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Summary	

 

 Carbon nanotubes have been shown to ignite when exposed to an intense 

flash of light such as from a camera flash or laser. This phenomenon has been 

proposed as a novel initiation method for fuels or explosives. Light initiation of 

materials provides many advantages over traditional initiation methods for fuels 

and explosives such as reduced degradation of the initiator over time, reduced 

interference from electrical fields, improved safety and faster ignition by initiating 

many points of a material at once. The purpose of this work was to investigate the 

use of light initiated carbon nanotubes in mining explosive initiators to replace the 

sensitive primary explosives currently used. 

 

 In order to investigate this, experimental methods and instruments needed 

to first be developed to control and reproducibly measure the ignition of carbon 

nanotubes by light. Subsequently, those experimental methods were used to 

comparably optimise the ignition output of carbon nanotubes by exploring the 

variables and investigating various additives and novel techniques. 

 

 Results were successfully recorded with the combination of a high speed 

camera and a high speed pyrometer. A comparison of the reactions when 

subjected to a camera flash and a laser was performed. It was found that a camera 

flash unit produced a slow, surface propagated deflagration while a laser 

produced a much faster explosion-like result which was determined to be 

preferable for controllable initiation of energetic materials. 

 

 The addition of ferrocene to carbon nanotube powder was found to 

increase the temperature and reaction of light initiated nanotubes and these 

mixtures were used to successfully ignite pentaerythritol tetranitrate (PETN). 

Incomplete combustion was found as a result of particle scattering and limited 

thermal transfer. 
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 Growth of vertically aligned carbon nanotubes on a silicon substrate was 

performed and investigated as an alternative to randomly aligned nanotube 

powders. Light initiation of these samples demonstrated higher temperatures and 

greater reactivity due to the aligned nature of the nanotubes and the strong 

thermal conductivity of carbon nanotubes along their length. Vertically aligned 

carbon nanotubes coated in PETN produced explosive results when initiated by a 

laser and demonstrated great promise for the ignition of energetic materials. 
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