

Engineering Thesis Project

Smart Two Wheels Balancing Robot

Academic Supervisor: Dr Nasser Asgari

Student Name: Hasan Alshahrani

Student ID: 2207449

Monday, 29 May 2020

Submitted to the College of Science and Engineering in partial fulfilment of the requirements for

the degree of Master of Engineering (Electronics) at Flinders University-Adelaide Australia.

https://flo.flinders.edu.au/course/view.php?id=59201

ii | P a g e

Certificate of Originality

I certify that this work does not incorporate without acknowledgement any material

previously submitted for a degree or diploma in any university and that to the best of my

knowledge and belief, it does not contain any material previously published or written by another

person except where due reference is made in the text.

Signature:

Hasan Nasir Alshahrani

Monday, 29 May 2020

iii | P a g e

Acknowledgements

I am thankful to those with whom I have had the pleasure to collaborate with in this project.

Every one of the individuals from my Dissertation Committee has accorded me with broad

personal, as well as professional guidance, and imparted me with both scientific research and life

in general. I might particularly want to express gratitude toward Dr. Nasser Asgari, my supervisor

and Topic Coordinator. I will never forget his support. As the college Engineering Services Team,

they have shown me beyond what I would ever give him recognition for here. Leading by example,

they have demonstrated to me what a good engineer should be.

Also, I would like to extend my sincere gratitude to my friends and family for their endless

support for this project. Special thanks to my parents; for their guidance and adoration in whatever

I pursue and for being my ultimate role model.

iv | P a g e

Abstract

This project is about a smart two wheels balancing robot that has the capability of self-

balancing and can move from one location to another. Three main goals were identified for this

project, i.e., balancing the robot using the PID algorithm, making the robot move while

maintaining the balance using the RC transmitter and receiver, and autonomously making it

navigate using GPS, compass, wheel encoders, and other sensors associated with Mission Planner

software. For the achievement of these goals, an extensive literature review was performed to

understand the concept and working of self-balancing robots. By utilising the available literature,

it was determined that the inverted pendulum theory and control theory must be adopted for the

design and development of the smart two wheels balancing robot system.

By using the theory, this robot system was developed with the ability to rotate its motor in

the direction of the tilt. A cascaded PID algorithm was successfully developed to control the

heading angle, pitch angle, and wheel velocity of the robot, which allows the robot to perform

balancing and autonomous navigation tasks. This system is programmed to rotate the motor and

wheels in the direction of the tilt of the robot's body, in both forward and backward directions. The

motors of the robot are programmed to keep on rotating until the body of the robot reaches its set-

point angle, which is 0°, i.e., the upright position of the robot. A simulation using Matlab/ Simulink

is used to verify the model and tune the constant used for the PID algorithm. Two programming

environments are used to program the ArduPilot Mega (APM 2.8) microcontroller and Arduino

Pro Mini microcontroller, these are; ArduPilot-Arduino and Arduino IDE respectively.

Additionally, Mission Planner software is used to control the robot in autonomous navigation.

v | P a g e

Contents

Certificate of Originality .. ii

Acknowledgements .. iii

Abstract ... iv

List of Figures ... vi

List of Equations ... vii

List of Tables .. viii

Chapter 1: Introduction ... 1

Chapter 2: Literature Review .. 4

Chapter 3: Theoretical Methodology .. 11

3.1 Mathematical Model Formulation .. 13

3.1.1 DC Motor Model ... 13

3.1.2 Wheel Model ... 15

3.1.3 Pendulum/Body Model ... 16

3.2 PID Balancing Algorithm ... 18

3.3 Making the Robot Move ... 20

3.4 Navigating the Robot .. 22

Chapter 4: Results ... 24

4.1 Structure of the Robot ... 24

4.2 Matlab / Simulink Simulation ... 27

4.2.1 Simulation Setup ... 27

4.2.2 Simulation Result and Analysis .. 29

4.3 Practical Results .. 33

Chapter 5: Discussion ... 37

5.1 Concept of Self-Balancing Robot ... 37

5.2 Construction of the System ... 39

5.3 Components of the Robot ... 44

5.4 Analysis of Results ... 52

5.5 Limitations .. 55

Chapter 6: Conclusion .. 56

Appendices ... 57

Appendix A: Matlab Simulation Code.. 57

Appendix B: Main Code (APM) ... 58

Appendix C: Control System Code ... 70

Appendix D: Parameters in config.h File .. 75

Appendix E: Wheel Encoders Code (Arduino Pro Mini) ... 76

Appendix F: Schematic Circuit ... 78

References .. 79

vi | P a g e

List of Figures

Figure 1: DC motor circuit [30] .. 13

Figure 2: Robot’s wheels free body diagram [30] .. 15

Figure 3: Robot’s pendulum free body diagram [30].. 16

Figure 4: Control system block diagram ... 19

Figure 5: System symbols definition .. 19

Figure 6: The smart two wheels balancing robot movement .. 21

Figure 7: Robot in Mission Planner .. 23

Figure 8: Circuit diagram of the robot .. 24

Figure 9: Robot structure .. 25

Figure 10: Robot dimensions .. 25

Figure 11: 3D Upper part model ... 26

Figure 12: 3D Middle part model ... 26

Figure 13: 3D Lower part model... 26

Figure 14: Control block diagram in Simulink .. 28

Figure 15: Signal response of pitch angle with initial pitch angle 0.1 rad &pitch angle reference 0 rad ... 29

Figure 16: Signal response of the robot’s velocity with initial pitch angle 0.1 rad & pitch angle 0 rad 30

Figure 17: Signal response of the robot’s velocity with the initial pitch angle and linear velocity is zero,

and the robot’s velocity reference is 0.1 m/s .. 31

Figure 18: Signal response of pitch angle with an initial pitch angle and linear velocity at zero, and the

robot’s velocity reference is 0.1 m/s ... 31

Figure 19: Signal response of yaw angle with 1 rad set-point (Kp_ψ=0.57) .. 32

Figure 20: Signal response of yaw angle with 1 rad set-point (Kp_ψ=1.57) .. 32

Figure 21: Electronics board connection of the robot ... 34

Figure 22: Final assembly of the robot ... 34

Figure 23: Robot’s plan for autonomous navigation (waypoints) at Flinders University in Tonsley 35

Figure 24: Functioning of the robot .. 38

Figure 25: Flowchart of the PID controller in various modes .. 41

Figure 26: Flowchart of robot pose estimation ... 42

Figure 27: Flowchart of data logging .. 42

Figure 28: Flowchart of auxiliary task .. 43

Figure 29: Flowchart of waypoint navigation ... 43

Figure 30: ArduPilot Mega (APM) Board .. 45

Figure 31: Arduino Pro Mini 328-microcontroller ... 45

Figure 32: Telemetry radio kit .. 46

Figure 33: RC Transmitter & Receiver ... 47

Figure 34: uBlox GPS model .. 47

Figure 35: Ardumoto motor driver shield ... 48

Figure 36: DC motor ... 49

Figure 37: Theoretical signal of the quadrature encoder .. 50

Figure 38: Osciscope signal of the quadrature encoder[70] .. 50

Figure 39: Pololu robot wheel ... 51

file:///C:/Users/tms-l/Desktop/Thesis%20Alsh0584.docx%23_Toc39792002
file:///C:/Users/tms-l/Desktop/Thesis%20Alsh0584.docx%23_Toc39792003
file:///C:/Users/tms-l/Desktop/Thesis%20Alsh0584.docx%23_Toc39792004
file:///C:/Users/tms-l/Desktop/Thesis%20Alsh0584.docx%23_Toc39792005

vii | P a g e

List of Equations

Equation 1: Kirchoff equation of DC motor ... 14

Equation 2: Total torque equation based on electrical current .. 14

Equation 3: Total torque equation based on voltage difference .. 14

Equation 4: Back EMF equation of DC motor ... 14

Equation 5: Total torque equation (substituting moment inertia to the equation) 14

Equation 6: Total torque equation (substituting back EMF to the equation) ... 14

Equation 7: Newton equation of the left wheel ... 15

Equation 8: Newton equation of the right wheel .. 15

Equation 9: Adding Newton equation of the left and right wheel .. 15

Equation 10: Equation of body’s angular movement .. 16

Equation 11: Equation of body’s linear movement... 16

Equation 12: Equation related to heading angle ... 16

Equation 13: Linearization of Equation 10 ... 16

Equation 14: Linearization of Equation 11 ... 17

Equation 15: State-space matrix related to the state variables .. 17

Equation 16: State-space matrix related to the output .. 17

Equation 17: Basic of PID formula ... 18

Equation 18: Formula for calculating the input control of pitch angle ... 20

Equation 19: Formula for calculating the input control of wheel linear velocity 20

Equation 20: Formula for calculating the input control of heading angle .. 20

Equation 21: Formula for calculating the input control of left wheel .. 20

Equation 22: Formula for calculating the input control of right wheel ... 20

Equation 23: Moment inertia of wheel ... 29

Equation 24: Moment inertia of the body in pitch direction ... 29

Equation 25: Moment inertia of the body in yaw direction .. 29

Equation 26: Proportional term ... 54

Equation 27: Differential term .. 54

Equation 28: Integral term .. 54

Equation 29: Output of the motors’ PWM .. 54

viii | P a g e

List of Tables

Table 1: Parameters according to the system design .. 28

Table 2: Pin connection specifications for the Arduino Pro Mini .. 46

Table 3: Pin connection specifications for the Ardumoto motor driver shield ... 48

Table 4: Specification of the DC motor .. 49

Table 5: Encoder wire functions ... 50

Table 6: Project components cost ... 52

1 | P a g e

Chapter 1: Introduction

This project involves a smart two-wheeled balancing robot, which has the ability of self-

balancing along with autonomous navigation. The motor is programmed to counteract the robot’s

tilt or falling motion to ensure that the robot maintains its balance. The operation mainly contains

correcting elements or actions and feedback. The smart two wheels balancing robot is based on

the concept of an inverted pendulum. Balancing is better when the centre of mass is higher in

comparison with the robot’s wheel axes. The higher mass centre means a greater moment of inertia

that corresponds to lowered angular acceleration and slower fall (Ghani et al., 2011). With the

consideration of control theory, it is essential to keep some variables, in this case, steady, i.e., the

attitude and velocity of the robot, with the use of a unique controller known as the Proportional

Integral Deviation (PID).

This project aims at providing valuable information regarding the smart two wheels

balancing robot project backed by relevant evidence sourced from various online articles, journal

articles, and research papers. While performing the literature review, the referenced research

papers and articles have evidence-based information about the working and designing of the smart

two wheels balancing robot. One of the primary objectives of this report is to provide sufficient

information and data on the various ways through which the robot can be designed (Wu et al.,

2011). This project has three main goals:

I. Making the robot balanced using the PID algorithm.

II. Making the robot move while balancing using the RC transmitter and receiver.

III. Making the robot navigate with the help of GPS, compass, and wheel encoders associated

with Mission Planner software.

Another key aim of the project is to develop a nontraditional robot that can navigate quickly

through various terrains, obstacles, change the direction instantly in place, and navigate efficiently

in narrow places in which robots with +3 wheels cannot perform successfully.

In theory, the inverted pendulum two wheels self-balancing robot is naturally unstable.

However, a larger moment of inertia is created due to the higher centre of gravity, which reduces

the rate at which the robot falls (Mahler & Haase, 2013). This slow fall can be leveraged by the

continual movement of the wheels of the robot in the direction in which it falls to keep the balance.

2 | P a g e

The robot will be programmed in such a way that if the body of the robot leans forward, then the

wheels of the robot will roll forward to counteract the fall (Azimi & Koofiger, 2013). For balance

control, a PID loop is integrated into the software. In this PID loop, the proportional parameter

takes the error of the angle and sends it to the motor to keep the wheels of the robot rolling towards

the fall direction. The integral parameter of the PID takes the total error of all the angles, which

helps in cancelling out the issues of the centre of gravity (Sadeghian & Masoule, 2016).

Furthermore, the derivate parameter of the PID loop is critical as, without it, the acceleration of

the robot cannot be controlled.

The movement of the smart two wheels balancing robot is different from ordinary robots.

The basic robot simply leans in the direction of the movement. This might work for a short time,

but the robot accelerates quickly and eventually falls. If it tries to get back to the correct position,

the forward motion of the robot will stop (Peng et al., 2012). Instead, the robot has to move forward

vertically while balancing.

Another critical component of the robot is its ability to navigate. To make a robot navigate, it is

crucial to know precisely the latest position of the robot and where it is headed (Sun et al., 2015).

Using GPS is a handy option, but it is only accurate to a few metres. To attain a fair accuracy down

to the centimetre scale, more improved technology is needed. Wheel encoders are a better choice

for the smart two wheels balancing robot. Wheel encoders allow close to fair accuracy in

millimetres and are considered an excellent complement to the GPS (Warren et al.,2011).

Furthermore, the Arduino Pro Mini microcontroller will be used to read the pulses per second sent

by encoders. The data is relayed towards the APM microcontroller through the I2C interface. The

rest of the robot’s controlling software will include the control software containing the waypoint

navigation, which is the simplified and modified model of the ArduCopter that was the open-

source drone project. Additionally, the robot is controlled for autonomous navigations using

Mission Planner software. This project is completed in seven stages; these are:

I. The first stage is to search and gather all the needed components for the robot, i.e. 2.8

APM microcontroller, 328 Arduino Pro Mini microcontroller board, telemetry radios,

R/C transmitter and receiver, GPS model, compass model, motor driver shield,

encoders, motors, and wheels.

3 | P a g e

II. The second stage is the design and structure of the robot, including 3D printing parts.

III. The third stage is the connection of the electronics, connecting the APM, Arduino Pro

Mini, motor driver shield, and GPS module along with the telemetry radio for the

autonomous operation. For controlling the robot manually, the R/C receiver is

connected (Warren et al.,2011). Finally, the electronics circuit of the robot will be

connected to its motors.

IV. The fourth stage is the final assembly of the robot in which all the three main

components of the robot, i.e., the electronics and motors after the connection, are

integrated into the robot body, and the wheels are attached to the robot.

V. The fifth stage is the simulation using Matlab/Simulink to ensure that the robot is

stabilisable or controllable with some parameters that need to be tuned.

VI. The sixth stage is programming the robot using ArduPilot-Arduino software to program

APM and Arduino IDE software to program the Arduino Pro Mini microcontroller.

VII. The final stage of the project is testing the robot to ensure that the system works as

expected and solving any issues encountered in the working behavior of the robot.

4 | P a g e

Chapter 2: Literature Review

The two wheels balancing mobile robots have been an active field of study as they provide

a general mechanical design with higher manoeuvrability. In this field, different developments

have been made in the method of ensuring more stability and autonomous navigation of the robot

from one place to another. According to Romlay, Albert, and Chris (2019), the nonlinear

controller, linear controller, along with self-adapting controller all contribute in effective control

of the two wheels balancing robot systems. Mobile robots have the capability of performing

sophisticated tasks of carrying loads and avoiding obstacles on their own. That is why the

experiments and tests are done on robots focusing on the desired speed, setting trajectory, obstacle

avoidance, balancing, and achievement of the desired rates (Romlay, et al., 2019). However, it is

essential to point out the fact that it is tough to compare the controller system of the robot entirely

as a testing subject along with the requirements of every research because they are different. That

is why the more direct objective and comparison of a mobile robot is demonstrated for really

evaluating the effectiveness and robustness of the control method in future research. The research

of Romlay et al. (2019), presents controller methods for self-balancing two-wheeled robots in the

nonlinear controller, linear controller, along with the adapting an algorithm (self-learning) theme.

Experiments that were performed in this research were based on evaluating the robot system in

their speed, trajectory, acceleration, interactions to their surrounding area, and avoidance of

obstacles.

In recent years, the research regarding the two wheels balancing robots has gained

momentum in a wide variety of robotics research and development centres around the world. Much

of this traction is due to the natural unstable dynamics of these robotic systems (Ghani et al., 2011).

As the two wheels balancing robot requires an adequate controller for maintaining itself in the

upright position without the requirement of any external force. Thus, it is crucial to develop two

wheels balancing robot with an excellent platform and explore the various controllers’ efficiency

in the control-based system on an inverted pendulum model. Currently, different controllers are

being implemented upon the two wheels balancing robots like, for example, the controller of pole

placement, quadratic linear regulator, the fuzzy controller logic, and the PID controller. These

robots can be categorised by their ability to balance on their own two wheels and spin at the spot

(Juang & Lurrr, 2013). Because of the result of the added manoeuvrability, easy navigation is a

5 | P a g e

possibility for these robots on different terrains. Also, they can make sharp turns, traverse curbs,

and small steps and have the ability to carry loads as well.

Furthermore, the two wheels balancing robots have a small footprint as compared to the

three, four, or five wheels robots, which enables them to move around the corridors and the tight

corners much more quickly. These capabilities of two wheels balancing robots have the potential

of solving many challenges in the robotics industry and the society in general (Miasa et al., 2010).

As a result of its diversity in applications, this robot shows that it can be used as a human transport

machine like the hoverboard products. The models like iBot, Pegasus, and Segway are an example

of a design of two wheels balancing robot that can be used as the human transport machine (Miasa,

et al., 2010). Additionally, the motorised wheelchair systems also utilise this technology by

providing the operator of the wheelchair system with more excellent manoeuvrability and

accessibility to places that are difficult to reach for disabled persons.

The two wheels balancing robot’s design and functionality are quite like an inverted

pendulum. With the two wheels balancing robot case, the weight of the robot instead of being on

its bottom surface is placed on the top of the robot, and it is ensured that the robot balances that

weight while it is moving to ensure that it does not fall (Alarfaj & Kantor, 2011). This is based on

the control principle, and this is the simple principle that has been used for several years (Alarfaj

& Kantor, 2011). The control principle mainly means balancing an object to ensure the equilibrium

state or prevent the object from falling, for example, balancing a stick on one’s finger or balancing

a rotating football on one’s finger. This same concept can be used in the two wheels balancing

robot systems by ensuring that the robot moves in the direction where it’s top is falling. These

actions allow the robot to keep centre of mass of its body directly above its centre of gravity or the

base to bring its top back into an equilibrium position (Yau et al., 2009). The two wheels balancing

robot is freefall system because these robots are an unstable system with two wheels, meaning that

the robot might fall either in a forward or backward direction without the influence of any internal

or external force. This simple logic, if the robot is not balanced the motors of the robot has to move

in the direction of the falling course to keep the top in an equilibrium position (Unluturk et al.,

2013). Therefore, knowing about the direction in which the robot has to move, one has to simply

activate the motors of the robot to balance the robot.

6 | P a g e

The two-wheeled robots have a significant advantage in comparison with the robots

(humanoid type) because two wheels robots are much quicker and have the capability of changing

their direction much more quickly while moving. Moreover, it is making them helpful in different

real-world applications. In the category of wheeled robots, the two wheels balancing robots, i.e.,

Ninebot and Segway, are becoming more and more popular and are being used as patrol

transporters or commuting. Additionally, the self-balancing robots like QB Anybots are now in

use as the robot service platform (Chan et al., 2013). Due to their rising popularity, self-balancing

advanced robots are developed now for real-world applications. Golem Krang robot was

established in Georgia technology institute, which can be taken as an example of two wheels

balancing robot system. The base of the robot is similar to the general two wheels robot, but the

only difference is that this robot has anthropomorphic arms. The two wheels of a robot are mainly

utilised for balancing the robot's robotic arms and body that are fixed on its upper body, and it is

primarily designed for performing tasks like moving objects or obstacles. Another example of two

wheels balancing robot is the Ballbot, which was designed at the University named Carnegie

Mellon (Thao et al., 2010). The Ballbot robot system was designed in a way that it is capable of

balancing itself on a sphere, which allows the robot to switch orientation and movement easily.

Furthermore, another developer named KAIST has developed two wheels balancing robot

that has the upper body having 5 degrees of freedom; DOF. With the use of its upper body, the

robot has the capability of maintaining the dynamic balance basing on 0-moment point (An & Li,

2014). Different types and forms of balancing robots are being used at various applications and in

different environments, which is why it is vital to ensure the prevention of accidents. This

importance was heightened when the owner of Segway died while riding the two-wheeled Segway

robot in 2010 in an accidental fall. Moreover, the same accidents have occurred with two-wheeled

self-balancing robots, which illustrates why it is essential to ensure that the stability of the robot is

considered as much as possible in its design (Sun & Gan, 2010). There are more effective control

algorithms to improve the stability of the balancing robots, but they do not guarantee safety. The

self-balancing part of the robot is critical in its design because it has the role of maintaining the

balance of the robot while it is moving through various terrains. The robot maintains the balance

using movements of the body and the wheels. The robot is driven with the help of two actuators

that consists of the DC motor along with the belt/pulley mechanism (Lee & Jung, 2012). The DC

motors that are installed in the robots are Amp flow (A28-150) DC motors that are operated at

7 | P a g e

approximately 24V and have around 3 HP (i.e., 2.2 kilowatts) power. This motor has the maximum

speed at approximately 6100 rpm, along with the maximum torque rate at 13.9 Nm. To increase

the actuator torque, the belt/pulley mechanism can be used. It is vital to ensure that the reduction

ratio is at 10:1 approximately. Due to the pulley’s limited size, the two-belt/pulley mechanisms

are connected serially (Lee et al., 2013). This means that the single belt/pulley mechanism’s

reduction ratio is chosen to be approximately 3.14:1 (i.e., 44:14), along with the reduction ratio

final at 9.88:1 (i.e., 442:142). Furthermore, each motor of the robot has the rotatory encoder at 1000

ppr for measuring the angle.

To measure the tilt angle along with the robot’s angular velocity, the Inertial Measurement

Unit (IMU) is made. IMU mainly has the inclinometer (M1, DAS) along with the gyroscope (CRS

03-02, sensing Silicon systems). Although the inclinometer has the capability of accurately

measuring the tilt angle of the robot's body, it is incapable of measuring the accurate angle at the

first rotation due to the centrifugal force. The gyroscope in two wheels balancing robot is used in

measuring the angular velocity of the body of the robot to help in estimating the angle of the body

with the integration of the angular velocity. The drift might happen because of the error

accumulation at a steady-state (Su et al., 2010). For compensating the limitations of two sensors,

complementary filters are applied. The additional filters have the lower pass filter for the

inclinometer along with the higher pass filter for the gyroscope. Both screens cutting-off

frequencies are determined experimentally. The Control Moment Gyroscope (CMG) module can

be used in two wheels balancing robots, and this is placed on a balancing robot. This module

mainly consists of two CMG's, where each CMG has approximately two actuators. One of the

actuators is responsible for rotating the flywheel, and the other actuator is responsible for turning

the gimbal where the wheel is present (Almeshal et al., 2013). CMG creates the torque in the

direction, which is perpendicular to the rotational axes of gimbal and flywheel.

Torque magnitude is the product of angular velocity at momentum and gimbal of the

flywheel. So as to generate enough amount of torque, the vital thing is to have a more significant

moment of inertia and the quicker flywheel speed. For assuring that the CMG torque is accurate,

two flywheels are required to be rotated at a constant rate. Every flywheel is, for this reason, is

integrated with the 270 Watts DC motor (MABUCHI, RS-775 wc) along with the rotatory encoder

for controlling rotation. In the CMG, the gimbal motor used does not require high speed as it

8 | P a g e

requires just a sufficient amount of torque. That is why the DYNAMIXELMX-106T from robots

can be selected (Yim et al., 2018). When balancing two wheels robots get any sort of disturbance,

the stability of the robot is the main thing that is affected by the disorders that are then integrated

with the backward and forward directions. Security of the two wheels balancing robot must be

handled dominantly at a sagittal plane. The CMG module of the robot generates torque with a

concept of precession motion.

This is done when flywheel rotates, along with gimbal, which contains the wheel rotating

along the direction that is perpendicular towards flywheel rotational axis, i.e., y-axis, torque which

is generated alongside the course of a cross product in both vectors, i.e., the x-axis (Gonzalez et

al., 2017). With the utilisation of the CMG controller, the standard two wheels balancing robots

are capable of maintaining their balance while moving even if they face significant disturbances.

For maintaining the stability of the robot against disorders, the robot moves the wheels and tilts

the body to ensure equilibrium. For safety, the robot must be in its location, or when the disturbance

happens, the CMG module of the robot is capable of generating the reaction torque, which

corresponds to interference. CMG module that is integrated into the two wheels balancing robot

operates gimbal motor with the utilisation of the PID controller, based on the feedback of

disturbance measured by an observer. The aim is the elimination of the impacts of trouble; the

desired disturbance Fr is settled at 0 (Chiu et al., 2011). The control gains of the robot can be

experimentally determined because the CMG controller uses observed disturbance with the

inclusion of each sensor noises. Preferable is to set D gain small as it can improve the sound of

sensors.

It is observed that the application of a CMG module improves the performance of the robot.

However, it is difficult to remove the effects of disturbances entirely. This is because the CMG

module generates an insufficient amount of torque based on its hardware specifications. However,

through simulation, there is a possibility of verifying the effects of an improved CMG module (Dai

et al., 2015). The two wheels balancing robots usually have to change their position to maintain

their balance when an external force is applied. This is not an issue for the robot if only the stability

of the system is considered. However, if the robot is moving in a narrow space, the movement,

which is caused by the disturbance, can cause a real issue (An & Li, 2014). To solve this issue, the

best option is to use the CMG module because, through experimentations, it is confirmed that the

9 | P a g e

CMG module is capable of generating a sufficient amount of torque for decreasing the effect of a

disturbance.

Furthermore, the CMG module is capable of distributing the burden of the wheel motors.

Although the CMG module reduces the movement and the tilt of the body of an experimental robot

when the disturbance is applied, the performance is not perfect (Gonzalez et al., 2017). Through

simulation, it is verified that the performance of the robot is improved by using the CMG module

that generates a higher amount of torque.

The two wheels balancing robot that uses a Proportional–Derivative (PD) fuzzy control

method can be designed and analysed in multivariable, higher-order, strong coupling, nonlinear

and unstable systems (Wu et al., 2012). The existing research that is present regarding the fuzzy

reasoning is divided into three different categories, i.e., the first is the fuzzy reasoning

methodology and its analysis, secondly, fuzzy reasoning logical foundation, and thirdly, the fuzzy

reasoning applications. Different fuzzy reasoning methods are proposed, mainly basing upon three

different ideas. The first idea is about the composition that leads towards the Zadeh Compositional

Rule of Inference (CRI) method, along with its variants (Lee & Jung, 2012). The second idea is

about similarity and analogy, and the third idea is about the interpolation analysis in fuzzy

reasoning methodologies, which are concerned with the different properties of interests like the

fuzzy rules interpretability. Moreover, the consistency of the latest fuzzy consequences with the

existing premises and the continuity of the fuzzy implications concerning the fuzzy relations and

premises. Furthermore, according to Wu et al. (2012), various implication operators, along with

the convections, can be adopted in the fuzzy reasoning methods that include an important class of

processes that are concerned with the suitability of the particular techniques of fuzzy reasoning for

the domain-specific applications.

Based on the system structure model, the researcher Wu, et al. (2012) constructed the

kinetic equation, incorporating the Newtonian mechanics and dynamics. After performing several

different simulation experiments, the researcher got the best Q and R, along with the state feedback

matrices. After that, the researcher designed the PD fuzzy controller at which the speed and

position of the robot were the inputs and angle rate along with the angle of the robot was controlled

through the PD controller (Romlay et al., 2019). The real-time control platform was developed for

two wheels balancing robot capable of effectively controlling the robot after some parameter

10 | P a g e

debugging. The results of the experiments indicate that PD fuzzy control algorithm is successful

in achieving the self-balancing control of the robot and is very useful in preventing the robot from

falling.

11 | P a g e

Chapter 3: Theoretical Methodology

The concept and the working of the smart two wheels balancing robot are based on the

inverted pendulum theory. To develop a capable and reliable control system for the robot, it is

critical to understand the parameters that are within a robot system (Parcito, 2016). The

presentation of those parameters is achieved through a mathematical model. The inverted

pendulum theory is more traditionally regarded as the cart and pole theory, and even though the

structure of the self-balancing robot does not compare directly with a cart and pole, similar

principles are applied as both follow the phenomenon of an inverted pendulum. Within this model,

wheels are represented by a cart, and the chassis of the robot serves as the pole (Prakash & Thomas,

2017). The equations are derived from Newton's second law of motion with consideration of

corrections that gravitational acceleration is factually the positive value as the frictional force

between the horizontal surface, and the wheel must be taken into the equation (Kankhunthod et

al., 2019). The friction coefficients are not considered in the project as this robot is expected to

traverse through various types of surfaces and terrains. If coefficients are considered for the

implementation and design of the control systems, then the circuitry, power consumption, and

additional sensors would have been needed for deriving these latest values while in operation

(Kongratana et al., 2012). The resources, time, and effort required for the creation of this capability

exceeds the benefits can be expected by including them.

Inherently, a self-balancing robot is unstable, and if it is not capable of self-balancing, it

will roll around its wheels’ rotational axis without any external control and will eventually fall.

However, with the consideration of this inverted pendulum theory, the robot can retain an upright

state if the motor driving occurs and the robot’s wheels move in the same direction of the fall.

These robots are based on a special electromechanical system as these robots are designed in such

a way that they have to self-balance on the pair of wheels while standing tall. Highly critical in

this robot system is the base of the robot on which it stands. If it is not stable or balanced, the robot

will tend to fall from its vertical axis; otherwise, it will stand tall. That is why the IMU, which

includes the gyroscope, accelerometer, and magnetometer is used for providing the PID controller

information about the angular position of the robot system’s base (Majczak & Wawrzynski, 2015).

A simulation to verify the model and tune the PID gains is conducted before implementing the

algorithm in the APM controller. Then, the algorithm of self-balancing is programmed and

12 | P a g e

integrated into the controller. The controller is used for driving the motors of the robot either in

the anticlockwise or clockwise directions for balancing the robot through the pulse width

modulation control signal. The robot must have the capability of working on any type of surface

based on the two motors that are constructed with one wheel for each.

The most important thing to understand is that the self-balancing robot should balance on the pair

of wheels that have the required amount of grip and provide a sufficient amount of friction to the

tires. To maintain its vertical axis, the robot has to do two things. It should measure the inclination

angle and control the robot's motors. It should either move forward or backward based on the

direction of the inclination angle. According to the inverted pendulum concept, the robot's body

has to maintain a 0° angle, and any deviation from this angle means that the robot is not in an

upright position or is unbalanced. For the measurement of the angle of the robot's body, two

sensors are used, i.e., a gyroscope and an accelerometer. The accelerometer mainly senses the

dynamic or static forces of acceleration, providing information about the linear velocity, and the

gyroscope measures the angular velocity of the robot (Warren et al.,2011). The outputs that are

provided by the sensors are mainly fused with the use of the complementary filter. However, it is

important to understand that the output from the sensors is taken as an input from the PID

algorithm, and the output from the motors is taken as the output by the PID algorithm. The main

reason for that is that the self-balancing robot works on the concept of action and reaction. The

motors of the robot move in the act of self-balancing only when there is a tilt in the robot's body

either in the backward or forward direction. The sensors of the robot measure the process output

that is subtracted by the PID algorithm from the reference set-point value for producing the error.

This error value is then fed to the PID, where this error is managed in three ways. After processing

the error in the PID algorithm, a control signal is produced by the controller. The signal PID is fed

in a process under control. The control signal mainly tries to move the process towards a pitch

angle set-point in the perpendicular direction by driving the motors of the robot in such a manner

that it ends up in the set-point angle.

This project generalises the effects of right and left wheels and integrates them at a single

combination term wheel. Since it helps in the simplification of the calculation, both wheels in this

robot work in unison to maintain stability (Azar et al., 2018). For the determination of the specific

requirements of forces (torques) for every individual wheel, the value of the wheels can be halved

13 | P a g e

for getting a single wheel approximate value. The concept is considered effective as surfaces and

terrains vary among the wheels in certain terrains (Jiang et al., 2016).

The primary purpose of adopting the inverted pendulum theory is to keep the wheels of this

robot beneath the centre of mass of the chassis. If the robot tilts forward to maintain stability and

balance, the wheels will move in the forward direction to return to beneath the mass of chassis

(Yuan et al., 2016). According to the inverted pendulum theory, if balance is not maintained, this

robot will fall over.

Before the hardware implementation, it is better to start with the simulation. The simulation

is conducted with the Matlab / Simulink software to ensure that the system is controllable. The

model or plant of the robot is needed so that it has to formulated to a state-space form, and it must

be incorporated with a closed-loop PID controller. The PID controller has three gains, such as 𝐾𝑝,

Ki, and 𝐾𝑑, that can be tuned using Matlab / Simulink according to the desired signal response.

The following sections represent the mathematical model formulation and the controller design.

3.1 Mathematical Model Formulation

In this section, the mathematical model of the robot is derived until the state-space with

matrix representation is obtained. The six-state variables used are denoted by x vector, which

contain the robot linear displacement (𝑥), robot linear velocity (�̇�), pitch angle displacement (𝜙),

pitch angular velocity (�̇�), yaw angle displacement (𝜓), and yaw angular velocity (𝜓). The control

input is the voltage applied to the DC motor of the left wheel (𝑉𝑎,𝐿) and right wheel (𝑉𝑎,𝑅). The

mathematical model is divided into the following three parts.

3.1.1 DC Motor Model

Figure 1: DC motor circuit [30]

14 | P a g e

By applying Kirchoff’s law, the electric circuit equation can be obtained, which is

represented in Equation 1:

𝑉𝑎 = 𝑅𝑖 + 𝐿 𝑑𝑖/𝑑𝑡 + 𝑉𝑒 Equation 1

𝑉𝑎 and 𝑉𝑒 are the voltage applied to DC motor and the back ElectroMotive Force (EMF)

voltage, respectively, while R is the resistance, and L is the inductance. The electrical current is

denoted by i with 𝜏𝑚 is the motor torque without load, and 𝜏𝑓 is the friction torque. To simplify

the model, the friction torque is neglected so that the total torque is represented in Equation 2 with

𝑘𝑚 being the motor torque constant. 𝑖𝑡𝑜𝑡𝑎𝑙 is the total current obtained from the voltage difference

divided by the equivalent resistance, so that the total torque can be represented as in Equation 3:

𝜏𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑚 = 𝑖𝑡𝑜𝑡𝑎𝑙𝑘𝑚 Equation 2

𝜏𝑡𝑜𝑡𝑎𝑙 =
𝑉𝑎 − 𝑉𝑒

𝑅
𝑘𝑚

Equation 3

The back EMF voltage is a linear function with motor angular velocity (𝜔), which is shown

in Equation 4, with 𝑘𝑒, being the back EMF constant:

𝑉𝑒 = 𝑘𝑒𝜔 Equation 4

By substituting Equation 4 to 3, Equation 5 and 6 are obtained with 𝐼𝑊 being the moment

inertia of the wheel:

𝜏𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑊 �̇� =
𝑉𝑎 − 𝑉𝑒

𝑅
𝑘𝑚

Equation 5

𝐼𝑊 �̇� =
𝑘𝑚

𝑅
𝑉𝑎 −

𝑘𝑚𝑘𝑒

𝑅
𝜔

Equation 6

15 | P a g e

3.1.2 Wheel Model

Figure 2: Robot’s wheels free body diagram [30]

Using Newton’s 2nd law of motion with Equation 6, the left and right wheel model equation

is represented in Equation 7 and 8, considering that 𝑥 = 𝜔 𝑟 with r is the radius of the wheel:

𝑀𝑊�̈� =
𝑘𝑚

𝑅𝑟
𝑉𝑎,𝐿 −

𝑘𝑚𝑘𝑒

𝑅𝑟2
�̇� −

𝐼𝑊
𝑟2

�̈� − 𝐻𝐿
Equation 7

𝑀𝑊�̈� =
𝑘𝑚

𝑅𝑟
𝑉𝑎,𝑅 −

𝑘𝑚𝑘𝑒

𝑅𝑟2
�̇� −

𝐼𝑊
𝑟2

�̈� − 𝐻𝑅
Equation 8

𝐻𝐿 and 𝐻𝑅 are the frictional force of the left and right wheel, respectively. By adding

Equation 7 and 8, results to:

2(𝑀𝑊 +
𝐼𝑊
𝑟2

)�̈� =
𝑘𝑚

𝑅𝑟
(𝑉𝑎,𝐿 + 𝑉𝑎,𝑅) −

2𝑘𝑚𝑘𝑒

𝑅𝑟2
�̇� − (𝐻𝐿 + 𝐻𝑅)

Equation 9

16 | P a g e

3.1.3 Pendulum/Body Model

Figure 3: Robot’s pendulum free body diagram [30]

The equations related to the angular and linear movement are represented in Equation 10

and 11:

(𝐼𝑃 + 𝑙2𝑀𝑃)�̈�𝑃 −
2𝑘𝑚𝑘𝑒

𝑅𝑟

̇
�̇� +

𝑘𝑚

𝑅
(𝑉𝑎,𝐿 + 𝑉𝑎,𝑅) + 𝑀𝑃𝑔𝑙 sin 𝜃𝑃 = −𝑀𝑃𝑙�̈� cos 𝜃𝑃

Equation 10

𝑘𝑚

𝑅𝑟
(𝑉𝑎,𝐿 + 𝑉𝑎,𝑅) = (2𝑀𝑊 +

2𝐼𝑊
𝑟2

+ 𝑀𝑃) �̈� +
2𝑘𝑚𝑘𝑒

𝑅𝑟
�̇� + 𝑀𝑃𝑙 �̈�𝑃 cos 𝜃𝑃 − 𝑀𝑃𝑙𝜃𝑃

2 cos 𝜃𝑃

Equation 11

The yaw/heading state equation is represented in Equation 12, in which the derivation can

be seen in (Asali et al., 2017).

�̈� =
𝑘𝑚𝑤

𝑅𝑟(𝐼𝜓 + (
𝐼𝑊
𝑟2 + 𝑀𝑊)𝑤2

(𝑉𝑎,𝐿 − 𝑉𝑎,𝑅)

Equation 12

To obtain the linear state-space matrix, Equation 10 and 11 should be linearised by

approximating cos 𝜃𝑃 = cos(𝜋 + 𝜙) ≈ −1 , sin 𝜃𝑃 = sin(𝜋 + 𝜙) ≈ −𝜙, and �̇�𝑃
2 ≈ 0. After the

linearisation process, Equation 10 and 11 become:

�̈� =
𝑀𝑃𝑙

(𝐼𝑃 + 𝑙2𝑀𝑃)
�̈� +

2𝑘𝑚𝑘𝑒

𝑅𝑟(𝐼𝑃 + 𝑙2𝑀𝑃)
�̇� +

𝑀𝑃𝑔𝑙

(𝐼𝑃 + 𝑙2𝑀𝑃)
𝜙

−
2𝑘𝑚

𝑅(𝐼𝑃 + 𝑙2𝑀𝑃)
(𝑉𝑎,𝐿 + 𝑉𝑎,𝑅)

Equation 13

17 | P a g e

�̈� =
𝑀𝑃𝑙

(
2𝐼𝑊
𝑟2 + 𝑀𝑃 + 2𝑀𝑊)

�̈� −
2𝑘𝑚𝑘𝑒

𝑅𝑟2 (
2𝐼𝑊
𝑟2 + 𝑀𝑃 + 2𝑀𝑊)

�̇�

+
2𝑘𝑚

𝑅 (
2𝐼𝑊
𝑟2 + 𝑀𝑃 + 2𝑀𝑊)

(𝑉𝑎,𝐿 + 𝑉𝑎,𝑅)

Equation 14

From equation 10, 11, 12, with 𝛽 =
2𝐼𝑊

𝑟2
+ 𝑀𝑃 + 2𝑀𝑊, and 𝛼 = 𝐼𝑃𝛽 + 𝑙2𝑀𝑃 (𝑀𝑊 +

𝐼𝑊

𝑟2
).

The state-space representation can be created, and it is shown in Equation 15 and 16 (Jamil et al.,

2014).

[

�̇�
�̈�
�̇�

�̈�

�̇�

�̈�]

=

[

0 1 0 0 0 0

0
2𝑘𝑚𝑘𝑒(𝑀𝑃𝑙𝑟 − 𝐼𝑃 − 𝑀𝑃𝑙2)

𝑅𝑟2𝛼

𝑀𝑃𝑔𝑙2

𝛼
0 0 0

0 0 0 1 0 0

0
2𝑘𝑚𝑘𝑒(𝑟𝛽 − 𝑀𝑃𝑙)

𝑅𝑟2𝛼

𝑀𝑃𝑔𝑙𝛽

𝛼
0 0 0

0 0 0 0 0 1
0 0 0 0 0 0]

[

𝑥
�̇�
𝜙

�̇�
𝜓

�̇�]

+

[

0 0
𝑘𝑚(𝐼𝑃 − 𝑀𝑃𝑙𝑟 + 𝑀𝑃𝑙2)

𝑅𝑟𝛼

𝑘𝑚(𝐼𝑃 − 𝑀𝑃𝑙𝑟 + 𝑀𝑃𝑙2)

𝑅𝑟𝛼
0 0

𝑘𝑚(−𝑟𝛽 + 𝑀𝑃𝑙)

𝑅𝑟𝛼

𝑘𝑚(−𝑟𝛽 + 𝑀𝑃𝑙)

𝑅𝑟𝛼
0 0

𝑘𝑚𝑤

𝑅𝑟(𝐼𝜓 + (
𝐼𝑊
𝑟2 + 𝑀𝑊)𝑤2

−
𝑘𝑚𝑤

𝑅𝑟(𝐼𝜓 + (
𝐼𝑊
𝑟2 + 𝑀𝑊)𝑤2

]

[
𝑉𝑎,𝐿

𝑉𝑎,𝑅
]

Equation 15

𝑦 = [
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

[

𝑥
�̇�
𝜙

�̇�
𝜓

�̇�]

Equation 16

18 | P a g e

3.2 PID Balancing Algorithm

Recently, a considerable amount of work has been done in the study of self-balancing

robots. With consideration of the inverted pendulum theory, the self-balancing concept starts with

balancing an inverted pendulum. In this project, the model of the robot is designed using the

integral, proportional, and derivate terms of the PID controller. A PID loop is integrated into the

software to provide the balance (Binugroho et al., 2016). The proportional term integrates the angle

error of this robot and delivers that scaled value at motors for keeping the wheels rolling in the

direction of the tilt. An integral term is used similarly, but it is the total of all angle errors recorded

over time. The derivative term is also critical because, without it, the acceleration of the robot

cannot be controlled (Pratama et al., 2016). The PID algorithm is considered as an adequate method

of making the control system. In the basic algorithm, error signals received are considered as an

input. The equation below is applied when an error signal is produced.

𝑈(𝑡) = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑑 ∗ 𝑑/𝐷𝑇(𝑒(𝑡)) + 𝐾𝑖 ∗ 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑒(𝑡)) Equation 17

With the consideration of the above equation, integral and derivative versions of an error

signal are calculated and multiplied with the respective constants and are added alongside the

constant 𝐾𝑝 and multiplied with (𝑒(𝑡)). The output of this calculation is then given to the actuator

that makes this system run (Ali & Aphiratsakun, 2016). The PID algorithm is divided into three

parts:

i. a proportional part that reduces time rise and reduces the error of steady-state.

ii. a derivative part that decreases the settling and overshoot time.

iii. an integral part that eliminates the error of steady-state and reduces the increased

time (Martins & Nunes, 2017).

Tuning is also part of the algorithm because a good control system has low rise time,

settling time, steady-state error, and peak overshoot (Dai et al., 2012). In this system, the variables

that must be controlled are the wheel velocity, the pitch angle, and the yaw angle. The wheel

velocity control is needed to control the robot to the desired velocity towards the goal destination.

The pitch angle control is very crucial as the robot must always be upright position. The yaw angle

control is important for the robot turning left or right according to the heading towards the goal

destination. Therefore, the system needs three PID controllers with three feedbacks to minimise

19 | P a g e

three errors. The block diagram of the system is shown in Figure 4. The system symbols are defined

as seen in Figure 5.

Figure 4: Control system block diagram

Figure 5: System symbols definition

The controllers are used to optimally reduce the error (𝑒(𝑡)) between the measurement

(𝑦(𝑡)) and the set-point reference (𝑟(𝑡)). The model needs two input control, 𝑢𝐿(𝑡) and 𝑢𝑅(𝑡),

which are the voltage applied to the DC motor of the left wheel and right wheel, respectively. The

system can simultaneously control the pitch angle and the velocity by adding the input control

𝑢𝜙(𝑡) and 𝑢�̇� (𝑡) as they have the same direction. To control the robot to track the yaw angle set-

point, intuitively, if the yaw error is positive, then the left wheel will go forward, and the right

20 | P a g e

wheel goes backward with the same magnitude. From the block diagram in Figure 4, system

equations to calculate the input controls are represented from Equation 18 to 22.

𝑢𝜙(𝑡) = 𝐾𝑝
𝜙
𝑒𝜙(𝑡) + 𝐾𝑖𝜙 ∫ 𝑒𝜙(𝜏)

𝜏

0

𝑑𝜏 + 𝐾𝑑𝜙

𝑑𝑒𝜙(𝑡)

𝑑𝑡
, 𝑒𝜙 = 𝑟𝜙 − 𝑦

𝜙

Equation 18

𝑢�̇�(𝑡) = 𝐾𝑝�̇�𝑒�̇�(𝑡) + 𝐾𝑖�̇� ∫ 𝑒�̇�(𝜏)
𝜏

0

𝑑𝜏, 𝑒�̇� = 𝑟�̇� − 𝑦�̇�

Equation 19

𝑢𝜓(𝑡) = 𝐾𝑝𝜓𝑒𝜓(𝑡) + 𝐾𝑖𝜓 ∫ 𝑒𝜓(𝜏)
𝜏

0

𝑑𝜏 + 𝐾𝑑𝜓

𝑑𝑒𝜓(𝑡)

𝑑𝑡
, 𝑒𝜓 = 𝑟𝜓 − 𝑦

𝜓

Equation 20

𝑢𝐿(𝑡) = 𝑢𝜙(𝑡) + 𝑢�̇�(𝑡) − 𝑢𝜓(𝑡) Equation 21

𝑢𝑅(𝑡) = 𝑢𝜙(𝑡) + 𝑢�̇�(𝑡) + 𝑢𝜓(𝑡) Equation 22

The PID controller is used to control the pitch and yaw angles, while only the Proportional

Integral (PI) controller is used to control the velocity of the robot. The most crucial constant is the

constant related to control the pitch angle because it sets the robot to balance. 𝐾𝑝𝜙 is the

proportional constant for pitch angle error, which takes the error of the angle and sends it to the

motors as a scaled value. 𝐾𝑑𝜙 is the derivative constant for pitch angle for controlling the rate of

error. In theory, the derivative constant is used for compensating overshoot and improve stability.

𝐾𝑖𝜙 helped to cancel out centre of gravity issues.

3.3 Making the Robot Move

The primary robot leans in the direction of the movement. This is workable for a short

period, but it falls over after constant acceleration, as shown in Figure 6 (A). If the robot tries

righting its position, the forward motion is stopped. Instead, the robot needs to move in the forward

direction while it is rolling vertically, as shown in Figure 6 (B). To make the robot move, the wheel

velocity needs to be controlled by minimising the error between the desired wheel velocity and the

measurement, as shown in Figure 4. The desired wheel velocity is defined by the distance between

the current robot position and the destination position. However, it is constrained to the pitch angle,

which must always be zero.

21 | P a g e

To achieve this goal, the wheels of the robot must rotate at an appropriate speed, and

sufficient power must be left to keep the robot upright and balanced. Then, the velocity of the

wheels is taken and is fed forward at the desired speed (Ruan & Li, 2014). It provides the robot

with the ability to correct any rapid changes in an angle like an external force trying to push the

robot over. The algorithm of this robot is developed by the observation of how people balance

themselves when they are pushed, especially while standing straight (Chhotary et al., 2016). For

example, a runner in a sprint race keeps running forward if unbalanced to keep his balance and

prevent himself from falling. The two extra inputs are added alongside the algorithm of balancing,

and the results are sent towards the motors, enabling the robot to gain stability, and move for a

longer distance. This algorithm also considers the inverted pendulum theory as well as the pole

and cart theory (Su et al., 2016). This method aims at ensuring that the robot maintains its balance

while moving from one point to another. To prevent the robot from falling, it is programmed in

such a way that its wheels move in the direction of the fall. For example, if the robot is falling

forward, the wheels move in the forward direction to maintain balance. Alternatively, if the robot

is falling backward, the wheels move backward to maintain the balance of the robot. There are two

navigation modes; automatic and manual. In automatic mode, the robot automatically follows the

waypoints based on GPS while self-balancing with zero pitch angle set-point without any RC

interruption. In manual mode, the RC transmitter and receiver are used for balancing the robot

when it is in motion.

Figure 6: The smart two wheels balancing robot movement

22 | P a g e

3.4 Navigating the Robot

An important goal in this project is to navigate the robot with the help of a GPS, compass,

and wheel encoders using Mission Planner software. To navigate this robot, it is essential to know

precisely where the robot is and where it is going, this means that the current location of the robot

and the destination of the robot has been known to ensure proper working of this system. GPS is

workable, but its accuracy is limited to a few meters. To ensure that this system works as expected,

far higher accuracy is required approximately down to the centimetre scale (Rahman et al., 2018).

Wheel encoders are used in this robot as they allow accuracy in millimetres and are perfect for the

GPS. In most similar systems, encoders are mostly located directly behind each motor. The

primary function of each wheel encoder is counting the number of times the motor has rotated

right or left. This system is very effective in robotics because it can be used in calculating the

distance a robot has covered, and its speed (Wang et al., 2016). Each wheel encoder consists of

two parts, the Hall Effect Sensor (that measures the strength of the magnetic field), and the Ring

Magnet (that looks like a metal washer attached with the motor shaft). When the motor of the robot

rotates the wheels, it also rotates the ring magnet. The Hall Effect Sensor, which is positioned near

the ring, detects the changes in the magnetic field as the ring rotates. This is how the sensors of

the robot count how many times the motor has rotated to calculate the speed and distance. The

motors that are sold by Pololu are integrated with 48 CPR quadrature encoder on the motor shaft,

and they can provide up to 1632.67 counts per revolution, which mainly work as the bicycle

computers, i.e., having little magnets that rotate past sensors, providing data regarding the bicycle

wheels speed (Acevedo & Alejo, 2014). Similar wheel encoders will be used in this robot, and

they will provide accurate information regarding the speed of the wheels.

Furthermore, the Arduino Pro Mini will be used to read the pulses per second sent by encoders.

The data is relayed towards the APM board through the I2C interface. As wheels’ diameter is

measured, the robot will know exactly how much and how fast it has moved (Pratama et al., 2015).

The robot will know its heading angle and will be able to plot its precise position in the 2D space

(Han et al., 2015). When available, the GPS of the robot is used for gently nudging this solution

overtime for ensuring that the wheel spillage, rough terrain, and other issues do not emerge and

move the robot off its course. The GPS value will correct the pose estimation calculated by the

wheel encoder if there is a significant distance error by using a certain threshold (Hoang et al.,

23 | P a g e

2014). If, in any case, the robot becomes stuck when in motion, the APM will know when the

wheels stop. The robot will try to reverse its direction and will keep trying again if it is not

maintaining its balance (Wardoyo et al., 2015). In this part of the project, Mission Planner software

is used to control the robot for autonomous navigation. Figure 7 shows the robot’s location

(Adelaide, Ascot Park) and data while controlling in Mission Planner.

Figure 7: Robot in Mission Planner

24 | P a g e

Chapter 4: Results

4.1 Structure of the Robot

After completion of the last design concepts of the robot, the primary circuit for the robot

was developed. Figure 8 illustrates the circuit diagram of the robot, including all component

connections. The developed PID algorithm was integrated into the system, robot balancing,

making the robot move, i.e., move while self-balancing manually with the RC transmitter and

receiver or autonomously using GPS and other on-board sensors to reach all of the desired

waypoints. Additionally, all components of the project are explained in depth in the discussion

chapter of this report.

Figure 8: Circuit diagram of the robot

25 | P a g e

Figure 9 illustrates the rough design of the final robot structure. The electronic board can

be inserted inside the main body along with the motors, wheels, and sensors. The RC receiver and

telemetry radio lie outside the robot’s body. The body is constructed in such a manner that it has

the capability of fully integrating the board and allows smooth connection among the three main

components of the robot, i.e., board, motors, and wheels.

Figure 9: Robot structure

Figure 10: Robot dimensions

26 | P a g e

Figure 10 shows all the dimensions of the robot's body from top to bottom. Taking the

dimensions of the robot before going ahead with the 3D modelling and design of the robot's body

was essential because it helped to ensure that each component of the robot fits perfectly and that

the robot's body is capable of integrating the board easily. After taking the accurate dimensions

required for the robot’s body, 3D physical models were printed. Figures 11, 12, and 13 represent

the 3D upper, middle, and lower parts of the robot.

Figure 11: 3D Upper part model

Figure 12: 3D Middle part model

Figure 13: 3D Lower part model

27 | P a g e

After printing the 3D parts of the robot, it can be seen that the final physical models

resemble the designs closely. Each part of the robot is designed to fit perfectly with the other parts.

After the insertion of the boards along with the motors in the robot, the body is closed, allowing

only space for the wheels to connect with the motors. The design of the robot is kept simple to

assure minimal complications in the integration and connection of all the components of the robot

with the main body. The reason for using plastic instead of any other material was to ensure that

the material of the body helps the robot in balancing and self-controlling because the material is

light and efficient. Plastic is much lighter than other materials that are usually used for building

robot body parts such as steel and aluminium. This ensures easy movement and higher speeds of

the robot.

4.2 Matlab / Simulink Simulation

Before experimenting on the robot, the simulation using Matlab and Simulink to verify the

model and tune the PID is mandatory. The following are the simulation setup and the analysis of

the simulation results.

4.2.1 Simulation Setup

According to the controller design in Figure 4, the block diagram in Simulink software is

created, as seen in Figure 14. The system needs to control three of six state variables to a certain

desired value, which are the wheel velocity, pitch angle, and yaw angle. In Simulink, the signal

response of all state variables can be shown, but it must modify the matrix C to get all state

variables as the outputs, i.e., C equal to 6x6 identity matrix. The saturation block is used to limit

the input control because the voltage that can be applied to the DC motor is constrained. The

linearised mathematical model is scripted in a Matlab function represented in Appendix A with

the parameters according to the mechanical and electronic design in Table 1. The voltage input to

the left and right DC motor is constrained to -12 to 12V.

28 | P a g e

Figure 14: Control block diagram in Simulink

Parameter Name Value Unit

Gravity constant (𝒈) 9.81 𝑚/𝑠2

The radius of a wheel (𝒓) 0.06 𝑚

Mass of wheel (𝑴𝑾) 0.15 𝑚

Mass of body (𝑴𝑷) 0.9 𝑚

Height of body (𝒉) 0.22 𝑚

Length to body’s centre of gravity (𝒍) 0.165 𝑚

Depth of body (𝒅) 0.05 𝑚

Wheel’s moment of inertia (𝑰𝑾) 2.7 × 10−4 𝑘𝑔 𝑚2

Body’s moment of inertia in pitch

direction (𝑰𝑷)

51 × 10−4 𝑘𝑔 𝑚2

Body’s moment of inertia in yaw

direction (𝑰𝝍)

17 × 10−4 𝑘𝑔 𝑚2

DC motor torque constant (𝒌𝒎) 0.1284 𝑁𝑚/𝐴

DC motor back EMF constant (𝒌𝒆) 0.3472 𝑉/(𝑟𝑎𝑑/𝑠)

DC motor equivalent resistance (𝑹) 2.7273 Ω

Table 1: Parameters according to the system design

29 | P a g e

Equation 23 to 25 are the formulas to calculate the moment inertia of the wheel, moment

inertia of the robot’s body in pitch, and yaw direction, respectively.

𝐼𝑊 =
1

2
𝑀𝑊𝑟2

Equation 23

𝐼𝑃 =
1

12
(ℎ2 + 𝑤2)

Equation 24

𝐼𝜓 =
1

12
(𝑑2 + 𝑤2)

Equation 25

4.2.2 Simulation Result and Analysis

In this section, some simulation scenarios are represented and explained as the following:

I. Testing the robot self-balancing

In the simulation, the signal response according to the robot’s balancing ability is

illustrated. The optimal PID constant is tuned, so it produces 𝐾𝑝𝜙=1201, 𝐾𝑖𝜙=10872, and

𝐾𝑑𝜙=31. The robot is tested with an initial pitch angle of 0.1 rad, and the pitch angle reference

is 0 rad, which is upright. Moreover, results are shown in Figures 15 and 16.

Figure 15: Signal response of pitch angle with an initial pitch angle 0.1 rad &pitch angle reference 0 rad

30 | P a g e

Figure 16: Signal response of the robot’s velocity with an initial pitch angle 0.1 rad & pitch angle 0 rad

From the graph in Figures 15 and 16, if there is a disturbance that makes the robot pitch

angle change to 0.1 rad, then it will be recovered for 0.8 secs with an overshoot of up to 80%.

Consequently, to maintain balance, the robot needs to go backward for 0.1 sec and go forward

for around 0.05 secs until the robot doesn’t move.

II. Testing the robot’s velocity control

The velocity control is needed when the robot is intended to go to a destination point while

the pitch angle must always be upright. Therefore, in this scenario, the robot’s velocity set-

point is set to 0.1 m/s, while the pitch angle set-point is set to zero. The results are illustrated

in Figures 17 and 18, where the system can track the desired velocity to 0.1 m/s, but it initially

goes reverse up to 0.07 m/s, which is 70% until it reaches the steady-state for around one

second. Another consequence is the pitch angle is slightly change around -0.01 rad, which is

shown in Figure 18. The used PI constants are 𝐾𝑝�̇� = 45 and 𝐾𝑖�̇� = 1236.

31 | P a g e

Figure 17: Signal response of the robot’s velocity with the initial pitch angle and linear velocity is zero, and the robot’s velocity
reference is 0.1 m/s

Figure 18: Signal response of pitch angle with an initial pitch angle and linear velocity at zero, and the robot’s velocity reference
is 0.1 m/s

III. Testing the robot’s yaw control

The yaw angle is easier to control; i.e., the PID constant is easy to tune because the yaw

direction doesn’t affect the balancing function. The yaw angle response with 1 rad set-point is

illustrated in Figures 19 and 20.

32 | P a g e

Figure 19: Signal response of yaw angle with 1 rad set-point (Kp_ψ=0.57)

The results in Figure 19 are obtained with PID constants: 𝐾𝑝𝜓 = 0.57, 𝐾𝑖𝜓 = 0.14, and

𝐾𝑑𝜓 = 0.27. With the low value of 𝐾𝑝 and 𝐾𝑖, the response is slow, but the overshoot is low. The

result with greater 𝐾𝑝 value is 1.57, which gives more overshoot but faster response as shown in

Figure 20. Both increasing and decreasing the 𝐾𝑑𝜓 is not an option because increasing 𝐾𝑑𝜓 will

reduce the overshoot, but increase the steady-state error while decreasing 𝐾𝑑𝜓 will reduce

stability, i.e., increase the overshoot.

Figure 20: Signal response of yaw angle with 1 rad set-point (Kp_ψ=1.57)

33 | P a g e

From the concept of the two wheels balancing model, it is better if the robot has a longer

length to the body’s centre of gravity and larger wheel torque constant. However, from the above

results, the mechanical and electrical parts of the robot are verified, and the robot is good enough

to be tested in the real environment as it can balance by controlling the pitch angle, and it can move

forward or backward by controlling the wheel velocity and can turn left or right by controlling the

yaw angle. The tuned PID constants for pitch, wheel velocity, and yaw control can be used as the

parameter constants into the APM firmware. The result is also reasonable, i.e., if the robot wants

to go forward, it will go backward to do a reverse moment because it must always balance.

The simulation results depicted with the signal response are good, but it is simulated with

an approximated mathematical model neglecting some aspects like wheel-slip, friction, and wind

disturbance. In this project, the PID controller is used because it can be computed faster than the

complex non-linear or neural network/AI-based controller, which needs sophisticated CPU/GPU

processing. By using the PID controller, the model/plant also needs to be linearised. Therefore,

there will be a slight difference response between the simulation and the implementation in the

real environment.

4.3 Practical Results

After the structure and simulation of the robot have been done successfully, all electronics

components including APM, Arduino Pro Mini 328 board, telemetry radio, R/C transmitter and

receiver, GPS model, Ardumoto motor driver shield, DC motors with encoders, and the wheels are

connected on one board according to the schematic, as seen in the Appendix F. The electronic

board is inserted inside the main body of the robot, as seen in Figure 21. Also, Figure 22 shows

the final assembly of the robot.

34 | P a g e

Figure 21: Electronics board connection of the robot

Figure 22: Final assembly of the robot

35 | P a g e

After completing the designing of the robot and testing all the stages, the robot has the

capability of balancing the load of the robot chassis, i.e., the body of the robot (load) through its

wheels instead of dragging the weight around like a regular robot after the body falls. This robot

is programmed in such a way that the wheels ensure self-balancing by moving in the direction of

the robot's tilt. For example, if the body of the robot is tilting forward, then the wheels move

forward to balance it. If the body of the robot tilts backward, then the wheels move backward to

ensure that the robot self-balances. It is essential to point out the fact that the wheels of this robot

only move in two directions, i.e., backward and forward. After the design and assembly phases of

the robot, it was tested multiple times across various terrains and obstacles to check whether it has

the capability of not only moving from one place to another and self-balance while moving. The

APM system provided the ability to turn the wheels of the robot forward and backward in a fully

autonomous way and allowed the robot to perform programmed GPS tasks or missions with

waypoints provided electronically through the controller using Mission Planner program, as seen

in Figure 23.

Figure 23: Robot’s plan for autonomous navigation (waypoints) at Flinders University in Tonsley

36 | P a g e

The on-board compass on the APM was not very effective for this robot as the placement

of the compass was very close to the motors and power sources of the robot due to its smaller size.

The magnetic interference could not be avoided. However, as this controller is designed for its

utilisation with the uBlox GPS with a compass, this unit was mounted on the robot to allow the

use of GPS. As the GPS is a requirement for the APM to achieve full autonomy, the use of GPS

with compass ensured proper working of the APM, allowing full autonomous navigation of the

robot (Ateov et al., 2017).

The first goal of this project of making the robot balanced using the PID algorithm was

achieved after the PID algorithms for the APM controller was developed using ArduPilot-

Arduino as this algorithm was based on the inverted pendulum theory that was previously designed

using Matlab/Simulink simulation. This algorithm has programmed the robot to move in the

direction of tilt. With the help of the IMU sensors, the APM detects the movement of the robot

body or tilt in the forward or backward directions. After detecting the motion of the tilt, the APM

is programmed by the PID algorithm, as shown in Appendices B and C, to autonomously move

the motor and the robot’s wheels in the tilt’s direction. This PID algorithm ensures the achievement

of the first goal of this project of a self-balancing robot by automatically moving the robot in the

direction of the tilt to ensure the maintenance of the robot’s balance in motion. The second and

third goals of this project were to make the robot move while self-balancing by using the RC

transmitter and receiver and making it navigate using GPS, compass, and wheel encoders using

Mission Planner program. The code for the Arduino Pro Mini microcontroller is shown in

Appendix E. Both goals are successfully achieved by programming the Arduino Pro Mini

microcontroller to control the wheel encoders, which allows the robot to navigate precisely.

Finally, the robot is fully controlled using the Mission Planner program for autonomous

navigation.

37 | P a g e

Chapter 5: Discussion

5.1 Concept of Self-Balancing Robot

The smart two wheels balancing robot, as mentioned earlier in this report, is following the

inverted pendulum theory. Control theory requires keeping some of the variables steady, including

the robot’s position in this case, for which a special type of controller known as PID is required.

The parameters particularly have gains known as 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖 (Kim & Kwon, 2015). The

requirement of the PID was essential as it gives correction among the desired values (input) and

actual values (output). The difference between the output and input values is known as error. The

reason as to why the PID controller and algorithms are used is that their main purpose is to reduce

the error between input and output values to the minimum by the continual adjustment of the output

(Kim et al., 2011). In the self-balancing robot, the input (desired tilt in terms of degrees) is settled

by the software. The APM reads the robot’s current tilt and gives it to the PID algorithm that

performs the required calculations for controlling the motor of the robot and ensuring that through

continued movement, the robot maintains its upright position. However, it is necessary for the PID

that the gains in 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are tuned to the optimal values. Most engineers use software like

Matlab for computing values automatically. However, the autonomous capabilities of APM allow

us to develop a PID algorithm that ensures the robot motor rotates in the direction of the tilt after

detection and stabilises the robot in the upright position after the tilt is corrected.

The concept of this system is of balancing the robot by ensuring that the motors of the robot

counteract the fall in either forward or backward direction. This action mainly requires the robot

to perform feedback and correct actions at the same time. That is why the APM system was used

with this robot system so that through the PID algorithm, the robot is programmed to move in the

direction of the tilt for maintaining its balance and preventing the robot from falling (Memarbashi

& Chang, 2011). The Arduino board is also used in this system, which was also programmed for

the wheel encoders. The Arduino Pro Mini board uses the information provided by the APM to

understand the latest orientation of the robot. Corrective action is performed by the combined

action of the motor and wheels. The APM controller is used for this robot system mainly because

this type of system is easy to use and provides GPS with a compass that helps in the navigation of

a robot system (Ateov et al., 2017). Furthermore, APM can be programmed through the PID

38 | P a g e

algorithm, which allows us to ensure that the robot not only has the capability of moving from one

point to another but is also capable of maintaining its balance or upright position (Ferdinando et

al., 2011). The brushed DC motors and with CPR 48 encoders are the best choice of motor for this

project because it gives the lower power 6V that is combined with the 34.104:1 super metal

gearbox to ensure good integration with the board. After all the components were selected, the

final design of the robot was prepared, after which the assembly phase began in which all these

components were joined to resemble the robot’s final design.

Figure 24: Functioning of the robot

Figure 24 shows the functioning of the smart two wheels balancing robot system. The motors

and robot wheels rotate in the direction of the tilt to ensure that the robot maintains its balance and

prevents the body from falling to the ground. All the components of the system were connected,

as illustrated in the circuit diagram in Figure 8. Next, the two main programs for the Arduino Pro

Mini and the APM were written. The code for APM is for controlling movement and balancing

the robot while the code for Arduino Pro Mini is for acquiring the wheel velocity from the

encoders. It was ensured before testing the robot that there is a good connection between the board

and the controller. The concept of the inverted pendulum is essential for understanding the working

of this robot system. According to this concept, the robot can be balanced much more adequately

if the centre of mass is greater than that of the wheel axles. A higher centre of mass means a greater

moment of inertia that corresponds to the lowered angular acceleration, i.e., a slower fall. That is

why the battery is placed in the middle of the robot's body, as shown in Figure 22. The width and

39 | P a g e

height of the robot were measured beforehand to ensure that it is fully capable of integrating the

board.

5.2 Construction of the System

The decision of 3D printing the chassis of the robot was made, and for that purpose, a 3D

design of the robot was made using AutoCAD software. Figure 10 shows the 3D models of the

robot chassis that were developed with AutoCAD software along with the 3D printed parts of the

robot’s body. Once the body parts of the robot were printed using a 3D printer, the board and the

motors were integrated into the robot chassis, and the wheels were attached. The development of

the board was done very simply, as shown in Figure 21. The APM was interfaced with the Arduino

board, and the motors were connected through the motor driver module.

Furthermore, the 12V battery was chosen as the primary power supplier to the robot

system, and each of these components of the robot was integrated into the robot chassis. After

performing the selection of the components and joining the parts of the robot for the final design,

the next step was the development of the PID algorithms for self-balancing the robot and for

moving the robot. The system has to check if the robot is leaning backward or forward, and after

detection, the wheels of the robot will rotate in the leaning direction to maintain balance (Esmaeili

et al., 2017). At the same time, the goal was to control the speed of the robot wheels to ensure that

the body does not fall over due to fast rotation. This is because, in this robot, the design is such

that if the robot gets slightly disorientated from its centre position or the centre of gravity, the

wheels have to slow down. However, the robot is programmed in such a way that the speed of the

wheels increases as its body moves away from its central position. Hence, the PID algorithms were

used in this project to set the centre position as the set-point.

To know the latest position of the robot, this system uses GPS with a compass that

associated with APM. GPS allows not only the detection of the latest position of the robot but also

its destination once it is in motion. The wheel encoders are used to get a reliable value of the speed

of the robot and how much distance it covers, but it will be corrected by the GPS if the distance

error more than a certain threshold. It has to be corrected because the wheel slippage and rough

terrain make the pose estimation worse over time. Complete PID algorithms or codes for self-

40 | P a g e

balancing the robot and moving it from one place to another are illustrated in Appendices B and

C, and the parameters are in Appendix D.

Firstly, in the development of the codes, all the relevant libraries were included that are

required for this program to work properly (Ghaffari et al., 2016). For example, the built-in I2C

library for acquiring the wheel encoder sensor, the APM sensor library for receiving data from the

IMU, and the GPS were included in the code for performing various functions and calculations.

After that, three cascaded controllers based on PID were implemented, compensating the error

between the set-point and measurement sensor value controlling the tilt/pitch angle, yaw/heading

angle, and wheel velocity. The first goal was to build the robot with an adequate centre of gravity

and to ensure that the components of the robot are symmetrically arranged, which in many cases

of self-balancing robots, is difficult to achieve. That is why, after ensuring that the robot design

provides a good centre of gravity, the value of the set-point in the PID algorithm was set

(Muhammed, et al., 2011). Also, the logger contains the pitch angle, yaw angle, and wheel velocity

can be used to analyse the signal response. Although the PID gains have been tuned by

Matlab/Simulink simulation, the response in the real experiment will not be optimal as in the

simulation because the simulation process is approximated. Theoretically, the PID gains provided

by the simulation can be used, but improving it again based on the data in the logger will give a

better result.

The whole system task can be divided into five tasks, which are PID control according to

the mode, encoder reading & robot pose estimation, data logging, auxiliary task (compass, battery,

RC, LED, GCS), and waypoint APM & obstacle avoidance.

The most crucial task that must have the priority is the control of the pitch angle, yaw angle,

and robot’s velocity towards the goal destination, as shown in the flowchart as per Figure 25. For

every loop, the first thing to do is to take the RC signal and the measurement of pitch and yaw

angle through the IMU. After that, if the robot is not falling, it will calculate the input control using

the PID controller and then send the PWM signal to the motor driver.

There are three modes for controlling the yaw and pitch angles, i.e., look at next waypoint

mode, hold/stable mode, and manual/acro mode. The first mode is to look at the next waypoint,

then the relative angle between the current robot pose and the destination pose should be calculated

and become the yaw/heading angle reference. The velocity set-point is determined based on the

41 | P a g e

distance between the current robot pose and the goal pose, while the pitch angle set-point is set to

zero to keep the robot balanced (upright). The second mode is position hold, whereas the robot has

already arrived at the destination point. If the system meets this mode, then the robot must be

steady, so that all of the references must be zero. The third mode is the manual/acro mode, which

needs control from the RC. Nevertheless, if there is no RC input signal, then balance the robot.

The PID controller is always running, whether the mode is automatic or manual, so that the robot

maintains balance.

Figure 25: Flowchart of the PID controller in various modes

42 | P a g e

The wheel velocity measurement is important, as the feedback is compared with the

velocity reference. However, it is not as crucial as the pitch angle measurement, so that the task

that gets the velocity measurement has a lower priority than the pitch angle measurement.

Moreover, if the wheel velocity measurement is also processed

in the main task, then it will interfere because it needs to acquire

the i2c from the Arduino Pro Mini that gets the measurement

directly from the encoder. The velocity is measured from the

wheel encoder then the displacement or robot position is

estimated using an integral manner, which is commonly called

“dead reckoning”. The position estimation using the wheel

encoder only is not good enough because of the disturbance, i.e.,

the wheel may slip or when the wheel is on the rough terrain.

Therefore, GPS is used to correct the pose estimation if the estimation error between the dead

reckoning method and GPS greater than a certain threshold. The flowchart is shown in Figure 26,

and the complete code for the Arduino Pro Mini is illustrated in Appendix E.

To analyse the control system, the state variables need to be

saved. It is like a black box in the aeroplane; all variables are logged

into a memory interfaced with the microcontroller. The data are the

compass which is the heading angle, IMU contains pitch and yaw

angle, GPS contains latitude, longitude, and altitude, navigation based

encoder contains the wheel velocity and poses estimation, variable

related to waypoint and obstacle contains the list of waypoint and

obstacle status and the variables such as active mode and the

performance of the multi-tasking. Figure 27 illustrates the flowchart

for data logging.

Figure 26: Flowchart of robot pose estimation

Figure 27: Flowchart of data logging

43 | P a g e

Another task involves doing some auxiliary tasks that have the

lowest priority. The compass reading does not need to be done quickly

because the IMU also measures the heading, but the compass is useful

for correcting it. Furthermore, auxiliary performs standard procedures

such as reading the battery status to see whether the robot should be

returned to home or not, trim and tuning the remote control and read the

input signal associated with the mode switch, read the signal from the

GCS such as the waypoint or return to home command and toggle the

LED-based on every device status. The flowchart of the auxiliary is

illustrated in Figure 28.

The last process is to guide the robot based on the desired

waypoints, as shown in Figure 29. The robot needs to get the position,

which is the longitude and altitude to calculate the distance between the

robot pose and the goal pose. The robot also needs to get the current

heading and go-ahead to the goal pose. After that, to avoid an obstacle,

do the sonar measurement, and if it is less than the threshold, then do an

action, which is to go backward at a certain distance then continue to the

next waypoint. There are three modes regarding the waypoint tracking,

which is Return To Home (RTH), autonomous navigation, and guided

using the remote control. If the mode is RTH, then the distance and

heading to the home need to be calculated. If the mode is autonomous

navigation, then the robot has to go to all of the waypoints sequentially

until it reaches the home. The last mode is guided mode, whereas the

robot only needs to wait for the input signal from the remote control.

Figure 28: Flowchart of auxiliary task

Figure 29: Flowchart of waypoint navigation

44 | P a g e

The four main programming software that was used for this project are as follows.

I. Matlab/Simulink software was used for the simulation part of the project.

II. ArduPilot-Arduino was used to program the APM. Through the help of this software, the

PID algorithm for the APM controller was made that allowed the robot to balance and

movement from one location to another. The theory of the inverted pendulum was followed

in the development of the algorithm, which meant that the robot was programmed to rotate

the motors in the direction of the tilt to ensure autonomous self-balancing, while the robot

still goes forward and turning to the destination point.

III. The Arduino IDE software was used for programming the Arduino Pro Mini. It was used

for the wheels encoder’s data (pulses and speed) acquisition and relayed that data at the

APM board through the I2C interface.

IV. Mission planner software was used in this project for the autonomous navigation of the

robot system, including set home and several waypoints, send RTH command and see the

robot status (pose, battery, etc.). This software did not require any coding, just setting up,

and simulation.

5.3 Components of the Robot

▪ ArduPilot Mega (APM 2.8)

The ArduPilot Mega is an advanced quality IMU autopilot, which is based on the Arduino

Mega platform, and APM 2.8 is considered the new autopilot (Open Source Drone Software.

Versatile, Trusted, Open. ArduPilot., 2020). Sensors that are used in this system are the same as

the APM 2.6 autopilot. This controller has an option to use the internal or external compass with

the jumper. The APM is ideal for its use with robots, rovers, and multi-copters. The APM is a

complete autopilot open-source system and is the bestselling software and has won the UAV

challenge competition. Moreover, this system allows the user to change any fixed, multi-rotor

vehicle or rotary-wing in a fully autonomous vehicle that has the capability of executing GPS-

programmed missions with waypoints (Ateov et al., 2017). Furthermore, this board contains the

optional compass on-board that is specifically designed for the vehicles where the placement of

the compass is a requirement to be placed farther from motor and power sources as much as

possible for avoiding magnetic interference. This controller is designed for its utilisation with GPS

45 | P a g e

having a compass to ensure that the compass/GPS unit gets mounted farther from the source of the

noise APM itself. GPS is a requirement for APM since its fully autonomous; hence, extras like the

GPS and compass are added to the APM in this project, as seen in Figure 30.

Figure 30: ArduPilot Mega (APM) Board

▪ Arduino Pro Mini 328-Microcontroller

The Arduino Pro Mini 328-microcontroller board is the Arduino 5V running at 16MHz of the

bootloader, as seen in Figure 31. The purpose of using this system for this project is that this board

is limited to a 5V, ensures a lacking the connectors, and allows off-board USB. Moreover, the

board is very cost-effective as compared to other similar boards in the market, since it uses SMD

components in a double layer. The board has the capability of connecting directly at the basic

breakout FTDI board and provides support for auto-reset (Balung et al., 2017). The board works

with FTDI; however, the FTDI cord does not provide a DTR pin. The auto-reset might not work.

Another critical reason for choosing this board for this robot is that the voltage regulator on-board

that allows the board to accept voltage approximately up to 12V DC allows the voltage to exceed

above the normal limit of 5V. However, the important caution with these types of boards is that if

unregulated power is supplied, the RAW pin has to be connected with the board and not VCC.

Figure 31: Arduino Pro Mini 328-microcontroller

46 | P a g e

The pin connection specifications for the Arduino Pro Mini, encoders, SDA, SCL of the APM

signals can be found in Table 2.

Device (Component) Pin

Encoder A output (A – yellow) 3

Encoder A output (B – white) 2

Encoder B output (A – yellow) 8

Encoder B output (B – white) 9

APM - SDA A4

APM - SCL A5

Table 2: Pin connection specifications for the Arduino Pro Mini

▪ Telemetry Radios, 915MHz

The telemetry radio is an inexpensive, small, and light radio open-source platform that allows

different ranges that are more advantageous at 300m, as seen in Figure 32. The range of the

telemetry radio can be extended to several more kilometres with the utilisation of the patch antenna

on the ground. The radio mainly uses open-source firmware that is designed specifically for

working with the packets of MAVLink and to get integrated with Copter, Mission Planner, Plane,

and the Rover (Samson et al., 2011). The radios can be either 433 MHz or 915 MHz. The 915 MHz

model is chosen for this project because it will allow higher transmission of signals for the robot.

Figure 32: Telemetry radio kit

47 | P a g e

▪ R/C Receiver and Transmitter

FlySky FS-i6 2.4G 6CH AFHDS radio transmitter with FS-iA6 receiver is attached to the

robot’s board to ensure its connection with the remote controller that will be used for controlling

the robot’s movement wirelessly. This component of the board is essential because it will ensure

that this robot is controlled from a fair distance without loss of connection, just like any wireless

device (Hsu & Sheen, 2011). The model of the used transmitter and receiver is, as shown in Figure

33.

Figure 33: RC Transmitter & Receiver

▪ uBlox GPS Model with Compass

The uBlox GPS module with a compass is the most commonly used GPS for the ArduPilot

Mega Boards. The reason why this uBlox GPS module is used for this project is that APM has the

capability of automatically configuring the GPS soon after startup, which ensures that there is no

need for any GPS related calibrations with the system (Ateov et al., 2017). However, the compass

integrated into this system has to be calibrated before use to avoid any errors in measurement.

Figure 34: uBlox GPS model

48 | P a g e

▪ Ardumoto Motor Driver Shield

The Ardumoto motor driver shield is the controller (dual-motor) for the Arduino and is based

on H-bridge L298. The SparkFun Ardumoto has the capability of driving approximately two DC

motors at 2A per channel, as seen in Figure 35. It is used in this project in combination with the

Arduino because Ardumoto makes an effective controller platform, particularly for RC robots or

vehicles, when it is in connection with the Arduino (Cancharoen, et al., 2015).

Figure 35: Ardumoto motor driver shield

This board mainly takes the powers from a similar Vin line like the Arduino board, and it

incorporates yellow and blue LEDs that indicate the active direction. Also, driver lines on this

board are mainly diode protected from the back EMF. The pin connection specifications for the

Ardumoto motor driver shield, motors A, motor B, and APM signals can be found in Table 3.

Device (Component) Pin

APM (Direction – Motor A) 2

APM (Direction – Motor B) 4

APM (PWM - Motor A) 3

APM (PWM - Motor B) 11

Motor A A1

Motor A A2

Motor B B3

Motor B B4

Table 3: Pin connection specifications for the Ardumoto motor driver shield

49 | P a g e

▪ Brushed DC Motor with 48 CPR Encoder

The gear motors 34:1 gear ratio with the 48 CPR rotary encoder is a gear motor that consists

of the lower power 6 V DC brushed motor that is combined with the 34.104:1 super metal gearbox,

as seen in Figure 36. It is also integrated with a 48 CPR quadrate rotary encoder that is present on

the motor shaft providing 1632.67 counts per revolution of the output shaft of the gearbox

(Acevedo & Alejo, 2014). The gear motor is cylindrical, having a diameter that is under 25 mm

and the output shaft (D-shaped), which is 4 mm in diameter, and extends 12.5 mm from the

gearbox's faceplate. The 34:1 gear reduction is chosen for increasing the torque (Madhira et al.,

2016). Table 4 illustrates the specification of the chosen DC motor.

Figure 36: DC motor

Gear Ratio 34:1

No-Load Speed at 6 V 285 RPM

Stall Torque at 6V 60 oz-in

Stall Current at 6 V 6 A

Table 4: Specification of the DC motor

A two-channel Hall effect encoder is attached to the rear of the motor shaft to measure the

rotation of the magnetic disk. When counting the edges of both channels, the quadrature encoder

can provide a resolution of 48 counts per revolution of the motor shaft. The wire functions of the

encoder used can be found in Table 5.

50 | P a g e

Colour Function

Red Motor Power (VCC)

Black Motor Power (GND)

Blue Encoder (VCC)

Green Encoder (GND)

Yellow Encoder output (A)

White Encoder output (B)

Table 5: Encoder wire functions

In the quadrature encoder, the meaning of quadrature comes from the word “quarter”,

which means that 90° out of phase between the signal as seen in Figure (37). The A and B outputs

of the encoder are a square wave starting from 0 to Vcc, and they are 90° of phase. The frequency

of the transition can measure the speed of the motor, and the direction of the motor can be obtained

by order of the transition (rising edge or falling edge). The following oscilloscope represents the

A (yellow) and B (aqua) outputs of the encoder using a motor voltage of 6V and a Hall sensor Vcc

of 5V, as seen in Figure (38).

 Figure 37: Theoretical signal of the quadrature encoder Figure 38: Oscilloscope signal of the quadrature encoder[70]

▪ Wheels

In this robot, two Pololu soft and rubber tires are chosen as wheels, as seen in Figure 39. The

size of the wheel is 120x60mm with 4mm shaft adapters. The reason why soft and rubber tires are

chosen for this robot because they will allow the wheels to have increased traction and be soft on

51 | P a g e

bumps making it more capable of traversing through various terrains easily and maintaining its

balance for a longer duration compared to other lower quality.

Figure 39: Pololu robot wheel

All components used in this project are listed in Table 6, with the total cost of the project at the

time of building it.

Items Qty Distributor Price (AUD)

APM 2.8 ArduPilot 1 Amazon $98

Arduino Pro Mini 328 1 eBay $18.01

uBlox GPS with Compass 1 Amazon $72.93

Telemetry radio-915MHz 2 Amazon $42.58

Ultrasonic Sensor Module 1 Core Electronics $11.5

Ardumoto - Motor Driver

Shield (DEV-14129)

1 Core Electronics $33.57

Level Translator Breakout

(PCA9306)

1 Core Electronics $9.83

FTDI FT232RL USB to

TTL Serial Converter

1 eBay $8.14

FlySky FS-i6 2.4G 6CH

Transmitter

1 Banggood $65.42

FS-iA6 Receiver 1 Banggood $14.99

http://news.banggood.com/u/nrd.php?p=8UkM53pwmb_15489917_2675773_-2_1&ems_l=2522012&l=_kkgjxPPnnn165e--ff817fdP%3FcpJbp2%3FJ2~X2T3V%3A2Xty2r%3FyuJ2It2I58~f2Ki5ejd~kk9i2N~k_2%3FJ2~rX2I979~m9i2.fi2%3FG%3D2It2uife92g20TTXRX1_kdcwlkd389j~-eMVSHlkd3jfli79M9d5ijpjHlkd3d98~ldME9nfi89iSYSSR0Hlkd375dg5~-eM%2475dg5~-e375k9-fip%24Hlkd37fek9ekMn~ee5Hj73ji7M9d5~c3%247~8%24Hj739_M%24g9ij3VSUSS%24Hj73cc~8M%24cc~8%24Hj73c~8M%247c~eb~8%24Hj73l~8M%24lj9i~8%24&s=0Tmg62X1udOEQNcr_5oCtvub7nM

52 | P a g e

34:1 Metal Gearmotor

25Dx52L mm

2 Core Electronics $48.53

POLOLU Wheel 2 Core Electronics $23.55

FLOUREON RC LiPo

Battery

2 eBay $62.99

Screw Terminals 3.5mm

Pitch

4 Core electronics $4.99

4-Pin to Female Socket

Cable, battery connectors,

switches and cables

2 Core electronics $30

Total $617

Table 6: Project components cost

5.4 Analysis of Results

It is a challenging task to balance the inverted pendulum because, as described earlier, this

mechanism is naturally unstable. A little disturbance or error from the equilibrium position of the

robot, which is, in this project, the set-point angle of the robot chassis, i.e., 0°, causes the robot to

lose its equilibrium position and balance. Eventually, the body of the robot falls to the ground.

Therefore, to maintain the robot's balance, it is required that the motors and wheels of the robot

rotate in the anticlockwise or clockwise direction. This robot system considers the tilt or deviation

of the robot's body from the 0° angle as an error. It keeps rotating the motors and wheels of the

robot in the direction of the tilt until the robot regains its balance and upright position, i.e., gets

back to its set-point angle (Acevedo & Alejo, 2014). To ensure that this robot system is capable of

working on the mechanism of an inverted pendulum, the PID controller is adopted that mainly

uses the tilt/pitch feedback to control the motor’s torque and to keep the robot balanced. The PID

controller continuously measures the process variable, calculates the error value, i.e., deviation

from the set-point angle of 0°, and transmits it to the controller to move the motors and wheels of

the robot in the direction of the tilt to get back the robot in a balanced position. The PID controller

tries to minimise this type of error with time by continuously adjusting the control variable, i.e.,

the motor torque.

53 | P a g e

 In Equation 17, U(t) represents the control variable, the variable e(t) represents the latest

error in process variable, and 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are the parameters that have to be tuned to achieve

the desired behaviour of the robot. To control the robot, both the gyroscope and accelerometer of

the IMU are used. The angle information is obtained from the gyroscope. Moreover, the angular

velocity and the direction that the robot is falling to are obtained from the accelerometer. When

the angle information is not in the straight standing position, the APM will send a signal to the

motor drivers to adjust the robot according to the opposite of the gyroscope’s reading until the

APM reads the set-point which is 0°. The accelerometer sensor mainly measures all forces that act

upon an object, i.e., the robot's body, and sees more than g-force (gravity vector). Every force that

is acting upon the object, for example, the frictional force, alters with the measurements to a large

extent. While performing on the actuated system, forces that drive this system are easily visible on

the sensor. The data of the accelerometer is reliable for a longer-term project, but to get that, low

pass filters are needed (Yuan et al., 2016). In the case of the gyroscope, it is a lot easier to obtain

accurate data, as it is not affected by external forces. However, due to integration over time, the

measurements of sensors tend to drift and not come back to level zero, especially when this system

returns towards its base position. However, it is important to understand that the sensor data is

reliable only for a shorter period because it illustrates drift over the longer-term. A complementary

filter used in this system provides data for both the long term and short term from the gyroscope

and the accelerometer. The Arduino Pro Mini is used in this robot system to acquire data along

with the filter.

Considering the motor’s speed, it is made capable of adjusting by the PWM through the

adjustment of the voltage and duty cycle that is given to the motor. With the use of the PWM, the

expense of acquiring the digital to analogue converter is saved. Furthermore, another important

benefit of using the PWM is that in this system, the signal stays digital, and no digital to analogue

conversion is required. Also, by doing this, the noise effect is minimised. The changing of the PID

controller’s set-point individually for the two motors that are used in this system can help in

controlling the translational motion of the robot system (Riattama et al., 2017). The motor power

mainly rises by proportional term as this system leans further ahead and decreases the power of

the motor when the system reaches the upright position, which is the required position for the

robot. The gain factor 𝐾𝑝 is responsible for determining how much power is needed to be applied

to the motor for any given tilt or lean of the robot’s body, as seen in Equation 26.

54 | P a g e

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑒𝑟𝑚 = 𝐾𝑝 ∗ 𝑒𝑟𝑟𝑜𝑟 Equation 26

In the PID algorithm, the deferential term acts as the damper that reduces oscillation.

Furthermore, another gain factor 𝐾𝑑 determines the rate of power that is to be applied to the motor

in accordance with Equation 27.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑒𝑟𝑚 = 𝐾𝑑 ∗ (𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑟𝑟𝑜𝑟) Equation 27

Finally, neither the differential term nor the proportional term of the algorithm removes all

of the tilt or lean because both of these terms get to zero as the orientation of this inverted pendulum

system settles at the vertical position. Moreover, the accumulated errors are summed up by the

integral term and try to drive the tilt or lean towards zero, as seen in Equation 28. Finally, this

provides the PID controller’s output, as seen in Equation 29.

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑟𝑚 (𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐾𝑖 ∗ (𝑠𝑢𝑚 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠) Equation 28

𝑃𝑊𝑀 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑟𝑚 + 𝑝𝑜𝑟𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑒𝑟𝑚 + 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑒𝑟𝑚 Equation 29

Equation 29 represents the output of the motor’s PWM, and this output is used as the motor’s

set-point, which is approximately at a 0° angle of the robot's body. Similarly, the motor’s speed is

also calculated as the sum of these where instead of the error of the tilt, the error of the motor speed

is taken in all of the above equations. The PID algorithm controls the yaw angle, but it gives a

positive input control to the left wheel and gives negative input control to the right wheel. In the

tuning of the motor speed's PID control, the values of 𝐾𝑖, 𝐾𝑑, and 𝐾𝑝 are calculated by

Matlab/Simulink simulation. They can then be slightly improved in a real experiment. The H-

bridge amplifier mainly amplifies the signal of the pulse-width modulator channel for the

production of voltage, which is sufficient in driving the motor. Under the command of the software

used in this system, the motor terminals are swapped by the H-bridge for driving the motor of the

robot in a different direction. The use of the H-bridge saves expenses of using two voltage sources

to get bidirectional control of the motor (Pratama et al., 2016). There are mainly two logic inputs

in the H-bridge for the directional control of the motor. For the analysis of the experimental setup

55 | P a g e

response, the real-time data of the sensors is imported to Matlab at various conditions. The single

PID computation for both motors is performed rather than performing separate computations for

pitch angle and wheel velocity control. This single computation of both motors resolves the issue

of delay in time due to the serial communication that has a critical effect upon the response of this

setup, but the yaw angle control is separated between both motors. However, this type of

implementation does not enable any sort of rotational movement along the vertical axis but allows

the balancing of the robot in one translational direction.

To determine the maximum angle of tilt, beyond which the system is incapable of coming back

to a stable position, the impulsive external forces were provided to the robot various times. The

result of this experiment shows that the robot is capable of balancing itself many times. Still, it is

incapable of balancing to the set-point angle of 0° if an external force pushes the body. However,

according to experiments, the maximum angle of tilt is approximately 10° away from the set-point

0°. Thus, if the robot's body tilts farther than 10° or -10°, then the robot will be incapable of self-

balancing itself (Riattama et al., 2017). To quantifying the position drift while this setup tries to

balance itself, RPM is sent to the motors in the PWM form, which is acquired in the computer

software and integrated into the controller. However, an inherent assumption is that the PWM

signals sent to the motors of the robot are directly proportional to the motor’s RPM. However, the

position drift of this robot system varies whenever the experiment is repeated. The results of the

experiments suggest that this robot system has the capability of self-balancing itself if the tilt is

not beyond 10°.

5.5 Limitations

With the consideration of the three main goals of this project, the limitation of the project is

that in the autonomous mission, the robot could not handle more than ten waypoints in navigation.

Also, if the tilt of the robot's body is higher than 10°, then it is difficult for it to self-balance as the

body loses its stability, and with higher gravitational force being applied on the body, it is difficult

to stop the body from falling. However, this limitation does not heavily affect the primary goal of

this project, which was to ensure that this robot is fully capable of having the self-balancing feature,

which worked effectively in the experiments.

56 | P a g e

Chapter 6: Conclusion

This project provides all the valuable information about design, development, and testing

of the smart two wheels balancing robot. At firstly, for the project, a literature review analysis was

performed to find relevant data about the working and design of the robot. The goal of the literature

review was to identify various ways by which proper development, design, and the functioning of

the robot are ensured. To do this, a lot of relevant conference proceedings, journal articles, and

web articles are sourced. The results of the literature review analysis illustrated that through the

incorporation of adequate control systems in the smart two wheels balancing robot, the stability of

this system can be ensured. Also, as the robot is moving across different terrains and obstacles, the

goal of the project was to ensure that it is capable of balancing while moving through various

obstacles. After performing the literature review, a lot of critical information about the

development, design, and working of the robot was collected. The second phase in the

development of this system was the acquisition of all the relevant components for the robot system.

After the acquisition of all these components, the next phase in this project was to assemble these

components before designing the body of the robot. A circuit of the robot system was made, and

each component was connected accurately. The next phase was developing the physical design of

the robot system. The final 3D design and body parts are shown in this report. After designing the

robot, the next phase in this project was the assembly. The board, motor, chassis, and wheels of

the robot were assembled to provide the final shape of the robot.

After that, the simulation using Matlab/Simulink to ensure the model is controllable or not

and tuning the PID gains must be done before implementing the PID algorithms in the APM for

self-balancing and navigating the robot, and the Arduino Pro Mini for collecting data from the

wheel encoders were developed and integrated into the Arduino board and controller. The final

stage in this project was testing the performance of the robot and find out whether the robot was

capable of achieving its intended goals. The three main goals of this project were making the robot

balance using the PID algorithm, making the robot move while balancing using the RC transmitter

and receiver, and making it navigate using GPS, compass, and wheels encoders associated with

Mission Planner software. The three goals, according to the results of the experiments, were

achieved.

57 | P a g e

Appendices

Appendix A: Matlab Simulation Code

function [A,B,C,D] = fcn()

g = 9.81; % gravity constant

r = 0.06; % wheel radius

Mw = 0.15; % wheel mass

Mp = 0.9; % body mass

h = 0.22; % body height

l = 0.75*0.22; % distance from base of body to cog point

% approximately 75% of body height

w = 0.14; % width of body

d = 0.05; % depth of body

Iw = 0.5*Mw*r*r; % moment inertia of wheel

Ip = 1/12*Mp*((h*h)+(w*w)); % moment inertia of body (pitch direction)

Iy = 1/12*Mp*((d*d)+(w*w)); % moment inertia of body (yaw direction)

no_load_speed_rpm = 165; % motor speed without load in RPM

no_load_speed_rad_per_s = no_load_speed_rpm*pi/30.0; % motor speed without

load in rad/s

voltage = 6; % motor DC stall voltage

stall_current = 2.2; % motor DC stall current

stall_torque_oz_in = 40; % motor DC stall torque in oz-in

stall_torque_N_m = stall_torque_oz_in*0.00706155; %motor DC stall torque in

Nm

km = stall_torque_N_m/stall_current; % DC motor torque constaant (Nm/A)

ke = voltage/no_load_speed_rad_per_s; % Back EMF constant (V/(rad/s))

R = voltage/stall_current; % DC motor equivalent resistance

beta = 2*Mw+2*Iw/r/r + Mp;

alpha = Ip*beta+Mp*l*l*(Mw+Iw/r/r);

a22 =2*km*ke*(Mp*l*r-Ip-Mp*l*l)/(R*r*r*alpha);

a23 =Mp*g*l*l/alpha;

a42 =2*km*ke*(r*beta-Mp*l)/(R*r*r*alpha);

a43 =Mp*g*l*beta/alpha;

b2 =2*km*(-Mp*l*r+Ip+Mp*l*l)/(R*r*alpha);

b4 =2*km*(-r*beta+Mp*l)/(R*r*alpha);

b6 =w*km/(R*r*(Iy+(Iw/r/r+Mw)*w*w));

A = [0 1 0 0 0 0;

 0 a22 a23 0 0 0;

 0 0 0 1 0 0;

 0 a42 a43 0 0 0;

 0 0 0 0 0 1;

 0 0 0 0 0 0];

B = [0 0;

 b2/2 b2/2;

 0 0;

 b4/2 b4/2;

 0 0;

 b6 -b6];

C = eye(6);

D = [0 0;0 0;0 0;0 0;0 0;0 0];

58 | P a g e

Appendix B: Main Code (APM)

#define THISFIRMWARE "two_wheeled_robot"
// This project is created based on ardupilot library
// The most important constant in config.h (Appendix D):
// 1. wheel diameter in centimeters: WHEEL_DIAMETER_CM
// 2. PID constants for pitch control: BALANCE_P, BALANCE_I, BALANCE_D
// 3. PID constants for heading/yaw control: YAW_P, YAW_I, YAW_D
// 4. Proportional constant for wheel: WHEEL_P

#include <AP_Common.h> // these are mandatory library for running APM firmware
#include <AP_Progmem.h>
#include <AP_Menu.h>
#include <AP_Param.h>
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>

#include <GCS_MAVLink.h> // for MAVLink integration
#include <AP_GPS.h> // for defining all supported GPS classes
#include <DataFlash.h> // for dataflash Log library
#include <AP_ADC.h> // analogue to digital converter
#include <AP_Compass.h> // for defining all supported compass classes
#include <AP_Math.h> // for defining math calculation (matrix/vector)
#include <AP_InertialSensor.h> // for measuring gyro and accel
#include <AP_AHRS.h> // support for IMU reading
#include <AC_PID.h> // PID controller
#include <RC_Channel.h> // for defining remote control channel
#include <AP_RangeFinder.h> // for sonar
#include <Filter.h> // for using filter
#include <AP_Buffer.h> // for using fifo buffer template class
#include <AP_Airspeed.h> // for getting air velocity_magnitude
#include <AR_EncoderNav.h> // for encoder reading and robot pose estimation
#include <AP_Declination.h> // for approximating magnetic declination using a lookup table
#include <memcheck.h> // for checking the memory limit
#include <AP_Scheduler.h> // for scheduling some tasks

#include "compat.h" // for converting from HAL to Arduino
#include "defines.h" // defining constant and enumeration
#include "config.h" // defining configuration (important: WHEEL_DIAMETER_CM and PID constants)

#include "Parameters.h" // library related to all parameters used
#include "GCS.h" // library related to Ground Control Station communication

#define ENCODER_ADDRESS 0x29 // I2C address (must be the same as in Arduino mini pro)

const AP_HAL::HAL& hal_object = AP_HAL_BOARD_DRIVER; // hardware abstraction layer (HAL)
object

59 | P a g e

static AP_HAL::BetterStream* serial_command; // for debugging through USB
static DataFlash_APM2 flash_logger; // logging to flash memory
static AP_Scheduler thread_scheduler; // define the thread thread_scheduler
static Parameters global_var; // define the parameters as a global variable
static GPS *gps; // GPS object
AP_GPS_Auto g_gps_driver(&gps); // gps driver
static AP_Compass_HMC5843 compass; // compass object
static AP_Int8 *mission_mode = &global_var.mission_mode1; // mode of flight
static AP_InertialSensor_MPU6000 imu; // IMU object
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_200HZ; //
IMU rate
static AP_AHRS_DCM ahrs(&imu, gps); // direction cosine matrix for imu and gps (AHRS: attitude and
heading reference system)
ModeFilterInt16_Size3 filter_sonar(1); // sonar filter
static AP_HAL::AnalogSource *sonar_source; // sonar hardware source
static AP_RangeFinder_MaxsonarXL *sonar; // sonar object

static GCS_MAVLINK gcs_0; // initialize the GCS (Ground Control Station)
static GCS_MAVLINK gcs_3; // initialize the GCS (Ground Control Station)

static byte state_ctrl = STABILIZE; // initial control state is stabilising the robot
static unsigned byte prev_switch_pose; // previous switch poses on RC
static unsigned byte receiver_rssi; // RSSI: Receive Signal Strength Indication

static Vector3f attitude_rate; // rate of roll, pitch and yaw
double ch6_tuning_val; // value of tuned channel 6

static unsigned byte stat_led = NORMAL_LEDS; // initial led status
static unsigned byte led_indicator_gps; // led indicator of gps
static unsigned byte led_indicator_motor; // led indicator of motor
static byte led_indicator_navigation; // led indicator of navigation

static const double ten_pow_7 = 1.0e7f; // for scaling gps value
static double long_scale_up = 1; // for scaling gps value
static double long_scale_dn = 1; // for scaling gps value
static const double earth_rad = 6378100; // radius of earth in meters

static int heading_waypoint; // heading of robot relative to next waypoint
static int heading_waypoint_ori; // heading of robot relative to the first waypoint
static int heading_to_home; // heading of robot relative to home
static int distance_to_home; // distance between robot and home
unsigned int distance_to_next_waypoint; // distance between robot and next waypoint
double distance_loitering; // distance for loitering
static unsigned byte mode_navigation; // navigation mode (avoid back, avoid turn, loiter, waypoint)
static double cos_heading = 1; // variable for dcm (calculating the heading)
static double sin_heading = 1; // variable for dcm (calculating the heading)

static short distance_sonar; // distance sonar to obstacle

60 | P a g e

static unsigned byte is_sonar_healthy; // true if we can trust the altitude from the sonar

static unsigned byte heading_mode; // mode of heading (waypoint, hold, and acro)
static unsigned byte pitch_mode; // mode of pitch (auto, guided, and stabilise)

static struct Location current_loc; // robot current location
static int heading_navigation; // the heading navigation
static double delta_time_controller = 0.01; // delta time for integrator in PID controller
static AR_EncoderNav encoder_navigation(&gps); // encoder navigation with a checking from gps

static short pwm_motor_outputs[2]; // This is the array of PWM values being sent to the motors
static double cog_offset; // centre of gravity offset

static short pitch_output; // the output of pitch control (input for plant/model)
static short heading_output; // the output of heading control (input for plant/model)

static double velocity_reference; // reference of robot velocity
static double encoder_ticks_reference; // reference of encoder ticks
static double distance_obstacle_navigation; // distance to avoiding the obstacle

AP_HAL::Semaphore* semaphore_i2c; // semaphore for the i2c object
short failed_i2c; // to check the i2c is failed or not

Vector3f goal; // goal position of robot (equal to the next waypoint position)
bool arrive_at_goal; // true if the robot arive at the goal

static unsigned int last_main_thread_timer; // timer in the main loop
static byte counter_start_delay; // counter for motor starting delay
static unsigned int last_update_gps_timer; // timer for gps update
static unsigned byte counter_pitch_auto_trim; // auto trim for pitch rc control

static AP_HAL::AnalogSource* source_rssi; // rssi (connection to gcs)
static AP_HAL::AnalogSource* source_voltage_battery; // related to battery voltage monitoring
static AP_HAL::AnalogSource* source_current_battery; // related to battery current monitoring
static AP_HAL::AnalogSource* source_board_vcc; // related to vcc board monitoring

AP_Param param_loader(var_info, WP_START_BYTE); // load the parameter
static union {
 struct {
 unsigned byte is_armed : 1; // is the robot armed?
 unsigned byte is_rc_overwritten : 1; // is the rc have overwritten?
 unsigned byte is_home_set : 1; // is the home position (original position of robot) set?
 unsigned byte is_pose_hold : 1; // is the robot state is hold
 unsigned byte is_batt_low : 1; // is the battery low?
 unsigned byte stat_obs : 1; // show the obstacle status
 unsigned byte stat_gps : 1; // show the gps status
 unsigned byte stat_compass : 1; // show the compass status
 };

61 | P a g e

 unsigned short val;
} twr;

static struct AP_System{
 unsigned byte stat_channel_7 : 1; // show the status of channel 7
 unsigned byte frame_radio_new : 1; // show the new radio frame
 unsigned byte is_usb_connect : 1; // show if the usb connected or not
 unsigned byte stat_gps_led : 1; // show the led of GPS status
 unsigned byte stat_motor_led : 1; // show the led of motor status
} twr_sys;

static struct { // wheel velocity and distance
 short left_distance;
 short right_distance;
 short left_velocity;
 short right_velocity;
 short left_velocity_output;
 short right_velocity_output;
 double velocity;
} wheel;

static union { // i2c buffer (for receiving signal from Arduino pro mini)
 int value_long;
 short value_int;
 unsigned byte array_byte[];
} bytes_union;

static const AP_Scheduler::Task list_thread[] PROGMEM =
{ // list of thread {name_of_thread, interval ticks, max time in micros}
 {thread_gps_update, 2, 900},
 {thread_auxiliary, 2, 900},
 {thread_encoder_read_pose_estimation, 2, 950},
 {thread_navigation, 10, 800},
 {thread_logger, 10, 500},
 {thread_gcs_input_checking, 2, 700},
 {thread_gcs_heartbeat_sending, 100, 700},
 {thread_gcs_send_data_streaming, 2, 1500},
 {thread_gcs_deferred_sending, 2, 1200},
};

void setup() {
 // first initialization
 memcheck_init(); // initialize memory
 serial_command = hal_object.console; // initialize the serial command for debugging
 AP_Param::setup_sketch_defaults(); // load default values for all scalars in a sketch

 sonar_source = hal_object.analogin->channel(CONFIG_SONAR_SOURCE_ANALOG_PIN); // initialize
the analog pin for the sonar hardware

62 | P a g e

 sonar = new AP_RangeFinder_MaxsonarXL(sonar_source,&filter_sonar); // initialize sonar object
with a filter

 // gcs initialization
 source_rssi = hal_object.analogin->channel(global_var.rssi_pin, 0.25);
 source_voltage_battery = hal_object.analogin->channel(global_var.battery_volt_pin);
 source_current_battery = hal_object.analogin->channel(global_var.battery_curr_pin);
 source_board_vcc = hal_object.analogin->channel(ANALOG_INPUT_BOARD_VCC);

 init_ardupilot(); // intialize the ardupilot firmware

 thread_scheduler.init(&list_thread[0], sizeof(list_thread)/sizeof(list_thread[0])); // all thread start
}

void loop() // main thread (fastest thread for control system)
{
 unsigned int timer = micros(); // get time stamp in microseconds
 if (imu.num_samples_available() >= 2) // read IMU if the number of sample more than 2
 {
 delta_time_controller = (double)(timer - last_main_thread_timer)/1.0e6f; // for PI and PID
controller
 last_main_thread_timer = timer;
 read_rc_input(); // get rc input for pitch, wheel and heading control
 read_rc_mode_switch(); // get rc input for mode switch
 read_imu(); // get pitch and heading rate
 get_heading(); // get heading angle
 if(is_robot_not_falling()) // check whether the robot is falling or not
 {
 heading_control(); // controlling heading with PID controller according to the mode
 pitch_control(); // controlling pitch with PID controller according to the mode
 }
 write_pwm_motor(); // write the pwm signal to the motors
 thread_scheduler.tick(); // give tick to other threads
 }
 else // do nothing (delay 10 ms using thread scheduler) -> give other threads some space
 {
 unsigned short dt = timer - last_main_thread_timer;
 if (dt < 10000)
 thread_scheduler.run(10000 - dt);
 }
}

static void thread_auxiliary() // thread for compass, rc, led indicator
{
 // create a loading for the motor to spin
 if(counter_start_delay == -1 || counter_start_delay > 100)
 counter_start_delay = -1;
 else

63 | P a g e

 counter_start_delay++;

 // check and read the compass
 set_compass_healthy(compass.healthy);
 if(global_var.compass_enabled)
 {
 if(state_ctrl == FBW)
 compass.save_offsets();
 if (compass.read())
 compass.null_offsets();
 compass.accumulate();
 }

 if (global_var.battery_monitoring != 0) // check the battery
 read_battery();

 pitch_auto_trim(); // slightly adjusts the ahrs.pitch_trim towards the current stick positions
 read_signal_gcs(); // read signal from ground control station

 if(global_var.radio_tuning > 0) // tuning the rc
 remote_control_tuning();
 read_trim_switch(); // read mode sitch (channel 7)

 update_gps_motor_led(); // update GPS and motor led
 update_apm_leds(); // update APM led
}

static void thread_encoder_read_pose_estimation() // thread related to encoder (measure speed and
estimate position of the robot)
{
 read_encoder_sensor(); // get data encoder to update wheel velocity
 estimate_robot_pose(); // estimate robot pose from data encoder
}

static void thread_logger() // thread for logging datas to flash memory
{
 static unsigned char log_counter_inav = 0;

 if(twr.is_armed)
 {
 if (global_var.log_bitmask & MASK_LOG_COMPASS)
 Log_Write_Compass(); // log compass value

 if (global_var.log_bitmask & MASK_LOG_IMU)
 flash_logger.Log_Write_IMU(&imu); // log pitch and heading angle and rate

 if (global_var.log_bitmask & MASK_LOG_GPS)
 flash_logger.Log_Write_GPS(gps, current_loc.alt); // log longitude, latitude, altitude

64 | P a g e

 if(global_var.log_bitmask & MASK_LOG_INAV) // log encoder navigation
 {
 log_counter_inav++;
 if(log_counter_inav >= 10)
 {
 log_counter_inav = 0;
 Log_Write_INAV();
 }
 }

 Log_Write_NTUN(); // log variable related to waypoint and obstacle
 }

 if (global_var.log_bitmask != 0)
 Log_Write_Data(DATA_AP_STATE, twr.val); // log variable related to state

 if (global_var.log_bitmask & MASK_LOG_PM)
 Log_Write_Performance(); // log performance info
}

static void thread_gps_update(void) // get GPS data
{
 gps->update(); // read the GPS (long, lat and alt)
 update_GPS_light(); // control the GPS led
 set_gps_healthy(gps->status() >= GPS::GPS_OK_FIX_3D); // set the GPS health to fix 3D
 if (gps->new_data && last_update_gps_timer != gps->time && gps->status() >=
GPS::GPS_OK_FIX_2D) // are we have a new gps data?
 {
 gps->new_data = false;
 last_update_gps_timer = gps->time;
 }
}

void heading_control(void) // control the heading, rc channel 1 for heading control
{
 static int target_heading = 0;
 static byte heading_counter = 0;
 if(heading_mode == HEADING_LOOK_NEXT_WAYPOINT) // goes to the next waypoint location
 {
 if(mode_navigation == NAV_AVOID_TURN) // turn the robot 90 degree because of obstacle
 {
 heading_navigation = limit_360_centi_degree(heading_waypoint + 9000); // 9000 centi degree
= 90 degree (change the heading goal by 90 degree)
 target_heading = limit_heading_rate(target_heading, heading_navigation,
AUTO_YAW_SLEW_RATE+80); // limit the heading rate to the maximum heading rate
 heading_output = get_stable_heading_pid_control(target_heading); // get input control u(t)
from target heading reference with PID controller to robot

65 | P a g e

 }
 else
 {
 if(global_var.sonar_enabled) // avoid the obstacle if sonar is active
 {
 heading_navigation = avoid_obstacle(heading_waypoint); // change the heading due to the
presence of obstacle
 }
 else
 {
 heading_navigation = heading_waypoint; // the heading goal is the heading at the next
waypoint
 heading_navigation = waypoint_trajectory_following(heading_navigation); // for keeping the
robot path on the waypoint path
 }
 target_heading = limit_heading_rate(target_heading, heading_navigation,
AUTO_YAW_SLEW_RATE); // limit the heading rate to the maximum heading rate
 heading_output = get_stable_heading_pid_control(target_heading); // get input control u(t)
from target heading reference with PID controller to robot
 }
 }
 else if(heading_mode == HEADING_HOLD) // hold the heading angle
 {
 target_heading = ahrs.yaw_sensor; // get the heading measurement
 if(global_var.rc_1.control_in != 0) // there is a heading control from the rc
 {
 heading_output = global_var.rc_1.control_in; // straightly give the value from the rc input to
heading output
 heading_counter = 100; // give 1 sec to decelerate (the main loop rate is 100 Hz)
 }
 else // there is no control from the rc
 {
 if(heading_counter > 0) // counter below 1 sec
 {
 heading_counter--; // keep decrement the counter until it goes to zero
 if(heading_counter == 0) // it has already 1 sec
 {
 heading_navigation = ahrs.yaw_sensor; // hold the heading to current heading after 1 sec
 }
 heading_output = 0; // initialize the heading output to zero before it is controlled with PID
 }
 else // after 1 sec decelerating, stabilise the heading
 {
 heading_output = get_stable_heading_pid_control(heading_navigation); // get input control
u(t) from target heading reference with PID controller to robot
 }
 }
 }

66 | P a g e

 else if(heading_mode == HEADING_ACRO) // acro: release the sticks and the robot will maintain its
current pitch and heading and will not return to level
 {
 heading_output = global_var.rc_1.control_in/2.0; // reduce the rc value 50%
 target_heading = ahrs.yaw_sensor; // get the heading measurement
 }
}

void pitch_control(void) // control the pitch angle (stabilise the robot)
{
 if(twr_sys.frame_radio_new) // if new radio frame received then toggle it
 twr_sys.frame_radio_new = false;

 if(pitch_mode == PITCH_AUTO) // the mode is auto (based on the waypoint)
 {
 if (mode_navigation == NAV_AVOID_BACK) // go back because of obstacle
 {
 velocity_reference = limit_acceleration(VELOCITY_REFERENCE_AVOID_BACK,
ACCELERATION_LIMIT_AUTO_NAV_AVOID_BACK); // limit the acceleration
 clear_obstacle_counter(); // clear the obstacle counter
 if(distance_obstacle_navigation > 100) // go back 1 meter
 {
 mode_navigation = NAV_AVOID_TURN; // after go back 1 meter, then do turning
 distance_obstacle_navigation = 0; // reset the distance_obstacle_navigation
 }
 }
 else if (mode_navigation == NAV_AVOID_TURN) // turning because of obstacle
 {
 velocity_reference = limit_acceleration(VELOCITY_REFERENCE_AVOID_TURN,
ACCELERATION_LIMIT_AUTO_NAV_AVOID_TURN); // limit the acceleration
 clear_obstacle_counter(); // clear the obstacle counter
 if(distance_obstacle_navigation > 100) // if the robot have turned 1 meter then change the
mode to waypoint navigation
 mode_navigation = NAV_WP; // change the mode to waypoint navigation
 }
 else if (mode_navigation == NAV_LOITER) // keep the robot in loiter position
 {
 velocity_reference = limit_acceleration(get_loiter_speed(),
ACCELERATION_LIMIT_AUTO_NAV_LOITER); // limit the acceleration
 twr.is_pose_hold = true; // make the pose hold because it will loiter
 clear_obstacle_counter(); // clear the obstacle counter
 }
 else if(mode_navigation == NAV_WP) // the robot follows the waypoints
 {
 velocity_reference = get_waypoint_velocity_reference(); // get velocity reference from a set of
waypoint
 velocity_reference = limit_acceleration(velocity_reference,
ACCELERATION_LIMIT_AUTO_NAV_WP); // limit the acceleration

67 | P a g e

 twr.is_pose_hold = false; // make the pose not hold
 check_obstacle(); // check the presence of obstacle
 }
 calculate_pitch_output_pid_controller(velocity_reference); // calculate the input pitch control
u(t)
 }
 else if(pitch_mode == PITCH_GUIDED) // the mode is guided/manual control from the rc
 {
 if(global_var.rc_2.control_in == 0) // no rc interrupt
 {
 if(!twr.is_pose_hold) // previously the state is not hold
 {
 twr.is_pose_hold = true; // make it hold
 set_goal(encoder_navigation.get_position()); // set the goal according to the encoder
 arrive_at_goal = true; // assume the robot arrives at the goal location
 }
 velocity_reference = limit_acceleration(get_loiter_speed(), ACCELERATION_LIMIT_HOLD); //
limit the acceleration
 }
 else // rc interrupt
 {
 twr.is_pose_hold = false; // the pose is not hold
 velocity_reference = ((double)global_var.rc_2.control_in / (double)MAX_INPUT_PITCH_ANGLE)
* -global_var.waypoint_speed; // get velocity from rc input channel 2
 velocity_reference = limit_acceleration(velocity_reference, ACCELERATION_LIMIT_GUIDED);
// limit the acceleration
 }
 calculate_pitch_output_pid_controller(velocity_reference); // calculate the input pitch control
u(t)
 }
 else if(pitch_mode == PITCH_STABILIZE) // stabilise the pitch angle
 {
 if(global_var.rc_2.control_in == 0) // no interruption from the rc
 {
 if(!twr.is_pose_hold) // previously the state is not hold
 {
 twr.is_pose_hold = true; // make it hold
 set_goal(encoder_navigation.get_position()); // set the goal according to the encoder
 arrive_at_goal = true; // assume the robot arrives at the goal location
 }
 velocity_reference = limit_acceleration(get_loiter_speed(), ACCELERATION_LIMIT_HOLD); //
limit the acceleration
 calculate_pitch_output_pid_controller(velocity_reference); // calculate the input pitch control
u(t)
 }
 else // interruption from the rc
 {

68 | P a g e

 pitch_output = (get_stable_pitch_pid_control(global_var.rc_2.control_in) +
get_velocity_pitch_from_wheel()); // get input pitch control from pid controller (add output from PID
control and wheel velocity)
 }
 }
}

// get roll, pitch, heading rate but we only need the pitch and heading
static void read_imu(void)
{
 ahrs.update();
 attitude_rate = imu.get_gyro();
}

// get heading with Direction Cosine Matrix: http://www.starlino.com/dcm_tutorial.html
static void get_heading(void)
{
 const Matrix3f &dcm_matrix = ahrs.get_dcm_matrix(); // initialize the matrix
 Vector2f vector_heading; // initialize the vector heading

 vector_heading.x = dcm_matrix.a.x; // get cos value from dcm matrix
 vector_heading.y = dcm_matrix.b.x; // get sin value from dcm matrix
 vector_heading.normalize(); // vector normalization

 cos_heading = constrain(vector_heading.x, -1.0, 1.0); // limit the value between -1 and 1
 sin_heading = constrain(vector_heading.y, -1.0, 1.0); // limit the value between -1 and 1
}

static void remote_control_tuning() // tune the RC
{
 ch6_tuning_val = (double)global_var.rc_6.control_in / 1000.0f; // get the value from the rc channel
6
 global_var.rc_6.set_range(global_var.radio_tuning_low,global_var.radio_tuning_high); // set range
for rc channel 6 value
}

// autopilot navigation thread
static void thread_navigation(void)
{
 current_loc.lng = encoder_navigation.get_longitude(); // get longitude from gps
 current_loc.lat = encoder_navigation.get_latitude(); // get latitude from gps

 distance_loitering = distance_to_loiter(); // get distance to loiter
 distance_to_next_waypoint = distance_to_goal(); // get distance to next waypoint
 heading_waypoint = heading_to_goal(); // get heading to next waypoint

 distance_sonar += read_sonar(); // get distance between the sonar and obstacle
 distance_sonar >>= 1;

69 | P a g e

 if(twr.is_home_set) // if the home is set
 {
 Vector3f current_position = encoder_navigation.get_position(); // get current position
 heading_to_home = angle_two_vectors(current_position, Vector3f(0, 0, 0)); // get heading to
home
 distance_to_home = pythagorous2(current_position.x, current_position.y); // get distance to
home
 }
 else // if it is not set then initialize it to zero
 {
 distance_to_home = 0;
 heading_to_home = 0;
 }

 if(arrive_at_goal == false) // if the robot have not arrived at the goal yet
 // if the distance to the waypoint less than the waypoint radius or the waypoint is missing then
 //make the robot status is arrive at the goal
 arrive_at_goal = (distance_to_next_waypoint < global_var.waypoint_radius) ||
check_missed_wp();

 if(state_ctrl == RETURN_TO_HOME) // return to home state
 {
 if(arrive_at_goal) // if the robot has arrived then change the mode to fly by wire
 set_mode(FBW);
 }
 else if(state_ctrl == AUTO) // autopilot from ardupilot library
 {
 update_commands();
 verify_commands();
 }
 else // this must be guided mode
 {
 // do nothing
 }
}

AP_HAL_MAIN(); // mandatory for APM firmware

70 | P a g e

Appendix C: Control System Code

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

static double wheel_ratio; // used to convert ticks into 1000 t/s for 1 wheel rotation
static unsigned int balance_timer; // to get the time of pitchover

static bool is_robot_not_falling()
{
 unsigned int current_time = millis();

 if(labs(ahrs.pitch_sensor) > 4000) // if the pitch angle more than 40 degree or less than -40 degree
 {
 balance_timer = current_time;
 if(twr.is_armed) // if the motor is armed
 {
 heading_navigation = ahrs.yaw_sensor; // hold the heading
 heading_output = 0; // give the heading output zero
 pitch_output = 0; // give the pitch output zero
 encoder_navigation.set_current_position(gps->longitude, gps->latitude); // set final position
 set_goal(encoder_navigation.get_position()); // set goal position
 clear_all_integrator(); // reset the integrator
 init_disarm_motors(); // disarm the motor
 }
 return false;
 }

 //no output until we have been upright for 3 seconds
 if((current_time - balance_timer) < 3000) // if the robot does not get up for 3 secs
 {
 // the robot does fall, nothing to do
 return false;
 }
 else
 {
 if(!twr.is_armed) // try to wake up
 {
 init_arm_motors(); // re-arm the motor
 set_goal(encoder_navigation.get_position()); // hold the position
 }
 }
 return true;
}

static short get_stable_pitch_pid_control(int pitch_reference) // pitch_reference = r(t)
{
 int pitch_error = wrap_180_cd(pitch_reference - ahrs.pitch_sensor); // (e(t) = r(t) - y(t))

71 | P a g e

 int pitch_error_dot = 0 - (attitude_rate.y * DEGX100); // differential of pitch error is the pitch
rate*(-1)

 short error_proportional = global_var.pid_balance.kP() * (double)pitch_error;
 short error_integral = global_var.pid_balance.get_i(pitch_error, delta_time_controller); // integrate
the pitch error
 short error_differential = global_var.pid_balance.kD() * (double)pitch_error_dot;

 serial_command->printf_P(PSTR("a_pitch:%d, e_pitch:%d, e_P:%d, e_D:%d\n"),
(short)ahrs.pitch_sensor, pitch_error, error_proportional, error_proportional);

 return error_proportional + error_integral + error_differential;
}

static short get_velocity_pitch_from_wheel()
{
 serial_command->printf_P(PSTR("wheel_velocity:%d\n"), wheel.velocity);
 return global_var.p_vel*wheel.velocity; // Kp_wheel*wheel_velocity
}

static short get_stable_heading_pid_control(int heading_reference)
{
 int heading_error = wrap_180_cd(heading_reference - ahrs.yaw_sensor); // heading angle error
 heading_error = constrain(heading_error, -1500, 1500); // limit the heading error
 short heading_output = (double)global_var.pid_yaw.get_pid(heading_error,
delta_time_controller)/wheel_ratio; // heading output
 return heading_output;
}

static void clear_all_integrator(void) // reset all integrator
{
 cog_offset = 0;
 global_var.pid_balance.clear_integrator();
 global_var.pid_yaw.clear_integrator();
 reset_navigation_integrator();
}

static void reset_navigation_integrator() // reset navigation integrator only
{
 global_var.pid_wheel.clear_integrator();
}

static void init_control_system()
{
 gps->longitude = 0; // initialize longitude
 gps->latitude = 0; // initialize latitude
 wheel_ratio = 1000.0 / (double)global_var.wheel_encoder_speed; //convert ticks into 1000 t/s for
one rotation

72 | P a g e

 failed_i2c = 0; // sum of failed i2c transmission is initially zero
 semaphore_i2c = hal_object.i2c->get_semaphore(); // get the i2c semaphore from other threads
 if (!semaphore_i2c->take(HAL_SEMAPHORE_BLOCK_FOREVER))
 hal_object.thread_scheduler->panic(PSTR("Failed to get Encoder semaphore"));
 semaphore_i2c->give(); // give the i2c semaphore to other threads
 heading_navigation = ahrs.yaw_sensor; // hold the heading
 set_armed(false); // don't arm the motor now
}

static double convert_encoder_from_velocity(double wheel_velocity) // convert wheel velocity to
encoder ticks
{
 return wheel_velocity*1000.0/global_var.wheel_diameter;
}

static double convert_velocity_from_encoder(double encoder) // convert encoder ticks to wheel
velocity
{
 return encoder*global_var.wheel_diameter/1000.0;
}

static bool read_encoder_sensor() // reading the encoder through i2c
{
 unsigned char array_buffer[12]; // the buffer of i2c
 if (hal_object.i2c->read(ENCODER_ADDRESS, sizeof(array_buffer), array_buffer) != 0) // do not read
the encoder if the i2c failed
 {
 semaphore_i2c->give(); // give the i2c semaphore to other threads
 failed_i2c++; // increment the number of i2c communcation failure
 return false;
 }

 if (!semaphore_i2c->take(5)) // do not read the encoder if it does not takes 5
 return false;

 semaphore_i2c->give(); // give the i2c semaphore to other threads

 // initialize dynamic array
 memcpy(bytes_union.array_byte, &array_buffer[1], 2);
 memcpy(bytes_union.array_byte, &array_buffer[3], 2);
 memcpy(bytes_union.array_byte, &array_buffer[5], 2);
 memcpy(bytes_union.array_byte, &array_buffer[7], 2);

 // calculating distance and velocity of wheel left and right
 wheel.left_distance = bytes_union.value_int*WHEEL_ENCODER_DIR_LEFT;
 wheel.left_velocity = bytes_union.value_int*WHEEL_ENCODER_DIR_LEFT;
 wheel.right_distance = bytes_union.value_int*WHEEL_ENCODER_DIR_RIGHT;
 wheel.right_velocity = bytes_union.value_int*WHEEL_ENCODER_DIR_RIGHT;

73 | P a g e

 double velocity_1_rot_per_sec = ((double)(wheel.left_velocity + wheel.right_velocity) *
wheel_ratio)/2.0; // wheel velocity 1 rotation per sec divided by 2 because there are 2 wheels
 wheel.velocity = (wheel.velocity + velocity_1_rot_per_sec)/2.0; // average the wheel velocity
(prev_velocity+current_velocity)/2

 ground_velocity = convert_velocity_from_encoder(wheel.velocity); // convert to ground velocity
 distance_obstacle_navigation += fabs(ground_velocity)*0.02; // sum the distance related to
obstacle mode
 encoder_navigation.set_velocity(ground_velocity*sin_heading, ground_velocity*cos_heading); //
set the velocity
 return true;
}

static void estimate_robot_pose()
{
 static double last_GDT = 0;
 encoder_navigation.update(delta_time_controller + last_GDT); // update the encoder navigation
(position based encoder only)
 last_GDT = delta_time_controller; // record the last time for calculating the next delta time
}

// calculate_pitch_output_pid_controller
static void calculate_pitch_output_pid_controller(float velocity)
{
 // slow down in front of obstacles
 if(twr.stat_obs)
 velocity = velocity/2;

 int16_t bal_out = 0;
 int16_t vel_out = 0;
 int16_t nav_out = 0;
 float wheel_speed_error;
 int16_t ff_out;

 // switch units to encoder ticks
 encoder_ticks_reference = convert_encoder_from_velocity(velocity);

 // grab the wheel velocity error
 wheel_speed_error = wheel.velocity - encoder_ticks_reference;

 // 4 components of stability and navigation
 bal_out = get_stable_pitch_pid_control(0); // hold as vertical as possible
 vel_out = get_velocity_pitch_from_wheel(); // wheel.velocity * 1.0
 ff_out = (-encoder_ticks_reference) * global_var.throttle; // encoder_ticks_reference * 1.0

 if(twr.is_pose_hold)
 {

74 | P a g e

 global_var.pid_wheel.clear_integrator();
 nav_out = 0;
 }
 else
 {
 nav_out = global_var.pid_wheel.get_i(wheel_speed_error, delta_time_controller);
 }

 // sum the output for u(t)
 pitch_output = bal_out + vel_out + nav_out + ff_out;
}

75 | P a g e

Appendix D: Parameters in config.h File

// PID constants for pitch control
#ifndef BALANCE_P
 # define BALANCE_P 1201
#endif
#ifndef BALANCE_I
 # define BALANCE_I 10872
#endif
#ifndef BALANCE_D
 # define BALANCE_D 31
#endif
#ifndef BALANCE_IMAX
 # define BALANCE_IMAX 200
#endif

// PID constants for heading/yaw control
#ifndef YAW_P
 # define YAW_P 0.57
#endif
#ifndef YAW_I
 # define YAW_I 0.14
#endif
#ifndef YAW_D
 # define YAW_D 0.27
#endif
#ifndef YAW_IMAX
 # define YAW_IMAX 400
#endif

// PID constants for wheel control
#ifndef WHEEL_P
 # define WHEEL_P 45
#endif
#ifndef WHEEL_I
 # define WHEEL_I 1236
#endif
#ifndef WHEEL_D
 # define WHEEL_D 0.000
#endif
#ifndef WHEEL_IMAX
 # define WHEEL_IMAX 0
#endif

76 | P a g e

Appendix E: Wheel Encoders Code (Arduino Pro Mini)

#include <Wire.h>

#define ADDR_I2C 0x29 // the i2c address

static double wheel_left_velocity, wheel_right_velocity; // wheel velocity value
volatile int16_t wheel_left_ticks, wheel_right_ticks; // wheel encoder
static uint32_t prev_timer; // for calculating delta time

// this is the struct of data which must be sent through i2c to APM
struct{
 // the left and right wheel velocity
 int16_t wheel_left_velocity;
 int16_t wheel_right_velocity;
 // the left and right ticks number of encoder
 int16_t wheel_left_ticks;
 int16_t wheel_right_ticks;
 uint8_t bytes[]; // the buffer to be send to APM
}data;

void setup()
{
 pin_setup(); // setup pins to read the encoder
 // initialize i2c hardware
 Wire.begin(ADDR_I2C);
 // initialize the i2c event/callback
 Wire.onRequest(requestEvent);
 Wire.onReceive(receiveEvent);
}

void loop()
{
 // nothing to do, the loops are in ISR
}

void requestEvent()
{
 uint32_t timer = micros(); // read current time stamp

 data.wheel_left_ticks = wheel_left_ticks; // copy wheel left encoder ticks
 data.wheel_right_ticks = wheel_right_ticks; // copy wheel right encoder ticks
 wheel_left_ticks = 0; // clear wheel left encoder ticks
 wheel_right_ticks = 0; // clear wheel left encoder ticks

 double delta_time = (double)(timer - prev_timer)/1.0e6f; // calculate delta time in secs
 delta_time = minimum_value(delta_time, 0.15); // limit the delta time

77 | P a g e

 prev_timer = timer; // save current timer to be previous timer

 // find velocity of rotation and averaging
 wheel_left_velocity = (wheel_left_velocity + ((double)data.wheel_left_ticks /
delta_time))/2.0;
 wheel_right_velocity = (wheel_right_velocity + ((double)data.wheel_right_ticks /
delta_time))/2.0;

 // assign the value to the i2c buffer data
 data.wheel_left_velocity = wheel_left_velocity;
 data.wheel_right_velocity = wheel_right_velocity;

 Wire.write(data.bytes, sizeof(data)); // write the data through i2c to APM
}

void receiveEvent(int recv_data)
{
 // no received i2c
}

void pin_setup() // setup pins to input for reading the encoder and activate two interrupts
{
 // connection to encoder wheel left
 pinMode(2, INPUT); // PIND2
 pinMode(3, INPUT); // PIND3
 // connection to encoder wheel right
 pinMode(8, INPUT); // PINB1
 pinMode(9, INPUT); // PINB2

 // initialize ISR interrupt
 PCMSK2 = _BV(PCINT18);
 PCMSK0 = _BV(PCINT0);
 PCICR = _BV(PCIE0) | _BV(PCIE2);
}

ISR(PCINT0_vect) // the interrupt trigger/callback for i2c which connects to the right wheel
{
 // increase or decrease the ticks according to the input in PINB1 and PINB2
 if(((PINB & 0x01) == 0 && (PINB & 0x02) == 0) || ((PINB & 0x01) == 1 && (PINB & 0x02) > 1))
 wheel_right_ticks++;
 else
 wheel_right_ticks--;
}

ISR(PCINT2_vect) // the interrupt trigger/callback for i2c which connects to the right wheel
{
 // increase or decrease the ticks according to the input in PIND2 and PIND3
 if(((PIND & 0x04) == 0 && (PIND & 0x08) == 0) || ((PIND & 0x04) > 1 && (PIND & 0x08) > 1))

78 | P a g e

 wheel_left_ticks++;
 else
 wheel_left_ticks--;
}

double minimum_value(double a, double b) // calculate the minimum value of two variables
{
 if(a < b)
 return a;
 else
 return b;
}

Appendix F: Schematic Circuit

79 | P a g e

References

1. Alarfaj, M. & Kantor, G., 2011. Centrifugal force compensation of a two-wheeled

balancing robot. Singapore, IEEE.

2. Almeshal, A. M., Goher, K. M. & Tokhi, M. O., 2013. Dynamic modelling and

stabilization of a new configuration of two-wheeled machines. Robotics and Autonomous

Systems, 61(5), pp. 443-472.

3. An, W. & Li, Y., 2014. Simulation and control of a two-wheeled self-balancing robot.

Shenzhen, IEEE.

4. Chan, R., Stol, K. A. & Halkyard, R., 2013. Review of modelling and control of two-

wheeled robots. Annual Reviews in Control, 37(1), pp. 89-103.

5. Chiu, C., Lin, Y. & Lin, C., 2011. Real-time control of a wheeled inverted pendulum based

on an intelligent model-free controller. Mechatronics, 21(3), pp. 523-533.

6. Dai, F. et al., 2015. A two-wheeled inverted pendulum robot with friction compensation.

Mechatronics, 30(1), pp. 116-125.

7. Gonzalez, C., Alvarado, I. & Pena, M., 2017. Low-cost two-wheels self-balancing robot

for control education. IFAC, 50(1), pp. 9174-9179.

8. Juang, H. & Lurrr, K., 2013. Design and control of a two-wheel self-balancing robot using

the Arduino microcontroller board. Hangzhou, IEEE.

9. Lee, H. & Jung, S., 2012. Balancing and navigation control of a mobile inverted pendulum

robot using sensor fusion of low-cost sensors. Mechatronics, 22(1), pp. 95-105.

10. Lee, J. H., Shin, H. J., Lee, S. J. & Jung, S., 2013. Balancing control of a single-wheel

inverted pendulum system using air blowers: Evolution of Mechatronics capstone design.

Mechatronics, 23(8), pp. 926-932.

11. Miasa, S., Al-Mjali, M., Ibrahim, A. & Tutunji, T., 2010. Fuzzy control of a two-wheel

balancing robot using DSPIC. Amman, IEEE.

12. Romlay, R., Ibrahim, A., Toha, S. & Rashid, M., 2019. Two-wheel Balancing Robot;

Review on Control Methods and Experiments. International Journal of Recent Technology

and Engineering (IJRTE), 7(6), pp. 106-112.

13. Su, K., Chen, Y. & Su, S., 2010. Design of neural-fuzzy-based controller for two

autonomously driven wheeled robots. Neurocomputing, 73(13), pp. 2478-2488.

14. Sun, L. & Gan, J., 2010. Researching of Two-Wheeled Self-Balancing Robot Base on LQR

Combined with PID. Wuhan, IEEE.

80 | P a g e

15. Thao, N., Nghia, D. & Phuc, N., 2010. A PID backstepping controller for a two-wheeled

self-balancing robot. Ulsan, IEEE.

16. Unluturk, A., Aydogdu, O. & Guner, U., 2013. Design and PID control of two-wheeled

autonomous balance robot. Ankara, IEEE.

17. Wu, J., Zhang, W. & Wang, S., 2012. A Two-Wheeled Self-Balancing Robot with the

Fuzzy PD Control Method. Mathematical Problems in Engineering, 1(1), pp. 1-13.

18. Yau, H., Wang, C., Pai, N. & Jang, M., 2009. Robust Control Method Applied in Self-

Balancing Two-Wheeled Robot. Wuhan, IEEE.

19. Yim, E., Lee, S., Lee, Y. & Kim, S., 2018. Optimal Outer-Loop Position Controller for

Two-Wheeled Mobile Balancing Robot Based-on Off-Line optimization Technique.

Daegwallyeong, IEEE.

20. Aguilar-Acevedo, F & Alejo, VG 2014, 'Using the open-source platform for trajectory

control of DC motors', IEEE International Autumn Meeting on Power Electronics and

Computing (ROPEC) 2013, pp. 1-5.

21. Ali, E & Aphiratsakun, N 2016, 'AU ball on plate balancing robot', 2015 IEEE

International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 2031-2034.

22. Ateov, S, Kwon, K, Lee, S & Moon, K 2017, 'Data analysis of the MAVLink

communication protocol', 2017 International Conference on Information Science and

Communications Technologies (ICISCT), 2017, pp. 1-3.

23. Azar, AT, Ammar, HH, Barakat, MH, Saleh, MA & Abdelwahed, MA 2018, 'Self-

balancing robot modelling and control using two degrees of freedom PID controller',

International Conference on Advanced Intelligent Systems and Informatics, vol. 1, no. 1,

pp. 64-76.

24. Azimi, MM & Koofiger, HR 2013, 'Model predictive control for a two-wheeled self-

balancing robot', 2013 First RSI/ISM International Conference on Robotics and

Mechatronics (ICRoM), Tehran, pp. 152-157.

25. Balung, M, Spoljarnic, T & Vujicic, G 2017, 'A laboratory model of the elevator controlled

by ARDUINO platform', 40th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1562-1565.

26. Binugroho, E, Pratama, D, Syahputra, A & Pramadihanto, D 2016, 'Control for balancing

line follower robot using discrete, cascaded PID algorithm on ADROIT V1 education

robot', 2015 International Electronics Symposium (IES), pp. 245-250.

81 | P a g e

27. Cancharoen, R, Sripakagorn, A & Maneeratana, K 2015, 'An Arduino kit for learning

mechatronics and its scalability in semester projects', 2014 IEEE International Conference

on Teaching, Assessment and Learning for Engineering (TALE), Wellington, pp. 505-510.

28. Jamil, O., Jamil, M., Ayaz, Y & Ahmad, K 2014, 'Modeling, control of a two-wheeled self-

balancing robot', 2014 International Conference on Robotics and Emerging Allied

Technologies in Engineering (iCREATE), Islamabad, pp. 191-199.

29. Asali, M, Hadary, F & Sanjaya, B 2017, 'Modeling, Simulation, and Optimal Control for

Two-Wheeled Self-Balancing Robot', International Journal of Electrical and Computer

Engineering, vol. 7, no. 4, viewed 2 March 2020,

<https://www.researchgate.net/publication/320248792_Modeling_Simulation_and_Optimal_C

ontrol_for_Two-Wheeled_Self-Balancing_Robot>.

30. Kankhunthod, K, Kongratana, V, Numsomran, A, & Tipsuwanporn, V 2019, 'Self-

balancing Robot Control Using Fractional-Order PID Controller ', International

MultiConference of Engineers and Computer Scientists, vol. 7, no. 4, viewed 5 March

2020, < https://www.semanticscholar.org/paper/Self-balancing-Robot-Control-Using-

Fractional-Order-Kankhunthod-Kongratana/afb8171cc6330428eeca44a9dba0981dea6b6e64 >.

31. Chhotary, A, Pradhan, MK, Pandey, KK & Parhi, DR 2016, 'Kinematic analysis of a two-

wheeled self-balancing mobile robot', Proceedings of the International Conference on

Signal, Networks, Computing, and Systems, vol. 1, no. 1, pp. 87-93.

32. Dai, F, Li, F, Bai, Y, Guo, W, Zong, C & Gao, X 2012, 'Development of a coaxial self-

balancing robot based on sliding mode control', 2012 IEEE International Conference on

Mechatronics and Automation, Chengdu, pp. 1241-1246.

33. Esmaeili, N, Alfi, A & Khosravi, H 2017, 'Balancing and trajectory tracking of two-

wheeled mobile robot using backstepping sliding mode control: Design and experiments',

Journal of Intelligent & Robotic Systems, vol. 87, no. 1, pp. 601–613.

34. Ferdinando, H, Khoswanto, H & Tjokro, S 2011, 'Design and evaluation of two-wheeled

balancing robot chassis', 2011 International Conference on Communications, Computing

and Control Applications (CCCA), Hammamet, pp. 1-6.

35. Ghaffari, A, Shariati, A & Shamekhi, AH 2016, 'A modified dynamical formulation for

two-wheeled self-balancing robots', Nonlinear Dynamics, vol. 83, no. 1, pp. 217–230.

36. Ghani, M, Naim, F & Yon, T 2011, 'Two wheels balancing robot with line following

capability', International Journal of Mechanical and Mechatronics Engineering, vol. 5, no.

7, pp. 1401-1405.

https://www.researchgate.net/publication/320248792_Modeling_Simulation_and_Optimal_Control_for_Two-Wheeled_Self-Balancing_Robot
https://www.researchgate.net/publication/320248792_Modeling_Simulation_and_Optimal_Control_for_Two-Wheeled_Self-Balancing_Robot
https://www.semanticscholar.org/paper/Self-balancing-Robot-Control-Using-Fractional-Order-Kankhunthod-Kongratana/afb8171cc6330428eeca44a9dba0981dea6b6e64
https://www.semanticscholar.org/paper/Self-balancing-Robot-Control-Using-Fractional-Order-Kankhunthod-Kongratana/afb8171cc6330428eeca44a9dba0981dea6b6e64

82 | P a g e

37. Han, HY, Han, T & Jo, H 2015, 'Development of omnidirectional self-balancing robot',

2014 IEEE International Symposium on Robotics and Manufacturing Automation

(ROMA), Kuala Lumpur, pp. 57-62.

38. Hao, Q, Li, P, Ze Chang, Y & Yang, F 2011, 'The fuzzy controller designing of the self-

balancing robot', Proceedings of 2011 International Conference on Electronics and

Optoelectronics, Dalian, 2011, pp. V3-16-V3-19.

39. Hoang, P, Drieberg, M & Nguyen, C 2014, 'Development of a vehicle tracking system

using GPS and GSM modem', 2013 IEEE Conference on Open Systems (ICOS), Kuching,

pp. 89-94.

40. Hsu, C & Sheen, W 2011, 'Joint Calibration of Transmitter and Receiver Impairments in

Direct-Conversion Radio Architecture', IEEE Transactions on Wireless Communications,

vol. 11, no. 2, pp. 832-841.

41. Warren, J.D., Adams, J. and Molle, H., 2011. Arduino for robotics. In Arduino

robotics (pp. 51-82). Apress, Berkeley, CA.

42. Jiang, L, Qiu, H, Wu, Z & He, J 2016, 'Active disturbance rejection control based on

adaptive differential evolution for a two-wheeled self-balancing robot', 2016 Chinese

Control and Decision Conference (CCDC), Yinchuan, pp. 6761-6766.

43. Kim, S & Kwon, S 2015, 'Dynamic modelling of a two-wheeled inverted pendulum

balancing mobile robot', International Journal of Control, Automation, and Systems, vol.

13, no. 1, pp. 926–933.

44. Kim, S, Seo, J & Kwon, S 2011, 'Development of a two-wheeled mobile tilting & balancing

(MTB) robot', 2011 11th International Conference on Control, Automation and Systems,

Gyeonggi-do, pp. 1-6.

45. Kongratana, V, Gulphanich, S, Tipsuwanporn, V & Huantham, P 2012,'Servo state

feedback control of the self-balancing robot using MATLAB', 12th International

Conference on Control, Automation, and Systems, JeJu Island, pp. 414-417.

46. Madhira, K, Gandhi, A & Gujral, 2016, 'Self-balancing robot using complementary filter:

Implementation and analysis of complementary filter on SBR' 2016 International

Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 2950-

2954.

47. Mahler, B & Haase, J 2013, 'Mathematical model and control strategy of a two-wheeled

self-balancing robot', IECON 2013 - 39th Annual Conference of the IEEE Industrial

Electronics Society, Vienna, pp. 4198-4203.

83 | P a g e

48. Majczak, M & Wawrzynski, P 2015, 'Comparison of two efficient control strategies for

two-wheeled balancing robot', 20th International Conference on Methods and Models in

Automation and Robotics (MMAR), Miedzyzdroje, 2015, pp. 744-749.

49. Martins, R & Nunes, F 2017, 'Control system for a self-balancing robot', 4th

Experiment@International Conference (exp.at'17), Faro, pp. 297-302.

50. Memarbashi, HR & Chang, JY 2011, 'Design and parametric control of co-axes driven two-

wheeled balancing robot' Microsystem Technologies, vol. 17. no. 1, pp. 1215–1224.

51. Muhammed, M, Buyamin, S, Ahmad, MN & Nawawi, SW 2011 'Dynamic Modeling and

Analysis of a Two-Wheeled Inverted Pendulum Robot', 2011 Third International

Conference on Computational Intelligence, Modelling & Simulation, Langkawi, pp. 159-

164.

52. Parcito, B 2016, 'Ensemble Kalman filter and PID controller implementation on the self-

balancing robot', 2015 International Electronics Symposium (IES), Surabaya, pp. 105-109.

53. Peng, K, Ruan, X & Zuo, G 2012, 'Dynamic model and balancing control for the two-

wheeled self-balancing mobile robot on the slopes', Proceedings of the 10th World

Congress on Intelligent Control and Automation, Beijing, pp. 3681-3685.

54. Prakash, K & Thomas, K 2017, 'Study of controllers for a two-wheeled self-balancing

robot', 2016 International Conference on Next Generation Intelligent Systems (ICNGIS),

Kottayam, pp. 1-7.

55. Pratama, D, Ardilla, F, Binugroho, E & Pramadihanto, D 2015, 'Tilt set-point correction

system for balancing robot using PID controller', 2015 International Conference on

Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, pp.

129-135.

56. Pratama, D, Bunigroho, E & Ardilla, F 2016, 'Movement control of two wheels balancing

robot using a cascaded PID controller', 2015 International Electronics Symposium (IES),

Surabaya, pp. 94-99.

57. Rahman, M, Rashid, H & Hossain, M 2018, 'Implementation of Q learning and deep Q

network for controlling a self-balancing robot model', Robotics and Biomimetic, 5(8), pp.

33-45.

58. Riattama, D., Binugroho, E., Dewanto, R & Pramadihanto, D 2017, 'PENS-wheel (one-

wheeled self-balancing vehicle) balancing control using PID controller', 2016

International Electronics Symposium (IES), Denpasar, pp. 31-36.

59. Ruan, X & Li, W 2014, 'Ultrasonic sensor based two-wheeled self-balancing robot obstacle

avoidance control system', 2014 IEEE International Conference on Mechatronics and

Automation, Tianjin, pp. 896-900.

84 | P a g e

60. Sadeghian, R & Masoule, M 2016, 'An experimental study on the PID and Fuzzy-PID

controllers on a designed two-wheeled self-balancing autonomous robot',

61. Samson, N, Dumont, S, Specq, M & Praud, J 2011, 'Radio telemetry devices to monitor

breathing in non-sedated animals', Respiratory Physiology & Neurobiology, vol. 179, no.

3, pp. 111-118.

62. Sun, F., Yu, Z & Yang, H 2015, 'A design for a two-wheeled self-balancing robot based

on Kalman filter and LQR', 2014 International Conference on Mechatronics and Control

(ICMC), Jinzhou, pp. 612-616.

63. Su, X., Wang, C., Su, W & Ding, Y 2016, 'Control of balancing mobile robot on a ball with

fuzzy self-adjusting PID', 2016 Chinese Control and Decision Conference (CCDC),

Yinchuan, pp. 5258-5262.

64. Wang, X., Chen, S., Chen, T & Yang, B 2016, 'Study on control design of a two-wheeled

self-balancing robot based on ADRC', 2016 35th Chinese Control Conference (CCC),

Chengdu, pp. 6227-6232.

65. Wardoyo, A. S. et al. 2015, 'An investigation on the application of fuzzy and PID algorithm

in the two-wheeled robot with a self-balancing system using microcontroller', 2015

International Conference on Control, Automation and Robotics, Singapore, pp. 64-68.

66. Wu, J., Liang, Y & Wang, Z 2011, 'A robust control method of two-wheeled self-balancing

robot', Proceedings of 2011 6th International Forum on Strategic Technology, Harbin,

Heilongjiang, pp. 1031-1035.

67. Wu, J & Wanying, Z 2011, 'research on Control Method of Two-wheeled Self-balancing

Robot', 2011 Fourth International Conference on Intelligent Computation Technology and

Automation, Shenzhen, Guangdong, pp. 476-479.

68. Yuan, S., Lei, G & Bing, X 2016, 'Dynamic modelling and sliding mode controller design

of a two-wheeled self-balancing robot', 2016 IEEE International Conference on

Mechatronics and Automation, Harbin, pp. 2437-2442.

69. "Rover Home — Rover documentation", Ardupilot.org, 2020. [Online]. Available:

https://ardupilot.org/rover/index.html. [Accessed: 08- May- 2020].

70. Encoder, 3., 2020. 34:1 Metal Gearmotor 25Dx52l Mm HP With 48 CPR Encoder. [online]

Core Electronics. Available at: < https://core-electronics.com.au/34-1-metal-gearmotor-

25dx52l-mm-hp-with-48-cpr-encoder.html > [Accessed 13 May 2020].

71. "Open Source Drone Software. Versatile, Trusted, Open. ArduPilot.", Ardupilot.org,

2020. [Online]. Available: https://ardupilot.org/. [Accessed: 08- May- 2020].

https://core-electronics.com.au/34-1-metal-gearmotor-25dx52l-mm-hp-with-48-cpr-encoder.html
https://core-electronics.com.au/34-1-metal-gearmotor-25dx52l-mm-hp-with-48-cpr-encoder.html

85 | P a g e

