PHYSICOCHEMICAL DETERMINANTS OF THE NON-SPECIFIC BINDING OF DRUGS TO HUMAN LIVER MICROSOMES

James A McLure BSc (Hons)

Thesis submitted for the degree of Doctor of Philosophy Department of Clinical Pharmacology School of Medicine Faculty of Health Science Flinders University, Adelaide, Australia

June 2008

TABLE OF CONTENTS

TABLE	E OF CONTENTS	I
LIST O	DF FIGURES	V
LIST O	DF TABLES	VIII
DECLA	ARATION	Х
ACKN	OWLEDGEMENTS	. XI
PUBLI	CATIONS AND AWARDS	хш
ABSTR	RACT	XIV
ABBRI	EVIATIONS	WII
CHAF	PTER 1: INTRODUCTION	1
1.1	THE PHARMACEUTICAL INDUSTRY	1
	1.1.1 Historical perspective	1
	1.1.2 Drug discovery	2
	1.1.3 Drug development	6
	1.1.4 Summary of drug discovery and development	.10
1.2	PHARMACOKINETIC BACKGROUND	.11
	1.2.1 Absorption and distribution	.11
	1.2.2 Metabolism and excretion	. 19
	1.2.3 Drug-drug interactions	.27
1.3	IN VITRO SYSTEMS	.28
	1.3.1 In vitro-in vivo extrapolation of hepatic clearance	.29
	1.3.2 Predicting in vivo inhibition of metabolism from in vitro systems	. 32
	1.3.3 Assessing the reliability of <i>in vitro</i> based predictions of <i>in vivo</i> pharmacokinetics	33
1.4	TOWARDS RELIABLE QUANTITATIVE PREDICTION OF <i>IN VIVO</i> PHARMACOKINE PARAMETERS FROM <i>IN VITRO</i> DATA	ETIC 35
	1.4.1 Non-specific binding of drugs to <i>in vitro</i> matrices	.35
	1.4.2 Qualitative prediction of the microsomal binding of drugs	.45
1.5	AIMS OF CURRENT RESEARCH	. 49
СНАЕ	PTER 2: MATERIALS AND METHODS	. 50

2.1	CHEMICALS AND REAGENTS	50
	2.1.1 Chemicals and reagents for analytical, fluorescence and dialysis procedures	50
2.2	HUMAN LIVER MICROSOMES	53
	2.2.1 Human livers	53
	2.2.2 Measurement of microsomal protein concentration	54
2.3	Equilibrium dialysis procedures	54
	2.3.1 Equilibrium dialysis	54
	2.3.2 Determination of drug concentrations by high performance liquid chromatography (HPLC)	55
	2.3.3 Calculation of f _{u(mic)}	61
CHA THE EQUI	PTER 3: An investigation of the physicochemical determinant non-specific binding of drugs to human liver microsomes u librium dialysis	'S OF SING 62
3.1	INTRODUCTION	62
3.2	Equilibrium dialysis	67
	3.2.1 Drug concentration ranges	67
	3.2.2 Derivation of human liver microsomal binding parameters of drugs	68
3.3	Results	68
	3.3.1 Chromatography and standard curve linearity	68
	3.3.2 Validation of the drug assay and equilibrium dialysis methods	70
	3.3.3 Human liver microsomal binding of drugs	72
3.4	DISCUSSION	77
	3.4.1 Human liver microsomal binding of the investigational drugs	77
	3.4.2 Physicochemical determinants of a drug binding to human liver microsomes.	80
CHA THE 1	APTER 4: D EVELOPMENT OF A FLUORESCENCE TECHNIQUE FOR MEASURNON-SPECIFIC BINDING OF DRUGS TO HUMAN LIVER MICROSOMES	RING 89
4.1	INTRODUCTION	89
4.2	Methods	93
	4.2.1 Fluorescence procedure	93
	4.2.2 ANS fluorescence protocol	94

4.3	RESULTS	96
	4.3.1 ANS fluorescence method validation	9 6
	4.3.2 Effects of selected drugs on the fluorescence of ANS in the presence of human liver microsomes	f 96
4.4	DISCUSSION)2
	4.4.1 Effect of investigational drugs on ANS fluorescence in the presence of human liver microsomes	f 02
	4.4.2 Comparison of ANS fluorescence and equilibrium dialysis methods. 10)2
	4.4.3 Caveats of the ANS fluorescence method for measuring the non- specific binding of drugs to human liver microsomes)4
CHA MEA	APTER 5: VALIDATION OF AN ANS FLUORESCENCE TECHNIQUE FO SURING THE NON-SPECIFIC BINDING OF DRUGS TO HUMAN LIVER MICROSOMI 1()R ES 06
5.1	INTRODUCTION10)6
5.2	Methods)8
	5.2.1 Equilibrium dialysis10)8
	5.2.2 ANS fluorescence procedure)9
5.3	RESULTS11	10
	5.3.1 Equilibrium dialysis11	10
	5.3.2 ANS fluorescence	14
	5.3.3 Relationship between $f_{u(mic)}$ and ANS fluorescence increment/decreme 1	nt 15
	5.3.4 Relationship between bound drug concentration and ANS fluorescence increment/decrement	e 17
5.4	DISCUSSION	19
	5.4.1 Human liver microsomal binding of investigational drugs using equilibrium dialysis	19
	5.4.2 Effect of investigational drugs on ANS fluorescence in the presence of human liver microsomes	f 20
	5.4.3 Relationship between $f_{u(mic)}$ and modulus of ANS fluorescence increment/decrement	20
	5.4.4 Relationship between bound drug and modulus of ANS fluorescence increment/decrement	21
	5.4.5 Validation set	23

CHAI CHARA MICRO	PTER 6: RELATIONSHIPS BETWEEN SELECTED PHYSICOCHEMIC ACTERISTICS AND THE NON-SPECIFIC BINDING OF DRUGS TO HUMAN LIV OSOMES	CAL VER 125
6.1	INTRODUCTION	125
6.2	Methods	129
	6.2.1 Solvents and drugs used in fluorescence experiments	129
6.3	RESULTS	130
	6.3.1 ANS fluorescence	130
	6.3.2 Relationship between non-specific microsomal binding and the charge of test compounds	ge 133
	6.3.3 Relationships between the non-specific microsomal binding of test bases and selected physicochemical characteristics	135
6.4	DISCUSSION	145
	6.4.1 Microsomal binding of the investigational compounds	146
	6.4.2 Relationships between selected physicochemical characteristics and t non-specific binding of compounds to human liver microsomes	the 148
	6.4.3 Comparison between physicochemical characteristics associated with non-specific binding and membrane permeability	n 153
CHAI HUMA	PTER 7: In silico modeling of the non-specific binding of drugs in liver microsomes	то 155
7.1	INTRODUCTION	155
7.2	Methods	156
7.3	RESULTS	159
7.4	DISCUSSION	163
CHAPTER 8: CONCLUDING COMMENTS		
BIBLIOGRAPHY172		

LIST OF FIGURES

Figure 1.1:	The processes of drug development7
Figure 1.2:	A schematic representation of the various drug-membrane transport mechanisms
Figure 1.3:	Schematic representation of the structure of a biological membrane. 15
Figure 1.4:	Plot of velocity versus substrate concentration for a metabolic reaction exhibiting hyperbolic or Michaelis-Menten kinetics
Figure 1.5:	A diagram of a Dixon plot showing competitive or mixed drug-drug inhibition
Figure 1.6:	Equilibrium relationship <i>in vivo</i> between drug in blood plasma and that in the hepatocyte
Figure 1.7:	Relationship between free drug in an incubation, <i>in vitro</i> membrane binding, and cytochrome P450 metabolism
Figure 1.8:	Rate versus substrate concentration plot showing overestimation of K_m (the apparent K_m) when uncorrected substrate concentration is employed
Figure 1.9:	Binding of nortriptyline to human liver microsomes (1 mg/ml): A) Binding plot of free (x-axis) versus bound (y-axis) drug concentration and; B) Scatchard plot with bound/free drug on the y-axis and bound drug on the x-axis
Figure 1.10:	Simulation showing the effect of: A) Non-specific binding with varying K_D on Michaelis-Menten kinetics and B) Non-specific binding on an Eadie Hofstee plot
Figure 3.1:	Chemical structures of investigational compounds
Figure 3.2:	Chromatograms from a dialysis experiment with diazepam (200 μ M). A) Sample from PB compartment of the dialysis cell; and B) Sample from the microsome compartment of the dialysis cell
Figure 3.3:	Representative standard curves for diazepam prepared in: A) PB and B) a suspension of human liver microsomes in PB (1 mg/ml)
Figure 3.4:	Binding plots for A) propranolol and B) imipramine74
Figure 3.5:	Binding plot of diazepam to human liver microsomes
Figure 3.6:	Plot of the microsomal binding of lignocaine

Figure 3.7:	Chemical structures of microsomal membrane lipids
Figure 4.1:	Proposed two dimensional space filling model of the packing of an ANS molecule in the hydrophobic pocket formed by four phosphatidylcholine molecules
Figure 4.2:	Relationship between percent ANS fluorescence increment and added A) imipramine and B) propranolol concentrations
Figure 4.3:	Relationship between the modulus of ANS fluorescence increment/decrement and $f_{u(mic)}$ at: A) 100 μM and B) 200 μM drug
Figure 4.4:	Plots of the relationship between the bound drug concentration and percent ANS fluorescence increment for: A) imipramine and B) propranolol
Figure 5.1:	Chemical structures of the investigational compounds
Figure 5.2:	Non-specific binding to human liver microsomes of: A) diflunisal; B) flufenamic acid; C) meclofenamic acid; D) bupropion; E) chloroquine; F) chlorpromazine; G) mianserine; H) triflupromazine; and I) verapamil
Figure 5.3:	Relationships between the modulus of ANS fluorescence increment/ decrement and $f_{u(mic)}$ for: A) all drugs at 100 μ M; B) all drugs at 200 μ M; C) acid/neutral drugs at 100 μ M; D) acid/neutral drugs at 200 μ M; E) basic drugs at 100 μ M; and F) basic drugs at 200 μ M 117
Figure 5.4:	Relationships between bound drug concentration and the modulus of ANS fluorescence increment/decrement for: A) all drugs; B) acidic/neutral drugs; and C) basic drugs
Figure 6.1:	Relationship between $f_{u(mic)}$ and the charge of test compounds at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M134
Figure 6.2:	Relationship between pK_a and the non-specific binding of basic compounds to human liver microsomes at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M
Figure 6.3:	Relationship between log P and the non-specific binding of basic compounds to human liver microsomes at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M
Figure 6.4:	Relationship between molecular mass and the non-specific binding of basic compounds to human liver microsomes at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M

Figure 6.5:	Relationship between the number of hydrogen bond donors present in each base and the non-specific binding of basic compounds to human liver microsomes at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M
Figure 6.6:	Relationship between the non-specific binding of basic compounds to human liver microsomes and the number of hydrogen bond acceptors present in each base at concentrations of: A) 100 μ M; B) 200 μ M; and C) 500 μ M.
Figure 6.7:	Plots of log $(1-f_{u(mic)}) / f_{u(mic)}$ versus log P for: A) bases, B) acids, and C) neutral compounds at an added drug concentration of 100 μ M. 151

Figure 7.1: Combined shape/color overlay from the ROCS program of: A) fluphenazine (color score 1) and B) warfarin (color score 0.5). 162

LIST OF TABLES

Table 1.1:	Effect of incorporating microsomal binding data into the well-stirred model of hepatic clearance
Table 2.1:	Chemicals and reagents used in fluorescence and dialysis procedures 50
Table 2.2:	Equilibrium dialysis sample preparation prior to HPLC analysis56
Table 2.3:	HPLC conditions for drug assays
Table 3.1:	Physicochemical characteristics of test drugs65
Table 3.2:	Concentration ranges of drugs employed in dialysis experiments 67
Table 3.3:	Overall assay imprecision for drug standards prepared in a suspension of human liver microsomes in PB (1 mg/ml) and in PB alone
Table 3.4:	Overall assay inaccuracy for drug standards prepared in a suspension of human liver microsomes in PB (1 mg/ml) and in PB alone
Table 3.5:	Variation in the determination of $f_{u(mic)}$ from dialysis experiments, using 1 mg/ml human liver microsomes and drug concentrations of 100 and 500 μ M
Table 3.6:	Binding of propranolol, atenolol and imipramine to human liver microsomes
Table 3.7:	Microsomal binding of drugs with varying pK _a values75
Table 3.8:	Binding of bupivacaine and ropivacaine to human liver microsomes 77
Table 3.9:	Major phospholipid composition of liver microsomal membranes from adults of the human and the rat81
Table 3.10:	Basic drugs predicted ionisation state and free fraction in microsomes
Table 4.1:	Effect of test drugs on ANS fluorescence in the presence of human liver microsomes (drug concentration range $50 - 1000 \ \mu\text{M}$)
Table 4.2:	Comparison of $f_{u(mic)}$ and percent ANS fluorescence increment/decrement of investigational drugs at 100 μ M99
Table 4.3:	Comparison of $f_{u(mic)}$ and percent ANS fluorescence increment/decrement of investigational drugs at 200 μ M

Table 5.1:	Physicochemical parameters of the investigational drugs106
Table 5.2:	Overall assay imprecision for drug standards prepared in a suspension of human liver microsomes in PB (1 mg/ml) and in PB alone
Table 5.3:	Overall assay inaccuracy for drug standards prepared in a suspension of human liver microsomes in PB (1 mg/ml) and in PB alone
Table 5.4:	Binding of investigational compounds to human liver microsomes. 112
Table 5.5:	Effect of the investigational compounds on ANS fluorescence in the presence of human liver microsomes
Table 5.6:	Effect of amitriptyline, nortriptyline, phenytoin, S-naproxen and lamotrigine on ANS fluorescence in the presence of human liver microsomes
Table 5.7:	Predicted (from ANS fluorescence) versus observed $f_{u(mic)}$ values for validation set
Table 6.1:	Physicochemical characteristics of investigational compounds127
Table 6.2:	ANS fluorescence increment/decrement in the presence of human liver microsomes and derived $f_{u(mic)}$ values (shown in brackets) for the investigational compounds
Table 6.3:	Derived $f_{u(mic)}$ values for bases (determined at 100 μ M) stratified for log P139
Table 7.1:	Results from the ROCS analysis ranked in order of color score 159
Table 8.1:	Physicochemical characteristics of high binding compounds

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university and that to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference is made in the text.

James A McLure 11 June 2008

ACKNOWLEDGEMENTS

I would like to thank God, my family; the late Oma and Opa and Gran and Grandpa, India, Jet, Rocks, Mum, Dad, Fiona, Anthony, Samuel, Molly, Luke, Andrew, Cameron, Trent, Alisdair, Corinne, Oliver, Lewis, Claudia, Siobhan, Michael, Thomas, Anabelle, Phoebe, Patrick, Suzanne, Edvardas, Sophia, Benjamin, and Sarah for their love, belief and support.

To Professor Donald Birkett, thank you for your guidance, willingness to teach, encouragement, and support. To Professor John Miners thank you for your support, understanding, and friendship. Thank you both for believing in me.

To our Tuesday night Grow group, thank you everyone for your understanding, encouragement, genuinity, and support.

To Dr Gill thank you for helping to piece my life back together.

To all my team mates and friends at the Woodville West Torrens Football Club, Goolwa-Port Elliot Football Club, Callington United Eagles Football Club, and Henley Football Club a sincere thank you for your support.

My thanks, appreciation, and extended friendship go to Heather Aubert, Sally Coulter, Dr Andrew Stone, Dr Samuel Boase, Kushari Bowalgaha, Andrew Rowland, Dr Thomas Polasek, Dr Matthew Sykes, Benjamin Lewis, and David Elliot. I really enjoyed working with all of you.

I would like to thank the Department of Clinical Pharmacology, Flinders University, for their support from 2000 – 2002 and 2004, Flinders University for their support in 2003, and the Australian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) for travel grants in 2002 and 2004. I would also like to

thank the Flinders Medical Centre Foundation for a travel grant in 2002. A further thank you to the Australian Government for their support over the past four years.

I could not have completed this thesis without all of the aforementioned support. I am sincerely grateful to everyone who has been there helping me to learn, held my hope (Dad), or offered friendship.

James A McLure 11 June 2008

Publications

McLure JA, Sorich MJ, Miners JO, Smith PA, Birkett DJ 2002, 'Determinants of the membrane binding of drugs in microsomal *in vitro* systems', *Proceedings of the Australian Health and Medical Research Congress*, Poster Abstracts 2118.

McLure, JA, Birkett, DJ, Miners, JO 2004, 'Determinants of the non-specific binding of drugs to human liver microsomes', *Clinical and Experimental Pharmacology and Physiology* 31, PO-209.

McLure, James, Miners, John, Birkett, Donald 2006, 'The development of a fluorescence technique for measuring the non-specific binding of drugs to human liver microsomes' *Acta Pharmacologia Sinica* July; Supplement 1, p. 221, P170084.

McLure, JAL 2006, 'Development of an 8-anilinonapthalene-1-sulfonate (ANS) fluorescence technique for measuring the non-specific binding of drugs to human liver microsomes' *Proceedings of the Australian Health and Medical Research Congress* ISSN 1447-6610, p. 416, Abstract # 1364.

Awards

2000 - 2002 Private Scholarship, Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia

2003 Flinders University Research Scholarship, Flinders University, Bedford Park, South Australia

ABSTRACT

Accurate determination of the *in vitro* kinetic parameters K_m (Michaelis constant) and K_i (inhibition constant) is critical for the quantitative prediction of *in vivo* drug clearance and the magnitude of inhibitory drug interactions. A cause of inaccuracy *in vitro* arises from the assumption that all drug added to an incubation mixture is available for metabolism or inhibition. Many drugs bind non-specifically to the membrane of the *in vitro* enzyme source.

The aims of this thesis were to: 1) investigate the comparative importance of lipophilicity (as log P), and pK_a as determinants of the non-specific binding of drugs to human liver microsomes; 2) develop and validate an ANS fluorescence technique for measuring the non-specific binding of drugs to human liver microsomes; 3) characterise the non-specific binding of a large dataset of physicochemically diverse drugs using the ANS fluorescence procedure; 4) evaluate relationships between selected physicochemical characteristics and the extent of non-specific binding of drugs to human liver microsomes and; 5) computationally model the non-specific binding of drugs to discriminate between high binding ($f_{u(mic)} < 0.5$) and low binding ($f_{u(mic)} \ge 0.5$) drugs.

The comparative binding of the basic drugs atenolol (log P = 0.1; $f_{u(mic)} = 1.00$), of propranolol (log P = 3.1; $f_{u(mic)} = 0.36 - 0.84$), and imipramine (log P = 4.8; $f_{u(mic)} =$ 0.42 - 0.82) suggested that lipophilicity is a major determinant of non-specific binding. In contrast, the comparative binding of diazepam (pK_a = 3.3; $f_{u(mic)} = 0.69 -$ 0.80), a neutral compound; and the bases propranolol (pK_a = 9.5; $f_{u(mic)} = 0.36 - 0.84$) and lignocaine (pK_a = 9.5; $f_{u(mic)} = 0.98$), indicated that pK_a was not a determinant of the extent of non-specific binding. The non-binding of lignocaine, a relatively lipophilic base, was unexpected and confirmed by the non-binding of the structurally related compounds bupivacaine and ropivacaine. These results implicated physicochemical characteristics other than lipophilicity and charge as important for the non-specific binding of drugs to human liver microsomes.

An assay based on 1-anilinonaphthalene-8-sulfonate (ANS) fluorescence was developed using the seven drugs employed in the initial study. Non-specific binding data from equilibrium dialysis and the ANS fluorescence methods were compared and a linear correlation ($r^2 = 0.92$, p < 0.01) was observed at drug concentrations of 100 and 200 μ M. The approach was further validated by characterising the microsomal binding of nine compounds (bupropion, chloroquine, chlorpromazine, diflunisal, flufenamic acid, meclofenamic acid, mianserine, triflupromazine, and verapamil) using both binding methods (i.e. equilibrium dialysis and ANS fluorescence). A significant logarithmic relationship ($r^2 \ge 0.90$) was demonstrated between f_{u(mic)} and the modulus of ANS fluorescence for all drugs and for basic drugs alone at concentrations of 100 and 200 μ M, while the acidic/neutral drugs showed a significant linear relationship ($r^2 \ge 0.84$) at these two concentrations (p < 0.01). The non–binding of bupropion provided further evidence that physicochemical properties other than log P and charge were important for non-specific binding of drugs to human liver microsomes.

The ANS fluorescence technique was then used to characterise the non-specific binding of 88 physicochemically diverse compounds. In general, acids and neutrals bound to a 'low' extent ($f_{u(mic)} \ge 0.5$) whereas bases bound the full $f_{u(mic)}$ range (0.0001 – 1). Statistically significant relationships were observed between the non-specific binding of bases and log P, the number of hydrogen bond donors and hydrogen bond acceptors per molecule, and molecular mass.

Preliminary *in silico* modeling of the dataset generated by the ANS fluorescence technique, using the program ROCS, provided discrimination of all but one (itraconazole) of the 'high' binding bases. However, there were 14 false positives, resulting in low overall prediction accuracy.

Taken together, the studies conducted in this thesis provide important insights into the physicochemical factors that determine the non-specific binding of drugs to human liver microsomes.

ABBREVIATIONS

ADME	Absorption, Distribution, Metabolism, Excretion
ADMET	Absorption, Distribution, Metabolism, Excretion, Toxicology
ANS	1-anilino-8-naphthalene sulfonate
B _{max}	maximum binding capacity
Caco-2	intestinal cell line from human colorectal cancer
Chol	cholesterol
CL	clearance
C _B	concentration of bound drug
C _F	concentration of free drug
CL _H	hepatic clearance
CL _{int}	intrinsic clearance of drug metabolising enzyme(s)
C ₀	initial concentration at time zero
CL _S	systemic clearance
C _{SS}	concentration of drug in plasma at steady state
Ct	drug concentration at time t after the dose
СҮР	cytochrome P450
D	drug
\mathbf{D}_{F}	free drug
DMSO	dimethylsulfoxide
D_N	dispersion number
E _H	hepatic extraction ratio
f_m	fraction of dose metabolised along pathway of interest
\mathbf{f}_{u}	fraction of drug unbound in blood
$f_{u(inc)}$	fraction of drug unbound in an incubation

\mathbf{f}_{um}	fraction of drug unbound in an incubation medium
$f_{u(\text{mic})}$	fraction of drug unbound in microsomes
$f_{u\left(T\right)}$	fraction of drug unbound in tissue
HBA	hydrogen bond acceptor
HBD	hydrogen bond donor
HPLC	high performance liquid chromatography
Ι	inhibitor
Iu	unbound inhibitor
IND	Investigational New Drug
k	elimination rate constant
K _D	dissociation constant
K _i	inhibition constant
K _m	Michaelis constant (substrate concentration at half maximal
	velocity)
K _{m(app)}	apparent Michaelis constant
log P	log of the concentration of drug in the lipid phase /
	concentration of drug in the aqueous phase
М	metabolised
MM	molecular mass
MW	molecular weight
NDA	New Drug Application
NMR	nuclear magnetic resonance
NNN'N' TMED	NNN'N' tetramethylethylenediamine
NSAID	non steroidal anti-inflammatory drug
РВ	potassium phosphate buffer, 0.1M, pH 7.4

PC	phosphatidylcholine
PE	phosphatidylethanolamine
PI	phosphatidylinositol
PS	phosphatidylserine
PSA	polar surface area
Q _H	liver blood flow
QSAR	Quantitative Structure-Activity Relationship
R _c	ratio of the areas under the plasma drug concentration time
	curves in the presence and absence of inhibitor
ROCS	Rapid Overlay of Chemical Structures
S	substrate
SD	standard deviation
SM	sphingomyelin
t	time
t _{1/2}	half life of a drug dose
UGT	UDP-glucuronosyltransferase
V, v	velocity or rate of metabolite formation
V _d	volume of distribution
V _{max}	maximal velocity of a reaction at a saturating substrate
	concentration
V _P	plasma volume
V _T	tissue volume