𝑂2) =  
1

1 + 𝑎6 × exp (
𝐶𝑂2
𝑎7

− 1)
 

(10) 

where, Gsmax is the maximum surface conductance, R is net radiation, Tmin is the minimum 

value of air temperature, SWCmax, SWCmin are the maximum and minimum values of SWC, 

and a1 to a7 are calibrated parameters.  

3.3.4 Mixed generalised additive model (MGAM) for Gs simulation 

MGAM is a nonlinear statistical technique to simulate complex nonlinear relationships 

between variables and responses (Hastie et al., 2009; Wood et al., 2016). The MGAM is 

capable of capturing complex patterns in data, and making accurate predictions on new unseen 

data; the flexibility and capability of MGAM, which is common in ML models, makes it part 

of the broader field of ML. The flexible regression functions in MGAM can demonstrate the 

relationships between covariates and outcomes in the form of Eq. 11.  

𝑓(𝑥) =  ∑𝛽𝑘𝑏𝑘(𝑥)

𝐾

𝑘=1

 

 

(11) 

where, 𝑓(𝑥) is a smoother function, 𝑏𝑘 are basis functions, 𝛽𝑘 are corresponding coefficients, 

and K is referred to as basis size or basis complexity. The coefficients of the basis functions 

are optimised to ensure the appropriate complexity of the models (Wood et al., 2016). The f(x) 

smoother function should be selected as a smooth function (S) which reflects the nonlinearity 

of variables directly, or tensor function (ti) to represent the interaction between variables. The 

structure of Gs simulation in MGAM can be described as Eq. 12. 

𝐺𝑠 = ∑ 𝑓(𝑥𝑚)

𝑀

𝑚=1

 

(12) 

where, 𝑚 are the effective environmental variables of Gs. Each of the effective variables has a 

smoother function 𝑓(𝑥) (Eq. 11), which contains basis functions with relevant coefficients. 
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The ‘nls’ and ‘mgcv’ packages in R (Baty et al., 2015; Wood et al., 2016) are used for Gs 

simulation by MGAM in this study. 

3.3.5 SHapley Additive exPlanations (SHAP) analysis  

SHAP analysis is based on cooperative game theory to interpret model simulation (Lundberg 

et al., 2020; Lundberg & Lee, 2017; Mardian et al., 2023). The SHAP value indicates the 

contribution of each variable or predictor to the model simulation and explains the effect of the 

high and low values of each variable on the simulated value (Shi et al., 2023). The SHAP value 

defines the weighted average of marginal contribution of each variable across all coalitions to 

which the variable belongs (Lee et al., 2023). The SHAP value is calculated by Eq. 13. 

𝜑𝑖(𝑓, 𝑥) =∑[
|𝑠|! (𝑀 − |𝑠| − 1)!

𝑀!
]

𝑠⊆𝑥

× [𝑓𝑥(𝑠) − 𝑓𝑥(𝑠 ∖ 𝑖)] 
(13) 

where, 𝜑 is the SHAP value for variable 𝑖 = [1,𝑀] and 𝑀 is the number of variables, f is the 

simulation model, 𝑥 is sample observation for specific 𝑖th variable, 𝑠 is the subset of possible 

coalitions of variables. The first bracket of the equation refers to the weighting for each subset 

of coalitions, and the second bracket refers to the marginal contribution of 𝑖th variable, which 

is the difference between the f model with (𝑓𝑥(𝑠)) and without (𝑓𝑥(𝑠 ∖ 𝑖)) the 𝑖th variable. The 

higher the SHAP value for each variable, the greater the impact of the variable on the 

simulation output (Lee et al., 2023). In this study, the SHAP method shows the contribution of 

VPD, R, Ta, CO2, and SWC environmental variables in the Gs simulation. The ‘shapviz’ 

packages in R  (Mayer, 2023) is used in this study.  

 

3.3.6 Developing MGAM by environmental variables  

We developed several simulation models (Table 2) to examine the direct and interactive effects 

of environmental variables on Gs in different vegetation types. In model 1 (benchmark model), 
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all direct effects of environmental variables (VPD, CO2, TA, SWC, and R) were included. 

Models 2 and 3 eliminated SWC and TA variables, respectively, to determine the sensitivity 

of Gs to these two variables in different vegetation types. In models 5 - 7, VPD, CO2, and R 

were eliminated to illustrate the sensitivity of Gs to these variables. Model 4 illustrated the 

sensitivity of Gs to the interactive effects of environmental variables. It included functions that 

add SWC and TA to have interaction between VPD-CO2 as key environmental variables on Gs 

fluctuation as identified in the literature review. The structure of model 4 was selected based 

on the highest NSE in Gs simulation for each vegetation type. 

Table 2 Developing MGAM by environmental variables to test the direct and interactive effects 

of key variables on Gs simulation. S is smooth function which reflects the nonlinearity of 

variables directly, and ti is tensor function represent the interaction between variables. 

Models  S(VPD) S(CO2) S(TA) S(SWC) S(R) ti(VPD, CO2, SWC) ti(VPD, CO2, TA) 

Model 1 (benchmark) * * * * *   

Model 2  * * *  *   

Model 3  * *  * *   

 

Model 4 

CRO * * * * * *  

DBF & ENF * * * * *  * 

GRA * * * * * * * 

Model 5   * * * *   

Model 6  *  * * *   

Model 7  * * * *    

 

3.4 Results 

3.4.1 Validation of MGAM Gs simulation 

Two approaches were used to validate the MGAM Gs simulation. In the first approach, the Gs 

simulation results of MGAM were compared with the MM and Jarvis as semi-empirical and 

empirical techniques. The results indicated that MGAM performs better in simulating Gs 

(higher NSE values) than the MM and Jarvis models for all four vegetation types across all 

flux tower sites (Fig. 2). The MM and Jarvis models required the Bayesian-MCMC calibration 
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technique for fitting parameters. In the MM model, g0, g1, and m are fitted parameters (Table 

S1), and in Jarvis a1-a7 are fitted parameters (Table S2).  

The second approach for validating MGAM was to train and test the model by inverting the 

PM equation and determining the Gs value. A 10-fold cross-validation technique was used to 

validate the results of the MGAM Gs simulation, in which 70% of data was used to train the 

model and 30% to test it. The training data was divided into ten folds, and the model was 

trained through nine folds and validated through the tenth fold. This process is repeated to 

cover all observed values at both training and testing. A cross-validation procedure was 

conducted using the caret package in R (Kuhn, 2021). Comparing the MGAM performance for 

the testing data (Fig. 3 for models 1 - 4 and Fig. S2 for models 5 - 7) and the training data (Fig. 

S3 for models 1 - 4 and Fig. S4 for models 5 - 7) indicated that the models were well trained. 

Accordingly, the NSE of the models showed good results for test data, which were close to the 

NSE of the model for the training data. 

 

Figure 3 Comparison of MGAM Gs (Model 1 - benchmark) simulation accuracies with MM 

and Jarvis models in 20 flux tower sites with four vegetation types of crop (CRO), deciduous 

broad-leaf forest (DBF), evergreen needle-leaf forest (ENF), grass (GRA). 
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Figure 4 Comparison of Gs simulation accuracies for test data, a) model 1 (benchmark) vs 

model 2, b) model 1 vs model 3, c) model 1 vs model 4. 
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3.4.2 The importance of direct and interactive effects of environmental variables on 

Gs simulation for different vegetation types 

The comparison between Gs simulation accuracies for different models (Table 2) demonstrated 

the sensitivity of Gs to environmental variables in different vegetation types. To demonstrate 

the role of environmental variables in Gs simulation, model 1 (benchmark, with direct effects 

of all environmental variables) was compared with other models in terms of their NSE values 

(Fig. 3 and Fig. S2 for testing data, Fig. S3 and S4 for training data). Comparing the NSE values 

in model 1 and model 2 (benchmark without SWC), CRO and GRA had a greater difference in 

NSE, indicating that these plants were sensitive to SWC. DBF and ENF were not sensitive to 

SWC in models 1 and 2, except for a few sites with on average younger trees such as CA-TP3 

and US-Me2 and with mixed vegetation such as US-MOZ (Fig. 3a). DBF and ENF had higher 

sensitivity to TA in all sites when comparing the NSE value in models 1 and 3 (benchmark 

without TA). Due to the difference in NSE values between models 1 and 3 (Fig. 3b), GRA was 

also sensitive to TA in most sites, whereas CRO was not very sensitive to TA in most sites. 

The interactive effects of environmental variables on Gs simulation are provided in model 4 

(Fig. 3c). Due to the greater sensitivity of the CRO to SWC in model 2, the interactive effects 

of (VPD, CO2, SWC) demonstrated high improvement in NSE values in model 4. In model 3, 

the DBF and ENF were more sensitive to TA. Thus, the interactive effects of (VPD, CO2, and 

TA) for model 4 demonstrated improvement in NSE values for Gs simulation in these 

vegetation types. For GRA, both interactive functions of (VPD, CO2, SWC) and (VPD, CO2, 

TA) were applied to model 4. This is because GRA were sensitive to both SWC and TA in 

accordance with models 2 and 3. We compared differences in NSE values between models 1 

and 5 (benchmark without VPD), models 1 and 6 (benchmark without CO2) and models 1 and 

7 (benchmark without R) to determine the sensitivity of vegetation types to VPD, CO2 and R. 

When comparing NSE values in model 1 with models 5 - 7, it was revealed that all vegetation 
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types have similar sensitivity to VPD, CO2 and R. Most flux tower sites had high sensitivity to 

VPD but low sensitivity to CO2 (Fig. S2a-c). In all models, the results of the Gs simulation in 

test data were similar to those in training data (Fig. S3-S4). A schematic path analysis was used 

for the testing and training data in order to visually demonstrate the effect of each 

environmental variable on Gs simulation (Fig. 4 and Fig. S5). The NSE value changes in Gs 

simulation (in %) are presented next to each arrow (path value) and shown as the thickness of 

arrows for visual comparison. The path values are the average of NSE value changes compared 

to model 1 (benchmark) for all five flux tower sites in each vegetation type. 

 

Figure 4 Schematic path analysis for the test data showing the effect of each environmental 

variable on Gs simulation. The path values and arrow thicknesses are the average NSE value 

changes compared to model 1 (benchmark) for each environmental variable (%) and for all five 

flux tower sites in vegetation type: a) crop (CRO), b) deciduous broad-leaf forest (DBF), c) 

evergreen needle-leaf forest (ENF), and d) grass (GRA). 
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3.4.3 Visualisation of direct and interactive effects of environmental variables on Gs 

simulation 

The MGAM results were visualised by SHAP analysis to determine the direct effects of each 

environmental variable on Gs simulation (Fig. 5). All five sites with each vegetation type are 

considered in the same category. The SHAP value of each observed data shows the changes in 

weighted average of Gs values forced by each environmental variable (x-axis). The average on 

SHAP values for all observed data in each variable shows the contribution of variable in Gs 

simulation (y-axis). The gradient colour (feature value) shows the original value of each 

variable. The SHAP value for each environmental variables (y-axis) shows that VPD has the 

highest contribution in Gs simulation for most of the vegetation types. The gradient colour 

shows that VPD has a decreasing effect on Gs. The SWC has more contribution in Gs simulation 

for CRO and GRA with an overall increasing effect on Gs for these vegetations. While TA has 

considerable effects on Gs for DBF, ENF, and GRA, with overall increasing effect on Gs value. 

The R and CO2 have increasing and decreasing effects on Gs, respectively, but do not show a 

high independent contribution in comparison to other key variables.  
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Figure 5 The SHAP value to present the contribution of each environmental variable in Gs simulation. 

The x-axis shows the SHAP value for all observed data of each environmental variable, y-axis shows 

the average of SHAP values for each environmental variable, and gradient colour (feature value) shows 

the original value of each environmental variable.  

 

The visualisation of the interactive effects of environmental variables on Gs was performed for 

the groups of vegetation with similar responses to the environmental variables (Fig. 6). GRA 

and CRO are both sensitive to the interactive effects of VPD, CO2, and SWC; therefore, they 

are considered in the same category for visualisation (Fig. 6a and 6b). The VPD shows the 

decreasing effects on Gs in all conditions. At a lower level of CO2, the decreasing effect of 

VPD is notable but higher level of CO2 alleviates the decreasing effects of VPD on Gs values 

(Fig. 6a). Similar to CO2, SWC alleviates the decreasing effects of VPD; the increase in SWC 

increase the Gs values (Fig. 6b). GRA, DBF, and ENF show the sensitivity to TA (Fig 6c-d). 

TA has increasing effects on Gs, but increases of TA higher than a threshold value degrade the 

Gs values. The TA effects on Gs are considerable at the higher VPD (Fig. 6c-d). DBF and ENF 
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are grouped in the same category because they both are sensitive to the interactive effects of 

VPD, CO2, and TA (Fig. 6d and 6e). Moreover, CO2 alleviate the decreasing effects of VPD 

by decreasing the Gs value for DBF and ENF, similar to the CRO and GRA (Fig. 6e and Fig. 

6a).  

 

 

Figure 6 The interactive effects of environmental variables on normalised Gs: a) VPD and CO2 for CRO 

and GRA, b) VPD and SWC for CRO and GRA, c) VPD and TA for GRA, d) VPD and TA for DBF 

and ENF, e) VPD and CO2 for DBF and ENF.  

3.4.4 The role of interactive effects of environmental variables on Gs simulation at 

monthly timescale 

As described in section 3.2, the direct effects of SWC were more important in Gs simulation 

for CRO, GRA, and younger trees, while Gs simulation in mature trees showed less sensitivity 
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to SWC. In contrast, TA played more important role in improving Gs simulation for trees and 

GRA. Although CO2 less directly affected Gs simulation for all vegetation types, its interactive 

effects with other climate variables showed high improvements in Gs simulation. To further 

evaluate the role of the interactive effects of environmental variables on Gs, comparisons of the 

NSE values for models 1 and 4 in the Gs simulation were made at the monthly timescales (Fig. 

7). The NSE value at monthly timescale is calculated by the comparison between observed and 

simulated Gs for each specific months during the whole period of data. At both the beginning 

(Jan-Mar) and the end (Nov-Dec) of the growth period, interactive effects of (VPD, CO2, TA) 

played an important role for most DBF and some ENF sites (CA-LP1 and CA-TP3) (Fig. 7). 

Furthermore, the interactive effects of (VPD, CO2, SWC) for CRO, and the interactive effects 

of (VPD, CO2, SWC) and (VPD, CO2, TA) for GRA were crucial throughout the entire growth 

period irrespective of any specific pattern (Fig. 7). 
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Figure 7 The comparison of monthly Gs simulation accuracy in model 1 (benchmark) containing all 

direct effects of environmental variables with model 4 by added interactive effects of (VPD, CO2, SWC) 

for CRO and GRA, and interactive effects of (VPD, CO2, TA) for DBF, ENF, and GRA to benchmark 

model. 

 

NSE values in model 1 and model 2 (Fig. S7) demonstrated the important role played by SWC 

for CRO and GRA during the entire growth period. However, SWC had only a minor effect on 

DBF and ENF (excluding US-MOZ, CA-TP3, and US-Me2) at monthly timescales. The 

sensitivity to SWC results was consistent with those presented in Fig. 3a. NSE values for 

models 1 and 3 (Fig. S8) revealed that TA played a crucial role in DBF and ENF, particularly 

at the beginning (Jan-Mar) and the end (Nov-Dec) of the growth period. The GRA also showed 

a sensitivity to TA over the entire growth period without a specific pattern, whereas the CRO 

showed a less pronounced response. As presented in Fig. S8, the sensitivities to TA results 

were consistent with those presented in Fig. 3b. 
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The role of VPD, CO2 and R on Gs simulation at a monthly time scale was considered in models 

5 - 7. A comparison between NSE values in models 1 and 5 indicated that VPD played an 

important role throughout the whole growth period for all vegetation types (Fig. S9). The 

interaction of CO2 with other environmental variables improved the results of Gs simulation, 

but its direct effect was less important than that of other environmental variables without any 

pattern for all vegetation types (Fig. S10). The role of R in Gs simulation at monthly timescale 

did not show any pattern for different vegetation types (Fig. S11). 

3.5 Discussion  

3.5.1 Advantages of MGAM over semi-empirical and empirical models 

The comparison between MGAM, MM and Jarvis models showed that MGAM outperforms 

semi-empirical and empirical models in Gs simulation for all vegetation types in the flux tower 

sites (Fig. 2). The significant calibration process in Jarvis models and the independent 

combination of environmental variables leads to the challenging analysis of interactive effects 

of key environmental variables on Gs. According to the MM model, environmental variables 

such as VPD, SWC, and TA were partially incorporated into photosynthetic rate or GPP as a 

diffusive flux between the leaf and the atmospheric boundary layer (Ball, 1987; Leuning, 1995; 

Lin et al., 2018; Medlyn et al., 2011). Although including the photosynthetic rate in Gs models 

may improve simulation accuracy, analysis of the direct and interactive effect of environmental 

variables on Gs is challenging when using the photosynthetic rate or GPP (Kimm et al., 2020). 

The effects of environmental variables on Gs are embedded in photosynthetic rate or GPP and 

partitioning the effects of each variable is not straightforward. The suggested MGAM approach 

of this study is capable of measuring the direct effects of each environmental variable by adding 

or removing each variable. In addition, evaluating the interactive effects of key environmental 

variables is possible by including the interactive tensor function in MGAM. The MGAM model 
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provided a higher level of accuracy in the Gs simulation than previous models without relying 

on GPP or photosynthesis variables.  

Furthermore, formulating the impact of SWC on Gs is difficult because it is correlated with 

VPD. Hence, several conventional Gs simulation models incorporated SWC in discrete levels 

for simplicity. Therefore, it was assumed that each soil moisture level had a linear relationship 

with Gs. However, other environmental variables are quantified as continuous variables 

(Novick et al., 2016). As a result, comparisons between these variables are not appropriate 

(Kimm et al., 2020). In the MGAM model in this study, all variables are treated equally on a 

continuous scale. Thus, this model was better suited to our goal of examining the direct and 

interactive effects of key environmental variables. 

3.5.2 The direct and interactive effects of environmental variables on MGAM Gs 

simulation for each vegetation type 

In this study, the structure of MGAM was designed to take into account the sensitivity of each 

vegetation type to environmental variables. An analysis of the sensitivity of vegetation to 

environmental variables was performed by eliminating or adding each environmental variable 

and their interactions in the MGAM benchmark model and evaluating the changes of NSE in 

Gs simulation. Our analysis of the direct effect of each environmental variable on Gs 

highlighted the notable contribution of VPD, SWC, CO2, R and TA. VPD had the greatest 

direct impact on Gs for all flux tower sites without differentiation for the vegetation types (Fig. 

S2a and Fig. S4a), while SWC had a greater influence on Gs for CRO and GRA and younger 

trees (Fig. 3a and Fig. S3a), and TA had a greater impact on Gs for GRA and trees (DBF and 

ENF) (Fig. 3b and Fig. S3b). In comparison with other variables, CO2 had less direct effect on 

Gs simulation accuracy. However, its interaction with VPD, SWC, and TA affected Gs 

simulation accuracy for all vegetation types (Fig. S3c and Fig. 3c).  
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There is consistency between our results and those found in other studies. As previously 

reported (Wang et al., 2012; Wertin et al., 2012), TA played an important role in determining 

the Gs of trees (DBF and ENF). According to Lin et al. (2018), VPD had an important influence 

on Gs in different vegetation types (Lin et al., 2018). The greatest variation of Gs in the flux 

tower data for the U.S. Corn Belt was attributed to VPD and SWC (Kimm et al., 2020).  

In light of the fact that Gs is highly correlated with photosynthesis, several studies concluded 

that it is necessary to consider the impacts of both VPD and CO2 on Gs simulation 

simultaneously (De Kauwe et al., 2021; Lin et al., 2018; Nadal-Sala et al., 2021). Some studies 

reported that elevated CO2 offsets the negative effects of high VPD on Gs (De Kauwe et al., 

2021; Yuan et al., 2019). Recent studies, however, suggested that vegetation receives this 

benefit from elevated CO2 when they are not exposed to severe droughts or water stresses 

(Birami et al., 2020; Gattmann et al., 2021). It has been observed that both SWC and VPD 

affect stomatal conductance, and GPP (Anderegg et al., 2012; Breshears et al., 2013; Sulman 

et al., 2016). This statement was in accordance with our results, which indicated that CO2 and 

SWC alleviate the decreasing effects of VPD on Gs for CRO and GRA (Fig. 6a-b).  

VPD played an important role as a driver of carbon and water fluxes, especially during heat 

waves; since it is highly likely that global temperatures will increase in the future, VPD should 

also increase (Park Williams et al., 2013). An increase in TA can increase the Gs, but when the 

increase in TA exceeds a threshold value, it degrades the Gs; the effects of TA on Gs is 

intensified at higher VPD (Purcell et al., 2018; Urban et al., 2017). In this study, the 

visualisation of simulated Gs by MGAM clearly showed that higher VPD intensified the effects 

of TA on Gs for trees (Fig. 6d). However, the elevated CO2 could mitigate the negative effects 

of high VPD on Gs for trees (Wang et al., 2012; Wertin et al., 2012), supported by our results 

(Fig. 6e). Hence, the combination of elevated CO2 and elevated TA may promote the fixation 

of carbon and the accumulation of biomass (Morison & Lawlor, 1999; Wang et al., 2012). 
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Model 4 in this study incorporated the interactive effects of VPD, CO2, and TA for trees (DBF 

and ENF) and showed improvement in Gs simulation, which is supported in literature reviews 

(Mathias & Thomas, 2021; Urban et al., 2017; Wang et al., 2012; Wertin et al., 2012).  

3.5.3 Interactive effects of environmental variables on Gs simulation at a monthly 

timescale 

The comparison between interactive effects of environmental variables on Gs simulation 

revealed that trees were sensitive to the interaction between VPD, CO2, and TA. NSE values 

at a monthly timescale for models 1 and 4 showed that this sensitivity was higher during the 

growth periods of January to March and November to December (Fig. 7). For most of the DBFs 

and two sites of the ENFs (CA-LP1 and CA-TP3), this specific pattern was evident. A possible 

explanation for this pattern can be found at the beginning and end of the growth period at the 

mentioned sites which have lower monthly average TA with higher variation (Fig. S12). 

Although the US-GLE site also had low average monthly TA values, the lower sensitivity to 

TA can be justified by its mature trees (average age of 400 years).  

A comparison between model 1 and model 3 indicated that trees are highly sensitive to TA 

both at the beginning and the end of their growth period (Fig. S8). There was also evidence in 

the literature that TA had a more important effect on Gs at the beginning of the growth period 

rather than in the middle of it (D'Arrigo et al., 2004; Wertin et al., 2012). For the Loblolly pine, 

the combined effects of elevated TA and CO2 on Gs were more important during the cooler 

months of October as opposed to the warmer months of June and September (Wertin et al., 

2012). According to a meta-analysis of plant response to TA, the simultaneous TA and CO2 

treatments had more considerable effects at ambient temperature rather than at elevated 

temperature (Wang et al., 2012).  
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3.6 Conclusion  

The Gs simulation is one of the most complex parts of the Penman-Monteith equation. As a 

result of the nonlinear and multiple interactions between environmental variables, the Gs 

simulation has always been challenging. The MGAM, as an ML model with physical 

constraints, was capable of simulating Gs through optimal extraction of information from data. 

MGAM provided higher accuracy than semi-empirical and empirical models in Gs simulation, 

and its flexibility in applying multiple interactions of key environmental variables makes it an 

alternative tool for simulating Gs. For forest, crop, and grass ecosystems, the MGAM model 

developed in this study provided a satisfactory simulation of Gs for both testing and training 

dataset, suggesting its further use in Gs and ET prediction and generalisation. By employing 

MGAM to enhance plant ET simulation and prediction, the potential arises for more 

exploration into comprehending the intricate interplay among ET, precipitation, and 

streamflow – pivotal elements in water resources and hydrological ecosystems. 
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Figure S5 The range of all environmental variables for 20 flux tower sites with four vegetation types of crop (CRO), deciduous broad-leaf forest 

(DBF), evergreen needle-leaf forest (ENF), and grass (GRA), a) observed Gs, b) simulated Gs by model 1 (benchmark), c) VPD, d) CO2, e) R, f) 

TA, g) SWC.  
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Table S1 Bayesian-MCMC calibration results for fitted parameters in Modified Medlyn 

(MM) model for four groups of vegetation types including crop (CRO), deciduous broad-leaf 

forest (DBF), evergreen needle-leaf forest (ENF), and grass (GRA). 

Vegetation 

types 

Site 

names 

g0 

(
𝒎𝒐𝒍

𝒎𝟐𝒔
) g1 (𝑷𝒂𝒎  

𝒎𝒐𝒍

𝝁𝒎𝒐𝒍
) m 

  

C
R

O
 

US-ARM 0.14 30.42 0.66 

US-Bi2 0.28 7.28 0.65 

US-Ro5 0.37 11.47 0.62 

US-Ro6 0.26 26.55 0.63 

US-Tw2 0.18 13.54 1.76 

  

E
N

F
 

CA-Cbo 0.24 9.70 0.77 

CA-TPD 0.17 11.81 0.51 

US-MMS 0.18 17.87 0.55 

US-MOz 0.10 21.64 0.59 

US-xBR 0.15 14.86 0.65 

  

D
B

F
 

CA-LP1 0.09 18.51 0.97 

CA-TP3 0.11 11.77 0.62 

US-GLE 0.29 5.78 1.45 

US-Me2 0.07 13.67 0.85 

US-NR1 0.25 13.57 0.56 

  

G
R

A
 

US-A32 0.05 18.69 0.72 

US-KLS 0.13 20.79 0.63 

US-ONA -0.05 28.80 0.58 

US-Ro4 0.11 13.86 0.81 

US-Snf 0.04 22.97 0.72 
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Table S2 Bayesian-MCMC calibration results for fitted parameters in Jarvis model for four 

groups of vegetation types including crop (CRO), deciduous broad-leaf forest (DBF), 

evergreen needle-leaf forest (ENF), and grass (GRA). 

Vegetatio

n types 

 Site 

names a1 a2 a3 a4 a5 a6 a7 

 

C
R

O
 

US.ARM 167.50 0.02 0.12 1.23 0.00 1.71 132.32 

US.Bi2 100.73 0.00 0.13 0.00 7.67 1.60 399.09 

US.Ro5 104.20 0.40 0.11 1.01 0.02 1.34 109.61 

US.Ro6 251.70 0.05 0.10 1.06 0.00 1.57 112.34 

US.Tw2 236.80 0.55 0.10 1.04 0.00 2.36 110.81 

 

E
N

F
 

CA.Cbo 215.14 0.01 0.10 1.24 0.01 2.22 101.28 

CA.TPD 203.04 0.03 0.10 1.02 0.01 2.54 299.44 

US.MMS 398.80 0.15 0.10 1.01 0.00 2.17 282.96 

US.MOz 104.56 0.06 0.08 1.01 0.00 2.28 272.51 

US.xBR 112.62 0.01 0.08 1.30 0.02 2.60 215.38 

 

D
B

F
 

CA.LP1 150.69 0.02 0.18 1.05 0.00 2.55 319.39 

CA.TP3 101.35 0.02 0.14 1.14 0.00 2.36 107.98 

US.GLE 397.07 0.75 0.34 1.00 0.00 1.92 398.37 

US.Me2 336.64 0.77 0.28 1.03 0.00 2.14 115.44 

US.NR1 396.54 0.17 0.18 1.02 0.00 2.00 186.88 

 

G
R

A
 

US.A32 379.17 0.60 0.08 1.01 0.00 2.74 192.59 

US.KLS 132.90 0.78 0.10 1.00 0.00 1.87 114.54 

US.ONA 150.57 0.11 0.10 1.23 0.00 2.70 106.93 

US.Ro4 349.69 0.47 0.09 1.00 0.00 2.34 244.63 

US.Snf 342.04 0.98 0.31 1.46 0.00 2.09 100.93 
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Figure S2 Comparison of Gs simulation accuracies for test data, a) model 1 (benchmark) vs 

model 5, b) model 1 vs model 6, c) model 1 vs model 7. 
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Figure S3 The comparison of Gs simulation accuracies for training data, a) model 1 

(benchmark) vs model 2, b) model 1 vs model 3, c) model 1 vs model 4. 
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Figure S4 The comparison of Gs simulation accuracies for training data, a) model 1 

(benchmark) vs model 5, b) model 1 vs model 6, c) model 1 vs model 7. 



116 

 

 

 

Figure S5 Schematic path analysis for the training data showing the effect of each 

environmental variable in Gs simulation. The path values and arrow thicknesses are the average 

NSE value changes compared to model 1 (benchmark) for each environmental variable (%) 

and for all five flux net sites in vegetation type: a) crop (CRO), b) deciduous broad-leaf forest 

(DBF), c) evergreen needle-leaf forest (ENF), and d) grass (GRA). 
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Figure S6 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Jarvis and MM models. 
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Figure S7 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Model 2 (benchmark without 

SWC). 
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Figure S8 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Model 3 (benchmark without TA). 
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Figure S9 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Model 5 (benchmark without 

VPD). 
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Figure S10 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Model 6 (benchmark without CO2). 
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Figure S11 The comparison of monthly Gs simulation accuracies in Model 1 (benchmark) 

contains all direct effects of environmental variables with Model 7 (benchmark without R). 
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Figure S12 Monthly average temperature for DBF and ENF with more sensitivity to TA at the beginning (Jan-Mar) and the end (Nov-Dec) of 

the growth period.



124 

 

3.7 Reference 

Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E., & Wang, Y. (2007). Systematic Bias in Land 

Surface Models. Journal of Hydrometeorology, 8(5), 989-1001. 

https://doi.org/https://doi.org/10.1175/jhm628.1  

Anderegg, W. R. L., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D. L., & Field, C. B. 

(2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-

off. Proceedings of the National Academy of Sciences, 109(1), 233-237. 

https://doi.org/https://doi.org/10.1073/pnas.1107891109  

Arain, M. A., Xu, B., Brodeur, J. J., Khomik, M., Peichl, M., Beamesderfer, E., Restrepo-Couple, N., 

& Thorne, R. (2022). Heat and drought impact on carbon exchange in an age-sequence of 

temperate pine forests. Ecological Processes, 11(1), 7. 

https://doi.org/https://doi.org/10.1186/s13717-021-00349-7  

Bai, Y., Li, X., Zhou, S., Yang, X., Yu, K., Wang, M., Liu, S., Wang, P., Wu, X., Wang, X., Zhang, 

C., Shi, F., Wang, Y., & Wu, Y. (2019). Quantifying plant transpiration and canopy 

conductance using eddy flux data: An underlying water use efficiency method. Agricultural 

and Forest Meteorology, 271, 375-384. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2019.02.035  

Ball, J. T., Woodrow, I. E., Berry, J. A. . (1987). A model predicting stomatal conductance and its 

contribution to the control of photosynthesis under different environmental conditions. In 

Progress in photosynthesis research, 221-224. https://doi.org/https://doi.org/10.1007/978-94-

017-0519-6_48  

Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., & Delignette-Muller, M.-L. (2015). A 

Toolbox for Nonlinear Regression in R: The Package nlstools. Journal of Statistical Software, 

66(5), 1 - 21. https://doi.org/https://doi.org/10.18637/jss.v066.i05  

Beamesderfer, E. R., Arain, M. A., Khomik, M., & Brodeur, J. J. (2020). The Impact of Seasonal and 

Annual Climate Variations on the Carbon Uptake Capacity of a Deciduous Forest Within the 

Great Lakes Region of Canada. Journal of Geophysical Research: Biogeosciences, 125(9), 

e2019JG005389. https://doi.org/https://doi.org/10.1029/2019JG005389  

Birami, B., Nägele, T., Gattmann, M., Preisler, Y., Gast, A., Arneth, A., & Ruehr, N. K. (2020). Hot 

drought reduces the effects of elevated CO2 on tree water-use efficiency and carbon 

metabolism. New Phytologist, 226(6), 1607-1621. 

https://doi.org/https://doi.org/10.1111/nph.16471  

Breshears, D., Adams, H., Eamus, D., McDowell, N., Law, D., Will, R., Williams, A., & Zou, C. 

(2013). The critical amplifying role of increasing atmospheric moisture demand on tree 

mortality and associated regional die-off [Opinion]. Frontiers in Plant Science, 4. 

https://doi.org/https://doi.org/10.3389/fpls.2013.00266  

Brown, M. G., Black, T. A., Nesic, Z., Fredeen, A. L., Foord, V. N., Spittlehouse, D. L., Bowler, R., 

Burton, P. J., Trofymow, J. A., Grant, N. J., & Lessard, D. (2012). The carbon balance of two 

lodgepole pine stands recovering from mountain pine beetle attack in British Columbia. 

Agricultural and Forest Meteorology, 153, 82-93. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2011.07.010  

Burns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., & Monson, R. K. (2015). The influence of 

warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide 

at a Colorado subalpine forest site. Biogeosciences, 12(23), 7349-7377. 

https://doi.org/https://doi.org/10.5194/bg-12-7349-2015  

Chitsaz, N., Guan, H., Shanafield, M., & Batelaan, O. (2023). Evaluating CO2 effects on semi-

empirical and empirical stomatal conductance simulation in land surface models. Journal of 

Hydrology, 620, 129385. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129385  

Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., 

Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., 

Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., . . . Zona, D. (2021). 

Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. 



125 

 

Agricultural and Forest Meteorology, 301-302, 108350. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2021.108350  

D'Arrigo, R. D., Kaufmann, R. K., Davi, N., Jacoby, G. C., Laskowski, C., Myneni, R. B., & 

Cherubini, P. (2004). Thresholds for warming-induced growth decline at elevational tree line 

in the Yukon Territory, Canada. Global Biogeochemical Cycles, 18(3). 

https://doi.org/https://doi.org/10.1029/2004GB002249  

De Kauwe, M. G., Medlyn, B. E., & Tissue, D. T. (2021). To what extent can rising [CO2] ameliorate 

plant drought stress? New Phytologist., 231(6), 2118-2124. 

https://doi.org/https://doi.org/10.1111/nph.17540  

Dombrowski, O., Brogi, C., Hendricks Franssen, H. J., Zanotelli, D., & Bogena, H. (2022). CLM5-

FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5). 

Geosci. Model Dev., 15(13), 5167-5193. https://doi.org/https://10.5194/gmd-15-5167-2022  

Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning 

approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 

95-106. https://doi.org/https://doi.org/10.1016/j.compag.2018.03.010  

Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., & Wood, E. F. (2014). Multi-site evaluation 

of terrestrial evaporation models using FLUXNET data. Agricultural and Forest 

Meteorology, 187, 46-61. https://doi.org/https://doi.org/10.1016/j.agrformet.2013.11.008  

Ershadi, A., McCabe, M. F., Evans, J. P., & Wood, E. F. (2015). Impact of model structure and 

parameterization on Penman–Monteith type evaporation models. Journal of Hydrology, 525, 

521-535. https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.04.008  

Fer, I., & Dietze, M. (2018). Bartlett Forest (BART). 

https://sites.nicholas.duke.edu/clarklab/projects/forecasting-community-dynamics-the-mast-

system/bartlett-forest-

bart/#:~:text=Forest%20stands%20are%2090%2D150,Betula%20alleghaniensis%20(yellow

%20birch. https://sites.nicholas.duke.edu/clarklab/projects/forecasting-community-dynamics-

the-mast-system/bartlett-forest-

bart/#:~:text=Forest%20stands%20are%2090%2D150,Betula%20alleghaniensis%20(yellow

%20birch). 

Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., & Negrón, J. F. (2014). Ecosystem 

CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality 

from spruce bark beetles. Journal of Geophysical Research: Biogeosciences, 119(6), 1195-

1215. https://doi.org/https://doi.org/10.1002/2013JG002597  

Gattmann, M., Birami, B., Nadal Sala, D., & Ruehr, N. K. (2021). Dying by drying: Timing of 

physiological stress thresholds related to tree death is not significantly altered by highly 

elevated CO2. Plant, cell & environment, 44(2), 356-370. 

https://doi.org/https://doi.org/10.1111/pce.13937  

Geyer, C. J., & Johnson, L. T. (2020). mcmc: Markov Chain Monte Carlo. R package version 0.9-7. 

https://CRAN.R-project.org/package=mcmc 

Green, J. K., Berry, J., Ciais, P., Zhang, Y., & Gentine, P. (2020). Amazon rainforest photosynthesis 

increases in response to atmospheric dryness. Science Advances, 6(47), eabb7232. 

https://doi.org/https://doi.org/10.1126/sciadv.abb7232  

Griebel, A., Bennett, L. T., Metzen, D., Pendall, E., Lane, P. N. J., & Arndt, S. K. (2020). Trading 

Water for Carbon: Maintaining Photosynthesis at the Cost of Increased Water Loss During 

High Temperatures in a Temperate Forest. Journal of Geophysical Research: Biogeosciences, 

125(1), e2019JG005239. https://doi.org/https://doi.org/10.1029/2019JG005239  

Griffis, T. J., Lee, X., Baker, J. M., Billmark, K., Schultz, N., Erickson, M., Zhang, X., Fassbinder, J., 

Xiao, W., & Hu, N. (2011). Oxygen isotope composition of evapotranspiration and its relation 

to C4 photosynthetic discrimination. Journal of Geophysical Research: Biogeosciences, 

116(G1). https://doi.org/https://doi.org/10.1029/2010JG001514  

Gu, L., Fuentes, J. D., Shugart, H. H., Staebler, R. M., & Black, T. A. (1999). Responses of net 

ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North 

American deciduous forests. Journal of Geophysical Research: Atmospheres, 104(D24), 

31421-31434. https://doi.org/https://doi.org/10.1029/1999JD901068  



126 

 

Hartig, F., Minunno, F., & Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC 

Samplers and Tools for Bayesian Statistics. R package version 0.1.7. In https://CRAN.R-

project.org/package=BayesianTools 

Hastie, T., Robert, T., & JH, F. (2009). The elements of statistical learning: data mining, inference, 

and prediction (Vol. 2). New York: springer.  

Hou, M., Tian, F., Ortega-Farias, S., Riveros-Burgos, C., Zhang, T., & Lin, A. (2021). Estimation of 

crop transpiration and its scale effect based on ground and UAV thermal infrared remote 

sensing images. European Journal of Agronomy, 131, 126389. 

https://doi.org/https://doi.org/10.1016/j.eja.2021.126389  

Jarvis, P. G., Monteith, J. L., & Weatherley, P. E. (1976). The interpretation of the variations in leaf 

water potential and stomatal conductance found in canopies in the field. Biological Sciences, 

273(927), 593-610. https://doi.org/https://doi.org/10.1098/rstb.1976.0035  

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., 

Tramontana, G., & Reichstein, M. (2019). The FLUXCOM ensemble of global land-

atmosphere energy fluxes. Scientific Data, 6(1), 74. 

https://doi.org/https://doi.org/10.1038/s41597-019-0076-8  

Kimm, H., Guan, K., Gentine, P., Wu, J., Bernacchi, C. J., Sulman, B. N., Griffis, T. J., & Lin, C. 

(2020). Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor 

pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean. 

Agricultural and Forest Meteorology, 287, 107930. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2020.107930  

Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., & Baldocchi, D. (2015). 

Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and 

CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology, 21(2), 750-765. 

https://doi.org/https://doi.org/10.1111/gcb.12745  

Koppa, A., Rains, D., Hulsman, P., Poyatos, R., & Miralles, D. G. (2022). A deep learning-based 

hybrid model of global terrestrial evaporation. Nature Communications, 13(1), 1912. 

https://doi.org/https://doi.org/10.1038/s41467-022-29543-7  

Koutsoyiannis, D. (2020). Revisiting the global hydrological cycle: is it intensifying? Hydrol. Earth 

Syst. Sci., 24(8), 3899-3932. https://doi.org/https://10.5194/hess-24-3899-2020  

Kuhn, M. (2021). caret: Classification and Regression Training. R package version 6.0-88. 

https://CRAN.R-project.org/package=caret 

Kwon, H., Law, B. E., Thomas, C. K., & Johnson, B. G. (2018). The influence of hydrological 

variability on inherent water use efficiency in forests of contrasting composition, age, and 

precipitation regimes in the Pacific Northwest. Agricultural and Forest Meteorology, 249, 

488-500. https://doi.org/https://doi.org/10.1016/j.agrformet.2017.08.006  

Lee, Y.-G., Oh, J.-Y., Kim, D., & Kim, G. (2023). SHAP Value-Based Feature Importance Analysis 

for Short-Term Load Forecasting. Journal of Electrical Engineering & Technology, 18(1), 

579-588. https://doi.org/10.1007/s42835-022-01161-9  

Lei, H., Yang, D., & Huang, M. (2014). Impacts of climate change and vegetation dynamics on runoff 

in the mountainous region of the Haihe River basin in the past five decades. Journal of 

Hydrology, 511, 786-799. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.02.029  

Leuning, R. (1995). A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. 

Plant, cell & environment, 18(4), 339-355. https://doi.org/https://doi.org/10.1111/j.1365-

3040.1995.tb00370.x  

Li, X., Kang, S., Niu, J., Huo, Z., & Liu, J. (2019). Improving the representation of stomatal responses 

to CO2 within the Penman–Monteith model to better estimate evapotranspiration responses to 

climate change. Journal of Hydrology, 572, 692-705. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.03.029  

Liao, D., Niu, J., Kang, S., Singh, S. K., & Du, T. (2021). Effects of elevated CO2 on the 

evapotranspiration over the agricultural land in Northwest China. Journal of Hydrology, 593, 

125858. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125858  

Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., & Zhou, S. (2018). Diel ecosystem conductance 

response to vapor pressure deficit is suboptimal and independent of soil moisture. 



127 

 

Agricultural and Forest Meteorology, 250-251, 24-34. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2017.12.078  

Liu, D., & Mishra, A. K. (2017). Performance of AMSR_E soil moisture data assimilation in CLM4.5 

model for monitoring hydrologic fluxes at global scale. Journal of Hydrology, 547, 67-79. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.01.036  

Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2003). Modeling actual evapotranspiration from 

forested watersheds across the southeastern United States1. Journal of the American Water 

Resources Association, 39(4), 887-896. https://doi.org/https://doi.org/10.1111/j.1752-

1688.2003.tb04413.x  

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin Jordan, M., Nair, B., Katz, R., 

Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global 

understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67. 

https://doi.org/https://doi.org/10.1038/s42256-019-0138-9  

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions 

Proceedings of the 31st International Conference on Neural Information Processing Systems, 

Long Beach, California, USA.  

Mardian, J., Champagne, C., Bonsal, B., & Berg, A. (2023). A Machine Learning Framework for 

Predicting and Understanding the Canadian Drought Monitor. Water Resources Research, 

59(8), e2022WR033847. https://doi.org/https://doi.org/10.1029/2022WR033847  

Mathias, J. M., & Thomas, R. B. (2021). Global tree intrinsic water use efficiency is enhanced by 

increased atmospheric CO2 and modulated by climate and plant functional types. 

Proceedings of the National Academy of Sciences, 118(7). 

https://doi.org/https://doi.org/10.1073/pnas.2014286118  

Mayer, M. (2023). shapviz: SHAP Visualizations. R package version 0.9.1. https://CRAN.R-

project.org/package=shapviz 

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, 

K. Y., De Angelis, P., Freeman, M., & Wingate, L. (2011). Reconciling the optimal and 

empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6), 

2134-2144. https://doi.org/https://doi.org/10.1111/j.1365-2486.2010.02375.x  

Monteith, J. L. (1965). Evaporation and environment. Symp Soc Exp Biol, 19, 205-234.  

Morison, J. I. L., & Lawlor, D. W. (1999). Interactions between increasing CO2 concentration and 

temperature on plant growth. Plant, cell & environment, 22(6), 659-682. 

https://doi.org/https://doi.org/10.1046/j.1365-3040.1999.00443.x  

Nadal-Sala, D., Medlyn, B. E., Ruehr, N. K., Barton, C. V. M., Ellsworth, D. S., Gracia, C., Tissue, D. 

T., Tjoelker, M. G., & Sabaté, S. (2021). Increasing aridity will not offset CO2 fertilization in 

fast-growing eucalypts with access to deep soil water. Global Change Biology, 27(12), 2970-

2990. https://doi.org/https://doi.org/10.1111/gcb.15590  

Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., Gimeno, T. E., 

Wohlfahrt, G., Desai, A. R., Gioli, B., Limousin, J.-M., Bonal, D., Paul-Limoges, E., Scott, R. 

L., Varlagin, A., Fuchs, K., Montagnani, L., Wolf, S., Delpierre, N., . . . Jung, M. (2020). 

Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods 

across FLUXNET sites. Global Change Biology, 26(12), 6916-6930. 

https://doi.org/https://doi.org/10.1111/gcb.15314  

Nguyen, M. N., Hao, Y., Baik, J., & Choi, M. (2021). Partitioning evapotranspiration based on the 

total ecosystem conductance fractions of soil, interception, and canopy in different biomes. 

Journal of Hydrology, 603, 126970. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126970  

Nie, C., Huang, Y., Zhang, S., Yang, Y., Zhou, S., Lin, C., & Wang, G. (2021). Effects of soil water 

content on forest ecosystem water use efficiency through changes in 

transpiration/evapotranspiration ratio. Agricultural and Forest Meteorology, 308-309, 

108605. https://doi.org/https://doi.org/10.1016/j.agrformet.2021.108605  

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., 

Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P. (2016). 

The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. 



128 

 

Nature Climate Change, 6(11), 1023-1027. 

https://doi.org/https://doi.org/10.1038/nclimate3114  

Oliver, R. J., Mercado, L. M., Clark, D. B., Huntingford, C., Taylor, C. M., Vidale, P. L., McGuire, P. 

C., Todt, M., Folwell, S., Shamsudheen Semeena, V., & Medlyn, B. E. (2022). Improved 

representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, 

stomatal conductance and thermal acclimation. Geosci. Model Dev., 15(14), 5567-5592. 

https://doi.org/10.5194/gmd-15-5567-2022  

Page, G. F. M., Liénard, J. F., Pruett, M. J., & Moffett, K. B. (2018). Spatiotemporal dynamics of leaf 

transpiration quantified with time-series thermal imaging. Agricultural and Forest 

Meteorology, 256-257, 304-314. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2018.02.023  

Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., 

Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., & 

Running, S. W. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-

art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth 

Syst. Sci., 24(3), 1485-1509. https://doi.org/https://doi.org/10.5194/hess-24-1485-2020  

Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., 

Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., 

Gangodagamage, C., Cai, M., & McDowell, N. G. (2013). Temperature as a potent driver of 

regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292-297. 

https://doi.org/https://doi.org/10.1038/nclimate1693  

Penman, H. L. (1948). Natural evaporation from open water, hare soil and grass. Proc R Soc Lond A 

Math Phys Sci, 193(1032), 120-145. https://doi.org/https://doi.org/10.1098/rspa.1948.0037  

Polhamus, A., Fisher, J. B., & Tu, K. P. (2013). What controls the error structure in 

evapotranspiration models? Agricultural and Forest Meteorology, 169, 12-24. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2012.10.002  

Purcell, C., Batke, S. P., Yiotis, C., Caballero, R., Soh, W. K., Murray, M., & McElwain, J. C. (2018). 

Increasing stomatal conductance in response to rising atmospheric CO2. Annals of Botany, 

121(6), 1137-1149. https://doi.org/https://doi.org/10.1093/aob/mcy023  

Qi, Y., Zhang, Q., Hu, S., Wang, R., Wang, H., Zhang, K., Zhao, H., Zhao, F., Chen, F., Yang, Y., 

Tang, G., & Hu, Y. (2023). Applicability of stomatal conductance models comparison for 

persistent water stress processes of spring maize in water resources limited environmental 

zone. Agricultural Water Management, 277, 108090. 

https://doi.org/https://doi.org/10.1016/j.agwat.2022.108090  

Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., & 

Torn, M. S. (2015). Vulnerability of crops and native grasses to summer drying in the U.S. 

Southern Great Plains. Agriculture, Ecosystems & Environment, 213, 209-218. 

https://doi.org/https://doi.org/10.1016/j.agee.2015.07.021  

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. 

(2019). Deep learning and process understanding for data-driven Earth system science. 

Nature, 566(7743), 195-204. https://doi.org/https://doi.org/10.1038/s41586-019-0912-1  

Rey-Sanchez, C., Wharton, S., Vilà-Guerau de Arellano, J., Paw U, K. T., Hemes, K. S., Fuentes, J. 

D., Osuna, J., Szutu, D., Ribeiro, J. V., Verfaillie, J., & Baldocchi, D. (2021). Evaluation of 

Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its 

Responses to Seasonality of Land Cover, Subsidence, and Advection. Journal of Geophysical 

Research: Atmospheres, 126(7), e2020JD033775. 

https://doi.org/https://doi.org/10.1029/2020JD033775  

Roman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., & Phillips, R. P. (2015). The 

role of isohydric and anisohydric species in determining ecosystem-scale response to severe 

drought. Oecologia, 179(3), 641-654. https://doi.org/https://doi.org/10.1007/s00442-015-

3380-9  

Saunders, A., Drew, D. M., & Brink, W. (2021). Machine learning models perform better than 

traditional empirical models for stomatal conductance when applied to multiple tree species 

across different forest biomes. Trees, Forests and People, 6, 100139. 

https://doi.org/https://doi.org/10.1016/j.tfp.2021.100139  



129 

 

Shi, H., Luo, G., Hellwich, O., He, X., Xie, M., Zhang, W., Ochege, F. U., Ling, Q., Zhang, Y., Gao, 

R., Kurban, A., De Maeyer, P., & Van de Voorde, T. (2023). Comparing the use of all data or 

specific subsets for training machine learning models in hydrology: A case study of 

evapotranspiration prediction. Journal of Hydrology, 627, 130399. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130399  

Silveira, M. (2021). AmeriFlux FLUXNET-1F US-ONA Florida pine flatwoods Version Ver. 3-5). 

https://doi.org/10.17190/AMF/1832163  

Speich, M., Dormann, C. F., & Hartig, F. (2021). Sequential Monte-Carlo algorithms for Bayesian 

model calibration – A review and method comparison. Ecological Modelling, 455, 109608. 

https://doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109608  

Stewart, J. B. (1988). Modelling surface conductance of pine forest. Agricultural and Forest 

Meteorology, 43(1), 19-35. https://doi.org/https://doi.org/10.1016/0168-1923(88)90003-2  

Sulman, B. N., Roman, D. T., Yi, K., Wang, L., Phillips, R. P., & Novick, K. A. (2016). High 

atmospheric demand for water can limit forest carbon uptake and transpiration as severely as 

dry soil. Geophysical Research Letters, 43(18), 9686-9695. 

https://doi.org/https://doi.org/10.1002/2016GL069416  

Thom, A. S. (1972). Momentum, mass and heat exchange of vegetation. Quarterly Journal of the 

Royal Meteorological Society, 98, 124-134. 

https://doi.org/https://doi.org/10.1002/qj.49709841510  

Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance increases 

with rising temperature. Plant signaling & behavior, 12(8), e1356534-e1356534. 

https://doi.org/https://doi.org/10.1080/15592324.2017.1356534  

Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant 

physiological and growth responses to temperature and elevated CO(2). Oecologia, 169(1), 1-

13. https://doi.org/https://doi.org/10.1007/s00442-011-2172-0  

Wehr, R., & Saleska, S. R. (2021). Calculating canopy stomatal conductance from eddy covariance 

measurements, in light of the energy budget closure problem. Biogeosciences, 18(1), 13-24. 

https://doi.org/https://10.5194/bg-18-13-2021  

Wertin, T. M., McGuire, M. A., & Teskey, R. O. (2012). Effects of predicted future and current 

atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and 

growth of Pinus taeda seedlings at cool and warm sites in the species range. Tree Physiology, 

32(7), 847-858. https://doi.org/https://doi.org/10.1093/treephys/tps051  

Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C., & Gu, L. (2018). The importance of 

drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. 

Environmental Research Letters, 13(1), 015004. https://doi.org/https://doi.org/10.1088/1748-

9326/aa94fa  

Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing Parameter and Model Selection for General 

Smooth Models. Journal of the American Statistical Association, 111(516), 1548-1563. 

https://doi.org/https://doi.org/10.1080/01621459.2016.1180986  

Yang, L., Feng, Q., Zhu, M., Wang, L., Alizadeh, M. R., Adamowski, J. F., Wen, X., & Yin, Z. 

(2022). Variation in actual evapotranspiration and its ties to climate change and vegetation 

dynamics in northwest China. Journal of Hydrology, 607, 127533. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127533  

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., 

Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., 

Quine, T., . . . Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global 

vegetation growth. Science Advances, 5(8), eaax1396. 

https://doi.org/https://doi.org/10.1126/sciadv.aax1396  

Zang, C. F., Liu, J., van der Velde, M., & Kraxner, F. (2012). Assessment of spatial and temporal 

patterns of green and blue water flows under natural conditions in inland river basins in 

Northwest China. Hydrol. Earth Syst. Sci., 16(8), 2859-2870. 

https://doi.org/https://doi.org/10.5194/hess-16-2859-2012  

Zhan, S., Song, C., Wang, J., Sheng, Y., & Quan, J. (2019). A Global Assessment of Terrestrial 

Evapotranspiration Increase Due to Surface Water Area Change. Earths Future, 7(3), 266-

282. https://doi.org/https://10.1029/2018ef001066  



130 

 

Zhang, C., Yang, Y., Yang, D., & Wu, X. (2021). Multidimensional assessment of global dryland 

changes under future warming in climate projections. Journal of Hydrology, 592, 125618. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125618  

Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., & Novick, K. A. (2019). 

Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising 

vapor pressure deficit. Environmental Research Letters, 14(7), 074023. 

https://doi.org/10.1088/1748-9326/ab2603  

Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., & Qiu, G. Y. 

(2019). Physics-Constrained Machine Learning of Evapotranspiration. Geophysical Research 

Letters, 46(24), 14496-14507. https://doi.org/https://doi.org/10.1029/2019GL085291  

Zhou, X.-M., Tang, B.-H., Wu, H., & Li, Z.-L. (2013). Estimating net surface longwave radiation 

from net surface shortwave radiation for cloudy skies. International Journal of Remote 

Sensing, 34(22), 8104-8117. https://doi.org/https://10.1080/01431161.2013.832002  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 

 

Chapter 4: Publication 3  

 

Enhanced runoff simulation with improved evapotranspiration accounting 

for vegetation response to climate variability 

 

The manuscript will be submitted in per-reviewed journal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

 

 



133 

 

4.1 Abstract 

Rainfall-runoff simulation plays a crucial role in the prediction of high runoff events. 

Hydrological models which use potential evapotranspiration (PET) equations have an implicit 

bias in runoff simulation due to neglecting the role of vegetation responses to environmental 

variables such as CO2 concentration, air temperature (TA), vapor pressure deficit (VPD), soil 

water content (SWC), and net radiation ®. The modification of Penman-Monteith PET 

(PETPM) by incorporating vegetation response to environmental variables through canopy 

stomatal conductance (gs) leads to complexity and uncertainty. In this study, a mixed 

generalised additive model (MGAM) was used to simulate gs as a nonlinear function of 

environmental variables. By including the MGAM gs into PETPM a PETMGAM was then 

developed. Using four eddy covariance flux tower sites data with different vegetation types, 

PETMGAM produced higher Nash-Sutcliffe Efficiency (NSE) and Kling–Gupta efficiency 

(KGE) values than PETPM for PET estimation and runoff simulation. Results showed that 

PETMGAM moderated the underestimation of runoff simulated by PETPM, particularly in 

extreme wet conditions when runoff is more sensitive to PET. Shapley Additive exPlanations 

(SHAP) analysis revealed that key environmental variables contribute differently to PET 

estimation in wet and dry climates. Notable changes in SHAP values for different climate 

conditions were related to CO2 and soil water content, which are the key environmental 

variables in PET simulation for wet and dry conditions, respectively. PETMGAM, considers the 

role of key environmental variables in a modified PET, leading to a more accurate estimate of 

the water balance elements under extreme wet climate conditions.  

4.2 Plain language summary  

Potential evapotranspiration (PET) is a key input of many hydrological models for runoff 

simulation. It is one of the most uncertain hydrological variables, so accurate PET estimation 

is still challenging. Several studies have shown that neglecting the vegetation response to 

environmental variables such as CO2 concentration, air temperature (TA), vapor pressure 

deficit (VPD), soil water content (SWC), and net radiation ® in current PET equations in 

hydrological models causes underestimation of runoff, especially in locations with higher 

precipitation and runoff. We present a method in which the vegetation response to the 

environmental variables is part of a modified PET equation. This new method improves the 

PET estimation and consequently, the runoff simulation, especially in extreme wet conditions 

when precipitation is higher than PET. We show how sensitive the PET is to CO2 and other 
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environmental variables, allowing for better future simulation and prediction of PET and 

runoff. 

4.3 Introduction 

Global warming leads to more extreme precipitation events, intensifying storm runoff (Tabari, 

2020; Yin et al., 2018). Runoff from extreme events is a serious societal concern, and it has 

caused extensive property damage and agricultural losses across the globe (Yin et al., 2018). 

Global economic losses due to runoff have risen over the past half-century and exceeded $30 

billion annually in the past decade (Roxy et al., 2017). Accurate simulation of rainfall-runoff 

is crucial for analysing and managing extreme rainfall-runoff risks (Wang & Karimi, 2022). 

Because extreme hydrological events such as high temperatures (TA) and extreme precipitation 

(Pr) occur more regularly, rainfall-runoff modelling is becoming increasingly important in 

hydrological forecasting (Pimentel et al., 2023; Yin et al., 2018). In spite of this, hydrological 

models consistently and significantly underestimate extreme runoff (Ballarin et al., 2023; Milly 

& Dunne, 2017; Zhou et al., 2023). Hence, it is necessary to identify and address the reasons 

for this bias in runoff simulation by hydrological models. 

Several studies have evaluated the runoff simulation of hydrological models using data 

obtained from general circulation models (GCMs), (Ballarin et al., 2023; Milly & Dunne, 2017; 

Yang et al., 2019; Zhou et al., 2023). Hydrological modelling of runoff fed by data from offline 

climate models was compared with the outputs of the GCM model Coupled Model 

Intercomparison Project Phase 5-6 (CMIP 5-6) (Ballarin et al., 2023; Liu et al., 2024). CMIP 

5-6 showed an increase in runoff over global terrestrial environments by 2100 (Milly & Dunne, 

2017; Swann et al., 2016; Zhou et al., 2023). However, offline climate model results 

underestimated runoff increases, contradicting CMIP5-6 results (Hou et al., 2023; Milly & 

Dunne, 2016). These contradictory runoff predictions of CMIP5-6 and offline climate model 

output-driven hydrological models are the results of neglecting vegetation’s stomatal 

conductance (gs) response to change in climate and CO2 in the PET equation of hydrological 

models (Peiris & Döll, 2023; Vremec et al., 2023; Zhou et al., 2023). CMIP 5-6 uses actual 

evapotranspiration (AET) to represent the dynamic responses of vegetation to climate 

variables, whereas PET is the rate of evapotranspiration without water stress, which assumes 

gs as a constant with a value of 70 ms-1 (Yang et al., 2019; Zhou et al., 2023). Consequently, 

incorporating gs as a function of CO2 and climate variables into PET estimation improves 

climate model outputs in runoff simulation (Bass et al., 2023; Yang et al., 2019). Despite this, 
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only a few studies have investigated vegetation response to climate variables in the PET 

equation (Peiris & Döll, 2023; Zhou et al., 2023). 

Among many PET methods, the Penman-Monteith PET (PETPM) represents an accurate yet 

simple approximation to the more complex system embedded in climate models (McMahon et 

al., 2013; Milly & Dunne, 2016). By representing the vegetation response to atmospheric CO2 

in PETPM through gs, it is possible to see how PET simulations are improving according to AET 

data from CMIP 5-6 outputs (Yang et al., 2019; Zhang et al., 2021). However, the gs variable 

in PETPM is assumed to be a linear function of CO2, which does not align with the nonlinear 

CO2-gs behaviour in the real environment (Li et al., 2019). Additionally, the effects of 

environmental variables such as air temperature (TA), radiation ®, vapour pressure deficit 

(VPD), and soil water content (SWC) on gs are not included in the PETPM equation despite 

their significant influence on plants. Thus, more work is required to understand whether 

vegetation response could be more accurately simulated in a PET equation that includes these 

variables. 

This study aims to improve runoff simulation by incorporating gs as a function of CO2, R, VPD, 

Ta, and SWC in the PET estimation. We use GR4J as a conceptual rainfall-runoff model to 

simulate runoff in function of rainfall and PET at the catchment level. First, we simulate gs as 

a nonlinear function of environmental variables by extracting data from four eddy covariance 

flux tower sites with different vegetation types. For this purpose, the mixed generalised additive 

model (MGAM) is used as a machine learning model to establish a relationship between gs and 

environmental variables. Then, the modified PET model including gs (PETMGAM) is compared 

with the traditional PETPM model at two levels: by comparing PETMGAM and PETPM by eddy 

covariance AET from flux towers, and by comparing the accuracy of runoff simulation driven 

by PETMGAM and PETPM. In addition, to understand the importance of CO2 and climate variable 

effects on runoff simulation, the PETMGAM containing the effects of multiple environmental 

variables on gs, is compared with PETMGAM [CO2], which only considers the CO2 effect on gs. 

The performance of different PET models is then compared for dry, wet, and extreme wet 

climate conditions. Finally, the Shapley Additive exPlanations (SHAP) analysis is used to 

determine the key environmental variables that control PET for these different climate 

conditions to interpret the performance of PET models in runoff simulations. 
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4.4 Data and methodology  

4.4.1 Forcing data  

Surface flux measurements and historical meteorological data were utilised as the input 

variables to simulate gs and PET. Eddy covariance flux tower data was used for latent heat flux 

(LE), soil heat flux (G), sensible heat flux (H), CO2, R, VPD, TA, and SWC. Four Ameriflux 

sites in the United States of America were selected with different biomes, including deciduous 

broad-leaf forest (DBF), evergreen needle-leaf forest (ENF), and crop (CRO) (Table 1 and 

Figure 1). Data from the gauge stations provided daily precipitation (Pr) and runoff (Q) for 

each catchment of the Ameriflux sites (Newman et al., 2014).   

 

Figure 6. Locations of four flux tower sites and gauging stations with different vegetation types, 

including crop (CRO), deciduous broad-leaf forest (DBF), and evergreen needle-leaf forest (ENF). 
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Table 2. Locations and climate conditions of flux tower sites with different vegetation types: crop 

(CRO), deciduous broad-leaf forest (DBF), and evergreen needle-leaf forest (ENF). 

Site name-

Vegetation types-

Years  

Lat Long Elevation Annual 

TA (°C) 

Annual 

total 

Pr (mm) 

Annual 

total 

Q (mm) 

Gauging 

station name-

Area (km2) 

Flux tower 

references 

US-ARM (CRO) 

(2009-2014) 

36.6

0 

-97.48 314 14.7 752 95.8 Wellington 

(398.68) 

 (Raz-Yaseef et 

al., 2015) 

US-Moz (DBF)  

(2006-2014) 

38.7

4 

-92.20 219 12.1 935 271 Lamine River 

(1405.76) 

 (Wood et al., 

2018) 

US-Me2 (ENF) 

(2008-2014) 

44.4

5 

-121.55 1253 6.2 918 759 Sandy River 

(683.46) 

 (Kwon et al., 

2018) 

CA-TP3 (ENF) 

(2009-2014) 

42.7

0 

-80.34 184 8.0 904 617 French Creek 

(238.17) 

 (Arain et al., 

2022) 

 

4.4.2 Penman–Monteith PET (PETPM)  

The PETPM equation for reference crop is as Eq. 1 (Allen et al., 1998). 

PETPM = 
0.408Δ(R − G) +  γ

900
TA + 273 uVPD

Δ +  γ(1 + 0.34u)
 

(1) 

 

where, PETPM is reference evapotranspiration (mm day-1), Δ the slope of the saturation vapor 

pressure-temperature curve (kPa °C-1), R and G are net radiation and soil heat flux (MJ m-2 day-

1), VPD is vapour pressure deficit (kPa), γ is the psychometric constant (kPa °C-1), TA is air 

temperature (°C), and u is wind speed (m s-1).  

In previous studies, PETPM was modified by adding gs in Eq. 1 using 0.34u =  
ga

gs
; where gs and 

ga are canopy stomatal conductance and aerodynamic conductance (m s-1), respectively. The gs 

value can be estimated by latent heat flux (LE) from flux tower data through inversion of the 

original Penman-monteith model as Eq. 2 to Eq. 4.  

LE =  
Δ(R − G) +  ρCpgaVPD

Δ +  γ(1 + 
ga
gs
)

 
(2) 

 

gs = 
gaγ

Δ(R − G) +  ρCpgaVPD
LE − (Δ + γ)

 (3) 

where, LE is latent heat flux (Wm-2), ρ is air density (kg m-3), Cp is specific heat capacity of 

dry air (J kg-1 °C-1), R and G are in Wm-2 gs and ga are canopy and aerodynamic conductance 

(m s-1).  

The aerodynamic conductance is defined as (Thom, 1972), 
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ga = 
k2 × u

[1n (
z − d
zm

) ln (
z − d
zh

)]
 

(4) 

where, z is measurement height (m), u is in m s-1, k = 0.41 is von Karman’s constant, d =

0.67 × h is displacement height, h is canopy height (m), zm = 0.123 × h is the roughness 

length for momentum transfer, and zh = 0.0123 × h is the roughness length for heat and 

vapour transfer.  

4.4.3 MGAM model for modified PET simulation (PETMGAM) 

We used the MGAM model to train and simulate gs using environmental variables from 

available flux tower data. The training process for MGAM requires gs values, which were 

obtained from Eq. 2 to Eq. 4. A nonlinear function of MGAM was then used to demonstrate 

the relationship between covariates and outcomes (Eq. 5).  

f(x) =  ∑βkbk(x)

K

k=1

 

 

(5) 

where, f(x) is a smoother function, bk are basis functions, βk are corresponding coefficients, 

and K is referred to as basis size or basis complexity. The coefficients of the basis functions 

were optimised to ensure the appropriate complexity of the models (Wood et al., 2016). The 

f(x) smoother function was selected as a smooth function (S) to represent nonlinearity of 

variables directly, or as a tensor function (ti) to represent the interaction between variables. The 

structure of gs simulation in MGAM can be described as Eq. 6. 

gs = ∑ f(xm)

M

m=1

 

(6) 

where, M are the effective environmental variables of gs. Each of the effective variables has a 

smoother function f(x) (Eq. 5), which contains basis functions with relevant coefficients. 

Therefore, by replacing the effective environmental variables, the gs function can be 

represented as in Eq. 7. 



139 

 

gs =  f( VPD, CO2, TA, SWC, R) =

{  
S(VPD) + S(CO2) + S(TA) + S(SWC) + S(R) + ti ( VPD, CO2, SWC)                      for CRO

 
S(VPD) + S(CO2) + S(TA) + S(SWC) + S(R) + ti (VPD, CO2, TA)          for DBF and ENF

  

(7

) 

The modified reference crop PET equation was obtained by replacing the gs as a function of 

environmental variables into Eq. 1, which can be described as Eq. 8.  

PETMGAM = 
0.408Δ(R − G) +  γ

900
TA + 273 uVPD

Δ +  γ(1 +
ga

g
s
=  f( VPD, CO2, TA, SWC, R)

)
 

(8) 

 

PETMGAM [CO2] follows the same form as Eq. 8, except that gs is only a function of CO2.  

MGAM was validated by splitting 70% of the data for training the model and the remaining 

30% for testing the model, using 10-fold cross-validation technique for training. The ‘nls’, 

‘mgcv’ and ‘caret’ packages in R (Baty et al., 2015; Wood et al., 2016) were used for gs 

simulation by MGAM and cross-validation in this study. 

4.4.4 SHAP analysis  

SHAP analysis is based on cooperative game theory to interpret model simulation (Lundberg 

et al., 2020; Lundberg & Lee, 2017; Mardian et al., 2023). The SHAP value shows the 

contribution of each variable or predictor to the model simulation and explains the effect of the 

high and low values of each variable on the simulated value (Shi et al., 2023). The SHAP value 

defines the average marginal contribution of each variable across all coalitions to which the 

variable belongs (Lee et al., 2023). The SHAP value is calculated by Eq. 9. 

φi(f, x) =∑[
|s|! (M − |s| − 1)!

M!
]

s⊆x

× [fx(s) − fx(s ∖ i)] 
(9) 

where, φ is the SHAP value for variable i = [1,M] and M is the number of variables, f is the 

simulation model, x is sample observation for specific ith variable, s is the subset of possible 

coalitions of variables. The first bracket of the equation refers to the weighting for each subset 

of coalitions, and the second bracket refers to the marginal contribution of ith variable, which 

is the difference between the f model with and without ith variable, which is fx(s) and fx(s ∖ i), 
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respectively. The higher the SHAP value of each variable, the greater the impact of the variable 

on the simulation output (Shi et al., 2023). In this study, the SHAP method shows the 

contribution of each of the environmental variables VPD, R, TA, CO2, and SWC for PETMGAM 

simulation at different climate conditions (dry and wet). The SHAP value of each 

environmental variable enhances the interpretability of the PET and runoff simulation for 

different climate conditions. The XGBoost, one of the common machine learning models for 

SHAP analysis, was used through the ‘shapviz’ and ‘xgboost’ packages in R (Chen et al., 2023; 

Mayer, 2023).  

4.4.5 Runoff simulation model 

We used the daily conceptual rainfall-runoff model GR4J. GR4J is based on a soil moisture 

store and uses a continuous relationship between moisture level in the soil store and runoff 

production (De la Fuente et al., 2023; Perrin et al., 2003; Sinha et al., 2022). The GR4J input 

variables are Pr, PET, and TA. Each day is considered as dry when Pr is less than PET or wet 

when Pr exceeds PET. Runoff routing is determined using a unit hydrograph (Guo et al., 2020; 

Perrin et al., 2003). On wet days, the proportion of net Pr (Pr minus PET) is added to the soil 

moisture store and the remaining effective rainfall contributes to runoff production (Santos et 

al., 2018). The percolation (or infiltration) leakage and effective rainfall go to the routing store 

where they are split into two parts routed by two-unit hydrographs. After applying 

groundwater-surface water exchanging function, the total runoff is simulated by adding these 

two parts (Wang & Solomatine, 2019). GR4J has four calibration parameters: maximum 

capacity of the production store (mm), groundwater exchange coefficient (mm), one day ahead 

maximum capacity of the routing store (mm), and time base of the unit hydrograph (days) 

(Delaigue et al., 2023; Wang & Solomatine, 2019). For calibration processes, the observed 

runoff was required as input to the GR4J model. The GR4J model in this study was run with 

the ‘airGR’ package in R (Coron et al., 2023; Coron et al., 2017).  

The GR4J runoff simulation in this study was used to measure the changes in runoff simulation 

accuracy when the traditional PET equation was modified by adding the role of gs. The climate 

information for four flux tower sites with CRO, ENF, and DBF vegetation was used to train 

MGAM to simulate gs as a function of the environmental variables and added gs into the PET 

equation (PETMGAM). Then the runoff simulated by GR4J with PETMGAM was compared with 

the runoff simulated by GR4J with PETPM. In addition, PETMGAM [CO2], which contains gs only 

as a function of CO2 was added to this comparison. Model performance was compared for the 
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different climate conditions based on the ratio of Pr/PET: Pr/PET<1 was considered dry, 

Pr/PET>1 was considered wet, and the top 5% of the Pr/PET ratio was considered extremely 

wet. The runoff simulation accuracy with different forms of PET showed the role of gs as a 

function of the effective environmental variables in PET estimation at different climate 

conditions (Fig. 2). Validation of the MGAM and GR4J models was performed with 10-fold 

cross-validation and time series cross-validation, respectively. 

 

Figure 2 The climate information of crop (CRO), evergreen needleleaf (ENF), and deciduous broadleaf (DBF) 

vegetation was used to train MGAM to simulate gs as a function of the environmental variables and added gs into 

the potential evapotranspiration (PET) equation (PETMGAM). Then the runoff simulated by GR4J with PETMGAM 

was compared with the runoff simulated by GR4J with PETPM. In addition, PETMGAM [CO2], which contains gs only 

as a function of CO2 was added to this comparison. Model performance was compared for the different climate 

conditions based on the ratio of Pr/PET: Pr/PET<1 was considered dry, Pr/PET>1 was considered wet, and the 

top 5% of the Pr/PET ratio was considered extremely wet. The runoff simulation accuracy with different forms 

of PET showed the role of gs as a function of the effective environmental variables in PET estimation at different 

climate conditions. Validation of the MGAM and GR4J models was performed with 10-fold cross-validation and 

time series cross-validation, respectively.   

4.5 Results 

MGAM with gs simulation resulted in a Nash–Sutcliffe efficiency (NSE) value greater than 

50% for all flux tower sites (Table S1). The GR4J model performance was evaluated by training 

and testing processes for different PET inputs as traditional PET (PETPM) and the modified 
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PET via adding gs (PETMGAM) (Table S2). The result of the GR4J simulation showed an 

acceptable performance (NSE higher than 50% for the test and train dataset) of this model. To 

further investigate PETMGAM and PETPM simulations, the time series results of simulated 

PETMGAM and PETPM were compared with observed AET from eddy covariance measurements 

at four flux tower sites (Fig. S1). The time series data for four sites showed higher NSE and 

Kling–Gupta efficiency (KGE) values for the simulated PETMGAM in comparison to PETPM. 

Furthermore, simulated PETPM was overestimated compared with simulated PETMGAM and 

observed AET. As PET plays a greater role in wet conditions (when Pr/PET > 1), the PETMGAM 

was compared to the PETPM in this situation (Fig. 3a-3d). The results showed that PETPM was 

substantially overestimated in comparison to PETMGAM and the observed AET. PETMGAM 

performs better in PET simulation than PETPM under wet conditions (Fig. 3).  
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Figure 3 Simulated PETPM and PETMGAM for wet and extreme wet conditions (Pr/PET>1) for four flux tower sites, 

a) US-MOZ, b) CA-TP3, c) US-Me2, and d) US-ARM. 

 

Based on the results of runoff simulation, it was evident that choosing different PET values 

resulted in notable differences in runoff simulation accuracy (Fig. 4). The accuracy of runoff 

simulation was evaluated under dry, wet, and extreme wet conditions separately (Fig. 4a-4d). 

Across all sites, PETMGAM supported a higher accuracy runoff simulation for extreme wet 

conditions. However, there were marginal differences between dry and wet runoff simulation 

accuracy (NSE and KGE values). The comparison of runoff simulation with PETMGAM and 

PETPM for extreme wet conditions showed that PETPM scenario underestimated the overall 

runoff across all sites in comparison with the PETMGAM runoff simulation scenario (Fig. 5a-

5d).  
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Figure 4 Simulated runoff for dry, wet, and extreme wet conditions by using two PET formulations: (1) PETMGAM and (2) PETPM, for four flux tower sites: a) US-MOZ, b) CA-TP3, c) US-Me2, 

and d) US-ARM. 
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Figure 5 Simulated runoff using PETPM and PETMGAM for extreme wet conditions for four flux tower 

sites, a) US-MOZ, b) CA-TP3, c) US-Me2, and d) US-ARM. 

The results of simulated runoff by adding gs as a function of only CO2 into the PET 

equation (PETMGAM [CO2]) showed an acceptable performance of this model for wet 

conditions, but failure in dry conditions (Table S3 and Fig. S2). However, PETMGAM 

showed better results than PETMGAM [CO2] in all climate conditions.  

The role of CO2 and environmental variables on PETMGAM for dry, and wet conditions 

were investigated in more detail by The SHAP analysis (Fig. 6). The data for extreme wet 

condition is also included in wet conditions. The SHAP value showed the changes in 

average PETMGAM values forced by each environmental variable (x-axis). The mean 

absolute of SHAP values for each variable show the contribution of the variable in the 

PETMGAM simulation (y-axis). The gradient colour (feature value) shows low and high 
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value of each variable. To focus on the variables that have higher impacts on PETMGAM 

simulation, all variables are sorted based on the maximum absolute value of their SHAP 

values. In all four sites, the SHAP value for each environmental variable (y-axis) showed 

that R contributed most to PETMGAM (Fig. 6a-6d). The gradient colour shows that R had 

an increasing effect on PETMGAM. However, CO2 and SWC, which were added indirectly 

into PETMGAM equation by the gs value, had completely different contributions for dry 

and wet conditions. PET simulation showed a stronger role for CO2 in wet conditions, 

whereas SWC played a stronger role in dry conditions. Among all four sites, the SWC 

had the greatest impact on the PETMGAM US-ARM site (with CRO vegetation type) in dry 

conditions (Fig. 6-d) Dry), while it had the least effect on PETMGAM at the US-MOZ site 

(covering with mature trees) (Fig. 6-a) Dry). 
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Figure 6 SHAP values to show the role of environmental variables in PETMGAM estimation for wet and dry conditions for four flux 

tower sites, a) US-MOZ, b) CA-TP3, c) US-Me2, and d) US-ARM. The data for extreme wet condition is also included in wet 

conditions. 

 

 



148 

 

4.6 Discussion 

The importance of gs in PET estimation has been demonstrated in several studies (Bai et 

al., 2020; Ban & Lettenmaier, 2022; Milly & Dunne, 2017; Vremec et al., 2023). By 

ignoring gs in the PETPM equation, PETPM estimation is rendered inaccurate (Liu et al., 

2023; Peiris & Döll, 2023; Swann et al., 2016; Zhang et al., 2022). Analysis of climate 

model outputs from anthropogenic climate change experiments indicates that different 

versions of the PET equation, such as PETPM for reference crops and PET for open water 

surface, overestimate PET significantly (Liu et al., 2023; Milly & Dunne, 2017; Zhang et 

al., 2023). As a result of the PET overestimation, runoff simulation also presented an 

underestimation of runoff, especially in regions with high precipitation and where the 

climate models showed increased runoff (Milly & Dunne, 2016; Milly & Dunne, 2017; 

Zhou et al., 2023). Runoff is significantly underestimated in wet conditions in the above 

studies, since runoff is more sensitive to PET in these conditions (Chen & Wang, 2022; 

Roderick et al., 2014; Yang et al., 2019). The results of this study support the 

overestimation of PET by PETPM at four flux tower sites with different vegetation types. 

The higher NSE and KGE values between observed AET and simulated PETMGAM present 

a better estimation of PETMGAM than PETPM (Fig. 3 and Fig. S1). In addition, the 

simulated PETMGAM in this study shows better results than PETPM in GR4J runoff 

simulation, especially for extreme wet conditions, when the role of PET is more 

significant for runoff fluctuation (Fig. 4). Runoff simulation was underestimated when 

PETPM was used compared to when PETMGAM was used for all four flux tower sites (Fig. 

5).  

Other studies have also investigated the modification of PETPM (Ballarin et al., 2023; 

Yang et al., 2019; Zhang et al., 2023). Adding gs as a function of CO2 in the PETPM 

equation has been shown to improve the runoff simulation at a global scale (Zhou et al., 

2023). In the above studies, the gs values in climate model outputs were obtained by 

inverting the PETPM with climate model outputs of AET. However, they have used a 

linear function of CO2-gs for all vegetation types at global scales, and their findings are 

based on ensemble climate model CMIP5 outputs. The generalisation of the linear CO2-

gs equation to real-world data remains an open question for future investigations (Yang 

et al., 2019). Global climate models’ analysis needs careful investigation due to the coarse 

spatial resolution and imperfect physical parameterisations; even the spatial downscaling 

of these models may seriously increase inconsistencies in their information content (Milly 
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& Dunne, 2016; Milly & Dunne, 2017). Therefore, in this study, we extracted the gs value 

from AET obtained by flux tower data, which reflects real-world conditions. In addition, 

we used gs simulated as a nonlinear function of various environmental variables such as 

VPD, TA, SWC, and Ra, rather than CO2, which enables a simulated gs suitable for all 

climate conditions. 

Despite GR4J fed with PETMGAM showing satisfactory results in runoff simulations, we 

performed another investigation using PETMGAM [CO2] to analyse the role of CO2 effects 

on gs separately. While the runoff simulation fed by PETMGAM [CO2] provided acceptable 

results for wet and extremely wet conditions, the results for dry conditions notably 

degraded. GR4J with PETMGAM [CO2] failed to predict runoff under dry conditions, 

possibly because other environmental variables play an important role in gs fluctuation 

under such conditions. For instance, the decreasing effects of elevated CO2 on gs and PET 

are partially offset by the increasing effects of elevated TA on gs and PET (Bass et al., 

2023; Yang et al., 2019). In addition, lower SWC contributed to the reduction in gs and 

PET, especially in warm and dry conditions (Zhou et al., 2023).  

The SHAP values provided additional justification for the function of these 

environmental variables in PET fluctuation at wet and dry conditions separately. The 

higher SHAP value presents the higher effects of variables on PET fluctuations. The 

SHAP value for CO2 and SWC, which are introduced in the PET equation by adding gs, 

present notable contributions for dry and wet conditions. The SHAP analysis shows the 

considerable role of CO2 rather than SWC in wet conditions. Therefore, considering only 

CO2-gs for runoff simulation results in acceptable outcomes for wet conditions. In 

contrast, SWC's role in PET simulation is highlighted in dry conditions; hence, neglecting 

SWC in the PETMGAM [CO2] equation degraded the runoff simulation accuracy in dry 

conditions. The marginal degradation of NSE and KGE in runoff simulation with 

PETMGAM [CO2] in comparison to PETMGAM for the US-Moz site (contains mature trees 

with an average of 130 years old) for dry conditions was justified by the negligible SHAP 

value of SWC for this site. While the notable decrease of NSE and KGE in runoff 

simulation with PETMGAM [CO2] for US-ARM was due to the considerable role of SWC for 

dry conditions at this site. More information about the negligible role of SWC for mature 

trees against its highlighted role for CRO is discussed in our previous study (Chitsaz et 

al., 2024). 
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The GR4J model is a common surface water hydrological model owing to its ease of use, 

the computational speed that facilitates exploring sensitivity and uncertainty to climate 

variability as well as reasonable performance in the absence of change (Partington et al., 

2022; Razavi et al., 2021; Renard et al., 2010). However, like any other conceptual model, 

GR4J has some limitations in its ability to capture and represent long-term hydrological 

changes, such as variation in topography, soil porosities, and geomorphology (Fowler et 

al., 2020; Peel & McMahon, 2020). The physically-based models, on the other hand can 

overcome these limitations, but they have a significant cost associated with model 

development due to field observations, data preparation and extensive parameter 

calibrations which cause over‐parameterisation problems (Camporese et al., 2015). 

Therefore, physically-based models do not provide a reliable and practical basis for 

representing environmental changes across a wide range of climate scenarios and 

locations (Thyer et al., 2024).  

The ML algorithms are robust in dynamic environments since they adapt to changes in 

data distribution over time and have the potential to yield more promising results, 

however, they are not easy to interpret. Therefore, a combined physically-based model 

with ML algorithms as ‘Hybrid’ models to preserve the advantages of physically-based 

models may allow for capturing complex hydrological processes while leveraging the 

data-driven capabilities of ML models. This approach can incorporate domain knowledge 

from existing data and physical constraints, particularly useful when facing hydrological 

changes.  

4.7 Conclusion 

A reliable estimate of changes in runoff is essential to mitigate the adverse consequences 

of hydroclimatic variables such as drought and flooding. However, most hydrological 

models underestimate extreme runoff due to the inaccurate PET simulation. The result of 

this study shows that incorporating the vegetation response to environmental variables 

into the PET equation can improve runoff simulation results. The PETMGAM proposed in 

this study is a modified PET that incorporates the vegetation response to VPD, TA, Ra, 

CO2, and SWC by adding gs into the traditional PETPM. This new approach presents more 

reliable results in PET simulations that lead to higher NSE and KGE values in runoff 

simulation, especially in wet conditions where PET plays a greater role in runoff 

fluctuations. The sensitivity of PET to each environmental variable highlights the 
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important role of CO2 and SWC in runoff estimation at wet and dry conditions, 

respectively.  
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Supplementary information  

 

Table S3 The NSE values of train and test for MGAM in gs simulation for four flux tower sites 

Site name Train Test 

US-Moz 0.68 0.66 

CA-TP3 0.55 0.50 

US-Me2 0.66 0.65 

US-ARM 0.52 0.50 

 

 

Table S2 The NSE (and KGE) values of train and test for GR4J model in runoff simulation for PETMGAM 

and PETPM as input to the model for four flux tower sites 

Site name PETMGAM PETPM 

 Train Test Train Test 

US-Moz 0.77 (0.79) 0.75 (0.76) 0.76 (0.77) 0.73 (0.75) 

CA-TP3 0.66 (0.72) 0.65 (0.70) 0.68 (0.73) 0.65 (0.69) 

US-Me2 0.80 (0.87) 0.74 (0.84) 0.76 (0.80) 0.71 (0.78) 

US-ARM 0.65 (0.62) 0.64 (0.61) 0.68 (0.60) 0.64 (0.62) 
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Figure S1 Observed AET and simulated PETPM and PETMGAM for timeseries for four flux tower sites, a) US-MOZ, b) CA-TP3, c) US-

Me2, d) US-ARM.   
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Table S3 The NSE and (KGE) values of train and test for GR4J model in runoff simulation for PETMGAM 

[CO2] as input to the model for four flux tower sites 

Site name Train Test 

US-Moz 0.79 (0.80) 0.77 (0.78) 

CA-TP3 0.63 (0.70) 0.61 (0.67) 

US-Me2 0.68 (0.78) 0.64 (0.75) 

US-ARM 0.66 (0.62) 0.64 (0.60) 
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Figure S2 Simulated runoff for dry, wet, and extreme wet conditions by PETMGAM [CO2] for four flux tower 

sites: a) US-MOZ, b) CA-TP3, c) US-Me2, and d) US-ARM. 
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5.1  Conclusion 

This research work had two aims. First, it aimed to improve gs simulation using a 

nonlinear ML model to achieve realistic results by investigating the interactive effects of 

environmental variables on various vegetation types. The second overall aim of this study 

was to incorporate gs into modified PET equation to enhance runoff simulation.  

For the first aim, we utilised mixed generalized additive models (MGAM) as a nonlinear 

ML model in gs simulation to allow the direct and interactive effects between 

environmental variables. The results of NSE showed that MGAM approach improved gs 

simulations compared to conventional models such as empirical and semi-empirical 

simulation models. Additionally, global sensitivity analysis indicated lower uncertainty 

in MGAM gs simulation compared to conventional models (addressed in Chapter 2). 

Generalising MGAM across different vegetation types highlighted the importance of key 

environmental variables in gs simulation. The MGAM gs simulation results showed that 

the interactive effects of CO2, VPD, and SWC were important for crops and grasses, while 

the interactive effects of CO2, VPD, and TA were highlighted for trees and grasses 

(addressed in Chapter 3).  

For the second aim, we incorporated MGAM gs simulation into PET equations; and the 

modified PET showed higher NSE than the conventional Penman-Monteith PET 

equation. The modified PET equation improved runoff simulation for different climate 

and vegetation types. This modification underscored the importance of vegetation's role 

in hydrological processes (addressed in Chapter 4). MGAM's definition of interactive 

effects of environmental variables can better elucidate the dominant factors influencing 

PET and runoff changes, which is of significant value for water resource management 

and decision-makers. 
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5.2 Outlook  

Our research has focused on enhancing the accuracy of evaporation and runoff 

simulations by integrating CO2 and environmental variables into stomatal conductance 

models using machine learning (ML) and non-linear statistical models. In future, 

hydrological modelling undergo significant advancements driven by several emerging 

trends and technological developments (Yang et al., 2021). High-resolution remote 

sensing data and advanced big data analytics will provide detailed spatial and temporal 

information, enhancing model precision and enabling real-time monitoring and prediction 

of hydrological events ("Farmer First:Shifting Paradigms in Agricultural Technology 

Development," 2011). Additionally, the ability of ML algorithms to handle complex, non-

linear relationships and large datasets will make them inevitable tools for simulating 

hydrological processes under changing environmental conditions (Kalu et al., 2022; Zhu 

et al., 2022). AI-driven models will offer more accurate predictions of extreme weather 

events, such as floods and droughts, and better insights into the impacts of climate change 

on hydrological cycles (Latif & Ahmed, 2023). 

The future will also see the widespread adoption of hybrid models that combine the 

strengths of conceptual, physically-based, and ML models (Zhao et al., 2019). These 

hybrid approaches will leverage the data-driven capabilities of ML while incorporating 

physical constraints and domain knowledge from traditional hydrological models 

(Reichstein et al., 2019). This will enable more comprehensive and reliable simulations 

of hydrological processes, particularly in diverse and dynamic environments (Koppa et 

al., 2022). Furthermore, the incorporation of CO2 and other environmental variables into 

standard modelling practices will improve the accuracy of evapotranspiration and runoff 

simulations, accounting for the effects of changing vegetation cover and atmospheric 

conditions on hydrological cycles (Yang et al., 2019; Zhang et al., 2021). 
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Our research significantly contributes to these future trends. By incorporating CO2 and 

environmental variables into stomatal conductance models, we have improved the 

accuracy of evaporation and runoff simulations, laying the groundwork for more precise 

and dynamic hydrological models. The integration of ML and non-linear statistical 

models in our research demonstrates their potential to handle complex interactions and 

non-linearities in hydrological processes, providing a robust framework for future 

modelling efforts. Our proposed hybrid modelling framework combines the strengths of 

physically-based and ML models, addressing the limitations of each approach and 

offering a pathway for future models to effectively simulate internal catchment processes 

and environmental changes across a wide range of scenarios and locations. 

The advancements made through this research position hydrological modelling to become 

more accurate, adaptive, and useful for addressing future environmental challenges. The 

improved accuracy and reliability of our models will support better decision-making in 

water resource management, climate change adaptation, and disaster risk reduction. Our 

work underscores the importance of long-term investigations into how natural and 

anthropogenic changes affect hydrological cycles, providing valuable insights for 

policymakers and water resource managers in developing strategies for sustainable water 

management and climate resilience. 
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