An Investigation of Biomarkers in Laryngopharyngeal Reflux

Dr John M Wood MBBS BSocSci(Hons) BA(Hons)

A Thesis Submitted for the Degree of Master Of Surgery Flinders University of South Australia January 2013

Flinders ENT, Department of Surgery Flinders Medical Centre, Bedford Park South Australia 5042

TABLE OF CONTENTS

Table of Contents	ii
Acknowledgments	vi
Declaration	viii
Preface	ix
List of Figures	x
List of Tables	xii
List of Abbreviations	xiii
Abstract	xv
1 Chapter 1: Introduction	1
1.1 Definition	2
1.2 Epidemiology	
1.3 Anatomy of the Larynx	7
1.4 Extra-oesophageal Reflux: LPR	15
1.4.1 Reflux Laryngitis	15
1.4.2 Globus Pharyngeus	16
1.4.3 Dysphagia	17
1.4.4 Chronic Cough	18
1.5 Consequences	19
1.6 Diagnosis	21
1.6.1 pH Monitoring	21
1.6.2 Reflux Symptom Index	24

1.	6.3	Reflux Finding Score	.27
1.7	Pat	hogenesis of Reflux	.33
1.	7.1	Damaging Agents	.33
1.8	Lar	yngeal Defences	.38
1.	8.1	Gastroesophageal junction	.38
1.	8.2	Oesophageal motor function and acid clearance	.40
1.	8.3	Upper oesophageal sphincter	.41
1.	8.4	Mucosal Resistance	.41
1.9	Tre	atment options for LPR	.54
1.	9.1	Lifestyle Factors	.54
1.	9.2	Proton Pump Inhibitors	.55
1.	9.3	Alginates	.58
1.	9.4	Antidepressants	.58
1.	9.5	Surgical	.59
1.10	C	onclusions	.62
1.11	Hy	ypotheses	.63
1.12	: Ai	ims	.64
2 Ch	napte	er 2: Methods	65
2.1	Pat	tient Recruitment	.66
2.2	Tis	sue Storage	.68
2.3		tient Groups	
2.4		tological Analysis	
2.5	QIA	Azol RNA Extraction Protocol	.72
2.	5.1	Spectrophotometric Assessment of RNA Concentration	.74
2.6	RN	A Bioanalysis	
2.7		antitative Real Time Reverse Transcription Polymerase Chain	
Rea		n Analysis	.75

	2.7	'.1	cDNA Synthesis	75
	2.7	.2	RT ² SYBR Green Mastermix	75
	2.7	'.3	Polymerase Chain Reaction	76
	2.8	Qua	ntitative RT PCR Analysis	76
3	Cha	apte	r 3: Results	
		•	nographics	
	-		ological Analysis	
			R Analysis	
			-	
4		•	r 4: Discussion	
			opathology	
	4.2	Cyto	okeratins 8 & 14 (<i>KRT8</i> and <i>14</i>)	115
	4.3	Infla	ammatory Markers	118
	4.3	5.1	IL-6 and IL-8	118
	4.3	.2	PTGS2	121
	4.3	.3	MGMT	123
	4.3	6.4	TGFβ-1	124
	4.3	5.5	VEGF-A	126
	4.4	Lary	/ngeal Defences	128
	4.4	.1	Mucins	128
	4.4	.2	Carbonic Anhydrase III	129
	4.4	.3	CRNN	131
	4.4	.4	CD1d	133
	4.4	.5	CDH1 (E-cadherin)	134
	4.5	Lary	/ngeal Sub-sites	136
	4.6	Limi	itations	139
	4.7	Sum	nmary	144
	4.8	Con	clusions	145

5	Appendices147		
	5.1	Appendix 1: Reflux Symptom Index	.148
	5.2	Appendix 2: Reflux Finding Score	.149
	5.3	Appendix 3: Professor J Wilson's Examiner's Report	.150
	5.4	Appendix 4: Response to Professor Wilson's Report	.162
	5.5	Appendix 5: Mr G Rees' Examiner's Report	.169
	5.6	Appendix 6: Response to Mr Rees' Report	.177
6	Re	ferences	182

ACKNOWLEDGMENTS

The work described in this thesis was performed at Flinders ENT, Department of Surgery, Flinders Medical Centre, Flinders University of South Australia, Bedford Park, South Australia.

This research was supported by the following funding:

- Garnett Passe and Rodney Williams Memorial Foundation Project Grant
- Flinders University Faculty of Health Sciences Research Seeding Grant

I would like to express my sincere thanks to Prof Simon Carney as my thesis supervisor, teacher and mentor. I greatly appreciate the support he has provided in clinical and research fields, and in the successful application for surgical training in Otolaryngology.

Many thanks to my co-supervisor Dr Damian Hussey, for his invaluable assistance, steerage, his astute and critical analysis at all the landmark moments, and for welcoming me into his laboratory.

I greatly appreciate the support and friendship of Dr Charmaine Woods, from Flinders ENT, Dept. of Surgery, whose guidance and patience in teaching me laboratory techniques allowed this project to progress, and for keeping each other sane in "The Dungeon".

Many thanks for the work of Dr David Astill, Dept of Anatomical Pathology, Flinders University in providing expert histological analysis, and to Michelle Norman for preparing the histology.

To the staff of the Upper GI laboratory, many thanks for all your assistance.

And finally, to my wife Kate, and my children, Eleanor and Isaac, many thanks for your lasting love, support and enduring my absences.

DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

John Melville Wood January 2013

PREFACE

A portion of this work has been published or presented as follows:

Publications

Wood JM, Hussey DJ, Woods CM, Watson DI, Carney AS. Biomarkers and laryngopharyngeal reflux. J Laryngol Otol 2011; **125**: 1218-24

Presentations

Wood, JM, Hussey DJ, Woods CM, Astill D, Watson DI, Carney, AS. The molecular biology of laryngopharyngeal reflux: Anatomical variations within the larynx. Australian Society of Otolaryngology Head and Neck Surgery Annual Scientific Meeting, 3rd April 2012, Adelaide, South Australia.

Wood JM, Hussey DJ, Woods CM, Watson DI, Carney AS. Review of biomarkers in laryngopharyngeal reflux. Australian Society of Otolaryngology Head and Neck Surgery Annual Scientific Meeting, 7th April 2011, Melbourne, Victoria.

LIST OF FIGURES

Figure 1 Montreal Classification of Gastro-oesophageal Reflux Disease	.4
Figure 2 Laryngeal Compartments	.9
Figure 3 Anatomy of the larynx1	.0
Figure 4 Histology of the Larynx1	.4
Figure 5 Posterior Commissure Hypertrophy2	29
Figure 6 Laryngeal Pseudosulcus3	31
Figure 7: Lindholm Laryngoscope6	59
Figure 8: Microlaryngeal 2mm Cupped Forceps7	'0
Figure 9: Position of Biopsy Collection7	'1
Figure 10: Histology of all 4 regions in a Non-LPR patient8	35
Figure 11: Histology of all 4 regions in an LPR Patient8	36
Figure 12: HPRT Relative Expression9)3
Figure 13: KRT14 Relative Expression Normalised to HPRT9)4
Figure 14: KRT8 Relative Expression Normalised to HPRT9)5
Figure 13: IL-6 Relative Expression Normalised to HPRT9	96
Figure 14: IL-8 Relative Expression Normalised to HPRT9)7
Figure 15: PTSG2 Relative Expression Normalised to HPRT9)8
Figure 18: CRNN Relative Expression Normalised to HPRT9)9
Figure 19: CD1d Relative Expression Normalised to HPRT10)0
Figure 20: MGMT Relative Expression Normalised to HPRT 10)1
Figure 20: TGF β -1 Relative Expression Normalised to HPRT)2

Figure 21: VEGFA Relative Expression Normalised to HPRT 103
Figure 18: MUC1 Relative Expression Normalised to HPRT104
Figure 19: MUC2 Relative Expression Normalised to HPRT105
Figure 20: MUC3B Relative Expression Normalised to HPRT 106
Figure 21: MUC4 Relative Expression Normalised to HPRT107
Figure 22: MUC5B Relative Expression Normalised to HPRT 108
Figure 23: MUC6 Relative Expression Normalised to HPRT
Figure 24: MUC7 Relative Expression Normalised to HPRT110
Figure 26: CA3 Relative Expression Normalised to HPRT111
Figure 31: CDH1 Expression Relative Expression Normalised to HPRT 112

LIST OF TABLES

Table 1:	Mucin Genes in the Aerodigestive Tract	53
Table 2:	PCR Array Genes	78
Table 3:	Demographics	82
Table 4:	Histological Analysis	83
Table 5:	Histological Evidence of Inflammation	84
Table 6:	Statistical Analysis of HPRT Gene Expression	88
Table 7:	Gene Expression Statistical Analysis	92

LIST OF ABBREVIATIONS

AOR	Adjusted Odds Ratio
CA	Carbonic anhydrase
CD1d	Cluster of Differentiation 1d
CDH1	Epithelial cadherin (E-cadherin)
cDNA	Complementary DNA
CRNN	Cornulin (Squamous epithelial-induced stress protein 53kDa
	(SEP 53)
DIS	Dilation of intercellular spaces
DNA	Deoxyribonucleic acid
DGER	Duodenogastroesophageal reflux
GORD	Gastroesophageal reflux disease
H and E	Haematoxylin and eosin
HPRT	Hypoxanthine-guanine phosphoribosyltransferase
IL	Interleukin
KRT	Cytokeratin
LMA	Laryngeal mask airway
LOS	Lower oesophageal sphincter
LPR	Laryngopharyngeal reflux
MGMT	O-6-methylguanine-DNA methyltransferase
MHC	Major histocompatibility complex
mRNA	Messenger ribonucleic acid
MUC	Mucin
NERD	Non-erosive reflux disease
NKT	Natural killer T cell
PCR	Polymerase chain reaction
PPI	Proton pump inhibitor
PTGS2	Prostaglandin-endoperoxide synthase-2
qtRT PCR	Quantitative real time reverse transcriptase polymerase
	chain reaction
RFS	Reflux finding scale

RIN	RNA integrity number
RSI	Reflux symptom index
SSRI	Selective serotonin re-uptake inhibitor
TNF-α	Tumour necrosis factor - α
UOS	Upper oesophageal sphincter
VEGF	Vascular endothelial growth factor
VHI	Voice Handicap Index

ABSTRACT

Laryngopharyngeal reflux (LPR) is an increasingly diagnosed disease in Otolaryngology, however it is a highly controversial topic. There is no gold standard diagnostic test and despite a wealth of articles, there is little understanding of the pathophysiological mechanisms underlying laryngeal damage. In addition, the response to anti-reflux medical treatment is highly variable, with a notable proportion failing to have any response. The lack of comprehension of the pathophysiology and definitive diagnosis limits the ability to conduct adequate investigation of treatment options. This study aimed to identify known and novel biomarkers in patients with LPR. Given evidence suggesting that LPR biomarker expression may vary across different areas of the larynx, biopsies were collected and analysed from subregions of the larynx.

Recruited patients completed the Reflux Symptom Index and the Reflux Finding Score was assessed at the time of biopsy collection under general anaesthetic. Biopsies were collected from 4 anatomically distinct locations in the larynx in both LPR and non-refluxing control patients. Sections were sent for histological examination and qRT-PCR analysis was conducted on 20 genes identified as being related to reflux and inflammation, including interleukins 6 (*IL-6*) and 8 (*IL-8*), prostaglandin-endoperoxide synthase-2, cytokeratins 8 and 14, mucin genes *MUC1, 2, 3B, 4, 5B, 6, 7*, and carbonic anhydrase III.

In patients with LPR, site-specific differences in gene expression were noted. The medial arytenoid area of the larynx was more susceptible to alterations in gene expression. Statistically significant differences were noted in genes related to intrinsic defences and inflammation, including *CD1d*, *TGF* β -1 and mucins.

Mucins play an important role in protecting the epithelium from fluctuations of pH, ionic concentration and hydration. They are also implicated in renewal and differentiation of the epithelium and modulation of cell-cycle progression. In patients with LPR, this study demonstrated significantly lower expression of the secreted gel-forming mucin genes in the medial arytenoid region (*MUC2* and *MUC5B*) and the posterior commissure (*MUC5B*).

Carbonic anhydrase (CA) is an integral component of laryngeal defence, increasing the pH of the mucosal surface. Expression of CA I, II and III are present in the normal larynx. Expression of CA-III is known to vary in the larynx between different locations in response to refluxate. *CA3* gene expression was lower in the false cord region in LPR patients, however this was not significantly different.

There is also evidence of an inflammatory process, with changes in *CD1d* expression, which is known to be decreased in epithelial inflammation and increase in *CRNN* and *TGF\beta-1* noted in the medial arytenoid sub-site.

xvi

Consequently, there is significant evidence of molecular changes in laryngeal epithelium between patients with LPR compared to normal controls. This study identifies that these changes vary according to the subsite of the larynx. Whilst the posterior commissure is most commonly identified as the area demonstrating macroscopic change consistent with LPR, this study has identified that the medial arytenoid is the area most likely to demonstrate a molecular change. With identified molecular changes in mucin expression (*MUC2* and *5B*), cytokeratin 14 and molecular markers of inflammation, this study provides increasing evidence for the diagnosis of LPR and potential markers for therapeutic monitoring.