REGIONAL IMMUNOSUPPRESSION FOR CORNEAL TRANSPLANTATION

SARAH L BRICE

B. Biotech (Hons)

Thesis submitted for the degree of

Doctor of Philosophy

January 2010

Faculty of Health Sciences

School of Medicine

Flinders University of SA

Adelaide, Australia

Sarah Brice ii

TABLE OF CONTENTS

	ABSTRACT	X
	CONFERENCE PRESENTATIONS ARISING FROM THIS THESIS	xiii
	DECLARATION	xiv
	ACKNOWLEDGEMENTS	XV
	ABBREVIATIONS	xvii
(CHAPTER 1: INTRODUCTION	1
	1.1 INTRODUCTION OVERVIEW	2
	1.2 THE HUMAN CORNEA	2
	1.2.a. Anatomy of the human cornea	2
	1.2.b. Proliferative capacity of the human corneal endothelium	4
	1.3. CORNEAL TRANSPLANTATION	5
	1.4 ANIMAL MODELS OF CORNEAL TRANSPLANTATION	7
	1.5 MECHANISMS OF CORNEAL GRAFT REJECTION	8
	1.6 IMMUNOLOGY OF CORNEAL TRANSPLANTATION	9
	1.6.a. T cells	9
	1.6.b. Antigen presenting cells (APCs) in the eye	13
	1.6.c. Allorecognition	20
	1.6.d. Ocular lymphatic drainage	21
	1.6.e. Immune privilege in the eye	27
	1.7 THERAPIES FOR CORNEAL GRAFT REJECTION	29
	1.7.a. Topical application of glucocorticosteroids	29
	1.7.b. HLA-matching	29
	1.7.c. Systemic immunosuppression using calcineurin blockers	30
	1.7.d. Antibodies and antibody fragments	30

1.8 GENE THERAPY	34
1.8.a. Gene therapy overview	34
1.8.b. Gene transfer to the corneal endothelium	35
1.8.c. Lentivirus biology	37
1.8.d. Recombinant lentiviral vectors for gene transfer	38
1.8.e.The Anson HIV-1 vector system	44
1.9 BIOSAFETY ISSUES ASSOCIATED WITH GENE THERAPY	46
1.9.a. The first gene therapy death	46
1.9.b. Insertional mutagenesis	47
1.9.c. Immune reactivity of viral vectors	48
1.9.d. Gene therapy for the treatment of non-life threatening disease	48
1.9.e. Ocular gene therapy	49
1.9.f. Summary of the biosafety issues associated with gene therapy	49
1.10 SUMMARY AND AIMS	50
CHAPTER 2: MATERIALS AND METHODS	53
2.1 MATERIALS	54
2.1.a. General chemicals	54
2.1.a. General chemicals	
	54
2.1.b. Antibodies	54 54
2.1.b. Antibodies	54 54
2.1.b. Antibodies	54 54 54
2.1.b. Antibodies	54 54 54 56
2.1.b. Antibodies	54 54 56 56

	2.1.j. Animals	. 61
	2.1.k. Miscellaneous reagents	. 61
	2.1.l. Filter cube specifications on fluorescence microscopes	. 61
2.	2 MOLECULAR METHODS	. 63
	2.2.a. Plasmid DNA preparation	. 63
	2.2.b. Restriction endonuclease digestion	. 64
	2.2.c. Dephosphorylation with shrimp alkaline phosphatase (SAP)	. 64
	2.2.d. Purification of digested and/or SAP-treated DNA	. 65
	2.2.e. Ligations	. 65
	2.2.f. Purification of ligation products	. 65
	2.2.g. Agarose gel electrophoresis	. 66
	2.2.h. Preparation of electrocompetent cells (E. coli strains)	. 66
	2.2.i. Electroporation of <i>E. coli</i> strains DH5α and GM48	. 67
	2.2.j. End-point polymerase chain reaction (PCR)	. 68
	2.2.k. Total RNA extraction	. 69
	2.2.1. DNase I treatment of RNA	. 70
	2.2.m. cDNA synthesis	. 71
2.	3 QUANTITATIVE REAL-TIME PCR (QPCR)	. 71
	2.3.a. Primers for qPCR	. 71
	2.3.b. qPCR set up	. 72
	2.3.c. Determination of primer pair amplification efficiency	. 73
	2.3.d. Gene expression analysis	. 73
2.	4 CELL CULTURE METHODS	. 74
	2.4.a. Maintenance of cell lines	. 74
	Table 2.9: Cell lines.	. 75

Sarah Brice

2.4.b. Freezing cell lines	75
2.4.c. Thawing cells	75
2.4.d. Cell viability determinations	76
2.4.e. Liposome-mediated transfection of mammalian cells	76
2.4.f. Transduction of mammalian cells with lentiviral vectors	77
2.4.g. Flow cytometry to detect scFv binding	77
2.4.h. Flow cytometry for eYFP detection in transfected or transduced c	ells 79
2.4.i. Fluorescence microscopy of cell lines	80
2.4.j. Human endostatin::kringle-5 (EK5) detection in culture supernata	nt by
ELISA	80
2.4.k. Determination of endotoxin levels in viral preparations	80
2.5 LENTIVIRAL VECTOR PRODUCTION AND TESTING	81
2.5.a. Large scale lentiviral vector preparations	81
2.5.b. Medium scale lentiviral vector preparations	83
2.5.c. Detection of replication-competent lentivirus	84
2.5.d. Titration of lentiviral vector preparations	84
2.6 ADENOVIRAL VECTOR PREPARATION	87
2.6.a. Adenoviral vector production	87
2.6.b. Titration of adenoviral vector preparations	89
2.7 ANIMAL AND TISSUE METHODS	90
2.7.a. Conventional histology	90
2.7.b. Nuclear staining of tissues	90
2.7.c. Fluorescence microscopy of rat tissues	91
2.7.d. Transduction of rat tissues with viral vectors	92
2.7.e. Rat orthotopic corneal transplantation	94

2.7.f. Post-operative assessment of corneal grafts	95
2.7.g. Collection of rat blood by tail tipping	97
2.7.h. Lymphadenectomy of cervical lymph nodes	97
2.8 STATISTICAL ANALYSIS	98
2.8.a. Statistical analysis of transgene expression	98
2.8.b. Statistical analysis of corneal graft survival and inflar	nmation data98
CHAPTER 3: CONSTRUCTION AND CHARACT	ERISATION
OF LENTIVIRAL VECTORS	99
3.1 ABSTRACT	100
3.2 INTRODUCTION	101
3.2.a. Gene transfer to the eye	101
3.2.b. Lentiviral vectors for gene transfer	101
3.2.c. CD4 as a target for T cell activation	102
3.2.d. ScFv as a potential treatment to the cornea	102
3.2.e. The Foot and Mouth Disease Virus (FMDV) 2A self-	processing sequence 103
3.2.f. Specific aims	103
3.3 RESULTS	104
3.3.a. Construction of lentiviral plasmids	104
3.3.b. Analysis of lentiviral vector titration	
3.3.c. Transgene expression from single-gene and dual-gene	e vectors 128
3.4: SUMMARY AND DISCUSSION	139
3.4.a. Summary	139
3.4.b. Titration of lentiviral vector preparations	140
3.4.c. Multigenic expression using the 2A self-processing so	equence 146

CHAPTER	4.	EXPRESSION	\mathbf{OF}	ANTI-RAT CD4 SCFV AT	Γ
	т.		\/ //	ANTI-NAT CDT DCT V AT	

POTENTIAL SITES OF ANTIGEN PRESENTATION15	54
4.1 ABSTRACT	55
4.2 INTRODUCTION	56
4.2.a. Corneal graft rejection	56
4.2.b. Regional immunosuppression	56
4.2.c. Anti-rat CD4 scFv as an immunosuppressive agent	58
4.2.d. Specific aims	59
4.3 RESULTS	60
4.3.a Lentiviral transduction of the corneal endothelium	60
4.3.b. Lentiviral transduction of the cervical lymph nodes	82
4.3.c. Bilateral lymphadenectomy of the cervical lymph nodes	85
4.4 SUMMARY AND DISCUSSION	89
4.4.a. Summary	89
4.4.b. Immunosuppression produced by the corneal endothelium	92
4.4.c. Immunosuppression within the anterior segment	95
4.4.d. Immunosuppression within the cervical lymph nodes	98
4.4.e. Regional immunosuppression for corneal transplantation in the rat 20	01
CHAPTER 5: FINAL DISCUSSION20	03
5.1 SUMMARY OF THE MAJOR FINDINGS FROM THIS THESIS 20	.04
5.2 MULTI-GENE EXPRESSION USING THE 2A SELF-PROCESSING	
SEQUENCE20	.05
5.2.a. Expression of multiple transgenes from a single lentiviral construct 20	.05
5.2.b. Stoichiometry of upstream and downstream proteins expressed from 2A	
vectors	.07

Sarah Brice viii

5.2.c. The use of the 2A	self-processing sequence to prevent corneal allograft	
rejection		. 210
5.3 ANTIGEN PRESENT	ATION DURING CORNEAL TRANSPLANTATION	. 211
5.3.a. Antigen travels fr	om the eye to the secondary lymphoid organs in soluble	•
form		. 211
5.3.b. Evidence for anti	gen presentation within the anterior segment of the eye	. 215
5.3.c. A proposed mode	l of antigen presentation during corneal transplantation	
in rodents		. 217
5.3.d. Inhibition of antig	gen presentation with anti-CD4 antibodies and antibody	
fragments in rodents		. 222
5.3.e. The outcome of c	orneal allograft survival after bilateral	
lymphadenectomy of th	e cervical lymph nodes in rodents	. 224
5.2 f Dagional immuno	suppression for human corneal transplantation	. 228
5.5.1. Regional inimuno	suppression for numan cornear transplantation	0
_	RS AND SOLUTIONS	
APPENDIX 1: BUFFE	-	230
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe	RS AND SOLUTIONS	230
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONSd microscope slides	230 . 231 . 231
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONSd microscope slides	230 . 231 . 231
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e)	. 231 . 231 . 231 . 231
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e)	230 . 231 . 231 . 231 . 231 . 232
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e)	230 . 231 . 231 . 231 . 232 . 232
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e)	230 . 231 . 231 . 231 . 232 . 232
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e) ates	230 . 231 . 231 . 231 . 231 . 232 . 232 . 232
APPENDIX 1: BUFFE A1.1 Chrome-alum-subbe A1.2 DEPC-H ₂ O	RS AND SOLUTIONS d microscope slides e)	230 . 231 . 231 . 231 . 231 . 232 . 232 . 232 . 233

A1.12 Low salt LB medium	234
A1.13 PBS (10x)	234
A1.14 PBS-azide	235
A1.15 RBC lysis solution (10X)	235
A1.16 SOC medium	235
A1.17 Sodium azide 4M stock	235
A1.18 TBE (10x)	236
A1.19 Trypan blue stock	236
A1.20 Trypsin-EDTA	236
APPENDIX 2: VECTOR MAPS	237
A2.1: pBS-CD55-F2A-CD59 vector map	238
A2.2: pHIV-eYFP vector map	239
A2.3 fHSSOX38scFv in pAdtrackCMV vector map	240
A2.4 pHIV-EK5 vector map	241
A2.5 pBLAST41-hEndoKringle5 vector map	242
APPENDIX 3: CONSTRUCTION OF pHIV-CD4scFv	243
APPENDIX 4: SEQUENCE ANALYSIS	251
A4.1 Sequence analysis of pHIV-CD4scFv_F2A_eYFP	253
A4.2 Sequence analysis of pHIV-eYFP_F2A_CD4scFv	255
A4.3 Sequence analysis of pHIV-CD4scFv_F2A	257
A4.4 Sequence analysis of pHIV-CD4scFv_F2A_EK5	259
REFERENCES	251

Sarah Brice X

ABSTRACT

Corneal transplantation is performed to restore vision or to relieve pain in patients with damaged or diseased corneas. However, approximately 40% of corneal allografts fail after 10 years. The most common cause of graft failure is irreversible immunological rejection, primarily mediated by CD4+ T cells, despite the topical application of glucocorticosteroids. The aim of this project was to investigate the anatomic site of antigen presentation during corneal transplantation in the rat, by using a lentiviral vector to express an anti-CD4 antibody fragment at potential sites of antigen presentation, including the donor corneal endothelium, the anterior segment of the eye and the cervical lymph nodes.

Dual-gene lentiviral vectors were constructed by inserting the 2A self-processing sequence between two transgenes. This allowed expression of two transgenes within a single open reading frame. *In vitro* characterisation of the dual-gene vectors was performed in cell culture experiments, which showed that transgenic proteins were expressed at lower levels from dual-gene vectors compared to the expression from single-gene vectors and expression was lowest when the transgene was situated downstream of the 2A self-processing sequence.

To locate the anatomic site of antigen presentation during corneal transplantation in rats, a lentiviral vector carrying an anti-CD4 antibody fragment was delivered to the corneal endothelium either immediately prior to corneal transplantation by *ex vivo* transduction of the donor corneas, or 5 days prior to corneal transplantation by anterior chamber injection into both the recipient and the donor rats. A separate group of recipient rats received intranodal injections of the lentiviral vector carrying

Sarah Brice xi

an anti-CD4 antibody fragment into the cervical lymph nodes 2 days prior to corneal transplantation. Another group of rats underwent bilateral lymphadenectomy of the cervical lymph nodes 7 days prior to corneal transplantation. Corneal allografts were scored daily for opacity, inflammation and neovascularisation. Expression of the anti-CD4 antibody fragment from transduced tissues was detected using flow cytometry and polymerase chain reaction. Modest, but significant prolongation of corneal allograft survival was experienced by rats that received *ex vivo* transduction of the donor corneas with a lentiviral vector carrying an anti-CD4 antibody fragment immediately prior to corneal transplantation, but all grafts did eventually reject. Anterior chamber injection of the lentiviral vector carrying the anti-CD4 antibody fragment 5 days prior to corneal transplantation into both recipient and donor eyes did not prolong allograft survival. Intranodal injection of a lentiviral vector carrying an anti-CD4 antibody fragment did not prolong the survival of the corneal allografts, nor did bilateral lymphadenectomy of the cervical lymph nodes 7 days prior to corneal transplantation.

Neither expression of the anti-CD4 antibody fragment in the cervical lymph nodes nor the removal of these nodes was able to prolong corneal allograft survival in rats, suggesting that T cell sensitisation could potentially occur elsewhere in the body. However, expression of the anti-CD4 antibody fragment from the donor corneal endothelium was able to prolong corneal allograft survival, suggesting that some antigen presentation might occur within the anterior segment of the eye. Based on the findings described in this thesis and those of others, I propose that antigen presentation in the rat occurs within anterior segment of the eye and within the secondary lymphoid tissues such as the cervical lymph nodes, and that inhibiting

Sarah Brice xii

antigen presentation at one of these sites will delay graft rejection. However, to completely abolish antigen presentation during corneal transplantation in the rat, I hypothesise that antigen presentation within both the anterior segment of the eye and within the secondary lymphoid tissues must be inhibited.

Sarah Brice Xiii

CONFERENCE PRESENTATIONS ARISING FROM THIS THESIS

Brice S.L., Mortimer L.M., Marshall K.A., Brereton H.M., Williams K.A. Lentiviral-mediated gene transfer of anti-CD4 scFv prolongs corneal allograft survival. 2009 May 29-April 1, Australian Gene Therapy Society meeting, Sydney, poster presentation.

Brice S.L., Mortimer L.M., Brereton H.M., Williams K.A. Lentiviral gene transfer to the rat cornea. 2008 August 9-14, The Transplantation Society – XXII International Congress, Sydney, poster presentation.

Sarah Brice xiv

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Sarah L Brice

Sarah Brice XV

ACKNOWLEDGEMENTS

This project would not have been possible without the technical assistance provided by the following people:

- Kirsty Kirk who performed all the rat corneal grafts and histology for this project.
- The staff of the Gene Technology Unit at the Women's and Children's Hospital, including Donald Anson, Stanley Tan and Sue Ping Lim for their assistance with lentivirus production.
- Lauren Mortimer for setting up lentiviral titration and RCR assays at Flinders.
- Yazad Irani who assisted with the cloning of one of the vectors used in this project.

I would like to thank my principal supervisor Keryn Williams for taking me on as a student. Keryn, I feel privileged to have had the opportunity to learn from you. It took a while, but thanks to your persistence, I feel more able to critically analyse both my own work, and the work of others.

I would also like to thank Helen Brereton for her supervision and guidance throughout my project. Helen, your knowledge of cloning and molecular biology has been an invaluable resource for my project.

I would like to especially mention Kirsty Kirk who performed all of the corneal grafts and histology for my project. Kirsty, your technical prowess was truly phenomenal, even while wearing your "Darth Vader" mask. I will miss your infectious, bubbly personality.

I would like to thank Lauren Mortimer for all the long days she has put in with virus production, titration and associated procedures. Lauren, I have been very grateful for your meticulous problem solving abilities and dedication to your work. We have been studying and working together for such a long time now, I am really going to miss you as a colleague and a friend.

Sarah Brice Xvi

I would also like to thank the entire Department of Ophthalmology at Flinders University for being an inviting, helpful and friendly group of people to work with. Thank you to Alison, Dave, Kath, Yazad, Sonja, Margaret, Mel, Shiwani, Sarah and Paul for our team room discussions and for being more than just work colleagues and becoming real friends.

To Claire Jessup, thank you for taking me under your wing, mentoring me through the early stages of my project and providing me with a house to live in. I would also like to thank Melinda Tea for being a wonderful house mate, PhD buddy and supportive friend. I really will miss working and living with you.

To my friends Susan, Lisa, Row, Helen, Michelle, Loretta and Jelena, thank you for being there for me when I needed to some non-thesis time. I look forward to seeing a lot more of you now. I would like to acknowledge my godparents Auntie Sue and Uncle Kent, for showing a real interest in my studies and to my brother Nathaniel, thank you for always being only a phone call away despite the distance between us. I would like to thank Oscar my beautiful cat, for all the cuddles and affection when I needed it.

I would like to thank my parents for encouraging me to be the best I can be, for installing the drive in me to never give up and to always finish what I start. Thank you to Richie, for loving and caring for me even through my crazy moments and for looking after me when I wasn't even looking after myself. Your support has meant the world to me.

Lastly, I would like to dedicate this thesis to my grandparents who have always believed in me. You have been my inspiration and Grandpa I wish you were able to see the final product.

Sarah Brice xvii

ABBREVIATIONS

> greater than

< less than

°C degrees Celsius

μg microgram

μl microlitre

μm micrometre

A549 human lung adenocarcinoma epithelial cell line

AAV adeno-associated viral vector

AC anterior chamber

ACAID anterior chamber-associated immune deviation

Adv adenoviral vector

AE amplification efficiency

Ag antigen

AIDS acquired immunodeficiency syndrome

APC antigen presenting cell

ARBP acidic ribosomal phosphoprotein

bp base pair

BSS balanced salt solution

CaCl₂ calcium chloride

CALT conjunctiva-associated lymphoid tissue

CB-Dx cascade blue dextran

CCTS The American Collaborative Corneal Transplant Study

CH constant domain of immunoglobulin heavy chain

CHO Chinese hamster ovarian cell line

Sarah Brice xviii

CD cluster of differentiation

CD40L CD40 ligand

cDNA complementary deoxyribonucleic acid

CGD chronic granulomatous disease

CL constant domain of immunoglobulin light chain

CLN cervical lymph node

cm centimetre

CMV cytomegalovirus immediate early promoter

CPE cytopathic effects

cPPT central polypurine tract

CT cycle threshold

CTL cytotoxic T lymphocyte

CTLA-4 cytotoxic T lymphocyte-associated protein-4 (CD152)

Da Dalton

DC dendritic cell

DDH₂O double distilled water

DEPC diethylpyrocarbonate

DMEM Dulbecco's Modified Eagle Medium

DMSO dimethyl sulphoxide

DNA deoxyribonucleic acid

dNTP dinucleotide triphosphate

ds double stranded

DTH delayed type hypersensitivity

DTT dithiothreitol

eGFP enhanced green fluorescent protein

Sarah Brice xix

eYFP enhanced yellow fluorescent protein

ECACC European Collection of Cell Cultures

E. Coli Escherichia coli

EK5 human endostatin::kringle-5 fusion protein

ELISA enzyme-linked immunosorbent assay

ETDA ethylene diamine tetra acetic acid

EU endotoxin unit

F2A FMDV 2A self-processing sequence with a furin cleavage site

immediately upstream of 2A, and a 2B proline residue at its C-

terminus

F344 Fisher 344 inbred rat strain

Fab monomeric antigen binding fragment

FACS fluorescence-activated cell sorting

FasL Fas-ligand (CD95L)

Fc crystallisable fragment

FCS fetal calf serum

FDA Food and Drug Administration

fHSS factor H secretory sequence

FITC fluorescein isothiocyanate

FMDV foot and mouth disease virus

g gram

g unit of gravity

gDNA genomic deoxyribonucleic acid

GFP green fluorescent protein

HeBS HEPES-buffered saline

Sarah Brice XX

HEK-293A human embryonic kidney cell line with E1- region of adenovirus 5

HEK-293T human embryonic kidney cell line that constitutively expresses the

SV40 large T cell antigen

HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid

HIS6 tag 6 histidine tag

HIV human immunodeficiency virus

HLA human leucocyte antigen

HRP horseradish peroxidise

HPRT hypoxanthine guanine phosphoribosyl-transferase

Hz Hertz

IFN-γ interferon gamma

Ig immunoglobulin

IL interleukin

IRES internal ribosome entry sites

IU/ml international units/ml

kb kilobase

kDa kilodalton

L litre

LB luria bertani

LC Langerhans cells

LCA2 Leber's congenital amaurosis type 2

LIP liposome-incorporated

log logarithm

log_e natural logarithm

LTR long terminal repeat

Sarah Brice xxi

LV lentiviral vector

LYVE-1 lymphatic vessel endothelial hyaluronan receptor 1

M Molar

mAb monoclonal antibody

MLN mesenteric lymph node

MFI mean fluorescence intensity

mg milligram

MHC major histocompatibility complex

ml millilitre

MLR mixed lymphocyte reaction

MLV Molony murine leukaemia viral vector

mm millimetre

MOI multiplicity of infection

mRNA messenger ribonucleic acid

MW molecular weight

NIH National Institutes of Health

ng nanogram

NHMRC National Health and Medical Research Council

NK natural killer cell

NTC no template control

OD optical density

ORF open reading frame

OVA ovalbumin peptide

pA polyadenylation signal

PBL peripheral blood lymphocytes

Sarah Brice xxii

PBS phosphate buffered saline

PC2 physical containment level 2

PCR polymerase chain reaction

PE phycoerythrin

pfu plaque forming unit

pg pictogram

PGK phosphoglycerate kinase

pmol picomole

polyA polyadenylation site

PPT polypurine tract

qPCR quantitative real-time polymerase chain reaction

qRT-PCR quantitative reverse transcription real-time polymerase chain reaction

RBC red blood cells

RCR replication competent recombinant

RNA ribonucleic acid

RPMI Roswell Park Memorial Institute

RRE rev response element

RRExt extended rev response element

RT reverse transcription

SAP shrimp alkaline phosphatase

SAPE streptavidin R-phycoerythrin

SCID-X1 x-linked severe combined immunodeficiency disorder

scFv single chain fragment variable

SD standard deviation

sFlt-1 soluble vascular endothelial growth factor receptor 1

Sarah Brice xxiii

SIN self inactivating

SOC Super Optimal Broth with 20 mM glucose. 'C' stands for catobolite

repression, reflective of the added glucose.

SOE-PCR splice overlap extension polymerase chain reaction

ss single stranded

SV40 simian-like virus type-40 early promoter

Tc cytotoxic response

TCID₅₀ tissue culture infectious dose method

TCR T cell receptor

TGF-β transforming growth factor beta

Th T helper response

T_m melting temperature

TNF tumour necrosis factor

TU transducing units

UV light ultraviolet light

v/v volume per volume

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

VH variable domain of immunoglobulin heavy chain

VL variable domain of immunoglobulin light chain

VSV vesicular stomatitis virus

VSV-G vesicular stomatitis virus glycoprotein G

why woodchuck hepatitis virus post-transcriptional element

w/v weight per volume

WF Wistar Furth inbred rat strain

Sarah Brice xxiv

WT wild type