
Rezka Bunaiya Prayudha

AddInsight-Vision

An Intelligent Video System for Object

Detection in Traffic Scenes and Vehicle

Re-Identification

Thesis submitted for the degree of Master of Engineering

Master of Engineering (Electronics)

College of Science and Engineering

Academic Supervisor: Dr. Nasser Asgari
Industrial Supervisor: Dr. Chong Liaw

2021

I, Rezka Bunaiya Prayudha, certify that this thesis does not incorporate without

acknowledgment any material previously submitted for a degree or diploma in

any university and, to the best of my knowledge and belief, does not contain

any material previously published or written by another person except where

due reference is made in the text.

I want to thank Nasser, Chong, and all the staff from the College of Science and

Engineering Flinders University and SAGE Automation for their tremendous

help during this project development. I also want to thank the Australia Awards

Scholarship for letting me pursue my master’s program here at Flinders.

To Mom, Miranda, my family and colleague.. I’ll spend the rest of my years

trying to figure out how to thank you

Executive Summary

This thesis project involved the development of the AddInsight-Vision - an

intelligent video system designed to extract information from traffic scenes which

is part of SAGE Automation’s Intelligent Transport System. The primary aim

of the project was to design and develop such a stream-processing pipeline which

functioned to detect traffic objects, including vehicle and pedestrian accurately

and send the information to the management system for further analysis.

The initial stage of AddInsight-Vision development covered the state-of-art

analysis and determining evaluation metrics—the state-of-art analysis including

proposed hardware requirements, tools and software framework. This project

used Average Precision (AP) and Cumulative Matching Characteristic (CMC)

to evaluate AddInsight-Vision.

Following the development of AddInsight-Vision, the stream processing

pipeline was constructed and tested. Early testing result explicitly showed

that AddInsight-Vision were not able to detect object such as bus and pedestrian

in certain conditions such as night times.

After initial testing, AddInsight-Vision was modified to improve object

detection accuracy and overall performance. The object detection and vehicle

re-identification were models re-trained using transfer learning based on DPTI

and Ve-RI datasets.

In the final evaluation, the average precision of object detection model

achieved over 90% for car and bus detection while maintaining high Frame Rate

per Second (FPS). In addition, the CMC result of vehicle re-identification model

achieved second-best in contrast with other baselines with a similar task. As

such, the overall performance of AddInsight-Vision during testing and evaluation

shows the project development was successful.

ii

Contents

Executive Summary ii

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Research Objectives and Contribution 2

1.2 Outline . 3

2 Literature Review 4

2.1 Background Knowledge . 4

2.2 Related Works . 13

3 System Design 17

3.1 Stream Processing Architecture of AddInsight-Vision . . . 18

3.2 AddInsight-Vision Edge Computing Infrastructure 20

3.3 AddInsight-Vision Object Detection Model 22

3.4 AddInsight-Vision Vehicle Re-Identification Model 32

4 System Evaluation 38

4.1 AddInsight-Vision System Integration 38

4.2 Object Detection Transfer Learning 42

4.3 Vehicle Re-Identification Transfer Learning 44

4.4 System Evaluation . 45

4.5 AddInsight-Vision Edge Infrastructure Deployment 50

iii

Contents

5 Conclusion and Future Works 51

5.1 Research Findings and Outcomes 51

5.2 Study Limitation . 52

5.3 Future Works . 52

Bibliography 54

iv

List of Figures

3.1 AddInsight-Vision Development Framework 17

3.2 AddInsight-Vision Pipeline . 19

3.3 Jetson AGX Xavier . 21

3.4 Convolutional Neural Network 22

3.5 DetectNet V2 . 25

3.6 RetinaNet . 26

3.7 Baseline of RetinaNet . 27

3.8 Dataset Curation . 27

3.9 CVAT Annotation Tool . 28

3.10 Transfer Learning Process . 30

3.11 Transfer Learning Strategy . 30

3.12 Four-quadrant Model of Transfer Learning Strategy 31

3.13 Ve-Ri Dataset . 33

3.14 Vehicle Re-Identification (Re-ID) 33

3.15 Triple-Loss Process . 35

3.16 Joint Loss Function of Vehicle Re-ID 37

4.1 Deepstream Pipeline Structure 39

4.2 AddInsight-Vision Initial Result (Daylight Situation) 41

4.3 AddInsight-Vision Initial Result (Night Situation) 41

4.4 IoU Illustration . 45

4.5 MaP Result of East-08.00 Data 46

4.6 MaP Result of West-08.00 Data 47

4.7 MaP Result of East-19.00 Data 47

4.8 MaP Result of West-19.00 Data 48

v

List of Figures

4.9 Result of AddInsight-Vision’s Object Detection Model after

Transfer Learning . 48

4.10 CMC Result . 49

vi

List of Tables

3.1 Hardware Specification of Jetson AGX Xavier 21

3.2 Jetson AGX Xavier Edge Infrastructure 21

3.3 ResNet-18 Architecture . 24

3.4 KITTI Dataset Directory Structure 29

3.5 ResNet-50 Architecture . 34

4.1 AddInsight-Vision Model Testing Check-List 42

4.2 DPTI Dataset . 42

4.3 DPTI Dataset Ground-truth Label 44

4.4 Object Detection Transfer Learning Configuration 44

4.5 Vehicle Re-ID Transfer Learning Configuration 45

4.6 FPS Result of Four Different Object Detectors 50

vii

Chapter 1

Introduction

In recent years, sensor technologies for Intelligent Transportation System (ITS)

has developed massively and widely used in many applications such as traffic

analysis, incident detection, and transportation model that will be useful for

simulate policy and infrastructure investment (Ibrahim et al, 2020). McGowen

and Sanderson (2011) explain that typically ITS are equipped with sensors such

as cameras or pneumatic tubes to capture traffic information and a computing

device for analyzing captured data.

SAGE Automation is one of the leading ITS companies in South Australia,

utilizing the AddInsight system to provide traffic analytics information such

as travel time and the number of the pedestrian. Sensor technologies used in

the AddInsight system is an Edge device capable of capturing Bluetooth and

WiFi data from the On-Board Unit (OBU) installed on a vehicle or carried by a

pedestrian. The Edge device is placed near the roadside, making it able to obtain

the data from passing cars or pedestrians. The captured data is then transmitted

to the SAGE Automation analytics dashboard for further analysis. However, the

current AddInsight system requires the user to have installed Bluetooth-based

OBU device to be detected by the Edge device. Also, reference data is needed

to be compared with the data from the Edge device.

In this project, the proposed solution to improve SAGE AddInsight is an

Intelligent Video System (IVS). IVS creates an analytics system that uses the

camera as the sensing device and computer vision to process the data. The

camera is used to monitor the traffic scene and extract real-time information.

The camera data then processed using computer vision to obtain a vehicle and

other traffic object features and spatial data. By implementing IVS in Intelligent

Traffic System, the traffic parameters such as density and traffic flow could be

1

Research Objectives and Contribution

estimated accurately.

1.1 Research Objectives and Contribution

This project aims to develop an end-to-end IVS pipeline that could perform

specific tasks, i.e., capture video streams from the camera, process the data to

obtain the traffic information using an object detection model, visualize and

display the results, and gather the metrics. IVS pipeline is equipped with object

detection models based on the Convolutional Neural Network to increase the

accuracy of traffic-analytics. The object detection system is trained using transfer

learning to enable the specific traffic data approach and reduce the detection

error. The transfer learning process of object detection includes training using

several pre-trained on the dataset based on the South Australia Department of

Planning, Transport, and Infrastructure traffic scene videos. This project also

investigates the vehicle re-identification system development by implementing an

improved loss function to increase the metrics result. Furthermore, the following

contributions were made during this thesis project development.

• Create an effective computer vision testing suite, which includes model

evaluation and model testing.

• Create an end-to-end Intelligent Video System that can capture the traffic

information and integrate with the AddInsight system and achieved well-

performing Frame Per Second (FPS).

• Perform dataset curation.

• Identifying transfer learning and evaluation of object detection algorithms,

namely, DetectNet, Faster RCNN, Retinanet, and Single Shot Detector

(SSD).

• Detail performance analysis of the vehicle re-identification model by

considering the implementation of the improved loss function.

2

Outline

1.2 Outline

The rest of the thesis is organised as follows:

Chapter 2 present background knowledge and related works related to the

development of this project.

Chapter 3 describe the strategies to develop and implement the proposed

intelligent video system.

Chapter 4 demonstrates the implementation and evaluation of the intelligent

video system.

Chapter 5 concludes this thesis and suggest some of the future works for further

development.

3

Chapter 2

Literature Review

The literature review in this chapter commences with a background of Intelligent

Transportation System (ITS) and the supporting component of ITS such as

intelligent video system and deep learning. This chapter then proceeds to evaluate

related works on streaming pipeline architecture including object detection,

tracking and re-identification, with a focus to gaining insights from traffic scenes.

2.1 Background Knowledge

This section covers background knowledge of Intelligent Traffic System (ITS)

components, including the management of ITS, the sensor technologies used in

the ITS, and the implementation of intelligent video support in the ITS.

2.1.1 Intelligent Transport System

Intelligent Transport Systems (ITS) are advanced networking, electronics,

navigation, and information processing technology designed to enhance the

performance of the current transport system. Singh and Gupta’s (2015) study

points out that several subsidiaries of Intelligent Transportation Systems are

commonly implemented around the world to solve traffic and transport problems.

The subsidiaries are Advanced Traveller Information System (ATIS), Advanced

Traffic Management System (ATMs), Advanced Public Transportation Systems

(APTS), and Emergency Management System (EMS). The Advanced Traveller

Information System (ATIS) implements a wide variety of technology, such as

mobile phones and the internet, or other traffic data sources to assist travelers

and drivers regarding the best available routes and accessible travel modes.

Ghavami’s (2020) study proposes the shortest path analysis method to determine

4

Background Knowledge

the best way of the multimodal transportation network based on the Geospatial

Information data. Another study related to ATIS implementation was proposed

by Adeleke et al. (2019), where they developed a web-based ATIS to provides

information on route guidance, city services in the Metropolis, Nigeria.

The second subsidiaries of ITS are ATMS, commonly used by law enforcement

agencies to manage traffic by tracking traffic flow and making necessary decisions

promptly, such as change measures of traffic signals to enhance traffic flow.

The tracking procedure of traffic flow could be channeled by integrating several

sensors to gather updated traffic information. Anand et al. (2020) proposed their

research on using Light Detection and Ranging (LiDAR) sensors to provide a

3-dimensional representation of traffic scene with the aims to improve traffic flow

and safety. The following subsidiaries of ITS are APTS and EMS, which are the

utilisations of ITS to increase public transportation’s operational efficiency, with

the latter more focused on providing help in emergency conditions. Furthermore,

from the above explanations, it is shown that the advances and integration in

sensor technologies areas create more opportunities for developing an intelligent

transportation system.

2.1.2 Sensor Technologies for Intelligent Transportation System

Guerrero-Ibañez et al. (2018) state that the performance of ITS depends heavily

on the platform used to access, capture, and reliable process data from the traffic

scenes. Sensor technologies are a critical component to collect the data in the

ITS system. The data are then presented to the transport management system

for further analysis and eventual actions. Barbagli et al. (2012) explain that

there are two categories of sensing platforms used to capture the traffic data

based on the location of installation, intrusive and non-intrusive. The invasive

sensor is a type of sensors installed on pavement surfaces. It has been widely

implemented and has high accuracy in capturing traffic data. However, the

major drawbacks are that intrusive sensors have high operation and maintenance

costs and may cause traffic disruption during the installation. Some examples

5

Background Knowledge

of invasive sensors are passive magnetic sensors, pneumatic tube sensors, and

inductive coils loops. These sensors are connected either wired or wireless to the

processing unit.

The second type of sensor technologies of ITS is non-intrusive sensors. A

non-intrusive sensor is a type of sensor mounted at various positions on the

roads other than above it. Some examples of non-intrusive sensors are camera,

infrared, Radio-frequency identification, and ultrasonic sensor. This sensor could

detect and classify vehicles across several lanes and measure vehicle speed and

traffic volume. However, the main disadvantage of a non-intrusive sensor is

they are highly affected by environmental conditions such as weather. Another

difficulty of non-intrusive sensors such as cameras is, they are susceptible to

reduced performance caused by low-light conditions. For example, detecting

vehicles using cameras in night situations might be difficult compare to daylight

situations. Therefore, because of the problems existing in using the camera as

sensor technology in ITS, one of the aims of this project will be to improve

camera utilization for object detection in night and daylight conditions.

2.1.3 Intelligent Video System

Further utilization of the camera as sensor technology in ITS is an intelligent

video system (IVS). IVS is the integration of numerous computer vision and

image recognition algorithms, which analyses the recognition of entity, action, and

behavior. Elliot (2010) states that an intelligent video system is an automation

system that utilizes the technology to perform actions based on live or stored

video image images, without human intervention. IVS application on intelligent

transportation systems uses cameras and sensors installed on the roads to monitor

traffic conditions.

There are some publications and researches in the intelligent video system

field dealing with developing a framework to provide an effective solution to

interpret real-time situations and detect various events. Lee et al. (2012)

proposed a framework that integrates several heterogeneous devices such as

6

Background Knowledge

cameras to handle different connection protocols and media encodings. Using a

centralized server and public network, this framework aims to tackle one of the

common problems in an intelligent video system: the lack of interoperability of

network cameras to be implemented on a large scale. However, cameras that

connected to public networks were vulnerable to a cyberthreat, thus applying

strict access to large scale IVS is a necessity. Lee et al. (2012) also explain that

the proposed framework implements the Kerberos protocol to secure captured

images from threat actors’ eavesdropping.

Another IVS framework proposed by Nazare Jr. and Schwartz (2016) called

Smart Surveillance Framework (SSF) aims to provide scalability and flexibility

of IVS. SSF provides tools that enable a user to create various projects, from

small scale to large scale applications. The tools include data representation,

network and communication control, parallel processing, and storage. From

the real-world implementation to recognized faces of people, Nazare Jr. and

Schwartz (2016) allow other research to contribute and evaluate the framework.

Furthermore, the intelligent video system must also able to identify several

events at certain times. Lim et al. (2014) present iSurveillance, a smart video

system framework that can obtain information in various regions-of-interest

(ROI) of a video scene. iSurveillance utilizes knowledge-based architecture to

increase the understanding of intricate patterns in the video scene—the presented

solution counter another intelligent video system that can only perform a singular

task. Also, Loredana Caruccio et al. (2019) published an IVS framework called

EDCAR or Elements and Descriptors of Context and Action Representations

to obtain information from video frame sequences. Similar to Lim et al. works,

EDCAR use context representation and context descriptor to define the structure

of actions and the order of events. Context representation is a method to represent

data in machine whereas context descriptor is a method to describe feature and

shape. Loredana Caruccio et al. (2019) further assert that EDCAR works by

reducing the complexity of events using context descriptors, provide reasoning

and information lost in the circumstances and make a conclusion based on

processed data.

7

Background Knowledge

2.1.4 Object Detection with Deep Learning

To gain a complete understanding of traffic scenes, one should focus on classifying

the different types of vehicles and trying to estimate the spatial information

of an object precisely—the task to determine where objects are located in a

scene or image known as object detection. As one of the fundamental computer

vision problems, object detection can supply useful knowledge for the semantic

interpretation of images and videos. Generally, object detection activities are

divided into three stages: informative region selection, feature extraction, and

classification. To obtain any information on an image, it is necessary to implement

a sliding window technique to scan the whole image. One of the general approach

of sliding window technique is scan the image a determined kernel with SxS

dimension. However, this technique’s major drawback is that it’s computationally

expensive since it has to produce a large number of candidate windows.

The second stage is to extract visual features, which can provide a semantic

representation of an object. There are several traditional methods to perform

features extractor. Lienhart and Maydt (2002) present their Haar-like features

object detection model. Lowe (2004) proposed the SIFT algorithm that

guarantees the extracted features have invariant features such as scaling, rotation,

and translation. Although the SIFT robust to light and noise, it faces complexity

problems and slow detection speed. The last stage of object detection activities

is a classification in which a model should distinguish a target object from all

other categories and render a target object more hierarchical, semantic, and

descriptive for visual recognition. Zhang (2017) described a Support Vector

Machine (SVM) used for classification and regression.

Freund and Schapire (1997), in their works, proposed AdaBoost. AdaBoost

presumed that total number of samples (n) in the training set are of the same

weight. For each training, the data is adjusted in the training set and increases

the wrong samples’ weight. The classifier will concentrate on the wrong samples.

After n training rounds, n weak classifiers are combined, and corresponding

weights are allocated according to each classifier’s output to form a solid classifier

8

Background Knowledge

with high accuracy and low error rate.

Furthermore, the attempt to perform object detection using conventional

methods ensures the extraction of rich and accurate features. However, the

extracted features from the conventional method are typically low level and

artificially selected. These methods cannot perform well on a large number

of multi-class objects. Advancing deep learning on object detection can offer

various degrees of detection performance enhancement and make real-time and

precise object detection more workable.

Deep learning is a sub-field of machine learning that attempts to learn a

hierarchy of features from input data. Deep learning algorithms can automatically

learn features at several levels, allowing the algorithm to learn complex mapping

functions directly from an input, without the aid of human-made features. One

of the deep learning algorithms used for object detection is Convolutional Neural

Network (CNN). Maried et al. (2017) emphasize that CNN is one of the most

efficient deep neural networks for image processing tasks.

Similar to the classic neural network, CNN consists of layers and neurons that

binding each layer together. Each layer of CNN is referred to as a feature map.

The feature map’s input layer is a 3D pixel intensity matrix for various color

channels, e.g., RGB or HSV. The feature map of any internal layer is an induced

multi-channel graphic, the ’pixel’ of which can be viewed as a particular feature.

Various forms of transformations can be done on feature maps, such as filtering

and pooling. Filtering or convolution is an operation in which the filter matrix is

based on the learned weights convolutes with the receptive neuron layer’s values.

The pooling process, such as max pooling, average pooling, L2-pooling, and local

contrast normalization, summarises the response of the receptive field in one

value to produce more robust representations of the functions.

The constructed feature hierarchy can be fine-tuned in a supervised manner

by adding several Fully Connected (FC) layers to adapt to different visual

tasks. Also, to get a specific conditional probability for each output neuron,

the final layer with different activation functions is added. Using the mean

square error or cross-entropy loss, a neural network can be optimized via the

9

Background Knowledge

Stochastic Gradient Descent (SGD) method. Simonyan and Zisserman (2015)

present their implementation of CNN for large-scale image recognition called

VGG16. VGG16 consists of thirteen convolutional layers, three fully connected

layers, three max-pooling layers, and using soft-max loss as a classification layer.

Convoluting 3*3 filter windows which is a dimension of filter array produce the

convolutional feature maps, and the feature map resolutions are reduced with

two stride max-pooling layers.

CNN is capable of extracting higher-level features and also perform sorting

and classification of features in the same model. Based on these capabilities,

CNN algorithms for object detection is divided into two types, classification

proposal (two-stages) and regression problem algorithm (single-stage). The first

one describing an object detection model to generates region proposals and

classifying each proposal into different object classes. The second type focus

on implement a unified object detection model to achieved final results directly.

Girshick et al. (2014) present their two-stages neural network for object detection

based on region proposal, called R-CNN. Instead of processing a huge number of

regions, R-CNN uses selective search to obtain only 2000 candidate regions and

AlexNet as a feature extractor to get the feature from the selected candidate

region (Krizhevsky et al., 2012). R-CNN uses multiple SVM methods in the

classification stage and fine-tunes the resulted in bounding boxes using linear

regression. Despite achieved 58.5% accuracy on the VOC2007 dataset, R-CNN

still performs slowly and requires 47 seconds to test each image. Thus R-CNN

cannot be implemented for real-time applications.

Girshick (2015) present an improved R-CNN model to overcome the

drawbacks of the previous R-CNN model, called Fast R-CNN. The aim of

Fast RCNN is to achieve a faster object detection algorithm. Using a slightly

different approach as its predecessor, Fast R-CNN could obtain shorter processing

time since convolution operation is done only once per image. The convolutional

layer is feed using an input image to produce feature maps. The feature maps

are then warped into squares and using an RoI pooling layer. The proposal

feature is then reshaped into a fixed size to be fed into the FC layer. Using the

10

Background Knowledge

SoftMax layer, the prediction for each class is produced based on the RoI feature

vector. The average accuracy of Fast R-CNN is 70%, with training speed is

nine times higher than R-CNN. However, Fast R-CNN is still using the Selective

Search method to select candidate regions. Since it requires many calculations,

when running on CPU, Fast R-CNN requires 2 seconds on average to obtain the

candidate region.

To solve the slow selection of Selective Search, Ren et al. (2016) proposed

Faster R-CNN. Instead of using Selective Search, Faster R-CNN embedding

another neural network to predict the candidate region. Using this approach,

Faster R-CNN only needs 10ms in the candidate region stage. However, despite

showing good performance on detection accuracy, two stages detector is still

challenging to meet real-time requirements. For example, Faster R-CNN only

reaches five fps on detection speed. Another type of object detection model

such as R-CNN and Faster R-CNN is proposed, which implements the regression

technique to input images directly.

A two-stage detector such as R-CNN and Faster R-CNN follow the idea of

implementing region proposal and classification. Hence, training two models

will increase training volume and affecting the speed of training and detection.

Redmon et al. (2016) proposed a You-Only-Look-Once (YOLO) algorithm to

implement a single-stage detector. YOLO divided input image into S x S cells or

smaller images, which each cell only responsible for detecting objects at the center

of the cell. The cell is then predicting bounding boxes, confidence, and the class

probability of an object. The bounding boxes having the class probability above

a threshold value are selected and used to locate the image’s object. YOLO could

achieve 45 fps in exchange for detection accuracy that achieved 63.4% accuracy

on COCO dataset compared to 73.2% of Faster R-CNN. The YOLO detector’s

drawback is that it struggles to detect small and unconventional objects within

the image. Over the years, several improvements had been made to improve the

YOLO detector, with the latest proposed by Bochkovskiy et al. (2020) called

YOLOv4.

In order to combine the high detection accuracy of Faster R-CNN and fast

11

Background Knowledge

detection speed of YOLO, Liu et al. (2016) present their method Single Shot

MultBox Detector (SSD). SSD uses high-level, and bottom-level feature maps to

perform regression using multi-scale regional features since the feature maps of

different layers have receptive fields of the corresponding sizes. The accuracy

of SSD achieved 74.3% accuracy on COCO dataset, which is similar to Faster

R-CNN and the detection speed of SSD reaches 59 FPS. Furthermore, both

two-stages and single-stages could be used to perform classification and improved

the application of deep learning for object detection.

2.1.5 Deep Learning with Edge Computing

Implementing computer vision on an intelligent video system to process large

video sequences might introduce several challenges since standard computer

vision methods utilize deep learning to process the camera’s data. Deep learning

is a type of machine learning that enables computers to learn from experience

and understand the environment and commonly use it to solve computer vision,

speech recognition, and natural language processing (Kim, 2016). One of the

significant challenges is to satisfy the high computing requirements of deep

learning with an intelligent video system’s resources. The installation of a high

computation device on the roads will be inefficient since it will requires similar

infrastructure to support the device. However, moving the processing system to

a centralized location might also ineffective since the data need to be processed

in real-time.

Chen and Ran (2019) explain that three things should be considered in

implementing deep learning in a centralized location. First, latency or time

interval of communications. Deep learning applications on computer vision

required real-time inference. Thus sending to a centralized location for processing

is inefficient since it may incur propagation delay and did not meet the low-

latency requirements of deep learning. Second, scalability or the ability of the

system to adapt to the increasing of connected devices. The large numbers of

connected devices will also increase the data that needs to be uploaded. Hence,

12

Related Works

moving the processing system to a centralized location will raise a concern.

Furthermore, sending data to the centralized location that located far from

data sources will increase privacy concern. The data that needs to be uploaded

might contain sensitive information and will attract threat actors. Chen and Ran

(2019) further suggest that edge computing is a feasible option for solving latency,

scalability, and privacy challenges during the implementation of an intelligent

video system. In edge computing, integrated computation resources provide data

processing abilities close to the end service (Satyanarayanan et al., 2009). Many

research efforts have been conducted to address latency challenges and meet the

computational requirements of deep learning. Taylor et al. (2018) present their

results to achieve the desired accuracy and inference time of the Deep Neural

Network (DNN) implementation, focusing on the image classification task. In

their research, Taylor et al. use Jetson TX2, a GPU-based embedded system, to

speed up deep learning inference. Based on the evaluation metrics, Taylor et al.’s

research achieved a 7.52% improvement in accuracy metric and 1.8x reduction in

inference time compared to the other deep learning model. Lai and Suda (2018)

investigate deep learning implementation on resource-limited hardware. In their

research, Lai and Suda introduce CMSIS – NN, a software library to enable

deep learning on microcontrollers with limited to compute resources, memory,

and power. Nikouei et al.’s (2018) research aim to reduce the time delay of

video processing application. Thus they proposed the implementation of a deep

neural network to detect a pedestrian. Nikouei et al. evaluated their proposed

deep neural network on Raspberry Pi 3 and achieved an affordable computation

workload. Furthermore, several works have been described to accelerate the

implementation of deep learning across end devices.

2.2 Related Works

This section covers some of the implementation works related to the proposed

intelligent video system.

13

Related Works

2.2.1 Streaming Pipeline

Implementing deep learning on edge computing become more complex since

the neural network may process multiple input streams simultaneously. In

this project, the proposed stream processing paradigm is used to address the

complexity of the streaming pipeline. Stephens (1997) explains that stream

processing is a computer science term to describe a number of disparate systems

such as the dataflow system, where the output of one module inside the streaming

pipeline is provided as the input to another module. There are several studies

related to the development of stream processing. Lin and Tang (2011) proposed

their stream processing to perform moving object detection. The proposed

framework use filter modules to define the process of their stream processing.

The source filter has a function to handle data obtainment. The transform

filter is responsible for data processing and conversion. The rendering filter

responsible for the ultimate flow of the data. Zhou et al. (2015) present their

stream processing architecture to detect traffic signs. The proposed architecture

is based on a field-programmable gate array (FPGA) and consists of 5 modules

with the aim to perform classification based on an input image. Ren et al.

(2018) present Traffic Camera Pipeline (TCP), a stream processing framework

that performs object detection from the video stream. TCP performs five steps

to obtain trajectories from detected objects, which are including, traffic video

collection, perform object detection using deep learning, object labeling, image

transformation, and vehicle trajectories extraction. Another study, presented by

Dong et al. (2013), studied how Dynamic Parallelism using GPU can accelerate

the performance of stream processing. Dong et al. show that their approach

achieved 154 times faster than the implementation of similar stream processing

using CPU. Different from existing solutions and studies, the proposed intelligent

video system leverages stream processing implementation using six filter modules

on a GPU-based embedded device.

14

Related Works

2.2.2 Object Detection in Traffic Scenes using Deep Learning

The recent development of object detection using deep learning to extract traffic

information attract many types of research and studies. Peng et al. (2020) present

their experiment using combined object detection and semantic segmentation to

obtain information from traffic scenes. Fang et al. (2016) present a novel multiple

channel feature called Deep Compact Channel Feature (DCCF) to generates

discriminative feature representation and use it to perform traffic signs detection.

Another study, presented by Jeong et al. (2019), studied the combination of

real-time object detection and situation recognition. They proposed YOLO

as a detector to track objects and Long Short-term memory to extract object

information. Using this approach, object behavior such as when a pedestrian

walks or stood on the sidewalk could be obtained. In addition, Ye et al. (2020)

proposed a novel SSD framework called feature-enhanced SSD (FE-SSD) to

address challenges in railway object detection, which has relatively small accuracy

for detecting small objects. This project aims to compare existing successful deep

learning algorithms and make appropriate improvements, including developing

integration method of the deep learning to the end-to-end stream processing.

2.2.3 Object Re-Identification using Deep Learning

Object re-identification is one of the challenging issues in an intelligent video

system. Object re-identification is the ability of a system to detect the object in

different imaging conditions such as lighting conditions and object pose. Geng

et al. (2016) proposed a pedestrian re-identification algorithm that used several

loss functions to train the network, including classification and verification

loss. In their approach, Geng et al. present the method to judge whether two

images belong to the same pedestrian. Lin et al. (2019) proposed pedestrian

re-identification based on multiple attributes. The proposed model predicts the

identification of information and attributes of each pedestrian. Another study,

presented by Li et al. (2017), studied how a joint deep learning model could

effectively extract discriminative representations for vehicle images. Using their

15

Related Works

novel approach, Li et al. demonstrated the ability of vehicle re-identification and

image retrieval. In addition, Zhang et al. (2017) present the novel approach for

vehicle re-identification using a guided Triplet network to improve re-identification

efficiency. This project leverages existing vehicle re-identification methods and

proposed improved loss functions using joint triplet-loss and cross-entropy.

16

Chapter 3

System Design

Figure 3.1: AddInsight-Vision Development Framework.

In the recent development of intelligent video systems using computer vision

and deep learning, researchers should still address open issues that should be

addressed by researchers, including biased output, dataset creation, and the

effectiveness of the system. As shown in Figure 3.1 , this project will present

a development technique to address the challenge of building an intelligent

video system. The use-case of AddInsight-Vision is to obtain traffic information

using computer vision and deep learning to perform object detection in traffic

scenes. To achieve the aim of AddInsight Vision, the state-of-art analysis is

performed to evaluate the best-suited technology and framework. The following

are state-of-art methods used in this project: stream processing paradigm to

create an effective and efficient intelligent video system based on modular filters,

implement fast and accurate object detection, develop vehicle re-identification

model using improved loss function, and implementation of deep learning on

edge computing using GPU-based embedded device.

Inherently, the deep learning model used for object detection depends on

the evaluation metric to measure the detector’s effectiveness. In this project,

two different methods are used to quantify the system’s performance, especially

17

Stream Processing Architecture of AddInsight-Vision

for object detection model and vehicle re-identification. The evaluation metrics

are Mean Average Precision (MAP) and Cumulative Matching Characteristic

(CMC). In addition, the performance of the system also depended on the dataset

used for training and evaluation. Choosing the right dataset for the right purpose

will guarantee the system’s quality and avoid the bias of the outcomes. In this

project, two datasets will be used to evaluate the system. First, the dataset from

the South Australian Department of Planning, Transport, and Infrastructure

(DPTI) consists of 6 hours of long traffic scenes, and second, the Ve-Ri dataset

to evaluate the performance of the vehicle re-identification model.

The next process of developing AddInsight Vision is to conduct implemen-

tation and evaluation, including developing stream processing, training and

evaluating the models based on the metrics and testing to measure the quali-

tative performance. The last process of AddInsight-Vision development is the

deployment and continuous monitoring of the system. AddInsight-Vision is

planned to be deployed to the City of Launceston in Tasmania to measure its

performance with real-time conditions.

Furthermore, in this chapter, section 3.1 will discuss the strategies to create

an effective intelligent video system, including the methodology of the project

development and how it will be integrated with the current AddInsight System.

Section 3.3 will detail the approach to increase the performance of the IVS using

the Transfer Learning technique. Also, section 3.4 will present the details of

improved loss function for vehicle re-identification.

3.1 Stream Processing Architecture of AddInsight-Vision

Figure 3.2 shows an overview of the proposed framework of AddInsight-Vision

using the stream processing paradigm. This project uses Deepstream as a

framework for the streaming pipeline. Deepstream is an accelerated deep learning

framework to build an intelligent video system (NVIDIA, 2020). The reason

for using Deepstream in this project is that it provides neural network filters

and supports a conventional video stream. In addition, Deepstream allows the

18

Stream Processing Architecture of AddInsight-Vision

Figure 3.2: AddInsight-Vision Pipeline.

pipeline to be implemented on an edge computing device, which is one of the

aims of this project. The AddInsight-Vision architecture consists of six stream

filters. The first filter is the decoder filter, which is the filter used to convert video

sequences into a stream data format. Deepstream uses a standard, extensible

structure of metadata called NvDsBatchMeta to allow data flow in the pipeline.

The second filter is an object detection filter used to perform inference from the

input sequence. In this project, four different object detection algorithms are

used, including RetinaNet, Detectnet, SSD, and Faster R-CNN. Details of each

algorithm will be described in section 3.2. The third filter is an object tracking

filter that tracks the detected object and gives each new object a unique ID.

This project utilized a discriminative correlation filter (DCF) based approach

for visual object tracking and a Hungarian algorithm for data association.

Several analytics functions are applied in the analytics filter, including the

19

AddInsight-Vision Edge Computing Infrastructure

Region of Interest (ROI) filtering, Direction Detection, and Line Crossing. The

metadata from the analytics filter is then processed using a Tiler filter is the fifth

to combine several streams input and encode stream data into a video format

for on-screen display purposes. The six filter of the AddInsight-Vision pipeline

is a message filter that contains a message broker and a message converter.

A message broker is used to communicate with the message stream platform,

whereas the message converter converts the stream data into JSON payload.

The message filter’s function is to perform data exchange with the AddInsight

dashboard where the data, such as total vehicles detected, from the AddInsight,

is transferred to the database for further analytics. Besides using the six-filter

described in this section, the stream processing framework of AddInsight-Vision

also using another filter such as a multiplexer filter to combine several metadata

and on-screen display filter. Details of AddInsight stream-processing will be

discussed in chapter 4.

3.2 AddInsight-Vision Edge Computing Infrastructure

In order to implement AddInsight-Vision on an edge device, a major challenge

is to choose the right device that meets hardware requirements to run deep

learning models. In this project, a Graphics Processing Unit (GPU) based

embedded device called Jetson AGX Xavier (Figure 3.3) is proposed to run the

AddInsight-Vision framework ("Deploy AI-Powered Autonomous Machines at

Scale," 2020). Jetson AGX spesification meet the requirement of implementing

deep learning on Edge. Jetson AGX Xavier has 64 Tensor Cores GPU and

support of Deep Learning Accelerator that able to run a deep learning model

until 32 TOPS (Tera Operation per Second). Another feature of Jetson AGX is

Vision Accelerator, which is a feature that could use to optimize multi-stream

processing. Table 3.1 describes the details of Jetson AGX Xavier’s specifications.

Furthermore, several peripherals (Table 3.2), including power supply, IP camera,

and 4G modem, are installed together to support the AddInsight-Vision edge

computing infrastructure.

20

AddInsight-Vision Edge Computing Infrastructure

Figure 3.3: Jetson AGX Xavier (NVIDIA 2020).

Item Description
CPU 8 Core Carmel CPU @ 2133 MHz
GPU 512 Core Volta @ 1.37 GHz
DL Accelerator 2x NVDLA
Vision Accelerator 7-Way VLIW Processor
Memory 16GB LPDDR4X
Storage 32 GB
Power 10 W / 15 W / 30 W
Video Encode 4kp60, 4Kp30
Video Decode 8Kp30, 4Kp30

Table 3.1: Hardware Specification of Jetson AGX Xavier.

Item Model Power Consumption
Processing Unit Jetson AGX Xavier Max 30 W
IP Camera Axis P1357-E 40 W
4G Modem Classified Classified
Switch Classified Classified
Power Supply Classified Classified

Table 3.2: Jetson AGX Xavier Edge Infrastructure.

21

Image removed due to copyright restriction.

AddInsight-Vision Object Detection Model

3.3 AddInsight-Vision Object Detection Model

3.3.1 Vision Information Extraction

In this project, four separate object detection algorithms are tested to measure

their output by collecting traffic information. The object detection algorithm

is based on the Convolution Neural Network (CNN). CNN is a deep learning

algorithm that can capture the input image, attach value to different objects

in the image, and be able to identify each object in a class or category. The

architecture of CNN is similar to the pattern of connectivity of neurons in the

human brain and has been influenced by the organization of the visual cortex.

Individual neurons respond to a stimulus only in a limited area of the visual

field known as the Receptive Field. The array of these fields overlaps to fill the

entire visual region. Figure 3.4 described the architecture of a CNN.

Figure 3.4: Architecture of Convolutional Neural Network.

In contrast to the traditional neural network, CNN is constructed with several

convolution hidden layers. The function of these hidden layers is to capture

complex spatial and temporal dependencies of an input, which cannot be done

using a traditional neural network. CNN consists of two stacks of layers to

produce an object’s prediction based on the input image. The first group of

layers is a feature learning group that functions to extract features from the

input image. In this first group, it consists of a convolution layer and a pooling

22

AddInsight-Vision Object Detection Model

layer. The purpose of the convolution layer is to extract high-level features from

the input image, which is, in this case, using convolution. Based on Figure 3.4,

which shows the architecture of VGG16, there is a total of 13 convolutional

layers in the VGG16 architecture. The rectified Linear Unit (ReLU) activation

function is added to the convolutional layer. The activation function is used to

determine the output of the layer, whether it passed the input to the next layer

or not.

The first two layers of VGG16 use 64 filters. The input image that passed

through these layers is multiplied with 3× 3 kernels with a stride of 1, which

means the kernel is shifting nine times every time the multiplication operation

between the kernel and the portion of the input image. The result from the first

two layers is the feature map matrix with 224×224×64 dimensions. In the VGG

architecture, the Pooling layer is added between the convolutional layer used to

segregate the features map’s dominant features and reduce the computational

power required to process the data. VGG16 utilized max-pooling, which reduces

the dimension by only returns the maximum value of feature maps. The next

group of the CNN architecture is classification layers. This group consists of

fully connected layers and loss function to take the output from the feature

learning layer and use it to classify the image into a label. In the VGG16, the

output from the feature learning group is then flattened into a column with a

1× 1× 4096 dimension. The flattened vector is fed into a full backpropagation

network to determine the most accurate weights and uses a SoftMax classifier

function to determine the input class based on its weight values. In particular,

the feature extractor used in this project is based on ResNet-18. ResNet-18

represents a good trade-off between computational time and performance (He et

al., 2015). Table 3.3 describe the Resnet-18 architecture.

ResNet-18 is known for solving the vanishing gradient problem on a neural

network. Vanishing gradient problem occurred when the network is too deep,

and the gradients from where the loss function is calculated easily shrink to

zero after multiple training. This caused the training weight to never updating

its value. Thus no learning is being performed. By looking at the output of

23

AddInsight-Vision Object Detection Model

Layer Output Size ResNet-18
conv1 112× 512× 64 7× 7,64,stride 2
conv2_x 56× 56× 64 3× 3, stride2[

3× 3, 64
3× 3, 64

]
×2

conv3_x 28× 28× 128
[

3× 3, 128
3× 3, 128

]
×2

conv4_x 14× 14× 256
[

3× 3, 256
3× 3, 256

]
×2

con5_x 7× 7× 512
[

3× 3, 512
3× 3, 512

]
×2

average pool 1× 1× 512 7× 7average pool
fully connected 1000 512× 1000fully connections
softmax 1000

Table 3.3: ResNet-18 Architecture.

ResNet-18, the network produced 512 dimensions fully connected layer vector,

which contains a lot of information about the image and will be used for object

detection algorithm.

The first detector to be tested in this project is DetectNet, a single-stage

detector. NVIDIA (2016) suggested that DetectNet overcome one of the training

processes relevant to the marking of training results. Training data samples

are larger images containing a variety of objects. For each object in the image,

the training mark must capture the class of the object and the coordinates

of the corners of the bounding box. While the number of objects will vary

between training images, a simple choice of mark formats of various lengths and

dimensions would make it difficult to define the loss function. DetectNet solves

this main issue by introducing a set 3-dimensional mark format that allows

DetectNet to absorb any size images with a variable number of objects present.

Figure 3.5 shows the architecture of DetectNet.

Three important processes of DetectNet are described in Figure 3.5. First, the

first two layers of DetectNet perform data ingestion and data augmentation. Data

ingestion is the process to feed the data to the network and data augmentitation

is the process of modify the data in order to meet with network specification.

24

AddInsight-Vision Object Detection Model

Figure 3.5: Architecture of DetectNet V2 (NVIDIA 2016).

Second, a fully-convolutional network (FCN) performs feature extraction, predicts

object classes, and produces bounding boxes. In this project, ResNet-18 is used

as the FCN of DetectNet. The third process is the loss function, which is a

function that simultaneously measures the error in the two tasks of predicting

the object class and bounding boxes. DetectNet uses a linear combination of

two separates loss, namely, coverage_loss and bbox_loss functions, to produce

its final loss function that will be used for network optimization. Coverage_loss

as defined in equation 3.1 is the sum squares of differences between the true and

predicted object coverage across all grid squares in a training data sample.

1
2N

N∑
i=1
|coveraget

i − coverage
p
i |

2 (3.1)

Whereas, bbox_loss (equation 3.2) is the mean absolute loss to measure the

bounding boxes’ true and predicted corners.

1
2N

N∑
i=1

[|xt
1 − x

p
1|+ |yt

1 − y
p
1 |+ |xt

2 − x
p
2|+ |yt

2 − y
p
2 |] (3.2)

The advantage of utilizing DetectNet for object detection is the efficiency with

which all objects inside a large image can be detected and produce accurate

bounding boxes prediction.

Another detector evaluated in this project is RetinaNet. Similar to DetectNet,

RetinaNet is a single-stage object detection algorithm. Lin et al. (2018) proposed

RetinaNet to address the accuracy of a single-stage detector due to foreground-

background class imbalance. As described in Figure 3.6, RetinaNet consists of a

25

Image removed due to copyright restriction.

AddInsight-Vision Object Detection Model

feature extractor using ResNet and Feature Pyramid Network (FPN) and two

task-specific subnetworks for classification and bounding box regression.

Figure 3.6: Architecture of RetinaNet (Lin et al. 2018).

Feature Pyramid Network in RetinaNet is a tool for generating feature maps

using a featured image pyramid technique. A featured image pyramid is a

method for sub-sample images captured in lower resolution and smaller images,

thereby executing a stack of images. Using this method, the production size of

the feature maps can be minimized. In addition, RetinaNet uses focal loss to

calculate the model error and is implemented to address the class imbalance

issue with single-stage object detection models. As there can be thousands of

anchor boxes in RetinaNet, only a few will be allocated to the ground-truth

object. Although generating minor losses, high-probability anchor boxes could

collectively overpower the network. The losses from unassigned anchor boxes

would be minimized by focal loss. Figure 3.7 shows the comparison of RetinaNet

and another object detector such YOLO and SSD in terms of inference time and

accuracy. RetinaNet could achieved fast inference speed while maintaining the

detection accuracy.

Another two detectors that will be evaluated in this project are the Single

Shot Detector (SSD) and two-stage detector Faster R-CNN. However, unlike

the previous explanation, in this project, the feature extraction backbone for

SSD and Faster R-CNN will be based on ResNet-18. ResNet-18 is used since it

provides a light training process and does not require a high computation device.

Furthermore, each detector with ResNet-18 as a feature extractor will be trained

to using the Transfer Learning technique to increase the accuracy and inference

26

Image removed due to copyright restriction.

AddInsight-Vision Object Detection Model

Figure 3.7: Baseline of RetinaNet (Lin et al. 2018).

speed.

3.3.2 Dataset Curation

Data curation is the process of choosing the most relevant data to meet the

system needs on a specific function. Data curation is an important step in

this project since raw data such as traffic scenes video is unusable to train the

deep learning models. To clarify, data curation in this project is the process of

transforming raw data into a specific data type that could be used to train the

object detection and vehicle re-identification model to increase the accuracy of

the trained deep learning models. The process of data curation is described in

figure below. Based on Figure 3.8, the curation process’s high-level steps are

Figure 3.8: Dataset Curation Process.

first to transform the data type to a specific data format required by the model.

In this project, the raw data comes from the traffic scenes video provided by

the South Australian Department of Planning, Transport, and Infrastructure

(DPTI). The DPTI videos are recorded surveillance videos from two East Terrace

and Grenfell Street intersection cameras at a specific time, including 08.00 AM,

12.00 PM, and 07.00 PM. The resolution of the video is 1920 × 1080 pixels,

with the duration of each video is one hour. To create a dataset that meets

27

Image removed due to copyright restriction.

AddInsight-Vision Object Detection Model

the training and evaluation requirements, the video is transformed into a JPEG

image sequence with dimension 480 × 288 pixels. The dimension is chosen

based on the capability of device in transfer learning process. Larger dimension

will require high computational process. The next step of data curation is

performing data labeling on the transformed data. Data labeling is the process

of determining the object of interest in an image. For object detection, the data

labeling process is the process to determine the ground truth of each object by

drawing a rectangle on the area of the object and saving the pixel coordinates of

the rectangle, and tag it to the image. In this project, data labeling tools called

CVAT (Figure 3.9) is used to perform manual labeling of the transformed data.

Figure 3.9: CVAT Annotation Tool

The next step of data curation is constructing a dataset. The dataset format

used in this project is the KITTI format (Geiger et al., 2013). The directory

structure of the KITTI format is described in Table 3.4. Each image in the

dataset is pair with one label that contains information of objects in the image,

such as type of objects and coordinates of bounding boxes. The structure of the

label (frame00001.txt) described as: Frame Name | Track ID | Type | Truncated

| Occluded | Alpha | BBox 3D | Dimension | Location | Rotation.

28

AddInsight-Vision Object Detection Model

Image Folder Label Folder
frame00001.jpeg frame00001.txt

Table 3.4: KITTI Dataset Directory Structure.

3.3.3 Transfer Learning Technique

To increase the object detection models’ accuracy for a specific purpose, the

models should be trained using a specific dataset. For example, to detect buses,

the object detection models should be trained using a dataset that contains the

bus. However, training an object detection model requires a lot of resources and

time. (You et al., 2018) reveal that training the ResNet-50 neural network based

on the ImageNet dataset using Nvidia M40 GPU required 14 days. Moreover,

the object detection process continuously shifts as new types of objects are

found. In this project, AddInsight vision tries to detect a specific bus that is not

supported by pre-trained object detection models. Furthermore, using transfer

learning, one could increase object detection models’ performance and overcome

the extensive time of the training process.

Transfer learning is a method to create new specific training and speed up the

process using previous training information. Tan et al. (2018) explain transfer

learning as the process to transfer knowledge from the source domain to the

target domain. In Source domain is represented as D = x, P (X) with x as

feature space and P (X) as probability distribution where x = x1, x2, ..xn ∈ x.

The domain task is represented as T = y, f(x), with y as target label, and f(x)

as target predicted function. Using this scenario, Tan et al. described that, in

the condition of TT based on DT , DS could improve the learning task of TS .

Transfer learning aims to improve predictive function fT (.) for learning task TT

using knowledge from DS and TS . In this case, Ds 6= Dt and/or TS 6= TT and

the size of DS >> DT .

Tan et al. (2018) also explain four approach categories of transfer learning,

including instance-based, mapping-based, network-based, and adversarial-based

(Figure 3.10). In this project, the network-based approach will be used to train

29

AddInsight-Vision Object Detection Model

Figure 3.10: Transfer Learning Process (adapted from Tan et al. 2018).

the object detection model. Network-based transfer learning is the form of

transfer learning which using the pre-trained network in the source domain. In

the neural network field, a pre-trained model means a model that has been

trained on a specific dataset with a different number of classes. Network-based

transfer learning refers to using the neural network architecture, re-purpose

the output for specific needs. Since the neural network architecture consists of

feature learning part and classification part, there are three strategies (Figure

3.11) to do the network-based transfer learning.

Figure 3.11: Transfer Learning Strategy.

In the first strategy, the entire network is used to train the dataset. The

30

AddInsight-Vision Object Detection Model

major advantage of using this strategy is, it requires a large dataset and high

computational resources. The second strategy is partially training the network

architecture. In this strategy, one should specifically choose which part of the

network should be trained and left frozen. If the task required lots of parameters

to be trained based on a small dataset, the number of frozen layers should

be larger than train layers to avoid overfitting. The last strategy is only the

classification layers trained or fine-tune and use the feature learning layers to

only feed the classification layers. This approach is useful if the dataset is small,

and the pre-trained network has a similar task with the target domain task. In

this project, a four-quadrant model is used to determine the best strategy to

do network-based transfer learning (Figure 3.12). In this project, the dataset

Figure 3.12: Four-quadrant Model of Transfer Learning Strategy.

contains 7180 images and 7180 labels, which is relatively small to use strategy 1.

Moreover, based on the small dataset condition and this project’s task, which is

to perform object detection, the best strategy for transfer learning is strategy 3.

In strategy 3, the aim is to modify the classification layers, including determining

the class of objects and the training parameter. Four pre-trained models are used

for transfer learning, namely, DetectNet, SSD, RetinaNet, and Faster R-CNN.

The pre-trained models used in this project have been trained on the Open

Image dataset, consisting of almost 9 million images (Kuznetsova et al., 2020).

31

AddInsight-Vision Vehicle Re-Identification Model

3.4 AddInsight-Vision Vehicle Re-Identification Model

This project also extends to add a vehicle re-identification model to the Add-

Insight framework. Vehicle re-identification (Re-ID) aims to identify and track

the same vehicle from multiple cameras. However, one of the obstacles using

a camera as a data source to re-identify the camera is difficult due to the

relatively same feature of the vehicle. Watcharapinchai and Rujikietgumjorn

(2017) proposed a method of vehicle re-identification using license plate matching.

Nevertheless, in most video surveillance, the license plate is hardly recognized.

Furthermore, using the Convolutional Neural Network (CNN) to learn the

vehicle’s feature, an improved vehicle re-identification method is proposed.

CNN is used due to the ability to extract deep features of an image. In

addition, CNN also able to perform the classification of an object based on its

class. In this project, a proposed vehicle Re-ID method is based on feature

extraction and classification based on image similarity. This method will focus on

extracting spatiotemporal information from the vehicle images. Spatiotemporal

information is a type of information related to a certain location and time. For

example, vehicle A may appear in camera X at 08.00 AM and appear in camera

Y at 09.00 AM. The spatiotemporal information of vehicle A is:

V ehicleA|camerax08.00am|cameray09.00am

Liu et al. (2016) present a Ve-RI dataset, which is a large vehicle re-

identification dataset that contains spatiotemporal information. VeRi dataset

consists of 40.395 images that come from 20 cameras, recording an area of 1.0km2.

The significant part of the VeRi dataset is the cross-camera vehicle correlation

that provides spatiotemporal information, including camera ID and timestamp.

In this project, the Ve-RI dataset is divided into training and testing datasets,

with total images for training is 37,778 and 11,579 for testing. Furthermore, the

proposed vehicle Re-ID method will be evaluated using the VeRI dataset.

The proposed method for vehicle Re-ID is carried out in the framework below

(Figure 3.14, including data preparation, feature learning model, and evaluation

32

AddInsight-Vision Vehicle Re-Identification Model

Figure 3.13: Ve-Ri Dataset (Liu et al. 2016).

using the re-rank method.

Figure 3.14: Vehicle Re-Identification (Re-ID).

The first step of vehicle re-ID is preparing the input data, including dataset

augmentation, including image transformation, in order to increase the diversity

of the data. The diversity of the data is important in the training process to

avoid overfitting and biased of the training outcomes. There are three dataset

directories of the Ve-RI dataset that will be used in the process, which are the

training dataset, testing dataset, and query dataset. The training dataset is used

to train the vehicle Re-ID model. The training dataset consists of a positive

and negative pair of images that will be used for triplet sample construction of

the vehicle-Re-ID model. Positive image is the image that has similar feature

with the image inside testing folder, whereas the negative image have distinct

feature with the testing image. The image inside query dataset will be used to

measure the accuracy of each image with the images inside the testing dataset.

The augmented dataset is then parsing to the feature learning model based on

ResNet-50 architecture. The difference between Resnet50 and ResNet-18 is the

size and the total number of layer used in the network. The architecture of

ResNet-50 is described in the table below.

33

Image removed due to copyright restriction.

AddInsight-Vision Vehicle Re-Identification Model

Layer Output Size ResNet-50
conv1 112× 512× 64 7× 7,64,stride 2
conv2_x 56× 56× 64 3× 3, stride2 1× 1, 64

3× 3, 64
1× 1, 256

×3

conv3_x 28× 28× 128 1× 1, 128
3× 3, 128
1× 1, 512

×4

conv4_x 14× 14× 256 1× 1, 256
3× 3, 256
1× 1, 1024

×6

con5_x 7× 7× 512 1× 1, 512
3× 3, 512
1× 1, 2048

×3

average pool 1× 1× 512 7× 7average pool
fully connected 1000 512× 1000fully connections
softmax 1000

Table 3.5: ResNet-50 Architecture.

In this stage, a strategy two transfer learning is used to train the Ve-RI

dataset in order to increase the effectiveness and reduce training time compared

to retraining the entire network. Strategy 2 is picked since the Ve-RI dataset is

relatively large (40000 images) and the ResNet-50. The pre-trained network has

a similar task with vehicle re-identification, which is feature extraction. Using

strategy 2, only the classification group of the ResNet-50 will be modified to

perform vehicle re-identification, which is the loss function.

The loss function or cost function is the part of classification layers to

determine the CNN model’s correctness. Generally, the SoftMax classifier is used

to determine the target label’s correctness in the image classification problem.

However, the SoftMax classifier alone could not be used for re-identification

purposes since the data input, which is the vehicle images, has different features,

34

AddInsight-Vision Vehicle Re-Identification Model

and is relatively difficult to distinguish only by label correction. In addition,

perform a re-identification problem using only ground truth labels (0 and 1) may

increase the loss if the target label is incorrect.

L = −(ylog(p) + (1− y)log(1− p)) (3.3)

Equation 3.3 calculate the SoftMax loss of CNN. With p is the probability

of feature map and y is the ground truth label 0 and 1. When the probability

is high, i.e., 0.99, the loss will approximately close to zero. However, if the

target label is incorrect, the loss value will be high, creating a problem in the

training process. Therefore, this project proposed an improved loss function,

triplet-sampling loss, and cross-entropy loss via label smoothing to regularize

the loss in the classification layers.

Triplet-sampling loss is used to solve the problem in vehicle re-identification.

The target domain category is flexible, such as the same vehicle images captured

from a different camera. Triplet-sampling loss is the method to find the closest

embedding between pairs, assuming that images with the same label must have

similar embedding in the embedding space. In contrast, images that have a

different label, their embedding in embedding space must be distant. The

advantage of triplet-sampling loss is to distinguish the features in domain space

and label space. Figure 3.15 describes the proposed triplet-sampling loss.

Figure 3.15: Triple-Loss Process.

The below equation is used to determine the distance between the three pairs

35

AddInsight-Vision Vehicle Re-Identification Model

of images and obtain the loss function.

Lhtri = max(D(A,P)−D(A,N) +margin, 0) (3.4)

With A is an anchor or the target label, and P is the positive label, which is

the label that has the same class as the anchor. N is the negative label of a

different class. To minimize the L or Loss, using Euclidian distance function D,

the D(A,P) is pushed to be zero, and D(A,N) should be greater than D(A,P)

+ margin. The margin value is used to ensure that if d(a,n) is distant, the

function will diminish the effort to pair the triplets, thus decrease the process of

triplet-sampling. The triplet-loss function is extremely useful in finding similar

images. However, using a large dataset, it is relatively difficult to produce valid

triplets. Therefore, Hermans et al. (2017) suggest batch hard triplet mining as

the best strategy to determine a valid triple for the triplet-loss function. A batch

of embeddings B from a batch of B inputs, for a B embedding, consists of batch

features of images and target label B = PK. For each target label or anchor,

compute the biggest distance D(A,P) and biggest distance D(A,N). Hence, it

produces a valid triplet for the triplet-sampling loss function.

The second loss function applied in the vehicle re-identification model is a

cross-entropy loss.

Lxent = −
p∑

i=1
log(p(i)q(i)) (3.5)

Given p, the probe image’s probability belongs to vehicle i, and q is the

ground truth label. The cross-entropy loss tries to calculate categorical cross-

entropy of p and q. However, to minimize the effect of label dropout, the q

distribution is replacing with uniform distribution (Szegedy et al., 2015). Hence,

the q distribution function is

q′(k|x) = (1− ε)δk,y + εu(k) (3.6)

36

AddInsight-Vision Vehicle Re-Identification Model

Furthermore, using triplet-sampling loss and cross-entropy loss, this project

proposed an improved loss function called joint loss function that will be used

for vehicle re-identification. The final joint loss function can be formulated as:

Ljoint = Lxent + Lhtri (3.7)

The last step of the vehicle re-identification process is re-rank to determine

the evaluate the performance of the re-identification model. In this step, using

the VeRI dataset, there are 1678 images designed as a query dataset. For each

image in the query dataset, the model tries to find similar images in the testing

dataset. Thus each of the query images is re-rank to determine the performance

to re-identifying a similar image (Figure 3.16).

Figure 3.16: Joint Loss Function of Vehicle Re-ID.

37

Chapter 4

System Evaluation

This chapter will go through the experiment and evaluation of AddInsight-

Vision, including the system setup and infrastructure development, followed by

qualitative and quantitative analysis of the results.

4.1 AddInsight-Vision System Integration

In this project, an experiment with AddInsight-Vision is conducted using Jetson

AGX Xavier. Following the structure of Figure 2, this experiment aims to

perform object detection and send the data to the AddInsight Dashboard. The

initial setup of the AddInsight-Vision experiment is described in the following

list.

1. Jetson AGX Setup

The Jetson AGX is installed with Jetpack 4.4 Operating System and

Deepstream 5.0 Software Development Kit (SDK). To maximize the

performance of AddInsight-Vision, the power mode of Jetson AGX is

set to MAX (30 Watt). The Deepstream SDK used in this experiment is

based on Python 3.7.

2. Input Data

The data used for the experiment is based on surveillance videos from the

South Australian Department of Planning, Transport, and Infrastructure.

The videos included intersection scenes between 08.00 AM to 09.00 PM,

with total of twelve videos.

3. Object Detection Model

In the initial experiment, the object detection model is DetectNet V2 from

38

AddInsight-Vision System Integration

NVIDIA. The model has not been used for transfer learning.

4. Message Broker Server

A message broker server called Kafka is used to accommodate information

exchange between AddInsight-Vision and AddInsight-Dashboard.

The below command is used to run the AddInsight-Vision streaming pipeline.

$python3 deepstream-pipeline file:///[videofile_path]

This command will run the AddInsight-Vision and read the video input based on

the described file location. The AddInsight is also able to read the input from

the Real Time Streaming Protocol (RTSP) stream.

$python3 deepstream-pipeline rtsp://[rtsp_url]

AddInsight-Vision program structure consists of several elements, which are

source element or the input data, manipulation elements or the filters, and

destination element or sink. In order to communicate between elements, the

program uses several semantic layers, namely, bin, pad, and bus. Figure 4.1

described the structure of the AddInsight-Vision program structure.

Figure 4.1: Deepstream Pipeline Structure.

In the first stage, the program reads input data from the video source and

convert it into Deepstream metadata, and stores it in the bin. Below is the

partial source code that describes input data reading and conversion of the input

data to metadata.

for i in range(number_sources):

print("Creating source_bin ",i," \n ")

saved_count["stream_"+str(i)]=0

uri_name=args[i+1]

39

AddInsight-Vision System Integration

if uri_name.find("rtsp://") == 0 :

is_live = True

source_bin=create_source_bin(i, uri_name)

if not source_bin:

sys.stderr.write("Unable to create source bin \n")

pipeline.add(source_bin)

padname="sink_%u" %i

sinkpad= streammux.get_request_pad(padname)

if not sinkpad:

sys.stderr.write("Unable to create sink pad bin \n")

srcpad=source_bin.get_static_pad("src")

if not srcpad:

sys.stderr.write("Unable to create src pad bin \n")

srcpad.link(sinkpad)

Based on the description, each of the elements in the pipeline is linked with

a pad. Pad is like a “gate” that determine which data type could pass through

the element. The metadata inside the bin is then pass-through manipulation

elements or the filters. The filters are linked together inside the pipeline to

process the metadata.

print("Adding elements to Pipeline \n")

pipeline.add(pgie)

pipeline.add(tracker)

pipeline.add(nvdsanalytics)

pipeline.add(tiler)

pipeline.add(nvvidconv)

pipeline.add(filter1)

pipeline.add(nvvidconv1)

pipeline.add(nvvmsgconv)

pipeline.add(nvosd)

if is_aarch64():

pipeline.add(transform)

pipeline.add(sink)

print("Linking elements in the Pipeline \n")

streammux.link(pgie)

pgie.link(tracker)

tracker.link(nvdsanalytics)

nvdsanalytics.link(nvvidconv1)

40

AddInsight-Vision System Integration

nvvidconv1.link(filter1)

filter1.link(tiler)

tiler.link(nvvmsgconv)

nvvmsgconv.link(nvvidconv)

nvvidconv.link(nvosd)

if is_aarch64():

nvosd.link(transform)

transform.link(sink)

else:

nvosd.link(sink)

Based on the program above, there are two data linked to the destination

element or sink. First, the metadata with RGBA buffer data type and metadata

contains the JSON data type. The first metadata will display the result on the

screen, including object bounding boxes and line crossing analytics. The second

metadata contains information related to the analytics, such as the total number

of detected vehicles and the vehicle’s counting crossed specific line crossing.

Figure 4.2: AddInsight-Vision Initial
Result (Daylight Situation)

Figure 4.3: AddInsight-Vision Initial
Result (Night Situation)

Based on Figures 4.2 and 4.3, the performance of proposed intelligent video

system, AddInsight-Vision, must be tested and evaluated. In this project, the

system evaluation is divided into two processes, model testing, and model

evaluation. Model testing requires explicit behavior checks, which should be

followed by a designed system. The model evaluation covers quantitative metrics

and plots based on a specific baseline to summarise performance on a test or

validation dataset.

In this project, a set of checklists is created to perform a qualitative analysis

41

Object Detection Transfer Learning

of AddInsight vision.

Item Yes/No
The AddInsight-Vision works without showing error message Yes
The objects including car, person, bus, and other vehicles is detected. No
The AddInsight-Vision able to send the data to AddInsight-Dashboard Yes

Table 4.1: AddInsight-Vision Model Testing Check-List

The checklist showed that the AddInsight was not able to detect several

objects of traffic scenes. Therefore, a transfer learning process was conducted in

order to increase the performance of the AddInsight-Vision streaming pipeline.

4.2 Object Detection Transfer Learning

To increase the accuracy of the object detection model of AddInsight-Vision,

several transfer learning processes are conducted on data based on the DPTI

dataset. The transfer learning is conducted using the Tensorflow framework

installed on a Desktop PC with the support of 16GB of RAM, Geforce GTX

1650 GPU, and Intel Core 17 CPU. The first step of transfer learning is dataset

preparation. In this project, 7180 images and labels were created from 6 videos of

traffic scenes situation between 08.00 AM to 07.00 PM with the details described

in Table 4.2.

Data Total Image Total Label
East Camera – 08.00 1147 1147
West Camera – 08.00 1147 1147
East Camera – 19.00 1511 1511
West Camera – 19.00 3375 3375
Total 7180 7180

Table 4.2: DPTI Dataset.

The dataset is picked due to the aim of this project to observe the performance

of AddInsight-Vision to detect objects under specific conditions, such as object

occlusion, light condition, and camera position. From each of the datasets, the

42

Object Detection Transfer Learning

data were randomly selected and partitioned into 70% training data and 30%

evaluation data. Based on this dataset, the total ground truth label for each

object is described in Table 4.3.

In this project, strategy two is chosen as the transfer learning method,

which means only the classification layer is modified to meet with the

target class. Based on the dataset, there six target classes that should

be trained. Hence, the extended class of the network classifier would be

target_class_mapping {

key: "person"

value: "person"

}

target_class_mapping {

key: "car"

value: "car"

}

target_class_mapping {

key: "bus"

value: "bus"

}

target_class_mapping {

key: "truck"

value: "truck"

}

target_class_mapping {

key: "motorcycle"

value: "motorcycle"

}

target_class_mapping {

key: "bicycle"

value: "bicycle"

}

The input data of the CNN models are based on the 3-channel image

with 480 x 288 dimension and the augmentation process including, image pre-

processing, spatial augmentation, and colour augmentation. The transfer learning

43

Vehicle Re-Identification Transfer Learning

configuration is described in Table 4.4 .

Furthermore, four different CNN models, including DetectNet, SSD,

RetinaNet, and Faster R-CNN, is trained with extended target class in order to

increase the accuracy of object detection. The evaluation result will be shown in

the following section.

4.3 Vehicle Re-Identification Transfer Learning

In this project, a vehicle re-identification model is proposed to achieve one of the

aims of an intelligent transport system which is object tracking from multiple

cameras. To achieve the aim, using an improved joint loss function, the ResNet-

50 convolutional neural network is re-trained to determine the performance of

vehicle re-identification model based on VeRi dataset. The transfer learning is

conducted using Pytorch framework installed on Desktop PC with the support of

16GB of RAM, Geforce GTX 1650 GPU, and Intel Core 17 CPU. Furthermore,

the transfer learning configuration is described in Table 4.5.

Data Bicycle Bus Car Motorcycle Person Truck
East Camera – 08.00 14 1404 1854 11 156 23
West Camera – 08.00 40 1230 3171 16 995 16
East Camera – 19.00 34 460 1619 13 113 5
West Camera – 19.00 28 1193 6980 122 3002 0

Table 4.3: DPTI Dataset Total Ground-truth Label.

Configuration Value
Number of Epochs 120
Batch Size per GPU 8
Learning Rate Max: 1.5e-2, Min: 4e-5

Table 4.4: Object Detection Transfer Learning Configuration

44

System Evaluation

Configuration Value
Number of Epochs 60
Batch Size per GPU 8
Learning Rate 0.0004
Training Data 37,778 Images, 37,778 Labels
Testing Data 11,579 Images, 11,579 Labels
Query Data 1,678 Images, 1,678 Labels

Table 4.5: Vehicle Re-ID Transfer Learning Configuration

4.4 System Evaluation

In this project, quantitative analysis using several metrics are used to determine

the performance of object detection and vehicle re-identification model. The

evaluation metrics of object detection model is Mean Average Precision (MAP).

In order MAP to evaluate the detector, one should understand the concept of

Intersection Over Union (IoU). IoU measures the overlap between two boundaries,

given the ground truth boundaries described in the target label and predicted

boundaries as a result of object detection (Figure 4.4). To state whether the

object is truly positive or false positive, one should determine the threshold of

IoU. In this project, the threshold IOU is based on the baseline of VOC2011

challenge, which is 0.5.

Figure 4.4: IoU Illustration (“Intersection over Union (IoU) for object detection
- PyImageSearch,” 2020)

45

System Evaluation

Using the confusion matrix, the result of object detection is determined based

on its IoU values. True Positive(TP), if IoU > 0.5 and match target class. False

Positive (FN), if IoU < 0.5. False Negative (FN) if if IoU > 0.5 and match

wrong class. True Negative (TN) if there is no detection. Given the confusion

matrix, precision and recall function are determined.

Precision = TP

TP + FP

Recall = TP

TP + FN

Precision measures the accuracy of prediction, whereas recall measure how many

positives occurred in the evaluation process. Using precision p and recall r curve,

one can calculate average precision using the function below.

AP =
∫ 1

0
p(r)dr (4.1)

In addition, Mean Average Precision calculates the average AP over the targeted

class in the object detection. Furthermore, the results of transfer learning based

on four datasets shown in the figures below.

Figure 4.5: MaP Result of East-08.00 Data

Based on the figures (Figure 4.5 - Figure 4.8), they show that transfer learning

increases the accuracy of the detection, which for several classes, the accuracy

46

System Evaluation

Figure 4.6: MaP Result of West-08.00 Data

Figure 4.7: MaP Result of East-19.00 Data

47

System Evaluation

Figure 4.8: MaP Result of West-19.00 Data

achieved over 90%. However, due to the limitation ground truth labels on a class

such as truck, bicycle, and motorcycle, the accuracy did not improve significantly.

The figures also show that from 3 datasets, RetinaNet outperformed other three

detectors. Furthermore, by using transfer learning, the performance of object

detection models of AddInsight-Vision could be increased. In Figure 4.6 it is

shown that FasterRCNN model outperformed other models since in the particular

dataset, truck class has more number than other dataset.

Figure 4.9: Result of AddInsight-Vision’s Object Detection Model after Transfer
Learning

The second metric used for quantitative analysis of AddInsight-Vision is

Cumulative matching characteristic (CMC). CMC is used to evaluate the

performance of Vehicle Re-Identification model. CMC will rank all the samples

in the testing directory based on their distance similarity with samples from

query dataset. The top k CMC accuracy follows this equation (Nandakumar

48

System Evaluation

et.al, 2009).

Acck =

1 if top-k ranked gallery samples contain the query identity

0 otherwise
,

This formula resulted in a shifted step function. The CMC curve is calculated

by averaging the shifted step function for all queries. The CMC curve of the

proposed vehicle re-identification model is shown in Figure 4.10. The comparison

is made to the other vehicle re-identification baseline.

Figure 4.10: CMC Results Compared with Another Baseline (Li and Zhou, 2019)

From the figure, it is shown that the vehicle re-identification could achieve

second-best of the vehicle re-identification baseline. Furthermore, by using joint

loss function for vehicle re-identification model, it could achieve a well-performed

result and outperformed another baseline that only uses a single loss function.

In this project, the end-to-end performance of the AddInsight-Pipeline

also measured by the Frame Rate Performance of each implemented object

detection models. Table x shows a comparison of FPS for four different detectors,

DetectNet, RetinaNet, SSD, Faster R-CNN.

49

Image removed due to copyright restriction.

AddInsight-Vision Edge Infrastructure Deployment

Item DetecNet RetinaNet SSD Faster R-CNN
FPS 25 24.8 24 18-19
Power 30 W 30 W 30 W 30 W

Table 4.6: FPS Result of Four Different Object Detectors

Based on the FPS result, DetectNet outperformed other detectors. Specifically

for Faster R-CNN, it suffers the lowest FPS result since Faster R-CNN is a

two-stage detector which requires a longer time to process the detection.

4.5 AddInsight-Vision Edge Infrastructure Deployment

AddInsight-Vision will be deployed to the city of Launceston in Tasmania,

Australia. The current progress of AddInsight-Vision deployment plan is the

SAGE Automation team still prepare the remote-control feature to allow the

engineers to configure and monitor the performance of AddInsight-Vision. This

deployment aims to test AddInsight-Vision pipeline with the real-time situation

and projected to be finished before the end of 2020.

50

Chapter 5

Conclusion and Future Works

5.1 Research Findings and Outcomes

In this project, an end-to-end intelligent video system called AddInsight-Vision

is proposed as an implementation of the Intelligent Traffic System. AddInsight-

Vision is able to detect, track, and monitor object in the traffic scenes situation,

and gather the traffic information precisely. The AddInsight-Vision also

integrated with current AddInsight system where the traffic information is

able to be transmitted to AddInsight dashboard. The following results are

obtained based on the development of AddInsight-Vision:

1. A framework of intelligent video system development is presented. The

framework covers the process from determining the use-case of the project

to the deployment stage. The aim of this framework is to create effective

and efficient intelligent video system.

2. AddInsight-Vision, an intelligent video system based on stream processing

paradigm, is developed. AddInsight-Vision is the state-of-art of stream

processing that able to detect objects in traffic scenes with high accuracy.

Using RetinaNet as the base of object detection, the accuracy of AddInsight-

Vision to detect car and bus achieved 90% while maintaining well-performed

operation. AddInsight-Vision is also able to be deployed on edge, to allow

stakeholders to monitor traffic situation without the needs of high-end

hardware infrastructure.

3. A DPTI dataset is developed based on the traffic scenes video from the

South Australian Department of Planning, Transport, and Infrastructure.

51

Study Limitation

The dataset consists of 7180 images and 7180 labels that were used for

transfer learning and evaluation purposes.

4. An improved vehicle re-identification model is developed and outperformed

other models on the re-identification baseline. AddInsight-Vision vehicle

re-identification model is developed by implementing transfer learning

on Resnet-50 convolutional neural network. The proposed joint loss

function achieved 92% in the rank-5 accuracy of the cumulative matching

characteristic metric.

5.2 Study Limitation

1. Dataset

One of the limitations in the development of computer vision and deep

learning project is to choose a suitable dataset. In this project, only

two datasets were used, DPTI dataset and Ve-RI dataset. The datasets

contain less ground truth label for several class such as trucks, bicycle and

motorcycle, than other class. Thus the resulted transfer learning of these

classes suffered low accuracy.

2. The stream processing pipeline

The AddInsight-Vision is developed using Deepstream SDK from NVIDIA.

The SDK might not be able to be implemented in the embedded device

from other manufacturers.

3. Source Code

Due to the nature of this project is an industrial project, AddInsight-Vision

source code is not publicly accessible.

5.3 Future Works

1. Integration of Vehicle Re-Id

The future work for AddInsight-Vision is to integrate vehicle re-id model

52

Future Works

to the pipeline. The integration must consider the dataset since the vehicle

re-id models specifically designed for multi-camera integration.

2. On-the-Fly System

The deployment of AddInsight-System to the edge requires real-time

transfer learning and evaluation. Based on this condition, the future

work of AddInsight-Vision will focus on enabling real-time transfer learning

without using additional hardware.

3. The ethical concern of Intelligent Video System Surveillance of large traffic

system and the large crowd must consider the ethical concern of targeted

object. One of the suggestions is to create a filter to blur the face of person

or pedestrian.

53

Bibliography

[1] Adeleke, O.O., Idoko, S., Kolo, S.S., Anwar, A.R., Sijuwola, O.O., Akinola,

O., 2019. Web-Based Advanced Traveller Information System for Minna

Metropolis, Nigeria. 1 15, 1026–1037.

[2] Anand, B., Barsaiyan, V., Senapati, M., Rajalakshmi, P., 2020. Region

of Interest and Car Detection using LiDAR data for Advanced Traffic

Management System, in: 2020 IEEE 6th World Forum on Internet

of Things (WF-IoT). Presented at the 2020 IEEE 6th World Forum

on Internet of Things (WF-IoT), pp. 1–5. https://doi.org/10.1109/WF-

IoT48130.2020.9221354

[3] Barbagli, B., Manes, G., Facchini, R., Manes, A., 2012. Acoustic Sensor

Network for Vehicle Traffic Monitoring 6.

[4] Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal

Speed and Accuracy of Object Detection. arXiv:2004.10934 [cs, eess].

[5] Chen, J., Ran, X., 2019. Deep Learning With Edge Com-

puting: A Review. Proceedings of the IEEE PP, 1–20.

https://doi.org/10.1109/JPROC.2019.2921977

[6] Dong, J., Wang, F., Yuan, B., 2013. Accelerating BIRCH for Clustering

Large Scale Streaming Data Using CUDA Dynamic Parallelism, in: Yin,

H., Tang, K.,

[7] Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (Eds.), Intelligent

Data Engineering and Automated Learning – IDEAL 2013, Lecture

Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 409–416.

https://doi.org/10.1007/978-3-642-41278-3_50

54

Bibliography

[8] Elliott, D., 2010. Intelligent video solution: A definition. Security 47.

[9] Fang, Y., Sun, L., Fu, H., Wu, T., Wang, R., Dai, B., 2016. Learning deep

compact channel features for object detection in traffic scenes, in: 2016

IEEE International Conference on Image Processing (ICIP). Presented at

the 2016 IEEE International Conference on Image Processing (ICIP), pp.

1052–1056. https://doi.org/10.1109/ICIP.2016.7532518

[10] Freund, Y., Schapire, R.E., 1997. A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting. Journal of Computer

and System Sciences 55, 119–139. https://doi.org/10.1006/jcss.1997.1504

[11] Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets robotics:

The KITTI dataset. The International Journal of Robotics Research 32,

1231–1237. https://doi.org/10.1177/0278364913491297

[12] Geng, M., Wang, Y., Xiang, T., Tian, Y., 2016. Deep Transfer Learning

for Person Re-identification. arXiv:1611.05244 [cs].

[13] Ghavami, S.M., 2020. A web service based advanced trav-

eller information system for itinerary planning in an uncer-

tain multimodal network. Geocarto International 35, 1553–1569.

https://doi.org/10.1080/10106049.2019.1583773

[14] Girshick, R., 2015. Fast R-CNN. arXiv:1504.08083 [cs].

[15] Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature

hierarchies for accurate object detection and semantic segmentation.

arXiv:1311.2524 [cs].

[16] Guerrero-Ibañez, J., Zeadally, S., Contreras Castillo, J., 2018. Sensor

Technologies for Intelligent Transportation Systems. Sensors 18, 1212.

https://doi.org/10.3390/s18041212

[17] Hermans, A., Beyer, L., Leibe, B., 2017. In Defense of the Triplet Loss for

Person Re-Identification. arXiv:1703.07737 [cs].

55

Bibliography

[18] Ibrahim, M.R., Haworth, J., Cheng, T., 2020. Understanding cities with

machine eyes: A review of deep computer vision in urban analytics. Cities

96, 102481. https://doi.org/10.1016/j.cities.2019.102481

[19] Intersection over Union (IoU) for object detec-

tion - PyImageSearch [WWW Document], n.d. URL

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-

iou-for-object-detection/ (accessed 11.16.20).

[20] Jeong, H., Choi, S., Jang, S., Ha, Y., 2019. Driving Scene Understanding

Using Hybrid Deep Neural Network, in: 2019 IEEE International

Conference on Big Data and Smart Computing (BigComp). Presented at

the 2019 IEEE International Conference on Big Data and Smart Computing

(BigComp), pp. 1–4. https://doi.org/10.1109/BIGCOMP.2019.8679323

[21] Kim, K.G., 2016. Book Review: Deep Learning. Healthc Inform Res 22,

351. https://doi.org/10.4258/hir.2016.22.4.351

[22] Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification

with deep convolutional neural networks. Commun. ACM 60, 84–90.

https://doi.org/10.1145/3065386

[23] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset,

J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., Ferrari,

V., 2020. The Open Images Dataset V4: Unified image classification, object

detection, and visual relationship detection at scale. Int J Comput Vis 128,

1956–1981. https://doi.org/10.1007/s11263-020-01316-z

[24] Lai, L., Suda, N., 2018. Enabling deep learning at the IoT edge, in:

Proceedings of the International Conference on Computer-Aided Design,

ICCAD ’18. Association for Computing Machinery, New York, NY, USA,

pp. 1–6. https://doi.org/10.1145/3240765.3243473

[25] Lee, K., Yim, K., Mikki, M.A., 2012. A secure framework of the

surveillance video network integrating heterogeneous video formats

56

Bibliography

and protocols. Computers and Mathematics with Applications, Ad-

vances in context, cognitive, and secure computing 63, 525–535.

https://doi.org/10.1016/j.camwa.2011.08.048

[26] Li, X., Zhou, Z., 2019. Object Re-Identification Based on Deep

Learning. Visual Object Tracking with Deep Neural Networks.

https://doi.org/10.5772/intechopen.86564

[27] Li, Y., Li, Y., Yan, H., Liu, J., 2017. Deep joint discriminative learning

for vehicle re-identification and retrieval, in: 2017 IEEE International

Conference on Image Processing (ICIP). Presented at the 2017 IEEE

International Conference on Image Processing (ICIP), pp. 395–399.

https://doi.org/10.1109/ICIP.2017.8296310

[28] Lienhart, R., Maydt, J., 2002. An extended set of Haar-like features for

rapid object detection, in: Proceedings. International Conference on Image

Processing. Presented at the Proceedings. International Conference on

Image Processing, p. I–I. https://doi.org/10.1109/ICIP.2002.1038171

[29] Lin, C., Tang, Y., 2011. Research and design of the intelligent surveillance

system based on DirectShow and OpenCV, in: 2011 International

Conference on Consumer Electronics, Communications and Networks

(CECNet). Presented at the 2011 International Conference on Consumer

Electronics, Communications and Networks (CECNet), pp. 4307–4310.

https://doi.org/10.1109/CECNET.2011.5768334

[30] Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2018. Focal Loss for

Dense Object Detection. arXiv:1708.02002 [cs].

[31] Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Hu, Z., Yan, C., Yang, Y., 2019.

Improving Person Re-identification by Attribute and Identity Learning. Pat-

tern Recognition 95, 151–161. https://doi.org/10.1016/j.patcog.2019.06.006

57

Bibliography

[32] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg,

A.C., 2016. SSD: Single Shot MultiBox Detector. arXiv:1512.02325 [cs].

https://doi.org/10.1007/978-3-319-46448-0_2

[33] Liu, X., Liu, W., Ma, H., Fu, H., 2016. Large-scale vehicle re-

identification in urban surveillance videos, in: 2016 IEEE International

Conference on Multimedia and Expo (ICME). Presented at the 2016

IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6.

https://doi.org/10.1109/ICME.2016.7553002

[34] Lowe, D.G., 2004. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision 60, 91–110.

https://doi.org/10.1023/B:VISI.0000029664.99615.94

[35] MARIED, E., ELDALI, M., ZIADA, O., Baba, A., 2017. A Literature

Study of Deep learning and its application in Digital Image Processing.

https://doi.org/10.13140/RG.2.2.17403.72480

[36] McGowen, P., Sanderson, M., 2011. Accuracy of Pneumatic Road Tube

Counters. Presented at the Institute of Transportation Engineers (ITE).

Western District Annual Meeting, 2011.

[37] Nikouei, S.Y., Chen, Y., Song, S., Xu, R., Choi, B., Faughnan, T.R., 2018.

Real-Time Human Detection as an Edge Service Enabled by a Lightweight

CNN, in: 2018 IEEE International Conference on Edge Computing (EDGE).

Presented at the 2018 IEEE International Conference on Edge Computing

(EDGE), pp. 125–129. https://doi.org/10.1109/EDGE.2018.00025

[38] NVIDIA, 2020. DeepStream SDK 5.0. for NVIDIA dGPU and Jetson 13.

[39] NVIDIA, 2016. DetectNet: Deep Neural Network for Object De-

tection in DIGITS [WWW Document]. NVIDIA Developer Blog.

URL https://developer.nvidia.com/blog/detectnet-deep-neural-network-

object-detection-digits/ (accessed 11.10.20).

58

Bibliography

[40] Peng, J., Nan, Z., Xu, L., Xin, J., Zheng, N., 2020. A Deep Model for Joint

Object Detection and Semantic Segmentation in Traffic Scenes, in: 2020

International Joint Conference on Neural Networks (IJCNN). Presented at

the 2020 International Joint Conference on Neural Networks (IJCNN), pp.

1–8. https://doi.org/10.1109/IJCNN48605.2020.9206883

[41] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look

Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs].

[42] Ren, S., He, K., Girshick, R., Sun, J., 2016. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. arXiv:1506.01497

[cs].

[43] Ren, X., Wang, D., Laskey, M., Goldberg, K., 2018. Learning Traffic

Behaviors by Extracting Vehicle Trajectories from Online Video Streams,

in: 2018 IEEE 14th International Conference on Automation Science

and Engineering (CASE). Presented at the 2018 IEEE 14th International

Conference on Automation Science and Engineering (CASE), pp. 1276–1283.

https://doi.org/10.1109/COASE.2018.8560597

[44] Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., 2009. The Case for

VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing 8,

14–23. https://doi.org/10.1109/MPRV.2009.82

[45] Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for

Large-Scale Image Recognition. arXiv:1409.1556 [cs].

[46] Singh, B., Gupta, A., 2015. Recent trends in intelligent transportation

systems: a review. J. Transp. Lit. 9, 30–34. https://doi.org/10.1590/2238-

1031.jtl.v9n2a6

[47] Stephens, R., 1997. A survey of stream processing. Acta Informatica 34,

491–541. https://doi.org/10.1007/s002360050095

59

Bibliography

[48] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethink-

ing the Inception Architecture for Computer Vision. arXiv:1512.00567

[cs].

[49] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A Survey

on Deep Transfer Learning. arXiv:1808.01974 [cs, stat].

[50] Taylor, B., Marco, V.S., Wolff, W., Elkhatib, Y., Wang, Z., 2018.

Adaptive deep learning model selection on embedded systems, in: Pro-

ceedings of the 19th ACM SIGPLAN/SIGBED International Confer-

ence on Languages, Compilers, and Tools for Embedded Systems -

LCTES 2018. Presented at the the 19th ACM SIGPLAN/SIGBED In-

ternational Conference, ACM Press, Philadelphia, PA, USA, pp. 31–43.

https://doi.org/10.1145/3211332.3211336

[51] Watcharapinchai, N., Rujikietgumjorn, S., 2017. Approximate license

plate string matching for vehicle re-identification, in: 2017 14th IEEE

International Conference on Advanced Video and Signal Based Surveillance

(AVSS). Presented at the 2017 14th IEEE International Conference

on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6.

https://doi.org/10.1109/AVSS.2017.8078538

[52] Ye, T., Zhang, Z., Zhang, X., Zhou, F., 2020. Autonomous Railway Traffic

Object Detection Using Feature-Enhanced Single-Shot Detector. IEEE

Access 8, 145182–145193. https://doi.org/10.1109/ACCESS.2020.3015251

[53] You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., Keutzer, K., 2018. ImageNet

Training in Minutes. arXiv:1709.05011 [cs].

[54] Zhang, X., 2017. Support Vector Machines, in: Sammut, C., Webb, G.I.

(Eds.), Encyclopedia of Machine Learning and Data Mining. Springer

US, Boston, MA, pp. 1214–1220. https://doi.org/10.1007/978-1-4899-7687-

1_810

60

Bibliography

[55] Zhang, Y., Liu, D., Zha, Z., 2017. Improving triplet-wise training of

convolutional neural network for vehicle re-identification, in: 2017 IEEE

International Conference on Multimedia and Expo (ICME). Presented at

the 2017 IEEE International Conference on Multimedia and Expo (ICME),

pp. 1386–1391. https://doi.org/10.1109/ICME.2017.8019491

[56] Zhou, Y., Chen, Z., Huang, X., 2015. A pipeline architecture for

traffic sign classification on an FPGA, in: 2015 IEEE International

Symposium on Circuits and Systems (ISCAS). Presented at the 2015

IEEE International Symposium on Circuits and Systems (ISCAS), pp.

950–953. https://doi.org/10.1109/ISCAS.2015.7168792

61

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Objectives and Contribution
	Outline

	Literature Review
	Background Knowledge
	Related Works

	System Design
	Stream Processing Architecture of AddInsight-Vision
	AddInsight-Vision Edge Computing Infrastructure
	AddInsight-Vision Object Detection Model
	AddInsight-Vision Vehicle Re-Identification Model

	System Evaluation
	AddInsight-Vision System Integration
	Object Detection Transfer Learning
	Vehicle Re-Identification Transfer Learning
	System Evaluation
	AddInsight-Vision Edge Infrastructure Deployment

	Conclusion and Future Works
	Research Findings and Outcomes
	Study Limitation
	Future Works

	Bibliography

