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ABSTRACT 

Industry 4.0, the digital transformation of industrial production, seeks to address production’s 

performance challenges. It aims to optimize industrial production through technological and 

organizational changes that integrate the value chain end-to-end, inducing smartness along 

the chain. The internationalization of the production value chain through globalization 

increased the technological, socio-economic, and legal requirements of operating the 

enterprises that form the chain. It increased the variability in the economic environment of 

production and complicated the social license requirements. The pace of technological 

change, growing sustainable business advocacy, and requirements for product 

customization also created challenges that further increase the complexity of industrial 

production. Furthermore, the COVID-19 pandemic underscored the importance of flexibility 

of production infrastructure during crises.  

Existing literature remains limited in capturing the complexity of the industrial digital 

transformation process and its value proposition. To advance the practice of industrial digital 

transformation, this study addresses the overarching research question ‘what is the value 

proposition of Industry 4.0, and how is it delivered’? The question is addressed by modelling 

the industrial digital transformation process and determining the contribution of digital 

transformation maturity to production performance. In addressing this issue, this study uses 

a mixed-method approach. It first uses qualitative research to develop a model for the 

Industry 4.0 process and its value proposition in organizations - how Industry 4.0 integrates 

digital technology into the production process, develops smart enterprise organizational 

capabilities, and delivers performance benefits. It then robustly tests this model with 

production managers using quantitative research. The results guide managers in creating 

digital transformation strategies for their organizations. 
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The study makes theoretical contributions to the digital transformation literature by providing 

a model for driving digital transformation maturity in production organizations and 

establishing its performance impacts across the value chain. The study integrates and 

extends the systems, maturity modelling, and dynamic capability theories. This study’s 

outcomes are important in assisting organizations in assessing their level of digital 

transformation maturity to progress their Industry 4.0 journey. 

The study finds that technology use builds smartness across the value chain – factory, 

supply chain, and products. Furthermore, the study provides insights into the value delivery 

potential of different value chain segments. It established that digital transformation 

investment in the factory has higher value potential than the supply chain and products. It 

provides a deeper context to investments in industrial digital transformation and guides 

management strategy.  

The study also provides practical implications for managers. It establishes that Industry 4.0 

fosters the smartness of organizations. Smartness equips the enterprise with the flexibility 

to respond robustly to challenges of economic variability, customization, and increasing cost 

of the social license of doing business. The nuances of smartness across the value chain 

give managers levers to craft strategies targeting their specific organizational priorities, 

including productivity, sustainability, customer experience, and worker safety. 

  



 

vii 

DECLARATION 

I certify that this thesis does not incorporate without acknowledgment any material 

previously submitted for a degree or diploma in any university; and that to the best of my 

knowledge and belief it does not contain any material previously published or written by 

another person except where due reference is made in the text. 

 

Signed.................................................... 

Date.....30th May 2023............................ 

  



 

viii 

ACKNOWLEDGEMENTS 

I want to start by thanking God for my life and the grace I have enjoyed in conceiving and 

completing this work. 

My gratitude to my wife, Jola-Ade, and our son, Irewole, for their sacrifice and generosity 

throughout this process is impossible to quantify. If it were possible, their names should 

appear on the certificate. Their encouragement meant everything to me during this 

endeavour. 

I appreciate my lead supervisor, Professor Giselle Rampersad, to whom I will always be 

indebted. She helped me conceive the ideas for this research and guided it to completion. 

Her intellectualism was always inspiring, and her exercise of the duty of care is totally 

selfless. 

I am grateful to my associate supervisor, Associate Professor Russell Brinkworth. He 

introduced a lot of rigour to my work, consistently challenged my thought process, and 

offered expert guidance. He leaves an indelible imprint on me as a researcher. 

I have lots of gratitude for Professor Karl Sammut and Dr David Hobbs. They generously 

contributed their time and expertise to my study, reviewing my work, giving feedback, and 

providing counselling. Professor Sammut and Dr Hobbs sat on my review panels, helping to 

drive the process to completion. 

I appreciate my parents and siblings for their help and support throughout this process, my 

family has been an unbelievable pillar, and I am blessed to belong. 

I acknowledge the support of the Australian Government Research Training Program 

Scholarship that covered the tuition for my studies. I am very grateful. 



 

ix 

I dedicate this thesis to the memory of my late father, Olayinka Tony Abiodun, C.Eng., who 

passed on as I was finishing. I would not have done this without him. RIP. 

 

LIST OF FIGURES 

Figure 1-1 - Theory integration .......................................................................................... 11 
Figure 1-2 - Thesis plan ..................................................................................................... 17 

Figure 2-1 - Industry 4.0 Conceptual Framework ............................................................... 40 

Figure 3-1 - Smart system ................................................................................................. 67 
Figure 4-1 - Industry 4.0 conceptual model for organizational performance enhancement 92 

Figure 5-1 - IDT value path ................................................................................................ 98 

Figure 5-2 - Conceptual model developed in this study ................................................... 110 
Figure 5-3 - Research results .......................................................................................... 120 

Figure 6-1 - Integrated industrial digital transformation (IDT) framework ......................... 127 

 

LIST OF TABLES 

Table 2-1 - Participant’s profiles ........................................................................................ 32 

Table 2-2 - Research factors ............................................................................................. 46 
Table 3-1 - Smart systems characteristics in literature ...................................................... 58 

Table 3-2 - Participant’s responses ................................................................................... 61 

Table 3-3 - Analysis of responses ...................................................................................... 62 
Table 3-4 - Smart system classification ............................................................................. 66 

Table 4-1 - Industry 4.0 value creation in literature ............................................................ 77 

Table 5-1 - Maturity factors measurement ....................................................................... 112 
Table 5-2 - Organizational factors measurement ............................................................. 112 

Table 5-3 - Summary of responses .................................................................................. 114 

Table 5-4 - Factor loadings of congeneric model ............................................................. 115 
Table 5-5 - Reliability measure ........................................................................................ 115 

Table 5-6 - Validity measure ............................................................................................ 117 

Table 5-7 - Goodness-of-fit measures ............................................................................. 118 
Table 5-8 - Results .......................................................................................................... 119 

Table 5-9 - Key managerial implications .......................................................................... 123 



 

1 

1 INTRODUCTION 

1.1 Overview 
From pandemic to war, surviving crises demands flexibility in production infrastructure (Ho 

et al., 2022; Okorie et al., 2020). A commonality between the second world war (WWII) and 

the COVID-19 pandemic is the government's use of emergency powers to mandate 

repurposing production resources (Bender, 2020; Donnelly, 2020; Vergun, 2020). However, 

while some manufacturers achieved actual repurposing of plants in relatively quick periods 

in the COVID-19 scenario, new plants generally had to be built during WWII. Focusing on 

the automotive industry, which was heavily impacted in both scenarios, automotive 

manufacturers repurposed plants, sometimes in days, to produce ventilators and other 

essential healthcare products such as masks and hand sanitizer, which had become critical 

for public health (Liu et al., 2021). However, during WWII, the Chrysler-owned Dodge had 

to build the Dodge Chicago Aircraft Engine Plant, which built engines for B29 Bomber aircraft 

between 1942 and 1944 (Bailey, 1945). Similarly, Ford’s Willow Run, also known as Air 

Force Plant 31, its manufacturing facility for the B24 Liberator aircraft, was built between 

1940 and 1942 (Duford, 1997).  

The capacity to repurpose production facilities requires a high degree of flexibility (Ho et al., 

2022; Okorie et al., 2020). Industry 4.0, the digital transformation of industrial production, 

has been recognized as a significant factor in successfully repurposing production 

infrastructure during the COVID-19 pandemic (Malik et al., 2020; Okorie et al., 2020). 

Industry 4.0 enhanced the flexibility of production systems through smart functionalities like 

additive manufacturing (Kumar, 2018) and self-organization (Qin & Lu, 2021). This flexibility 

is essential for the current and future socio-economic, environmental and political challenges 

posed to industrial production performance. 



 

2 

Industry 4.0 is the digital transformation that spans the entire production value chain 

(Bartodziej, 2017). In the evolution towards Industry 4.0, front-end business aspects of the 

production value chain used information technology (IT), resulting in the application of 

enterprise information systems like Enterprise Resource Planning (ERP) systems in 

industrial production (Mo, 2009; Upton & McAfee, 2000). Industry 4.0 extended this by 

employing advanced technologies to digitalize the operating technologies (OT) (or machine 

parts), facilitating the integration of the physical and virtual elements of the production 

enterprise (Ghobakhloo & Iranmanesh, 2021). It results in smart, high-performing production 

value chains (Lichtblau et al., 2015; Schuh et al., 2017). Industry 4.0 underpins the fourth 

industrial revolution (Schwab, 2017), based on cyber-physical integration (integrating 

physical and virtual elements of production) to create production enterprises that are digitally 

integrated end-to-end (BMBF, 2014; Lichtblau et al., 2015). Developing Industry 4.0 

capabilities is complex (Szalavetz, 2019); it is characterized by interactions among diverse 

technological, operational, and functional factors, requiring significant technology-driven 

organizational change. Justifying the endeavor is also nontrivial due to the difficulty in 

evaluating the return on investment (Almeida et al., 2022). This thesis seeks to contribute to 

addressing strategic planning challenges for Industry 4.0 in industrial organizations by 

establishing its value proposition by determining the impact of Industry 4.0 maturity on 

organizational performance. 

The resultant production system of Industry 4.0 is socio-technical, comprising technical and 

non-technical entities, including people, materials, resources, technologies, processes, and 

organizations (Lichtblau et al., 2015; Sony & Naik, 2019, 2020). The end-to-end integration 

invokes the principle of systems theory, pursuing optimization based on systemic 

consideration of the whole to achieve results that would be impossible with a reductionist 

improvement of parts (Bar-Yam, 2018). Prior digital transformation of aspects of the 

enterprise with information technologies left the machine parts analog and isolated from 
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other parts (Borlase et al., 2017; Garimella, 2018). Industry 4.0 uses cyber-physical 

integration to enable this holistic system integration and optimization (Saldivar et al., 2015; 

Salkin et al., 2018). This integration facilitates smartness, the system optimization method 

based on applying intelligence (Zuehlke, 2010). Industry 4.0 is, therefore, the optimization 

of the production enterprise using smartness. Researchers have argued that firms do not 

know where to start this transformation journey and hence cannot chart the path to expected 

outcomes effectively and efficiently (Machado et al., 2019). This study uses qualitative and 

quantitative research to develop and validate a model based on empirical evidence to chart 

the path from technology to business value delivery and facilitate value creation through 

Industry 4.0. 

1.2 Background 
Industrial organizations could function with an entirely new paradigm – smart production, by 

integrating advanced digital technologies with production processes - Industry 4.0 or the 

fourth industrial revolution (BMBF, 2014; Lichtblau et al., 2015). Industry 4.0 has been 

understood in different contexts. It is often viewed as the Fourth Industrial Revolution (4IR), 

a global concept that describes the state of value creation in society in contrast to three prior 

industrial revolutions (Schwab, 2017). It has also described industrial digital transformation, 

a phenomenon of the 4IR which focuses on transforming industrial production processes 

using digitalization and constrains the value creation paradigm within industries and 

organizations (Ustundag & Cevikcan, 2017). Other perspectives of Industry 4.0, like the 

Industrial Internet of Things (IIoT) (Malik et al., 2021) and Industrial Internet (Sendler, 2018), 

are technological concepts focused on digital technologies as enablers of cyber-physical 

systems (CPS), integrating the physical and digital elements of production at a 

predominantly production process (sub-organizational) level. 

Each industrial revolution uses unique technological functions to transform the production 

system and improve performance. Machine power, automation, and information 
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management were used for production improvement from the first to the third revolution. 

Industry 4.0 uses smartness for system optimization; thus, smartness is central to it 

(Lichtblau et al., 2015). It seeks to induce or increase smartness in the factory (Radziwon et 

al., 2014), supply chain (Wu et al., 2016), and product (Nunes et al., 2017; Salkin et al., 

2018). Smartness is the function optimization quality of systems built on stimuli-

responsiveness and intelligence. Industry 4.0 uses smart functionalities to optimize decision-

making and automate production processes for performance improvement in production 

systems. Smartness, including in engineered systems, is difficult to characterize or measure 

(Alter, 2019). It is noteworthy that smartness is referenced broadly and has been used to 

describe devices, processes, infrastructure, businesses, and even people. A better 

understanding of smartness with a definitive framework for developing smart systems will 

advance the cause of industry 4.0. One of the objectives of this research is a smart systems 

specification that facilitates an Industry 4.0 maturity model built on assessing enterprise 

smartness as an outcome measure. 

Optimizing the value chain entails achieving outcomes on a range of metrics that address 

the multiple objectives of the industrial value chain stakeholders. While traditionally, 

performance measures have focused on commercial metrics, the rise in environmental 

awareness elevates the focus on sustainability (Baier et al., 2020). The underlying principle 

is for metrics to be based on broad considerations of stakeholders and their interests in the 

enterprise’s activities (Harrison & Wicks, 2013; Laplume et al., 2008). This research 

determines Industry 4.0’s performance metrics that reflect the holistic implications of end-

to-end digital transformation of Industrial value chains for its stakeholders.  

Organizations develop capabilities for market differentiation and competitive advantages 

(Teece, 2019; Teece et al., 1997). Therefore, managers must link Industry 4.0 to its value 

proposition and embed it in the firm’s business and technology strategies. Industry 4.0 is 

experienced in the production enterprise as a set of capabilities. The Industry 4.0 challenge 
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involves developing and managing these capabilities. Measurability enables management 

(Drucker, 2012; Earll et al., 2000): yet capabilities are challenging to measure. The lack of 

proven methods for quantifying existing capabilities, setting the desired target state, and 

modeling the roadmap between the two positions is also a challenge that maturity models 

address (O'Donovan et al., 2016). This study develops an appropriate Industry 4.0 maturity 

model to facilitate its measurement and evaluate its value proposition. 

1.3 Theoretical foundation 
The study integrates systems theory, dynamic capabilities theory, and maturity modeling to 

advance the literature on digital transformation. 

1.3.1 Systems theory 

Systems are a collection of connected components, considered a holistic entity that 

produces more value than the sum of its parts (Bar-Yam, 2018; Simon, 1991; Teece, 2018). 

Systems address the collective functionality of components to achieve objectives in ways 

that individual components cannot, and as such, they represent the value proposition of 

complexity (Sturmberg et al., 2014). Systems pervade our environments. Living organisms 

are systems comprising subsystems including circulatory, respiratory, nervous, and other 

systems. Organisms in large numbers form an ecosystem which itself is a system. Social 

environments consist of systems such as transportation which comprises components 

functioning collectively to move people and materials around, and healthcare systems 

comprising professionals, infrastructure, and technologies to address the healthcare needs 

of people. Ultimately, production enterprises are systems that transform materials into 

products. 

By integrating the production organization, end-to-end, Industry 4.0 is leaning into the 

theoretical foundation of systems. In this vein, we could derive previously unattainable value 

if we consider the value chain as a whole and avoid production in reductionist terms. 
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Systems theory posits that systems consist of components that function with the principle of 

holism – the whole is greater than the sum of its parts (Kast & Rosenzweig, 1972; Von 

Bertalanffy, 1972). Research has established that the quality of information transparency is 

a function of the degree of integration with impacts on productivity (Čuš-Babič et al., 2014). 

The whole production enterprise has better information transparency and hence, better 

potential for smartness (Brosze et al., 2009), supply chain coordination, and financial 

performance (Kumar & Ganguly, 2021) than its parts. Therefore, the expectation of 

production performance improvement because of digital transformation is premised on the 

benefits of the holistic setup of the production enterprise as posited by systems theory. 

1.3.2 Dynamic capabilities 

Capabilities are the practical contribution of Industry 4.0 to organizations (Szalavetz, 2019), 

as the value of technologies is the capabilities they enable. Organizational capabilities 

describe the organization’s capacity to execute specific functions (Collis, 1994). They are 

organized, repetitive collections of routines (Dosi et al., 2000; Winter, 2003). They embed 

knowledge assets of the organization and deploy its resources with considerable efficiency 

(Amit & Schoemaker, 1993; Dutta et al., 2005a; Wang & Ahmed, 2007), contributing to 

organizational outcomes by enabling the conversion of inputs into outputs (Dutta et al., 

2005a).  

Strategic management researchers acknowledge that the holy grail of organizational value 

is guaranteeing continuous future revenue or sustainable competitive advantage (Teece, 

2014). It is not sufficient for capabilities to support the current success of the enterprise: 

capabilities that would facilitate future success are required. The existence of such 

capabilities is contentious because competitive advantages built on capabilities are 

vulnerable to the actions of other players, and any claims of sustainability are questionable 

(Collis, 1994).  
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Strategic management literature proposes different approaches to building competitive 

advantage; they include firm positioning (Porter, 1985), resources (Barney, 1991), and 

capabilities (Teece et al., 1997). These aspects are not mutually exclusive as they involve 

developing assets with price inelasticity. Also, such approaches are susceptible to changes 

external to the firm, such as future technological developments and socio-economic 

pressures. Competitive advantage is not sustainable if it does not foster future viability. The 

Eastman Kodak Company (Lucas Jr & Goh, 2009) and Blockbuster Inc. (Gershon, 2013) 

are popular examples of firms that failed because of reliance on unsustainable competitive 

advantages. IBM, meanwhile, has survived many turbulences through adaptation. They 

have survived by navigating changes in product focus from their beginnings in mechanical 

tabulating (Yang et al., 2019). Their adaptability has been attributed to dynamic capabilities 

(Schoemaker et al., 2018). The dynamic capability concept was first introduced by Teece et 

al. (1997). It is a firm’s “ability to integrate, build, and reconfigure internal and external 

competencies to address rapidly changing environments” (Teece et al., 1997, p. 516). It 

differentiates organizational routines that confer the firm with the ability to address rapid 

changes in its environment, giving it a sustainable competitive advantage over ordinary 

capabilities. Dynamic capabilities achieve price inelasticity through VRIN  resources 

(Barney, 1991; Teece, 2018). VRIN is an acronym for valuable, rare, imperfectly imitable, 

and non-substitutable. They also achieve future-proofing capabilities through seizing, 

sensing, and transforming features (Kump et al., 2018). The learning capacity of dynamic 

capabilities is also highlighted (Collis, 1994).  

The value of Industry 4.0 is premised on its impact on production performance (BMBF, 

2014). The challenges addressed by Industry 4.0 predominantly affect factors outside of the 

production environment, including variability in the socioeconomic environment, rapidly 

evolving customer requirements and the escalating social license requirements for 

production industries (Aheleroff et al., 2019; Dequeant et al., 2016; Furstenau et al., 2020). 
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Organizational capabilities that do not address the dynamics of the production environment 

(non-dynamic capabilities) are thus unlikely to be sufficient. Digital transformation literature 

posits smartness as the intermediate capability induced in the production enterprise through 

digital transformation (Lichtblau et al., 2015). Furthermore, it exhibits the features of dynamic 

capabilities, i.e., sensing, seizing, and transforming through smart systems' stimuli 

responsiveness-based optimization mechanism (Nguyen et al., 2018; Samimi-Gharaie et 

al., 2018; Zhao et al., 2018). The utility of Industry 4.0 is thus based on its capacity to deliver 

a key dynamic capability (smartness) that produces production performance gain. 

1.3.3 Maturity modeling 

The capacity for measuring an entity improves its manageability (Drucker, 2012). Measuring 

confers an understanding of progress and facilitates inference of the impacts of activities. 

Quantifying Industry 4.0 is a complex issue due to the structural complexity of production 

systems and the lack of generally agreed metrics (Mourtzis et al., 2019). While capabilities 

are useful in deriving firm performance, they have been difficult to measure independently 

(Dutta et al., 2005a). Maturity models provide a means of measuring capability. They 

measure capabilities by evaluating the extent of evolution of the dimensions of the capability 

(Domingues et al., 2016).  

Maturity models define a maturity spectrum, which contains a logical, sequential growth path 

for each dimension of the target capability (Röglinger & Pöppelbuß, 2011). The movement 

along the path reflects the degree of sophistication or development of the capability or the 

particular component being evaluated (Bititci et al., 2014; Nikkhou et al., 2016). 

Existing maturity models are not universally accepted. They have been criticized for a 

tendency to arbitrariness in design. They are also thought to lack empirical basis in core 

structural specifications frequently (Blondiau et al., 2013), and there can be misalignment 
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between the model and reality, which affects its prediction accuracy (Dikhanbayeva et al., 

2020; Mittal et al., 2018).  

The application of maturity models usually involves the evaluation of efforts with the implicit 

assumption that efforts translate to outcomes. An analysis of data from Dikhanbayeva et al. 

(2020), which compared the major Industry 4.0 maturity models, reveals they predominantly 

comprise effort-based measures that evaluate inputs to the production processes with an 

implicit assumption of outcomes. Given that task completion does not guarantee outcomes 

(Martens et al., 2018), effort measures-based models are skewed to effort rather than 

outcomes. Therefore, this study expands the underpinning theory of maturity models by 

incorporating outcome measures. It seeks to improve the practical utility of Industry 4.0 

maturity models by developing a model that evaluates enterprise smartness – the 

intermediate capability outcome of embedding Industry 4.0 technologies in the 

organization’s processes. It also seeks to improve the model's empirical validity by deriving 

the factors (technology use and enterprise smartness), through qualitative research. Thus, 

avoiding design arbitrariness and misalignment between model and reality. 

1.3.4 Digital transformation 

Digital transformation (DX) involves digitalizing business processes with technologies to 

improve outcomes (Westerman et al., 2011). DX predates Industry 4.0. The third industrial 

revolution was based on extensive information technologies (IT) deployments, digitally 

transforming aspects of the production organization with enterprise information 

(Greenwood, 1997). Industry 4.0, however, extended digital transformation to parts of the 

enterprise that previously remained analog, i.e., operating technologies (OT) (Garimella, 

2018; Hicking et al., 2021). Industry 4.0 equips machines and devices with sensing and 

actuating functionalities, building a hierarchical structure of digital functionalities from the 

shop floor to enterprise information systems (Zuehlke, 2010). OT digitization enables IT-OT 

integration, facilitating the complete digitalization of production processes and end-to-end 
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integration of the enterprise (Garimella, 2018; Hicking et al., 2021; Thames & Schaefer, 

2016).  

The influence of digital transformation is profound. The influence can be observed from 

different viewpoints. The first viewpoint is from outside the organization; it changes how 

customers interact with the organization and its products. From within the organization, it 

changes business processes and organizational structure. Thirdly, it changes business 

models – how a business creates and delivers value (Morakanyane et al., 2017; Ziyadin et 

al., 2019). DX’s adoption of disruptive technologies increases productivity, value creation, 

and social well-being (Ebert & Duarte, 2018). It can initiate profound, fundamental changes 

in how humans work, live, and socially organize (Gale & Aarons, 2018). 

Digital transformation planning involves evaluating the current state, envisioning the target 

state, and mapping the path from the current state to the target state in a transformation 

plan (Albukhitan, 2020). Due to increased complexity, the extension of transformation 

beyond the scope of front-end business processes to the entire value chain increases the 

challenges of strategizing and value realization. Developing Industry 4.0 capabilities is a 

complex process that represents a significant challenge to organizations exploring the 

transformation journey (O'Donovan et al., 2016). This study explores the implication of 

Industry 4.0 – digital transformation scoped to span the entire value chain – for the 

production enterprise.  

Technology-enabled end-to-end integration of the production value chain implies 

connectivity that extends beyond organizational boundaries, creating a digital enterprise 

larger than a physical organization with more comprehensive information transparency 

(Shukor et al., 2021). Systems theory posits that a holistic consideration of the system 

produces outcomes not achievable by its parts in a reductionist mode (Bar-Yam, 2018). The 

digital enterprise, indicative of the holistic production system, is thus capable of performance 
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outcomes not achievable in the physical production organization, representing a part of the 

value chain. This study aims to explore the value proposition of the digital enterprise by 

determining the relationship between digital transformation maturity of industrial producers 

and performance outcomes. According to Dutta et al. (2005a), capabilities are intermediate 

outcomes in the input-output system. Capabilities are also indicative of the value potential 

of systems. Industry 4.0 represents an input-output system with technology inputs and 

performance outputs (Büchi et al., 2020; Dalenogare et al., 2018; Lin et al., 2019). 

Smartness is the capability developed as an intermediate outcome between integrating 

technology in production processes and the performance gains experienced in such 

enterprises (Lichtblau et al., 2015). By establishing the relationships between technology 

use, enterprise smartness, and performance in industrial production, this study will establish 

the value proposition of industrial digital transformation and significantly contribute to the 

digital transformation literature. 

 

Figure 1-1 - Theory integration 

Figure 1.1 depicts the integration of the theoretical foundations with Smartness, the central 

concept of the research. Digital transformation provides the technological enablement for 

smartness through digitalization and integration of production elements. System theory 

inspires the design of Industry 4.0 production systems for value delivery by integrating the 

entire value chain into a holistic system. System theory holds that a holistic consideration of 
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systems is capable of value optimization not possible in a reductionist approach. The holistic 

approach culminates in smartness through data and information transparency. Maturity 

modelling facilitates the evaluation of smartness as a measure of Industry 4.0 capability 

development and dynamic capabilities theory explains how smartness creates 

organizational value for industrial production.  

1.4 Research Question and Objectives 
Industry 4.0 is now an important component of production performance improvement 

strategies (Lee & Trimi, 2021) for its capacity to address the challenges of variability in the 

production environment, the requirement for greater sustainability of production and the 

need for product customization (BMBF, 2014; Ghobakhloo, 2020; Jiao et al., 2021; Prause, 

2015; Tripathi et al., 2021). The academic discussion on the subject, however, identifies 

gaps that require addressing, including: 

• The continued need for more tools and methods. Studies identified that the journey 

from concept development to value delivery in Industry 4.0 is challenging and 

requires improved tools, methods, and frameworks (Machado et al., 2019). There is 

also a low level of industry adoption of existing maturity and development models, 

suggesting a need for further developments that better address the practical realities 

of Industry 4.0 (Felch et al., 2019).  

• The need for systems orientation – Industry 4.0 attempts to use a systemic approach 

to improve production performance. By integrating the production value chain through 

CPS, it attempts to achieve performance optimization through a holistic consideration 

of the production enterprise as against a reductionist approach (Fatorachian & 

Kazemi, 2021; Ghadge et al., 2020). However, many approaches to its 

implementation are still reductionist in nature as illustrated by the tendency to 

measure progress based on technology impacts in aspects of the value chain 



 

13 

(Dalenogare et al., 2018; Qader et al., 2022; Szász et al., 2020). An Industry 4.0 

framework that embraces systems approach end-to-end is therefore necessary. 

• The end-to-end integration of the value chain through CPS is a common narrative for 

Industry 4.0. However, implementation in practice is often fragmented across the 

value chain. It requires digitalizing and transforming aspects of the value chain over 

a significant period. An understanding of the impacts of the different aspects of 

Industry 4.0 transformation process on across the value chain is necessary for an 

efficient transformation process. 

• While the digital transformation literature posits that there is an expectation of 

smartness as an intermediate product of Industry 4.0 (Butner, 2010; Chen et al., 

2018; Schmidt et al., 2015; Wu et al., 2016), necessary for its performance effect, it 

does not provide a consistent understanding of the term (Alter, 2019). Its presentation 

in aspects of literature as a subjective idea of quality also makes it difficult to measure, 

manage and develop with diminished usefulness in the context of systems. It is 

therefore necessary to develop a conceptual framework for smartness that facilitates 

its development and measurement. 

While Industry 4.0 represents a specific context of digital transformation or industrial digital 

transformation (IDT), this thesis uses the terminologies interchangeably. This thesis focuses 

on the role of Industry 4.0 in organizational performance. This research aims to facilitate 

digital transformation in organizations by answering an important strategic question: what is 

the value proposition of Industry 4.0 to industrial organizations? To explore the main 

research question, the study addresses the following related questions: 

1. How does Industry 4.0 create value? 

2. What are the organizational features that accompany industrial digital 

transformation? 
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3. What technological features play a role in Industry 4.0? 

4. What is the role of smartness in Industry 4.0? 

5. What is the extent to which technology drives smartness and smartness drives 

organizational performance in industrial production? 

The study addresses the main question by determining the impact of Industry 4.0 maturity 

on organizational outcomes. In addressing this research question, the following tasks were 

performed:  

1. Develop a conceptual framework for Industry 4.0  

a. Identify generalized Industry 4.0 technological features. 

b. Determine the characteristic organizational features of Industry 4.0. 

2. Define smart systems 

a. Classify smart systems.  

b. Identify smart systems characteristics and evaluation parameters.  

3. Create an Industry 4.0 business capability model  

a. Determine Industry 4.0 performance metrics  

b. Integrate technology, enterprise smartness, and performance measures in a 

model for Industry 4.0 value creation process. 

4. Evaluate the Industry 4.0 value proposition 

a. Build an Industry 4.0 maturity model based on outcome measures.  

b. Determine the impact of Industry 4.0 maturity on performance.  

1.5 Approach 
This thesis adopts a multi-method approach that combines qualitative and quantitative 

empirical methods (Brewer & Hunter, 1989). The multi-method approach is appropriate 

where an initial study is required to establish the hypotheses for a subsequent study, or a 

follow-up study is needed to test the results of a prior study (Wood et al., 1999). The 
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complementarity helps enhance the outcomes’ validity, a challenge in human-intensive and 

ICT-related research programs. The emergence of Industry 4.0 in Germany coincided with 

similar ideas being incubated in other territories, including the USA, the UK, and elsewhere 

in Europe, creating a vision with uncertain boundaries (Culot et al., 2020). The 

understanding of Industry 4.0 thus remains fragmented despite receiving significant 

attention. This study justifies investment in Industry 4.0 capabilities, answering why Industry 

4.0? To achieve this objective, it uses qualitative research to: 

• determine the parameters for assessing Industry 4.0 capabilities in organizations by 

conceptualizing Industry 4.0 and smartness  

• establish the performance metrics for exploring the benefits realization of Industry 

4.0.  

The qualitative phase explores the knowledge base within the industry, mining its 

information in natural language form for translation into theory. In this scenario, the 

participant’s expertise is key and semi-structured interviews have been found effective 

(Sargeant, 2012). Furthermore, they allow for exploring the unique depth of individual 

respondents’ expertise while maintaining consistent coverage across respondents 

(Saunders et al., 2009). Existential phenomenology is an approach that explores the lived 

experiences of practitioners for insight and theory development (Collingridge & Gantt, 2008). 

It is the philosophical foundation for the qualitative approach in this research project. 

According to Hermann et al. (2016), unlike the previous industrial revolutions observed ex-

post, the fourth revolution is managed against set targets by stakeholders. Furthermore, 

developments in digital transformation have been driven principally by industry actors 

(Verhoef et al., 2021). The industry knowledge base, therefore, represents a veritable source 

of information for theory development. The industry's role as the subject matter driver 

informs the study’s qualitative phase. Such scenarios are contextual, and It is implied that a 
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foundation of practical knowledge (distinct from theoretical and productive knowledge) 

(McKeon, 1941) is required for practical usefulness (Eisner, 1997). This foundation of 

practical knowledge is important as the study hopes to develop tools with practical relevance 

in industrial digital transformation. 

The quantitative research involved a survey of industrial producers, providing data for 

measuring their Industry 4.0 maturity and performance based on factors determined in the 

qualitative study. The quantitative phase of the research aims to validate the research 

framework developed in the qualitative phase and establish the IDT value proposition by 

establishing the relationship between Industry 4.0 maturity and organizational performance. 

Industry 4.0 maturity and organizational performance are both multivariate factors, and 

establishing causal relationships between multivariate factors in quantitative studies is 

appropriate for structural equation modeling (SEM) application (Elston et al., 2012, p. 495). 

SEM represents hypotheses as a model by relating measurement variables to latent 

variables and latent variables to each other, determining causal relationships (Byrne, 2001, 

p. 3; Díaz-Chao et al., 2015). By determining the detailed relationships between Industry 4.0 

maturity and organizational performance, the study aims to establish the value proposition 

of Industry 4.0.  

Figure 1-2 is the plan for the thesis. 
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1.6 Significance of study 
While Industry 4.0 has been conceptualized widely as the digital transformation of the end-

to-end production value chain for optimization (Lichtblau et al., 2015; Schuh et al., 2017), 

the outcomes of this study will provide further insights into the nature of this transformation 

and the justification for it. This study will make theoretical contributions to the Industry 4.0 

and digital transformation literature and practical contributions to the industrial digital 

transformation’s technical and management practices. Its theoretical contribution will enable 

the evaluation of Industry 4.0’s value proposition. It will further differentiate the value chain, 

determining the value proposition of Industry 4.0 in each segment. The maturity model to be 

developed in this study incorporates outcome measures in addition to the classic effort 

measures to improve the robustness of the Industry 4.0 maturity evaluation. This model 

classifies relevant technologies and relates them and enterprise smartness as building 

blocks for the Industry 4.0 production system and aligns the system with the organizational 

objectives it addresses. 

The study’s key implication for practitioners is tooling for aligning Industry 4.0 strategy with 

organizational goals. The conventional narrative for Industry 4.0 is the end-to-end 

Figure 1-2 - Thesis plan 
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transformation of the value chain. However, digital transformation is complex, involving 

complicated decision-making that managers find challenging (Szalavetz, 2019). This study’s 

outcomes will give managers useful inputs into strategy and planning investment decision-

making tasks. Similarly, the study will identify technological features critical for Industry 4.0. 

These will guide policymakers in setting research objectives and their prioritization. The 

study is also expected to identify the emerging potential for addressing socio-economic 

issues in wider operating environments of industrial production through digital 

transformation; these include the impacts on the physical environment, economic growth 

and the distribution of economic opportunities. These outcomes will provide important inputs 

into policy-making. 

1.7 Thesis structure 
The thesis consists of an introductory chapter, a core of four chapters reporting on the 

research approaches and results, and a conclusion chapter.  

Chapter 1 –  This is the introduction to the thesis. It lays out the background and identifies 

the research's theoretical foundations and objectives. It specifies the research approach and 

plan. 

Chapter 2 – This is the first of three chapters based on qualitative research. It addresses 

the lack of sufficient empirical validity of existing models and their failure to sufficiently mirror 

reality. It uses data from the semi-structured interviews of experts to develop a conceptual 

model for driving industry 4.0 capability development. It determined the technology features 

of IDT as intelligence, simulation, visualization, and remote interaction, data and information 

management, and stimuli responsiveness. It determined the organizational features as 

digitization, integration, production ecosystems, persistent customer integration, information 

transparency, data capabilities, and smartness. It established that Industry 4.0 creates value 
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through these features and integrates them into a framework for driving practical 

implementation. 

Chapter 3 – This chapter uses the data from the semi-structured expert interviews to define 

a framework for smartness comprising its key characteristics and distinct classes. The key 

characteristics are stimuli-responsiveness, intelligence, functionality, and optimization. 

Smart systems functionality is the mechanism for achieving its optimization goals and 

represents parameters for its qualitative appraisal. 

The findings of this chapter identify the parameters of smart systems for evaluating Industry 

4.0 maturity, which would inform the instrument later in the quantitative study (in Chapter 5). 

Chapter 4 – This chapter used qualitative research to model the Industry 4.0 value creation 

process in organizations. It builds on systems theory to present a high-level Industry 4.0 

enterprise architecture using business capability modeling. The architecture integrates 

technology, capabilities, and organizational performance, highlighting the mediating role of 

capabilities in translating technologies into organizational value. It determined four 

performance factors for Industry 4.0 (productivity, customer experience, sustainability, and 

safety). 

The study identified enterprise smartness as the Industry 4.0 organizational capability 

through which value is created. 

Chapter 5 – This chapter presents the quantitative phase of this research project to test the 

conceptual model developed in the previous chapters robustly. It aims to provide the link 

between technology and organizational value in Industry 4.0 and establish its value 

proposition. The chapter identifies the Industry 4.0 value path from technology use through 

the smart enterprise to organizational value. It uses factors developed in the qualitative 

research (technology use, enterprise smartness, and organizational outcomes). The 
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quantitative research uses a survey of 262 manufacturing managers to collect data on 

manufacturers and builds on and extends the Capability Maturity Model Integration (CMMI) 

framework to develop a model for measuring the factors. It then employs structural equation 

modeling (SEM) to determine the relationships between the factors. The study determines 

that technology use develops enterprise smartness which improves organizational 

performance. It determines that the path from technology use through production process 

smartness has stronger value potential than the path through supply chain smartness and 

product smartness. The study proposes that the value proposition of smart products is 

industry specific while smart production processes and smart supply chain leads to value 

irrespective of industry. The differentiated value path from technology use to organizational 

value provides input into organizational strategy. The study equips production managers 

with a valuable decision support tool for Industry 4.0 strategy formulation, maturity 

assessment, and evaluation of transformation initiatives.  

Chapter 6 – This is the conclusion chapter. It discusses the research project’s outcomes, 

the management and practical implications, and the theoretical contributions. It synthesizes 

the results and implications across the study into a global digital transformation model with 

a detailed reflection of the research outcomes on technology use, organizational features 

and capabilities, organizational performance, and management implications. This chapter 

also suggests future research directions emerging out of this project. 
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2 DRIVING INDUSTRIAL DIGITAL TRANSFORMATION 

Journal paper acceptance: This chapter was accepted for publication in the Journal of 

Computer Information Systems: Temitayo Abiodun, Giselle Rampersad & Russell 

Brinkworth (2022): Driving Industrial Digital Transformation, Journal of Computer 

Information Systems, DOI:10.1080/08874417.2022.2151526 The Student’s Contribution 

was the majority of the publication (95%), specifically research design, data collection, 

analysis, and writing. The supervisors had a guiding, reviewing, and editing role (5%). 

2.1 Abstract 
The fourth industrial revolution has increased focus on industrial digital transformation (IDT) 

for its industrial value creation potential. However, practical implementation continues to 

require improved support from tools and frameworks. This research develops an empirically 

based conceptual framework for IDT. The study utilizes semi-structured interviews with 

technology experts, building on and extending the dynamic capabilities theory as its 

theoretical foundation to identify how IDT uses technologies to create organizational value 

via smartness capability. The results identify four groups of technological features that 

support enterprise smartness (1. intelligence, 2. simulation, visualization, and remote 

interaction, 3. data and information management, and 4. stimuli responsiveness) and the 

organizational features that characterize IDT, including digitization, integration, persistent 

customer engagement, production ecosystems, data capability, information transparency, 

and smartness. The framework identifies that transformation results in organizational value 

creation. The study’s implication for professionals is to re-focus IDT strategy on developing 

value-creating capability in the enterprise. 

Keywords: digital transformation, smartness, Industry 4.0, capability development 
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2.2 Introduction 
Production organizations are pressed to optimize, in response to increasing requirements 

for sustainable business (Furstenau et al., 2020), changing needs of consumers (Aheleroff 

et al., 2019), and variability in the production environments, including through socio-

economic crises (Dequeant et al., 2016; Okorie et al., 2020). Industry 4.0 promises to 

address production optimization challenges through smartness, introducing autonomy and 

flexibility in production systems (Bartodziej, 2017; Fragapane et al., 2020). Applications 

include repurposing infrastructure for crisis response, mass customization of products (as 

production systems can handle a batch size of one), and autonomous response to 

disruptions in the production value chain. A convergence of technological developments 

enabled commercially viable cyber-physical systems and created an entirely new production 

phenomenon. The developments include innovations in sensors that miniaturized and 

reduced their power consumption, advancements in artificial intelligence, extended reality, 

cloud computing, and collaborative robotics. 

Industrial digital transformation (IDT), Industry 4.0, the Industrial Internet, and the Industrial 

Internet of Things (IIoT) are often used synonymously (Malik et al., 2021; Oztemel & Gursev, 

2020; Ustundag & Cevikcan, 2017). They are associated with the fourth industrial revolution 

(4IR), where industrial processes are digitally transformed by technologies that implement 

cyber-physical systems, integrating the production value chain and indicating smartness in 

the production enterprise (BMBF, 2014; Schuh et al., 2017). While the 4IR is about digital 

transformation, industrial revolutions are not generally about digital transformation. Industrial 

revolutions involve the emergence of new production paradigms based on technological 

developments. The first revolution was achieved using steam power to drive mechanical 

production functionalities (the factory). It moved production from being bespoke artisan-

driven into a predominantly uniform operation that could be accomplished faster by 

comparatively less-skilled workers (Crafts, 2011). The second revolution enabled mass 



 

23 

production using electrical power and electronic functionalities. The third revolution utilized 

information systems based on computer technologies to drive information-led production 

capabilities. The fourth uses cyber-physical systems (CPS) to enable smart production 

capabilities (Drath & Horch, 2014; Schwab, 2017). With each revolution, there is 

progressively less reliance on labor for the skill and intelligence required to perform tasks. 

Machines and devices have taken over more production functions. Also, with the advent of 

Industry 4.0 and the associated smart systems, capabilities for flexibility at scale in product 

design and production are now realizable. This flexibility at this scale was impossible in 

previous iterations, and producers can increasingly accommodate product customization 

requirements (Zhang et al., 2019) and even personalization (Wang et al., 2017). Product 

customization is in stark contrast to Henry Ford’s comment that customer could have their 

car in “any color so long as it is black” (Ford & Crowther, 1922, p. 72). Although there is 

some dispute as to if Ford’s comment was in jest, it does encapsulate the reduced flexibility 

and increased uniformity indicative of previous industrial revolutions. This study focuses on 

IDT as a generalized concept.  

The 4IR employs IDT to optimize the production value chain (Lichtblau et al., 2015; Nagy et 

al., 2018), and Industry 4.0 has been used synonymously with both 4IR and IDT (Gigova et 

al., 2019; Schwab, 2017). This study presents the IDT perspective, focusing on its 

organizational capability developing capacity (Szalavetz, 2019). IDT, as a capability 

development mechanism, represents a business value opportunity for organizations (Talaja, 

2012; Teece, 2019), which is the study’s focus. The study aims to explore the value creation 

process of IDT, determining the impact on organizations, including how they develop 

relevant capabilities. Furthermore, the lack of tools and formal models for coordinating the 

transformation process has been identified as playing a role in the challenges of developing 

IDT capabilities for organizations (Wang & Wang, 2022). The study further aims to develop 

a conceptual framework to aid the IDT process in organizations. The effectiveness of many 
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IDT models in practice is impacted by a poor reflection of reality (Mittal et al., 2018). Models 

should sufficiently represent reality because “the major epistemic virtue of successful 

models is their capacity to adequately represent specific phenomena or target systems” 

(Poznic, 2016, p. 1 ). Conversely, models should not be excessively abstract or complex to 

be overly cumbersome to implement correctly. This study contributes a model of IDT, with 

an empirical basis, derived from canvasing experts with a holistic view of optimizing the 

industrial value chain. This study’s model aims for simplicity of application while retaining 

sufficient fidelity to be impactful practically. It considers the essence of IDT and answers the 

what question by characterizing the enabling technologies and the functional attributes of 

the transformed production enterprise. 

Defining the IDT conceptual framework would benefit from identifying its technologies based 

on high-level functional attributes rather than individual listings. The specific set of 

technologies required is, however, not clearly defined or as obvious as in the earlier 

revolutions, i.e., first (steam power), second (electrical power), or third (computing) industrial 

revolutions (Xu et al., 2018). Furthermore, it is reasonable to expect the applicable 

technologies to evolve, given the pace of technological development and further 

development in industrial revolutions to Industry 5.0 and beyond (Østergaard, 2018; Xu et 

al., 2021). 

Therefore, this study aims to develop an IDT conceptual framework that answers the 

following questions: 

1. How does digital transformation create organizational value? - What are the feature 

developments within the organization in the process of IDT-related value creation? 

2. What are the key technology groupings relevant for IDT that facilitate avoidance of 

exhaustive listing of applicable technologies? 
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2.3 Literature Review 

2.3.1 Digital transformation 

Digital transformation (DX) is a process for increasing productivity, value creation, and social 

welfare by adopting disruptive technologies. It alters organizations by digitalizing business 

processes using information systems (Ebert & Duarte, 2018; Högberg & Willermark, 2022). 

Digitalization and digitization are used as synonyms in this study. They both refer to the 

conversion of analog entities to digital. While digitization applies to raw data, digitalization 

applies to more complex structures like business processes. Digitalization also refers to 

adopting digital technologies for socio-economic purposes (Brennen & Kreiss, 2016; 

Schumacher et al., 2016). Digital transformation alters the organizational structure to create 

more agile and responsive structures (Lee & Edmondson, 2017). The resultant organization 

is less hierarchical and siloed; it aims to enable a service brokerage orientation in multiple 

directions, enabling the flow of information and services across the enterprise. DX creates 

or promotes new influential roles (Singh et al., 2020) that encourage innovation and change. 

It changes the culture, incorporating higher risk-taking, collaboration, experimentation, and 

change acceptance (Kane, 2019). It changes its value creation processes (business model), 

replacing or augmenting products with services (servitization) (Kryvinska & Bickel, 2020) 

which is a source of longer-term competitive advantage (Linde et al., 2021) and exploiting 

organizational data assets for commercial value (Barrett et al., 2015). An important feature 

is transforming the mode of customer interactions with the organization’s services through 

digital channels (Curi & Casquino, 2022; Hansen & Sia, 2015; Mangalaraj et al., 2021). DX 

also has negative organizational impacts. It has increased employees’ anxiety about being 

replaced by machines (Rampersad, 2020), trust issues in virtual teams (Hacker et al., 2019), 

and employee change fatigue (Bruce & English, 2020; Nadkarni & Prügl, 2021) with mental 

health implications. The challenges create the latitude for improvement and the need for 

more research in the DX space. 
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Impacts of digital transformation on industries include improved productivity in 

manufacturing (Davis et al., 2015; Randhawa & Sethi, 2017), higher quality patient care and 

business efficiency in healthcare (Haggerty, 2017), improved access and new learning 

functionalities in education (Bilyalova et al., 2020), better product quality, higher productivity, 

improved working conditions and safer decisions in industrial production (Fonseca et al., 

2021), and stimulation of economic growth through smart cities (Tyagi et al., 2019).  

IDT is a unique form of DX, extending transformation across production value chains, end-

to-end, using cyber-physical systems (CPS) (Salkin et al., 2018). CPS bridges the 

information exchange gap between physical and virtual elements of production networks. It 

removes the constraint on information transparency and improves the organization in 

aspects such as productivity (Horvat et al., 2019), the ability to handle uncertainty 

(Rüttimann & Stöckli, 2016), and meet environmental and social responsibilities 

(Ghobakhloo et al., 2021). 

2.3.2 Dynamic capabilities 

Embedding digital technologies in industrial production processes enables new 

organizational capabilities; these capabilities are the basis for IDT’s value proposition 

(Szalavetz, 2019). Organizational capabilities are a collection of repeatable routines that 

enable it to execute specific functions, giving it the capacity to deliver value and transform 

its inputs into outputs (Collis, 1994; Dosi et al., 2000; Winter, 2003). Capabilities also 

represent intermediate outcomes for organizations as they transform inputs into outputs 

(Dutta et al., 2005a). 

The theory of dynamic capabilities has links to the theory on the Resource Based View 

(RBV) for the firm (Teece, 2018). Under RBV, an organization should identify and make use 

of resources that are valuable, rare, difficult to copy, and non-substitutable to gain 

competitive advantages and generate abnormal profits (Barney, 1991; Barney, 2001). 



 

27 

Dynamic capabilities further build on and extend RBV in versatile environments. Ordinary 

capabilities are not guaranteed to sustain an organization’s competitive advantage (Teece 

& Pisano, 2003). They are susceptible to factors external to the firm, including technological 

developments and strategic challenges from competing firms. Firms can sustain such 

advantages through dynamic capabilities that enable them to sense and seize emerging 

opportunities by transforming their resources (Teece, 2018). Furthermore, Teece (2018) 

argue that dynamic capabilities satisfy the requirements of valuable, rare, imperfectly 

imitable, and non-substitutable (VRIN) resources for competitive advantage, as defined by 

Barney (1991). 

Smartness is such a capability. It is created in industrial production by digital transformation 

through integrating the production value chain and enabling information transparency. The 

enterprise can sense and seize opportunities and transform its processes and resources 

through intelligence-backed stimuli responsiveness functionalities (Fragapane et al., 2020; 

Radziwon et al., 2014). 

This study proposes that IDT creates value for industrial organizations by generating 

enterprise smartness as a set of dynamic capabilities that enhance performance, including 

productivity, customer experience, product, and business model innovation, supply chain 

performance, sustainability, and occupational health and safety (Bragança et al., 2019; 

Fonseca et al., 2021; Goryachev et al., 2013; Sinha & Roy, 2020).  

2.3.3 Industrial Digital Transformation (IDT) conceptual framework 

Conceptual frameworks are useful in scientific studies. They present and narrate important 

factors, variables, and relationships that define a concept (Miles & Huberman, 1994). They 

are mechanisms for presenting complex entities. They provide lenses for addressing 

challenges related to that entity (Bordage, 2009). The approach to capability development 

is a key IDT challenge to industrial organizations (Lucato et al., 2019; Machado et al., 2019), 
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as such conceptual frameworks could serve an important purpose. Industry 4.0 maturity 

models are a rich source of IDT conceptualizations. Conceptualizations of IDT underlying 

maturity models are mostly linear (De Carolis et al., 2017; Ganzarain & Errasti, 2016; Leyh 

et al., 2016). They present IDT as developments on a single plane. They determine 

parameters that define IDT and whose graduation on a linear scale reflected the 

development of associated organizational capabilities. These models have been built 

around quantitative measures of management and technical competencies or sequentially 

graduated capabilities deemed to be dimensions of Industry 4.0 (De Carolis et al., 2017; 

Ganzarain & Errasti, 2016; Leyh et al., 2016; Lichtblau et al., 2015; Rong & Automation, 

2014; Schuh et al., 2017). These ideas illustrate simple, intuitive, and process-focused 

approaches. However, they are often not reflective of the realities of practical business 

scenarios (Mittal et al., 2018). 

An approach to developing an IDT conceptual framework is integrating existing technologies 

with IDT design considerations. Salkin et al. (2018) proposed a framework based on design 

principles identified by (Li et al., 2015). Design or architecture principles are critical to 

defining system architecture; they describe the essential aspects of the system design and 

provide the necessary guide for its management (Greefhorst et al., 2013). Principles relate 

the system’s high-level strategies to its practical design, ensuring its design and evolution 

track its objectives. They are critical for presenting the essence of system design (Greefhorst 

& Proper, 2011). The Salkin et al. (2018) model adopted the design principles of Li et al. 

(2015), including real-time data management, interoperability, virtualization, 

decentralization, agility, service orientation, and integrated business processes. 

Similarly, Zheng et al. (2021) integrated identified technologies with manufacturing company 

processes. This approach seeks to identify how technology creates practical value in 

advanced manufacturing and could present a pragmatic framework for industrial 

development. However, the lists of technologies, principles, and processes employed in 
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such models are not exhaustive. Consequently, a research process for deriving 

generalizable insights on IDT strategy and value proposition based on them is challenging. 

While the technologies are widely referenced in digital transformation literature, they 

acknowledged that the list is not exhaustive. Furthermore, the design principles are not 

universally agreed upon (Dikhanbayeva et al., 2020; Habib & Chimsom, 2019). 

This study is critical in addressing the gap in IDT conceptual frameworks in the digital 

transformation literature. The development of IDT-related organizational capabilities is 

challenging in practice, practitioners have difficulty determining the starting point and 

charting the course to value delivery, and the requirement for improved tools, methods, and 

frameworks remains (Machado et al., 2019). Furthermore, the low level of industry adoption 

of the maturity and development models based on existing conceptualizations suggests that 

further improvements that reflect the practical realities of Industry 4.0 scenarios are useful 

(Felch et al., 2019). Therefore, there is a need to take another look at the conceptualization 

of IDT with a sufficient representation of practical scenarios for business usefulness. The 

conceptualization should have empirical validity to support research activities and address 

the gap between digital technologies integration in production processes and industrial value 

creation.  

2.4 Research Method 
The methodology for the study comprises semi-structured expert interviews. Semi-

structured interviews are effective where the respondents have significant objective 

knowledge of the subject matter (McIntosh & Morse, 2015). The study follows the approach 

of existential phenomenology, exploring the experiences of members of a group to gain their 

perspectives to facilitate theory development (Collingridge & Gantt, 2008). Interviews are 

particularly appropriate in this scenario. Appendix A contains the interview questions 

framework. Sixteen highly experienced digital transformation professionals from seven 

organizations with expertise in IDT were interviewed. The group comprises senior members 
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of top global firms’ digital transformation and technology advisory functions by revenue 

(Statista.com, 2020), they all have responsibility for delivering their client’s critical digital 

transformation objectives. The study employed snowballing sampling (Etikan et al., 2016). 

Respondents were encouraged to facilitate the participation of their colleagues in the study. 

The top global technology service providers involved in providing technology for digital 

transformation were approached, from where a snowballing technique was deployed. Senior 

management personnel of global businesses is an elusive target group, and snowballing 

facilitated multiple respondents from organizations which helped triangulation for research 

quality (Kitto et al., 2008). 

According to their financial reports, the smallest of the firms by annual revenue had over 

USD 30B in revenue in 2021. The respondents had a minimum of twenty-one years of 

technology and management experience and were based in Australia, the USA, the UK, 

France, and Singapore during their interviews. The profile of respondents, particularly the 

length of their industry experience, improves the chances of expansive views acquired from 

different organizations they have worked. Their overall career experience spanned many 

more countries, including India, Nigeria, Germany, Brazil, China, The Netherlands, and 

South Africa. The profiles of respondents are presented in Table 2-1. The interview 

questions guide was shared with participants before the interviews to allow them to prepare 

adequately for the interviews. The questions involved digital transformation, smartness, and 

technology-related organizational capabilities. They were also asked about perceived 

benefits, hindrances, and enablers of these capabilities. 

Responses to questions and further elaborations were recorded, coded, and analyzed for 

theory development on Industry 4.0, what it is, how it is achieved, and why it is done. Coding 

and analysis followed the Gioia methodology (Gioia et al., 2013). It has been used effectively 

for contextual analysis in qualitative research (Gehman et al., 2017), which is at the core of 

this study. Furthermore, it identifies the aggregate dimensions of the subject in very short 
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iterations, which lends itself to applications in conceptual framework development. The Gioia 

methodology establishes the underlying structure of the research concept through a uniform 

process that allows consistent treatment of participants who may not have been interviewed 

at the same time, enabling the recognition of convergence at a point where new emergent 

concepts are no longer observed. According to Gioia et al. (2013), researchers must 

constantly cycle through concepts and emergent themes to determine if new concepts are 

discovered. For this study, convergence was achieved after 16 interviews. 

The Gioia methodology consists of three stages, the first-order analysis, the second-order 

analysis, and the aggregate dimensions (Gioia et al., 2013). The first-order analysis consists 

of open coding (Strauss & Corbin, 1998). The researcher captures the participant’s thoughts 

as originally as possible, identifying concepts that emerge directly from the participant’s 

words. The first-order concepts feed the second-order analysis with a relatively large 

number of concepts from which the researcher identifies emerging orders, groupings, and 

associations, names them, and arrives at a reduced number of concepts as the second-

order concepts. The researcher then embarks on another iterative process, applying the 

lenses of applicable theory to the second-order concepts. In this study, the foundational 

theory is dynamic capabilities. We posit that technology represents inputs into the IDT 

process that generate organizational value as outcomes via organizational capabilities. We 

apply this lens to reviewing the second-order concepts and observe emerging concepts 

representing the inputs, outcomes, and intermediate changes to the organization as 

aggregate dimensions. Appendix J – Data Structure maps the concepts across the analysis 

iterations, presenting the final dimensions defining the digital transformation process.  

The study considered critical issues in research quality (Golafshani, 2003; Rolfe, 2006). 

They ensure that research instruments measure the concepts they purport to measure and 

do so accurately. Research quality was addressed in multiple ways. Firstly, there was expert 

validation by research colleagues (Straub, 1989). The experts consisted of research 
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colleagues with extensive experience in digital transformation and qualitative research who 

provided inputs for refining the question framework. Secondly, triangulation is a viable 

method for addressing validity (Kitto et al., 2008). This study deployed triangulation by 

having multiple respondents across industry segment expertise and within firms and 

applying the interpretative rigor of three researchers for reviewing the emergent data 

structure from the coding and analysis of responses (Kitto et al., 2008). 

 

 

 

 

 

 
 
 
 
 

Table 2-1 - Participant’s profiles 

2.5 Results 
We derived first-order concepts, second-order concepts, and aggregate dimensions by 

applying the methodology to the data collected from the respondents. The aggregate 

dimensions are the technology and organizational features. 

Appendix B maps the first-order concepts to second-order and second-order concepts to 

the aggregate dimensions.  

2.5.1 Technological features 

Analysis of the research data revealed four classes of technological features. These groups 

broadly address key requirements of smart production systems. They are intelligence, 

Respondent Location Years  Education Principal Industry Expertise 
1 Australia 29 BA Government, Natural Resource 
2 Australia 30 BA Government, Natural Resource 
3 Australia 28 M.Sc Aerospace 
4 Australia 33 B.Sc Industrial, Utilities 
5 France 34 B.Eng Industrial 
6 USA 31 MBA Automotive 
7 USA 35 MBA Utility, Natural Resources 
8 Australia 20 M.Sc Exploration 
9 USA 23 B.Eng Automotive 
10 USA 27 PhD Industrial, Supply Chain 
11 USA 25 MA Industrial, Supply Chain 
12 USA 21 MBA Industrials, Automotive, Pharmaceuticals 
13 USA 25 BA Industrial 
14 Australia 25 B.Eng Industrial 
15 Singapore 36 B.Com Government, Healthcare 
16 USA 29 B.Sc Technology, Media, Telecommunications 
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simulation, visualization, and remote interaction, data and information management, and 

stimuli responsiveness.  

2.5.1.1 Intelligence 
Seven of the 16 respondents (4, 5, 7, 11, 13, 14, and 16) identified machine Intelligence as 

an essential feature of IDT as it is critical for smart systems. Respondents 7 and 13 further 

noted that artificial intelligence is a part of a collection of technologies that collectively create 

unique emergent characteristics of IDT. According to Respondent 7, “Industry 4.0 

capabilities are facilitated by advanced technologies that enable stimuli responsiveness, 

artificial intelligence, data processing, visualization, and robotic actuation.” 

Technologies noted by respondents in this category include machine learning, natural 

language processing, machine vision, and predictive analytics. 

2.5.1.2 Simulation, visualization, and remote interaction 
Respondents 3, 4, 13, and 16 recognized the importance of technologies that facilitate 

simulation, visualization, and remote interaction for IDT. According to Respondent 3, 

Extended reality (XR) enables remote interactions between users and production elements 

(systems and processes) by removing boundary constraints. They note that removing 

boundary constraints is a defining characteristic of post-Industry 4.0 industrial operating 

environments. They stated, “Development in cybersecurity and extended reality suggests 

that removal of environmental boundary constraints is key to Industry 4.0 and might define 

its evolution into Industry 4.1 or even 5.0”. Respondent 4 identified the role of Virtual Reality 

(VR) in Operating Technology (OT) digitization, IT-OT integration, and the importance of 

simulation and visualization capabilities of digital twins in Industry 4.0-related advanced 

product development capabilities. XR is identified as one of the technologies that create the 

integrative property of CPS (Respondents 13 and 16), enabling the integration of virtual and 

physical production components. Technologies in this category referenced by respondents 
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include augmented reality, virtual reality, live virtual construct / mixed reality, and digital 

twins. 

2.5.1.3 Data and information management 
Respondents 1, 5, 7, 13, 14, and 16 identified digital infrastructure (DI) for data and 

information management is key for IDT. According to Respondent 7, data processing is an 

underlying requirement of IDT, hence the requirement for acquiring, storing, processing, 

securing, communicating, and transporting data. Respondents 5 and 14 identified 

computing infrastructure as key for Industry 4.0. These are not new to organizations, being 

the hallmark of the third industrial revolution, predating Industry 4.0. According to 

Respondent 3, “the previous revolutions had pockets of gains in automation and computing.” 

Industry 4.0, however, builds on developments in DI, like cloud computing, combined with 

advancements in other technology areas to create smart solutions (Respondents 1, 5, and 

13). Respondent 14 further recognized infrastructure democratization as a social value 

created by Industry 4.0 and enabled by cloud technology. According to Respondents 1 and 

16, Industry 4.0 capabilities require next-generation data communication functionalities 

featuring hyperconnectivity and high throughput, low latency communication. Overall, 

technological capacities for acquiring, processing, securing, transporting, and storing data 

and information, including enterprise information systems, cloud computing, edge 

computing, 5G networks, cyber security, and data analytics, were identified as key for IDT.  

2.5.1.4 Stimuli responsiveness 
Sensing and actuation are considered in tandem because they combine to give systems 

stimuli responsiveness functionalities, enabling systems to interact with their environments. 

Four respondents (4, 7, 13, and 14) identified the role of sensing and actuation. Respondent 

7 stated, “Industry 4.0 capabilities are facilitated by advanced technologies that enable 

stimuli responsiveness”. Respondent 4 identified sensors and the ability to measure physical 

processes within the environment as one of the key underlying technologies without which 
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Industry 4.0 would not be possible. Sensors accomplished this by enabling the digital 

transformation of OT (operating technologies). Respondent 14 singled out changes in the 

working of machines due to advancements in sensor technologies as an important enabler 

of Industry 4.0. 

Production systems respond to their environments using actuation technologies. According 

to respondents 4, 7, 9, and 14, advanced robotics is an important actuation mechanism in 

Industry 4.0. Respondents recognized the importance of cobots, industrial robots, and 

Automated guided vehicles (AGVs). 

2.5.2 Organizational features 

The results identified the following defining organizational features enabled by Industry 4.0.  

2.5.2.1 Digitization 
Eleven of the respondents (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 14) identified the role of 

digitization as the base concept of Industry 4.0. Respondent 8 viewed digitization as 

definitive of Industry 4.0; according to them, “Industry 4.0 is the digitization and integration 

of the entire production enterprise to deliver an end-to-end digital value chain.” The unique 

importance of digitizing OT or machines to Industry 4.0 is a running narrative across the 

respondents on digitization. Respondents 4 and 10 noted that OT digitization is a niche 

functionality of Industry 4.0. They proposed that OT digitization extends prior digitization of 

the front office with Information Technology (IT). Respondent 10 stated Industry 4.0 included 

the “Fusion of IT and OT, or the digital and physical components of production (with IoT) to 

create new socio-economic values.” The digitization of OT is distinctive and significant as it 

enables IT-OT integration to facilitate the 360-degree flow of data between the cyber and 

physical components, thus enabling the Cyber-Physical System (Respondent 4). 
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2.5.2.2 Integration 
Integrating the production enterprise as an objective of Industry 4.0 was highlighted by the 

majority of respondents (3, 4, 5, 6, 7, 8, 11, 12, 15, and 16). Along with digitization, 

Respondent 8 considered integration as definitive of Industry 4.0. According to the 

respondents, the context for integration in Industry 4.0 covers all production entities to 

achieve end-to-end integration. Cyber-physical integration is, however, the characteristic 

feature of Industry 4.0, according to Respondents 9, 10, 12, and 13, as it enables the 

networking of physical and virtual elements, enabling a physical-virtual information loop. On 

the enterprise level, CPS achieves IT-OT integration, which according to Respondent 10, 

enables the delivery of socio-economic values.  

Industry 4.0 builds on CPS to create a non-linear value chain through horizontal, vertical, 

and end-to-end engineering integrations. According to Respondent 16, integrated value 

chains create capabilities not seen in linear value chains. Relating the value proposition of 

Industry 4.0 directly to CPS, Respondent 3 claimed, “Industry 4.0 is revolutionary, resulting 

in efficiency and effectiveness gains through CPS.” Similarly, according to Respondent 9, 

the enhanced production capabilities of Industry 4.0 are associated with cyber-physical 

integration. The advanced capabilities emerge through the enablement of seamless man-

machine interaction, process digitization, and data transparency. Respondent 13 notes the 

attribute of the transformation induced by CPS to include speed, transparency, visibility, 

autonomy, and flexibility. 

2.5.2.3 Data capability 
Seven respondents (4, 5, 7, 11, 12, 13, and 14) highlighted the importance of data to Industry 

4.0. According to Respondent 11, “data is the lifeblood of Industry 4.0”. The respondents 

addressed the data capability of production organizations in acquiring data, processing data, 

and using assets data for business intelligence and digital enablement. Respondents 4 and 

14 discussed the role of sensors in deepening the data acquisition capacity of production 
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systems as important for Industry 4.0. Respondents 7 and 11 elaborated on the role of digital 

infrastructure for data processing, storage, and transport, and respondents 5, 11, and 13 

pinpointed digital infrastructure’s role in analytics and business intelligence. According to 

Respondent 12, Industry 4.0 business models exploit data commercially.  

2.5.2.4 Production ecosystems 
Respondents 1, 11, and 15 described the emergence of production ecosystems from the 

integrated value chain. According to Respondent 1, interoperability facilitates ecosystem 

formation. The respondent predicted shifting production value chains away from tight 

integrations towards more agile, ecosystem-friendly approaches. According to Respondent 

15, the integrated ecosystem approach delivers superior production value than the 

unintegrated enterprise. They stated: “Industry 4.0 uses the connectedness of systems and 

processes across the entire production value chain to create an intelligent, flexible 

production ecosystem, delivering superior value compared to the unintegrated enterprise.” 

To highlight the value proposition of ecosystems, Respondent 11 associates the smart 

characteristics of Industry 4.0 production enterprises with the flexibility of the ecosystem 

approach.  

2.5.2.5 Information transparency 
Seven respondents (3, 7, 9, 10, 11, 13, and 16) identified information transparency as key 

to Industry 4.0. According to Respondent 10, the value of Industry 4.0 relates to its role in 

completing the information loop started in Industry 3.0. They stated: “The fourth revolution 

completes the digital-physical loop by feeding back analyzed information into the physical 

space from the digital.” According to Respondent 16, it enables the flexibility required for the 

responsiveness of Industry 4.0 production systems. Respondent 11 associates data access 

and real-time information availability with smartness. Respondent 3 identified removing 

boundary constraints to facilitate ubiquitous access to information as a defining feature of 

Industry 4.0 and beyond. Remote interactions are possible because of the exposure of 
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information beyond the physical barriers of Industry 4.0 systems. Respondent 9 posited that 

the visibility of data and processes in Industry 4.0 was universal. The respondents connect 

the relationship between data capability, information transparency, and smartness in the 

Industry 4.0 context.  

2.5.2.6 Persistent customer engagement 
According to Respondents 2 and 8, the increasing need to customize products is one of the 

key drivers for Industry 4.0. Respondents 8 and 16 identified persistent customer 

engagement as a characteristic of Industry 4.0 aimed at facilitating mass product 

customization. Respondent 8 claimed that an early engagement of the customer in the 

production process and continual engagement throughout the product lifecycle is necessary 

for mass customization. Respondent 16 claimed that producers must have constant visibility 

of customer behaviors and preferences as an input into the production cycle to fulfill the 

objectives of Industry 4.0. They state that Industry 4.0 creates a fully integrated enterprise 

through which “producers have both visibility of and dynamic insights on their own 

operations end to end, covering supply chain, customers and production systems, and 

processes.” 

2.5.2.7 Smartness 
All respondents except three (Respondents 3, 4, and 10) related Industry 4.0 to smartness. 

According to Respondent 11, digitization and integration are foundational to Industry 4.0, 

creating the platform for smartness. Respondent 12 claimed that industry 4.0 technologies 

are associated with smartness, and transforming the production enterprise into a smart one 

is a characteristic of Industry 4.0. Similarly, Respondents 2, 6, 7, and 13 identified 

connections between Industry 4.0 technologies and smartness. Respondents 6, 7, and 13 

linked smart system characteristics to digital technologies, and Respondent 2 claimed that 

the problem-solving capacity of Industry 4.0 is attributable to the smartness of solutions 

created out of digital technologies and addresses the socio-economic challenges.  
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The respondents presented smartness as a characteristic feature of Industry 4.0. 

Respondent 5 identified smartness as the emergent capability of Industry 4.0 through which 

it creates value. They stated: “the implementation of these technologies enable the 

integration of the value chain and the factory elements resulting in three capabilities, smart 

products, smart factory, and smart supply chain.” The respondents collectively argued that 

digital technologies combine to induce smartness in the production processes and the 

organization’s business functions. Furthermore, they posit that smartness is a means to an 

end. It provides functionalities that enable the delivery of Industry 4.0’s value propositions. 

2.5.3 Value creation 

All the respondents identified socio-economic values created by Industry 4.0, demonstrating 

it is a core outcome or focus for the process. Respondent 1 noted organizational productivity 

and national economic gains, other value creation identified by respondents included: 

productivity (respondent 15), cost efficiency (respondent 3), product innovation (respondent 

12), customer experience (respondent 6), employee wellbeing (respondent 15), 

environmental sustainability (respondent 2), sovereign manufacturing capability (respondent 

1), social equity (respondent 14), and economic growth (respondent 1). According to 

Respondent 2, Industry 4.0 emerged to address challenges in three aspects of production - 

product customization, environmental impact, and increased variability in the production 

environment. Respondents 2, 8, and 16 claimed that it addresses those challenges. 

Respondents 7 and 10 indicated that Industry 4.0 is a set of capabilities that deliver optimal 

socio-economic outcomes in industrial production. Respondent 15 compared the value 

creation of Industry 4.0 with the unintegrated production paradigm that existed before it and 

claimed that Industry 4.0 delivers superior value by organizing its integrated production 

chain into an intelligent and flexible ecosystem. 
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2.5.4 Conceptual framework 

In addition to validating the importance of factors (as discussed in sections 2.5.1 - 2.5.3), 

Figure 2-1 illustrates these relationships in the conceptual framework developed in this study 

which will be discussed further in this section. 

 

Figure 2-1 - Industry 4.0 Conceptual Framework 

The respondents discussed the impact of technology in creating value through a range of 

organizational features. Respondent 7 attributed the value to multiple functionalities from 

different technologies, and according to Respondent 13, “Industry 4.0 happens when several 

developments in technology are considered collectively rather than individually.”  

The basic value of technology is the enablement of digitization and integration (sections 

2.5.2.1 and 2.5.2.2). Respondents 8, 11, and 12 simplify many relationships between 

factors. They established links between integration and customer engagement, ecosystems, 

data capability, and information transparency. Respondent 11 provided a link between 

digitization and integration, stating: “the digitization provides the platform for the integration.” 

They identified production ecosystems and customer integration as key integration contexts. 

Listing key attributes of Industry 4.0, Respondent 11 described Industry 4.0 as: “the 

horizontal integration of the production ecosystem,” and Respondent 8 stated: “Industry 4.0 

integrates the entire value chain and enables the engagement of the customer early in the 

process and throughout the process.” Respondent 11 links digitization and integration to 
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data capability. They stated: “digitization and integration are crucial for data capability.” The 

integration connects production ecosystems and facilitates customer engagement, 

facilitating information transparency and data capability, leading to smartness in the 

enterprise. 

Respondent 12 stated that the integration “seamlessly funnels data and analyzed 

information back and forth between the digital and the physical elements,” establishing the 

link between all integrated entities and information transparency. They also attributed the 

smartness of the enterprise to data capability and information transparency, stating:  

Industry 4.0 ultimately transforms the enterprise into a smart one… The organization exhibits 
autonomous functionalities and seamlessly funnels data and analyzed information back and forth 
between the digital and the physical elements to enable further intelligent actions in the physical 
world. (Respondent 12) 

Respondent 2 attributed Industry 4.0 value creation to smartness. Respondent 2 stated: 

“Through smartness, Industry 4.0 addresses the challenges that necessitated it. 

The research thus synthesized the relationships across the factors into the conceptual 

framework for Industry 4.0: 

• Digital technologies collaborate to enable digitization and integration.  

• The integration connects customers and creates a connected production ecosystem.  

• The integrated ecosystem and customer enable data capability and information 

transparency, which lead to smartness.  

• The enterprise uses smartness to generate socio-economic value. 

2.6 Discussion 
While there is an industrial revolution perspective of Industry 4.0 with broader implications 

for society, this study explored Industry 4.0 from an organizational perspective that creates 

value through digital transformation. The study produced a conceptual framework to drive 

the IDT process within organizations. The framework provides a pragmatic approach to 

managing the many technologies, tools, and methods of Industry 4.0 for value creation. 
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Validating the technologies, tools, and methods of Industry 4.0 is important for implementing 

the concept, and the digital transformation literature dedicates considerable focus to it (Da 

Costa et al., 2019). The framework presents technology as inputs into the transformation 

process and organizational value creation as the outcomes. It focuses on the inputs on the 

organization between the technology inputs and the value outcomes, initiating 

organizational features that culminate in smartness and result in organizational value 

creation.  

2.6.1 Technology 

According to Respondent 3, some technological features that predate Industry 4.0 play 

critical roles in IDT. The pace of technological developments also implies that new 

technologies with IDT relevance will continually emerge. This study, therefore, avoids 

attempting to identify IDT or Industry 4.0 technologies. Determining Industry 4.0 

technologies is also complicated because many ‘technologies’ usually referenced in the 

Industry 4.0 literature are systems comprising multiple technologies, e.g., additive 

manufacturing consists of sensors, actuators, AI, and DI. However, the study finds that 

developing key organizational features and focusing on value creation provides the 

necessary context for IDT value proposition. IDT technologies conceptually are, therefore, 

those with unique or significant contributions to smart production and its underlying features, 

including digitalization, integration, data capability, and information transparency. Given the 

role of technology in IDT, its framework must reflect technology. This study identifies four 

groups of technological features that drive the technology application in IDT. Building the 

model on functional features rather than specific technologies enables a framework with a 

degree of technology agnosticism. 

Smart systems are stimuli-responsive (sensing and actuation) (Zhao et al., 2018), intelligent 

(Molinara et al., 2021), and have enhanced data capabilities (Ferraris et al., 2019; 

Habibzadeh et al., 2018; Kernecker et al., 2020; Samimi-Gharaie et al., 2018; Zhou et al., 
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2019), including digital infrastructure for data handling (Kaltenbrunner, 2017). The IDT 

context for smartness also has unique requirements for extended reality (Damiani et al., 

2018; Sepasgozar et al., 2021; Serras et al., 2020) to facilitate simulation and visualization. 

2.6.2 Organizational features 

Respondent 11 states that data is the lifeblood of Industry 4.0. Data is a lens through which 

the Industry 4.0 framework can be understood. Digitization and integration enable 

Instrumentation, interconnection, and intelligence, which are properties of effective smart 

systems (Harmon et al., 2015). They facilitate data acquisition, transportation, and 

utilization, the foundational infrastructure for data management capabilities, and transform 

the production enterprise into a network of production information systems that facilitates 

information transparency (Flatt et al., 2016). Information transparency is the basis for 

smartness by enabling real-time information on production parameters for optimal decision-

making and autonomous functionalities (Brosze et al., 2009; Čuš-Babič et al., 2014).  

Data is a new source of business value through business model change, enabled by 

persistent engagement of the customer for customer-driven innovations (Müller et al., 2018). 

Respondent 12 notes that business model transformation in Industry 4.0 exploits the value 

of data. It thus transcends enabling the value creation process; it is value itself. IDT promotes 

the adoption of new organizational business models and embedding new business practices 

that intend to evolve the organizational efficiency level and simultaneously address social 

and environmental challenges. Aiming to simultaneously deliver performance and ensure 

transformation, creating enduring value for its key stakeholders and achieving remarkable 

results as the EFQM 2020 model advanced. These novel Business Models can add a 

strategic and technologically unbiased perspective to a technology-centered Industry 4 

approach (Fonseca et al., 2021) 
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2.7 Conclusion 
Developing IDT capabilities in production organizations is complex (O'Donovan et al., 2016; 

Szalavetz, 2019) and often chaotic (Machado et al., 2019). This work offers valuable 

contributions. It has made a theoretical contribution of an evidence-based conceptual model 

for driving Industry 4.0 maturity and value creation. This model can serve as a guide for 

practitioners.  

IDT employs digital technologies to enable smartness for outcome optimization. Following 

the input-output system model of Dutta et al. (2005a), smartness is the value-creating 

intermediate capability of IDT. The smart enterprise capability is built on information 

transparency functionality, resulting from digitalizing and integrating the production value 

chain. Integrating the value chain results in a production ecosystem of multiple partnering 

firms and the end-to-end embedding of the customer in the product lifecycle, enabling real-

time, contextual information on production elements, including people, materials, products, 

devices, systems, and organizations. Digitization, integration, enhanced data capability, 

efficient production ecosystem, customer integration, and information transparency are 

organizational features that signpost the digital transformation process. They are 

parameters from this study that can help embed an IDT strategy in practical reality, defining 

a conceptual framework to guide execution and value delivery quality. 

2.7.1 Managerial implications  

While Industry 4.0 has been conceptualized widely as the digital transformation of the 

production organization (Lichtblau et al., 2015; Schuh et al., 2017), the outcomes of this 

study provide further insights into the nature of this transformation for information systems 

managers and operations managers tasked with introducing industry 4.0 technologies in 

their workplaces. Previous studies established that Industry 4.0 considerations must 

expressly cater to business and management elements of transformation beyond 

technology (Ebert & Duarte, 2018; Issa et al., 2018; Schuh et al., 2017). This study highlights 
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features within an organization that should be targeted for development. Implemented 

technologies should impact the organization’s capacity to digitalize processes and functions, 

all integrating physical and virtual entities. It should improve the data capability of the 

organization, including acquisition, management, and utilization. Persistent integration of the 

customer into the product life cycle and enablement of production ecosystems through 

interoperability is critical in successful Industry 4.0 implementation.  

Technology creates the capability for digital transformation in the production enterprise. It 

combines functional attributes of sensing and actuation technologies, artificial intelligence, 

extended reality, and digital infrastructure to create smart solutions that support digitization 

and integration. The technology implementation must have traceability to smart 

functionalities in production processes and business functions. Managers must realize that 

implementing these technologies does not actualize Industry 4.0, and many of these 

technologies would already exist in the organization as they predate Industry 4.0. The 

Industry 4.0 strategy must target capabilities by integrating the enterprise end-to-end 

through digitizing OT and implementing CPS using existing and newly implemented 

technologies.  

Table 2-2 summarizes the managerial implications of factors identified in the research. 

Factor Implication 
Stimuli 
Responsiveness 

The technology strategy must identify opportunities to sensorize 
machines and expand IoT. It must identify manual activities and 
repetitive processes that represent good opportunities for 
automation. 

Data and 
Information 
Management 

The Industry 4.0 strategy must consider the digital infrastructure’s 
adequacy, flexibility, and optimality. It is foundational to data 
capability and will perverse the technology landscape. It could 
drive costs. 

Intelligence Business intelligence and automation requirements should drive 
Artificial intelligence technologies adoption. Its value should be 
measured by decision-making accuracy and autonomous 
functionalities. 
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Simulation, 
Visualization, and 
Remote Interaction 

Extended reality technologies should be part of the digitization 
strategy. Extended reality integration into processes should be 
driven by requirements from the value end of the strategy, 
particularly product innovation. 

Digitization Managers should ensure that business requirements drive 
digitization. The focus of digitization should be on sensorizing 
machines and automating manual processes. Digitalized business 
processes and functions should characterize the target state.  

Integration The target state should be characterized by eliminating silos and 
stand-alone elements in the production process. 

Production 
Ecosystems 

The transformation should eliminate all isolated business 
functions in the production process. Visibility of all entities at all 
points throughout the value chain must be a goal.  

Persistent 
customer 
engagement 

The transformation must embed the customer’s perspective in all 
phases of the product lifecycle. It must enable customer-driven 
product innovation. 

Information 
Transparency 

Information transformation should be a key driver of strategy. At 
each point in the strategy, an important question should be, “do 
we have all the necessary information on all production elements 
in real-time?” 

Data Capability The ability of the production enterprise to acquire, manage and 
utilize data. This capability should be driven by a maturity model 
mapped to the business objectives. 

Smartness All activities in the strategy should have traceability to this 
capability. Technologies must contribute to stimuli 
responsiveness, intelligence, decision-making, information 
transparency, or autonomous functionalities. 

Value Creation Industry 4.0 implementations must be targeted toward specific 
value creation objectives for  the organization. The research 
identified several social and economic value creation potentials of 
Industry 4.0, including productivity, sustainability, cost efficiency, 
social equity, and economic growth. 

Table 2-2 - Research factors 

2.7.2 Limitations and future directions 

The study is designed to produce generalizable results across industrial production; it, 

therefore, does not explore industry sector-specific insights. Further studies designed to 

elicit sector-specific insights for industrial digital transformation will be valuable. While the 

study utilized 16 interviews of respondents from seven organizations based in four countries, 

a broader scope of organizations and countries and a larger pool of respondents could 

improve the validity and reliability of the study and hence its generalizability. Furthermore, a 

quantitative study to validate the outcomes of this study is useful. 
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This study has produced a model to support managers’ Industry 4.0 strategies. It offers aid 

to information systems managers, digital transformation specialists, and business leaders in 

charting a pathway from technology implementations to value realization. It focuses its 

strategy on developing value-creating features in the enterprise, including integrating 

customers into product lifecycle management end-to-end, enabling an effective production 

ecosystem, developing the organization’s data capability, and developing information 

transparency and smartness across the value chain. The contribution of this study will help 

actualize the industry 4.0 vision in practical scenarios. 
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3 THE DNA OF SMARTNESS 

Journal submission: This chapter was submitted for publication in the Australasian Journal 

of Information Systems: Abiodun, T., Rampersad, G.C. and Brinkworth, R., "The DNA of 

Smartness " (under review). The Student’s contribution was the majority of the publication 

(95%), specifically research design, data collection and analysis, and writing. The 

supervisors had a guiding, review, and editing role (5%). 

3.1 Abstract 
The term ‘smart’ is increasingly used to characterize entities, including devices, systems, 

organizations, and societies. It has become imperative that smartness be understood and 

conceptualized with frameworks for management. This study explores smartness based on 

systems theory in the context of engineered systems answering the questions of what, why, 

and how. Using a qualitative research process, we deployed semi-structured interviews of 

experts to translate their lived experiences into theory. The study identified stimuli-

responsiveness, intelligence, functionality, and optimization as the four key aspects that 

characterize smartness and collectively define an identification framework for smart 

systems. The study also identifies non-smart, semi-smart, and fully-smart classes as the 

three distinct smart systems classes. A system is non-smart if it lacks defined aspects and 

semi-smart if its intelligence component is hardcoded, i.e., it does not learn. The study 

produced a framework that provides a basis for the qualitative evaluation of smartness. 

Keywords: Smartness, intelligent systems, optimization 

3.2 Introduction 
Information systems scholars have not agreed on the definition of smartness (Alter, 2019). 

The Oxford Learner’s Dictionary defines smartness as a quality of clean appearance and a 

synonym for intelligence. In the innovation and technology management literature, ‘smart’ is 

often used to depict something better than what currently exists, such as smart energy 
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characterization as sustainable energy (Corsini et al., 2019). Smartness is also often 

explained with superior functionalities compared to the smart system’s non-smart, legacy 

predecessor. For example, smart transportation has been described as having advanced 

functionalities, such as predictive and real-time information to road users on traffic conditions 

and parking space availability (Habibzadeh et al., 2018). The depiction of smartness in the 

above context would compromise its application in purposefully designed autonomous 

systems independent of human control. It also implies that the experience of smartness is a 

subjective perception of quality with no prospect of an empirical framework and controlled 

development and exploitation. Such connotations of smartness are vague, trivial, and lack 

contextual clarity (Alter, 2019). An implication of smartness as merely a subjective idea of 

quality is that it becomes difficult to measure, manage and develop. Its usefulness in the 

context of systems development thus becomes severely diminished. 

Industry 4.0 literature identifies industrial production transformation into a state called ‘smart’ 

as its objective (BMBF, 2014; Lichtblau et al., 2015). Furthermore, the influence of Industry 

4.0 goes beyond industrial production. It underpins how humans live in the age of the fourth 

industrial revolution (Ferraris et al., 2019), including addressing critical global challenges 

like equality (Golub et al., 2019) and sustainability (Furstenau et al., 2020), making the 

smartness of systems an essential quality of modern life. Following the expectations of 

Industry 4.0 for industrial production and wider societal applications, smartness is conceived 

as an optimization function of systems in this study. Systems with smartness claims pervade 

our experiences, including phones, cars, public transportation, healthcare, and cities. The 

questions that arise are: what is smart and what is not smart? How does smartness happen? 

How is it experienced? And how smart is one entity compared to another? A framework for 

understanding and evaluating smartness has become essential for developing, managing, 

and progressing the smartness quality in critical systems. 
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3.3 Literature review 

3.3.1 Overview 

Smartness associated with consumer goods such as smartphones and ‘smart’ products, 

have recently permeated everyday life. But the smart entity concept existed much earlier. 

Salton (1971) described a ‘smart’ system of document retrieval. The smartness claim was 

based on its use of language analysis and a method for algorithmic optimization that 

compares the outcomes of multiple intermediate methods to achieve superior outcomes 

compared to previous systems. This section reviews smart systems from the literature.  

While the term ‘smart’ has not been used extensively in the literature to describe systems, 

some related terms do exist. These include intelligent systems  which mimic aspects of 

reasoning exhibited in nature to solve different problems (Grosan & Abraham, 2011; Rudas 

& Fodor, 2008). Another concept is adaptive systems which use responsiveness to 

variations in system parameters to improve performance (Hayes-Roth, 1995; Mareels & 

Polderman, 1996). Additionally, context-aware systems utilize the understanding of location 

and situations to improve information and service relevance (Hong et al., 2009). Further, 

autonomous systems seek to improve accuracy and efficiency by eliminating human 

interference in system operations (Watson & Scheidt, 2005). These approaches seek to 

improve system outcomes relative to the classic system scenario by using intelligence.  

Smartness has been attributed to systems in different domains, including agriculture, 

medicine, materials, public infrastructure, and industrial production. Agricultural systems 

include climate-smart agriculture (Jagustović et al., 2019), intelligent farming systems 

(Kernecker et al., 2020), adaptive irrigation systems (Canales-Ide et al., 2019), and food 

systems powered by IT (Nakano & Washizu, 2018). Some studies referred to climate-smart 

agriculture without explaining why it is considered smart (Jat et al., 2019; Long et al., 2019; 

Notenbaert et al., 2017). However, Jagustović et al. (2019) postulate that climate-smart 

agriculture (CSA) is a complex adaptive system (CAS) and has attributes such as self-
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organization, emergent order, and dynamic system order. Smart farming technologies (SFT) 

facilitate an agricultural paradigm that delivers process customization and production 

efficiency based on data capabilities (Kernecker et al., 2020). CSA is primarily a socio-

economic system that derives its smartness from human activities. The case can thus be 

made that the smartness of systems is not necessarily a function of technology but rather 

the presence of key attributes and functionalities. 

A class of drug delivery systems (DDS) in medicine is considered smart. DDS are 

mechanisms for transporting pharmaceutical compounds in humans or animals to achieve 

desired therapeutic effects (Tiwari et al., 2012). It also aims to improve the pharmacological 

properties of conventional or free drugs (Allen & Cullis, 2004). Smart DDS aims to improve 

outcomes by controlling the quantity, location, and timing of drug release (Gonzalez-

Valdivieso et al., 2019; Zhou et al., 2019). The release trigger mechanism is based on stimuli 

responsiveness functionalities that sense pH levels (Samimi-Gharaie et al., 2018), enzymes, 

hypoxia, light, and magnetic fields (Zhou et al., 2019). 

In materials, engineered living materials (ELM) that use engineered living cells for material 

synthesis have been labelled smart (Nguyen et al., 2018). Graphene-based materials with 

stimuli-responsiveness properties have also been called smart (Yu et al., 2017). Smart 

materials can exhibit characteristics like awareness and self-healing. Their attributes make 

them useful in sensor technologies, including wearable devices for monitoring applications 

(Yu et al., 2017). 

Similarly, Industry 4.0 claims to transform industrial production into a smart state 

(Ramanathan & Samaranayake, 2021; Schuh et al., 2017), creating smart factories, smart 

supply chains, and smart products (Abdi, 2018; Nunes et al., 2017; Radziwon et al., 2014; 

Saad et al., 2021). Smart production systems use value chain integration to develop 

information transparency – ubiquitous access to quality and context-sensitive information on 
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all production elements across the value chain. It develops autonomy and flexibility, enabling 

performance improvement through product innovation (Puriwat & Hoonsopon, 2021; Waris 

et al., 2017), mass product customization (Zawadzki & Żywicki, 2016), resource utilization 

efficiency (Oztemel & Gursev, 2020; Zhou et al., 2015), and better handling of uncertainty 

(Dequeant et al., 2016). 

Industry 4.0 concepts have also been extended to cities and public infrastructure with smart 

cities (Habibzadeh et al., 2018), waste management (Rutqvist et al., 2020), car parking 

(Roman et al., 2018), water supply (Zhou et al., 2018), and transportation (Fernández-Isabel 

et al., 2020; Golub et al., 2019). 

3.3.2 Smart system characteristics 

The following sections review some important characteristics of smart systems in academic 

literature. 

3.3.2.1 Optimization 
Systems described as smart are often focused on outcome optimization. For example, smart 

agriculture optimizes socio-economic outcomes, including sustainability and food security 

(Jagustović et al., 2019; Lipper et al., 2014), yields, production efficiency, and resource 

utilization (Kernecker et al., 2020; Sambo et al., 2019). Smart industrial production seeks to 

optimize multiple production parameters, including productivity (Fragapane et al., 2020), 

employee wellbeing (Bordel et al., 2022), sustainability (Ghobakhloo, 2020), and product 

and business model innovation (Ibarra et al., 2018; Waris et al., 2017). Smart drug delivery 

systems target optimizing patient health outcomes by improving the therapeutic efficiency 

of drugs while minimizing potential harm to patients (Gonzalez-Valdivieso et al., 2019; Zhou 

et al., 2019). Street lighting is essential in cities (Pasolini et al., 2019). It is also a significant 

driver of cost and pollution. Smart street lighting provides appropriate lighting levels for every 

situation. It optimizes service delivery and power utilization through sensors for determining 

user presence and atmospheric conditions and actuating a dimming or switching 
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functionality. According to Naqvi et al. (2020), smart cities optimize services to residents, 

including reducing disease burden, improving life-saving technological assistance and 

emergency response, and reducing resource consumption through pervasive 

interconnectivity that facilitates data-driven decisions. 

Smart systems seek to use data capabilities and stimuli responsiveness functionalities to 

achieve measured, optimal actions, like the location and quantity of drug delivery in smart 

DDS (Samimi-Gharaie et al., 2018; Zhou et al., 2019), or quantity, timing, and location of 

nutrient or water delivery in smart agriculture systems  (Canales-Ide et al., 2019; Kernecker 

et al., 2020). 

3.3.2.2 Stimuli-responsiveness 
Smart systems have functionality for environmental interaction. They can sense – collect 

data from their environment, and respond to their environment based on the collected data 

(Miah et al., 2019). Smart agricultural systems use sensors for real-time monitoring of 

nutrients and physical conditions around crops, and they can also actuate, releasing the 

required nutrients based on such monitoring (Sambo et al., 2019). The smart DDS 

possesses the capacity to sense and respond. They respond to stimuli such as pH level 

(Samimi-Gharaie et al., 2018), enzymes, hypoxia, light, and magnetic fields (Zhou et al., 

2019). Stimuli-responsiveness is critical for data acquisition and autonomy (Sassone et al., 

2016), which are important mechanisms through which smart systems develop intelligence 

and optimize outcomes.  

3.3.2.3 Intelligence 
The intelligence of engineered systems is related to their possession of knowledge, and it 

has been suggested that such systems can be referred to as ‘knowledgeable’ or ‘informed’ 

(Stephanopoulos & Han, 1996). Fernández-Montes et al. (2014) described a smart 

environment as one that acquires knowledge about its inhabitants to improve their 

experience. Smart systems generally acquire knowledge and utilize their intelligence to 



 

54 

optimize outcomes. Smart transportation systems, including roads, and vehicles, utilize 

knowledge of traffic, passengers, environmental conditions, and incidents to optimize 

transportation outcomes, including safety and throughput (Toh et al., 2020). Smart 

production systems acquire knowledge on production parameters like demand, disruptions, 

and workers through sensing and data capabilities and optimize productivity (Rüßmann et 

al., 2015), safety (Adriaensen et al., 2019; Sjödin et al., 2018a), and customer satisfaction 

(Borangiu et al., 2019).  

3.3.2.4 Flexibility 
Flexibility is the ability of systems to change through learning to improve their performance. 

It has been called changeability, adaptability, agility, or evolution. Flexibility is essential for 

smart manufacturing systems (Sajjad et al., 2021). It enables reconfigurability based on 

learned characteristics, facilitating the capacity to handle uncertainty and variability along 

the value chain (Čater et al., 2021; Pansare et al., 2021). Smart transportation systems can 

use adaptability to improve safety and throughput by altering infrastructure parameters, 

including intersection configurations, road configurations, and customer messaging in 

response to determined or predicted traffic or environmental conditions (Toh et al., 2020). 

Evolution is a peculiar context of adaptability. A perspective on evolution (Leibnitz’s) is 

optimizing a system through generational changes (Hall & Strickberger, 2008). Evolution in 

engineered systems is a borrowed concept from biology, having been observed initially in 

nature. It is a meta functionality that optimizes other functionalities through an iterative 

process. For example, in the Industry 4.0 context, this iterative process is through a feedback 

loop between products in operation and the product development process. It is an iterative 

optimization method for continuous improvement and continuity, optimizing functionality and 

performance (Bosch & Olsson, 2016; Salkin et al., 2018).  
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3.3.2.5 Autonomy 
Autonomy implies functioning without human inputs and is often associated with smart 

systems. Self-organization, emergent order, and dynamic system order are attributes of 

climate-smart agriculture (Jagustović et al., 2019). Smart materials can also self-organize 

(Nguyen et al., 2018) and self-heal (Newnham & Ruschau, 1991), and smart supply chains 

can self-coordinate and react autonomously to disruptions (Wu et al., 2016). Smart mobility 

and transportation systems rely on autonomous functionalities to optimize outcomes such 

as safety and throughput (Fernández-Isabel et al., 2020; Golub et al., 2019). Autonomy 

eliminates or reduces human fallibility, including accuracy, flexibility, speed, and cost. 

Autonomous vehicles are expected to save 9,600 lives annually and $50 billion in economic 

costs at 50% penetration (Gopalswamy & Rathinam, 2018). 

3.3.2.6 Context-awareness 
Context-awareness relates to a system’s recognition of self and the situations in which they 

exist and operate (Gellersen et al., 2002). “A system is context-aware if it uses context to 

provide relevant information and/or services to the user, where relevancy depends on the 

user’s task” (Dey, 2001, p. 2). Smart buildings model real-time consumption requirements 

for lighting by creating an awareness of human environmental activities (Degha et al., 2019). 

Context-awareness in autonomous vehicles, smart roads, and crowd management systems 

has been identified as helpful in improving smart city outcomes. It improves navigation and 

understanding of crowd flow and city dynamics (Boukerche & Coutinho, 2019). Context 

awareness is also foundational for autonomous functionalities, including self-configuration, 

self-healing, self-optimization, and self-protection in smart power grids (Donohoe et al., 

2015). Environmental context sensitivity is key to exploiting consumer smart products’ 

capacity to satisfy user needs; context-awareness is, therefore, key to designing Smart-

Product Service Systems (Carrera-Rivera et al., 2022). 
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3.3.2.7 Resource utilization 
Zhao et al. (2019) present a smart system resource utilization narrative. The acetone-

butanol-ethanol (ABE) fermentation process is labelled ‘smart.’ It is expected to play an 

important role in sustainable energy supply (Ellabban et al., 2014). The production of 

biobutanol through the ABE fermentation process declined over the years due to the relative 

cost inefficiency of the process compared to production through chemical synthesis. The 

recent rise in the global considerations for industrial processes’ environmental impacts has 

shifted focus to the fermentation process. Smart ABE fermentation uses designed 

biomasses to improve the utilization of substrates. It utilizes resources more optimally with 

a resultant gain in environmental impact. Similarly, smart irrigation systems and smart 

manufacturing systems optimize resource utilization, including water, energy, material, and 

environmental impact, through optimal decision-making and autonomous actuation (García 

et al., 2020; Ghobakhloo, 2020).  

The advent of Industry 4.0 has increased references to smart systems. Its wider 

interpretation of applications such as smart cities and smart healthcare beyond industrial 

production has also further increased the relevance of smartness as a characterization of 

systems. Smart systems aim to optimize outcomes. A literature review does not produce a 

concise framework for qualifying smart systems; however, key functionalities like stimuli 

responsiveness, intelligence, autonomy, and adaptability are common. Developing 

smartness in engineered systems would benefit from the ability to identify and measure it. 

This study aims to develop a framework for qualifying and classifying smartness to aid its 

development in engineered systems. Table 3-1 below summarises smart system 

characteristics in recent literature. 

Study2 Autonomy 
Context 
awareness Flexibility Intelligence Optimization 

Resource 
utilization 

Stimuli 
responsiveness 

Adriaensen et al. 
(2019) x   x   x 



 

57 

Borangiu et al. (2019) x   x    
Bordel et al. (2022)     x x x 
Bosch & Olsson (2016) x  x     
Boukerche & Coutinho 
(2019) x x  x    
Canales-Ide et al. 
(2019)     x x  
Carrera-Rivera et al. 
(2022)  x  x   x 
Čater et al. (2021)   x     
Degha et al. (2019) x x   x x  
Dey (2001)  x      
Donohoe et al. (2015)  x     x 
Ellabban et al. (2014)   x   x  
Fernández-Isabel et al. 
(2020) x    x   
Fernández-Montes et 
al. (2014)  x  x   x 
Fragapane et al. (2020) x  x x x  x 
García et al. (2020)     x x  
Gellersen et al. (2002)  x     x 
Ghobakhloo (2020)     x x  
Golub et al. (2019) x       
Gonzalez-Valdivieso et 
al. (2019) x   x x  x 
Gopalswamy & 
Rathinam (2018) x x  x   x 
Ibarra et al. (2018)     x   
Jagustović et al. (2019) x    x x  
Kernecker et al. (2020) x    x  x 
Lipper et al. (2014) x    x   
Miah et al. (2019)       x 
Naqvi et al. (2020) x    x  x 
Newnham & Ruschau 
(1991) x       
Nguyen et al. (2018) x  x    x 
Pansare et al. (2021)   x     
Pasolini et al. (2019)     x x x 
Rüßmann et al. (2015)    x x  x 
Sajjad et al. (2021) x  x x x   
Salkin et al. (2018) x  x x    
Sambo et al. (2019)     x  x 
Samimi-Gharaie et al. 
(2018) x  x  x  x 
Sassone et al. (2016) x x     x 
Sjödin et al. (2018) x   x   x 
Toh et al. (2020)   x x    
Waris et al. (2017) x  x x x  x 
Wu et al. (2016) x   x   x 
Zhao et al. (2019) x x   x x  
Zhou et al. (2019)    x x  x 
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Table 3-1 - Smart systems characteristics in literature 

3.3.3 Systems theory 

Systems are composed of components that work collectively to perform functions (Teece, 

2018. Systems theory posits that such a system is more than the sum of its parts i.e., it is 

able to deliver value, not realizable through the individual functioning of its components, and 

the health or quality of systems is better explained by their holistic functioning rather than 

isolated considerations of its parts (reductionism) (Bar-Yam, 2018; Simon, 1991). 

Furthermore, system performance is a function of congruence, the quality of alignment 

amongst the system elements (Nadler & Tushman, 1980), alluding to the value of system’s 

design which translates complexity to outcomes.  

This study develops a conceptual framework for smart systems. Conceptual frameworks are 

useful for organizing complex entities and communicating their structure (Bordage, 2009; 

Miles & Huberman, 1994). The framework developed facilitates the translation of the 

complexity of smart systems into design, enabling understanding and implementation of the 

systems. 

3.4 Method 
The study aims to develop a conceptual framework for smart systems that answers ‘what’ 

a smart system looks like and ‘how’ smartness is developed. The answers to the questions 

will help us identify smart systems and evaluate the smartness of an entity. This study uses 

qualitative research (Edmondson & McManus, 2007) to develop a process description and 

a functional specification for smart systems. To achieve its objectives, the study aimed to 

explore existential phenomenology, the research approach that explores experts' lived 

experiences in a field for theory derivation (Collingridge & Gantt, 2008; Wang, 2022).The 

method consists of semi-structured interviews with experts and analysis of the responses, 

which are suitable for developing new theories as there is little prior understanding of 

relationships and factors in the area (Nowell & Albrecht, 2018).  
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All the interviews are recorded, transcribed, and coded using the Gioia methodology (Gioia 

et al., 2013). The methodology derives the first-order themes through open coding (Strauss 

& Corbin, 1998). These capture the respondents’ thoughts as verbatim as possible. The 

second-order concepts are derived by applying the researcher’s conceptual perspectives on 

the first-order concepts, identifying underlying trends emerging as themes. The researcher 

further analyses the second-order concepts, applying the appropriate theoretical 

frameworks, in this instance, systems theory, to facilitate the emergence of aggregate 

dimensions. 

The interview guide is referenced in Appendix A. The participants were asked for their 

definition of smartness in a system context, and further questioning required them to provide 

necessary clarifications. All the interviews were recorded and transcribed. The responses 

were coded using the Gioia methodology (Gioia et al., 2013). The first-order themes, 

second-order concepts, and aggregate dimensions were determined and coded to facilitate 

analysis. 

3.4.1 Participant Selection 

A key assumption of the Gioia methodology is that the research participants are 

knowledgeable agents (Gioia et al., 2013). The study’s participants’ selection was crucial to 

theory development and achieving accurate, reliable, and generalizable insights as the 

methodology has excelled in situations where participants have knowledgeable experiences 

(Gehman et al., 2017). The study targeted personnel of large global firms providing 

technology services associated with the identified smart systems characteristics. The 

targeted firms all reported revenues greater than USD 30B in 2021. As the study relies on 

participants' lived experiences, only those with twenty years of experience or more were 

targeted. Key personnel of these firms are identified in whitepapers produced for marketing 

purposes, these were approached, and snowballing sampling technique was deployed 

thereafter (Etikan et al., 2016), with respondents helping to enlist their colleagues as 
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respondents. Sixteen interviews were conducted, as convergence was achieved, with no 

new themes or concepts emerging. Collectively, the work experience of research 

participants spanned many countries. At the time of the interviews, they were based in 

Australia, France, the USA, and Malaysia but spanned many more countries across their 

careers. All respondents were senior leaders of technology functions within major global 

companies at the time of the interviews. They were also associated with Industry 4.0 and 

digital transformation projects and functions. The interviews were conducted in English 

between September and December 2020. Industry 4.0 and Technology leaders at these 

firms were targeted because of the extensive transformation project experience they have 

between them. The study employed measures to ensure the validity of the research, 

including initial expert validation (Straub, 1989) in the interview guide construction and 

triangulation (Kitto et al., 2008) in the data collection and analysis process. The diversity of 

industry expertise also makes them technology agnostic and broadens their scope and 

views. Appendix E – Participant profiles, provides a summary of the Respondents. 

Flinders University Human Research Ethics Committee reviewed and approved this study's 

ethical aspects. 

3.5 Results 
Respondents provided useful insights that can be used to progress the conceptualization of 

smartness. Table 3-1 shows the participants’ responses to the question “what is 

smartness?” The first-order concepts cover the critical deductions and concepts captured in 

the initial and follow-up questions. 

Respondent Smartness description First-order concepts 

1 

Ability to collect data for the purpose of 
generating autonomous functionalities 
and more accurate actuation by 
learning from the data 

Data, autonomy, accuracy, system 
function, learning, actuation, sensing 

2 

The capacity to solve problems using 
the most current and relevant 
information 

Data, information, optimization, 
actuation, quality, intelligence, problem-
solving 



 

61 

3 
Ability to operate autonomously, learn, 
evolve and develop awareness 

Autonomy, awareness, learning, 
evolution, action, function, adaptability 

4 
The use of data to achieve superior 
outcomes Data, quality, actuation 

5 
The use of intelligence, natural or 
artificial, to achieve new capabilities Intelligence, capability, action 

6 

The ability to use sensors to collect 
data over connected infrastructure and 
application of AI to facilitate rapid 
decision making 

Data collection, data processing, 
intelligence, speed, decision-making, 
sensing, connectivity, enablement, 
network, communication 

7 

The use of data and intelligence to 
introduce precision into achievable 
socioeconomic outcomes 

Data, intelligence, system function, 
optimization, accuracy, forecasting 

8 
The use of information and intelligence 
to achieve sustainable outcomes 

Information, data, intelligence, resource 
utilization, optimization 

9 

Utilising embedded intelligence or 
developing updated intelligence for 
consistently making optimal decision 

Optimization, decision-making, 
efficiency, uncertainty, transparency, 
accuracy, consistency 

10 
Ability to sense and respond and self-
correct 

Sensing, self-correction, action, 
autonomy 

11 
Use of stimuli responsiveness and 
adaptive control to act intelligently 

Stimuli-responsiveness, environmental 
interaction, adaptive control, actuation, 
intelligence, flexibility, agility 

12 
Acting with intelligence, static or 
dynamic. Intelligence, actuation, system function 

13 Using data to optimize outcomes Data, optimization, actuation 

14 
Effective utilization of resources to 
achieve better outcomes Effectiveness, optimization 

15 
Ability to learn, change, and improve 
while functioning 

Learning, intelligence, action, system 
function, adaptability, flexibility, agility 

16 

Ability to evolve, developing the 
functionalities required for optimal 
operations System function, evolution, optimization 

 

Aggregate 
dimensions 

Second-order 
concepts 

First-order 
concepts 

Respondent # 

Stimuli-
responsiveness 

Actuation action 3,5,10,15 
actuation 1,2,4,11,12,13 
capability 5 
enablement 6 
problem-solving 2 
system function 1,3,7,12,15,16 

Data acquisition Data 1,2,4,7,8,13 
Data collection 6 
Environmental 
interaction 

11 

Sensing 1,6,10 
Stimuli-
responsiveness 

Stimuli-
responsiveness 

11 

Intelligence Data capability communication 6 
connectivity 6 
data processing 6 

Table 3-2 - Participant’s responses 
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information 2,8 
network 6 
transparency 9 

Decision decision-making 6,9 
Intelligence forecasting 7 

intelligence 2,5,6,7,8,11,12,15 
uncertainty 9 

Knowledge learning 1,3,15 
Functionality Autonomy adaptive control 11 

autonomy 1,3,10 
self-correction 10 

Flexibility adaptability 3,15 
agility 11,15 
awareness 3 
evolution 3,16 
flexibility 11,15 

Optimization Optimization   accuracy 1,7,9 
consistency 9 
Effectiveness 14 
efficiency 9 
optimization 2,7,8,9,13,14,16 
quality 2,4 
resource utilization 8 
speed 6 

Table 3-3 - Analysis of responses 

3.5.1 Smart systems dimensions 

The summary of the Gioia methodology process’s outcome is the synthesis of the first-order 

concepts into second-order concepts and aggregate dimensions presented in Table 3-2. 

The results exposed four aspects of smartness – stimuli-responsiveness, intelligence, 

functionality, and optimization. The three dimensions are pervasive concepts for 

smartness and collectively define the underlying process for smartness. 

3.5.1.1 Stimuli-responsiveness 
Eleven respondents directly connected smartness and stimuli responsiveness. The 

exceptions are Respondents 5, 9, 14, 15, and 16, whose thinking focused on the smartness 

process’s functional outcomes. Respondent 11 defined smartness as the “use of stimuli 

responsiveness and adaptive control to act intelligently.” The respondents envisioned that 

smartness starts with a system’s ability to elicit useful data from its operating environment 

through sensing and concludes with its response to the data collected. Respondents 1, 6, 
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and 10 highlights the acquisition of data through sensing, the described smartness 

respectively as: 

“Ability to collect data for the purpose of generating autonomous functionalities and more accurate 
actuation by learning from the data.” (Respondent 1) 

“The ability to use sensors to collect data over connected infrastructure and application of AI to 
facilitate rapid decision making.” (Respondent 6) 

“Ability to sense and respond and self-correct.” (Respondent 10) 

Systems acquire data from their operating environment through sensing and respond to their 

environment through actuation. The stimuli responsiveness cycle is completed through 

actuation. Respondents identified that smart systems respond to stimuli autonomously. 

Respondent 1, quoted above, referenced accurate actuation in describing smartness, and 

Respondent 10 described smartness as involving response to the stimulus and self-

correction. All respondents associate smartness with some action, including decision-

making (Respondents 6 and 9), resource utilization (Respondent 14), system functioning 

(Respondents 12 and 16), and problem-solving (Respondent 2). 

3.5.1.2  Intelligence 
The respondents agree that smart systems act intelligently. Eleven respondents directly 

referenced intelligence, learning, knowledge, or decision-making. A further respondent 

referenced autonomy which has a direct dependence on intelligence. Respondent 12 

described smartness as “acting with intelligence,” and Respondent 11 described it as using 

“stimuli responsiveness and adaptive control to act intelligently.” Respondents propose that 

smart systems are defined by their ability to use intelligence. Respondents 2, 6, 7, 8 and 9 

identified data as a key component of building intelligence. Respondent 7 described 

smartness as using “data and intelligence to introduce precision into outcomes.” 

Aspects of intelligence identified include learning and improving (Respondent 15), decision-

making (Respondents 6 and 9), handling uncertainty (Respondent 9) and problem-solving 

(Respondent 2). 
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3.5.1.3 Functionality 
Smart systems exhibit functionalities by which they optimize outcomes. Respondent 16 

described smartness as the following: 

Ability to evolve, developing the functionalities required for optimal operations  

The study identified two Important functionalities, autonomy and flexibility. 

3.5.1.3.1 Autonomy 

Respondents 1, 3, 10, and 11 identified the autonomous functionalities of smartness for 

optimizing outcomes. Respondents 3 and 10 described autonomy as key to smartness. 

According to them, smartness is: 

Ability to operate autonomously, learn, evolve and develop awareness (Respondent3) 

Ability to sense and respond and self-correct (Respondent 10) 

Respondents 1 and 11 provided insights into the role of autonomy. According to Respondent 

1, smart systems optimize actuation through autonomous functionalities. They described 

smartness as the: 

Ability to collect data for the purpose of generating autonomous functionalities and more accurate 
actuation by learning from the data. 

Respondent 11 associated it with intelligence, describing smartness as the: 

Use of stimuli responsiveness and adaptive control to act intelligently 

Autonomy is thus a function of smart systems for optimizing system actions.  

3.5.1.3.2 Flexibility 

Smart systems are flexible through features like adaptability, evolution, and context 

awareness. Respondents 3 and 16 identified evolution as a characteristic of smartness. 

Respondent 16 identified the purpose of evolution as improving capacity for optimization 

through new or improved functionalities. Similarly, Respondent 15 associated it with 

flexibility improvement. They described smartness as: 
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Ability to learn, change, and improve while functioning  

Respondent 11 associated flexibility with intelligence through adaptive control, describing 

smartness as the “use of stimuli responsiveness and adaptive control to act intelligently.”  

Through flexibility, smart systems improve existing functionalities for optimizing outcomes. 

They can also develop new optimization functionalities through evolution.  

3.5.1.4 Optimization 
The quality of smartness is experienced through its functional optimization. According to 

respondents, smart systems optimize outcomes, including actuation accuracy (Respondent 

1), development of new capabilities (Respondent 5),  precision of outcomes (Respondent 

7), optimality and consistency of decision quality (Respondents 9 and 13), and outcome 

sustainability (Respondent 8).  

Respondent 13 summarized the optimization function of smartness by describing it as “using 

data to optimize outcomes.” 

3.5.2 Classification 

The study identified intelligence as critical for smart systems. The study identified that smart 

systems use intelligence (Respondents 5, 8, and 12) and, in other instances, develop 

intelligence (Respondents 9 and 12), thus referencing different classes of smart systems. 

The mode of intelligence application is thus important for classifying smart systems. We 

identified two modes of intelligence in smart systems. The first mode involves intelligence 

that is acquired only at system design and is thus hard-coded into the system. Such 

intelligence is final and unaffected by the system's operation, including data acquisition. We 

refer to this mode as static intelligence, as the system does not learn from data. The second 

mode refers to intelligence achieved through analysing the data acquired in the system's 

operations. The body of intelligence, in this case, is dynamic, changing with data acquisition. 

We conceive the base class of systems as one without intelligence; such a system will be 
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non-smart as smart systems act with intelligence (Respondent 12). The system that uses 

embedded, static, or hard-coded intelligence are identified as semi-smart. In contrast, those 

that develop intelligence utilize data to create dynamic intelligence, conceptualized as fully 

smart systems. Smart systems exhibit stimuli responsiveness, intelligence, functionality, 

and optimization characteristics. Any system missing at least one of those characteristics 

would be non-smart.  

Table 3-3 summarises the classification of smart systems. 

System Stimuli-
responsiveness 

Intelligence Functionality Optimization 

Non-smart One or more dimensions not represented 
Semi-
smart 

Present Static 
Intelligence 

Present Present 

Fully-smart Present Dynamic 
Intelligence 

Present Present 

Table 3-4 - Smart system classification 

Figure 3-1 is an illustration of the smart system model from this study. The dashed line 

connecting data and knowledge represents learning and distinguishes fully-smart systems 

from semi-smart systems. 

3.5.3 The smart system framework 

Smartness is characterized by stimuli responsiveness. According to Respondents 1, 6, and 

10, smart systems acquire data from their environments through sensing. Respondent 11 

further notes that they use data to generate intelligence, clarifying the distinctions between 

smart systems, Respondents 9 and 12 identified that some systems learn while others have 

static (hard-coded) intelligence. Respondent 16 concluded that smart systems ultimately 

function optimally and noted that there are functionalities necessary for optimization. 

Respondents 3, 10, and 15 recognized autonomy and flexibility as key functionalities for 

system optimization. Figure 3-1 represents the model for smart systems emergent from the 

study. From a systems theory perspective, the model presents the functional view of smart 
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systems, depicting how components collectively achieve the holistic objective of the system 

to optimize outcomes. 

 

3.6 Discussion  
The study characterized smartness as the application of intelligence for a system’s 

functional optimization, identifying four key concepts that define smartness: responsiveness, 

intelligence, optimization, and system functionalities. The study also classified smart 

systems based on their mode of applied intelligence. Smartness hinges on the application 

of intelligence (Habibzadeh et al., 2018; Zhao et al., 2018). From Table 3-3, the mode of 

intelligence is the key parameter for classifying smart systems. While the framework does 

not quantify system intelligence, the dynamism is material. Non-smart systems are the 

generic systems that translate inputs into outputs without recourse to intelligence. They are 

not the focus of this research. 

The difference between semi-smart and fully smart systems relates to the amount of 

uncertainty they can address. Semi-smart systems address scenarios where the variations 

are understood and addressed at systems design through hard-coded intelligence. In 

contrast, fully smart systems can deal with environmental changes not contemplated at 

system design. Smart drug delivery systems (DDS) are an example of semi-smart systems. 

The intelligence is hard coded and unaffected by data. Learning would be useful in the 

context of cancer spreading or disease pathogens morphing into forms not considered at 

system design. This inability to learn is a potential for improvement as smart DDS evolves. 

Conversely, Industry 4.0 is required to deliver responsiveness to variability in its operating 

Figure 3-1 - Smart system 
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environment in ways that are often not predictable at system design, like factories being able 

to produce future designs that are yet unknown or being responsive to disruptions in the 

supply chain that are impossible to predict. Several of these aspects require fully smart 

systems. Smart cities and smart transportation systems are also Industry 4.0 contexts where 

fully smart system applications are common. This is because of the role of human agents 

as system factors with a high degree of unpredictability. 

Stimuli-responsiveness was found to be pervasive for smartness. Most interview 

respondents made the connections between stimuli responsiveness and smartness. Stimuli 

responsiveness in engineered systems is implemented using sensors and actuators, the 

twin functions which implement the infrastructure for stimuli-responsiveness (Zhao et al., 

2018). The smart systems model (Figure 3-1) illustrates the importance of stimuli 

responsiveness, putting it at the start (data acquisition) and the end (optimization by 

autonomous actuation) of the smartness process. This can be understood in the context of 

the role of intelligence in smartness. Research respondents variously defined smartness as 

having intelligence as the basis for action. The smart system is thus concerned with 

generating and using intelligence. According to Botha (2019),  intelligent processes build on 

acquiring vast amounts of data through which they learn, adapt, and optimize. Sensing 

functionality is critical for the currency of data, as the system captures real-time data from 

its environment. The system derives intelligence from the data to generate and drive 

actuation, the system’s mechanism for optimized actions. Respondent 2 established that the 

currency of information is necessary for smartness. This logic resonates with studies that 

have established a strong link between smartness and instrumentation (Bibri, 2019; Harmon 

et al., 2015; Harrison & Donnelly, 2011). Sensing and actuation are functionalities of 

instrumentation. Through sensing, systems collect essential data related to their operations 

from their environment, and through actuation, a system responds with action. 
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Given that smart systems, operations translate to sequences of data acquisition, intelligence 

generation and intelligence application through autonomous functionalities, enhancing data 

capabilities is core to smartness development. Table 3-2 shows that data capability and data 

processing infrastructure are crucial for smart systems by contributing to intelligence and 

stimuli responsiveness. Data capability refers to the system’s capacity for acquiring, 

managing, and exploiting data to create value for the system. Respondent 2 links the smart 

system functioning with information quality (currency and relevance). Data capability 

enables information quality, facilitating the development of smart system functionality, 

including autonomy, flexibility, and decision-making.  

There is a tendency to characterize smart systems as simply better systems than their 

legacy, non-smart counterparts (Alter, 2019; Corsini et al., 2019; Habibzadeh et al., 2018). 

This tendency is attributable to the optimization characteristic of smart systems. The study 

established that smart systems optimize outcomes. Examples of optimization by smart 

systems include smart farming systems optimizing water usage, land usage, and crop yields 

(Jagustović et al., 2019; Kernecker et al., 2020). Smart transportation systems optimize 

infrastructure efficiency, throughputs, and resource consumption (Habibzadeh et al., 2018; 

Huo et al., 2019; Roman et al., 2018), and smart factories optimize productivity and resource 

utilization (Chen et al., 2018). The functionalities exhibited by smart systems enable the 

system to optimize important outcome parameters. A smart waste management system 

utilizes its predictive capability to optimize logistics (Rutqvist et al., 2020), and smart 

factories use autonomy and flexibility to optimize decision-making and resource efficiency 

(Lichtblau et al., 2015). 

3.7 Conclusion 
Smartness is the application of intelligence in the operations of a system. Data, stimuli 

responsiveness, intelligence, and optimization are base characteristics of smartness. Smart 

systems seek to take the best quality action possible based on the best decision. They 
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acquire data from their environment to synthesize knowledge and feed the decision process. 

Data quality, the currency of intelligence, and effectiveness of actuation are thus quality 

parameters of smartness. 

We identified three classes of systems concerning smartness: non-smart systems, semi-

smart systems, and fully-smart systems. Non-smart systems do not have the full 

complement of stimuli-responsiveness, intelligence, functionality, and optimization. Semi-

smart systems are capable of sensing and actuating. Sensing provides data for decision-

making based on hard-coded intelligence; they do not develop further intelligence through 

their operation. Fully-smart systems generate intelligence from data acquired through 

sensing and utilize their intelligence in system operations. Thus, intelligence is not hard-

coded but dynamic. Furthermore, systems could develop awareness, adapt to changes in 

their environment and operational requirements, evolve desired features and functionalities, 

predict future values of relevant variables, and function autonomously. 

The advent of Industry 4.0 drives the appetite to implement smart technologies and build 

smart production organizations. The development of smart capabilities in production 

organizations, including in factories, products, and supply chains, is a transformation 

process that lends itself to a road-mapping approach (Schimpf & Abele, 2019). This study 

distils smartness into functional components around which transformation can be designed. 

Hence, it is a management tool for transformation planning. Overall, it provides improved 

clarity in the conceptualization of smartness, which paves a strong foundation for future 

empirical research.  

3.7.1 Practical implications 

There are two main implications of this study. The first is the identification and classification 

of smart systems. The framework presented in Table 3-4 provides a basis for smart system 

identification and classification. System identification uses statistical methods to develop 
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mathematical models for implementing and optimizing systems (Ljung, 2010). The 

framework developed in this study identifies useful parameters for input and output data 

consideration in an identification exercise for smart systems. This thus provides a basis for 

further developments in the evolution of smart systems. Secondly, the smart system 

dimensions identified in this study facilitate the maturity modelling of smartness as a 

capability. Maturity models are an effective capability measurement tool. Their application, 

however, relies on measuring the target capability's appropriate dimensions. This study 

identifies the dimensions of smartness, thus enabling the application of maturity modelling 

for measuring smartness as a capability. This is potentially crucial for Industry 4.0, where 

smartness is the capability developed through digital transformation for production 

performance improvement.   

3.7.2 Future directions and research limitations 

The identification of semi-smart and fully-smart classes of smart systems highlights the 

importance of the impact of the scope of variabilities in the system operating environment 

on system design and functionality. Further research on modelling the relationships between 

a smart system and its operating environment to characterize the possible variabilities is an 

interesting and useful potential research subject. 

This study is based on the lived experiences of the research participants. The set of 

participants thus represents limitations to the research.  
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4 DRIVING SMARTNESS FOR ORGANIZATIONAL 
PERFORMANCE THROUGH INDUSTRY 4.0: A SYSTEMS 

PERSPECTIVE 

Journal publication: This chapter was accepted for publication in the Journal of 

Manufacturing Technology Management: Abiodun, T., Rampersad, G.C. and Brinkworth, R. 

(2023): “Driving smartness for organizational performance through Industry 4.0: A systems 

perspective: DOI (10.1108/JMTM-09-2022-0335)” The Student’s Contribution was the 

majority of the publication (95%), specifically research design, data collection and analysis, 

and writing. The supervisors had a guiding, reviewing, and editing role (5%). 

4.1 Abstract 
Purpose: The internationalization of business has grown the production value chains and 

created performance challenges for industrial production. Industry 4.0, the digital 

transformation of industrial processes, promises to deliver performance improvements 

through smart functionalities. This study investigates how digital transformation translates 

to performance gain by adopting a systems perspective to drive smartness.  

Design/methodology/approach: This study uses qualitative research to collect data on the 

lived experiences of digital transformation practitioners for theory development. It uses semi-

structured interviews with industry experts and applies the Gioia methodology for analysis.  

Findings: The study determined that enterprise smartness is an organizational capability 

developed by digital transformation, it is a function of integration and the enabler of 

organizational performance gains in the Industry 4.0 context. The study determined that 

performance gains are experienced in productivity, sustainability, safety, and customer 

experience, which represents performance metrics for Industry 4.0. 

Originality: Existing studies recognized the positive impact of technology on performance 

in industrial production. The study addresses a missing link in the Industry 4.0 value creation 
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process. It adopts a systems perspective to establish the role of smartness in translating 

technology use to performance outcomes. Smart capabilities have been the critical missing 

link in the literature on harnessing digital transformation in organizations. The study 

advances theory development by contributing an Industry 4.0 value model that establishes 

a link between digital technologies, smartness, and organizational performance. 

Research implications:  This study contributes a model that inserts smartness in the 

linkage between digital transformation and organizational outcomes to the digital 

transformation and production management literature.  

Keywords: digital transformation, Industry 4.0, organizational performance 

4.2 Introduction 
Production value chains have grown significantly as international business and globalization 

progress. This increased size and scope of production value chains have created a 

challenge for their performance. Performance considerations include concerns for 

production’s social and environmental implications (Furstenau et al., 2020), variability in the 

production environment (Dequeant et al., 2016), the need for more resilience in supply 

chains (Ralston & Blackhurst, 2020), and the growing demand for custom products to meet 

unique needs of more diverse customers (Aheleroff et al., 2019; Tseng & Jiao, 1997). 

Resilience in times of disruption is an important consideration for production value chain 

performance. Some studies have suggested that global value chains are more vulnerable 

to disruptions (Miroudot, 2020). Socio-economic and biological contagion plays important 

roles in global crises, as highlighted by the COVID-19 pandemic (Hansen, 2021; Hsiang et 

al., 2020); thus, global value chains are both a risk and at risk. At the organizational level, 

variability in production parameters characterizes the expansive value chain and introduces 

uncertainty in production performance (Dequeant et al., 2016; Smorodinskaya et al., 2021). 

Industry 4.0, deploying cyber-physical systems to integrate the production value chain 
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enables smartness in production systems to respond to this risk and optimizes the 

performance of production enterprises (Fragapane et al., 2020). This smartness facilitates 

the flexibility of production systems, products, and supply chains for addressing the 

variability challenge (Enrique et al., 2022; Shahin et al., 2020; Xie et al., 2020).  

Industry 4.0 has emerged as important to the productive capacity of organizations in 

uncertain environments (Lee & Trimi, 2021). The digital transformation literature has 

positioned Industry 4.0 as a technology-led value creation framework and focused the 

Industry 4.0 discourse predominantly around technology (Oztemel, 2018; Oztemel & 

Gursev, 2020), with several studies establishing the contribution of technologies to 

production performance (Büchi et al., 2020; Dalenogare et al., 2018; Lin et al., 2019). The 

Industry 4.0 literature further discusses the expectation of smartness as a characteristic of 

transformation through which the enterprise optimizes outcomes (Adamik & Sikora-

Fernandez, 2021; Chronopoulos et al., 2020; Lichtblau et al., 2015). The literature 

references the factory (Cheng et al., 2018), supply chain (Tripathi & Gupta, 2021), and 

products (Nunes et al., 2017; Salkin et al., 2018) as elements of the production value chain 

through which smart capabilities materialize. Smartness is thus positioned as a link between 

technology and value realization.  

However, the nuances of the relationships between smartness, technology, and 

organizational performance are often overlooked, necessitating a more indepth look at the 

holistic systems approach. From the above, two issues come to the fore. First, the 

performance of a value chain is multi-dimensional and not simply characterized by its 

throughput. The impact of value chain activities on its multiple stakeholders must drive the 

notion of performance, culminating in factors such as sustainability (Baier et al., 2020). The 

literature remains limited in examining the impact of Industry 4.0 on broader organizational 

performance contexts such as customer experience, safety, and sustainability. It follows that 

constructing an appropriate performance metric for the production firm must include a 
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comprehensive understanding of its stakeholders and their interests in the enterprise. 

Secondly, the relationships between technology, smartness, and performance highlight the 

role of smartness as the organizational capability emergent from end-to-end digital 

transformation of the production value chain, describes the Industry 4.0 value path and 

would benefit digital transformation strategy formulation.  

Given such complexities, a systems perspective is needed to explore how inputs are 

converted to outcomes through smartness. Therefore, this study will improve the 

understanding of relationships between smartness, technology, and organizational 

performance, to support manufacturing managers in developing Industry 4.0 strategy and 

harnessing the value from Industry 4.0 interventions. 

4.3 Literature review 

4.3.1 Industry 4.0, systems theory, and production performance 

The value proposition of Industry 4.0 has been discussed extensively in academic literature. 

Many studies attribute Industry 4.0’s value creation potential to a direct effect of Industry 4.0 

technologies on aspects of the value chain, establishing a causal relationship between 

technology and performance. This approach translates to a reductionist view of the value-

creation process as it focusses on siloed treatment of specific processes. Following this 

approach, Dalenogare et al. (2018), Qader et al. (2022) and Szász et al. (2020) explored 

the impact of Industry 4.0 technologies implementation on industrial performance metrics 

including product, supply chain performance, cost, quality, delivery, and flexibility. Lin et al. 

(2019) identified drivers of Industry 4.0 strategy adoption, studying the relationship between 

these factors, adoption and performance (financial, innovation, stock market return, and 

supply chain performance) and Büchi et al. (2020) considered technology from the 

perspective of the attitude toward adoption and established its impact on performance. 

Overall, these studies identified measures of Industry 4.0 technology adoption, 

implementation or application in production processes and established that Industry 4.0 
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technologies improve performance. Another approach considers the interactions between 

technology and organizational factors or management practices in the value-creation 

process. In addition to considering the causal relationship like the first school of thought, 

Szász et al. (2020) also determined that firm size positively influences adoption, thus, 

contributing to performance. Studies also found that Industry 4.0 enhances lean and JIT 

practices (Buer et al., 2018; Lai et al., 2019; Rosin et al., 2020), eliminating waste and 

increasing productivity.  

Fewer studies have considered Industry 4.0 as a systemic effect in investigating its value-

creation process. Fatorachian and Kazemi (2021) and Ghadge et al. (2020) explored the 

impact of Industry 4.0 on the production supply chain performance using frameworks 

underpinned by systems theory. They examined the impact of Industry 4.0 on supply chain 

performance using frameworks that quantified the systemic impacts of Industry 4.0 on the 

production enterprise. Table 1 summarizes recent studies addressing the organizational 

value proposition of Industry 4.0. The measure of Industry 4.0 utility is indicative of the 

approach to value creation. While the studies with a holistic approach measured Industry 

4.0 based on organizational capabilities created, the reductionist approach measured 

technology implementations and management efforts. There does not appear to be 

adequate research exploring the performance impact of Industry 4.0 across the entire 

production value chain based on a holistic approach. A systems perspective is needed to 

advance the Industry 4.0 stream of literature beyond the predominant focus on reductionist 

values in the production organization. The influence of specific technologies on performance 

or practices like lean and Just in Time (JIT) does not consider end-to-end integration and 

the role of resultant information transparency on value creation. 

Systems theory posits that a system can be optimized by eliminating reductionist 

approaches to its operation and management (Bar-Yam, 2018; Johnson et al., 1964; Teece 

& Pisano, 1998). By integrating the value chain end-to-end (Bartodziej, 2017; Wang et al., 
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2016), Industry 4.0 appeals to systems or holistic organization of the production enterprise 

rather than a reductionist approach to delivering value. However, many studies seek to 

explain the value proposition of Industry 4.0 by showing the impact of technology on aspects 

of the value chain, not the holistic effects of integrating the value chain. Furthermore, many 

technologies that are usually referenced, like sensors, robotics, and automation, and their 

application in industrial production predates Industry 4.0 (Haidegger et al., 2019; Lloyd Spetz 

et al., 2001; Tantawi et al., 2019).  

Study Industry 4.0 Measurement Performance Metrics 
Dalenogare 
et al. (2018) 

Adoption of Industry 4.0 technologies. Product (innovation, customer), 
Operational (Cost, productivity, process 
efficiency), Side effects (sustainability, 
employee wellbeing) 

Szász et al. 
(2020) 

Adoption of Industry 4.0 technologies Cost, quality, delivery, and flexibility 

Lin et al. 
(2019) 

Industry 4.0 strategy adoption. Financial, innovation, stock market 
return, and supply chain performance 

Büchi et al. 
(2020)  

Attitude towards Industry 4.0 based on 
the number of Industry 4.0 technologies 
adopted and the extent of their 
embeddeness in business operations 

Six factors addressing productivity, 
product quality, resource utilization and 
product innovation. 

Rosin et al., 
2020 

Adoption of Industry 4.0 technologies 
(IoT, Simulation, Autonomous Robots, 
Augmented Reality, and Big Data and 
analytics) 

JIT Capability level 

Lai et al., 
2019 

Industry 4.0 technologies application Waste reduction 

Qader et al. 
(2022) 

Technology implementation (IoT, 
Machine Learning, and Blockchain) 

Operational and financial performance 
of the supply chain 

Fatorachian 
and Kazemi 
(2021) 

Integration and transparency Responsiveness, flexibility, 
dependability, product or service 
quality, efficiency, and effectiveness 

Ghadge et 
al. (2020) 

Technology-enabled information 
transparency 

Adaptability, agility, and flexibility 

Table 4-1 - Industry 4.0 value creation in literature 

This study applies systems theory in exploring the value creation potential of Industry 4.0 

across broad performance metrics, modeling relationships between digital transformation, 
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enterprise smartness, and production performance. Therefore, the study addresses the key 

research question of ‘How does Industry 4.0 drive organizational performance, and how 

does smartness play a critical role in this process?’ 

The industrial production system comprises devices, materials, systems, processes, people, 

and partnering organizations (Chukalov, 2017; Tabim et al., 2021). Integrating them into a 

single system for holistic management creates a socio-technical system consisting of 

technical and non-technical parts (Sony & Naik, 2020). Socio-technical systems are 

characterized by extensive interactions among independent heterogeneous actors, resulting 

in highly volatile and unpredictable operating environments. The system must thus regulate 

agents’ actions to optimize its function (Dalpiaz et al., 2013). Industry 4.0 approaches this 

optimization challenge of the production system through smartness (Lichtblau et al., 2015).  

4.3.2 Smartness 

Smartness is the characteristic of gaining optimization through the application of intelligence 

built on stimuli-responsiveness (Nguyen et al., 2018; Samimi-Gharaie et al., 2018; Zhao et 

al., 2018).  Smartness is linked to information transparency (Abiodun et al., 2022; Wu et al., 

2021). Furthermore, information transparency is a function of integration (Guo et al., 2022). 

It follows that the smartness potential of an enterprise or system depends on the quality of 

integration and is attributable to holistic approaches. The value-creation potential of 

digitalized industrial production systems is tied to information transparency (Flatt et al., 

2016). By integrating the value chain and enabling information transparency, Industry 4.0 

facilitates smartness, including the smart factory (Radziwon et al., 2014; Wang et al., 2016), 

the smart supply chain (Wu et al., 2016), and the smart product (Nunes et al., 2017; Salkin 

et al., 2018). Through real-time information on production elements, smart capabilities 

enhance autonomy, flexibility, decision-making, and productivity (Alani & Alloghani, 2019; 

Barreto et al., 2017; Cortés Serrano et al., 2018).  
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The smart factory is a network of devices, systems, and processes for production, 

implementing an automation pyramid from ground-level devices with sensing and actuation 

functionalities to enterprise information systems like enterprise resource planning (ERP) 

(Zuehlke, 2010). Smart factories have smart systems characteristics, including intelligence, 

awareness, and environmental interaction (Chen et al., 2018; Radziwon et al., 2014). The 

smart factory is underpinned by cyber-physical integration. The physical elements are 

instrumented with sensing and actuation, allowing them to integrate with the virtual elements 

and interact with their environment. The smart factory aims to engender flexibility in the 

production enterprise and enable agility in product development and resilience to variability 

in the operating environment (Bortolini et al., 2018; Chen et al., 2018). 

The smart supply chain can enable flexibility of the production value chain through 

autonomous recovery from disruptions and optimization of logistical functions (Wu et al., 

2016). The problem statement for the classic supply chain is optimizing the cost of having 

items at the right place and time (Mallik, 2010). Industry 4.0 uses smart system 

functionalities to optimize supply chain management goals. Through horizontal integration, 

the participating entities in a supply chain are integrated with interoperable business 

functions. The integration can facilitate real-time information about articles traversing 

through the chain, enabling autonomous logistic functionalities based on optimal decision-

making (Gupta et al., 2019; Sodhi & Tang, 2019).  

The smart product can automate embedding customer experience, feedback, and 

requirements into production. In the reverse direction, it can automate maintenance and 

continual improvement of products and services, creating a dynamic product lifecycle loop 

designed to optimize customer experience and manufacturers’ productivity (Nunes et al., 

2017; Salkin et al., 2018). The smart product builds on the end-to-end engineering 

integration in the production value chain and sensing and actuation features on the product 

(Romero & Noran, 2017). 
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4.3.3 Industry 4.0 performance metrics 

A clear value proposition is necessary to drive the vision of Industry 4.0 and digital 

transformation (Rupp et al., 2021). The value proposition would be informed by its 

implication to stakeholders for performance outcomes (Baier et al., 2020). In designing 

systems, there is a tendency to focus on functional relevance, leading to specifications 

narrowly constrained within the system’s technical boundaries and insufficient consideration 

for its wider implications (Coakes & Elliman, 2002). This narrow view of systems design 

translates to a constraint on its ability to fulfill its purpose. Similarly, a holistic view of 

business performance requires an understanding of its implication for its stakeholders – 

those it impacts and those that impact it (Parmar et al., 2010). The organizational 

performance context thus encompasses notions of sustainability and factors aligned to the 

interests of other stakeholders, in addition to the financial success of the enterprise (Baier 

et al., 2020; Harrison & Wicks, 2013; Laplume et al., 2008). Determining performance 

objectives is therefore linked to identifying stakeholders. 

The pattern of Industry 4.0’s emergence provides some insight into its stakeholders and 

performance considerations. Specific concurrent shifts in the global socio-economic 

landscape were very influential in its development and raised the significance of 

stakeholders, beyond shareholders, to the production enterprise (Lasi et al., 2014). Its key 

characteristics, including, mass product customization, optimization of resource use, 

reduction of environmental impact, and flexibility of production systems (BMBF, 2014; 

Ghobakhloo, 2020; Jiao et al., 2021; Prause, 2015; Tripathi et al., 2021) address the 

interests of these stakeholders.  

Connections have been made between globalization, global governance, and digital 

technologies (Voronkova et al., 2020). The value proposition of digitally integrating the value 

chain is increased as it grew in scope due to globalization and the internationalization of 

business. These transnational value chains have some challenges, including sustainability 
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due to increasing socio-economic impact on the environment and people not involved in the 

business (Prause, 2015; Zhu et al., 2018) and new operational challenges to productivity 

due to size and complexity (Strange & Zucchella, 2017). Variability is challenging for 

production, and the increased complexity of value chains introduces more variability to the 

supply chain and production processes (Núñez-Merino et al., 2020). Furthermore, small and 

medium enterprises (SMEs) are part of complex supply chains. Their success increasingly 

requires functional and process integration within the supply chain networks based on digital 

technologies (Türkeș et al., 2019). 

A regime of customer influence is also emerging from changing customer behavior (Jiang 

et al., 2006). The Henry Ford notion of customers adjusting their tastes to the product is no 

longer feasible; products must be flexible and fit with the customer (Lasi et al., 2014). The 

demands of this change are beyond new products. A paradigm shift to customer-centric 

production is necessary (Guo et al., 2020). 

The increasing scope of the production value chain creates challenges for production 

performance. Industry 4.0 seeks to respond to these challenges through digital 

transformation. It integrates the value chain to enable functioning and optimization as a 

holistic system. The optimization is through the development of smart functionalities. This 

study uses qualitative research to determine the relationships between digital technologies, 

smartness, and organizational performance. It uses the research process to determine the 

performance metrics for Industry 4.0 and creates an Industry 4.0 business capability model 

to reflect its value-creation process.  

4.4 Methodology 
This study aims to formulate theory from practice and generate insight with practical 

usefulness. Industry 4.0 emerged and developed largely through the effort of industry actors 

(Verhoef et al., 2021). The industry has also outpaced academia in the digital transformation 
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sphere resulting in theoretical gaps in support of industry practices. Furthermore, an analysis 

of existing literature revealed insufficient coverage of socio-technical systems in digital 

transformation (Liere-Netheler et al., 2018). As this study aims to explore existential 

phenomenology, the approach of exploring lived experiences of a relevant group to capture 

knowledge for theory development is justifiable (Collingridge & Gantt, 2008; Wang, 2022).  

Qualitative methodology is appropriate because it is effective for theory formulation to bridge 

gaps in the literature (Edmondson & McManus, 2007). Qualitative approaches are also 

useful for exploring experiences using natural language for data capture and translation to 

theory (Levitt et al., 2018); in this instance, a semi-structured interview of industry experts 

was employed. The interview framework is presented in Appendix A. The semi-structured 

interview provided the flexibility to explore each expert’s unique experiences and insights 

while maintaining the same breadth of questions and similar depths of exploration across 

the interviewees (Saunders et al., 2009). Semi-structured interviews are also appropriate 

where the respondent’s expertise is material (McIntosh & Morse, 2015).  

The study aimed to access practitioners’ deep industrial digital transformation knowledge 

bases. Thus, senior personnel of global technology firms who provide key technologies and 

services to global industrial organizations was targeted for participation. Sixteen 

respondents from seven organizations participated as convergence was achieved at sixteen 

interviews when no new concepts were observed. The smallest of these organizations by 

revenue had over USD 30B in revenue in 2021. The participants had a minimum of twenty-

one years of relevant experience in digital transformation and belonged to the senior 

management cadre. Snowballing sampling technique was employed to facilitate 

triangulation (cross-checking responses among participants from the same organizations 

and similar industry affiliations) and enhance research validity (Etikan et al., 2016; Kitto et 

al., 2008). An overview of the respondents’ profiles is presented in Appendix C – Participant 

profiles. 
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Coding and analysis followed the Gioia methodology (Gioia et al., 2013). The Gioia 

methodology builds perspectives on a subject matter through an iterative contextual analysis 

process that develops higher-order concepts from lower-order ones. It is effective for 

navigating diverse concepts to develop a data structure for understanding a subject matter 

in relatively short iterations (Gehman et al., 2017). The methodology consists of three stages 

through which the researcher applies consistent treatment to interview responses to arrive 

at a reliable outcome. The first stage is the first-order analysis. The principles of open coding 

(Strauss & Corbin, 1998) are applied, extracting concepts that preserve the original thought 

of research participants (Gioia et al., 2013). Open coding principles align with grounded 

theory methodology (Strauss & Corbin, 1994). The researcher extracts theory from data 

rather than imposing existing theory on the data, facilitating the original objective of 

existential phenomenology. The first-order analysis stage generates a lot of concepts that 

feed the second stage, the second-order analysis phase. In this phase, the researcher 

identifies emerging concepts based on logical associations among the first-order concepts. 

This is achieved by applying the researcher’s conceptual perspectives on the first-order 

concepts (Shkedi, 2004), including consideration of the contexts in which the concepts were 

discussed. This study’s conceptual perspective relates to performance and value creation. 

The final phase of analysis involves another iterative cycle through the second-order 

concepts, this time applying applicable theoretical lens to identify aggregate dimensions that 

define a data structure for the subject matter. Systems theory is the overarching theoretical 

foundation for this study. The model of systems presented by Dutta et al. (2005a) provides 

a guide, identifying inputs, capability as the intermediate outcome with enabling functionality, 

and system outputs.  

To illustrate the application of the Gioia methodology in this study as an example, we 

consider the respondents’ references to enhanced collaboration between man and 

machines as a feature of Industry 4.0 and the identification of collaborative robots as its key 
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enabler. The first-order concepts capture the respondents' thoughts as natively and verbatim 

as possible, identifying man-machine collaboration and cobots as concepts. To derive the 

second-order concepts, the researchers apply the lenses of performance and value creation 

to the first-order concepts. These are the conceptual perspectives of the study. They enable 

the second-order concepts to answer the  question, ‘how do the respondents attribute value 

creation to the first-order concept?’ It results in Digital Technology and Task 

Transformation as second-order concepts. To derive the aggregate dimensions, the 

researchers explore the second-order concepts from the lenses of the study’s theoretical 

basis, systems theory, and the specific system model presented by Dutta et al. (2005a), 

situating the emergent concept as input, output, or intermediate capability. It identifies 

Digital Technology, Productivity, and Safety as aggregate dimensions. 

Appendix B presents the emergent data structure from the analysis. 

The validity of the research is important to achieve its objectives (Golafshani, 2003; Rolfe, 

2006). The research employed an initial expert validation by research colleagues (Straub, 

1989) consisting of researchers with expertise in digital transformation and qualitative 

methodologies. They provided inputs into the construction of the interview guide. The study 

also employed triangulation in the data collection, analysis, and interpretation process (Kitto 

et al., 2008), recruiting multiple respondents from each industry segment covered by 

respondents. Three researchers reviewed the coding, analysis, and final data structure.  

4.5 Results 
The first-order concepts derived from analyzing responses to the question “What is Industry 

4.0?” are documented in Appendix B. The appendix also documents the second-order 

concepts and the aggregate dimensions derived through further iterative analysis of the 

concepts from the lenses of their functional contribution to the production organization. Six 

aggregate dimensions, discussed in the following sections, are identified in the study. The 
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first is the digital technologies that enable Industry 4.0. The second dimension is the 

capabilities of Industry 4.0 that while the last four dimensions address the value propositions 

of Industry 4.0, productivity, customer experience, sustainability, and safety. 

4.5.1 Technology use 

The value of Industry 4.0 is attributable to emergent properties of the confluence of 

increasing maturities of many digital technologies, which enabled interoperability across the 

production value chain (Respondent 1). Twelve respondents (1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 

14, and 16) identified the role of digital technologies in Industry 4.0. They identified 

digitalization and integration as the primary objectives of applying digital technologies and 

information transparency as result of digitalizing and integrating. Respondent 3 stated that 

industrial production had experienced pockets of gains from automation and computing prior 

to Industry 4.0. It is noted, however, that the value of Industry 4.0 is in the utilization of 

technologies to achieve cyber-physical systems (cps): 

It is revolutionary, resulting in efficiency and effectiveness gains through cps. (Respondent 3) 

Respondents 4 and 10 similarly attributed the Industry 4.0 value to using digital technologies 

to create cps. They approached cyber-physical integration from the IT-OT integration 

perspective: 

Industry 4.0 is the extension of digitalization principles from IT to OT. IT has long transformed the 
business technology space of the enterprise. Now the OT space is being similarly transformed 
and integrated, creating a single digital enterprise. This transformation is dependent on advanced 
technologies, particularly sensors, robotics, virtual reality, and artificial intelligence. (Respondent 
4) 

Other respondents viewed the resulting integration from applying advanced technologies 

from different lenses. Respondent 8 focussed on enabling the end-to-end integration of the 

enterprise, while respondents 5 and 7 linked the end-to-end integration to Industry 4.0 

capabilities development. Respondent 9 focussed on linking the technology-enabled 

integrations to production value stating that: 
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Industry 4.0 is about integrating the physical and virtual worlds for the purpose of production 
processes advancement. … In the Industry 4.0 context, production systems can attain super 
efficiency. (Respondent 9) 

Respondent 7 summarised the use of technology in Industry 4.0. They identified the link 

between technologies and capabilities development and value creation. According to the 

interviewee: 

Industry 4.0 is a series of layered capabilities that deliver optimal socio-economic outcomes in 
industrial production. The layered capabilities are facilitated by advanced technologies that 
enable stimuli responsiveness, artificial intelligence, data processing, visualization, and robotic 
actuation. (Respondent 7) 

4.5.2 Enterprise smartness 

According to Respondent 5, Industry 4.0’s resultant enterprise capability for value delivery 

is smartness built on value chain integration:  

The implementation of these technologies enables the integration of the value chain and the 
factory elements resulting in three capabilities, smart products, smart factory, and smart supply 
chain.(Respondent 5) 

Respondent 11 corroborates the link between integration and smartness; and established 

the Industry 4.0 value path from technology to smartness through digitization, integration, 

data capability, and information transparency:  

Industry 4.0 is the digitization of all aspects of production processes, the vertical integration of the 
factory, and horizontal integration of the production ecosystem with IoT, Enterprise Information 
Systems, and autonomous functionalities. Digitization provides the platform for integration, while 
integration creates the capability for smart characteristics. The horizontal integration connects the 
entire value chain from suppliers to the consumers while the vertical integration connects the 
processes within the production enterprise.  

Data is an important part of the Industry 4.0 idea; it is the lifeblood of Industry 4.0. Data related to 
all aspects of the production enterprise operations covering planning, production, and 
maintenance are made available in real-time, powering analytics and providing the intelligence 
required for smart operations. (Respondent 11) 

Respondent 7 provides more context to creating the Industry 4.0 smart capabilities, 

indicating that Industry 4.0 technologies produce stimuli-responsiveness, intelligence, and 

enhanced data functionalities to facilitate the capabilities which deliver optimal socio-

economic outcomes in industrial production.  

Industry 4.0 is a series of layered capabilities that deliver optimal socio-economic outcomes in 
industrial production. The layered capabilities are facilitated by advanced technologies that 
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enable stimuli responsiveness, artificial intelligence, data processing, visualization, and robotic 
actuation. (Respondent 7) 

Respondent 2 describes Industry 4.0 as the use of smartness to address key challenges of 

industrial production, namely the requirement for mass product customization, variability in 

the production environment, and sustainability challenges: 

Industry 4.0 emerged as a systemic response to fundamental challenges facing production 
enterprises because of evolving socio-economic realities over a period. First is the increasing 
demand to customize or individualize products and services to satisfy the changing needs of 
consumers. The second is the evolving challenge of energy and resource utilization in response 
to environmental requirements. The third is the volatility of production parameters requiring a 
higher capacity for flexibility in production enterprises. Industry 4.0 uses smart solutions to 
address the challenges. (Respondent 2) 

Respondent 2 puts smartness central to Industry 4.0 as its core value-creating capability. 

According to Respondent 12, Industry 4.0 goes beyond employing smartness internally, but 

the organization becomes a smart entity, reflected in its external interaction with its 

customers. 

The smart factory, supply chain, and product are Industry 4.0 capabilities developed by the 

digital transformation of the production enterprise. They address challenges of the variability 

of production parameters, the need for mass product customization, and increased 

sensitivity to production’s environmental impacts, providing the enterprise with the capacity 

for flexible and autonomous functioning. Through vertical, horizontal, and engineering 

integrations, sufficient information transparency is achieved to make the enterprise smart 

(Respondents 2, 10, 11, 12, and 16).  

The respondents presented Industry 4.0 as a value-creation mechanism. According to 

Respondent 16: 

Industry 4.0 is about the creation of fully connected production value chains. The idea thus is to 
better the capabilities of linear value chain constructs. (Respondent 6) 

The study identified four lenses for Industry 4.0 value creation, seen from stakeholders’ 

viewpoints, Productivity, Sustainability, Safety, and Customer experience. 
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4.5.3 Productivity 

According to Respondent 16, the integrated, non-linear value chains created by Industry 4.0 

is more productive than their linear predecessor. The research identified productivity from 

four stakeholder perspectives, Employees, Government, Partners, and Shareholders. Task-

level productivity impacts Employees and Shareholders. Respondents 5 and 9 identified 

improvement of work tasks through enhanced man-machine interactions, and Respondents 

6, 7, and 12 identified the impact of autonomous actuation on work tasks. According to 

Respondent 1, Industry 4.0 has implications beyond the firm at the national and international 

levels. It impacts economic growth, sovereign manufacturing capability, and job creation 

with implications for Government. Respondent 1 stated:  

We will experience the classic hype cycle effect. The level of investment required to drive it to 
fruition will be difficult to achieve at this point. It will improve manufacturing in first-world countries 
because of lower cost manufacturing. It will push the pursuit of more sustainable supply chain 
arrangement, away from the constant pursuit of lower costs. (Respondent 1) 

Industry 4.0 impacts enterprise (organizational) production capabilities (Respondents 2, 3, 

8, 12, and 16). Respondent 2 identified that Industry 4.0 develops organizational capabilities 

that deliver outcomes for the firm. Respondents 3, 8, 9, and 12 identified organizational level 

productivity impact of the Industry 4.0 capabilities. Respondent 9 stated, “in the Industry 4.0 

context, production systems can attain super efficiency.”  

4.5.4 Customer experience 

Respondent 6 put the value delivery to the customer as important to Industry 4.0, stating, 

“the basic business value of Industry 4.0 is customer, the ability to anticipate customer needs 

and deliver them rapidly.” 

According to Respondents 2 and 8, product customization is one of the key objectives of 

Industry 4.0 and a major way through which it influences customer experience (Respondents 

2 and 8). Respondent 2 identified the customer and the enterprise (shareholders) as 

beneficiaries of the customer experience value, stating, “Industry 4.0 enables mass product 
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customization, simultaneously delivering value to the producer and consumer as productivity 

and superior customer experience.” 

Respondents 8, 12, and 16 further reiterated the significance of mass product customization 

in Industry 4.0 through the enterprise transformations initiated to facilitate it, including 

product lifecycle transformation and persistent engagement of the customer. 

4.5.5 Sustainability  

Sustainability concern is one of the key factors that necessitated Industry 4.0. According to 

Respondent 2, three challenges necessitated Industry 4.0, and one was:  

The evolving challenge of energy and resource utilization in response to environmental 
requirements. Through smartness, Industry 4.0 addresses the challenges that necessitated it. … 
It optimizes resource utilization and environmental interaction of production systems. 
(Respondent 2) 

Industry 4.0’s sustainability impact includes socio-economic growth (Respondent 2), 

resource utilization in production processes (Respondents 5, 9, 12, 13, 15, and 16), 

environmental impacts of production processes (Respondents 5, 6, 7, 9, 10, 11, 12, 13, 15, 

and 16), and facilitation of social equity through consumptive business models which 

reduces setup costs for lower resourced producers by converting capital costs to operating 

costs (Respondent 14).  

The study identified unique sustainability impacts through sovereign manufacturing 

capability Respondent 1 linked the emergent sovereign manufacturing capability from 

Industry 4.0 and sustainable supply chains. According to the interviewee, the impact on 

outsourcing dynamics between well-developed and lesser-developed nations will create 

sustainable supply chain arrangements, stating, “it will push the pursuit of more sustainable 

supply chain arrangement, away from the constant pursuit of lower costs.” 

Respondent 14 identified the similarity between cloud factories for manufacturing and cloud 

computing for digital infrastructure. According to the interviewee, cloud technologies enable 
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consumptive business models. It facilitates social equity and democratizes access to 

opportunities, stating, “Industry 4.0 actualizes the cloud factory concept which democratizes 

production infrastructure in the same way cloud computing does for digital infrastructure.” 

(Respondent 14). 

4.5.6 Safety 

According to Respondents 3 and 15, worker safety is a value proposition of Industry 4.0. 

Respondent 3 stated, “Industry 4.0 increases productivity, product and process quality, cost optimization, 

product innovation, and employee safety.” Respondent 15 stated, “The value created by the integrated 

intelligent systems include organizational and occupational safety and productivity.” 

Work process transformation (Respondents 12 and 13) eliminates hazards, making them 

safer. Enhanced man-machine collaboration reduces physical and cognitive loads on 

workers (Respondents 5 and 9), and it introduces technologies with safety-enhancing 

functionalities (Respondents 2, 7, and 12). Respondent 3 stated that they had witnessed 

Industry 4.0 save a worker’s life through tracking technologies that monitor the status of 

workers in real-time and reported an isolated worker who had collapsed, stating, “I have 

witnessed a worker’s life saved by Industry 4.0 technology with a man-down alarm going 

off.” 

4.5.7 Conceptual framework 

Based on the results, Figure 4.1 depicts conceptual model arising from this study, revealing 

the progression of utility from technologies to value creation.  

Respondent 3 established a foundation for the thought process on Industry 4.0 value 

creation by stating that performance gains related to automation predated Industry 4.0. As 

such, the value proposition of Industry 4.0 is not in the application of technologies to 

automate processes. Respondent 14 reiterates the existence of automation and its 

application in industrial production before Industry 4.0.  Respondents 3, 4, 9, 10, and 14 
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posited that the value is tied to cyber-physical integration built on digitization, which 

Respondent 9 characterized as integrating the physical and virtual worlds. They positioned 

information transparency as an additional layer of value on automation brought on by 

Industry 4.0. Respondents 5 and 11 progressed the thought processes by arguing that 

producers create value by exploiting the data and information resources presented by 

integration to generate smartness. According to respondent 11, contextual data about all 

production elements facilitated by end-to-end value chain integration are the basis for 

smartness. The value creation process of Industry 4.0 thus involves the derivation of 

information transparency from integration and smartness from information transparency. 

Beyond real-time information, transparency enables information flexibility, providing access 

to information beyond real-time through simulation, extended reality (Respondents 4 and 

11), and predictive analytics (Respondents 5, 11, and 13).  

Respondents identified value attributes of smartness to include autonomous functionalities 

(Respondents 12 and 13), optimized actions (responses, decisions, and actuations) 

(Respondents 2 and 13), and flexibility of processes (Respondent 13). 

Sections 4.3 to 4.6 established that smart functionalities in production organizations improve 

the performance related to productivity, sustainability, customer experience, and safety 

resulting in the framework described in Figure 4-1. 
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Figure 4-1 - Industry 4.0 conceptual model for organizational performance enhancement 

4.6 Discussion and conclusion 
The study examined how to drive organizational performance through Industry 4.0 and 

identified smartness as a critical link. It examined the value creation process of Industry 4.0. 

Integrating the value chain enables it to function as a single system that can provide better 

utilities than its parts could do on a reductionist basis. The results confirmed that integrating 

the value chain using digital technologies develops smart capabilities that optimize its 

operations and create performance enhancements. The study identified the performance 

impacts of Industry 4.0. Driving the holistic approach to value realization  

The premise of Industry 4.0 value creation is based on the relationships between the degree 

of integration, the quality of information transparency, and the amount of smartness. 

Smartness is indicated by the quality of decision-making and actuation (including speed and 

accuracy) and the flexibility of processes. 

The study provides additional context to existing studies that established Industry 4.0 as a 

performance improvement mechanism for industrial production through the application of 

technology (Dalenogare et al., 2018; Ghadge et al., 2020; Szász et al., 2020). Dutta et al. 

(2005a) describe capability as a system’s capacity to translate inputs into outputs. This study 

identified smartness as the capability in the Industry 4.0 context, translating digital 

transformation into performance gains. Smartness has been identified in studies as a feature 
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of Industry 4.0 (Radziwon et al., 2014; Sjödin et al., 2018a; Wu et al., 2016; Zawadzki & 

Żywicki, 2016) describing the functionality of operational characteristics of the factory, 

supply chain, and products in the Industry 4.0 paradigm. This study identified the role of 

smartness in the value creation process and a product of a holistic design and operations 

framework for industrial production.  

Furthermore, studies have predominantly quantified Industry 4.0 development by measuring 

aspects such as strategy, organizational culture, and technology (Kırmızı & Kocaoglu, 2022; 

Lassnig et al., 2021; Ramanathan & Samaranayake, 2021; Santos & Martinho, 2020; Veile 

et al., 2019). Existing trends associate digital maturity with the scope and scale of 

implemented technologies (Tutak & Brodny, 2022). Such efforts represent inputs into the 

digital transformation process and are not automatically reflective of outcomes; smartness 

is the organizational capability that effectively reflects value creation. Managers thus must 

target digital transformation efforts to improve enterprise smartness which would also be an 

appropriate measure of digital transformation maturity. 

The study made a theoretical contribution to the manufacturing technology management 

literature by providing an Industry 4.0 systems model that established a relationship between 

technology, enterprise smartness, and organizational performance. 

Despite its contribution, future research should involve quantitative studies to provide further 

empirical validation of its relationship with organizational performance and test the model 

quantitatively. Future studies could also focus on particular industries where trends across 

various industries can increase the generalisability of findings. It can also span various 

countries and involve cross-comparisons between countries at different levels of 

development to explore the impact of industry 4.0 on the smartness and performance of 

their organizations. 
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4.6.1 Managerial implications 

The findings of this study provide implications for managers. According to the findings, these 

actions would be vital to driving organizational performance through industry 4.0. 

Respondents opined, "Data is an important part of the Industry 4.0 idea; it is the lifeblood of 

Industry 4.0”. Therefore, executing the Industry 4.0 paradigm implies that production 

organizations must uplift their data capability. Managers must ensure that key aspects of 

data capability, including data asset capture, governance, and utilization for developing 

autonomous functionalities and improved decision-making. Furthermore, the study identified 

information transparency, the ubiquitous availability of contextual information on all aspects 

of production, as central functionality to Industry 4.0 value creation. Developing the 

organizational data capability involves technology implementation, new management 

processes, and culture change. Managers must ensure that data capability uplift is well-

resourced and driven with senior leadership support for Industry 4.0 success.  

Competition for scarce investment resources will pressure managers to pursue short-term 

reductionist approaches. Respondents argued that  “the level of investment required to drive 

it to fruition will be difficult to achieve at this point”. Investments must be initially channelled 

to aspects of Industry 4.0 that contributed to smartness and those that delivered the 

quickest. To actualize the holistic systems approach, managers must take a more nuanced 

approach to end-to-end value chain transformation by dividing the value chain and 

prioritizing aspects that deliver quicker and more significant returns on transformation 

investments.  

For example, the automotive industry started its digital transformation journey with factory 

autonomous functionalities before progressing to address smartness opportunities in the 

supply chain and products (Lee et al., 2023). Factory smartness delivered business gains 
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through production efficiencies and product quality, enabling investments in more 

sustainable and feature-rich supply chains and products in subsequent investment cycles. 

Respondents posited, "Industry 4.0 will push the pursuit of more sustainable supply chain 

arrangement, away from the constant pursuit of lower costs”. The study’s outcome implies 

that managers have more opportunities to pursue sustainability and long-term value for the 

broad stakeholder base under the Industry 4.0 paradigm and should utilize it. The study 

determines that Industry 4.0 will help optimize production costs and lessen the influence of 

cost pressures on ecosystem arrangements, leaving room for managers to pursue longer-

term value realization. For example, managers will no longer feel pressured to outsource 

aspects of production to factories in places with poorer protections for workers or the 

environment due to cost considerations. 

The study identified IT-OT integration as an underpinning structure for the end-to-end value 

chain integration and a running theme for Industry 4.0. IT and OT are historically siloed 

structures, representing separate people organizations, business processes, systems, and 

thought processes. Technology alone will not achieve the needed integration. To facilitate 

this integration, managers must devise organizational structures, management frameworks, 

and culture change programs. For instance, agile methodologies in project organizations 

have been identified as helpful in breaking existing silo walls between IT and business units 

(Colavita, 2016). 

Product transformation through smartness is a core part of the Industry 4.0 value creation 

process. It leverages persistent customer integration to connect products' production and 

operations contexts into a cyclic lifecycle. Managers must facilitate the product lifecycle 

transformation through enhanced customer and product lifecycle management 

functionalities. This typically involves implementing better customer relationship 

management (CRM) and project lifecycle management (PLM) systems. It also involves 
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developing better processes and aligning organizational structures to support the new 

product lifecycle paradigm.  

This study has presented a unique framework for achieving organizational performance 

through Industry 4.0 by adopting a systems perspective for generating smartness as an 

organizational capability. 
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5 INVESTIGATING INDUSTRIAL DIGITAL TRANSFORMATION 
VALUE PROPOSITION 

Journal submission: This chapter was submitted for publication in the Journal of Computer 

Information systems: Abiodun, T., Rampersad, G.C. and Brinkworth, R., "Industry 4.0 Value 

Proposition: Evaluating Industry 4.0 maturity and its impact on outcomes" (under review). 

The Student’s contribution was the majority of the publication (95%), specifically research 

design, data collection, analysis, and writing. The supervisors had a guiding, review, and 

editing role (5%). 

5.1 Abstract 
Industry 4.0 promises to address key performance challenges of industrial production 

through digital transformation (IDT). Strategizing for IDT is challenging, and establishing its 

value proposition is non-trivial because of its complexity. This study investigated the value 

proposition of IDT by determining the impact of its maturity on organizational outcomes. This 

study makes a theoretical contribution of an IDT maturity model based on enterprise 

smartness, unlike previous ones based on technological and management efforts. The study 

employs a quantitative study of manufacturers by surveying 262 manufacturing 

professionals, using structural equation modeling to determine the relationships between 

technology use, enterprise smartness, and organizational outcomes. The study finds that 

technology use develops a smart enterprise, translating to performance gain. It further 

shows that factory smartness significantly impacts productivity, sustainability, safety, and 

customer experience outcomes. The study equips business managers with a valuable 

decision support tool for IDT strategy formulation, maturity assessment, and evaluation of 

transformation initiatives.  

Keywords: Maturity modeling, smart manufacturing, digital transformation 
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5.2 Introduction 
Industrial digital transformation (IDT) is proposed as the strategy for the fourth industrial 

revolution (4IR) (BMBF, 2014; Lichtblau et al., 2015). It is characterized by ideas such as 

smart manufacturing (Kusiak, 2018; Winkelhaus & Grosse, 2020) and the industrial Internet 

of Things (IIoT) (Boyes et al., 2018). It utilizes digital technologies to integrate the value 

chain end-to-end to deliver a smart enterprise that optimizes outcomes (BMBF, 2014; 

Lichtblau et al., 2015; Schuh et al., 2017). 

IDT is a technology-driven value delivery mechanism (Xu et al., 2021). The early narratives 

of Industry 4.0 position IDT as embedding digital technologies in production processes to 

enable smartness in the production enterprise, translating to better organizational 

performance (BMBF, 2014; Lichtblau et al., 2015). Technology induces smartness as 

organizational capability in industrial producers to deliver outcomes; the value path thus 

goes from technology use through enterprise smartness to organizational outcomes, as 

shown in Figure 5.1.  

 

 

Industrial digital transformation can deliver operational efficiency (Kumar & Kumar, 2019), 

product innovation (Waris et al., 2017), and environmental sustainability goals (Ghobakhloo, 

2020) in industrial production. Studies have identified strategy as a challenge for IDT 

implementation, with managers having difficulty navigating the complexity, determining the 

starting point, and the appropriate paths to value delivery (O'Donovan et al., 2016; 

Szalavetz, 2019). An important piece of the strategy formulation challenge is justifying the 

value proposition of the digital transformation effort in the context of the organization’s 

specific objectives (Georgios et al., 2019; Müller, 2019). This study establishes the value 

proposition of IDT by determining the impact of its maturity on organizational outcomes. This 

Technology use Enterprise 
smartness 

Organizational 
Outcomes 

Figure 5-1 - IDT value path 
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address calls in the literature for more research exploring organizations' digital 

transformation journey or maturity to achieve outcomes (Li et al., 2022; Verhoef et al., 2021). 

The study seeks to address its objective by reviewing the literature on maturity models to 

develop a holistic one for IDT. It explores information systems and management literature 

to identify the relevant performance metrics for IDT through the organizational impacts of 

digital transformation. The study then employs a quantitative research process involving a 

survey of manufacturing managers for data collection. It then develops a model for 

evaluating the maturity of IDT at the organizational level, using structural equation modeling 

to establish causal relationships.  

The study makes a valuable theoretical contribution in developing a model for evaluating 

IDT maturity in organizations that focuses on outcomes rather than efforts, which is typical 

in existing literature, to improve the accuracy and practical relevance of the model. The study 

makes a vital practical contribution of a decision support tool for digital transformation 

planning and strategy formulation for business managers to support IDT capabilities 

development. 

5.3 Literature review 

5.3.1 Capabilities and maturity modeling 

The value proposition of IDT to organizations can be established by determining its impact 

on organizational outcomes. Such determination requires quantifying organizational IDT. 

The approach to quantifying IDT due to the structural complexity and non-standardization of 

digital production systems is an important management issue (Mourtzis et al., 2019). 

Quantification is also challenging because the impact of implemented technology is often 

difficult to measure due to the multiple factors involved, including business processes 

efficiency, quality of systems implementation, and user inputs (Haider et al., 2006). 
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Focussing on capabilities provides a solution to the challenge of quantifying IDT. Systems 

can be modeled as inputs, (intermediate) capabilities, and outputs (Dutta et al., 2005a). 

Capabilities can be considered the efficiency with which a system utilizes inputs or converts 

them into outputs (Dutta et al., 2005b). It is also established in theory that IDT creates value 

through capabilities, and the value of technologies in IDT is the capabilities they enable 

(Szalavetz, 2019). The utility of inputs is thus appropriately quantifiable by measuring 

capabilities, and there is a potential accuracy gain by building IDT measurement models on 

outcomes (capabilities) over models that measure inputs or efforts (technology and 

management). 

Capabilities drive organizational performance (Teece, 2019; Teece et al., 1997), and 

enterprise smartness is the intermediate capability created in the IDT context where 

technologies and management components, including strategy, leadership, and culture, are 

the inputs and organizational performance is the output (BMBF, 2014; Lichtblau et al., 2015; 

Schuh et al., 2017). The value of ordinary capabilities to organizations is limited, as they 

cannot sustain competitive advantages (Teece & Pisano, 2003). Sustaining competitive 

advantages thus requires the creation of dynamic capabilities for the organization. Such 

capabilities can address emergent challenges in the organization's operating environment 

by shaping and responding to the rapid changes in the business environment (Teece, 2014). 

The value proposition of IDT is tied to its ability to address dynamic challenges like variability 

in the production environment through disruptions and changing requirements (Dequeant et 

al., 2016; Smorodinskaya et al., 2021) and evolving customer needs, including product 

personalization, automated support and maintenance, and continual improvement 

(Aheleroff et al., 2019; Tseng & Jiao, 1997). The intelligence and stimuli-responsiveness 

that characterize smart production systems (Fragapane et al., 2020) enable sensing, 

seizing, and transforming resources, features of dynamic capability for sustained value 

creation. 
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Maturity models are a useful capability measurement mechanism; they measure capabilities 

by defining their practical dimensions and how each dimension evolves (Domingues et al., 

2016). They further prescribe a logical, sequential, and graduated path from the lowest level 

of evolution to the highest level (Röglinger & Pöppelbuß, 2011). The maturity path is 

established by classifying a target capability’s level of sophistication or operational 

embeddedness (Bititci et al., 2014). The classification partitions the development into a 

spectrum, spanning the distance between the least possible level of advancement to the 

most feasible advanced development state, representing its relative state of perfection 

(Nikkhou et al., 2016). 

Maturity models often have flaws. They are typically arbitrary in design, lacking empirical 

foundations in structuring the maturity spectrum and determining the target capability’s 

dimensions (Blondiau et al., 2013). Different models can often determine different maturities 

for the same entity using different models (Akinpelu et al., 2021). Given that the alignment 

of maturity models with the target capability’s design principles indicates model quality 

(Dikhanbayeva et al., 2020), it is problematic that many models have poor alignment 

between model and reality. This misalignment results in poor performance when the models 

are used to predict reality (Mittal et al., 2018). This study makes an important theoretical 

contribution by developing an Industry 4.0 maturity model that closely mirrors industrial 

production based on robust empirical testing. 

An analysis of data from Dikhanbayeva et al. (2020), which compared the major digital 

transformation maturity models, indicates that existing models are predominantly effort-

based: they measure the effort deployed in achieving an objective and thus characterize the 

system mainly by its inputs. Effort models implicitly assume that effort results in expected 

outcomes without empirical validation. This assumption is invalid for generalized digital 

transformation models because production systems are complex (Herrera Vidal & Coronado 

Hernández, 2021). Furthermore, completing project tasks does not guarantee project 
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success (Martens et al., 2018). This study devises a novel approach to IDT maturity 

modeling by measuring enterprise smartness (intermediate capability or outcome) instead 

of technology and management functions (effort) components in previous studies 

(Dikhanbayeva et al., 2020; Lichtblau et al., 2015). This study improves IDT maturity 

modeling by avoiding the implicit assumption that effort translates to outcomes. The IDT 

maturity model based on enterprise smartness reflects the utility of digital transformation in 

production environments more accurately, given that models' success is related to 

sufficiently mirroring reality (Poznic, 2016). 

The Capability Maturity Model Integration (CMMI) and its predecessor, the Capability 

Maturity Model (CMM), are the most significant frameworks for developing maturity models 

(von Wangenheim et al., 2010); they are responsible for the most maturity models in 

academic literature. Empirical studies established that the CMMI-based process 

improvements delivered value on cost, schedule, quality, customer satisfaction, and 

investment return (Goldenson & Gibson, 2003). The CMMI is a framework for maturity 

modeling developed by the Software Engineering Institute (SEI) to extend the Capability 

Maturity Model (CMM). The CMMI is a means of maturing a holistic capability (Selleri Silva 

et al., 2015). In contrast to the CMMI, the CMM is a behavioral model focused on process 

maturity and was initially designed to guide software development and management 

processes (Paulk et al., 2011). The CMMI is versatile and has been applied to diverse 

processes and systems, including sustainable Information Technology (Patón-Romero et 

al., 2019), organizational training (Khraiwesh, 2020), process optimization (Rainho & 

Barreiros, 2019), and aerospace systems safety and security (Wood & Vickers, 2018). 

CMM/CMMI’s background in technology and business process applications makes it a good 

fit for IDT. 

The CMMI prescribes five levels of maturity - Initial, Managed, Defined, Quantitatively 

Managed, and Optimizing (O’Regan, 2011; Torrecilla-Salinas et al., 2016).  
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5.3.2 IDT organizational outcomes 

The digital transformation literature identifies IDT objectives that extend beyond the 

considerations of shareholders to cover the interests of a broader group of stakeholders. 

This section discusses how IDT addresses stakeholders’ value propositions, including the 

general socio-economic environment (sustainability), shareholders (productivity), customers 

(customer experience), and employees (safety). 

Sustainability: Contribution to sustainable business is one of the key expectations of 

Industry 4.0 (Prause, 2015). Industrial production has been an important driver of 

environmental, social, and economic sustainability challenges. A cause-and-effect 

relationship between sustainability challenges and technological capabilities was created 

because the resolution of sustainability challenges requires technology-enabled information 

transparency and optimal utilization of resources by production processes (Ghobakhloo, 

2020; Lasi et al., 2014; Zhao et al., 2020). It is established that the pursuit of productivity 

through smart operations would optimize production resources, reduce emissions, and 

enable social value (Furstenau et al., 2020; Ghobakhloo, 2020; Li et al., 2017). Similarly, 

Machado et al. (2020) established a relationship between sustainable manufacturing and 

technology use that enables IDT to have an integrated impact on all aspects of sustainability. 

Productivity: Productivity improvement is central to IDT value proposition (BMBF, 2014). 

Industrial productivity is concerned with production volume under specified conditions, 

including product quality, time, and resource utilization (Trojanowska et al., 2018). The 

extensive globalization of businesses created new challenges for production enterprises 

(Voronkova et al., 2020). Every industrial revolution employs technological advancements 

to improve productivity (Rüßmann et al., 2015). Industry 4.0 uses CPS to integrate the 

production value chain, enabling smart functionalities for addressing productivity challenges 

(Tao et al., 2019). 
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Customer experience: Existing product lifecycle paradigms had inherent limitations; they 

could not uniquely consider each customer and address them individually, representing a 

challenge for customer experience (Borangiu et al., 2019). IDT seeks to deliver better 

customer outcomes by engaging the customer early in the production process (BMBF, 

2014). Early customer inclusion in the product lifecycle enables mass product customization 

capability by capturing unique requirements and feeding the design and production 

processes. It was identified as a distinctive IDT feature from its inception (BMBF, 2014; 

Borangiu et al., 2019; Li et al., 2017; Oztemel, 2018).  

Safety: Technology has played a key role in industrial safety advancements (Badri et al., 

2018; Siemieniuch et al., 2015). Industrial producers have progressively increased their 

commitments to worker safety and wellbeing over the last century (Hofmann et al., 2017). 

Digitally transforming the production enterprise entails transforming production tasks and 

the nature of work. The emerging nature of work implies less reliance on human physical 

effort (Adriaensen et al., 2019). Furthermore, advancements in technology-enabled human 

factors enable better management of cognitive load on human workers (Carvalho et al., 

2020). These work and workplace changes are designed to improve workers’ safety and 

wellbeing outcomes. Industry 4.0-related technologies have functionalities that deliver better 

safety for workers. They have been successfully implemented for autonomous preventative 

maintenance (Liu et al., 2020), collision avoidance (Bragança et al., 2019; Gochev et al., 

2017), monitoring and tracking (Javed et al., 2021), and wearable technologies (Barata & 

Cunha, 2019; Romero et al., 2018). There are increasing expectations for changes in the 

production process and work design because of digitalization to deliver better workers’ 

safety and wellbeing (Adriaensen et al., 2019; Sjödin et al., 2018a).  
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5.3.3 Key IDT maturity factors driving organizational outcomes 

5.3.3.1 Technology use 
The study recognizes that technology is deployed as a catalyst for capability development 

and that technology acquisition and implementation is not an end in itself in digital 

transformation (Szalavetz, 2019). Technology is thus the effort component of maturity, 

deployed to achieve outcomes. Furthermore, studies identified that digital transformation 

efforts fail when non-technical aspects such as strategy, culture, and leadership are ignored. 

Technology use, measured as the absolute total deployment of the said technology in 

business operations at a particular time (Battisti & Stoneman, 2003; Pulkki-Brännström & 

Stoneman, 2013), is an appropriate measure of the system’s functional capability (Geyda, 

2020; Geyda & Lysenko, 2020). Rather than evaluate the presence of technology in the 

organization, technology use reflects the level of embeddedness of technologies in business 

processes, encapsulating the technical and management competencies required to deliver 

technology capabilities within business processes. 

Research on IDT-relevant technologies is not exhaustive (Zheng et al., 2021); This study 

avoids a detailed exploration of IDT technologies that are constantly evolving. Instead, it 

follows a technology-agnostic perspective to evaluate the impact of technology use, 

considering broad technological features based on requirements for smart systems. 

Smartness is core to IDT, and technology integration in production processes aims to make 

the production enterprise smart (BMBF, 2014; Lichtblau et al., 2015). The literature on smart 

systems identifies stimuli-responsiveness, intelligence, and data functionalities as core 

characteristics of smartness (Ferraris et al., 2019; Habibzadeh et al., 2018; Kernecker et al., 

2020; Samimi-Gharaie et al., 2018; Zhou et al., 2019). Furthermore, the convergence of 

physical and virtual production elements creates requirements for simulation, visualization, 

and remote interaction capabilities unique to IDT (Damiani et al., 2018).  
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The technology use measure thus considers the embeddedness of technologies that 

address five groups of features critical to smartness in production operations. Stimuli-

responsiveness spawned two classes, sensing, and actuation, to enhance clarity for 

research respondents. 

• Sensing – Sensors, IoT, RFID,  

• Actuation – Cobots, industrial robots, AGVs, etc. 

• Intelligence – Machine learning, natural language processing, machine vision, etc 

• Data and information management – Enterprise information systems, cloud, and 

edge computing, cyber security, etc 

• Simulation, visualization, and remote interaction – Digital twins, virtual and 

augmented reality, live virtual construct etc. 

IDT literature posits that integrating digital technologies in the operations of the production 

enterprise would make the supply chain, factory (production systems and processes), and 

product smart. However, while factory and supply chain smartness are generally relevant to 

production, product smartness is only selectively relevant as many industries have products 

such as food or chemicals to which a smart context is still to be defined or applied. Advanced 

digital technologies induce smartness in the supply chain, factory, and products by enabling 

sensing, actuation, intelligence, and data capabilities (Butner, 2010; Chen et al., 2018; 

Schmidt et al., 2015; Wu et al., 2016). However, the expectation of smartness is largely 

intuitive and unquantified and would benefit from empirical evidence. Therefore, we 

hypothesize: 

1. Hypothesis 1: Technology use positively influences factory smartness 

2. Hypothesis 2: Technology use positively influences supply chain smartness 
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5.3.3.2 Enterprise smartness  
Smartness is a system’s capacity to optimize outcomes through intelligence. Enterprise 

smartness thus measures the production enterprise’s capability for optimization based on 

intelligence. Some studies have attempted to quantify smartness (Ghansah et al., 2020; 

Jadhav & Shenoy, 2020; Kádár, 2011). However, there is insufficient research in the Industry 

4.0 context. The common themes in these attempts are the extent of autonomy and the 

optimality of outcomes. This study builds on Fragapane et al. (2020), who identified 

autonomy and flexibility as the qualitative characteristics of smart systems in the IDT context 

to evaluate the production enterprise’s smartness. A system’s autonomy is its ability to 

perform complex tasks in an unstructured environment without continuous human guidance 

(Radziwon et al., 2014; Schuh et al., 2019). The flexibility of the production enterprise is its 

agility (Ameri & McArthur, 2013). It is its capacity for rapid adjustments through changes or 

rearrangements to its systems architecture to address new product requirements, new 

production process requirements, changes in the production environment, scalability for 

changing capacity requirements, and changes in the supply chain (Abdi, 2018; Radziwon et 

al., 2014; Schuh et al., 2019).  

IDT is appropriately rationalized as horizontal, vertical, and end-to-end engineering 

integrations (Bartodziej, 2017; Wang et al., 2016). These integrations correspond to the 

parts of the production value chain, i.e., the supply chain, production processes, and 

products (Nagy et al., 2018). Thus, the nuances of interaction between the smartness of the 

supply chain, production processes, and products and safety, sustainability, productivity, 

and customer experience need further attention. 

To evaluate IDT maturity, we measure the autonomy and flexibility of the supply chain and 

the factory based on the five maturity levels prescribed by the CMMI. This study aims to 

achieve generalizable results; thus, it does not consider product smartness as a factor, given 



 

108 

that participation is expected from industries whose products are not associated with 

smartness, including food and beverages, pharmaceuticals, and chemicals. 

5.3.3.3 Factory (production systems and processes) smartness 
This is the capability for production based on the autonomous functioning of the Industrial 

Internet of Things (IIoT) or the network of production entities, including people, devices, 

systems, and products. The production system has the capacity for reconfigurability and 

integrates the production and operation phases of the product lifecycle for continual 

improvement (Chen et al., 2018; Radziwon et al., 2014). Factory smartness facilitates 

optimal decision-making (Goryachev et al., 2013), utilization of production resources 

(Hawkins, 2021; Kumar et al., 2021), the transformation of work tasks to optimize production 

processes (Bragança et al., 2019), and product customization (Sinha & Roy, 2020; Sjödin 

et al., 2018a) 

Factory smartness drives productivity by optimizing decision-making and resource utilization 

(Goryachev et al., 2013), transforming work tasks, and improving product quality. The 

optimization of resource utilization also drives sustainability by reducing material and energy 

consumption (Hawkins, 2021; Kumar et al., 2021). Integrating the production and operation 

phases of the product lifecycle embeds the customer early and perpetually into the 

production process. It facilitates mass product customization, proactive product support, and 

dynamic product improvement (Sinha & Roy, 2020; Sjödin et al., 2018b), resulting in 

improved customer experience. The smart factory also uses digital technologies to transform 

work tasks, reducing hazards to humans at work (Bragança et al., 2019) and providing new 

functionalities that enhance worker safety (Islam et al., 2022; Li, 2016). 

Therefore, this research includes the following hypotheses: 

3. Hypothesis 3: Factory smartness positively impacts productivity 

4. Hypothesis 4: Factory smartness positively impacts sustainability 
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5. Hypothesis 5: Factory smartness positively impacts customer experience 

6. Hypothesis 6: Factory smartness positively impacts safety 

5.3.3.4 Supply chain smartness 
The smart supply chain is an autonomous network of functions that support production 

logistics (Wu et al., 2016). It is characterized by its ability to respond autonomously and 

efficiently to disruptions and facilitate information transparency across the entire production 

chain (Gupta et al., 2019; Sodhi & Tang, 2019).  

Productivity and sustainability enhancements in Industry 4.0 are related to the optimization 

of resource utilization and decision-making (Goryachev et al., 2013; Hawkins, 2021; Kumar 

et al., 2021). The smart supply chain enables optimization through autonomous 

functionalities that reduce human mediation (Pasi et al., 2020). The smart supply chain also 

supports enhanced customer experience and safety through information transparency 

(Sodhi & Tang, 2019; Tripathi & Gupta, 2020). Furthermore, smart supply chains enhance 

safety through hazard identification and elimination in tasks using digital technologies (Tang 

& Veelenturf, 2019) and platforms (Veile et al., 2022). 

We, therefore, hypothesize the following: 

7. Hypothesis 7: Supply chain smartness positively impacts productivity 

8. Hypothesis 8: Supply chain smartness positively impacts sustainability 

9. Hypothesis 9: Supply chain smartness positively impacts customer experience 

10. Hypothesis 10: Supply chain smartness positively impacts safety 

Drawing on these hypotheses, the conceptual model developed in this study is shown in 

Figure 5.2. 
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Figure 5-2 - Conceptual model developed in this study 

5.4 Methodology 

5.4.1 Data collection 

We developed and tested a conceptual model using a quantitative survey that targeted 

manufacturing managers. As this study aimed for broad generalization, it was important to 

achieve research design that aids statistical generalization (Polit & Beck, 2010). Using social 

media for data collection in scientific studies is effective in such scenarios. It enhances 

participant engagement and creates opportunities for broader distribution (Leighton et al., 

2021; Yuan et al., 2014). LinkedIn facilitated the targeting of respondents by multiple career-

related parameters, while avoiding geographical and sectoral boundaries. This study 

required respondents to estimate CMMI capability levels for technology use, supply chain 

smartness, product smartness, and process smartness of their organization. It targeted 

respondents with degree-level education, current manufacturing-related job roles, a 

minimum of 10 years of industry experience, and  English language profiles. 

The survey was anonymous and active from November 2021 to February 2022, with 

participation invitations sent out using the LinkedIn campaign manager in English. There 

were 325 attempts to complete the survey, of which 262 responses were complete. The 

study utilized only fully completed responses. 
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The data was captured using a five-point Likert scale appropriate for capturing respondents’ 

perceptions (Fowler, 2009, p. 100). Stemming from the factors described in Section 5.3, 

Table 5-1 details the questions used in the survey to establish Industry 4.0 maturity. 

Factors Question Response 
options 

Technology 
Use 

(Tech_Use) 
 

Sensing What is the CMMI level for the use of Sensors 
(Sensors, IoT, Embedded devices, RFID 
etc)  in your organization? 

• Initial  
• Managed  
• Defined  
• Quantitatively 

managed  
• Optimizing 

Actuation What is the CMMI level for the use of Robotics 
(Digital fabrication, cobots, Industrial robots, 
Automatic Guided Vehicles (AGVs) etc) in 
your organization? 

Simulation, 
visualization, 
and remote 
interaction 
(SVR) 

What is the CMMI level for the use of Extended 
Reality (Virtual / Augmented reality, Digital 
twins, Live-Virtual Construct (LVC), 
Simulations etc) in your organization? 

Data and 
information 
management 
(DIM) 

What is the CMMI level for the use of Digital 
Infrastructure (Cloud / Edge Computing, 
broadband & NXG networks, Cyber security 
etc) in your organization? 

Intelligence What is the CMMI level for the use of Artificial 
Intelligence (Machine learning, Natural 
Language Processing, Predictive analytics 
etc)in your organization? 

Factory Smartness 

(Factory_SMT) 

What is the CMMI level for Factory autonomy 
e.g., processes do not need human 
intervention, including for decision-making? 

What is the CMMI level for Factory flexibility 
e.g., production processes can be changed 
e.g., to produce new products or change 
specifications of existing products, without 
building new factories or installing significant 
new machinery 

Supply Chain Smartness 

(SC_SMT) 

What is the CMMI level for Supply chain 
autonomy e.g., Dynamic, intelligent handling 
of demand (routing, resource allocation) along 
the supply chain? 

What is the CMMI level for Supply chain 
flexibility e.g., automated handling of 
disruption and demand changes along the 
supply chain? 
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Table 5-1 - Maturity factors measurement 

Table 5-2 details the questionnaire items for measuring organizational outcomes. 

Factor  Measure Response Options 

Productivity 

(Moghimi, 
2006) 

Our production processes and systems are effective (they 
get the job done) 

• Strongly 
disagree 

• Somewhat 
disagree 

• Neither agree nor 
disagree 

• Somewhat agree 
• Strongly agree 

Our production processes are efficient (they utilize 
resources well) 

Our product quality is better than competitors 

Safety 

(Ostrom et 
al., 1993) 

Our safety incidence record is better than our peers 

Our safety process has senior leadership engagement 

Customer 
Experience 

(Klaus & 
Maklan, 
2013) 

Our customers are satisfied with our products and 
services 

Our customers recommend us to others 

Our customers are generally loyal to us 

Sustainability 

(Xie & Zhu, 
2020) 

Our company is effective at optimizing resource use 
(energy, water, and materials) 

Our company is effective at minimizing our environmental 
pollution, including Carbon Dioxide emissions 

Our company is ethical. We are committed to social good. 

Table 5-2 - Organizational factors measurement 

5.4.2 Data analysis approach: Structural Equation Modeling (SEM) 

Data were analyzed in this study using confirmatory factor analysis through Structural 

Equation Modeling (SEM). SEM is a multivariate statistical methodology for determining the 

causal relationships between variables (Elston et al., 2012, p. 495). It enables the 

representation of the hypotheses from theory as a model, constructed as structures that 

present the causal processes in a series of relationships between variables (Byrne, 2001, 

p. 3). SEM is a mix of two basic constructs; one relates latent variables to each other, and 

the second relates measurement variables to the latent variables they measure. Collectively, 

the underlying constructs paint a holistic picture of reality (Díaz-Chao et al., 2015). SEM is 

an appropriate mechanism for estimating the causal relationship between Industry 4.0 
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maturity and firm performance because they are both multivariate latent variables built out 

of observed variables. The R programming language's lavaan package (Oberski, 2014) 

was used to analyze the data. Other popular software solutions for handling SEM data 

include SPSS AMOS and Mplus, with similar accuracy levels (Narayanan, 2012). Lavaan 

was chosen over the other applications to utilize the R’s data analytics functionalities 

(Morandat et al., 2012). 

5.5 Results  

5.5.1 Descriptive statistics 

The study was designed to provide generalizable results. Participants were restricted only 

by professional profiles that reflect English language ability, degree level education, a 

minimum of ten years experience in manufacturing, and a current manufacturing job. It is 

designed to ensure they can address questions such as manufacturing capabilities and 

organizational performance. More than 99% of the responses came from the world’s twenty 

most industrialized nations (Rahman et al., 2021). Based on the size of the companies, the 

responses were normally distributed with a slight positive skew. The bulk of the responses 

fell within the three middle company size groups. The middle group, one hundred and one 

employees to one thousand employees, recorded the most responses at approximately forty 

percent of all respondents. Table 5-3 presents a summary of the respondent’s distribution. 

 Item Frequency Percentage 
Country  Australia 19 7.25% 

Bangladesh 1 0.38% 
Brazil 16 6.11% 
Canada 18 6.87% 
China 16 6.11% 
France 24 9.16% 
Germany 38 14.50% 
India 37 14.12% 
Nigeria 1 0.38% 
UK 35 13.36% 
USA 57 21.76% 

Total 
 

262 100.00% 
Automotive 3 1.15% 
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Industries Chemicals 5 1.91% 
Electronics 16 6.11% 
Food and 

 
94 35.88% 

Heavy equipment 5 1.91% 
Household goods 31 11.83% 
Metals and 

 
14 5.34% 

Not Specified 27 10.31% 
Pharmaceuticals 67 25.57% 

Total  262 100.00% 
Company size 
(Employee 
count) 

(1 - 10) 21 8.02% 
(11 - 100) 40 15.27% 
(101 - 1000) 104 39.69% 
(1001 - 5000) 45 17.18% 
( > 5000) 52 19.85% 

Total 
 

262 100% 
Respondents 
Industry 4.0 
knowledge 

None 15 5.73% 
Little 35 13.36% 
Average 83 31.68% 
Very Good 90 34.35% 
Excellent 39 14.89% 

Total  262 100% 

Table 5-3 - Summary of responses 

5.5.2 Reliability and validity  

Reliability and validity of measures address the consistency and accuracy of measures, 

respectively (Churchill Jr, 1979). Measures should be consistent, producing similar 

outcomes under consistent conditions. Measures must also be accurate, i.e., report what 

they purportedly do. The reliability of congeneric models was determined before the 

construction of the full SEM. By convention, factor loadings must exceed 0.5 (Steenkamp & 

van Trijp, 1991), which is satisfied in all the factors. Table 5-4 presents the factor loadings 

from the congeneric models developed for exploratory factor analysis.  

Construct Items Factor Loadings 
Tech_Use Sensing 0.725 

Actuation 0.691 
SVR 0.713 
DIM 0.742 
Intelligence 0.686 

SC_SMT Chain Autonomy 0.782 
Chain Flexibility 0.684 

Factory_SMT Process Autonomy 0.789 
Process Flexibility 0.842 
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Productivity Production Effectiveness 0.807 
Production Efficiency 0.825 
Product Quality 0.819 

Safety Safety Incidence Performance 0.828 
Safety Senior Leadership 
Engagement 0.681 

Customer Customer Satisfaction 0.872 
Customer References 0.661 
Customer Loyalty 0.670 

Sustainability Economic (Resource use) 0.781 
Environmental (Pollution) 0.982 
Social (Ethics and Social 
Responsibility) 0.968 

Table 5-4 - Factor loadings of congeneric model 

Coefficient alpha (α) (Cronbach, 1951) and construct reliability (ω) (coefficient omega with 

unit weights) (Cho, 2021; McDonald, 2013) are widely used to measure reliability, and 

measures are considered reliable if coefficient alpha and construct reliability exceed 0.7 for 

factors (Hair et al., 2006; Kline, 2005).  

 
Coefficient 
alpha (α) 

Construct 
Reliability (ω)  

Tech_Use 0.83 0.84 
SC_SMT 0.70 0.70 
Factory_SMT 0.79 0.79 
Productivity 0.86 0.85 
Safety 0.72 0.71 
Customer 0.79 0.77 
Sustainability 0.93 0.94 

Table 5-5 - Reliability measure 

The reliability for all constructs reflected sufficient reliability of measures, according to Table 

5-5. Equation 1 and Equation 2 present the formula for Coefficients Alpha and Omega, 

respectively. 

𝛼𝛼 =  
𝑘𝑘

𝑘𝑘 − 1
�1 −

∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 + 2∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖<𝑗𝑗

� 

Equation 1 - Crombach's Coefficient Alpha 

Where:  

 k is the number of items in a construct,  
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 σii is the item i observed variances, and,  

 σij is the observed covariance of items i and j. 

and: 

𝜔𝜔 =  
(∑ 𝜆𝜆𝑖𝑖)𝑘𝑘

𝑖𝑖=1
2

(∑ 𝜆𝜆𝑖𝑖)𝑘𝑘
𝑖𝑖=1

2 + ∑ 𝜓𝜓𝑖𝑖𝑘𝑘
𝑖𝑖=1

 

Equation 2 - Construct Reliability (Coefficient Omega) 

Where: 

 λi is the factor loading of item i, 

 ψ is the uniqueness of item i,  

 k is the number of items in the factor  

Similarly, validity was evaluated using convergent and discriminant validity. Convergent 

validity evaluates the correlation amongst measures of the same construct, while 

discriminant validity establishes each measure’s distinctiveness from other measures (Kline, 

2005). Construct validity and discriminant validity are measured according to Fornell and 

Larcker (1981). Construct validity is calculated using the average variance extracted (AVE) 

(Equation 3). It is established where AVE is greater than .0.5. Discriminant validity is 

established where the square root of the AVE for each construct is lesser than the maximum 

shared variance (MSV).  

Table 5-6 shows that all the constructs have convergent and discriminant validity. The AVE 

was calculated using R, while MSV was calculated from the Pearson correlation coefficients 

from SPSS analysis.  

 
AVE √AVE MSV Construct 

Validity 
 (AVE > 0.5) 

Discriminant 
Validity  
(√AVE > MSV) 

Tech_Use 0.506 0.711 0.409 Established Established 
SC_SMT 0.535 0.732 0.459 Established Established 
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Table 5-6 - Validity measure 

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝜆𝜆𝑖𝑖2
𝑝𝑝
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖2
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀1)𝑝𝑝

𝑖𝑖=1
 

Equation 3 - Average Variance Extracted (AVE) 

Where: 

 p is the number of items,  

 λi is the factor loading of item i, and,  

 Var(εi) is the variance of the error of item i 

5.5.3 Model fit 

The model was tested for goodness-of-fit against the data. These indices assess the extent 

to which the model represents the data (Barrett, 2007). Multiple measures were employed 

to establish goodness-of-fit. Chi-square statistic (χ2) tests exact fit by considering the size 

of the differentials between measurements and the model’s expected values. It is sensitive 

to sample and population sizes, and the acceptable significance level is p > 0.05 (Barrett, 

2007). The normed χ2 test attempts to create a fit index with lesser sensitivity to sample size 

by dividing the χ2 by the degrees of freedom (df). The acceptance value of the normed χ2 

is < 2 (Ullman, 2001). The Root Mean Square of Approximation (RMSEA) estimates close 

fit by measuring discrepancy per degrees-of-freedom (df). The model is considered fit if 

RMSEA is less than 0.05 (Brown & Cudeck, 1983; Byrne, 2016). The Tucker-Lewis Index 

(TLI) and the Comparative Fit Index (CFI) are incremental fit measures. They compare the 

fitted model to a base model, usually one where observed variables’ variances are the only 

parameters (Hu & Bentler, 1995). While the CFI is constrained to values between zero and 

Factory_SMT 0.658 0.811 0.695 Established Established 
Productivity 0.649 0.805 0.592 Established Established 
Safety 0.554 0.744 0.685 Established Established 
Customer 0.539 0.734 0.562 Established Established 
Sustainability 0.831 0.911 0.695 Established Established 
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1, the TLI can have values greater than one, and the model fit is acceptable with values 

greater than 0.95 (Byrne, 2016; Hu & Bentler, 1999). Standardized Root Mean Square 

Residual (SRMR) also measures the difference between the matrices of the model implied 

variances and covariances and sample observed variances and covariances, standardized 

to handle outliers, and the model is acceptable with an SRMR value < 0.08 (Hu & Bentler, 

1999).  

Results in Table 5-7 presents the statistical fit metrics indicating that the model fits the data. 

Test Acceptance Result 
Chi-square (χ2) 161.029 
degrees of freedom (df) 154 
pValue > 0.05 0.333 
Normed χ2 (χ2/df) < 2 1.046 
Standardized Root Mean Square Residual SRMR < 0.08 0.064 
Root Mean Square of Approximation (RMSEA) < 0.05 0.013 
Comparative Fit Index (CFI) > 0.95 0.998 
Tucker-Lewis Index (TLI) > 0.95 0.997 

Table 5-7 - Goodness-of-fit measures 

5.5.4 Normality 

This study utilized the Lavaan package of R, which employs maximum likelihood estimation 

for SEM. Thus, the data's normality is assumed (Fahrmeir & Kaufmann, 1985). The data for 

the measurement items were tested for normality by checking skewness and kurtosis (Cain 

et al., 2017). Skewness determines the extent of a distribution's asymmetry about its mean 

and whether it is skewed in one direction or another. Kurtosis determines how tailed a 

distribution is, indicating its symmetry. The skewness ranged between -0.155 and 0.340, 

and kurtosis ranged between 2.497 and 3.684. Both skewness and kurtosis were within the 

acceptable ranges (Hair et al., 2019). Sphericity tests were also conducted to establish 

sample adequacy using the KMO and Bartlett’s tests (Hair et al., 2019). KMO value was 

0.93, and Bartlett’s test results were χ2 = 3217.625, df = 190, and Sig = 0.000. The results 

established sample adequacy.  
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5.5.5 Hypothesis tests 

The results from the hypothesis testing are summarized in Table 5-9 and Figure 5.3. 

Hypothesis Independent 
Variable 

Dependent Variable Standardized 
Regression 
Coefficients 

P(>|z|) Outcome 

H1 Tech_Use Factory_SMT 0.602 0.000 Supported 
H2 Tech_Use SC_SMT 0.355 0.000 Supported 
H3 Factory_SMT Productivity 0.676 0.000 Supported 
H4 Factory_SMT Sustainability 0.762 0.000 Supported 
H5 Factory_SMT Customer Experience 0.679 0.000 Supported 
H6 Factory_SMT Safety 0.854 0.000 Supported 
H7 SC_SMT Productivity 0.382 0.000 Supported 
H8 SC_SMT Sustainability 0.265 0.000 Supported 
H9 SC_SMT Customer Experience 0.185 0.007 Supported 
H10 SC_SMT Safety 0.232 0.000 Supported 

Table 5-8 - Results 

The study was based on the premise that technology drives smartness and smartness drives 

performance, and smartness is the basis of IDT maturity. We explored the impact of 

technology use on smartness in the supply chain and the factory and their impact on 

organizational outcomes. Only relationships with p < 0.05 are deemed statistically 

significant; hence, these hypotheses were supported; others were considered statistically 

non-significant and unsupported (Andrade, 2019). The standardized regression coefficients 

were employed to compare the strength of causal relationships in hypotheses (Kwan & 

Chan, 2011). Hypotheses H1 and H2 were supported, and H1 is comparatively stronger 

than H2 based on the factor loadings. While technology use positively impacted supply chain 

and factory smartness, the impact was stronger on factory smartness. Hypotheses H7 to 

H10 were supported; thus, factory smartness positively impacts all four organizational 

outcomes. Hypotheses H11 to H14 were also supported, indicating that supply chain 

smartness positively affects all four measured outcomes. The regression coefficients 

indicated that supply chain smartness's impact on organizational outcomes is weaker than 

factory smartness with H3 to H6 recording coefficients greater than 0.5 and H7 to H10 having 

coefficients less than 0.5. Figure 5.3 illustrates the research results. 
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Figure 5-3 - Research results 

A comparison of smartness's impacts on outcomes across the factory and supply chain 

channels based on the standardized regression coefficients in Table 5-8 shows that the 

strongest impact of factory smartness is on safety and sustainability. In contrast, supply 

chain smartness has its strongest impact on productivity and sustainability.  

5.6 Discussion 
The study used the model defined in Figure 5.2 to investigate the value creation in industrial 

organizations through digital transformation. It examines three points in the digital 

transformation value process, the point at which technology is embedded in production 

processes, the point at which technology inputs create the intermediate capability outcome 

(smartness), and the point of realizing organizational outcome benefits. The results provide 

clear evidence that technology use in Industrial production creates a sequence of effects 

that translate to positive organizational performance outcomes. These effects induce 

smartness in aspects of the production value chain, resulting in performance improvement 

and confirming the fundamental premise of IDT as a technology-driven value delivery 

mechanism (Xu et al., 2021). 

Smartness is central to IDT. It is the capability created in the production enterprise through 

digital transformation and the basis of its value creation. The study’s results established the 

value-creation potential of enterprise smartness. First, technology use resulted in smartness 



 

121 

(Hypotheses H1 and H2), and factory transformation, which created more smartness than 

supply chain transformation, produced significantly better organizational outcomes 

(Hypotheses H3 to H10). The study conceived a maturity measure based on smartness as 

the intermediate outcomes measure in an input-output model (Dutta et al., 2005a), in 

contrast to the popular concept of measuring inputs (Dikhanbayeva et al., 2020). This 

maturity model built on the measure of smartness reflects, more accurately, the capacity of 

the digitally transformed production organization, helping establish a more reliable value 

proposition for IDT.  

Analyzing the regression coefficients in Table 5-8 provides a deeper understanding of the 

results, enabling the comparison of value paths through the factory and the supply chain. 

The results presented in Figure 5.3 shows that transformation efforts delivered more 

smartness in the factory than in the supply chain (hypotheses H1 and H2), which delivered 

better organizational value (H3 – H10). Hypotheses H1 – H10 collectively validate the 

study's premise that smartness is the basis for value delivery in IDT. A closer look at the 

data in Table 5-8 provides a deeper understanding of the relative impacts of transforming 

the factory and the supply chain 

The smart factory delivered its strongest impact on Safety. This impact is explained by the 

higher degree of worker engagement in the factory than in the supply chain. The supply 

chain could be modeled as a horizontal integration of clusters of production processes and 

systems (Nagurney, 2009), where direct integration of people is through the systems and 

processes clusters (factory). The factory transformation also strongly influences 

sustainability, reflecting the role of optimal resource utilization through smart functionalities 

in results. The supply chain transformation has its strongest influence on productivity, 

suggesting that the efficiency gained through applying smartness in logistical processes in 

production has significant materiality to results. Overall, factory transformation strongly 

influences all outcomes and should be prioritized in industrial digital transformation.  
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5.7 Managerial Implications 
The value of measurability to management is an established principle (Drucker, 2012; Earll 

et al., 2000). The study produced a framework for IDT maturity modeling for measuring IDT 

capability development based on outcome measures rather than effort measures which are 

common in the literature. An outcome-based model for measuring IDT capabilities presents 

a more accurate reflection of reality with more practical utility. 

Previous studies established that digital transformation programs are overly skewed toward 

technologies and require repositioning toward business value (Heavin & Power, 2018). This 

study offers managers an empirically validated path from technology use to business value. 

The results, a detailed IDT value path, can guide strategies focused on the organization’s 

unique priorities, as in Table 5-9. 

Key success factor Managerial implications 

Technology use Managers should focus on the relationship between their use of 

technology and enterprise smartness. Technology implementation 

can not be used as a measure of transformation success. 

Factory smartness Managers should focus their IDT effort on production processes 

and systems (the factory). This is where the most value was 

created along the value chain. The transformation of the 

production process delivered organizational outcomes irrespective 

of the level of smartness in the products being produced. 

Supply chain smartness Supply chain smartness delivered value for all outcome measures. 

This should be prioritized after factory smartness.  

Customer experience The study established that IDT delivers customer experience goals 

by transforming the factory and the supply chain. However, there 

is latitude for more significant customer experience impacts 

through smart products. According to the study, smart product 

impacts are not generalizable across industries; managers should 

consider the opportunities presented by smart products in their 

specific industries.  
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Productivity In addition to the factory, the supply chain transformation delivered 

strong productivity gains. While the study established that factory 

transformation should be the priority for IDT, the results also show 

that supply chain transformation could contribute significantly to 

productivity. Managers should therefore consider both channels in 

their strategy. 

Sustainability Sustainability gains are relatively strong for both factory and 

supply chain transformations. Both thus represent avenues for 

managers to actualize their strategies depending on their 

sustainability goals. 

Safety Managers can achieve significant improvement in worker safety by 

transforming the factory. Safety delivered the most gain 

comparatively from the smart factory. Factory transformation 

should be high priority if worker safety is a challenge.  

Table 5-9 - Key managerial implications 

The study identified differentiation in the value potentials of different aspects of the value 

chain from digital transformation, providing a deeper context to the IDT narrative of 

transforming the value chain end-to-end. To optimize transformation investments, managers 

must consider the differentials in value potentials along the chain when planning 

transformation programs rather than assume they must transform the entire chain, 

particularly when resources for transformation are scarce. The factory delivers the most 

value from digital transformation, followed by the supply chain and the value of products 

transformation being industry-dependent. The differentials in value potential along the chain 

create channels within the value path aligned to different organizational priorities, which can 

help embed unique organizational goals in Industry 4.0 strategy.  

5.8 Conclusion 
The study advances the IDT narrative that digital transformation of the Industrial production 

value chain delivers value to shareholders, customers, employees, and the wider society. It 

established that IDT delivers value by making the production enterprise smart. Specifically, 
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it determined that IDT and the consequent smartness have implications beyond productivity; 

it strongly impacts sustainability, customer experience, and worker safety. It also established 

differences in the impacts of digital transformation on different aspects of the value chain, 

with stronger impacts on outcomes recorded in the factory than in the supply chain.  

This study aimed to generate high-level generalizable results. However, industry-specific 

studies could produce more nuanced knowledge. Such studies could consider the role of 

smart products in IDT, as many industries do not make products associated with smartness. 

Future research can also consider outcomes from the lenses of customers and other 

stakeholders. Further research should also determine the appropriate transformation of 

industrial business models to realize smart product value.  

5.8.1 Limitations and future research directions 

The key limitation of this study is trade-off of industry-specific factors for model 

generalization. Future studies should consider industry specific factors in Industrial digital 

transformation and performance considerations. Such studies could give in-depth 

consideration to smart products as a component of enterprise smartness. They could also 

consider unique contexts for the performance factors in each industry. Future studies should 

consider industry segment as a moderator in the model relating technology use, smartness 

and organizational performance.  

Nevertheless, this study has made a vital contribution to the value proposition or impact of 

IDT on organizational value creation. 
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6 CONCLUSION 
 

6.1 Research overview 
Industry 4.0 is the embedding of digital technologies in industrial production processes to 

enhance production performance. It achieves industrial digital transformation (IDT) through 

the end-to-end integration of production value chains. Given that industrial production 

involves physical and virtual elements, the integration of the production value chain is 

characterized by cyber-physical integration enabled by cyber-physical systems. Dutta et al. 

(2005a) described capability as the system enablement for translating inputs into outputs. 

Industry 4.0 transforms the production enterprise into a system that translates technology 

use into organizational performance gain through smartness as capability (sections 2.3, 2.6, 

and 5.6). IDT enables smartness through information transparency achieved by integrating 

the production value chain. However, the application of smartness in practice is hindered by 

strategizing challenges, including justifying the rationale for the investment (Szalavetz, 

2019), appropriately quantifying progress (Haider et al., 2006), identifying the right 

technologies, tools, and models (Wang & Wang, 2022), and charting the path to value 

delivery (Machado et al., 2019). This study aimed to help managers in their Industry 4.0 

journey by answering the question, “why Industry 4.0?” It developed a conceptual framework 

to help guide the process and a maturity model for quantifying IDT development. It 

established empirical relationships between digital transformation maturity and the 

performance of the production enterprise to determine the value proposition of Industry 4.0 

and IDT. 

The study leveraged management and information systems literature on systems theory, 

dynamic capabilities, maturity modeling, and digital transformation to address its objectives. 

The literature provides the theoretical basis for Industry 4.0 value creation, i.e., Integrating 

the value chain end-to-end to facilitate holistic production enterprise management that 
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results in smartness. Smartness is a dynamic capability that enables performance 

enhancement (sections 2.6 and 4.6).  

Through four core chapters that report directly from the qualitative and quantitative phases, 

the research produced empirical evidence of IDT’s value proposition by determining the 

impact of Industry 4.0 maturity on organizational performance. The determination of the 

IDT’s value proposition is built on components developed in the qualitative phase of the 

research, including the conceptualization of IDT and smartness and identifying the industrial 

production performance metrics.   

This study used a mixed-method approach to achieve its objectives. The approach 

employed initial qualitative research to determine the measures used in testing during the 

quantitative research. The qualitative study used semi-structured interviews with experts 

from top global technology companies. The participants were technology and digital 

transformation experts. The qualitative phase of the research determined the technology 

features that support IDT capabilities, the conceptualization and assessment factors for 

smartness required to facilitate an outcome-based IDT maturity model, and the performance 

metrics for Industry 4.0 and IDT.  

6.2 Results overview 
The research produced tools, concepts, and models for IDT consolidated in Figure 6-1 as 

an integrated framework for IDT (stemming from chapters 2-5). It describes the IDT 

capability development process, from implementing technologies to delivering 

organizational value. This framework will be further discussed in this section (specifically 

sub-sections 6.2.1 – 6.2.5). 

The study addressed the challenges of IDT. It identifies the digital transformation tasks 

undertaken by organizations and presents a framework for addressing the complexity of the 

transformation endeavor. IDT is established as a technology-based value-creation process 
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with managers using digital technologies to create value for the production organization. The 

study’s framework identifies the technology and value components and establishes their 

links. It enables managers to navigate the path from technology to organizational value 

through the digital transformation process. 

 

Figure 6-1 - Integrated industrial digital transformation (IDT) framework 

6.2.1 Technology 

The IDT value creation process is technology driven. It uses technology to create smart 

functionalities for performance improvement. The value of technology to IDT is thus based 

on its relevance to smartness. Many technologies have been associated with Industry 4.0, 

and the list will continue to evolve as new technologies that contribute to Industry 4.0 

capabilities emerge. It is advantageous to have a framework with significant technology 

agnosticism for generalized applicability. The study thus identified four groups of technology 

features crucial to making the enterprise smart (section 2.5.1): 

• Stimuli responsiveness – enabled by sensors and actuators to facilitate 

environmental interaction and openness.  

• Visualization, simulation, and remote access – facilitates flexibility of data and 

information, including location-based flexibility (ubiquitous access) and time-based 

flexibility (predictive analytics and extended reality). 



 

128 

• Data and information management – enabled by digital infrastructure, including 

computing platforms (cloud and edge), enterprise information systems, cyber 

security, etc. It provides data collection, storage, protection, processing, analysis, and 

communication functionalities. 

• Intelligence – enabled artificial intelligence, machine learning, natural language 

processing, computer vision, etc., to facilitate knowledge acquisition, reasoning, and 

problem-solving capabilities.  

Important technology implications from this study include: 

• Focus on critical smart functionalities. While the significance of technology 

implementation continues to dictate the notion of digital maturity, smart functionalities 

are the mechanism through which IDT creates organizational value (sections 2.6 and 

4.6). The success of implementations is not an adequate measure of transformation 

progress. Rather, smartness is an appropriate measure of digital maturity (section 

5.7). 

• IDT strategy must use technology investments to foster a holistic management 

approach (section 4.6). The challenge of inadequate investment resources pressures 

managers to pursue silo and reductionist approaches. They must, however, enable 

a holistic approach by shortening the cycle between investing and value realization 

by using a measure of smartness enablement capacity to prioritize acquisition. 

Priority technologies would digitalize processes, integrate production elements and 

provide data and information management functionalities (section 2.5.2). Many 

technologies associated with Industry 4.0 predate it (section 2.6), and valuable 

technologies would already exist in the enterprise. The ability to reuse and re-purpose 

existing technologies for cyber-physical systems and enterprise smartness is 

important. 
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6.2.2 Digitization 

Enabling the information transparency that unpins IDT requires digitizing Information and 

processes. Digitalizing machines or operating technologies with sensors and industrial 

processes with autonomous actuators is a defining feature of Industry 4.0 as it enables 

cyber-physical integration. Digitization’s role in IDT relates to data capability. It enables data 

at both ends of stimuli responsiveness, acquisition, and utilization, facilitating systems’ 

interaction with their environment. Industry 4.0 strategy, therefore, involves digitalizing 

information and processes to improve the production enterprise's data capability and 

information transparency. 

6.2.3 Integration 

Integration is the running theme for Industry 4.0. It connects production elements, including 

materials, devices, products, processes, systems, and people, enabling the flow of 

information among them. It is the mechanism by which the production enterprise function as 

a single entity to facilitate information transparency, smartness, and performance 

optimization.  

Through integration, the production value chain is manageable as a single system. 

Information transparency is the practical utility derived from integration and the basis for 

smartness (section 4.5.7). Integration quality is characterized by the completeness, 

correctness, timeliness, and accessibility of information about production elements in the 

value chain. 

The important integration points are: 

• Integration quality is measurable by information transparency which is its practical 

utility (section 4.5.7) 

• Adequacy of technology infrastructure for cyber-physical systems enablement 

underpins integration capacity. 



 

130 

• Focal firms in the production ecosystems can drive holistic approaches and facilitate 

long-term benefits realization by promoting the balanced performance metrics 

identified in this study in the vertical integration arrangements (section 4.6.1). 

• Interoperability will replace tight integrations in many aspects of the production 

enterprise. Practitioners can aid development by driving this design principle (section 

2.5.2.4).  

6.2.4 Smartness 

The study determined that smartness is the organizational capability through which IDT 

creates value. Understanding and measuring smartness was a key part of the research to 

facilitate its management, as smartness is identified as the appropriate measure of IDT 

maturity. The following are key points on smartness from the study: 

• Smartness positively correlates with technology use, enterprise integration, and 

information transparency. 

• Flexibility and autonomy are functional attributes of smartness in the Industry 4.0 

context. They also serve as measurement parameters.   

• While IDT induces smartness across the production value chain and is observed in 

the factory, the supply chain, and products, factory smartness produces higher 

organizational value than smartness in other aspects of the value chain.  

• The value proposition of product smartness is industry-specific (section 5.6). It is not 

always necessary for smart factories to produce smart products.  

6.2.5 Value derivation 

Organizations embark on IDT to create value, optimizing organizational outcomes through 

smartness derived from integrating the enterprise into a singular functional system (sections 

2.5.4 and 4.3). The study identified smartness as the optimization mechanism built on data 

capabilities and information transparency (section 2.5.4). Organizations must thus ensure 
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that all data related to performance parameters identified in the study are acquired and 

managed. The parameters identified include product innovation and quality, production cost 

and efficiency, resource utilization, physical environmental impacts, social value creation, 

task transformations, and hazard elimination or reduction. 

• Long-term value creation is premised on holistic management of the production 

enterprise, avoiding a reductionist approach. 

• Value creation must be balanced, considering all stakeholders through productivity, 

sustainability, customer experience, and safety. 

• While Industry 4.0 proposes an end-to-end digital transformation of the production 

value chain, aspects of the value chain have differentiated value potentials 

concerning digital transformation (section 5.6). The factory produces the most value, 

and opportunities for smart products are industry specific.  

• The supply chain transformation presents an opportunity to address specific 

organizational objectives, particularly productivity and sustainability. A nuanced 

approach to transforming aspects of the value chain is thus required to maximize 

investment resources. 

6.3 Research contribution 
The study made a significant contribution of a digital transformation framework to drive 

organizational performance. This framework is important for organizations in addressing the 

challenges of developing transformation strategies optimized for their unique objectives. 

Unlike prior studies, this study explored the systems perspective of industrial digital 

transformation as an input-output system with an intermediate capability outcome 

(smartness). The study contributed a framework that helps chart the path from technology 

to value delivery. It conceptualized smartness to aid its understanding and enable its 

development to support an Industry 4.0 maturity model, improve transformation progress 

measurement through a novel and simple maturity model, and make an empirical 
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determination of the value proposition of industrial digital transformation. Through the above, 

the study made significant contributions to Industry 4.0 and digital transformation literature. 

The core contributions are highlighted below: 

6.3.1 Industry 4.0 framework 

Implementing Industry 4.0 and its research endeavors requires navigating extensive 

technologies, tools, and concepts. The study contributes conceptual and value frameworks 

for Industry 4.0 (Figure 2-1,  Figure 4-1, and Figure 5-1). It further integrates the models into 

an Industry 4.0 model that supports the IDT process. It answers the what question, 

specifying the activities involved in industrial digital transformation and the expected 

outcomes. The framework helps digital transformation practitioners envision the target state 

for the transformed organization, supporting the planning for transforming the organization 

from the current state to the target state and establishing the thread between effort 

(technology implementation) to outcomes (value creation).  

6.3.2 Smartness framework 

Smartness is an intermediate outcome of Industry 4.0 that enables the optimization of the 

integrated production enterprise. Its value proposition is thus tied to the capacity to develop 

smartness and translate it to production performance gain, necessitating the development 

of a framework for qualifying and quantifying smartness to progress its development. This 

study’s framework identified the defining characteristics of smartness, its classification, and 

the functional parameters for evaluating the quality of smartness. The framework enables 

the application of smartness as the basis for Industry 4.0 maturity modeling.  

6.3.3 Industry 4.0 maturity model 

Effective management of the transformation process requires measuring the maturity of 

capabilities to manage the development process and quantify its impact. This study 

contributes a maturity model designed to address the challenges of model representation of 

reality and practical usefulness. It does this by focusing the measure of maturity on the level 
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of smartness achieved in the production enterprise rather than technology implementation 

endeavors. Strategic management literature confirms that there is no linear relationship 

between the stock of valuable technology assets and useful capabilities (Teece & Pisano, 

2003). Measuring capabilities thus represents a more accurate measure of the utility of 

digital transformation than technology implementation efforts. The model builds on 

smartness as the intermediate outcome of integrating digital technologies in production 

processes. The model evaluates three factors (technology use, production process 

smartness, and supply chain smartness), as illustrated in Table 5-1. It evaluates enterprise 

smartness by considering the flexibility and autonomy of the factory and the supply chain. 

The model also has an effort component that measures technology use as an organizational 

capability to provide an effort component for understanding maturity. Technology use is an 

organizational capability that encapsulates technical and managerial requirements. It 

evaluates the embeddedness of sensors, actuators, digital infrastructure, artificial 

intelligence, and extended reality in the production process. 

6.3.4 Industry 4.0 value proposition 

The general narrative of Industry 4.0 is to transform the production value chain through 

digitization and integration end to end. The study identified that the contribution of Industry 

4.0 is beyond shareholders' financial performance interests but applies to stakeholders' 

broad interests, impacting productivity, sustainability, employee safety, and customer 

experience. The study also identified that the expression of smartness across the value 

chain, including in the production processes and systems and in the supply chain, delivers 

different profiles of performance gains. The study produced nuanced relationships between 

enterprise smartness and organizational outcomes, enabling practitioners to design 

transformation strategies that address their specific objectives. 
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6.4 Managerial Implications  
Managerial challenges of digital transformation include justifying the investment through 

establishing a value proposition, quantifying digital transformation progress, and navigating 

the complex digital transformation landscape to deliver a plan that addresses organizational 

goals and challenges. The study produced an Industry 4.0 framework (Figure 6-1), 

incorporating a business capability model () and an Industry 4.0 conceptual framework 

(Figure 2-1). It enables managers to establish a logical thread from their technology 

initiatives to organizational value realization, highlighting organizational features that 

represent key landmarks in the transformation journey. 

Maturity measurement is critical to managing capability development. Managers need the 

ability to graduate maturity levels according to business priorities. Due to their predominantly 

effort measure base, existing Industry 4.0 maturity models remain limited in assisting with 

Industry 4.0 strategy and investment decisions. This study contributes a maturity model that 

integrates outcome measures based on a novel smartness framework, enabling maturity 

evaluation based on capabilities material to performance, having discounted the dissipated 

portions of the input. The Industry 4.0 maturity model contributes to theory and practice. The 

conceptual framework for smart systems that facilitated the outcome measures could also 

be useful for managing smartness in contexts other than Industry 4.0, as increasing data 

capabilities, machine intelligence, and stimuli-responsiveness infrastructure create 

opportunities to exploit smartness in many contexts. 

The study’s differentiation of aspects of the value chain provides insights into the existence 

of multiple value paths for digital transformation within the chain. These insights offer a 

deeper context to understanding Industry 4.0 as an end-to-end value chain transformation. 

Considering the potential for transformation to involve complex global value chains, 

managers can leverage the differences in value potentials along the value chain to optimize 

their strategy, especially regarding the allocation of digital transformation resources. 
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Competition for scarce investment resources will pressure managers to pursue short-term 

reductionist approaches. Respondents in the qualitative phase argued that  “the level of 

investment required to drive it to fruition will be difficult to achieve at this point”. Investments 

must be initially channelled to aspects of the value chain that contributed more to smartness 

and those that delivered the quickest. For example, the automotive industry started its digital 

transformation journey with factory autonomous functionalities before progressing to 

address smartness opportunities in the supply chain and products (Lee et al., 2023). Factory 

smartness delivered business gains through production efficiencies and product quality, 

enabling investments in more sustainable and feature-rich supply chains and products in 

subsequent investment cycles. The study provides them with practical strategic levers for 

avoiding expensive and potentially risky ill-conceived approaches to value chain 

transformation. 

Managerial implications offered by this study include: 

• Technology use  - Managers should ensure the adequacy of technology embedding 

in the production processes driven by organizational objectives. The focus here 

should not be the acquisition and implementation of technologies but the delivery of 

fit-for-purpose technology as a service for business consumption incorporating the 

technical and management components of technology service delivery.  

• Integration – Managers should ensure connectivity and participation of all production 

entities, including people (employees and customers), devices, systems, materials, 

products, and organizations in the production information network. The measure of 

integration must be information transparency – the correctness, completeness, 

timeliness, and accessibility of all relevant information about all production elements. 

Furthermore, the study identified IT-OT integration as an underpinning structure for 

the end-to-end value chain integration and a running theme for Industry 4.0. IT and 
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OT are historically siloed structures, representing separate people organizations, 

business processes, systems, and thought processes. Technology alone will not 

achieve the needed integration. To facilitate this integration, managers must devise 

organizational structures, management frameworks, and culture change programs. 

For instance, agile methodologies in project organizations have been identified as 

helpful in breaking existing silo walls between IT and business units (Colavita, 2016). 

• Data capability – The study established that "Data is an important part of the Industry 

4.0 idea; it is the lifeblood of Industry 4.0”. Therefore, executing the Industry 4.0 

paradigm implies that production organizations must uplift their data capability. 

Managers must ensure that key aspects of data capability, including data asset 

capture, governance, and utilization for developing autonomous functionalities and 

improved decision-making. Furthermore, the study identified information 

transparency, the ubiquitous availability of contextual information on all aspects of 

production, as central functionality to Industry 4.0 value creation. Developing the 

organizational data capability involves technology implementation, new management 

processes, and culture change. Managers must ensure that data capability uplift is 

well-resourced and driven with senior leadership support for Industry 4.0 success. 

• Smartness – Managers should focus their digital transformation effort on developing 

enterprise smartness. Smartness rather than technology implementations is the 

appropriate indicator of Industry 4.0 maturity. Significant attention should be put on 

delivering the smart factory in the digital transformation strategy because it strongly 

impacts outcomes. A smart supply chain and smart products can deliver specific 

aspects of strategy where applicable. 

• Customer experience  -  Industry 4.0 improves customer experience across the 

board due to product quality improvements. However, managers should explore the 
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possibility of more significant benefits from product smartness and mass product 

customization. Product transformation through smartness is a core part of the 

Industry 4.0 value creation process. It leverages persistent customer integration to 

connect products' production and operations contexts into a cyclic lifecycle. 

Managers must facilitate the product lifecycle transformation through enhanced 

customer and product lifecycle management functionalities. This typically involves 

implementing better customer relationship management (CRM) and project lifecycle 

management (PLM) systems. It also involves developing better processes and 

aligning organizational structures to support the new product lifecycle paradigm. 

Managers should consider the unique smart product opportunities that Industry 4.0 

presents for their industries in crafting their strategy. 

• Value realization – The capability maturity model integration proposes quantitative 

management of capabilities. The study identified several important factors across the 

four performance metrics. Factors relevant to organizational objectives should be 

managed quantitatively to deliver Industry 4.0 benefits. Some of the factors identified 

in the study include work tasks automation, process automation, resource utilization, 

product lifecycle integration, product innovation, product quality, partner 

interoperability, supply chain coordination and optimization, customer integration,  

production batch size flexibility, environmental impact, social value creation, hazard 

reduction, and technology safety features. 

6.5 Policy implications 
The study’s outcomes identified the impact of Industry 4.0 on factors with relevance beyond 

the production organization. These factors include employment, equality and social justice, 

sovereign manufacturing capability, environmental sustainability, transnational integration, 

and economic growth (2.5.3 and 4.5). Industry 4.0 is thus a significant concern for policy 

makers.  
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• The study identified that funding is an initial challenge for Industry 4.0 and investment 

strategies must employ a nuanced approach in allocation resources to aspects with 

strong and quick impacts (4.6.1). Public investments in digital transformation should 

employ this same approach given the size of public spending and its potential impact. 

• The study recognized the development of specific technological and organizational 

features as key for actualizing the vision of Industry 4.0 (2.5.1 and 2.5.2). Public 

investments in research and development must include a strategic focus on these 

features.  

6.6 Limitations and Future Research 
This study highlights the complexity of the industrial digital transformation endeavor. While 

it answers important questions that justify investments in Industry 4.0, other questions come 

to the fore.  

First, this study has considered Industry 4.0 value proposition and strategy at the 

organizational level. However, given the role of governments and the global nature of 

modern production value chains, it will be helpful for future research endeavors to pursue 

answers to the specific details of value propositions of Industry 4.0 at the national and global 

levels with empirical foundations. 

This study explored the role of technology use in the emergence of smartness in industrial 

production and the role of smartness in performance improvement. An exploration of 

smartness as a mediating factor in industrial production performance improvement induced 

by digital transformation would help generate a more rounded understanding of the role of 

smartness in industrial production. 

While this study has derived relevant measures of value that include customer experience, 

employee safety, and sustainability, the value was viewed from the firm’s perspective. Other 
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studies should consider the value proposition from the specific lenses of different 

stakeholders to generate a holistic view of value. 

This study considered production organizations broadly to produce generalizable results. 

However, industry-specific insights would also be useful. Future studies should consider the 

industry-specific value proposition of Industry 4.0. They could also provide further value to 

practitioners and managers by considering the impact of organizational factors, including 

firm size and complexity, on Industry 4.0’s value proposition. 

Nevertheless, the study makes a valuable theoretical and practical contribution in providing 

a digital transformation model for production performance to assist organizations in 

advancing their industry 4.0 journey. 
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conference (Microsoft teams, Zoom or Skype) at a time that is convenient for you. 
 
With your consent, the interview will be video recorded on the videoconferencing platform to help with reviewing the 
results. Once recorded, the interview will be transcribed (typed-up) and stored as a computer file. The video recording 
will be deleted after transcription.  

College of Science and Engineering  
 
Tonsley Innovation Precinct 
Tonsley SA 5042 
 
Tel:  +61 8 8201 2243 
temitayo.abiodun@flinders.edu.au 

CRICOS Provider No. 00114A 
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INFORMATION SHEET 

for Interviews 
 
 

Title:  Diffusion of Innovative Manufacturing Technologies in the Manufacturing Sector 
 
Researchers: 
 
Temitayo Abiodun 
College of Science and Engineering 
Flinders University 
Tel:  +61 8 8201 2243 
 
Description of the study 
Industry 4.0 is the phenomenon that characterises the fourth industrial revolution. In a manufacturing context, it 
involves the massive deployment of advanced digital technologies like data analytics, robotics, and automated guided 
vehicles (AGVs). 
This project will investigate the factors that affect the adoption Industry 4.0 capabilities by manufacturing organisations. 
It will also consider the contribution of these technologies to business goals and factors that affect the successful 
implementation of digital technologies.   
 
Purpose of the study 
Industry 4.0 has become a very important part of the strategy of manufacturing organisations, it has also become a key 
strategy for increasing manufacturing output and achieving sovereign manufacturing capabilities in many countries. 
Furthermore, the Industry 4.0 technology landscape is quite complex and fast evolving, this study proposes to develop 
knowledge that provide guidance to organisations about their Industry 4.0 requirements and the available paths for the 
evolution of their capabilities. 
 
What will I be asked to do? 
You are invited to attend a one-on-one interview with a researcher who will ask you a few questions regarding your 
views about your: 

• Industry 4.0 and Industrial digital transformation 
• Your experiences about the drivers of innovation and project success in organisations 
• Your views on the impact of specific technologies on business outcomes 
• Your experience with Industry 4.0 implementation projects. 

 
Participation is entirely voluntary, and you may withdraw at any stage without disadvantage to your relationship with 
Flinders University and its staff and students.  The interview will take about 45 minutes and will be conducted by video 
conference (Microsoft teams, Zoom or Skype) at a time that is convenient for you. 
 
With your consent, the interview will be video recorded on the videoconferencing platform to help with reviewing the 
results. Once recorded, the interview will be transcribed (typed-up) and stored as a computer file. The video recording 
will be deleted after transcription.  

College of Science and Engineering  
 
Tonsley Innovation Precinct 
Tonsley SA 5042 
 
Tel:  +61 8 8201 2243 
temitayo.abiodun@flinders.edu.au 

CRICOS Provider No. 00114A 



 

162 

 

Appendix B - Semi-structured interview guide 
• What is Industrial Digital Transformation (including Industry 4.0, Industrial Internet of 

Things (IIoT), and Industrial Internet)? 

• Which technologies are important for IDT and why? 

• Which management competencies are important for IDT and why? 

• Which business factors have driven the adoption of IDT capabilities? (productivity, 

safety, etc.) 

• Which business factors have hindered the adoption of IDT technologies? (Cost, 

complexity, etc.) 

• What role do environmental factors play in the adoption of these technologies? 

(Competition, Regulation, etc.) 

• What role do organizational factors play in the adoption of these technologies? (Size, 

complexity) 

• What role do technological factors play in the adoption of these technologies? (Exiting 

technology investments, implementation, integration, management capabilities, etc.) 

• How does IDT influence organizational performance? 

• What is smartness, and how is it related to IDT?  
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Appendix C – Information Sheet for Quantitative Research 
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INFORMATION SHEET 

for Survey 
 
 

Title:  Diffusion of Innovative Manufacturing Technologies in the Manufacturing Sector 
 
Researchers: 
 
Temitayo Abiodun 
College of Science and Engineering 
Flinders University 

 
 
 

Tel: +61 8 8201 2243 
 
Description of the study 
Industry 4.0 is the phenomenon that characterises the fourth industrial revolution. It involves the 
massive deployment of advanced digital technologies like robotics and automated guided 
vehicles (AGVs) in manufacturing processes. This project will investigate the factors that affect 
the adoption of advanced digital technologies in Manufacturing processes. Adoption of digital 
technologies and the attendant digital transformation is important for the future success of the 
manufacturing industry.  
 
Purpose of the study 
The project focuses on identifying the key factors in the adoption of Industry 4.0 technologies in 
manufacturing, with the goal of promoting the uptake and diffusion of technologies within 
manufacturers and their supply chains.  
 
What will I be asked to do? 
You will be asked to complete an online survey that should take about 20 minutes. Most of the 
survey questions involve rating scales where you will be asked to indicate the extent to which you 
agree or disagree with a statement related to advanced technology adoption. Participation is 
entirely voluntary, and you may withdraw at any stage without explanation. If you agree to 
participate, click the link provided in the box above. 
 
What benefit will I gain from being involved in this study? 
Your input will help shape future work practices in manufacturing firms, potentially improving firm 
innovativeness and other business outcomes. There are also potential economic outcomes for 
the nation.  
 
Will I be identifiable by being involved in this study? 
A generic link to the survey will be used so neither the researcher nor organisation will know 
which employees have participated (i.e. your participation is anonymous). No individual 
responses will be identifiable. 
 

Temitayo Abiodun 
College of Science and Engineering 
 
Sturt Road 
Bedford Park SA 5042 

GPO Box 2100 
Adelaide SA 5001 

Tel:  +61 8 8201 2243  
temitayo.abiodun@flinders.edu.au 
 
CRICOS Provider No. 00114A 
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Appendix D – Quantitative Questionnaire 
1. What country are you responding from? 

2. My work mainly relates to the following industry:  

a. Automotive 

b. Chemicals 

c. Electronics 

d. Food and Beverages 

e. Heavy equipment 

f. Household goods 

g. Metals and Plastics 

h. Others 

i. Pharmaceuticals 

3. What is your level of understanding of the term "Industry 4.0"? 

a. None 

b. Little 

c. Average 

d. Good 

e. Excellent 

4. How many employees are in your company? 

a. 1 – 10 

b. 11 – 100 

c. 101 – 1000 

d. 1001 – 5000 

e. Greater than 5000 

The next set of questions evaluates organizational capability based on the Capability 

Maturity Model Integration (CMMI) Framework. The response options are below: 
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Initial - The processes exist, but performance is ad hoc. 

Managed - Processes are governed at a sub-enterprise level. There is a lack of coordination 

for similar processes across the enterprise. 

Defined - Processes are standardized across the enterprise against best practices, enabling 

consistency enterprise-wide. The operations of processes are governed and documented. 

Quantitatively managed - Process performance is controlled using statistical methods. 

Performance at this level is predictable, and there focus on managing deviations.  

Optimizing –  Processes have continuous improvement measures built on quantitative 

measures.  

5. What is the CMMI level for the use of Sensors (Sensors, IoT, Embedded devices, 

RFID etc)  in your organization? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

6. What is the CMMI level for the use of Robotics (Digital fabrication, cobots, Industrial 

robots, Automatic Guided Vehicles (AGVs) etc) in your organization? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 
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7. What is the CMMI level for the use of Extended Reality (Virtual / Augmented reality, 

Digital twins, Live-Virtual Construct (LVC), Simulations etc) in your organization? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

8. What is the CMMI level for the use of Digital Infrastructure (Cloud / Edge Computing, 

broadband & NXG networks, Cyber security etc) in your organization? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

9. What is the CMMI level for the use of Artificial Intelligence (Machine learning, Natural 

Language Processing, Predictive analytics etc) in your organization? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

10. What is the CMMI level for Process autonomy e.g., processes do not need human 

intervention, including for decision-making? 

a. Initial 

b. Managed 

c. Defined 
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d. Quantitatively managed 

e. Optimizing 

11. What is the CMMI level for Process flexibility e.g., production processes can be 

changed e.g., to produce new products or change specifications of existing products, 

without building new factories or installing significant new machinery 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

12. What is the CMMI level for Supply chain autonomy e.g., Dynamic, intelligent 

handling of demand (routing, resource allocation) along the supply chain? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

13. What is the CMMI level for Supply chain flexibility e.g., automated handling of 

disruption and demand changes along the supply chain? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 
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14. What is the CMMI level for Product autonomy e.g. automation of product lifecycle 

management? Products can be maintained and supported without human 

intervention. 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

15. What is the CMMI level for Product flexibility e.g. products are highly configurable 

and customizable for customers in an automated fashion? 

a. Initial 

b. Managed 

c. Defined 

d. Quantitatively managed 

e. Optimizing 

The next set of questions measures your perception of organizational performance 

16. Our production processes and systems are effective (they get the job done) 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

17. Our production processes are efficient (they utilize resources well) 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 
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d. Somewhat agree 

e. Strongly agree 

18. Our product quality is better than competitors 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

19. Our safety incidence record is better than our peers’ 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

20. Our safety process has senior leadership engagement 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

21. Our customers are satisfied with our products and services 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 
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22. Our customers recommend us to others 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

23. Our customers are generally loyal to us 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

24. Our company is effective at optimizing resource use (energy, water, and materials) 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

25. Our company is effective at minimizing our environmental pollution, including Carbon 

Dioxide emissions 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

26. Our company is ethical. We are committed to social good. 
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a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

This is the end of the survey, thanks for participating.  
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Appendix E – Participant profiles 

 

  

Respondent Location Experience 
(Years)  

Education Principal Industry Expertise 

1 Australia 29 BA Government, Natural Resource 

2 Australia 30 BA Government, Natural Resource 

3 Australia 28 M.Sc Aerospace 

4 Australia 33 B.Sc Industrial, Utilities 

5 France 34 B.Eng Industrial 

6 USA 31 MBA Automotive 

7 USA 35 MBA Utility, Natural Resources 

8 Australia 20 M.Sc Exploration 

9 USA 23 B.Eng Automotive 

10 USA 27 PhD Industrial, Supply Chain 

11 USA 25 MA Industrial, Supply Chain 

12 USA 21 MBA Industrials, Automotive, 
Pharmaceuticals 

13 USA 25 BA Industrial 

14 Australia 25 B.Eng Industrial 

15 Singapore 36 B.Com Government, Healthcare 

16 USA 29 B.Sc Technology, Media, 
Telecommunications 
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Appendix F – What is Industry 4.0? Responses and First-order 
concepts 

Respondent Response First-order 
concepts 

1 The next evolutionary step in production. It is 
primarily about manufacturing. It has 
emerged as a confluence of increasing 
maturity of several systems facilitating 
interoperability at speed (hyperconnectivity). 
Industry 4.0 will move the focus in the value 
chain towards interoperability and away from 
tight integrations as more agile production 
ecosystems emerge. 
We will experience the classic hype cycle 
effect. The level of investment required to 
drive it to fruition will be difficult to achieve at 
this point. It will improve manufacturing in 
first-world countries because of lower cost 
manufacturing. It will push the pursuit of 
more sustainable supply chain arrangement, 
away from the constant pursuit of lower 
costs. 

Emergence 
(System of 
Systems), 
Hyperconnectivity, 
Manufacturing cost 
optimization, 
Nextgen 
Communication, 
Sovereign 
Manufacturing 
Capability, 
Interoperability, 
Sustainable supply 
chain 

2 Industry 4.0 emerged as a systemic 
response to fundamental challenges facing 
production enterprises because of evolving 
socio-economic realities over a period. First 
is the increasing demand to customize or 
individualize products and services to satisfy 
the changing needs of consumers. The 
second is the evolving challenge of energy 
and resource utilization in response to 
environmental requirements. The third is the 
volatility of production parameters requiring a 
higher capacity for flexibility in production 
enterprises. Industry 4.0 uses smart solutions 
to address the challenges. 
Through smartness, Industry 4.0 addresses 
the challenges that necessitated it. It enables 
mass product customization, simultaneously 
delivering value to the producer and 
consumer as productivity and superior 
customer experience. It optimizes resource 
utilization and environmental interaction of 
production systems. Production systems 
improve productivity by optimally responding 
to variability across the production 
ecosystem 

Flexibility, Mass 
Product 
Customization, 
socio-economic 
value creation, 
Smart solutions, 
Resource 
optimization, 
Production factors 
variability, 
Environmental 
impact 
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3 A period of rapid technological advancement 
with an impact on manufacturing. Both in the 
contexts of products and platforms. It is 
revolutionary, resulting in efficiency and 
effectiveness gains through cps. The 
previous revolutions had pockets of gains in 
automation and computing 
It is the first industrial revolution to go outside 
the core manufacturing processes. Its impact 
extends to maintenance, onboard platforms 
like ships, and resource environments. 
Development in cybersecurity and extended 
reality suggests that removal of 
environmental boundary constraints is key to 
Industry 4.0 and might define its evolution 
into Industry 4.1 or even 5.0. This significant 
provision implies that you do not have to be 
in the environment to interact with it. Industry 
4.0 increases productivity, product and 
process quality, cost optimization, product 
innovation, and employee safety. I have 
personally witnessed a worker's life saved by 
Industry 4.0 technology when a "man down" 
technology raised an alarm 

Emergence 
(System of 
Systems), 
Enhanced 
Manufacturing 
capabilities, 
Extended reality, 
Holistic Enterprise 
transformation, 
Process Efficiency, 
Boundary removal, 
Worker safety, 
Process quality, 
Product quality 

4 Industry 4.0 is the extension of digitalization 
principles from IT to OT. IT has long 
transformed the business technology space 
of the enterprise. Now the OT space is being 
similarly transformed and integrated, creating 
a single digital enterprise. This 
transformation is dependent on advanced 
technologies, particularly sensors, robotics, 
virtual reality, and artificial intelligence. 
The creation of a singular digital enterprise 
has profound implication for product 
development and management. Digital twins 
play an important role as a critical application 
of extended reality. Integration does not just 
happen within the production organization; it 
transcends the entire production value chain 
spanning suppliers, consumers, and 
producers. 

Artificial 
intelligence, 
Connected 
enterprise, Data 
acquisition, 
Extended reality, 
Integrated value 
chain, OT 
(Operating 
technologies) 
Digitization, OT-IT 
Integration, 
Robotics, Sensors, 
Digital twins 
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5 Industry 4.0 is a set of capabilities acquired 
by manufacturing enterprises by 
implementing four classes of technologies. 
The technologies are computing and 
networking, human-machine interaction, AI 
and analytics, and digital fabrication. 
The implementation of these technologies 
enable the integration of the value chain and 
the factory elements resulting in three 
capabilities, smart products, smart factory, 
and smart supply chain 

Artificial 
intelligence, 
Computing 
infrastructure, Data 
analytics, Digital 
fabrication, 
Integrated value 
chain, Man-
machine 
collaboration, Smart 
product, Smart 
production and 
supply chain 
processes, Smart 
supply chain, Smart 
factory 

6 An Industrial revolution. Taking advantage of 
advanced technologies, particularly IoT and 
corporate information systems, to create 
manufacturing systems, and engineering and 
product development solutions that are 
interconnected, communicate, and analyze to 
drive intelligent actions. 
The basic business value is customer, the 
ability to anticipate customer needs and 
deliver them rapidly. 

Connectivity, 
Integrated systems 
and processes, 
Intelligent actions, 
IoT, New customer 
experience 
capabilities, Rapid 
delivery of 
customer 
requirements 

7 Industry 4.0 is a series of layered capabilities 
that deliver optimal socio-economic 
outcomes in industrial production 
The layered capabilities are facilitated by 
advanced technologies that enable stimuli 
responsiveness, artificial intelligence, data 
processing, visualization, and robotic 
actuation. 

Artificial 
intelligence, Cloud 
computing, Data 
processing, 
Digitization, Edge 
computing, 
Emergence 
(System of 
Systems), 
Information and 
data transparency, 
Integrated systems 
and processes, 
Optimal socio-
economic value, 
Robotics, 
Smartness, Stimuli 
responsiveness 
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8 Industry 4.0 is the digitization and integration 
of the entire production enterprise to deliver 
an end to end digital value chain. 
An important factor is the rising customer 
expectation of mass manufactured 
customized products. Producers also need to 
produce the mass customized products at a 
cost-effective price. Industry 4.0 integrates 
the entire value chain and enables the 
engagement of the customer early in the 
process and throughout the process 
including after sales. IoT is critical to 
digitization and integration 

Cost-effectiveness, 
Digital enterprise, 
Digitization, 
Integrated value 
chain, IoT, Mass 
Product 
Customization, 
Persistent customer 
engagement 

9 Industry 4.0 is about integrating the physical 
and virtual worlds for the purpose of 
production processes advancement. It is 
based on a number of key a concept 
including digitization, seamless man-machine 
collaboration and universal visibility and 
accessibility of data and processes. 
In the Industry 4.0 context, production 
systems can attain super efficiency, flexible 
and have information transparency. 

Cobots, Digitization, 
Information and 
data transparency, 
Man-machine 
collaboration, 
Physical-virtual 
integration, Process 
Efficiency, Process 
Flexibility, 

10 Fusion of IT and OT, or the digital and 
physical components of production (with IoT) 
to create new socio-economic values. 
The third industrial revolution created the 
capability for pulling information from the 
physical space into the digital. The fourth 
revolution completes the digital-physical loop 
by feeding back analyzed information into the 
physical space from the digital. 

Optimal socio-
economic value, OT 
(Operating 
technologies) 
digitization, 
Physical-virtual 
information loop 

11 Industry 4.0 is the digitization of all aspects of 
production processes, the vertical integration 
of the factory, and horizontal integration of 
the production ecosystem with IoT, 
Enterprise Information Systems and 
autonomous functionalities. The digitization 
provides the platform for the integration, 
while the integration creates the capability for 
smart characteristics. The horizontal 
integration connects the entire value chain 
from suppliers to the consumers while the 
vertical integration connects the processes 
within the production enterprise. 
Data is an important part of the Industry 4.0 
idea, it is the lifeblood of Industry 4.0. Data 
related to all aspects of the production 
enterprise operations covering planning, 
production and maintenance are made 

Artificial 
intelligence, Data 
Analytics, Data 
Capability, Data 
processing, 
Enterprise 
Information 
Systems, 
Information and 
data transparency, 
Integrated 
production 
enterprise, IoT, 
Process digitization, 
Production 
ecosystems, Real-
time business 
intelligence, Smart 
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available in real-time, powering analytics and 
providing the intelligence required for smart 
operations. 

operations, Vertical 
integration 

12 Industry 4.0 is the next iteration of the series 
of industrial revolutions that defines how 
industrial production works. This one 
integrates technologies often associated with 
smart capabilities with production , product 
development and operation systems and 
processes. It creates a production enterprise 
that is fundamentally digital and 
interconnected. It exhibits autonomous 
functionalities and seamlessly funnels data 
and analysed information back and forth 
between the digital and the physical 
elements to enable further intelligent actions 
in the physical world. Industry 4.0 ultimately 
transforms the enterprise into a smart one 
composed of other smart entities including 
systems and processes. 
The essence and impact of Industry 4.0 goes 
beyond production. It transforms production 
organization and the entire lifecycle of 
products. The organizational transformation 
infuses smartness into the operations of the 
firm through the appropriation of the value of 
data. It also transforms the way products are 
designed, made, used, and maintained. 
Additionally, Industry 4.0 business models 
seek to commercially exploit data. 

Autonomy, 
Connected 
enterprise, Digital 
enterprise, 
Enhanced 
Operating and 
production 
processes, 
Intelligent actions, 
Physical-virtual 
information loop, 
Product 
development 
capability, Product 
lifecycle integration, 
Smart capability 
technologies, Smart 
factory, Smart 
supply chain, Smart 
product, Smart 
processes, Value of 
data 
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13 Industry 4.0 happens when several 
developments in technology are considered 
collectively rather than individually. These 
technologies include robotics and AI, digital 
fabrication, mobile communications, 
extended reality, and data analytics. 
Collectively, they create the capability to 
integrate physical and virtual worlds. The 
integration further transforms production 
capabilities bringing speed, transparency, 
visibility, autonomy and flexibility. 

Artificial 
intelligence, 
Autonomy, Data 
analytics, 
Emergence 
(System of 
Systems), 
Extended reality, 
Flexible production 
systems, 
Information and 
data transparency, 
Physical virtual 
integration, Process 
Efficiency, 
Production 
capability 
transformation, 
Robotics, Visibility 

14 Applying new technologies including ML, AI, 
IoT, edge computing, some of which had 
been applied previously in enterprise 
business systems contexts, but now to 
machine and engineering shopfloor contexts. 
Taking advantage of advancements in 
sensors particularly, but also computing, 
cloud and security to change the way 
machines are run in production, operations 
and maintenance modes. 
Industry 4.0 incorporates additional 
contextual data to enrich the functionalities of 
existing automation technologies. Industry 
4.0 actualizes the cloud factory concept 
which democratises production infrastructure 
in the same way cloud computing does for 
digital infrastructure. 

Artificial 
intelligence, 
Autonomy, Cloud 
computing, Cloud 
factory, Data 
acquisition, Data 
Capability, 
Digitization of 
Shopfloor 
processes, Edge 
computing, IoT, 
Machine Learning, 
Sensors 

15 Industry 4.0 uses the connectedness of 
systems and processes across the entire 
production value chain to create an 
intelligent, flexible production ecosystem, 
delivering superior value compared to the 
unintegrated enterprise. 
The value created by the integrated 
intelligent systems include organizational and 
occupational safety and productivity. 

Flexible production 
systems, Integrated 
systems and 
processes, 
Integrated value 
chain, Production 
ecosystems, Smart 
production systems, 
Superior value 
realization, 
Occupational safety 
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16 Industry 4.0 is about the creation of fully 
connected production value chains. The idea 
thus is to better the capabilities of linear 
value chain constructs. The new capabilities 
are based on technologies that provide AI, 
high throughput and low latency 
communications and live virtual construct. 
Producers have both visibility of and dynamic 
insights on their own operations end to end, 
covering supply chain, customers and 
production systems and processes. 
They have flexibility that enables response in 
a timely fashion to fluctuations and variability 
in the operating environment including 
customer behaviours and preferences, 
supply chain characteristics, and social, 
political and economic factors with impact on 
production. 

Artificial 
intelligence, 
Flexibility, Improved 
production 
capabilities, 
Information and 
data transparency, 
Integrated value 
chain, Live virtual 
construct, Nextgen 
Communication, 
Persistent customer 
engagement, Smart 
supply chain, 
Visibility 

 

Appendix G – Data Structure 
First-order concepts Second-Order concepts Aggregate 

Dimensions 
Artificial intelligence Digital Technology Digital Technology 
Autonomy Resource and Process Optimization Productivity 

Sustainability 
Cloud computing Digital Technology Digital Technology 
Cloud factory Economic transformation Productivity 

Smart factory Capability 
Social value creation Sustainability 

Cobots Digital Technology Digital Technology 
Computing infrastructure Digital Technology Digital Technology 
Connected enterprise Supply chain optimization / Interoperability Productivity 
Connectivity Resource and Process Optimization Productivity 
Cost-effectiveness Economic transformation Productivity 
Data acquisition Data Capability Capability 
Data Analytics Data Capability Capability 
Data Capability Data Capability Capability 
Data processing Data Capability Capability 
Digital Enterprise Supply chain optimization / Interoperability Productivity 
Digital Fabrication Resource and Process Optimization Productivity 
Digitization Resource and Process Optimization Productivity 
Digitization of Shopfloor 
processes 

Resource and Process Optimization Productivity 

Edge computing Digital Technology Digital Technology 
Emergence (System of Systems) Supply chain optimization / Interoperability Productivity 
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Enhanced Manufacturing 
capabilities 

Resource and Process Optimization Productivity 

Enhanced Operating and 
production processes 

Resource and Process Optimization Productivity 
Task transformation Safety 

Enterprise Information Systems Supply chain optimization / Interoperability Productivity 
Extended reality Digital Technology Digital Technology 
Flexibility Resource and Process Optimization Productivity 
Flexible production systems Resource and Process Optimization Productivity 

Sustainability 
Holistic Enterprise transformation Supply chain optimization / Interoperability Productivity 
Hyperconnectivity Resource and Process Optimization Productivity 
Improved production capabilities Resource and Process Optimization Productivity 
Information and data 
transparency 

Data Capability Capability 

Integrated production enterprise Supply chain optimization / Interoperability Productivity 
Integrated systems and 
processes 

Resource and Process Optimization Productivity 

Integrated value chain Supply chain optimization / Interoperability Productivity 
Intelligent actions Resource and Process Optimization Productivity 

Sustainability 
IoT Digital Technology Digital Technology 
Live virtual construct Digital Technology Digital Technology 
Machine Learning Digital Technology Digital Technology 
Man-machine collaboration Task transformation Productivity 

Safety 
Manufacturing cost optimization Economic transformation Productivity 
Mass Product Customization Mass Product Customization Customer experience 

Product lifecycle transformation Productivity 
New customer experience 
capabilities 

Product lifecycle transformation Customer experience 

Nextgen Communication Digital Technology Digital Technology 
Optimal socio-economic value Economic transformation Productivity 

Sustainability 
Social value creation Sustainability 

OT (Operating technologies) 
Digitization 

Resource and Process Optimization Productivity 

OT-IT Integration Resource and Process Optimization Productivity 
Persistent customer engagement Customer engagement Customer experience 
Physical virtual information loop Data Capability Capability 
Physical virtual integration Supply chain optimization / Interoperability Productivity 
Process digitization Resource and Process Optimization Productivity 
Process Efficiency Resource and Process Optimization Productivity 
Process Flexibility Resource and Process Optimization Productivity 

Sustainability 
Product development capability Product lifecycle transformation Customer experience 

Productivity 
Product lifecycle integration Resource and Process Optimization Productivity 
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Production capability 
transformation 

Resource and Process Optimization Productivity 
Task transformation Safety 

Production ecosystems Supply chain optimization / Interoperability Productivity 
Rapid delivery of customer 
requirements 

Product lifecycle transformation Customer experience 
Productivity 

Real-time business intelligence Data Capability Capability 
Boundary removal Resource and Process Optimization Productivity 
Robotics Digital Technology Digital Technology 
Sensors Digital Technology Digital Technology 
Smart capability technologies Resource and Process Optimization Productivity 

Sustainability 
Technology features Safety 

Smart enterprise Resource and Process Optimization Productivity 
Smart factory Smart factory Capability 
Smart operations Resource and Process Optimization Productivity 

Sustainability 
Smart processes Resource and Process Optimization Productivity 

Sustainability 
Smart product Product lifecycle transformation Customer experience 

Productivity 
Smart product Capability 

Smart production and supply 
chain processes 

Resource and Process Optimization Productivity 
Sustainability 

Smart production systems Resource and Process Optimization Productivity 
Sustainability 

Smart solutions Resource and Process Optimization Productivity 
Sustainability 

Technology features Safety 
Smart supply chain Smart supply chain Capability 
Smartness Resource and Process Optimization Productivity 

Sustainability 
Sovereign Manufacturing 
Capability 

Economic transformation Productivity 
Sustainability 

Stimuli responsiveness Resource and Process Optimization Productivity 
Sustainability 

Technology features Safety 
Superior value realization Economic transformation Productivity 

Sustainability 
Value of data Economic transformation Productivity 

Sustainability 
Vertical integration Supply chain optimization / Interoperability Productivity 
Visibility Resource and Process Optimization Productivity 
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Appendix H – Assessment of Normality  
 

Item Skewness Kurtosis Bartlett's 
test of 
sphericity 

tech_util QT_1 0.084 3.487 0.92 
QT_2 -0.149 3.623 0.91 
QT_3 -0.046 3.684 0.91 
QT_4 0.233 2.848 0.94 
QT_5 -0.155 3.206 0.92 

SC_SMT QS_1a 0.256 3.013 0.91 
QS_1b -0.019 2.739 0.9 

Factory_SMT QS_2a 0.325 3.098 0.97 
QS_2b 0.122 2.869 0.96 

Productivity QP_1a -0.048 2.544 0.96 
QP_1b 0.052 2.948 0.95 
QP_1c -0.154 2.497 0.96 

Safety QP_2a 0.056 3.056 0.96 
QP_2b 0.057 2.869 0.97 

Customer QP_3a 0.340 2.701 0.94 
QP_3b -0.082 3.163 0.91 
QP_3c -0.069 3.070 0.9 

Sustainability QP_4a 0.037 2.941 0.98 
QP_4b 0.101 3.035 0.88 
QP_4c 0.031 3.073 0.89 

Min 
 

-0.155 2.497  
Max 0.340 3.684  
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Appendix I – Congeneric models 
 

Appendix I.1 

 

 

Appendix I.2 
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Appendix I.3 

 

Appendix I.4 

 

Appendix I.5 

 

 

Appendix I.6 
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Appendix I.7 

 

Appendix J – Data Structure 
Aggregate 
Dimension  

First-order Concept Second-Order concepts 

Intelligence Artificial intelligence Artificial intelligence 

Machine Learning Machine Learning 

Customer 
engagement 

Persistent customer 
engagement 

Customer engagement 

Data Capability Data acquisition Data Capability 

Data analytics Data Capability 

Data Capability Data Capability 

Data processing Data Capability 

Real-time business intelligence Data Capability 

Data and 
Information 
Management 

Cloud computing Cloud computing 

Computing infrastructure Computing infrastructure 

Edge computing Edge computing 

Enterprise Information Systems Supply chain optimization / 
Interoperability 

Nextgen Communication Nextgen Communication 

Simulation, 
Visualization, and 
Remote Interaction 

Extended reality Extended reality 

Live virtual construct Live virtual construct 

Information 
transparency 

Information and data 
transparency 

Information transparency 
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Physical virtual information loop Information transparency 

Visibility Resource and Process Optimization 

Stimuli 
Responsiveness 

Cobots Cobots 

IoT IoT 

Robotics Robotics 

Sensors Sensors 

Stimuli responsiveness Resource and Process Optimization 

Smartness Autonomy Resource and Process Optimization 

Cloud factory Smart factory 

Flexibility Resource and Process Optimization 

Flexible production systems Resource and Process Optimization 

Intelligent actions Resource and Process Optimization 

Smart capability technologies Resource and Process Optimization 

Smart enterprise Resource and Process Optimization 

Smart factory Smart factory 

Smart operations Resource and Process Optimization 

Smart processes Resource and Process Optimization 

Smart product Smart product 

Smart production and supply 
chain processes 

Resource and Process Optimization 

Smart production systems Resource and Process Optimization 

Smart solutions Resource and Process Optimization 

Smart supply chain Smart supply chain 

Smartness Resource and Process Optimization 

Value Autonomy Resource and Process Optimization 

Cloud factory Economic transformation 

Social value creation 

Connectivity Resource and Process Optimization 

Cost effectiveness Economic transformation 

Enhanced Manufacturing 
capabilities 

Resource and Process Optimization 
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Enhanced Operating and 
production processes 

Resource and Process Optimization 

Task transformation 

Improved production capabilities Resource and Process Optimization 

Integrated systems and 
processes 

Resource and Process Optimization 

Intelligent actions Resource and Process Optimization 

Man-machine collaboration Task transformation 

Manufacturing cost optimization Economic transformation 

Mass Product Customization  Mass Product Customization  

Product lifecycle transformation 

New customer experience 
capabilities 

Product lifecycle transformation 

Optimal socio-economic value Economic transformation 

Social value creation 

Process digitization Resource and Process Optimization 

Process Efficiency Resource and Process Optimization 

Process Flexibility Resource and Process Optimization 

Product development capability Product lifecycle transformation 

Product lifecycle integration Resource and Process Optimization 

Production capability 
transformation 

Resource and Process Optimization 

Rapid delivery of customer 
requirements 

Product lifecycle transformation 

Boundary removal Resource and Process Optimization 

Smart capability technologies Technology features 

Smart product Product lifecycle transformation 

Smart solutions Technology features 

Sovereign Manufacturing 
Capability 

Economic transformation 

Stimuli responsiveness Technology features 

Superior value realization Economic transformation 

Value of data Economic transformation 
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Digitization Digital fabrication  Resource and Process Optimization 

Digitization Resource and Process Optimization 

Digitization of Shopfloor 
processes 

Resource and Process Optimization 

OT (Operating technologies) 
Digitization 

Resource and Process Optimization 

Integration Connected enterprise Supply chain optimization / 
Interoperability 

Digital enterprise Supply chain optimization / 
Interoperability 

Holistic Enterprise 
transformation 

Supply chain optimization / 
Interoperability 

Hyperconnectivity Resource and Process Optimization 

Integrated production enterprise Supply chain optimization / 
Interoperability 

Integrated value chain Supply chain optimization / 
Interoperability 

OT-IT Integration Resource and Process Optimization 

Physical virtual integration Supply chain optimization / 
Interoperability 

Production capability 
transformation 

Task transformation 

Ecosystems Emergence (System of 
Systems) 

Supply chain optimization / 
Interoperability 

Integrated systems and 
processes 

Resource and Process Optimization 

Production ecosystems Supply chain optimization / 
Interoperability 

Vertical integration Supply chain optimization / 
Interoperability 
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Appendix K – Correlations (Quantitative research) 
 

 Q5_1 Q5_4 Q5_5 Q5_7 Q5_8 Q7_3 Q7_6 Q7_1 Q7_4 Q6_1 Q6_2 Q6_14 Q6_4 Q6_5 Q6_6 Q6_7 Q6_8 Q6_9 Q6_10 Q6_11 

Q5_1 1 .501** .506** .513** .516** .158** .154** .406** .367** .332** .366** .375** .381** .291** .327** .237** .266** .320** .377** .378** 

Q5_4 .501** 1 .509** .525** .461** .147** 0.093 .288** .264** .207** .161** .195** .250** .205** .284** .271** .217** .279** .368** .360** 

Q5_5 .506** .509** 1 .546** .498** .170** .135* .318** .303** .240** .245** .267** .285** .221** .277** .160** .180** .309** .311** .321** 

Q5_7 .513** .525** .546** 1 .490** .202** .188** .377** .376** .304** .302** .335** .340** .294** .327** .304** .246** .361** .409** .392** 

Q5_8 .516** .461** .498** .490** 1 .210** .127* .318** .340** .252** .272** .251** .249** .261** .308** .269** .190** .326** .380** .372** 

Q7_3 .158** .147** .170** .202** .210** 1 .535** .342** .361** .440** .459** .431** .372** .322** .318** .232** .261** .414** .449** .428** 

Q7_6 .154** 0.093 .135* .188** .127* .535** 1 .335** .307** .341** .371** .330** .383** .301** .310** .204** .255** .410** .419** .407** 

Q7_1 .406** .288** .318** .377** .318** .342** .335** 1 .664** .517** .517** .545** .588** .475** .551** .343** .378** .542** .667** .649** 

Q7_4 .367** .264** .303** .376** .340** .361** .307** .664** 1 .566** .560** .556** .685** .512** .547** .370** .387** .613** .695** .680** 

Q6_1 .332** .207** .240** .304** .252** .440** .341** .517** .566** 1 .672** .655** .542** .488** .442** .287** .280** .522** .590** .585** 

Q6_2 .366** .161** .245** .302** .272** .459** .371** .517** .560** .672** 1 .675** .579** .486** .422** .294** .253** .515** .577** .570** 

Q6_14 .375** .195** .267** .335** .251** .431** .330** .545** .556** .655** .675** 1 .585** .509** .463** .302** .291** .529** .592** .588** 

Q6_4 .381** .250** .285** .340** .249** .372** .383** .588** .685** .542** .579** .585** 1 .564** .487** .301** .308** .587** .654** .649** 

Q6_5 .291** .205** .221** .294** .261** .322** .301** .475** .512** .488** .486** .509** .564** 1 .462** .339** .334** .429** .533** .525** 

Q6_6 .327** .284** .277** .327** .308** .318** .310** .551** .547** .442** .422** .463** .487** .462** 1 .562** .575** .445** .548** .562** 

Q6_7 .237** .271** .160** .304** .269** .232** .204** .343** .370** .287** .294** .302** .301** .339** .562** 1 .516** .365** .404** .407** 

Q6_8 .266** .217** .180** .246** .190** .261** .255** .378** .387** .280** .253** .291** .308** .334** .575** .516** 1 .321** .347** .359** 

Q6_9 .320** .279** .309** .361** .326** .414** .410** .542** .613** .522** .515** .529** .587** .429** .445** .365** .321** 1 .764** .751** 

Q6_10 .377** .368** .311** .409** .380** .449** .419** .667** .695** .590** .577** .592** .654** .533** .548** .404** .347** .764** 1 .951** 

Q6_11 .378** .360** .321** .392** .372** .428** .407** .649** .680** .585** .570** .588** .649** .525** .562** .407** .359** .751** .951** 1 
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