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Thesis summary 

Mass spawning hatchery practices using small broodstock populations, in 

addition to the cannibalistic nature of some fish species, contribute to a reduction of 

genetic diversity from parent to offspring and throughout the juvenile grow-out 

stages.  This is of concern when establishing a selective breeding program for such 

species because the genetic diversity that is captured in the start-up and initial 

generations of the program is the basic ingredient for future genetic improvement.  

The aim of this thesis was to examine methods for capturing and conserving genetic 

diversity in mass spawning barramundi (Lates calcarifer), when constructing a base 

population for a long-term selective breeding program for the species.   

Involving 21 males and 12 females, the transfer of genetic diversity from 

broodstock to offspring in a large commercial mass spawn was investigated in 

chapter 2.  Previous studies had indicated that substantial amounts of genetic 

diversity were lost using mass spawning techniques, which are normal practice for 

the commercial barramundi industry.  A high participation rate of parents was 

detected among the large spawning group used in this study (n = 31).  Broodstock 

contributions were skewed and the contribution by individual dams and sires was as 

high as 48% and 16% respectively at one day post hatch (dph).  Barramundi progeny 

were monitored throughout the juvenile stages to investigate the conservation of 

genetic diversity, during the periods of larval metamorphosis and size grading (to 

inhibit cannibalism).   

A reduction in allelic richness (Ar) was identified from broodstock to offspring 

at 1 dph, (Ar was 3.94 among broodstock and 3.52 among offspring sampled).  

However, no further loss of Ar or genetic diversity was detected in the offspring from 
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1 to 90 dph, which included the period of metamorphosis, multiple size grading 

events and losses through size culling, mortalities and the sale of juveniles.  The 

effective population size (Ne) in the broodstock group ranged from 10.1 – 16.7, well 

below the broodstock census size of 33, whereas the rate of inbreeding was less than 

5%.  The results from the mass spawn provided reproductive and demographic 

parameters that could be used to inform the design of a base population for a 

barramundi selective breeding program.   

In chapter 3, 407 mature captive broodstock under current use in eight 

commercial barramundi hatcheries were pedigree tested using 17 microsatellite 

markers, to determine their suitability for inclusion into a base population.  Levels of 

genetic diversity within each hatchery and the degree of relatedness between 

individuals were estimated and compared.  Genetic diversity was moderate within 

each broodstock group (Ar ranged from 2.67 – 3.42) and heterozygosity ranged from 

0.453 – 0.537.  Relatedness estimates within hatcheries were generally low and 

ranged from -0.003 to 0.273.  Structure analysis revealed that captive Australian 

broodstock were broadly divided into two genetic stocks and suggested that hatchery 

individuals were either sourced from the two stocks or represented an admixture 

between them.  From the results, an assessment was made of the genetic suitability of 

existing domesticated broodstock as contributors to the base population.  

Chapter 4 sampled 1205 barramundi individuals from 48 wild sites covering a 

broad distribution range.  Levels of wild genetic diversity were estimated and 

compared to captive groups from chapter 3.  The wild collections were found to 

cover two broad ranging genetic stocks, an eastern and western stock and a central 

stock of genetic admixture (FST  = 0.076).  The majority of captive individuals were 

assigned to the eastern stock (59%), followed by the western stock (23%) and central 
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region of admixture (13%).  Levels of genetic diversity, as determined by allelic 

richness (Ar), were slightly lower in the captive groups (average Ar = 3.15) when 

compared to the wild populations (average Ar = 3.40).  Some genetic variation was 

unrepresented in the captive groups and it was concluded that the inclusion of wild 

individuals would enhance overall levels of genetic diversity in a base population for 

selective breeding.   

Finally, a computer simulation model was developed in chapter 5 and used to 

compare different options for sourcing genetic variation for inclusion into the base 

population.  It was assumed that the primary goal when establishing the base 

population would be to maximise genetic diversity.  Candidates for inclusion into the 

synthetic base populations were selected according to levels of genetic diversity and 

relatedness.  A range of options were tested, which included the use of candidates 

from both wild and captive populations.  There was a significant reduction in the 

level of Ar between broodstock and offspring (P < 0.05) for many of the options.  

The best options for retaining genetic diversity were from the base populations 

constructed from an even representation of wild samples from genetic stocks (WSAr, 

broodstock and offspring Ar was 5.21 and 4.75 respectively) and to select captive 

broodstock according to the lowest mean kinship levels (Cmkr, broodstock and 

offspring Ar was 5.05 and 4.69 respectively).  Five alternate base population sizes 

(Nc) were tested to estimate the effective population size (Ne) based on the variance 

of parental contribution and unequal sex ratio.  Ne was 76, 85, 98, 105 and 115 from 

an Nc of 150, 180, 200, 230 and 250 respectively, and the rate of inbreeding (∆F) 

ranged from 0.4 – 0.7%.  Under the model presented in this study, an Nc of more than 

213 broodstock individuals is required to achieve Ne > 100 and ∆F < 0.5%.  The 

results suggested that a mixture of both wild and captive barramundi should be 
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included in the base population at the commencement of a selective breeding 

program for barramundi.   

This thesis investigated the effects of hatchery practices, such as mass 

spawning and size grading on the conservation of genetic diversity.  In addition, 

options for selecting candidates to compose a founding population were explored, 

and recommendations made to promote the longevity and impact of a selective 

breeding program for barramundi.  The Australian industry has on hand a large 

number of mature captive broodstock that would be suitable for inclusion into a base 

population for barramundi selective breeding.  However, it would be beneficial to 

include a selection of wild individuals from regions of high genetic diversity to 

strengthen the fitness of a base population at the commencement of a selective 

breeding program. 
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Summary of chapters 

This thesis is presented as a series of manuscripts.  Chapter 2 has been published, 

chapter 3 is under review and chapters 4 and 5 are manuscripts in preparation for 

publication.  

Chapter 2 publication:   

Broodstock contribution after mass spawning and size grading in barramundi (Lates 

calcarifer, Bloch). 

Loughnan, S.R., Domingos, J.A., Smith-Keune, C., Forrester, J.P., Jerry, D.R., 

Beheregaray, L.B., Robinson, N.A.  Aquaculture 2013, 404–405, 139–149. 

Barramundi is naturally a mass spawning species, which can be induced to 

spawn in captivity under conditions that attempt to replicate the natural environment.  

Due to the high fecundity of females and the inclusion of numerous adults into a 

spawning group, the production of large quantities of larvae can be high.  Relatively 

few breeders have the potential to supply a large proportion of the grow-out industry.  

However, the main complications identified by previous studies involving captive 

mass spawning barramundi, were the low participation rates for particular broodstock 

and highly skewed levels of parental contribution across all broodstock.  With a 

limited number of contributors, inbreeding rates can be high and genetic diversity 

can be lost within offspring cohorts, which can complicate the selection of unrelated 

broodstock candidates for the next generation of breeders.  Typically, small 

broodstock groups of 1 – 2 females and 3 – 5 males are constructed, not only due to 

high fecundity but space requirements and the costs of maintaining numerous adult 

barramundi can be high.  In this study, a large mass spawn (12 females and 21 males) 
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not previously applied on this scale was carried out to investigate the level of 

parental contribution from a large mass spawning group, and the number of parent 

pair relationships that could be detected within the offspring.  The offspring were 

sampled at regular intervals during grow-out, which provided the opportunity to 

investigate the conservation of genetic diversity throughout the period of size grading 

and culling for the avoidance of cannibalism.  Previous studies have reported on a 

loss of genetic diversity by size grading, however, no study has yet monitored the 

maintenance of genetic diversity throughout the entire cannibalistic stage of 

juveniles.  The major findings from this chapter include a high participation rate of 

both male and female broodstock and the subsequent production of a large number of 

parent pair combinations or families.  Despite a high rate of participation, 

contribution levels were unequal and there was a high variance in family sizes.  In 

addition, there was a slight loss of genetic diversity from broodstock to offspring but 

throughout the period of size grading and culling, no further loss of genetic diversity 

was detected.  The results suggest that a mass spawning group of at least 30 

barramundi individuals is required to achieve a high participation rate of breeders 

and to limit the loss of genetic variation transferred to the offspring. 
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Chapter 3 in review:   

Genetic diversity and relatedness estimates for captive barramundi (Lates calcarifer) 

broodstock populations, informs efforts to form a base population for selective 

breeding.   

Loughnan, S.R., Smith-Keune, C., Jerry, D.R., Beheregaray, L.B., Robinson, N.A.  

Journal Aquaculture. 

The Australian barramundi industry has on hand a large number of mature 

broodstock that are currently supplying the grow-out market, however, before 

selective breeding programs can begin, it is important to assess the levels of genetic 

diversity and relatedness of current captive broodstock populations.  This has not yet 

been assessed for Australian captive stocks, nor has the application of such 

information been applied to establishing a base population for selective breeding.  

Due to the implications of mass spawning investigated in chapter 2, it is also unclear 

how this has impacted on genetic diversity and relatedness levels across the captive 

industry.  To address these issues, microsatellite DNA markers were utilised to 

genotype barramundi broodstock from eight major Australian commercial hatcheries.  

Population structure analysis indicated that captive Australian broodstock were 

broadly divided into two genetic population groups, genetic diversity levels were 

moderate and a level of relatedness was detected in each broodstock group.  The 

estimates of genetic diversity and relatedness derived from this study suggest that the 

Australian barramundi industry has on hand suitable broodstock candidates for the 

development of a base population for selective breeding from current captive stocks.  

Although, sourcing additional broodstock from wild regions of high genetic diversity 

could enhance the fitness of current captive stocks further.  The results are discussed 
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with regard to broodstock management and the development of a base population for 

selective breeding using existing Australian broodstock. 

Chapter 4 to be submitted:   

Assignment of captive barramundi (Lates calcarifer) broodstock to wild Australian 

stocks guides captive base population recruitment for selective breeding.   

Loughnan, S.R., Smith-Keune, C., Jerry, D.R., Beheregaray, L.B., Robinson, N.A.  

Journal Aquaculture. 

The quality of captive barramundi founder stocks can be enhanced and fitness 

maintained by including wild individuals from genetically diverse stocks at the 

commencement of a selective breeding program.  Identifying which wild stocks to 

target can be aided with assignment tests, which can clarify the wild genetic origins 

of captive individuals and determine the degree of wild genetic diversity not 

currently represented in captive stocks.  In chapter 3, levels of relatedness and 

genetic diversity were estimated for eight captive broodstock groups under current 

production, and in this chapter the individuals within each of these groups were 

assigned to their wild ancestral origins.  Levels of genetic diversity and population 

structure were determined for wild barramundi samples from 48 sites with 16 

polymorphic microsatellite loci.  Two wild genetic stocks and a region of genetic 

admixture were detected and levels of genetic diversity were slightly higher in the 

wild sample collections than the captive groups.  Upon developing a base population 

for the selective breeding of barramundi, wild locations demonstrating high levels of 

genetic diversity identified in this study should be accessed to gather broodstock 

candidates.  Ideally, an even number of broodstock should be sourced from each of 
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the three wild genetic stocks, to lower the level of relatedness between individuals 

and to gather a broad range of genetic diversity for the founding population. 

Chapter 5 to be submitted:   

Comparison of the use of different source stocks for establishing base populations for 

selective breeding of barramundi (Lates calcarifer).   

Loughnan, S.R., Smith-Keune, C., Jerry, D.R., Beheregaray, L.B., Robinson, N.A.  

Journal Aquaculture Research. 

To determine the most appropriate broodstock candidates to use when 

establishing a base population for barramundi selective breeding, a computer 

simulation model to predict the maintenance of genetic diversity at 16 microsatellite 

loci was developed.  There are various methods for selecting broodstock candidates 

for inclusion into a base population, such as selecting according to kinship levels 

between individuals (mkr) or choosing individuals from wild regions demonstrating 

high levels of genetic diversity.  Both of these methods were tested in the simulation 

model.  Synthetic base populations were developed from the observed genotypes of 

captive broodstock from eight hatcheries (accessed from chapter 3) and the 

genotypes from 48 wild sites were utilised from chapter 4.  In addition, chapter 2 

provided parental contribution probabilities, which were used to select male and 

female parents at the commencement of the simulation, to mimic the skewness of 

parental contribution that can occur in barramundi mass spawning.  Overall, this 

chapter incorporated the findings of the previous studies and utilised the results to 

recommend the best method for selecting a base population.  Under each option there 

was a loss of genetic diversity from each broodstock group to offspring, although the 

highest level of genetic diversity was maintained when selecting broodstock 
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according to low mean kinship values (mkr).  The results suggest that a base 

population of at least 213 individuals split into five spawning tanks of an equal sex 

ratio, will provide a Ne of 100 and ∆F of 0.2%.  In addition, wild broodstock should 

be sourced from regions of high genetic diversity and combined with current captive 

broodstock that have been selected according to the lowest mkr values.  This will 

help to maintain founder genetic diversity and heterozygosity levels in subsequent 

generations. 

 

 


