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Abstract

This thesis presents a study on the characterisation and quantification of wind farm noise

(WFN) at long-range locations. The primary research goals in this thesis were to develop a

machine learning model to detect amplitude modulation (AM) of WFN. This model was used

to automate the AM detection process, and to quantify and characterise AM in long-term

measured data sets. A further aim was to investigate the audibility of unique characteristics

of WFN such as infrasound and amplitude modulated tones. The thesis concludes with

an exploration of deep learning techniques, which were used to examine and automate

the characterisation of WFN. Chapter 1 provides an overview of recent advances in WFN

research, followed by a description of field work in Chapter 2 and then four major results

chapters.

Chapter 3 presents an approach to detect and characterise AM in a comprehensive

and year-long wind farm noise data set evaluated using human scoring. Benchmark AM

characteristics were established towards further validation and calibration of results obtained

using automated methods. Using these data, an advanced AM detection method was then

developed, with predictive power close to the practical limit set by human scoring. However,

given that noise impacts on humans remain of primary interest, human-based approaches

should be considered as a benchmark method for characterising and detecting unique noise

features most relevant to human WFN perception and impacts.

Chapter 4 quantifies and characterises AM over 1 year using acoustical and meteorological

data measured at three locations near 3 wind farms. Substantial diurnal variation of outdoor

AM prevalence was found, with nighttime prevalence approximately 2 to 5 times higher

than daytime prevalence. On average, indoor AM occurred during the nighttime from 1.1 to
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1.7 times less often than outdoor AM. However, the indoor AM depth was higher than that

measured outdoors. An association between AM prevalence and sunset and sunrise was also

observed. These data showed that AM occurs more often during downwind and crosswind

compared to upwind conditions. These findings provide important insights into long term

WFN characteristics needed to help better inform future WFN assessment guidelines.

Chapter 5 used a computational approach to assess the audibility of infrasound and

amplitude modulated tones (AM tones) at long-range locations, which also considered the

uncertainty associated with WFN measurements and human hearing variability. It was

demonstrated that infrasound is rarely audible to residents with normal hearing who live at

distances greater than 1 km from a wind farm, but that AM tones occurring at a low frequency

are readily audible at distances up to 9 km. These results suggest that AM tones could be the

main source of WFN complaints at long-range locations, and thus clearly warrant further

attention towards ensuring that wind farms have minimal impacts on nearby residents located

within 9 km of the nearest wind turbine.

Chapter 6 explored an approach for the characterisation and assessment of WFN. This

was based on extraction of acoustic features from a pretrained deep learning model (referred

to as deep acoustic features). Using data measured at a variety of locations, deep acoustic

features were shown to contain meaningful information about noise characteristics. Deep

acoustic features were also shown to reveal an improved spatial and temporal representation

of WFN compared to traditional spectral analysis and statistical noise descriptors. These

very promising novel findings provide a clear framework for improved WFN assessment in

the future.

Taken together, this thesis work provides a major and important new contribution towards

the understanding of some of the most prominent WFN features audible to humans. These

new methods provide an important framework towards improved noise assessments and wind

turbine designs better able to minimise impacts on surrounding communities. Ultimately, this

approach, along with future improvements in wind farm planning, design, noise assessment

and abatement strategies will all likely be needed to help ensure that wind energy is acceptable

to surrounding communities.
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Chapter 1

Introduction

In this chapter, I first provide an overview of the development of wind energy, followed by an

introduction to wind farm noise (WFN)1, its characteristics, mechanisms of generation and

impacts. Recent advances in machine learning for acoustic applications are also introduced.

Finally, with this context in place, I summarise the aims of the PhD thesis and provide an

outline of the remainder of the thesis.

1.1 Wind energy

T he global wind industry has experienced a remarkably rapid expansion in recent

years (GWEC, 2019). This rapid expansion has been driven by rising concerns over

global climate change and fossil fuel depletion, as well as energy security. The amount

of global energy production has increased by an order of magnitude since the year 2000.

At the time of writing this thesis, according to TheWindPower2, the total global installed

capacity is 1107.6 gigawatts (GW) with 22,385 wind farms around the world. The global

wind energy growth rate is over 20% per year, with important variations from one country to

another (GWEC, 2019). In the late 1990s, Denmark was leading the world with installed

power less than 0.3 GW. The USA took this place in the 90’s with over 3 GW. In the early

1Throughout this thesis, I use WFN to refer to multiple wind turbines contributing to noise emissions at a
residence. WFN is commonly used interchangeably with wind turbine noise (WTN) in the scientific literature.

2https://www.thewindpower.net/store_en.php

https://www.thewindpower.net/store_en.php
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FIGURE 1.1. Global distribution of wind farms. This figure is reproduced with permission from Dr.
Dominic Royé3.

2000’s, Germany was leading the world with installed power of over 40 GW before the USA

returned to this place in 2008. The total global installed capacity was just over 200 GW

before 2010. The development of wind energy in China has been increasing exponentially

since 2005 and leading the world since 2016. According to TheWindPower, the top three

highest wind energy producing countries in 2022 are China (200 GW), the USA (163 GW)

and the UK (73 GW). The global distribution of wind farms is shown in Figure 1.1.

Wind turbine technology has been greatly improved to reduce installation cost, and

increase energy capacity and reliability (Dykes et al., 2019). Wind turbines have become

progressively larger to take advantage of higher wind speeds with greater ground clearances.

Wind turbine blades have also been advanced through optimisation of blade profiles, limiting

aerodynamic loads, minimising blade fouling and the use of composite materials with

more favourable cost and performance characteristics (Schubel and Crossley, 2012). To

maximise power output, modern wind turbines are pitch-regulated machines and variable

speed, resulting in more optimal ratios between the blade-tip and wind speed. Three-bladed

designs have also become dominant for modern wind turbines, as this configuration provides

the current best compromise between aerodynamic efficiency, cost, rotational mass, structural

integrity, inertial stability, relatively low tip-speed ratios and aesthetics (Schubel and Crossley,

3https://dominicroye.github.io

https://dominicroye.github.io
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2012). While a number of early wind turbine designs integrated steel truss-type or concrete

monopole (single support cylinder or partial-cone) towers into their designs, modern wind

turbines consist of a steel, monopole structure with a reinforced concrete foundation.

1.2 Noise from wind farms

Despite achievements in the development of wind energy, wind farms continue to be asso-

ciated with problems around social acceptance due to aesthetic, environmental and health

impact concerns of nearby residents (Merlin et al., 2013). Noise generated from wind farms

is a recurring source of complaints regarding annoyance and potential sleep disturbance from

residents living near wind farms (Liebich et al., 2021a; Micic et al., 2018). The major noise

source from a wind turbine is aerodynamic noise. Other noise sources such as mechani-

cal and power transmission noise are generally weaker, especially at long-range locations.

Aerodynamic noise sources generate unique characteristics of WFN such as infrasound,

amplitude modulation and a low-frequency spectral dominance. A typical WFN spectrum

and its characteristics are shown in Figure 1.2. The following sections provides a brief

description of how wind turbines generate these unique noise characteristics.

1.2.1 Amplitude modulation

Amplitude modulation (AM) is defined as the periodic variation in amplitude of a noise or

vibration signal. In relation to WFN, it is defined by the (UK) Institute of Acoustics (IOA) as

(AMWG, 2015),

“...periodic fluctuations in the level of broadband noise from a wind turbine (or wind

turbines), the frequency of the fluctuations being the blade-pass frequency of the turbine

rotor, as observed outdoors at residential distances in free-field conditions.”

At distances several hundreds meters from a wind farm, AM is often perceived as a

‘swishing’ noise (Bakker et al., 2012; Doolan, 2013; Van den Berg, 2004). ‘Swishing’ noise

is also referred to as ‘normal AM’, and it has been well characterised and quantified. Its

mechanism has also been intensively investigated both on model scale rotors (Oerlemans et al.,



1.2 Noise from wind farms 4

FIGURE 1.2. Wind farm noise characteristics. Wind farm Infrasound is observed as peaks on the
spectrum below 10 Hz (see Section 1.2.3 for details). There are several amplitude modulated tones, which
are characterised by a bell shape with side band spacing at the blade-pass frequency (BPF). The amplitude
modulated tones are sometimes referred to as ‘rumbling’ noise that usually occurs at frequencies below
100 Hz. The modulated tones can be observed at distances up to 9 km (see Section 1.2.2). ‘Thumping’
noise or ‘enhanced AM’ occurs in the frequency range between 50 and 300 Hz. The noise is dominant
at distances greater than 1 to 3 km (see Section 1.2.1). ‘Swishing’ noise or ‘normal AM’ occurs in the
frequency range between 200 and over 1,000 Hz. This noise is dominant over several hundred meters from
a wind farm (see Section 1.2.1).
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2001) and full-scale wind turbines (Lee et al., 2012; Oerlemans et al., 2007). Experimental

studies (Lee et al., 2012; Oerlemans et al., 2007; Ramachandran et al., 2014; Veggeberg

and Zheng, 2008) using the beamforming technique have found that the outer part of the

blades, creates most noise perceived on the ground (Figure 1.3a,b). The noise is mainly

created during the downward movement of the blades, for which the noise is at least 10 dB

higher than for the upward movement (Oerlemans et al., 2007). This strong asymmetry of

the noise source produces ‘swishing’ noise (Oerlemans et al., 2007). The mechanism of this

phenomenon is attributed to convective amplification and directivity of trailing-edge noise

(Figure 1.3c). For a stationary receiver and moving source, convective amplification4 causes

the sound pressure level (SPL) upstream of the source to be greater than that downstream at

the same distance from the source. For an operating wind turbine, when the blades move and

approach an observer on the ground, the noise level of the source will vary due to convective

amplification. In addition to the convective amplification effect, the directivity of the trailing-

edge noise-radiation contributes most to the asymmetry of the noise source (Oerlemans et al.,

2007). The directivity remains constant relative to the blade. For high-frequency trailing

edge noise directivity, the directivity pattern is ‘forward-looking’, which is the directivity

index is higher at the downwind condition compared to the upwind condition. Since the

blade is rotating, the relative position between the source and a stationary receiver varies

periodically at the blade-pass frequency (BPF) (Figure 1.3c). This results in SPL variations

at the receiver. A combination of convective amplification and directivity effects results in

perception of ‘swishing’ noise (or ‘normal AM’) at receivers on the ground located within

several hundred meters. This is most clearly perceived at crosswind locations (Figure 1.3d).

Compared to ‘swishing’ noise, there is no clear consensus in the literature to explain the

mechanism of ‘thumping’ noise (or ‘enhanced AM’). Wind shear, a change in wind speed

with height, is hypothesised to cause ‘thumping’ noise (Oerlemans, 2015). When the wind

speed at the top of the rotor disc is much higher than the speed at the bottom of the disc,

the angle of attack increases from the bottom to the top. Aerodynamic stall could occur at

the tip of each turbine blade when it approaches the top of the rotor disc. This generates

4The phenomenon when a source moves and approaches an observer, its amplitude will rise.
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FIGURE 1.3. ‘Swishing’ noise mechanism. a, Noise is created during the downward movement of the
blades. b, The primary noise source is at the outer part of the blades. The location of the blade sources
moves outward for increasing frequency. c, Noise directivity of trailing edge plane and noise measured
by ground-mounted microphones when the blades are rotating. d, ‘Swishing’ noise is clearly perceived
during crosswind conditions due to combined directivity and convective amplification. Parts a, c and d are
adapted with permission from Oerlemans and Schepers (2009), SAGE; Part b is adapted with permission
from Lee et al. (2012), Elsevier.
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separation-stall noise that is dominant at low-frequencies (Moreau et al., 2009). As the blade

rotates, the periodic separation-stall noise, reported as ‘thumping’ noise, is created at the

BPF. However, this explanation is yet to be comprehensively tested as separation-stall noise

does not often occur with modern wind turbines with stall- or pitch-regulated controls (Lee

et al., 2012). Previous studies have shown that ‘thumping’ noise occurs more often during

the nighttime which usually corresponds with stronger wind shear compared to daytime

conditions (Hansen et al., 2019a; Larsson and Öhlund, 2014; Van den Berg, 2005). However,

it remains unclear whether ‘thumping’ noise is due to wind shear.

1.2.2 Amplitude modulated tonal noise

At long-range locations, it is common to observe amplitude modulated tones (AM tones),

which are often described as ‘rumbling’ noise. AM tones have received relatively little

attention in WFN studies to date (Hansen and Hansen, 2020). One likely reason is that this

type of AM is not detected at all wind farms (Hansen et al., 2017). Also, ‘rumbling’ noise

occurs at very low frequencies (< 100 Hz) and it is not always audible for humans with

normal hearing. ‘Rumbling’ noise can travel over distances up to 9 km from wind farms

(Hansen et al., 2019a). The mechanism(s) responsible for the AM tones is unclear, but it

is hypothesised to have a mechanical origin and to be re-radiated from the blades and/or

tower. The amplitude modulation of these tones is believed to occur due to periodic changes

in loading on the blades (Hansen et al., 2017). Similar to the telecommunications field, the

AM tone can be considered as the carrier signal, while the blade-tower interaction noise is

the information signal. The result of this interaction is tonal noise with side-bands in the

frequency domain. However, this hypothesis is yet to be investigated in detail due to the

difficulty in collecting data from the wind turbine drive train.

1.2.3 Infrasound

Wind farm infrasound is primarily generated by the blades passing the tower (Doolan et al.,

2012; Zajamsek et al., 2019). The wind flow passes around the tower, creating a region of
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Tower

Wind flow

Flow disturbance

Rotating 
direction

Non-uniform flow

Wind turbine blade

FIGURE 1.4. Infrasound mechanism. Note that for illustrative purposes, the relative size between the
tower and blade is not shown to scale.

non-uniform flow upstream of the tower as shown in Figure 1.4. The wind turbine blade

angle of attack to the incoming flow changes due to this non-uniform flow region, resulting

in a fluctuation in the lift force. This fluctuating load is the main mechanism of wind turbine

infrasound generation. This phenomenon is more significant for the down wind turbine

configuration (Hubbard, 1990), where the blade is located on the downwind side of the tower.

However, most modern turbines use the upwind turbine configuration which generates lower

levels of infrasound (Hubbard and Shepherd, 1991).

1.2.4 Wind farm noise propagation

The simplest way to understand how WFN travels to a residence is to use a ray tracing model

(Ostashev and Wilson, 2015). In this model, the noise travels to the residence through ray

paths, connecting the noise source and receiver, as shown in Figure 1.5. Depending on the

atmospheric conditions, the ray paths could be straight lines or curves. For example, if the

wind speed and temperature profiles are constant, these ray paths follow straight lines because
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the sound speed profile is also constant. However, it is more common that the wind speed

profile is nonlinear (Figure 1.5a) and that the wind speed is higher at higher local altitudes

above ground. Also, the temperature gradient is usually positive (higher at higher altitudes)

during the nighttime, and negative during the daytime. Due to these atmospheric conditions,

the sound speed is nonlinear i.e., negative or positive gradient relative to ground, resulting

in ray paths that are curves rather than straight lines. Depending on whether the sound

speed profile has a negative or positive gradient, the curves can bend upward or downward,

respectively. Figure 1.5a shows an example of the ray paths bending downward. The ray

paths can travel directly to the residence or reflect several times before reaching the residence.

Due to the interference between these direct and reflected ray paths, the resulting sound

field may exhibit local maxima and minima, as shown in Figure 1.5b. This example clearly

shows that noise is not necessarily louder at closer distances to wind farms. Also, at specific

locations, noise is significantly affected by atmospheric conditions and local topography.

Therefore, long-term noise measurements are crucial to help assess the nature, prevalence

and variability of the most prominent and potentially most problematic WFN characteristics.

1.2.5 Impacts on humans

Previous studies have shown that AM contributes to annoyance (Ioannidou et al., 2016;

Lee et al., 2011; Schäffer et al., 2016) and possibly sleep disturbance (Bakker et al., 2012;

Liebich et al., 2021a; Micic et al., 2018). Lee et al. (2011) investigated annoyance caused

by AM using listening tests. The authors found that higher annoyance is associated with

higher AM depth (Figure 1.6). Schäffer et al. (2016) found that WFN with AM is more

annoying than WFN without AM. Also, increased annoyance to AM has been shown to be

unrelated to its periodicity or randomness (Figure 1.6). Using a similar approach as Lee

et al. (2011), Ioannidou et al. (2016) found that annoyance decreased when AM depth was

reduced (Figure 1.6). Other studies (Von Hünerbein et al., 2013; Yokoyama et al., 2013) used

synthesised AM stimuli to assess the impacts of AM. Von Hünerbein et al. (2013) showed

that annoyance increased with AM depth, but this result was not statistically significant.

5https://github.com/ducphucnguyen/FreeRay.jl.git

https://github.com/ducphucnguyen/FreeRay.jl.git
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FIGURE 1.5. Wind farm noise propagation. a, Wind farm noise travels to the residence through ray
paths. b, An example of a sound field, in which a wind turbine is 80 m above the ridge. Sound propagation
is modelled using FreeRay package5.
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FIGURE 1.6. Relationship between annoyance and AM. a, Wind farm noise is consistently rated as
more annoying than road traffic noise. Noise containing AM is also consistently rated as more annoying
than noise without AM. b, A higher AM depth is associated with higher annoying ratings. The stimuli are
measured at different distances and wind farm capacity. Part a, is adapted with permission from Schäffer
et al. (2016), JASA; Parts b is adapted with permission from Ioannidou et al. (2016), JASA.

Yokoyama et al. (2013) found that noise fluctuations were noticeable when the AM depth

exceeded 2 dB. In contrast to listening test measurements, Smith et al. (2020) assessed

the impacts of WFN on sleep and found that AM of WFN may impact self-reported sleep

while other measures of objective sleep did not differ significantly between nights with and

without WFN. In a systematic review and laboratory study, Liebich et al. (2021a,b) found

no consistent evidence to support that WFN increased sleep latency. However, inconsistent

findings between studies (Liebich et al., 2021a) along with ongoing uncertainty regarding

what WFN features and sound pressure levels may become problematic for sleep clearly

warrant further investigation. Well-controlled experimental studies using realistic WFN

features and sound pressure levels most relevant to real-world noise exposure settings are

clearly needed. Studies clearly need both objective and subjective assessments using well

established and validated outcome measures along with appropriate sample sizes towards

more definitive conclusions regarding WFN impact on surrounding communities.
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FIGURE 1.7. Applications of machine learning in acoustic fields. Word cloud map indicating the
frequency of occurrences of a particular subject in the special issue on machine learning in acoustics
published by JASA. This figure is adapted with permission from Michalopoulou et al. (2021), JASA.

1.3 Machine learning in the context of environmental noise

Machine learning for acoustic applications is one of the most active and fastest growing

research areas in acoustics. Machine learning techniques have been applied to a variety of

applications including music analysis, bioacoustics, speed recognition, underwater acoustics

and environmental acoustics (Bianco et al., 2019; Michalopoulou et al., 2021). The relatively

rapid advances in acoustic machine learning research likely reflects several factors includ-

ing; better resources such as microphones, data storage and remote monitoring techniques

facilitating acquisition of large data sets; faster computers; and especially greater access to

machine learning models, most of which are now publicly available, which greatly reduces

development time for new applications. One of the most active areas applying machine learn-

ing techniques to acoustics is underwater acoustics (Michalopoulou et al., 2021) (Figure 1.7).

Although machine learning techniques have not been applied as actively to atmospheric

acoustics as to other fields, several promising results have recently been published in areas

such as outdoor noise predictions (Hart et al., 2016, 2021; Iannace et al., 2019; Mungiole and

Wilson, 2006), wind turbine noise source operating condition predictions (Ciaburro et al.,

2021) and noise source classification (Paulraj and Välisuo, 2020; Välisuo, 2017).
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Transfer learning (Brownlee, 2017) is a modern research approach in deep learning. In

this approach, a model already constructed and trained to solve a specific task is reused as

the starting point to solve another similar task. For example, a model trained to classify

noise types could be reused as a noise feature extractor. These extracted features can then be

trained to detect AM or tonality in WFN. The benefit of this approach is that existing deep

learning models already trained with massive data and substantial amounts of computer and

time resources can be reused for additional applications. As a result, these deep learning

models can provide significant advantages when applied to other relevant problems. Applying

transfer learning to environmental noise has shown promising preliminary results. Liu et al.

(2019) showed that transfer learning models can be incorporated into acoustic surveillance

systems to detect chainsaw noise to help rainforest conservation. Sethi et al. (2020) further

showed that acoustic features extracted from pre-trained models could be used to characterise

noise. The authors also illustrated that the transfer learning approach was useful for real-time

automated detection of irregular environmental behaviour including illegal logging and

hunting. Using a pretrained deep model (DEEP-Hybrid DataCloud project), Clark et al.

(2021) were able to characterise the details of diurnal and spatial community noise sources.

1.4 Aims

In this thesis, my aims were:

1. To develop and validate an advanced AM detection method based on a combination of

traditional methods, machine learning-based methods and listening tests;

2. To quantify and characterise AM using year-long measurements of acoustical and

meteorological data collected from different residential locations near several South

Australian wind farms;

3. To investigate the audibility and characteristics of infrasound and modulated tonal

noise based on a probabilistic approach and computer simulations;
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4. To explore the transfer learning technique in machine learning for WFN quantification

and characterisation.

1.5 Thesis outline

The overall structure of the thesis includes four major sections including Introduction, Meth-

ods, Results & Conclusion as shown in Figure 1.8. The major Result section is divided

into subsections, each with their own introduction, methods, results, discussion and conclu-

sion. This reflects that each results Chapter was constructed as a stand-alone document for

peer-review publication. The details are as follows:

• Chapter 2 presents how year-long data in the field were collected. This chapter provides

details regarding the study region, wind farm characteristics, equipment and setup

procedures.

• Chapter 3 presents a machine learning based method to detect AM. Benchmark charac-

teristics of AM were established using a human-scored data set. The results presented

in this chapter have been published as (Nguyen et al., 2021b).

• Chapter 4 used the classifier as developed in Chapter 3 to detect AM in long-term data

sets. The relationship between AM characteristics and meteorological conditions was

quantified and characterised. Differences between indoor and outdoor AM charac-

teristics are presented and discussed. The results presented in this chapter have been

published as (Nguyen et al., 2021a).

• Chapter 5 provides characteristics of infrasound and AM tones of WFN. In this chapter,

a computer simulation was used to assess the audibility of key WFN characteristics

at long-range locations. The results presented in this chapter have been published as

(Nguyen et al., 2022a).

• Chapter 6 is an exploratory chapter. In this chapter, deep acoustic features extracted

from a deep learning model were investigated to reveal whether they can be used to
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FIGURE 1.8. Thesis outline.

replace traditional acoustic features. The results presented in this chapter have been

published as (Nguyen et al., 2022b).

• Finally, Chapter 7 summarise the main contributions of the work presented in this

thesis and concludes the thesis as well as discusses future directions for research in

this area.

1.6 Research outputs

I have published and submitted several papers as first author during my PhD candidature as

follows:

1. Nguyen, D. Phuc, Hansen L. Kristy, Lechat Bastien, Catcheside Peter, Zajamsek

Branko, and Hansen H. Colin. "Benchmark characterisation and automated detection

of wind farm noise amplitude modulation." Applied Acoustics 183 (2021): 108286.

https://doi.org/10.1016/j.apacoust.2021.108286

2. Nguyen, D. Phuc, Hansen L. Kristy, Catcheside Peter, and Hansen H. Colin, and Za-

jamsek Branko. "Long-term quantification and characterisation of wind farm noise am-

plitude modulation." Measurement (2021): 109678. https://doi.org/10.1016/j.measurement.

2021.109678

https://doi.org/10.1016/j.apacoust.2021.108286
https://doi.org/10.1016/j.measurement.2021.109678
https://doi.org/10.1016/j.measurement.2021.109678
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3. Nguyen, D. Phuc, Hansen L. Kristy, Bastien Lechat, Zajamsek Branko, Hansen H.

Colin and Catcheside Peter. "Going beyond traditional wind farm noise characterisation

with deep acoustic features." JASA Express Letters (2022): 109678. https://doi.org/10.

1121/10.0010494

4. Nguyen, D. Phuc, Hansen L. Kristy, Catcheside Peter, and Hansen H. Colin, and

Zajamsek Branko. "Audibility of wind farm infrasound and modulated tonal noise

observed at long-range locations." Applied Acoustics (2022) https://doi.org/10.1016/j.

apacoust.2022.109106

5. Nguyen, D. Phuc, Hansen L. Kristy, Zajamsek Branko, Catcheside Peter and Hansen

H. Colin. "Multi-input model uncertainty analysis for long-range wind farm noise

predictions." Applied Acoustics (Dec/2021) (SUBMITTED REVISION)

I am a co-author on these following papers, to which I contributed more than 50% towards

data analysis and collection:

6. Hansen L. Kristy, Nguyen, D. Phuc, Gorica Micic , Lechat Bastien, Catcheside Peter,

Zajamsek Branko, and Hansen H. Colin. "Amplitude modulated wind farm noise

relationship with annoyance: A year-long field study." The Journal of the Acoustical

Society of America 150, no. 2 (2021): 1198-1208. https://doi.org/10.1121/10.0005849

During my candidature, I also collaborated with psychologists and physiologists to

investigate the effects of WFN on sleep in following papers:

7. Tessa Liebich, Leon Lack, Gorica Micic, Kristy Hansen, Branko Zajamsek, Hannah

Scott, Nicole Lovato, Claire Dunbar, Bastien Lechat, Felix Decup, Nguyen, D. Phuc,

Peter Catcheside. "The effect of wind turbine noise on polysomnographically-measured

and self-reported sleep latency in wind turbine noise naïve participants." Journal of

Sleep (2021). https://doi.org/10.1093/sleep/zsab283

8. Dunbar, Claire, Peter Catcheside, Bastien Lechat, Kristy Hansen, Branko Zajamsek,

Tessa Liebich, Nguyen, D. Phuc, et al. "EEG power spectral responses to wind farm

https://doi.org/10.1121/10.0010494
https://doi.org/10.1121/10.0010494
https://doi.org/10.1016/j.apacoust.2022.109106
https://doi.org/10.1016/j.apacoust.2022.109106
https://doi.org/10.1121/10.0005849
https://doi.org/10.1093/sleep/zsab283
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compared with road traffic noise during sleep: A laboratory study." Journal of Sleep

Research (2021): e13517. https://doi.org/10.1111/jsr.13517

9. Sweetman, Alexander, Leon Lack, R. Doug McEvoy, Simon Smith, Danny J. Eckert,

Amal Osman, Jayne C. Carberry, Douglas Wallace, Nguyen, D. Phuc, and Peter

Catcheside. "Bi-directional relationships between co-morbid insomnia and sleep

apnea." Sleep Medicine Reviews (2021): 101519. https://doi.org/10.1016/j.smrv.2021.101519

10. Lechat, Bastien, Hannah Scott, Ganesh Naik, Kristy Hansen, Nguyen, D. Phuc, An-

drew Vakulin, Peter Catcheside, and Danny J. Eckert. "New and Emerging Approaches

to Better Define Sleep Disruption and Its Consequences." Frontiers in Neuroscience

(2021): 1330. https://doi.org/10.3389/fnins.2021.751730

I also published a number of software packages that are publicly availability on Github6

and gave several interviews that have been covered in the mainstream media internationally,

featuring in ScienceDaily7, EcoVoice, RenewEconomy, CanberraOnlineNews, Techilive,

Miragenews, MorningNews and ABC news.

6https://github.com/ducphucnguyen
7https://www.sciencedaily.com/releases/2021/08/210818130533.htm

 https://doi.org/10.1111/jsr.13517
 https://doi.org/10.1016/j.smrv.2021.101519
 https://doi.org/10.3389/fnins.2021.751730
 https://github.com/ducphucnguyen
https://www.sciencedaily.com/releases/2021/08/210818130533.htm


Chapter 2

Field measurement

This chapter presents field work that I conducted from August 2018 to December 2019 under

the supervision of my principal supervisor.

This study was approved by the Flinders University Social and Behavioural Research

Ethics Committee (SBREC project number 7536). Residents living in the houses where

measurements were conducted provided voluntary informed written consent and re-

ceived a small reimbursement (AUD$500) to compensate for the time and inconvenience

associated with study participation.

2.1 Study region

Measurements were carried out in the mid-north region of South Australia as shown in

Figure 2.1, which has a Mediterranean climate with relatively mild winters and hot dry

summers. Given the Southern latitude South Australia’s seasons are at opposite times of the

year compared to those in the northern hemisphere. Summer is from December to February;

Autumn is from March to May; Winter is from June to August; and Spring is from September

to November. This information is important because seasonal characteristics of WFN in this

study were, in Chapter 3, compared with previous studies mainly conducted in the northern

hemisphere such as in Finland and Sweden.
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FIGURE 2.1. Study region. The study region is located in the north of South Australia, approximately 3
to 4 hours drive from Adelaide. The average elevation in this region is between 300 m and 600 m above
the mean sea level. Elevation data are publicly available from Elvis - Elevation and Depth - Foundation
Spatial Data1.

During the time of measurements, the median difference in temperature between the

daytime and nighttime was approximately 10◦C, while the difference between summer and

winter was greater than 15◦C, as shown in Figure 2.2. The maximum temperature was

approximately 50◦C, while the minimum temperature was slightly below 0◦C. The rainfall in

South Australia was low, especially during the time of the measurements, during which all

months (except August) were classified as dry months (rainfall < 60 mm per month). This

condition is ideal for noise monitoring as it minimises the effects of wet conditions on the

performance of microphones and windscreens.

1https://elevation.fsdf.org.au/
2http://www.bom.gov.au/climate/data/index.shtml.

https://elevation.fsdf.org.au/
 http://www.bom.gov.au/climate/data/index.shtml.
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FIGURE 2.2. Weather conditions. Diurnal temperature change, monthly temperature and total rainfall.
Long-term temperature and rainfall data were extracted from Bureau of Meteorology Australia2.
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2.2 Wind farm characteristics

Hornsdale wind farm (hereafter referred to as wind farm A), at the time of measurements,

consisted of 99 wind turbines with a nominal capacity of 315 megawatts (MW), as shown

in Figure 2.1. Wind farm A consisted of Siemens 3.2-MW SWT-3.2-113 direct drive

wind turbine generators. These turbines have a 95 m hub height and 55 m blade radius,

making the tip height above ground 150 m. The annual power output during the time of the

measurements was 125 MW, which was approximately 40% of the total output capacity, as

shown in Figure 2.3a. Measurement location 1 was approximately 1 km from the nearest

wind turbine. Nearby wind turbines were at similar elevation levels to the measurement

location.

At the time of measurements, Hallett wind farm (hereafter referred to as wind farm B)

included four different smaller wind farms. This study only considered the characteristics of

the two nearest wind farms (Hallett 1 and 5) to measurement locations 2 and 3, as shown

in Figure 2.1. Wind farm B had 1 Suzlon S97 and 69 Suzlon S88 wind turbines, each with

nominal output power of 2.1 MW, for a total of approximately 148 MW (Figure 2.3b). The

turbine rotor radius was 44 m, and the hub height 80 m, giving a blade tip height of 124

m. The annual power output capacity during the time of measurements was 36%. These

wind turbines were positioned along the top of a ridge, approximately 70 m higher than

measurement locations 2 and 3 (Figure 2.1).

Waterloo wind farm (hereafter referred to as wind farm C) consisted of 37 Vestas V90-3

MW turbines and 6 Vestas V117-3.45 MW turbines, with a nominal power output of 131

MW (Figure 2.3). The majority of wind turbines had a hub height of 80 m and a turbine

blade radius of 44 m and all were located on the top of a ridge. The average height difference

between the ridge and measurement locations 4, 5 and 6 was approximately 110 m, as shown

in Figure 2.1. Other details regarding the characteristics of wind farm A, B and C are also

provided in Table 2.1.

3https://anero.id/energy/wind-energy/
4https://en.wikipedia.org/wiki/Hallett_Wind_Farm

https://anero.id/energy/wind-energy/
https://en.wikipedia.org/wiki/Hallett_Wind_Farm
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TABLE 2.1. Characteristics of wind farms.

Name Hornsdale
(Wind farm
A)

Hallett (Wind
farm B)

Waterloo
(Wind farm
C)

Nominal capacity (MW) 315 148 131
Turbine size (MW) 3.2 2.1 (3.0 & 3.3)
Turbine model Siemens

SWT-3.2-113
Suzlon S88 &
S97

Vestas
V90-3.0 &
V117-3.45

Operational month and year* Jul 2016 2012 Oct 2010
Wind farm latitude -33.058 -33.367 -33.983
Wind farm longitude 138.544 138.728 138.900
Annual output (mean ± s.d.
MW)

125 ± 97 54 ± 44 45 ± 38

* Hornsdale and Hallett wind farms were developed in several phases. Above
operational dates are based on a fully operational status.)
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FIGURE 2.3. Wind farm power output. The data used for producing these figures were extracted
from Australian Energy Market3 from June 2018 to September 2019. The data used for the Hallett wind
farm plot is a summation of Hallett 1 and Hallett 5 wind farm power outputs (see wikipedia4 for wind
farm details). The histogram bin-width is 5.0 MW. The values indicated on the red-dashed vertical lines
indicate mean ± one standard deviation.
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2.3 Measurement location and duration

In this PhD project, I conducted measurements at 6 locations (location 1 - 4, 6, 7) as shown

in Figure 2.1, while the measurements at location 5 were conducted during a previous project.

The main criteria for selecting these locations were residences located between 1 and 10 km

from an operational wind farm. Resident were also required to consent for measurements

to be carried out both indoors and outdoors of their residence for one year. The study was

advertised via postal flyers that were dispatched to 585 residents living near surrounding wind

farms. However, due to limited interest in the study and a limited number of measurement

systems, only 6 measurements were conducted in this PhD project. Further details regarding

measurement locations and data use in each chapter are summarised in Table 2.2.

In this PhD project, I did not use all data sets described above for every study presented

in Chapters 3 to 6. The most used data sets were measured at locations 1, 2 and 4 (Table 2.2).

These data sets were large, and contained good quality outdoor and indoor data. These

data sets were thus suitable for investigating the seasonal trends of WFN characteristics.

Other data sets were smaller (i.e., locations 5 & 6), highly contaminated by other indoor

noise sources (i.e., location 3) or did not contain WFN (i.e., location 7). These data sets

were included for particular purposes. For example, the data set measured at location 7

was suitable for testing the false positive rate of the proposed AM detection algorithm as

presented in Chapter 3. Therefore, the data selection in this PhD project was based on the

suitability of the data sets to address specific research questions most relevant to each chapter.

More details regarding data selection criteria are presented in each result chapter.

2.4 Outdoor noise measurements

2.4.1 Measurement setup

Noise was measured at 1.5 m above the ground and at ground level, as shown in Figure 2.4.

The microphone at a height of 1.5 m was expected to measure noise corresponding to the ear

height of an average person. This microphone was mounted using a star-dropper to minimise
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TABLE 2.2. Measurement locations and duration. The check marks indicate data sets included in each
results chapter

Wind
farm

Location Distance*
(km)

Duration
(days)

Chapter 3 Chapter 4 Chapter 5 Chapter 6

A 1 1.0 342 ✓ ✓ ✓ ✓

B 2 1.3 391 ✓ ✓ ✓ ✓
3 3.8 296 ✓

C 4 3.5 420 ✓ ✓ ✓
5 3.5 14 ✓
6 8.8 70 ✓ ✓

7 20 122 ✓

* The distance from the nearest wind turbine to the measurement location.

wind noise interference associated with the more conventional method of tripod mounting.

The main disadvantage of measuring at this height is that noise can be contaminated by

wind-induced noise, especially at low frequencies. To minimise wind-induced noise caused

by wind interaction with the microphone, a microphone at ground level was also used, which

was taped horizontally to the centre of a 1 m diameter aluminium plate of 3 mm thickness, as

described in IEC61400-11 (2012). The main problem with this setup is that noise levels at

ground level may not be representative of noise measurements at the other two measurement

heights. This is due to interference between the direct and reflected sound waves, which is

affected by the microphone height above the ground. A brief introduction to this phenomenon

was provided in Chapter 1, Section 1.2.4. Throughout this PhD project, I predominantly

analysed data measured at 1.5 m height. Data measured at ground level were only used cases

where data at 1.5 m height were missing or unavailable. Further details regarding missing

data and the need for ground versus 1.5 m height collected data are provided in each relevant

result chapter.

2.4.2 Microphones

Low-frequency microphones were used for outdoor measurements. These microphones were

GRAS 40AZ 1/2" Prepolarized Free-field Microphones, which can measure noise between

0.5 Hz and 20 kHz with an uncertainty of 2 dB. The frequency response of this microphone

is shown in Figure 2.5. This low frequency limit of the microphones is particularly important
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FIGURE 2.4. Outdoor noise measurements. This photo was taken by Kristy.

for capturing infrasonic frequency components of WFN and the fundamental blade-pass

frequency, which is normally between 0.7 and 0.8 Hz. The upper frequency limit of these

microphones is well above the frequency range of WFN, especially at long-range locations

where WFN frequency components are typically below 1 kHz. The microphone is a prepo-

larised type that is less sensitive to dust and moisture, which is particularly advantageous

for outdoor measurements. The dynamic range of the microphone, which reflects the upper

and lower limit of the SPL that the microphone can measure, is between 14 and 148 dB (the

reference sound pressure in air used throughout this thesis is 20 µPa). The temperature-range

of these microphones is between -40 and 120◦C, well suited to the measurement region

where outdoor temperatures are typically between 0 and 50◦C (see Section 2.1 for details).

Time series data from the microphones were recorded using B&K LAN-XI 24-bit data

acquisition hardware, which was operated using Pulse software. This system had a flat

frequency response between 0 Hz and 51 kHz and a dynamic range between 0 and 160 dB.
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FIGURE 2.5. Frequency response of microphone. Microphone GRAS 40 AZ is a low-frequency
microphone that was used for all outdoor measurements. Microphone B&K Type 4955 is a low-noise
microphone that was used for indoor measurements (see section 2.5 for details).

Acoustic data were acquired with a sampling frequency of 8,192 Hz at all measurement

locations.

2.4.3 Calibration

The microphones used in this PhD project were purchased when the study commenced, and

thus accredited calibration was arranged by the manufacturer. To further verify microphone

performance, I compared data measured simultaneously using four microphones in a low

noise setting. The microphones were placed in a bedroom where two low-noise and two

low-frequency microphones were positioned as close to one another as possible to capture

room background noise. The purpose of this experiment was to test if the performance of

the same type of microphones was consistent. The results showed that microphones of the

same type produced very consistent measurements, as shown in Figure 2.6. As expected, the

largest difference between two types of microphones was in the frequency range below 10
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FIGURE 2.6. Microphone performance. Microphone B&K Type 4955 is a low-noise microphone,
while microphone GRAS 40 AZ is a low-frequency microphone. The performance of the same type of the
microphones was consistent.

Hz. In the frequency range between 10 Hz and 1000 Hz, both types of microphones showed

good agreement.

In the field, microphones were calibrated at the beginning and end of each measurement

period. At locations 1 and 4, cables were chewed by sheep during the measurements, and

thus microphones were calibrated after fixing the cables. The calibrator was a SVANTEK SV

36 Class 1 calibrator, which produces a calibration tone of 94 dB at 1000 Hz. All systems

were confirmed to be working properly with no significant drift. Changes in the required

adjustment gain were within acceptable limits, equating to a difference of less than 0.5 dB

for all microphones.

2.4.4 Wind screens

To minimise the effect of wind-induced noise, I used a standard wind screen consisting of a

90-mm diameter solid sphere of open-cell foam that fitted snugly over the microphone, as

recommended in ANSI/ASA ANSI/ASA (1993). However, this small wind screen is only
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FIGURE 2.7. Secondary wind screen.

effective for overall A-weighted SPL measurements in wind speeds up to 5 m/s. To further

reduce wind-induced noise, I used a secondary wind screen, which has a diameter of 450 mm

and was located symmetrically over the smaller 90-mm primary wind screen. The secondary

wind screen was handmade and consisted of a thin-wire steel frame of outer diameter 450

mm (supplied by Bunnings5), covered by a 16 mm layer of acoustic foam with a porosity of

4 to 8 pores per 10 mm (supplied by Unifilter6 ), and a layer of SoundMaster acoustic fur

(Figure 2.7).

2.4.5 Power requirements

In all measurements, recording equipment was powered by a 12 V battery connected to

a charger, which automatically charged the battery when the voltage was below 10.5 V.

Compared to plugging the equipment directly into the grid power system at the residence,

using a battery ensures that the instrumentation is provided with a constant source of power.

This is important when measuring noise in rural areas as it can reduce the number of field trips

5https://www.bunnings.com.au/gardman-45cm-black-georgian-hanging-basket_p2891375.
6https://www.uniflow.com.au/.

https://www.bunnings.com.au/gardman-45cm-black-georgian-hanging-basket_p2891375
https://www.uniflow.com.au/
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FIGURE 2.8. Indoor noise measurements.

required to troubleshoot issues associated with an unreliable power supply. This approach

also minimises 50 Hz noise associated with mains power.

2.5 Indoor noise measurements

The indoor measurements were similar to the outdoor measurements. The only differences

were as follows:

2.5.1 Microphones

Noise levels measured indoors are consistently lower than outdoors so low-noise microphones

were used for indoor measurements. The microphones used were B&K Type 4955, which

have a dynamic range between 6.2 and 110 dB re 20 µPa. The frequency response of

these microphones is between 5 Hz and 20 kHz with an uncertainty of 3 dB as shown in
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Figure 2.5. The temperature range is between -20 and 80◦C. Although these microphones

cannot accurately capture the frequency content lower than 5 Hz, this was considered

acceptable for indoor measurements because it was a reasonable compromise to allow

measurements of the noise down to 6 dB. This was important because all measurements in

this PhD project were conducted in rural areas where noise levels are typically low.

2.5.2 Microphone positions

I measured the noise at two positions in a bedroom as shown in Figure 2.8. Most bedrooms

in the study were unoccupied rooms (except at location 3, where noise was measured in a

living room). There was always one microphone in the room corner, which is an anti-node

for all room resonant acoustic modes and is therefore the location with the highest associated

SPL at all frequencies. The corner was chosen to make sure that it is most out of the way of

residents and furthest to indoor noise sources. The other microphone was at a height of 1.5

m above the floor and at least 0.5 m away from walls. These positions are specified in the

Danish guidelines (DPA, 1997).

2.5.3 Other setup details

The advantage of the indoor measurements was that the wind-induced noise was minimal.

Thus, I only used a 90-mm primary wind screen for these indoor microphones, which was

mounted on a tripod instead of a star-dropper as used outdoors, as shown in Figure 2.8. Also,

a star-dropper is not practical for indoor setup as it could hammer into the floor.

2.6 Weather condition measurements

The local wind speed, wind direction and rainfall were measured concurrently at heights

of 1.5 and 10 m using a Davis Vantage Vue and a Davis Vantage Pro weather station (cup

anemometer), respectively (Figure 2.4). These cup anemometers can measure wind speed

and direction with an accuracy of 0.4 m/s and 22.5◦, respectively. These cup anemometers
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were easy to maintain in the field study, and the coarse resolution of the wind direction

was considered adequate to determine if the receiver was in a downwind, crosswind or

upwind direction from the wind farm. The anemometer at a height of 1.5 m was placed on

a star-dropper, while the anemometer at a height of 10 m was attached to a low cost TV

antenna mast adapted to suit the weather station and to facilitate set-up.

2.7 Wind farm operating data

I was not able to obtain rich data related to wind farm operating conditions. The only publicly

available data were the total wind farm power output for each 5-minute interval accessed via

Australian Energy Market7.

7https://anero.id/energy/wind-energy/

https://anero.id/energy/wind-energy/


Chapter 3

Benchmark characterisation and

automated detection of wind farm noise

amplitude modulation

This chapter presents work that I published in Nguyen et al. (2021b). My coauthors were

primarily involved in an advisory role so I led and undertook the majority of the work.

Contributions: My contributions to this chapter included:

• I generated a benchmark data set which was scored by human experts to identify the

presence or absence of AM.

• I developed and validated an advanced AM detection method with a predictive power

close to its practical limit set by human scoring.

• I established benchmark AM characteristics, based on the benchmark data set. The

benchmark characteristics were compared with results from previous studies.

• I made all source codes and the benchmark data set publicly available. This is important

for reproducibility and future development of this research area.
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3.1 Introduction

A mplitude modulation of WFN is a unique feature known to contribute to annoyance

(Ioannidou et al., 2016; Lee et al., 2011; Schäffer et al., 2016) and possibly sleep

disturbance (Bakker et al., 2012; Liebich et al., 2021a; Micic et al., 2018). AM in the context

of WFN is defined as a periodic variation in SPL at the blade-pass frequency (Bass et al.,

2016; Hansen et al., 2017), typically between 0.4 and 2 Hz, and is typically most prominent

during the evening and night-time when environmental conditions tend to be more favourable

for AM (Conrady et al., 2020; Hansen et al., 2019a; Larsson and Öhlund, 2012). AM is a

highly variable phenomenon, depending on meteorological conditions (Conrady et al., 2020;

Larsson and Öhlund, 2014; Paulraj and Välisuo, 2017), distance from the wind farm and

wind farm operating conditions (Hansen et al., 2019a), making AM challenging to detect.

Subsequently, characterising AM also becomes a challenging task because it depends on the

performance of AM detectors.

Despite the difficulty in detecting AM, this noise phenomenon is commonly detected

using simple engineering methods (Hansen et al., 2017) using specific noise features (single

predictor). For example, one of the first frequency domain-based methods, as proposed by

Lundmark (2011), detected and quantified AM using the AM spectrum of the time variation

of instantaneous SPLs. To detect AM in field measurements of wind farm noise, this method

was extended by specifying additional criteria such as a valid spectral peak frequency range

of 0.6 – 1.0 Hz, and critical values of the maximum spectral peak of 0.4 dB (Larsson and

Öhlund, 2014) or 0.6 dB (Conrady et al., 2020). Time domain-based methods typically detect

AM using SPL variations, where AM is classified as the difference between the 5th and 95th

percentile of SPL greater than 2 dB (Fukushima et al., 2013) or as a peak-to-trough difference

of 3 dB or 5-6 dB (Bass, 2011; Cooper and Evans, 2013). Recently, the IOA has developed

a hybrid method (Bass et al., 2016), which is a combination of time and frequency domain

methods. This method uses the prominence ratio, a ratio of peak and masking level, as a

predictor of AM occurrence. The main advantage of these engineering methods is the ease

of their implementation and computational speed, which makes them suitable for automated



3.1 Introduction 34

analysis of large data sets (Conrady et al., 2020; Hansen et al., 2019a; Larsson and Öhlund,

2014). However, evaluation of the performance of these methods is currently limited to false

positive rates alone, or to small data sets (Bass, 2011; Bass et al., 2016; Larsson and Öhlund,

2014) or is lacking altogether (Fukushima et al., 2013; Nordtest, 2002).

Detection and quantification of AM using automated detectors has been adopted in many

previous studies (Conrady et al., 2020; Hansen et al., 2019a; Larsson and Öhlund, 2012;

Larsson and Öhlund, 2014; Paulraj and Välisuo, 2017). This approach is practical and

efficient as the analysis of AM is usually implemented on large data sets. In fact, using

automated detectors, several unique AM features can be identified and possible associations

between weather conditions Larsson and Öhlund (2014), wind farm operation conditions,

distances to wind farm (Hansen et al., 2019a), and the diurnal and seasonal variation of AM

(Conrady et al., 2020; Paulraj and Välisuo, 2017) can be identified. However, the above AM

characteristics and associated variables have been identified based on the assumption that the

performance of currently available AM detectors is reasonable.

Human detectors are usually considered as a benchmark (or gold-standard) method for

classification tasks which require unique skills to detect target features (Warby et al., 2014).

Although this approach is likely impractical to use for detecting AM in year-long data sets,

it has some merits. A small subset can be extracted from a large data set using statistical

sampling methods (Hastie et al., 2009). If AM samples in this subset are identified by

skilled scorers, this information can be used to detect and quantify AM in the large data

set. Additionally, this human-scored subset is useful for developing advanced AM detectors

such as machine learning methods. In fact, machine learning methods are emerging in many

acoustical applications (Bianco et al., 2019) such as noise predictions (Iannace et al., 2019;

Valente, 2013), sound propagation (Hart et al., 2016) and source noise classification (Paulraj

and Välisuo, 2020; Välisuo, 2017). These methods allow for the combination of multiple,

otherwise isolated noise features into one robust classifier. This overcomes one of the major

issues associated with traditional AM detection methods, which is the reliance on a single

noise feature, which poorly accounts for the highly variable and multifaceted phenomenon

of AM (Hansen et al., 2017).
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The aims of this study were twofold: (1) to establish benchmark characteristics of AM

based on the results of expert human detectors, and (2) to develop an advanced AM detection

method based on the benchmark data set. To create the benchmark data set, 6,000 10-sec

audio files were randomly extracted from a database including one year measurements at two

residences located near different wind farms. AM samples in this subset were then identified

by a single scorer using a listening experiment under controlled conditions. Subsequently,

the benchmark AM characteristics were established and compared with previous published

findings. Finally, using above benchmark data set, an advanced AM detection method was

developed which is based on the random forest classification algorithm (Breiman, 2001).

Three widely-used AM detection methods (Bass et al., 2016; Fukushima et al., 2013; Larsson

and Öhlund, 2014) were also evaluated. In particular, I demonstrate a promising method to

reliably establish AM characteristics. Also, the advanced method described in this paper,

which is based on a state-of-the-art algorithm, outperformed current methods and is effective

for exploration of large wind farm noise data sets.

3.2 Methods

3.2.1 Overview of study region and data collection

The acoustical data sets used in this study were measured at four residences (i.e., location

1, 2, 5 and 7 as shown in Figure 2.1 Chapter 2). To make this chapter is easier to follow,

the data measured at location 1, 2, 5 and 7 were renamed as H1 to H4, respectively. The

residences located approximately 1.0 km (H1), 1.3 km (H2), 3.5 km (H3) and 30 km (H4)

from the nearest wind turbine of South Australian wind farms. These distances are relevant

to wind farms in Australia, where residences usually located greater than 1 km from wind

farms. Residence H4 was unoccupied and located far away from wind farms, and thus it was

assumed that AM did not exist at this location. Noise data were measured for one year at

locations H1 and H2 and two weeks and four months at locations H3 and H4, respectively.

The H3 data set also contained approximately three days of measurements of background

noise when the wind farm was not operating.
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The data measured at H1 and H2 were used for establishing benchmark AM characteristics

as well as training and validating the AM detection algorithm. The data measured at H3 and

H4 were used for false positive rate validation of the proposed AM detection method and

previously published methods. The characteristics of wind farms at the time of measurements

are shown in Table 2.1 in Chapter 2.

A typical measurement setup included a microphone that was positioned at 1.5 m above

ground level (except H1 where ground level microphone was used) and protected using a

spherical secondary windshield with a diameter of 450 mm (see Hansen et al. (2014b) for

details). The microphone was typically positioned at least 10 m away from the residence and

surrounding vegetation to minimize façade reflections and wind-induced vegetation noise.

Further details of the experimental setup are described in Section 2.4 Chapter 2.

3.2.2 Benchmark data set generation

One benchmark data set contained 6,000 10-second audio files of WFN and the second

one of equal size contained no WFN (i.e., environmental background noise only). The

first data set was used for establishing benchmark AM characteristics and developing the

AM detection method, while the latter data set was specifically constructed for testing false

positive detection. These data sets were selected randomly from recorded data using the

resampling without replacement technique. The data selection process is shown in Figure 3.1.

The WFN benchmark data set was primarily scored by a single scorer using a validated

rating experiment procedure based on detection theory (Macmillan and Creelman, 2004).

The scorer was an acoustician experienced with wind farm noise AM through both field

measurements and listening tests. The scorer was also familiar with AM characteristics in

the time and frequency domains. Acoustician scorers familiar with the acoustic features

of AM were selected to avoid potential confounding and bias by other acoustic and non-

acoustic features unrelated to AM through the use of non-acoustician scorers. Intra-scorer

variability was validated in which the scorer re-scored a sub-set of the data (100 samples)

in a blinded manner. To further evaluate inter-scorer agreement, another skilled scorer

also rated a sub-sample of 100 randomly chosen audio samples. These scorers listened
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FIGURE 3.1. Data selection process. For illustration purposes, each orange dot inside the top circle
represents a 10-minute sample in a measured data set. To extract 10-second audio files, I randomly selected
3,000 10-minute samples from each data set using the resampling without replacement technique (i.e.,
each 10-minute sample has only one chance to be selected in the data set). There were 6,000 audio files
used for training and developing the algorithm (i.e., 3,000 audio files per site). From each selected sample,
a 10-second duration segment was randomly selected then extracted. The segments were then converted to
audio files (.wav). Exclusion criteria were not specified for the data extraction (i.e., raining, dogs barking
and farming machinery noise etc).

to the audio files and scored the presence versus absence of AM. AM presence was rated

based on confidence level which varied from high confidence of AM absence (rating ‘1’), to

uncertainty between AM presence/absence (rating ‘3’), to high confidence of AM presence

(rating ‘5’). For this particular AM identification task, the modulated frequency and duration

of AM presence were not identified by the scorer. A MATLAB GUI was designed for the

experiment as shown in Figure 3.2. To maximise the performance of detection task, the

scorers were allowed to adjust headphone volume level and to listen the audio multiple times

before rating. Therefore, AM samples, regardless of their audibility, were detected by the

scorer. The visual characteristics of AM were also presented to the scorers, as shown in
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FIGURE 3.2. MATLAB GUI for rating the presence of amplitude modulation audio files

Figure 3.2. This additional information was expected to further improve the scorer’s AM

detection performance. The rating experiment was performed in a bedroom at the Adelaide

Institute for Sleep Health. The noise reproduction system consisted of Bose Quite Comfort

II headphones and a RME Babyface Pro sound card. The background noise in the headphone

cavity was approximately 22 dBA during the experiment.

3.2.3 Automated AM detectors

The proposed AM detection method was compared against three previously published AM

detection methods. The first method, labelled a1 (Bass et al., 2016), uses a ‘hybrid‘ approach

involving analysis in both the time- and frequency-domains. The other two methods labelled

a2 (Larsson and Öhlund, 2014) and a3 (Fukushima et al., 2013) are implemented in the

frequency- and time-domains, respectively. To make these methods consistent, all methods

were implemented using audio samples with a 10 second period and a fast time weighting of

100 ms.
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Method a1 band-pass filters the signal over the expected AM frequency range, calculates

the fast-time weighted SPL time series, detrends the data, then transforms the detrended SPL

time series data to the frequency-domain. AM is then detected where the prominence ratio

(PR), the ratio between the spectral peak in the blade-pass frequency range and the noise

floor, is greater than four (Bass et al., 2016). The pseudo code is provided in algorithm 1.

Algorithm 1: Hybrid AM detection algorithm (Bass et al., 2016)
Data: 10-second audio files
Result: Prominence ratio, present or absent AM
for band-pass filter between ([50-200 Hz],[100-400 Hz],[100-800 Hz]) do

Apply band-pass filter to the input signals;
Apply the A-weighting filter to the obtained signal;
Calculate the fast (100 ms) time-weighted SPL, LAeq( f ast);
Detrend the SPL signal using a third order polynomial curve fit, resulting in ∆LA;
Transform the detrended SPL (∆LA) to the frequency domain;
Find spectral peaks located in the range of 0.4 to 1.0 Hz;
A = max (peaks) in the range [0.4 to 1 Hz];
B = mean (4 spectral lines) which are closest to the max peak location (except the

two peaks closet to the max peak);
Calculate the prominence ratio, PR = A/B;
if PR≥ 4 then

AM present, and the AM depth is calculated ;
else

Report AM absent;
Go to the end of the loop;

end
end

Method a2 is implemented by first applying a low-pass filter at 1 kHz, calculating the

fast-time weighted SPL and then transforming this time series into the frequency-domain.

The AM f actor, the maximum spectrum amplitude between 0.6 Hz and 1 Hz, is then used to

obtain the threshold for AM detection. The suggested threshold is 0.4 (Larsson and Öhlund,

2014) (see algorithm 2).

Method a3 is implemented by applying a low-pass filter at 1 kHz and then detrending the

fast-time weighted SPL. After quantifying the variation of detrended SPL via calculating the

difference between statistical noise levels L95 and L5, this value, referred to as DAM, is used

as a threshold for detecting AM. The suggested threshold varies from 2 dB to 6dB (Bass,
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Algorithm 2: Frequency-domain AM detection algorithm (Larsson and Öhlund,
2014)

Data: 10-second audio files
Result: AM factor, present or absent AM
Apply low-pass filter at 1kHz;
Apply the A-weighting filter;
Calculate the fast (100ms) time-weighted SPLs, LAeq( f ast);
Detrend the SPL signal using a third-order polynomial curve fit;
Transform the detrended SPL to the frequency domain using an FFT;
Calculate the amplitude modulation spectrum;
AMS =

√
2∗ |FFT (detrendedLA( f ast))|/N;

Calculate the AM factor ;
AM f actor = max(AMS( f )) with [0.6 1Hz] ;
if AM f actor ≥ 0.4 then

AM present ;
else

AM absent;
end

2011; Cooper and Evans, 2013; Fukushima et al., 2013) (see algorithm 3). Also, the source

code for method a1, as provided by Coles et al. (2017) was re-implemented using MATLAB

in this study.

Algorithm 3: Time-domain AM detection algorithm (Fukushima et al., 2013)
Data: 10-second audio files
Result: DAM
Apply low-pass filter at 1kHz;
Apply the A-weighting filter;
Calculate slow (1s) and fast (100ms) time-weighted SPLs, LAeq(slow) and

LAeq( f ast);
Detrend the SPL signal:∆LA = LAeq( f ast)−LAeq(slow);
Calculate the 95th and 5th percentiles of ∆LA ;
DAM = ∆LA5−∆LA95;

3.2.4 Random Forest classifier for AM detection

A random forest classifier (Breiman, 2001) consists of decision trees, which represent possible

outcome maps for a series of related choices. Decision trees are easy to use and generally
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work very well with the data used to create them, but are more problematic for predictive

learning models requiring more flexibility for accurate classification of new data (Hastie

et al., 2009). To overcome these decision tree problems, the random forest classifier uses

bootstrap sampling and random variable selection to build multiple trees (Biau and Scornet,

2016), which are then combined into a random forest classifier as shown in Figure 3.3. To

classify an input sample (i.e., AM or no AM), the relevant audio features are plugged into

every predictor (tree) in the classifier. Then each predictor classifies the sample as ‘AM’

or ‘no AM’. Finally, a majority voting approach is used to decide if the input audio can be

classified as containing ‘AM’ or ‘no AM’. This achieves a probabilistic classifier, where the

ratio between the number of trees voting ‘AM’ out of the total tree population represents the

probability of AM being present.

Optimisation of hyperparameters, that is parameters which are set before the learning

begins, was done using a random searching technique (Bergstra and Bengio, 2012). The

following set of hyperparameters were adjusted: number of trees, number of features consid-

ered for splitting at each leaf node, maximum number of decision splits, and the minimum
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TABLE 3.1. Value ranges of the hyperparameters used for random searching.

Hyperparameter Range
Num tree {2,4,8, ...1024}
Max num feature {1,2,3, ...31}
Max num split {2,4,8, ...4096}
Max leaf size {2,4,8, ...1024}

number of data points allowed in a leaf node. The random searching technique utilises a

range of realistic hyperparameter values, as shown in Table 3.1.

3.2.5 Audio feature extraction

WFN spectra are dominated by lower-frequencies, particularly at distances greater than 1

km from a wind farm (Hansen et al., 2017). Also, WFN can contain both tonal AM (Hansen

et al., 2019a) and/or broadband AM. Furthermore, AM can occur at frequencies ranging

from 30 Hz to more than 1 kHz, and the peak-to-trough magnitude can vary between each

successive oscillation period (Larsson and Öhlund, 2014). To help capture the highly variable

and evolving nature of WFN, which likely influences AM characteristics and consequently

detection performance, a comprehensive range of 31 noise features were used in this study as

shown in Table 3.2. The noise features were divided into four categories, including frequency

domain features, overall noise features, time domain features and features extracted from the

other automated AM detection methods described in Section 3.2.3.
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TABLE 3.2. Feature descriptions

No. Type Feature (description) Ref.

1-13
Frequency domain

features

spectralCentroid

spectralCrest

spectralDecrease

spectralEntropy

spectralFlatness

SpectralFlux

spectralKurtosis

spectralRollo f Point

spectralSkewness

spectralSlope

spectralSpread

pitch

harmonicratio

Alías et al.

(2016);

Sharma et al.

(2020)

14-17
Overall noise fea-

tures

LA (LAeq)

ratioLGLA (LGeq/LAeq)

ratioLCLA (LCeq/LAeq)

di f f LCLA (LCeq-LAeq)

Bies et al.

(2017)

18-27
Time domain fea-

tures

peakLoc (Peak location)

peakVal (Peak value)

posSlope (Mean positive slope)

negSlope (Mean negative slope)

peakloc_unweightedSPL

L1000 (Var. octave-band SPL at 1000 Hz)

L500 (Var. octave-band SPL at 500 Hz)

L250 (Var. octave-band SPL at 250 Hz)

L125 (Var. octave-band SPL at 125 Hz)

L63 (Var. octave-band SPL at 63 Hz)

proposed

28-31 Automated methods

LA (LAeq)

PR (Prominence ratio)

Fo (Fundamental frequency)

AM f actor

DAM

Bass et al.

(2016);

Fukushima

et al. (2013);

Larsson

and Öhlund

(2014)
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The frequency domain feature categories (feature 1 to feature 13) have been explained

in detail in previous reviews (Alías et al., 2016; Sharma et al., 2020) and the pseudo code

for extracting these features can be also found in (Sharma et al., 2020). Figure 3.4a shows

the process to extract these audio features. A hamming window of 125 ms (50% overlap) is

applied to the input signals which are then transformed to the frequency domain using an FFT.

The signals are then filtered using bark scale critical bands and the spectral shape features

are calculated for each hamming window. The outcome of the process is a matrix (no. of

features × no. of windows). The mean values of the rows in this matrix were calculated,

resulting in a single value for each feature. The overall noise feature category (Feature 14 to

feature 17) such as A, C and G-weighted SPLs were also extracted as shown in Figure 3.4b.

The selected features were LGeq/LAeq, LCeq/LAeq, and LCeq−LAeq, as these measures

are expected to be indicative of WFN presence and spectral balance (Hansen et al., 2017;

Kelley, 1987; Tokita et al., 1984). The LAeq was selected as it has been used as a metric

for analyzing AM in previous studies (Energy, 2014; Larsson and Öhlund, 2014). The time-

domain feature category (Feature 18 to feature 27) was extracted as shown in Figure 3.4c.

The fast-time weighted SPL (125 ms overlapping 100 ms) was calculated, similar to the

method for calculating the prominence of impulsive sounds outlined in Nordtest (2002). The

derived SPL (40 Hz sampling frequency) was further smoothed using a moving average

window of 5 samples. To estimate AM fundamental frequency of the smoothed SPL, the first

derivative of the smoothed SPL was calculated and then transformed to the frequency domain.

The highest peak (Feature 19) and its corresponding frequency (Feature 18) of the derivative

in the frequency domain were obtained. Also, the average ramp-up and ramp-down of SPL

were estimated by calculating mean values of positive and negative values of the derivative

signals (Feature 20 and 21, respectively). Using the derivative signals are advantageous

because the fluctuation frequency of the derivative signal is similar to the smoothed SPL,

while its amplitude is less variant compared to the smoothed SPL. As a result, the blade-pass

frequency peaks were clearer in the frequency domain. Feature 22 was calculated in a similar

way to feature 18, except using the unweighted SPL. Features 23-27 are variations (calculated

as L5-L95) of the octave-band unweighted SPL for octave-band centre frequencies between
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FIGURE 3.4. Feature extraction. a, The audio features are grouped into three main groups including
features extracted from the shape of the noise spectrum. b, Common environmental noise indicators; c,
Characteristics in the time domain.

63 Hz to 1000 Hz. The automated methods (a1, a2 and a3) were also used as noise features

(Feature 28 to 31).

3.2.6 Evaluation metrics

The performance of the automated AM detection methods was evaluated using both a

precision-recall curve (PR) and the Matthews correlation coefficient (MCC), which are

well suited to imbalanced data sets (Lever et al., 2016). To construct the PR curve, pairs

(precision,recall) were calculated from the counts of true positive (T P), true negative (T N),

false positive (FP) and false negative (FN) as follows
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TABLE 3.3. Evaluation metrics: Definitions and equations

Definitions:
True positive (TP): Correct detection of AM
False positive (FP): Incorrect detection of AM
True negative (TN): Correct detection of no AM
False negative (FN): Incorrect detection of no AM
Fundamental equations:

F1-score: F1score = 2
precision× recall
precision+ recall

Specificity: Speci f icity =
T N

T N +FP

Accuracy: Accuracy =
T P+T N

N
where N = T P+T N +FP+FN

Cohen’s kappa: k =

T P+T N
T P+T N +FP+FN

−Pr(e)

1−Pr(e)
where

Pr(e) =
T P+FN

N
T P+FP

N
+(1−

T P+FN
N

)(1− T P+FP
N )

recall =
T P

T P+FN
; precision =

T P
T P+FP

(3.1)

The aggregate metric of the MCC is a more informative and faithful score of overall

classification performance compared to common metrics such as the accuracy or F1-score

(Chicco and Jurman, 2020). The MCC ranges from -1 (classification is always wrong) to 0

(classification is no better than random guess) to 1 (classification is always correct), and it is

calculated as follows

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(3.2)

The use of a single metric, and even an aggregate metric like MCC, can be misleading

without careful inspection of the underlying results. Thus, in this study, additional metrics

including Cohen’s kappa, accuracy, area under ROC curve, etc., (Lever et al., 2016), were

also calculated as secondary results (Table 3.3).
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3.2.7 Benchmark AM characterisation

The diurnal and seasonal variation of AM prevalence were compared against previously

published AM characteristics obtained using WebPlotDigitizer1 (Rohatgi, 2017). Specifically,

diurnal variation of AM prevalence was extracted from Figures 7 and 8 (Larsson and Öhlund,

2012), Figure 12e (Hansen et al., 2019a) and a mean value of the data in Figures 4a, c and

e (Conrady et al., 2020). The seasonal variation data were extracted from Figure 3 (AM0.4)

(Conrady et al., 2020) and Table 1 (Paulraj and Välisuo, 2017).

3.2.8 Data and statistical analysis

Audio signal analyses were implemented in MATLAB, in which the noise feature extraction

was implemented using the Audio Toolbox. The random forest model was implemented

using the Statistics and Machine learning Toolbox. Statistical analysis and visualisation

were implemented in R programming language2. The statistical significance threshold used

was α = 0.05. All data are reported as mean [95% confidence interval], unless otherwise

indicated. The 95% CI range of performance metrics was estimated using a bootstrapping

method with 2,000 simulations. Pearson correlation coefficients were used to examine the

strength of linear relationships between features and AM quantification metrics.

3.2.9 Data availability

The MATLAB code used to extract features and build the random forest-based AM detection

method can be found in the GitHub open repository3. The audio and scored AM files are

publicly available at Nguyen (2021a).

1https://automeris.io/WebPlotDigitizer/
2https://www.r-project.org
3https://github.com/ducphucnguyen/WFN_AM_Detection

https://automeris.io/WebPlotDigitizer/
https://www.r-project.org
https://github.com/ducphucnguyen/WFN_AM_Detection
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3.3 Results

3.3.1 Benchmark data set

The benchmark data set of 6,000 10-second audio files was unbalanced with around 40% of

audio samples containing AM (Figure 3.5a). The AM confidence rating was transformed

into a binary score (AM vs. no AM) using a confidence rating threshold of three. Samples

with ratings greater than three were classified as AM, and all other samples were classified

as no AM. Both positive and negative skewness was observed from the rating distribution,

indicating high confidence in scorer rating. The MCC, Cohen’s kappa coefficient (κ) and F1-

score for inter-scorer agreement were (0.65 [0.49, 0.80], 0.64 [0.48, 0.8] and 0.77 [0.66, 0.87],

indicating a high degree of agreement (Warby et al., 2014) (see Table 3.4 for other metrics).

Also, intra-scorer agreement was higher than inter-scorer agreement (MCC = 0.71 [0.56,

0.85], κ = 0.7 [0.56, 0.85], F1-score = 0.82 [0.71, 0.91]; see Table 3.5 for other metrics).

Distributions of scored audio files over months, hours and wind farm power output relative

to capacity were also nearly uniform, consistent with ecological validity (Figure 3.5b).

TABLE 3.4. Inter-scorer agreement

Metric Mean [95%CI]
Recall 0.79 [0.66 0.92]
FPR 0.14 [0.06 0.23]
FNR 0.21 [0.008 0.34]
Specificity 0.86 [0.77 0.94]
Precision 0.75 [0.6 0.89]
FDR 0.25 [0.12 0.4]
FOR 0.11 [0.03 0.19]
NPV 0.89 [0.81 0.96]
Accuracy 0.84 [0.76 0.91]
F1-score 0.77 [0.66 0.87]
MCC 0.65 [0.49 0.8]
Cohen’s kappa 0.64 [0.48 0.8]

3.3.2 Benchmark AM characteristics

At the residential locations investigated, which were approximately 1 km from the nearest

wind turbine, Less than 10% of the AM samples in the benchmark data set had an associated
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TABLE 3.5. Intra-scorer agreement

Metric Mean [95%CI]
Recall 0.86 [0.74 0.97]
FPR 0.14 [0.05 0.23]
FNR 0.13 [0.03 0.26]
Specificity 0.86 [0.77 0.95]
Precision 0.78 [0.65 0.91]
FDR 0.24 [0.09 0.45]
FOR 0.08 [0.02 0.16]
NPV 0.92 [0.84 0.98]
Accuracy 0.86 [0.79 0.93]
F1-score 0.82 [0.71 0.91]
MCC 0.71 [0.56 0.85]
Cohen’s kappa 0.70 [0.56 0.85]

A-weighted SPL between 30 and 50 dBA (Figure 3.6a). This supports the feasibility of using

a threshold of 30 dBA to trigger AM analysis (Larsson and Öhlund, 2014), at least for data

recorded at similar distances from the wind farm. This could thus reduce false positive rates

and/or exclude samples with low SPLs which are likely to be less relevant for assessing

community annoyance. I noted that these results can be considered as an upper bound of AM

prevalence as both audible and inaudible AM samples were quantified. The audible AM is

more relevant to human response to the noise such as annoyance response. The prevalence

of audible AM can be determined using the approach proposed by Hansen et al. (2019a) by

considering the normal hearing threshold curve.

There are three common metrics (i.e., AMdepth, AM f actor and DAM) to quantify the

strength of SPL variations (see Methods and algorithm 1 to algorithm 3 for calculation

details). The magnitude of AM hereafter is referred as the AM depth, despite differences in

AM depth values obtained using each metric. The distributions of AM depth as quantified

by the three metrics are shown in Figure 3.6b-d. More than 50% of the AM samples had an

AM depth greater than 2 dBA using the AMdepth and DAM metrics, which is the fluctuation

sensation threshold (Bowdler and Leventhall, 2011). All three above metrics evaluated AM

depth using A-weighted overall SPLs, resulting in an underestimation of the AM depth at

low frequencies in comparison to 1/3-octave band-pass filtered data. Although A-weighted

SPL aims to replicate AM audibility, this metric is poorly correlated with annoyance and
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FIGURE 3.6. Characteristics of 2,329 AM samples in the benchmark data set. a, A-weighted SPL.
b-d, AM depth as quantified using three common metrics. e, Distribution of AM depth in each octave
band. f, Fundamental frequency of AM. g, Correlation between AM depth metrics.
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perceived loudness (A. Kjellberg, 1984; Bruel, 2001). Furthermore, AM at low-frequencies

would be barely discernible in the overall A-weighted SPL due to the high penalties applied

at low frequencies. Thus, to better capture AM at low frequencies, data should be analysed in

1/3-octave or octave bands, as suggested by (McCabe, 2011). Future research should focus

on suitably designed listening tests to support this approach. The distributions of AM depth

as quantified in each octave band from 63 Hz to 1000 Hz are shown in Figure 3.6e, where it

can be seen that the AM depth increased for low-frequency bands. The modulation frequency

as estimated using algorithm 1 was dominant between 0.6 Hz and 0.8 Hz, accounting for

approximately 80% of AM samples. This frequency corresponds to the expected blade-pass

frequency when the wind turbines are operating at their nominal speed of 14 to 16 rpm.

The AM depth is one of the most important characteristics of AM, as its magnitude

is directly related to the levels of annoyance. Thus, to further characterise AM depth,

the Spearman correlation coefficients (Spearman’s r) between pair metrics are shown in

Figure 3.6g. Two clusters were observed from pair as shown in the dendrogram. The first

cluster included the three above metrics with AM depth quantified for mid- to high-frequency

bands (i.e., 500 and 1000 Hz). The second cluster included the metrics used to quantify AM

depth for low-frequency bands (i.e., 63, 125 and 250 Hz). Additionally, a linear relationship

between three common metrics is shown in Figure 3.6g on the left. A strong correlation

between these metrics was observed, especially between (AM f actor, DAM) pair, followed

by (AM f actor, AMdepth) and (DAM, AMdepth) pair, respectively.

3.3.3 Diurnal and seasonal AM variation

AM appeared to be more prevalent during the evening and night (Figure 3.7a). Previous

studies (Conrady et al., 2020; Hansen et al., 2019a; Larsson and Öhlund, 2014) showed that

AM occurs approximately 20% to 40% of the nighttime (defined on the basis of 22:00 to

6:00) and around 20% during the daytime. Amplitude modulation was detected using method

a1 (for the study of (Hansen et al., 2019a)) and method a2 (for the studies of (Conrady

et al., 2020; Larsson and Öhlund, 2012; Paulraj and Välisuo, 2017)). From the comparison

of daytime and nighttime, it appears that although the automated detection methods can
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TABLE 3.6. Performance of the best classifier on the out-of-bag samples

Metric Out-of-bag validation value (mean
[95%CI])

Recall 0.81 [0.8 0.82]
FPR 0.17 [0.17 0.18]
FNR 0.19 [0.18 0.20]
Specificity 0.83 [0.82 0.83]
Precision 0.7 [0.69 0.72]
FDR 0.3 [0.28 0.31]
FOR 0.11 [0.1 0.11]
NPV 0.89 [0.89 0.90]
Accuracy 0.82 [0.81 0.83]
F1-score 0.75 [0.74 0.76]
MCC 0.62 [0.60 0.63]
Cohen’s kappa 0.61 [0.60 0.63]
AUC 0.88 [0.88 0.89]
AUPRC 0.85 [0.84 0.86]

capture a general pattern of diurnal variation, AM prevalence was lower compared with the

benchmark data set, especially during the nighttime. Note that AM prevalence was also

substantially affected by the difference in meteorological conditions, distance to wind farms,

geographical conditions and wind farm layout. On the other hand, seasonal variation is likely

to have a negligible effect on AM prevalence, as shown in Figure 3.7b.

3.3.4 Random forest-based AM detection

Hyperparameters were estimated using the out-of-bag samples, which comprised approxi-

mately 37% of the total samples not used for training the classifier. The hyperparameters

were chosen after 500 iterations by maximising the area under the precision-recall curve

(AUPRC), (Breiman, 1996) (Figure 3.8a). The optimal hyperparameter settings were: 1,024

trees, a maximum of 16 features, a maximum of 2,048 splits and a minimum of 4 samples in

the leaf nodes. The precision-recall curve in Figure 3.8b shows the optimal random forest

classifier based on these hyperparameters with AUPRC = 0.85 [0.84, 0.86] (see Table 3.6 for

other metrics).

Some selected features may not useful for AM prediction given a cluster of highly corre-

lated variables in the dendrogram (showing the hierarchical relationship between features)
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FIGURE 3.8. Random Forest classifier. a, hyperparameter tuning using a randomized search technique.
The size of the circles represents the maximum splits. Minimum leaf node samples are not shown. b, the
precision-recall curve of the best random forest classifier. The shaded area indicates 95% CI. c, Pearson
correlation coefficient (Pearson’s r) map with dendrogram for illustrating clusters. d, feature importance in
descending order from top to bottom. Error bars indicate 95% CI.

and high Pearson correlation coefficient in Figure 3.8c. The four most importance features

for predicting AM are AM f actor, SpectralCrest, di f f LCLA and PR (Figure 3.8d).
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TABLE 3.7. Area under the precision-recall curves and optimal MCC of four methods.

Method AUPRC Max MCC
Random forest 0.85 [0.84 0.86] 0.62
a1 0.55 [0.52 0.58] 0.29
a2 0.47 [0.45 0.49] 0.32
a3 0.43 [0.40 0.44] 0.28

3.3.5 Performance of the automated detectors

The performance of the random forest-based AM detection method was compared to three

automated detectors (a1-a3) on precision-recall plots (Figure 3.9a). The test set for detectors

a1-a3 was all samples in the benchmark data set while the out-of-bag samples were used as

the test set for the random forest detector. The random forest-based method outperformed the

other methods (ANOVA P-value < 0.001), with an AUPRC of 0.85. The performance of a1-

a3 was poor with the mean AUPRC ranging from 0.43 to 0.55 (Table 3.7). The performance

of a1 was better than a2 and a3 (all P < 0.001), and a2 performed better than a3 (P < 0.001).

The performance of AM detection algorithms has previously been described in terms

of the false positive rate (FPR) (Bass et al., 2016; Larsson and Öhlund, 2014), and thus

this metric was also examined (Figure 3.9b). As the random forest classifier is based on

probabilistic values, a threshold of 0.5 was used for binary classification of AM. Thus, if

more than 50% of trees in the classifier voted for ‘AM’, the sample was classified as an

AM sample, otherwise ‘no AM’ was declared. The cut-of values for method a1-a3 were 4,

0.2 and 2, respectively (See Methods section). The false positive rate of the random forest

classifier was low (1.6%) compared to methods a1-a3 (50%, 19% and 62%, respectively).

The false positive rate of methods a1 and a3 was not reported in the original descriptions

of these methods (Bass et al., 2016; Fukushima et al., 2013), but was reported to be 2.6%

for method a2 (Larsson and Öhlund, 2014), and thus substantially lower than in my data set

analysed in this study.

To evaluate if the performance of all detectors could be improved using different threshold

values, thresholds for each method were varied systematically to find the highest MCC values

as shown in Figure 3.9c. The optimal threshold for the random forest classifier was 0.44

(44% of trees voted “AM”). The optimal threshold for method a1 was PR=6.7, which
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FIGURE 3.9. Performance of automated detectors. a, performance using the benchmark data set,
where the values associated with each curve are mean [95% confidence interval]. The shaded area is
the 95% CI. b, false positive rate of each detection method estimated from the no wind farm noise
data set. The dashed lines indicate the AM classification threshold. c, optimal AM detection threshold
according to MCC, where negative values indicate performance worse than by chance. The grey lines are
the performance of the proposed algorithm when only samples corresponding with certain responses of the
scorer (i.e., samples rated a score of 5 during the manual AM identification process) are used.
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is higher than the original reported value of PR = 4 in (Bass et al., 2016) and the value

obtained using a Receiver Operating Characteristic curve (PR=3) in (Hansen et al., 2019a).

In contrast, the optimal thresholds for method a2 and a3 were lower than original suggested

values (Fukushima et al., 2013; Larsson and Öhlund, 2014). For comparison, the MCC

between two scorers was calculated and considered as the ceiling value for the AM detection

task (MCC = 0.65), supporting that the performance of the random forest classifier was

remarkably close to human performance, as evaluated using inter-scorer agreement (MCC

= 0.62 vs. 0.65). I further investigated if the performance of automated methods could be

improved when using only samples corresponding with certain responses of the scorer (i.e.,

sure AM with responses > 4.5 vs sure no AM with responses < 1.5). The performance of all

automated methods increased, especially the Random Forest based method, which showed an

approximately 22% increase in performance (MCC = 0.76, Figure 3.9c). This was expected

as clearer AM or no AM events were likely detected with higher confidence.

3.3.6 Interpretable predictor

The random forest classifier with 31 features and 1,024 trees outperformed traditional

detection methods and showed performance comparable with human classifiers. However,

random forest classifiers work much like a black box, which is difficult to interpret. The

classifier also requires skilled human and computer resources to implement. Given the

findings of the importance of AM f actor, di f f LCLA, SpectralCrest and PR features, this

study thus aimed to build a simplified classifier, which can be used as a simpler and more

portable classifier for AM detection. This simplified classifier was a single decision tree built

from four features, as shown in Figure 3.10. The performance of the single decision tree

showed AUCPR = 0.68 [0.64, 0.71] (accuracy = 82%), which is lower than the random forest

classifier, yet still higher than methods a1-a3. These results further illustrate that a simple

combination of several features outperforms traditional single feature detection methods.
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FIGURE 3.10. Performance of automated detectors. A simplified single tree classifier utilising the
four most important features for identified by the random forest classifier AM detection. The order of the
decision tree is optimised by the algorithm to obtain the highest accuracy.

3.4 Discussion

In summary, I presented a new and promising approach to characterise AM in a large

data set using an expert human scoring method. The resulting estimates of benchmark

AM characteristics such as AM depth, frequency, and diurnal and seasonal variations are

important for validation and calibration of the results using automated methods. I further

showed that it is possible to develop an advanced AM detection method with a predictive

power close to its practical limit set by human scoring. This approach shows major promise

as an effective automated tool which could be used for detecting WFN AM presence in large

data sets, such as for research or to support wind farm noise regulations.

Although AM identification by humans was a benchmark approach to establish high

quality scored data, it is striking to find that an advanced machine learning algorithm

performed close to the human limit. In fact, AM is a challenging signal to detect, as its
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characteristics vary depending on meteorological conditions. As a result, the spectral content

and time varying features are not constant. Despite these changes, the human auditory

system can still recognize the presence of wind farm AM. Thus, my presented algorithm

sought to incorporate the most important acoustical features predictive of human scored

AM. The selected features cover the whole range of the most dominant WFN characteristics,

including noise level variation (or AM), tonality and low-frequency content. Two of the

features incorporate noise level variations (AM f actor and PR); the difference between LCeq

and LAeq is an indicator of low-frequency noise presence; and the spectral crest provides

a simple measure of tonality. My findings support the idea that human perception of AM

is more complex than assumed by previous AM detection methods that are based on noise

level variations alone. Hence, it is not surprising that the method presented here achieved

substantial improvements in performance compared to previous methods.

Very high false positive rates were found for methods a1-a3, which is inconsistent with

previous reports in (Bass et al., 2016; Larsson and Öhlund, 2014). However, it is worth noting

that method a1 was originally designed and evaluated on 10-minute samples, as opposed to

the 10-second samples used in my work, and method a1 classifies AM if more than 50% of

10-second blocks within 10 minutes contain AM. By introducing the above criterion, the

false positive rate may be substantially reduced, as reported in (Bass et al., 2016). However,

10-second long samples appear to have higher validity, as typical AM events usually last

around 10-15 seconds (Larsson and Öhlund, 2014). With regards to the false positive rate for

method a2, an arbitrary 30 dBA LAeq cut-off was imposed in the original evaluation, which

was not used in my study, and likely helps to explain the large discrepancy between the

originally reported 2.6% (Larsson and Öhlund, 2014) and the 19% false positive rate in my

study. If the 30 dBA cut-off is applied to my data before method a2 is used to detect AM, the

false positive rate is reduced from 19% to 9%. This number is expected to further reduce if

data were measured in a quiet area, where many samples would have associated noise levels

less than 30 dBA. Therefore, my findings further support that false positive rate metrics are

problematic for evaluating detection performance (Warby et al., 2014), as this only represents

one parameter in a confusion matrix.
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A limitation of the present study is the under-representation of noise data measured

greater than 1 km. As a result, the benchmark AM characteristics are not relevant at other

distances. The proposed classifier also may not work well for detecting AM measured several

kilometers from the nearest wind turbine, where AM may have different characteristics

(Hansen et al., 2019a). The classifier could not be tested on data sets measured outside of

South Australia, where weather conditions and topography near wind farms will inevitably

vary. Using a single scorer to classify the AM is not ideal as the perception of the noise varies

between individuals (Maffei et al., 2015). Although human scoring is a subjective process,

it is still considered the most common and reliable method to established human-labelled

scored data sets (Gemmeke et al., 2017). I used a single scorer to identify the presence of

AM to minimise inter-scorer variability effects which are typically higher than intra-scorer

variability. Nevertheless, it remains unclear how generalizable these findings may be to

AM more broadly, for which inter-scorer differences as well as noise source and climatic

effects could be important. As suggested by Wendt et al. (2015), two or more scorers and

a consensus scoring approach may be preferable to a single scorer to help ensure broader

generalisability. Future studies should examine if residents living near wind farms identify

AM similarly to acoustician and algorithm scored AM, and how strongly AM identification

ratings are related to annoyance ratings. Nevertheless, a single scorer is more practical and

avoids the potential effects of poor inter-scorer agreement. Also, good inter-scorer agreement

was found in a smaller subset of the data, supporting this approach.

Although detector a1 clearly warrants improvements in order to increase accuracy, the

source code (Coles et al., 2017) is readily available, making it easy to understand the method-

ology and to implement the method. Although the other methods were reproduced as closely

as possible, my codes may be different from the original codes. This is a similar problem

previously identified for the reproduction of the tonality assessment code in Søndergaard et al.

(2019). Thus, depositing source code to open source repositories, together with relevant data

sets would greatly advance the development of practical and robust amplitude modulation

detection methods.
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3.5 Conclusions

In conclusion, this study demonstrated that human scoring is a feasible and promising

approach to identify AM. This approach is invaluable for detecting unique characteristics

of wind farm noise in cases where the performance of automated detectors is low or not

validated. The advanced AM detector based on the random forest approach demonstrated

high performance, and substantially outperformed traditional AM detection methods to

achieve a classification performance close to that of humans. It was also shown that a

simplified classifier based on a single decision tree using the four main features identified

through the random forest approach also achieved good classification performance. This

approach is readily interpretable and easy to implement without the need for extensive

computer resources. I hope that, in the future, further insight into the prevalence of AM and

associated meteorological conditions, and impacts on humans will help to explain underlying

noise generation mechanisms relevant to human perception. Ultimately, this will improve

the design of wind turbines such that they are less disturbing and hence, more acceptable to

surrounding communities.



Chapter 4

Long-term quantification and

characterisation of wind farm noise

amplitude modulation

This chapter presents work that I published as first author in Nguyen et al. (2021a). My

coauthors were primarily involved in an advisory role so this is predominantly my work.

Contributions: My contributions in this chapter include:

• I showed comprehensive AM characteristics including day/night prevalence, overall

depth, octave band depth, duration, modulated frequency and relationships with SPL.

• I quantified the outdoor-to-indoor reduction of AM prevalence and depth. I also showed

relationships between these characteristics and the overall noise reduction levels.

• I found that AM occurred most frequently at nighttime compared to the daytime, with

a substantial increase in AM prevalence after sunset.

• I illustrated that AM prevalence is high during both crosswind and downwind directions

depending on the distance between measurement locations and the noise source wind

farm.
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4.1 Introduction

W ind energy is one of the fastest-growing renewable energy sectors in the world

(GWEC, 2019), reaching approximately 870 GW in 2021 ((WindPower, 2021).

Despite the benefits of wind energy, some concerns remain regarding social (Kitzing et al.,

2020; Krohn and Damborg, 1999; Wolsink, 2007), ecological (Schuster et al., 2015; Thaker

et al., 2018) and environmental impacts (Vautard et al., 2014; Zhou et al., 2012). The noise

generated by wind turbines is a recurring source of complaints regarding annoyance and

potential sleep disturbance from residents living near wind farms (Liebich et al., 2021a; Micic

et al., 2018). WFN contains unusual spectral and time-varying features that may exacerbate

annoyance (Perkins et al., 2016) and increase loudness (Jurado et al., 2019), including a

low-frequency dominated spectrum (Ingielewicz et al., 2014; Zajamsek et al., 2016), tonality

(Liu et al., 2012) and AM, which is a periodic variation of the noise level primarily related

to blade rotational effects (Hansen et al., 2017). Wind farm AM is commonly described

as ‘swish swoosh’ or ‘rumble’ and is of particular research interest due to its propensity

to contribute to annoyance (Ioannidou et al., 2016; Lee et al., 2011; Schäffer et al., 2016)

and possible sleep disturbance (Smith et al., 2020). However, its characteristics such as

depth (or degree), duration, consistency and occurrence time could vary between wind farms

(Zagubień, 2018).

Previous long-term WFN measurements found wind farm AM to be associated with

wind direction (Conrady et al., 2020; Larsson and Öhlund, 2014; Paulraj and Välisuo, 2017),

sound speed gradient, solar elevation angle, turbulence intensity (Larsson and Öhlund, 2014),

and diurnal meteorological variations (Conrady et al., 2020; Hansen et al., 2019a). The

majority of these studies were carried out in cold climates where ground cover with snow

during winter months and other climactic effects are clearly different from warmer climates

without snow. Snow covered ground has a very high sound absorption coefficient, even at

very low frequencies, and thus attenuates noise much more effectively than other ground

surface types (Bies et al., 2017; Hansen et al., 2017; Ostashev and Wilson, 2015). Previous

long-term studies (Conrady et al., 2020; Larsson and Öhlund, 2014) recorded only low time

and frequency resolutions of acoustic data such as 1/3-octave bands or fast time-weighted
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SPLs which limited analyses to conventional AM detection methods (Bass et al., 2016;

Larsson and Öhlund, 2014) unable to reliably detect AM. Long-term quantification of AM

has been predominantly carried out at distances of 1 km or less from wind farms, where

WFN is dominated by mid to high frequencies (> 200 Hz). At larger wind farm setback

distances, much more typical for Australia, AM is dominated by lower frequencies (< 200

Hz) (Hansen et al., 2019a). However, to date, low-frequency AM has not been systematically

studied over a long period of time. Furthermore, although indoor WFN noise character is

much more relevant to human perception, annoyance and sleep disturbance than outdoor

levels, long-term characterisation and quantification of indoor AM has not been attempted to

date, especially at long-range distances to wind farm.

The purpose of this study was to quantify and characterise AM, and to examine rela-

tionships between AM, meteorological conditions and wind farm operational data over one

year. To detect AM, I used a previously developed AM detection method based on machine

learning (Nguyen et al., 2021b). This allowed for accurate and reliable detection of AM in

three long-term data acoustic sets measured near South Australian wind farms at locations

up to 3.5 km away from the nearest wind turbine.

4.2 Methods

In this section, I provide key information regarding measurement locations and wind farm

characteristics. Other details such as equipment and measurement setup were provided in

Chapter 2.

4.2.1 Study region

Measurements were conducted in the mid-north region of South Australia (Figure 4.1a and

Figure 2.1), which has a Mediterranean climate with relatively mild winters and hot dry

summers (Figure 2.2). Noise was measured both outdoors and indoors at three residential

houses (i.e., location 1, 2, and 4 as shown in Figure 2.1 in Chapter 2). In this chapter, these

locations were renamed as H1, H2 and H3 for convenience, respectively. These measurement
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locations were located between approximately 1 and 3.5 km from the nearest wind turbines

of three wind farms. The selected wind farms included one with nearby turbines positioned

at similar elevation levels as the residence (Wind farm A, Figure 4.1a), and two with all

turbines positioned along the top of ridges (Wind farms B and C, Figure 4.1a). The average

height difference between each ridge and residence was 70 m for Wind farm 1 and 110 m

for Wind farm 3. The chosen wind farms layouts, turbine types and total power capacity are

presented in Figure 4.1a and Table 2.1.

4.2.2 Experimental design

WFN noise was measured for more than one year, from May 2018 to August 2019. The

outdoor noise measurement systems consisted of two low-frequency microphones located

at ground level and 1.5 m above ground (Figure 4.1b). Indoor noise was measured at the

top and bottom wall corners (Figure 4.1c). The room dimensions and constructions were

showed in Table 4.1. Indoor noise levels in rural area are normally low (Hansen et al., 2014c),

and thus, low-noise microphones were used for indoor measurements. At location H1, the

outdoor data measured at a height of 1.5 m were not available, and thus data measured at

ground level were used. Although the noise measured using a microphone mounted at ground

level and 1.5 m is not exactly the same (Hansen et al., 2014b), the use of 1.5 m data was still

reliable, particularly for AM quantification. The agreement between AM detection results in

both data sets was high (accuracy = 0.82, F1-score = 0.78, AUC = 0.9) (Figure 4.2). The AM

prevalence quantified using data measured at ground level may be higher compared with 1.5

m height (Table 4.2) most likely due to lower wind-induced noise at ground level.

Local wind speed and direction were measured concurrently at 1.5 and 10 m. Although a

general relationship between local wind speed and wind farm power output was observed

(Figure 4.3), this relationship is highly uncertain. The wind speed and direction accuracy

of these weather stations is 0.4 m/s and 22.5 degrees, respectively. The coarse resolution

of wind direction was considered adequate to determine if the receiver was in a downwind,

crosswind or upwind direction from the wind farm.
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FIGURE 4.1. Performance of automated detectors. (a) Wind farm layouts and measurement locations.
(b) and (c) Typical outdoor and indoor microphone position set-up.

TABLE 4.1. Residential house dimensions and constructions at three measurement locations.

Location Room dimension* Construction

H1 3.7×5.8×2.3 Timber walls; single glazed windows; pink batts
ceiling insulation; concrete floor.

H2 3.1×3.6×3.3 Red brick walls (300 mm); single glazed windows
(installed double glazed windows during the mea-
surement); pink batts ceiling insulation; wooden
floor.

H3 4.1×4.3×3.2 Thick stone/cement brick walls (350 mm); small-
medium single-pane wood-framed sash design
windows; corrugated sheet steel roof; plaster
panel ceiling.

* Dimension is length × width × height in m.
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FIGURE 4.2. Agreement between microphones at 1.5 m height and at ground level in terms of
detecting AM. The confusion matrix: true class is AM samples identified using data measured at 1.5 m
and the predicted class is AM samples identified suing data measured at the ground level.

In addition to acoustic and meteorological data, wind farm power output capacities and

digital elevation data were obtained from online data repositories (see Section 4.2.7).

TABLE 4.2. Percentage of detected AM in both 1.5 m and ground level data.

Measure position Class Count (10-sec sample) Percent

At 1.5 m No AM 2,138,442 63.34

AM 1,237,604 36.66

At ground No AM 1,908,526 56.53

AM 1,467,520 43.47
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4.2.3 Amplitude modulation detection

My machine learning-based random forest method was used for detecting AM and was

validated using a benchmark human-scored data set (Nguyen et al., 2021b). In brief, for

validation purposes, an acoustic engineer listened to 6,000 10-sec audio samples randomly

extracted from measured data and manually classified them as either ‘containing AM’ versus

‘no AM’.

Due to the imbalance between noise samples containing AM and no AM in the data sets

of the current study (≈ 20% AM versus ≈ 80% no AM samples), a Random Undersampling

Boosting (RUSBoost) classifier (Seiffert et al., 2009), a simpler and faster alternative to

SMOTEBoost (Chawla et al., 2003), was used to improve the previous developed method.

Also, to maximise the performance of AM detection, a separate classifier was used for each

data set (three classifiers for outdoor and three for indoor data sets). All classifiers implement

the RUSBoost algorithm which was trained using all features listed in Table 3.2. The training

data sets included the 2 data sets described in Chapter 3 and 4 and data extracted from
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FIGURE 4.4. Flow chart of AM detection method.

TABLE 4.3. Performance of AM detectors.

Detector Applied to data No. of sam-
ples

%AM :
%noAM F-1 score MCC

1 Outdoor WF1 3,000 38.4 : 61.6 0.77 0.62
2 Outdoor WF2 5,000 37.9 : 62.1 0.78 0.65
3 Outdoor WF3 1,000 13.5 : 86.5 0.71 0.75
4 Indoor WF1 1,000 13.4 : 86.6 0.64 0.59
5 Indoor WF2 1,000 21.6 : 78.4 0.71 0.63
6 Indoor WF3 1,000 8.5 : 91.5 0.80 0.78

outdoor and indoor measurements at WF2 and WF3 (Table 4.3). A schematic overview of the

AM detection method is shown in (Figure 4.4). This machine learning approach showed high

performance with F-1 scores from 0.64 to 0.8 and Matthew correlation coefficients from 0.59

to 0.78 (Table 4.3) and higher accuracy than previous methods (Bass et al., 2016; Larsson and

Öhlund, 2014; Yokoyama et al., 2013) (see Nguyen et al. (2021b) for comparison details).

4.2.4 Wind direction categories

To determine downwind, upwind or crosswind directions, firstly the centroid of all turbines

within 5 km from the house was determined (red dot point) (Figure 4.5). In general, the

direction from the centroid to the house (a1 line) ± 45 deg was considered as the downwind
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TABLE 4.4. Data quality control and cleaning.

Location WF1 (Horns-
dale)

WF2 (Hal-
lett)

WF3 (Water-
loo)

Total number of samples 49,815 56,267 51,179
Number excluded outdoor data 0 0 9
% excluded indoor data 7 0 9

direction (red angle). The reverse direction was considered as the upwind direction (green

angle). To determine crosswind directions, a line a2 which is perpendicular to a1 was

determined. The direction surrounding this line ± 45 deg was considered as the crosswind

direction (yellow angle). A simpler method considers the direction from the nearest wind

turbine to the house as the downwind direction. However, in the case where there are several

nearby turbines, this method is not suitable, as shown in the WF1 layout below and our

method is generally better suited to most cases. We considered turbines within 5 km from a

wind farm only because we assumed that turbines at distances greater than 5 km contribute

less to the noise at the residence as shown in (Hansen et al., 2019a). The centroid of the

turbines (points) (x1,y1),(x2,y2),(x3,y3), ...(xn,yn) is calculated as follow:

(x1 + x2 + x3 + ...+ xn

n
,
y1 + y2 + y3 + ...+ yn

n

)
(4.1)

4.2.5 Data cleaning

The present study analysed the outdoor WFN noise data measured at 1.5 m above ground level

(except at wind farm 1 where noise was measured at ground level) and indoor data measured

in a top room corner. To ensure data quality of outdoor and indoor WFN measurements, a

plot of the LAeq of all data against time was constructed, and extraneous noise events were

detected visually and manually excluded if noise contamination was confirmed through

listening to the file. The most common contaminated sources included farming machines,

heavy rain and thunderstorms. The indoor contaminated sources consisted mainly of human

activity and equipment (i.e., fan during summer nights). Less than 10% of the total measured

samples were excluded (Table 4.4, Figure 4.6 and Figure 4.7).
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FIGURE 4.5. Wind direction categories at the Waterloo wind farm (WF3).

4.2.6 Data and statistical analysis

All signal processing and data analysis were implemented in MATLAB1, while statistical

analysis (two-tailed t-test and linear regression as appropriate) were implemented in R2

version 4.0.0. The statistical significance threshold was set at P < 0.05.

1https://www.mathworks.com.
2https://www.r-project.org.

https://www.mathworks.com
https://www.r-project.org
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FIGURE 4.6. Distributions of indoor SPL. The original distribution is shown using blue shading and
the distribution after removing extraneous noise is shown using red shading.

4.2.7 Data availability

Data to support the findings of this study are based on publicly available data including

wind farm power output capacity data for each 5-minute interval accessed via Australian

Energy Market3, Digital Elevation Data (DEM) extracted from Geoscience Australia4 and

AM detection algorithms are available at my Github repository5 .

3https://anero.id/energy/wind-energy/
4http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
5https://github.com/ducphucnguyen/Quantification-AM

https://anero.id/energy/wind-energy/
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
https://github.com/ducphucnguyen/Quantification-AM
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4.3 Results

4.3.1 Amplitude modulation characteristics

AM occurred more often during the nighttime compared to the daytime (Figure 4.8a, two-

sample t-test, all P-values < 0.001). At locations H1 and H2 which were within 1.3 km

of the nearest wind turbine, AM occurred on average for more than 50% and 25% of the

nighttime and daytime, respectively. Similar trends were also observed at location H3,

but with a lower prevalence of around 25% AM during the nighttime and only 3% during

the daytime, where the nighttime value is comparable to previous observations for similar

distances (Hansen et al., 2019a). The AM depth, which is a measure of the peak-to-trough

variation in the overall SPL, varied between measurement locations (Figure 4.8b). The

AM depth was calculated as the difference between statistical noise levels L5th and L95th

of the fast time-weighted and frequency A-weighted SPL. This metric is reported in this

study because it is commonly used in laboratory listening experiments assessing annoyance

potential of AM (Von Hünerbein et al., 2013; Yokoyama et al., 2013). The AM depth of

WFN was inversely related to frequency at H1, as shown in Figure 4.8c.

AM was an intermittent phenomenon as fewer than 20% of consecutive 10-second AM

events spanned more than one hour, as shown in Figure 4.8d. Furthermore, Figure 4.8d

shows that a larger number of consecutive 10-second AM events were observed at closer

locations to the wind farm, equivalent to AM lasting between 1 and 3 hours. The modulation

frequency was consistently between 0.5 and 1 Hz (Figure 4.8e), which is as expected for

modern wind turbines which rotate at a speed of 10 to 20 revolutions per minute (Hansen

et al., 2017). However, a large number of AM events did not show a clear periodic variation

(modulation frequencies between 0 and 0.5 Hz). Reasons for this may be (1) a false positive

detection of AM or (2) an intermittent, rather than periodic variation in SPL. AM events

were dominant at particular SPLs (median values of 39.4, 36.4 and 29.1 dBA for H1-H3,

respectively) (Figure 4.8f).
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FIGURE 4.8. Characterisation of AM for outdoor data measured over one year. (a) The percentage
of AM during the daytime (from 7:00 to 22:00) and nighttime (22:00 to 7:00). Horizontal and vertical error
bars represent the mean and s.d. (b) AM depth calculated as the difference between statistical noise levels
L5 and L95. (c) AM depth quantified in each octave band for measurements at H1. (d) AM duration
measured as the continuous occurrence of AM events in consecutive and uninterrupted 10 s blocks. (e)
AM frequency. (f) A-weighted sound pressure level associated with AM events. Examples of the time
domain representation of the unweighted sound signals are provided above each histogram (b,d,e & f).
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4.3.2 Outdoor-to-indoor variability

More AM events were detected outdoors compared to indoors, with the exception of location

H3 during the daytime, as shown in Figure 4.9a. On average, outdoor AM prevalence was

approximately 1.5 times higher than that measured indoors (see Figure 4.9a and Table 4.5).

The outdoor-to-indoor AM prevalence reduction at H1 and H2 was similar, ranging between

1.5 and 2.2. In contrast, the difference between outdoor and indoor AM prevalence was

smaller for data measured at H3 during the night-time (reduction = 1.1), and indoor AM

occurred more often than outdoor AM during the daytime (reduction = 0.4). The AM depth

measured indoors was higher than that measured outdoors (see Figure 4.9b, two sample t-test,

all P < 0.001). Lower indoor background noise (or masking noise), as shown in Figure 4.9d,

most likely explains the higher AM depth measured indoors. It is also possible that the false

positive detection of the algorithm classified local indoor noise as AM.

To examine if differences between outdoor and indoor AM prevalence could be attributed

to house insulation, the distribution of simultaneously occurring outdoor and indoor noise

levels are presented in Figure 4.9c. A greater A-weighted SPL reduction was observed

for H1 and H2, compared to H3. This may explain some of the differences between the

relative outdoor and indoor AM prevalence for H3 (Figure 4.9a). The outdoor-to-indoor

SPL reduction at H3 was poor for outdoor SPL < 40 dBA. It should be noted that the

outdoor-to-indoor noise reduction as characterised using overall noise levels depends not

only on building materials, but also the characteristics of the noise spectrum and indoor

background noise. The lowest level of indoor background noise measured inside H3 was

higher than those in H1 and H2 (Figure 4.9d). This may affect the relationship between

indoor and outdoor noise levels as shown in Figure 4.9c. Although it is not very accurate to

characterise the outdoor-to-indoor reduction using overall noise levels (Hansen et al., 2015;

Thorsson et al., 2018), this is a simple approach and the results are easy to interpret.
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TABLE 4.5. Outdoor-to-indoor AM prevalence.

Outdoor Indoor Outdoor/indoor
H1 Night 57.1 34.2 1.7

Day 29.3 13.1 2.2
H2 Night 50.4 34.2 1.5

Day 29.8 16.5 1.8
H3 Night 29.3 27.5 1.1

Day 5.8 14.4 0.4
Mean 1.5
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4.3.3 Diurnal and seasonal variability

AM occurred most frequently at nighttime between 22:00 pm - 4:00 am, whereas the

lowest AM prevalence was observed at midday around 12:00 pm (Figure 4.10a). Similar

distributions of AM prevalence were observed at H1 and H3. For these locations, the highest

and lowest AM prevalence were approximately 60% and 20%, observed at 0:00 am and 12:00

pm, respectively. For location H3, less than 5% of AM prevalence was observed during the

daytime, but this number increased to more than 30% during the nighttime. The background

noise during the nighttime was also found to be lower compared to the daytime as shown in

Figure 4.9d. This was anticipated as the noise associated with human activities was expected

to be lower at nighttime. Additionally, higher AM prevalence observed during the night-time

could be partly attributed to lower background noise levels at nighttime compared to daytime.

The mean AM prevalence for each season is shown in Figure 4.10b. The mean AM

prevalence was not notably different between months in my data. However, when AM

prevalence was averaged over an hour, as shown in Figure 4.10c, clear monthly and hourly

variations of AM were evident. At all measurement locations, during the winter and spring

months, AM prevalence significantly increased after 16:00, which corresponds to the timing

of sunset during these seasons. AM prevalence significantly increased after 20:00 in summer

and autumn months, which also corresponds to the timing of sunset during these seasons.

This pattern clearly corresponded to sunrise and sunset times (dashed line, Figure 4.10c) and

is consistent with Larsson and Öhlund (2014) findings, where the authors observed a strong

association between AM prevalence and solar elevation angle.

4.3.4 Relationship between meteorological and power output conditions

An increase in the local wind speed did not always correspond to higher AM prevalence

(Figure 4.11a). The relationship between wind speed and AM prevalence at all three locations

followed a similar pattern. Specifically, AM prevalence increased as the wind speed increased

in specific regions (i.e., [0 4) at H1, [0 4) at H2 and [0 2) at H3), but dropped rapidly at

higher wind speeds. AM was rarely detected when the local wind speed was greater than
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approximately 7 m/s for H1 and 10 m/s for H2 and H3. Note that these wind speed data were

measured locally at each residence, rather than at the wind turbine nacelle. The wind speed

data were measured at 10 m above ground level for H2 and H3 and at 1.5 m above ground

level for H1, where data was not available at 10 m for the latter location.

AM prevalence measured at H2 and H3 increased with an increase of the calculated wind

gradient (see Figure 4.11b for the relevant equation) for lower values of the wind gradient

(between 0 and 1 s−1). However, for higher values of wind gradient, the prevalence of

AM was reduced. AM prevalence increased with humidity (Figure 4.11c, linear regression,

R2= 0.4, P = 0.001) as expected given that higher humidity is more favourable for sound

propagation (Hansen et al., 2017).

At all measurement locations, the AM prevalence in the upwind direction was less than

for other wind directions (Figure 4.11d, all P < 0.001) (see Figure 4.5 for definition of

wind direction category). At location H1, a mean AM prevalence of 60% was detected for

downwind data, as opposed to 30% for upwind data. A similar trend was also observed for

data measured at location H3, with around 40% of AM events occurring during downwind

conditions and less than 5% during upwind conditions. At location H2, more AM events

were detected for crosswind directions with a mean AM prevalence of around 50% compared

with 40% downwind and 25% in the upwind direction.

The maximum wind farm power output did not correspond with the highest AM preva-

lence (Figure 4.11e). At locations H2 and H3, AM occurred more often when the wind farm

operated at around 50% of its capacity. At location H1, AM occurred more often at low

power output (between 10% and 60%). These findings are consistent with previous studies

(Hansen et al., 2019a). Compared to H1 and H3, the relationship between AM prevalence

and wind farm power output capacity at H2 was skewed to lower wind farm power output

(Figure 4.11e). The reasons for this observation are unclear. Possible contributions include

the difference in rated turbine power output, wind farm layout, terrain characteristics or false

positive detection of the algorithm. The relative importance of these factors is unclear, and

thus more data and modelling approaches are needed to understand this relationship.
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4.4 Discussion

This paper presented long-term AM characteristics of WFN through analysis of acoustical and

meteorological data measured at three South Australian wind farms. I showed comprehensive

information regarding the prevalence and diurnal distribution of AM at three locations

with different wind farm layouts, wind turbine types, housing constructions and wind farm

separation distances. The resulting estimates of AM depth, duration, frequency and associated

sound pressure levels are important for both laboratory human trials and physical modelling

of WFN (Barlas et al., 2017; Makarewicz and Gołebiewski, 2019), as these characteristics

can be used to design relevant noise stimuli and also used to validate wind farm noise

models most relevant to real-world noise exposure conditions in the field. To the best of

my knowledge, this is the first study to characterise and quantify AM using comprehensive

data measured several kilometres from a wind farm, and to detect wind farm AM using a

comprehensively validated, machine learning-based algorithm.

AM was found to occur most often during the nighttime, consistent with previous studies

(Conrady et al., 2020; Hansen et al., 2019a). This is expected because nighttime provides

favourable weather conditions for sound propagation and perhaps also better conditions for

AM generation (stable atmospheric conditions, high humidity, strong temperature inversion,

high wind shear) (Stull, 2012). During these conditions, sound waves are refracted towards

the ground surface in the case of downwind and crosswind conditions (although wind shear

does not contribute in the latter case) (Ostashev and Wilson, 2015). This also most likely

explains the high AM prevalence observed in the downwind and crosswind directions.

I found that AM is an intermittent characteristic of wind farm noise as most AM events

lasted for several minutes only. This is comparable to another study (Larsson and Öhlund,

2014) where the authors observed that typical main AM events lasted around 15 seconds and

were followed by weaker AM. There are several factors that could lead to AM intermittency,

particularly at large distances from a wind farm. These factors include varying source noise

level, varying influences on noise propagation and varying background noise at the receiver

location. Source noise levels vary with time as they depend on wind speed, atmospheric

conditions and wake effects. Noise propagation is influenced by constantly changing atmo-
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spheric conditions. Masking noise levels at measurement locations are expected to vary with

time due to changes in the local wind speed and direction and varying levels of extraneous

noise. A combination of these factors could contribute towards shorter AM events observed.

A large difference was found between outdoor and indoor AM. At long-range, spectral

imbalance of wind farm noise arises due to the higher atmospheric and ground absorption at

mid to high frequencies (Ostashev and Wilson, 2015). In fact, Hansen et al. (2019a) found

that AM usually occurs at very low frequencies (i.e., around 50 Hz) at several kilometres from

a wind farm. In addition, low-frequency noise is poorly attenuated by building structures,

resulting in lower outdoor-to-indoor noise level reduction at low frequencies (Hansen et al.,

2015). These results could explain the relatively small outdoor-to-indoor reduction in AM

prevalence that was observed at H3 at nighttime. The increase in AM events measured

indoors during the daytime at H3 may have been a result of high outdoor ambient noise that

masked the outdoor AM but not the indoor AM. These findings suggest that the outdoor-to-

indoor noise reduction also impacts AM prevalence. Also, a greater AM depth is associated

with higher annoyance (Lee et al., 2011; Schäffer et al., 2016; Yokoyama et al., 2013), and

thus AM may be more annoying when people are indoors with low ambient background

noise, which is exaggerated during the nighttime. These observations are particularly relevant

for cases where AM is only measured outdoors.

I investigated the seasonal variations of AM prevalence measured outdoors, but found

no significant differences in outdoor AM prevalence between seasons. This contrasts with

the study conducted by Conrady et al. (2020) where the authors reported more frequent AM

during the Winter compared to spring, but with more limited data from a much colder climate

in Sweden. Interestingly, I found a remarkably strong temporal relationship between sunset

and sunrise times and the beginning and end of AM, most likely indicative of temperature

inversion effects (Stull, 2012).

While directivity of broadband trailing edge noise causes swishing noise which is promi-

nent close to the turbine (within 1-2 rotor diameters) (Oerlemans, 2015), the wind gradient

has been hypothesised to cause AM perceived at larger distances (hundreds of metres to

several km) from the wind farm. This is due to an increased difference in aerodynamic
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loading between the upper and lower parts of the wind turbine blade trajectory (Bowdler,

2008; Oerlemans, 2015; Van den Berg, 2005). This change in loading could then affect

blade aerodynamic noise production such as trailing edge, leading edge and loading noise

sources which would show greatest variation between the lowest and highest parts of the

blade trajectories, thereby resulting in AM. It is thus expected that higher wind gradients

provide more favourable conditions for AM generation and that AM prevalence increases

with increasing wind gradient. However, my data did not support this as AM prevalence

was reduced with increasing local wind gradient, a finding comparable with other studies

(Conrady et al., 2020; Cooper and Evans, 2013). However, it is also worth noting that the

wind gradient measured in my study was based on local wind speeds between 1.5 and 10 m

above ground which is likely not representative of wind gradients at higher altitudes more

relevant for AM generation at the noise source. Furthermore, wind gradients over a ridge are

significantly modified by wind speed-up effects (Ngo and Letchford, 2009). Therefore, the

association between wind shear and AM is still unclear and more suitable wind speed data

closer to the noise source are needed to confirm the wind gradient hypothesis.

Although I measured comprehensive acoustical data, a limitation of my study is a lack

of comprehensive meteorological data measured at hub-height most relevant to the noise

source. Thus, relationships between AM and meteorological conditions remain unclear

and further studies are needed to more comprehensively assess these relationships. This

limitation calls for better data sharing practices between wind farm operators and researchers

(Kusiak, 2016) to allow for more in depth analysis of relationships between wind farm noise

and meteorological conditions. Future studies are needed to answer questions if continuous

or discrete of AM duration is more annoying for residents living nearby wind farms. Also,

how interaction between the AM prevalence and AM depth could increase the perception of

human on wind farm noise AM.
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4.5 Conclusion

In summary, this study characterised and quantified wind farm noise AM for a large data set

measured over one year at three relatively long-range distances from three wind farms in

South Australia. At nighttime, AM prevalence was lower indoors than outdoors, but there

was an increase in AM depth in the indoor data. My findings also showed a dependence of

AM prevalence with respect to time (i.e., diurnal and monthly variations). I further found

that AM occurred more often during downwind and crosswind directions, compared to

upwind conditions. The measured data can also be used for validating wind farm propagation

models, particularly those that attempt to model AM. Ultimately, improved wind farm noise

assessment guidelines and more accurate noise prediction models will make wind energy

more acceptable to surrounding communities.



Chapter 5

Audibility of wind farm infrasound and

modulated tonal noise observed at

long-range locations

This chapter presents work that I published as first author in (Nguyen et al., 2022a). My

coauthors were primarily involved in an advisory role, so this is predominantly my work.

Contributions: My main contributions to this chapter include:

• I used a novel computational approach to assess the audibility of infrasound and AM

tones at long-range locations, which considered the uncertainty associated with WFN

measurements and human hearing variability.

• I characterised and quantified infrasound and amplitude modulated (AM) tones at

long-range locations and revealed relationships with weather conditions.

• I showed that infrasound is highly unlikely to be audible to residents with normal

hearing living at distances greater than 1 km from a wind farm.

• I found that AM tones occurring at a low frequency are highly perceivable at distances

up to 9 km.
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5.1 Introduction

W ind energy has grown rapidly in Australia, from less than 1% of Australia’s total

electricity generation in 2005 to 9% in 2020 (Department of Industry and Resources,

2021), mirroring global trends (WindPower, 2021). Although wind energy is one of the

fastest growing sources of renewable energy in Australia, increasing annually by 14%,

significant problems remain with social acceptance due to aesthetic, environmental and health

concerns (Merlin et al., 2013). Noise generated from wind farms is also a recurring source of

complaints regarding annoyance and sleep disturbance from residents living near wind farms

(Liebich et al., 2021a; Micic et al., 2018). Laboratory studies clearly demonstrate that WFN

characteristics such as low-frequency spectral dominance, tonality and AM contribute to

annoyance (Ioannidou et al., 2016; Lee et al., 2011; Schäffer et al., 2016; Smith et al., 2020),

supporting that low frequency WFN characteristics are the most prominent and problematic

features.

Infrasound, which comprises acoustic signals below 20 Hz generated by blade-tower

interaction (Van den Berg and van den Berg, 2006; Zajamsek et al., 2019), is a major source of

controversy due to uncertainties regarding whether or not infrasound has negative impacts on

people. Much of this debate reflects problems with the terminology, which implies a clear-cut

20 Hz threshold of audibility. Previous studies (Baumgart et al., 2021; Ingielewicz et al.,

2014; Jakobsen, 2005; Turnbull et al., 2012; Zagubień and Wolniewicz, 2019) have found

that infrasound levels measured near wind farms (between 100 and 500 m from the nearest

wind turbine) are well below the average audible infrasound threshold of a person with

normal hearing. For example, Van den Berg (2005) showed that infrasound levels measured

close to wind turbines are 15-20 dB below the average infrasound perception threshold (95

dBG Jakobsen (2005)). Comparing 1/3-octave band levels with the normal hearing threshold

curve for infrasound, Baumgart et al. (2021) revealed that measured infrasound was lower

than this curve by at least 20 dB. At some wind farms, tones are modulated at the blade-pass

frequency to create AM tones, which span the infrasonic and low-frequency ranges (Hansen

et al., 2017). These AM tones are often perceived as ‘rumbling’ and have been found to

exceed the OHC threshold at distances up to 4 km (Zajamsek et al., 2016).
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However, the variability of the hearing threshold has not been considered when assessing

the audibility of WFN characteristics such as infrasound and AM tones. Previous studies

(Baumgart et al., 2021; Turnbull et al., 2012; Van den Berg, 2005; Zajamsek et al., 2016)

were mainly based on the median hearing threshold in ISO 226:2003 (ISO226:2003, 2003)

or the average infrasound perception threshold. However, Møller and Pedersen (2004) found

that individual hearing thresholds could be lower than the median hearing threshold by up

to 20 dB. Uncertainty is not only associated with hearing acuity, but is also a feature of

WFN measurements themselves. Due to variable and complex effects of weather and wind

farm operating conditions, the measurement of WFN is highly uncertain. For example, the

difference in the sound pressure level (SPL) at some particular frequencies could be over

20 dB during wind farm operational versus non-operational conditions (Zajamsek et al.,

2016). The difference could also be over 10 dB during nighttime versus daytime operational

conditions (Nguyen et al., 2021a). However, measurement variability is rarely considered

when assessing WFN. Most previous studies have used the median SPL (Baumgart et al.,

2021; Turnbull et al., 2012) or the maximum SPL (Zajamsek et al., 2016), potentially

biasing towards under- or over-estimation of WFN impacts. The deterministic approach for

assessing WFN, which uses the median values of SPL and the normal hearing threshold,

could systematically underestimate the impacts of wind farm noise on nearby communities.

It is more appropriate to assess the audibility of the noise based on a probabilistic approach.

Thus, consideration of uncertainty associated with both WFN measurements and variability

in hearing acuity is needed to better understand potential WFN impacts on humans.

The purpose of this study was to investigate the audibility of WFN characteristics such as

infrasound and amplitude modulated (AM) tones at long-range locations. I first quantified

the uncertainty associated with the measurement of WFN using long-term data sets measured

at locations between 1 and 9 km from the nearest wind turbine. I leveraged these large data

sets (over 4-years of data in total) and previous data describing the variability of the hearing

threshold to estimate the probability of audibility of infrasound and AM tones. This approach

demonstrates that AM tones are highly perceivable at least up to 9 km, especially during high

wind farm power output and downwind conditions.
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5.2 Methods

The following section briefly summarises key information regarding measurement locations,

wind farm characteristics and experimental setup. All other information regarding field

measurements is provided in detail in Chapter 2.

5.2.1 Overview of study

I measured WFN at five locations (1-4 and 6) close to three wind farms (A-C) in South

Australia as shown in Figure 5.1a. The distances from the measurement locations to the

nearest wind turbine of wind farms ranged from approximately 1 to 9 km (see Table 2.2 for

details). All measurements were carried out over one year, except at location 6, where data

were collected over three months. These long-term data sets were analysed using spectral

analysis techniques such as power spectral density (PSD) or 1/3-octave band analysis to

characterise key features unique to WFN (Figure 5.1d, e). These potentially most annoying

characteristics of WFN at long-range locations (i.e., infrasound and AM tones) were then

investigated to quantify their audibility (Figure 5.1f).

5.2.2 Wind farm characteristics and experimental setup

Wind farm A was located in an area with flat terrain, while wind farms B and C were located

on ridges. The ridges were approximately 70 to 110 m higher than the measurement locations.

Figure 5.1b shows wind farm B, where several nearby wind turbines were positioned along

the ridge. At all wind farms, the wind turbines were a three-bladed design with a rated power

from 2.1 to 3.3 MW (see Table 2.1 in Chapter 2 for further details).

The typical setup included two microphones, which were positioned outdoors at a height

of 1.5 m and at ground level (Figure 5.1c). Both microphones were equipped with primary

and secondary windshields with diameters of 90 mm and 450 mm, respectively. Acoustic

data were acquired using a Bruel and Kajer LAN-XI Type 3050 data acquisition system with

a sampling rate of 8,192 Hz and a G.R.A.S type 40 AZ microphone with a 26CG preamplifier,

which has a noise floor of 16 dBA and a flat frequency response down to 0.5 Hz. Wind speed
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FIGURE 5.1. Study overview. a Measurement locations located in South Australia. Orange circles
represent wind turbines, while green triangles represent measurement locations 1-5. Three wind farms are
indicated using the capital letters A, B and C. b 3D view of location 2 near wind farm B. The map is
generated using Blender software (https://www.blender.org) and Google Earth data. c Typical setup of
the measurements. d-e An overview of the process used to analyse data. Acoustical data were transformed
to the frequency domain e to identify unique noise features. f The noise features were compared with the
1/3-octave band hearing threshold to assess their audibility.

https://www.blender.org
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and direction was measured at two levels (i.e., 1.5 and 10 m) using Davis Vantage Vue and

Davis Vantage Pro weather stations. The accuracy of the corresponding wind speed and

direction measurements is 0.4 m/s and 22.5 degrees, respectively.

5.2.3 Data cleaning

I removed all data measured during high wind speed conditions since data were contaminated

by wind-induced microphone noise as well as background noise from surrounding trees. All

data corresponding with 10-minute wind speed average greater than 5 m/s at 1.5 m height

were removed from the analysis. Also, no criteria were provided for gusts and thus I would

have to make an arbitrary choice of which threshold to use for data exclusion in this study.

This cut-off level is recommended by WFN South Australian EPA guidelines (SA-EPA,

2021) for a microphone with a typical 90-mm wind shield. Although, I used a 450-mm

secondary wind screen in all setups, and anticipated that the relevant cut-off wind speed

may be higher, I conservatively removed all data points corresponding with wind speeds

greater than 5 m/s. Furthermore, data corresponding with periods of rainfall were completely

discarded. To detect other extraneous noise events, I also plotted the LAeq of all samples

against time. Extraneous noise events were detected visually and manually excluded from

the data sets (see section 4.2 for other details regarding this process). The most common

data contamination sources included farming machines and thunderstorms. In total, the

percentage of data excluded in this study was less than 13%.

5.2.4 Frequency analysis

I used the PSD to visualise WFN in the frequency domain. The PSD was implemented

using pwelch, a built-in function in MATLAB with the following setup:10-minute sample

length, sampling frequency Fs = 8,192 Hz, Hanning window of 81,920 discrete Fourier

transform points (10×Fs) and 50% overlap between segments. This setup gave a 0.1 Hz

frequency resolution, allowing for clear visualisation of wind farm infrasound peaks in the

frequency domain. The SPLs of the PSD were calculated using the reference sound pressure
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pre f = 20µPa. The SPL, Lp in decibels is related to the PSD, S, in pascals by the following

equation:

Lp = 10log10

(
S

p2
re f

)
(5.1)

The 1/3-octave band SPLs were also calculated for comparison with the hearing threshold

established at 1/3-octave band frequencies. To calculate the 1/3-octave band SPL centered at

fc, I first calculated the lower edge frequency fl = fc/C and upper edge frequency fu = fc×C

of the 1/3-octave band with C = 100.05. The PSD data points, Lpi between the frequency

range fl and fu were then summed to estimate the SPL using the following equation (Hansen

et al., 2017):

Lpo = 10log10 ∑
f∈[ fl , fu]

(Benbw×∆ f )×10Lpi/10, (5.2)

in which Benbw is the equivalent noise bandwidth of the window function (i.e., Benvbw ≈ 1.5

for a Hanning window of length 81,920), ∆ f = 0.1 Hz is the frequency resolution.

5.2.5 Hearing threshold variability

Hearing thresholds vary between participants. This variability was quantified in terms of

the standard deviation, which varied between studies (Møller and Pedersen, 2004). A

comprehensive summary of the hearing threshold standard deviation between subjects is

provided in Figure 10 (Møller and Pedersen, 2004). I used a validated WebPlotDigitizer

tool 1 to manually extract data points from published figures for which data are not publicly

available. These data were based on 21 studies conducted between 1933 and 2001. To find

the relationship between the standard deviation, SD and frequency, f , I fitted regression

models of the SD on f with orders up to the 3rd degree using the following equation:

SD = β0 +β1 f +β2 f 2 +β3 f 3 + ε, (5.3)

1https://automeris.io/WebPlotDigitizer/

https://automeris.io/WebPlotDigitizer/
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where ε is an unobserved random error. I determined the optimal maximum order of the terms

of f in Equation 5.3 by increasing the order from 1 to higher order, after which higher order

models did not statistically significantly improve model fits. In this study, I assumed that

the hearing threshold of humans has a normal distribution (Kurakata and Mizunami, 2008).

The mean value of the hearing threshold was based on the ISO 226:2003 (ISO226:2003,

2003) hearing threshold curve (for frequencies > 20 Hz) and Møller and Pedersen (2004)

(for frequencies < 20 Hz).

5.2.6 Probability of audibility

The audibility of WFN is usually assessed by comparing the median or mean values of

measured SPL and the median hearing threshold in 1/3-octave bands as specified in the ISO

226:2003 standard, resulting in a binary outcome (i.e., audible or not audible). Although

this approach is simple, it may not accurately estimate the effects of WFN on humans. For

example, the measured SPL as shown in Figure 5.2 was assessed as not audible because its

median value was well below the median value of the hearing threshold. However, due to

the variability of the SPL and hearing threshold, WFN should be audible to those within the

larger overlapped area on the distributions (Figure 5.2).

The probabilistic approach used to estimate the probability of WFN audibility of 1/3-

octave band tones f is as follows: First, I randomly selected N samples in the long-term data

set, S( f ), and N samples in the distribution of hearing ability, H( f ). I then calculated the dif-

ference between these functions, g(H,S, f ) = S( f )−H( f ). The occurrence of g(S,H, f )> 0

was counted, which is the number of audible events, na. The probability of audibility, pa,

was estimated as pa( f ) = na
N . The value of N was determined using a convergence analysis

(see subsection 5.3.5 for details). The process is illustrated in Figure 5.2. The benefit of the

probabilistic approach is that the probability could be interpreted as the percentage of the

population expected to hear the noise at the measurement locations. The proposed method

does not take into account the perception of multiple tones within a critical band and the

effects of masking noise, as outlined in ISO 1996-2, resulting in possible underestimation or

overestimation of the probability of audibility, depending on the level of masking noise and
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FIGURE 5.2. Probability of audibility. The measured SPL varied due to weather and wind farm
operating conditions. The hearing threshold also varied between individuals. The hatched area indicates
the region where audibility may occur. The table shows the process used to estimate the probability of
audibility.

the number of tones within a critical band. However, the proposed method is simple, efficient

and considers the human hearing threshold. It is thus the most feasible approach at present to

quantify the audibility of tonal AM for a large data set, such as the one that was the focus of

this thesis.

In this study, I assumed that if the noise level in each 1/3-octave band was above the

hearing threshold, the noise should be audible, which is similar to the assumption made in

(Keith et al., 2019). This assumption implies that the local background noise is much lower

than wind farm noise. This is reasonable as my measurement locations were in rural areas

where the background noise is very low (Hansen et al., 2014a). Also, the audibility of a

modulated tone was calculated with the assumption that there is only one tone in a particular

critical band. This assumption could underestimate the probability of audibility as the energy

of multiple tones within a critical band is not considered. However, this assumption was

necessary to make the analysis of the large data set in this study tractable.

5.2.7 Quantification of noise measurement uncertainty

To estimate the uncertainty in measuring WFN (i.e., 1/3-octave band SPLs) associated with

the measurement duration, I ran a computer simulation as shown in algorithm 4. I estimated
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the uncertainty corresponding with the length of the measurement from 1 to 90 days. I

used a maximum of 90 days because the uncertainty was expected to converge with this

measurement length. This analysis was used to determine a reasonable measurement length

to ensure that the uncertainty of the measurement would be lower than the auditory perception

threshold (see Section 5.3.1 for details). The SPL depends on multiple factors such as diurnal

and seasonal weather conditions, daytime activity, wind farm characteristics (i.e., number

of turbines, power output and wind farm layout). These complex sources of uncertainty

cannot be described by the simple relationship with the length of measurement. Therefore,

the Monte Carlo simulation proposed in this thesis could be a suitable approach to establish

the dependency of SPL on measurement duration.

Algorithm 4: Uncertainty in measuring wind farm noise
Data: 1-year long data set
Result: Uncertainty in 1/3-octave band SPL
Uncertainty← matrix [90×26]
for Nday← 1 to 90 do

Randomly select 100 sub-data sets, d fi, with Nday sequential days of data;
for freq← 3.15 to 1,000 Hz do

Calculate the median values of SPL for the 1/3-octave band centered at f req
in d fi, resulting in a vector M = [M1,M2, ...M100];

Calculate the 2.5th and 97.5th percentiles (L2.5,L97.5) of the vector M;
The uncertainty in the 1/3-octave band SPL centered at f req during Nday is:
Uncertainty[Nday, f req] = L2.5−L97.5;

end
end

5.2.8 Regression analysis

I used Spearman’s rank correlation analysis to investigate if the probability of audibility

increased with wind farm power output. I implemented this analysis in R2, a programming

language for statistical computing and graphics, using the cor.test function and two-sided

tests.
2https://www.r-project.org

https://www.r-project.org
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To investigate if wind direction could affect the probability of audibility, I used regression

models that included the wind farm power output, power, (including higher order terms up

to the fifth) and wind direction, dir (four categories North, East, South and West) as follows:

Probability = β0 +β1 power+ ...+β2 power5 +dir+ ε, (5.4)

where ε is an unobserved random error. I determined the optimal order terms of power in

Equation 5.4 by increasing the order from 1 to 5 until the model fit showed no statistically

significant improvement. This model can be used to estimate the contribution of wind

direction to the probability of audibility, after taking into account the contribution of power

output.

I used a similar approach to above to see if the probability varies with months and day

versus night. I fitted a regression model of the probability based on month (12 categories:

Jan-Dec) and day-night (2 categories: day, night). All regression models were implemented

using R base package lm version 3.6.2.

5.2.9 Statistical analysis

The SPL measured over the year was summarised using the median and 90 to 10 percentile

range presented below as median [10 percentile 90 percentile]. The 90 and 10 percentile

of the hearing threshold was converted from the standard deviation (SD) using 1.84 SD.

Unless specified, I used this form throughout this study. The significance threshold used was

α = 0.05. All statistical analysis and visualisation were performed using R version 3.0.1.

5.2.10 Code availability

All regression models were implemented using R base package lm version 3.6.2. The source

code used to generate the main figures is published at my Github repository 3 .

3https://github.com/ducphucnguyen/WFNSpectrum

https://github.com/ducphucnguyen/WFNSpectrum
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5.3 Results

5.3.1 Uncertainty in wind farm noise measurement

The uncertainty in the measured 1/3-octave band SPLs exponentially reduced with measure-

ment duration as shown in Figure 5.3. Although the uncertainty was different for different

1/3-octave bands, a reducing trend was clearly observed (Figure 5.3). The median uncertainty

over 1/3-octave frequency bands was above 15 dB if the noise was measured over one day.

The uncertainty reduced to 5 dB after 14 days of measurement. This means that if two sets

of measurements were conducted over 14 sequential days at different times of the year, the

median SPL calculated from these data sets could vary up to 5 dB. This variability was

expected as WFN depends on meteorological and wind farm operating conditions (Hansen

et al., 2017), and thus measurements taken over a short period of time would not capture

longer-term variability of WFN. Although the two-week data collection period is required by

WFN guidelines (SA-EPA, 2021), long-term measurement is important to reduce uncertainty.

To determine a reasonable measurement length, I used the auditory perception threshold.

Specifically, Miller (1947) found that the ability to discriminate changes in SPL of a broad-

band noise was typically 0.4 to above 3 dB, depending on the SPL of the noise stimulus.

Assuming a threshold of 3 dB, the length of the measurements would need to be at least 50

days. In our measurements, the shortest duration was 70 days while the longest duration was

over 400 days, supporting that the data set spanned a sufficient duration to reliably capture

long-term WFN variability relevant to human perceptible differences.

5.3.2 Infrasound characteristics

Typical spectrum of infrasound

Wind farm infrasound in the frequency domain was characterised by distinct peaks, ranging

from 0.5 to 10 Hz as shown in Figure 5.4. The first peak was the fundamental frequency,

which is directly related to the blade-pass frequency. In our measurements, the fundamental

frequency was between 0.7 and 0.8 Hz. This fundamental frequency range is common for
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FIGURE 5.3. Uncertainty of wind farm noise levels depending on measurement duration. Each
grey line indicates the uncertainty in different 1/3-octave bands over a range of 3.15 - 1,000 Hz. The blue
line is the median uncertainty over the 1/3-octave bands.

a modern three bladed wind turbine, which has a nominal rotational speed between 15 and

18 rpm. The fundamental frequency increased with power output (Figure 5.4) which was

expected, as wind turbines rotate faster when producing a higher power output. A typical

infrasound spectrum also included several harmonic frequencies, which were observed up to

approximately 8 Hz.

I also observed an AM tone at 10 Hz, which is unlikely to be caused by a blade-tower

interaction mechanism, given that it is higher than the 8th harmonic tone at 7 Hz. Higher

harmonics of the blade tower interaction noise are expected to decay linearly. Furthermore,

the tone at 10 Hz could be generated by an amplitude modulated tonal noise source. The

spectral broadening seems to be stronger at higher power outputs (that is at higher wind

speeds) where the power of the tone is completely distributed into the broadband field while

at lower power outputs some of the energy still remains in the tone which is hence visible.

The AM feature of WFN is not uncommon and it can also be observed in the infrasonic and

low-frequency ranges.
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FIGURE 5.4. Typical infrasound spectrum. Typical infrasound spectrum measured at H2 (1.3 km from
the nearest wind turbine) at different power output capacities. An example of the acoustic signal is shown
in the top-right of the figure. An impulsive signal is clearly observed at the rate of the tower blade-pass
frequency (BPF).

Long-term monitoring of infrasound levels

Overall, the infrasound level measured at long-range distances (> 1 km) did not exceed 75

dBG (Table 5.1), which is comparable to previous studies (Jakobsen, 2005; Turnbull et al.,

2012). This level was 10 dBG lower compared to the average infrasound hearing threshold of

85 dBG, indicating that infrasound was unlikely to be audible to people with normal hearing

living at long-range locations. The infrasound perception level is between 85 and 100 dBG

(Broner, 2010), in this study, I used consistently 85 dBG as the average infrasound hearing

threshold. The infrasound levels in 1/3-octave bands were also well below the infrasound

hearing threshold (see subsection 5.3.4 for hearing threshold calculation details).

The slope of the infrasound spectrum decreased at a rate of 3 to 6 dB per octave band. For

example, the slope was 3 dB at locations 1-2, while the slope increased to 6 dB at locations

3-5. A steeper slope was observed at locations further from wind farms. This is consistent
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TABLE 5.1. Wind farm infrasound levels over one-year long monitoring

Wind
farm

Loc.
(dist.)

3.15 Hz 4 Hz 5 Hz 6.3 Hz 8 Hz 10 Hz LGeq

A H1(1.0) 54 [41 65] 52 [40 63] 51 [40 62] 49 [38 59] 48 [38 58] 48 [38 57] 58 [50 67]

B
H2(1.3) 56 [43 65] 54 [41 62] 53 [39 60] 50 [38 58] 50 [38 57] 50 [39 58] 61 [50 69]
H3(3.8) 53 [42 66] 50 [40 63] 48 [38 60] 44 [35 57] 43 [34 55] 42 [33 52] 54 [47 66]

C
H4(3.5) 57 [42 73] 55 [41 71] 53 [40 68] 50 [38 65] 47 [37 62] 45 [35 58] 58 [51 72]
H6(8.8) 48 [36 64] 45 [34 61] 42 [32 57] 39 [30 53] 38 [29 50] 37 [28 47] 54 [43 66]

Hearing threshold 117 [110
124]

114 [107
120]

110 [103
117]

106 [99
113]

103 [96
109]

98 [91
105]

85

with significant attenuation of higher frequency signal content by the atmosphere, resulting

in noise with low-frequency dominance at greater distances from the noise source.

5.3.3 Low-frequency amplitude modulated tones

One of the most prominent characteristics unique to WFN at long-range locations was AM

tones occurring at low-frequency. The mechanism(s) responsible for these AM tones is

unclear, but it is hypothesised to have a mechanical origin and to be re-radiated from the

blades and/or tower. The amplitude modulation of these tones is believed to occur due to

periodic changes in loading on the blades (Hansen et al., 2017). Despite the unclear mecha-

nism, I observed this characteristic of WFN at all measurement locations, as summarised in

Table 5.2.

An example of this phenomenon is shown in Figure 5.5a, where AM tones were observed

at multiple frequencies between 20 and 63 Hz. This phenomenon manifests in the frequency

domain as a broadband tone with a bell shape with multiple peaks spaced at the blade-pass

frequency (i.e., 0.8 Hz for this wind farm) (Figure 5.5b,c). In the spectrum, the level of

the AM tones was clearly above the levels observed in the surrounding frequency region at

frequencies higher than 40 Hz (Figure 5.5a). The AM tones were potentially perceivable to

some individuals as their levels were within three standard deviations of the hearing threshold

(Figure 5.5a).
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FIGURE 5.5. AM tones at low frequency measured at H4 (3.5 km from the nearest wind turbine).
(a) A typical spectrum containing AM tones at low frequencies. The hearing threshold curve and its
variability are shown for comparison. Electrical noise occurring at 50 Hz and its harmonic frequencies is
observed in the spectrum, but the power spectrum lines at these frequencies are removed from all analyses
in this study. Figures (b) and (c) are zoom windows to better illustrate the characteristic of the AM tone
in the two important frequency ranges. The tones have a bell shape with side bands spaced at the blade
pass frequency.
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TABLE 5.2. AM tone characteristics

Wind farm Location Distance,
km

AM center
frequency,
Hz

SPL, dB Hearing
threshold, dB

A H1 0.8 80.0 41 [31 51] 32 [25 38]

B H2 1.3 25.0 52 [38 57] 69 [62 76]
H3 3.8 25.0 42 [33 49] 69 [62 76]

C

H4 3.5

23.3 43 [34 50] 72 [65 79]
28.1 42 [32 51] 64 [58 71]
46.6 42 [30 52] 46 [40 53]
56.0 41 [31 51] 41 [34 48]

H6 8.8

23.3 40 [26 50] 72 [65 79]
28.1 40 [25 51] 64 [57 71]
46.6 38 [32 51] 46 [40 53]
56.0 36 [30 48] 41 [34 48]

5.3.4 Hearing threshold variability

The variability in the hearing threshold between subjects was quantified using one standard

deviation (Figure 5.6a). The variability was slightly higher at 31.5 Hz and lower at 250 Hz.

To investigate whether the variability of the hearing threshold was dependent on frequency,

I applied a third order polynomial regression fit to the data. However, the association was

not statistically significant (R2 = 0.003, P = 0.313). Therefore, I used the mean value of

5.35 dB (95% CI 5.12 to 5.58 dB) as the standard deviation of the hearing threshold across

frequencies from 3.15 to 1,000 Hz. To examine the variability of the hearing threshold, I

plotted the ISO 226:2003 (ISO226:2003, 2003) hearing threshold curve (for frequencies

> 20 Hz) and the infrasound hearing threshold curve in Møller and Pedersen (2004) (for

frequencies < 20 Hz) and its 1 and 3 standard deviations as shown in (Figure 5.6b).
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5.3.5 Audibility of wind farm infrasound

I used computer simulations to determine the audibility of wind farm infrasound (see Methods

section for details). Convergence analysis showed that the probability was stable after 500,000

simulations (Figure 5.7a). To be conservative, I used 1 million simulations throughout this

study. These simulations showed that the chance for wind farm noise infrasound to be audible

was extremely low with a probability of < 5×10−5 (Figure 5.7b). A higher probability was

observed at H1 located approximately 1 km from the wind farm, but remained unlikely to

be audible to residents living at these distances. As expected, the probability increased at

higher frequencies as the hearing threshold decreases with frequency. Visual assessment also

revealed this very low chance of audibility as shown in Figure 5.7c. The distributions of

infrasound levels in 1/3-octave bands measured over one year was plotted together with the

hearing threshold. These two distributions were well separated, further supporting that the

infrasound measured at locations greater than 1 km is inaudible.



5.3 Results 105

Convergence analysis

3.15 Hz 6.3 Hz 10 Hz

Probability of audible infrasound

Distributions of infrasound levels vs. hearing threshold

a b

c

0

2.5

5.0

7.5

10

0 1 2 3 4 5

No. of simulations

1 
m

ill
io

n 
si

m
ul

at
io

ns

Pr
ob

ab
ili

ty
 o

f a
ud

ib
ili

ty

x 106

x 10-5

x 10-5

0

1

2

3

4 H1 (0.8 km)

H4 (3.5 km)

H3 (3.8 km)

H2 & H5
(1.3 km and 3.5 km)

5

3.15 4.00 5.00 6.30 8.00 10.00

Frequency, Hz

Pr
ob

ab
ili

ty
 o

f a
ud

ib
ili

ty

0.00

0.02

0.04

0.06

20 45 70 95 120

Pr
ob

ab
ili

ty
 d

en
si

ty

20 45 70 95 120

Sound pressure level, dB

11
7 

[1
10

 1
24

]

53
 [4

1 
56

]

49
 [3

 5
9]

10
6 

[9
9 

11
3]

20 45

48
 [3

8 
57

]

98
 [9

1 
10

5]

70 95 120

FIGURE 5.7. Audibility of infrasound. (a) Convergence analysis of computer simulation. (b) Probability
of audibility of infrasound. (c) Distributions of 1/3-octave SPL measured at H1 in wind farm A and the
corresponding hearing threshold.



5.3 Results 106

5.3.6 Audibility of amplitude modulated tones

Amplitude modulated tone of 80 Hz at location H1 near wind farm A

The AM tone produced by wind farm A occurred at 80 Hz and was measured at location

H1 at a distance of 0.8 km. The distributions of the measured SPLs and hearing thresholds

are shown in Figure 5.8a. The hearing threshold at the 80 Hz 1/3-octave frequency was

assumed to have a normal distribution with a mean of 31.5 and a standard deviation of

5.35 dB. A significant overlap between these distributions was observed, indicating that

the AM tone was likely to be audible at the measurement location to a significant fraction

of the community. The probability of audibility increased with wind farm power output

(Spearman’s rank correlation, R2 = 0.99, P = 3.95×10−6, Figure 5.8b). At power outputs

> 80%, the AM tone was audible to anyone with a normal hearing threshold (Probability =

1). I also observed a high probability at low wind farm power output, but this probability was

likely due to background noise only rather than WFN.

I found that wind direction was likely to have an effect on the audibility of the AM

tone (P = 0.014, Figure 5.8c). The probability of audibility for the North and East wind

directions was higher than that for the West and South directions (P = 0.010). The highest

probability was observed for the North direction, followed by the East, South and West.

Higher probability of audibility for the North and East directions was expected as the

residence was downwind from the majority of wind turbines in these directions (Figure 5.8c).

The probability of audibility during March to May (Autumn season in Australia) was

slightly but significantly lower than it was for other months (P = 0.025, based on a linear

regression of probability for month and day/night). The noise was likely to be more audible

during the Summer season (December to February). This seasonal pattern was likely due to

the higher wind farm power output during these seasons. I did not find a difference in the

audibility between daytime and nighttime at this location (P = 0.587).
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Amplitude modulated tone of 25 Hz at locations H2 and H3 near wind farm B

The distributions of the 1/3-octave band SPLs centered at 25 Hz and hearing thresholds are

shown in Figure 5.9a. I ran simulations at different wind farm power outputs (Figure 5.9b),

and as expected, the probability of audibility of the AM tone increased with power output

at both locations (R2 = 0.98, Spearman’s rank correlation). The probability of audibility at

H2 was much higher than H3 (Figure 5.9b) as H2 is closer to the wind farm. The highest

probability was around 0.015. This probability could be interpreted as 1.5% of normal

hearing residents living around this distance could hear the noise when the wind farm is

operating at power outputs > 80%. However, the AM tone was only audible to 0.2% of

people when the wind farm was operating at its median annual power output (30%).

At locations H2 and H3 near this wind farm, the audibility was highly dependent on

wind direction (P = 3.326×10−11), as shown by the regression model of audible probability

based on wind direction and wind farm power output (Figure 5.9c). I observed the highest

probability of audibility for the West direction, while the lowest probability was for the

East direction. This was expected as the West and East wind directions correspond to the

downwind and upwind directions, respectively. In the worst case scenario (i.e., 100% power

output and West direction), the AM tone at 25 Hz was audible to 2% of people with normal

hearing living at this distance.

I also observed an association between the audibility and month of the year (P = 1.628×

10−6, linear regression of probability on month and day/night) (Figure 5.9d). The probability

of audibility during Autumn and Winter (April - August) was higher compared to Spring and

Summer (September - February). The higher probability during the Winter was very likely

due to the higher associated wind farm power output. The overall probability of audibility of

the AM tone was not different for the daytime versus the nighttime (P = 0.459).
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Amplitude modulated tones 46 and 56 Hz at wind farm C

Wind farm C is a special case, as multiple AM tones were observed to occur at different

frequencies (Table 5.2). In this section, I only investigated AM tones at 46 and 56 Hz. The

hearing threshold at 46 Hz was interpolated linearly between the thresholds at 1/3-octave

bands centered at 45 and 56 Hz. The distributions of the measured SPLs and hearing

thresholds are shown in Figure 5.10a.

The probability of audibility increased with wind farm power output at both locations

(Figure 5.10b). At location H4, the probability increased from approximately 0.2 to over 0.5

when the wind farm power output increased from 0 to 100% (R2 = 0.98, Spearman’s rank

correlation). Interestingly, the probability of audibility at location H6 (8.8 km) was even

higher than that at H4 (3.5 km), particularly at power outputs > 70%. At location H6, the

probability of audibility was above 0.7 at 100% power output. In other words, at least 70%

of people with normal hearing would be expected to perceive this noise at 8.8 km when the

wind farm is operating at 100% power output.

I observed similar results for the AM tone at 56 Hz (Figure 5.10c, d). The probability of

audibility was slightly higher compared with the AM tone at 46 Hz. This was expected, as

the hearing threshold is lower for higher frequencies. At the annual median power output

(approximately 40%), the probability was approximately 0.6 and 0.3 at H4 (3.5 km) and

H6 (8.8 km), respectively. At 100% power output, the probability was nearly 0.8 for both

locations, indicating that 80% of the normal hearing population would be expected to hear

the AM tone at 56 Hz at distances above 3.5 km.

At location H4, I found that the probability of audibility was highly directional. The

probability of audibility for the East wind direction was much higher compared to other

wind directions (Figure 5.10e). On average, the probability for the West direction was

approximately 0.25 higher than other directions (P = 4.14× 10−13). In other words, the

percentage of people who could hear the noise increased by 25% in the downwind direction.

The probability of audibility in the East direction increased from 0.2 to approximately

1.0 when power output increased from 0 to 100%. In the worst case scenario (wind farm

operating at 100% power output and receivers in the downwind direction), almost all people
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with a normal hearing threshold would be expected to hear this AM tone at 3.5 km. A similar

pattern was also observed for the AM tone at 56 Hz.

At location H6, the probability of audibility was highest in the West wind direction. This

direction also corresponds with the downwind direction. The probability of audibility for

the South wind direction was also high compared to North and East. This was expected, as

there are no wind turbines East of H6 (Figure 5.10f). At the highest power output (100%)

with a west wind direction, around 80% of people (probability of audibility 0.8) with normal

hearing would be expected to hear both AM tones at 46 and 56 Hz at a distance of 8.8 km

from the wind farm.

5.4 Discussion

In summary, this work using a computational approach considering uncertainties associated

with WFN measurement and variability in human hearing thresholds demonstrates that

infrasound is highly unlikely to be audible to people living greater than 1 km from a wind

farm. However, AM tones occurring at low frequencies are likely to be readily perceivable to

most people with normal hearing up to, and likely beyond, 9 km from a wind farm.

Consistent with previous findings (Jakobsen, 2005; Turnbull et al., 2012; Van den Berg,

2005), it is not surprising that infrasound generated from wind farms is inaudible give

levels far below the average human hearing threshold. I confirmed this finding with a more

comprehensive approach and large data set. However, whether or not inaudible WFN such

as infrasound has adverse effects on humans through mechanisms other than hearing is

still debated (Knopper and Ollson, 2011; Tonin, 2018). AM tones occurring within the low

frequency range could be audible to people with normal hearing living up to approximately

9 km from a wind farm, especially at high power output and downwind conditions, and

could potentially be misinterpreted by some people as infrasound. Preliminary results have

shown that AM tones may be more annoying than pure tones (Hansen et al., 2019b). Thus,

AM tones that are audible to many under unfavourable conditions could be a significant

factor contributing to annoyance at long-range locations. This characteristic of WFN usually
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occurs within the infrasonic and low-frequency range. Thus, assessment of WFN based on a

common metric such as the A weighted-SPL is likely to underestimate the impacts of WFN

on surrounding communities. At long-range locations, low-frequency (but not infrasonic)

AM tones could potentially be the only feature of WFN that is problematic because other

characteristics of WFN such as infrasound, low-frequency dominance or pure tonality are

unlikely to be audible. Therefore, wind farms could be more acceptable to surrounding

communities if problematic AM features can be successfully mitigated.

There are several limitations of our study which could be addressed in the future. I was

not able to separate WFN from ambient noise. As a result, the measured SPL comprised both

wind farm and local ambient noise. Although I attempted to remove samples with extraneous

noise, the estimated probability of audibility could be overestimated. Although there is

currently no validated method to isolate WFN from ambient noise (Hansen and Hansen,

2020), recent studies (Bigot and Hochard, 2019; Gloaguen et al., 2021) using machine

learning have shown promising results to address this challenge. A further limitation is that

simulations were based on the hearing threshold curve in the ISO 226:2003 for frequencies

greater than 20 Hz. This curve is established using data tested on young subjects in the

age range from 18 to 25 years. Therefore, results from this study regarding the probability

of audibility are more relevant to young populations unlikely to be representative of rural

communities exposed to WFN. Data were only available up to a distance of approximately

9 km, so AM audibility at greater distances remain unknown. Future studies, especially in

areas associated with noise complaints, should consider that WFN AM could remain audible

at greater distances, particularly downwind during high power output conditions.

5.5 Conclusion

I conclude that a computational approach that considers the uncertainty associated with WFN

measurement and hearing thresholds is an appropriate and very useful approach to assess

the audibility of WFN. I confirmed that infrasound at distances greater than 1 km is highly

unlikely to be audible to most individuals, but that low-frequency AM tones are audible to
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many individuals at distances up to and likely beyond 9 km from a wind farm. At long-

range locations, AM tones could potentially be the only noise problem associated with wind

farm operation. Thus, wind farms could be more acceptable to surrounding communities if

particularly prominent WFN can be addressed.



Chapter 6

Beyond traditional wind farm noise

characterisation with deep acoustic

features

This chapter presents work that I published as first author in (Nguyen et al., 2022b). My

coauthors were primarily involved in an advisory role so this chapter predominantly reflects

my own work.

Contributions: This is an exploratory chapter that presents a innovative approach to

characterise WFN. My contributions to this chapter are as follows:

• I showed that deep acoustic features contain a meaningful representation of WFN.

• I showed that combining low- and high-level deep acoustic features works better than

using high-level acoustic features alone.

• I showed that deep acoustic features can reveal an improved spatial and temporal

representation of WFN compared to traditional acoustic features.
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6.1 Introduction

T he global wind industry has undergone rapid expansion in power generation capacity

over the past ten years, reaching to over 22,000 wind farms and 1,110 GW in 2021

(WindPower, 2021). This fast growth is expected to continue, along with ongoing concerns

regarding social (Krohn and Damborg, 1999; Wolsink, 2007), ecological (Schuster et al.,

2015; Thaker et al., 2018) and environmental impacts such as noise generated by wind

turbines (Liebich et al., 2021a; Micic et al., 2018). Multiple guidelines and standards

(AS4959, 2010; NZS6808, 2010; Søndergaard et al., 2019) have been developed to help

mitigate the effects of WFN on surrounding communities. Although these guidelines and

standards have been updated regularly, the potential impact of WFN is still based on common

traditional noise metrics such as A- or C-weighted SPL (Hansen et al., 2017). These

aggregate metrics are clearly important indicators related to the human perception of noise.

However, there remains no consensus agreement or firm evidence to support which metrics

are most strongly related to human impacts and are thus most suitable for WFN assessment

(Hansen and Hansen, 2020). Moreover, prominent characteristics of WFN, such as amplitude

modulation (AM), also appear to importantly contribute to annoyance (Ioannidou et al.,

2016; Lee et al., 2011; Schäffer et al., 2016) and possible sleep disturbance (Smith et al.,

2020). Consequently, it is unlikely that any single simple noise metric can adequately

encapsulate both physical and psychological aspects of WFN impacts on humans and more

comprehensive and evidence-based approaches remain needed. This problem is not unique

to WFN research but has also been identified as an issue in other research areas such as

sonic boom research for which there is no internationally agreed-upon standard noise metric

(DeGolia and Loubeau, 2017).

Recent advances in deep learning in acoustics (Bianco et al., 2019) hold significant

promise for improving WFN noise assessment. In particular, Sethi et al. (2020) recently

used a pretrained deep convolutional neural network (CNN), namely VGGish (Hershey et al.,

2017), to extract feature patterns in spectrograms. Hereafter these features are referred to

as deep acoustic features. These authors showed that deep acoustic features can be used to

accurately quantify variations in the natural environment across locations and time. Using
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a pretrained deep model (DEEP-Hybrid DataCloud project), Clark et al. (2021) were able

to characterise details of diurnal and spatial community-generated sound and noise sources.

Other useful applications of machine learning models are presented in many aspects of

environmental acoustics, such as outdoor sound propagation (Hart et al., 2016, 2021) and

sound emergence of wind turbine noise (the difference in A-weighted SPLs between wind

farm operating and non-operating condition) (Gloaguen et al., 2021).

The purpose of this study was to investigate if deep acoustic features can be used as

an alternative to traditional acoustic features for WFN characterisation. I first sought to

understand the degree of correlation between deep acoustic features and traditional acoustic

features such as spectral shape and commonly derived noise indicators. I then explored

the ability of deep acoustic features to reveal the variations in WFN characteristics across

locations and time (spatial and temporal characteristics of WFN). I also compared the

performance of deep acoustic features and traditional acoustic features to reveal WFN

characteristics.

6.2 Methods

This section presents key information regarding measurement locations and data sets. Other

details such as equipment, wind farm characteristics and measurement setup are provided in

more detail in Chapter 2.

6.2.1 Data sets

All data sets used in this study were collected from four locations in the mid-north region

of South Australia (Figure 6.4a). The first data set (data set 1) was a benchmark data set

(Nguyen et al., 2021b), which contains 6,000 10-second audio files of WFN with 40%

of audio samples containing AM. These data were extracted from a data bank containing

continuous data measured over one year at locations 1 and 2 (Figure 6.4b). In this study, the

data set 1 was used to evaluate the accuracy of AM detection algorithms trained with deep

acoustic features. The second data set (data set 2) included a combination of the first data
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set and samples extracted from data measured at locations 3 and 4 (Figure 6.4a). I note that

the locations 3 and 4 in this Chapter are previously indicated in Figure 2.1 in Chapter 2 as

locations 4 and 6. The data set 2 contained data measured near three wind farms and four

residences located between approximately 1 and 9 km from the wind farms. The data set 2

was used to investigate if deep acoustic features can reveal the spatial characteristics of WFN.

The third data set (data set 3) was extracted from data measured at location 2 over one year.

To reduce the computational time, I extracted 10-second audio files from 10-minute samples.

In total, the third data set contained over 50,000 10-second audio samples. The third data set

was used to evaluate if deep acoustic features can reveal the temporal characteristics of WFN.

More details regarding equipment, measurement setup and wind farm characteristics can be

found in my previously published work (Nguyen et al., 2021a).

Regarding data cleaning, although I removed all data containing rain contamination and

farming machine noise, I was unable to separate WFN from ambient noise. This is a current

issue in the WFN research area and there is no current validated method to address this

problem (Hansen and Hansen, 2020). A recent study conducted by Gloaguen et al. (2021)

showed promising results to address this challenge and this approach could improve WFN

characterisation in future studies.

6.2.2 VGGish

I used the VGGish model, which is a CNN model that has been pretrained on more than

2 million YouTube videos to predict over 600 audio event classes (Hershey et al., 2017).

The architecture of the VGGish model is shown in (Figure 6.1a). The VGGish model

includes a single channel input layer, followed by four convolutional (CONV) layers and

three fully connected layers. VGGish is a variant of the well-known VGG model, in particular

Configuration A with 11 weight layers. To prepare the input for the VGGish model, the

audio signal was framed into zero overlapping windows of 0.96 seconds. Each window was

converted into a spectrogram using a Short-Time Fourier Transform with a window size of

25 ms, a hop length of 10 ms, and a periodic Hanning window. A Mel spectrogram was then

computed by mapping the spectrogram to 64 Mel bins covering the range of 125-7500 Hz.
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To avoid calculating a logarithm of zero, a log Mel spectrogram was computed by adding a

log offset value of 0.001. The result of each window was a 2D spectrogram image 96×64

pixels (i.e., 96 frames by 64 Mel bands). This image was used as the input to the VGGish

model. For other details regarding the VGGish model, I refer the reader to the source code

provided by the TensorFlow team1.

A pretrained model was used to save computational and human resources involved with

the training and validation of a new model. Although the VGGish model was not trained

to identify WFN indicators specifically, it was trained using audio files that contain unique

features of noise such as swoosh, swish and thump widely associated with WFN (Hansen

et al., 2021). Application of this pretrained model thus could be particularly useful when

applied to characterise WFN. Another benefit of using the pre-trained VGGish model is

that it is unlikely to be over fitted because it has been trained using a massive data set

and is thus capable of classifying a wide range of noise types not necessarily represented

within our potentially somewhat location-specific data set that may differ compared to other

regions. In other words, this model has the potential to perform well when applied to

different data sets containing WFN with a wider range of noise characteristics. Also, the

VGGish model was trained using Mel spectrogram images which better reflect how humans

perceive sound compared to conventional spectrograms calculated using a short-time Fourier

transform. The Mel spectrogram represents a psychoacoustic scale, and thus the resulting

deep acoustic features are expected to show stronger relationships with human responses (i.e.,

annoyance and sleep disruption) compared to conventional spectrograms, although further

investigation is needed to verify this. The limitation of VGGish model is that the upper

bound frequency of the input Mel spectrogram was high for WFN which typically contains

frequencies below 2,000 Hz. Removing these frequencies could thus potentially improve

model performance. Also, the frequency content of WFN in the infrasonic and very low

frequency ranges (i.e., below 125 Hz) is removed when using the VGGish model. However,

this could still be acceptable because wind farm infrasound is normally well below the human

hearing threshold (Jakobsen, 2005) and no studies to date have shown that it has adverse

1https://github.com/tensorflow/models/tree/master/research/audioset/vggish

 https://github.com/tensorflow/models/tree/master/research/audioset/vggish
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effects on humans. Also, the most commonly identified problematic component of WFN

is AM which often occurs within the frequency range between 200 and 800 Hz (AMWG,

2015). This information is thus well captured by the VGGish model.

6.2.3 Dimensionality reduction methods

I used principal component analysis (PCA) (Jolliffe, 2002) to reduce from higher- to lower-

dimensional acoustic features. This process can efficiently remove highly-correlated acoustic

features which are redundant, resulting in improved machine learning algorithm performance

and a reduced risk of overfitting. In our analysis, the number of features extracted from

the CONV1 and embedding layers was reduced from 32 to 10 and 128 to 20, respectively

(Figure 6.1b). The number of principal components were chosen such that most (95%) of the

variance within the high-dimensional data was preserved in the lower-dimensional data (i.e.,

the cumulative explained variance was above 0.95 in this study). Thus, the total number of

combined low-level and high-level deep acoustic features was 30 (Figure 6.1b). To visualise

deep acoustic features on a two-dimensional plot I used the uniform manifold approximation

and projection (UMAP)(McInnes et al., 2018) to further reduce dimensionality from 30 deep

acoustic features to 2 features. The benefit of UMAP compared to PCA is that it can preserve

both global and local geometry of the data so is expected to provide superior visualisation of

WFN components. In addition, UMAP is non-linear and can therefore represent non-linear

factors more efficiently than linear PCA.

I also compared UMAP with another dimensionality reduction method called t-distributed

stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008), which has a

favourable running speed and the ability to preserve the global structure of the data. t-SNE

is a well-established dimensionality reduction method, but this method does not preserve

the global structure of the data very well. Specifically, the distances between paired data

points in the high dimensional space (original data) is not correlated well with these distances

in the low dimensional space. As a result, although clusters can be identified in the low-

dimensional space, how much these clusters differ based on their distances in the low-

dimensional space remains unclear. For example, larger or shorter distances between two



6.2 Methods 121

clusters in the low-dimensional space does not imply that these clusters are very or slightly

different. In other words, the relative distances between clusters in the low-dimensional

space are not meaningful. On the other hand, UMAP is expected to address this problem of

t-SNE. The fundamental background of UMAP is similar to t-SNE. However, UMAP can

preserve both the global and local structure of the data. To demonstrate this quantitatively

using my data, I first calculated the distances between paired points in both high- and low-

dimensional spaces (see Section 6.2.5). I then did a correlation analysis to quantify the

level of correlation between these distances. I ran this analysis for five methods including

PCA, t-SNE, and UMAP, applying PCA before using t-SNE (PCA-tSNE), and applying

PCA before using UMAP (PCA-UMAP). The results are shown in Section 6.3.3. Note that

to facilitate comparisons between methods, I used the default settings of these methods.

Software versions and parameters used are listed in Table 6.1.

TABLE 6.1. Software versions and parameters.

Method Version Parameter Availability

t-SNE scikit-

learn

0.24.1

perplexity 30, n_iter 1000, metric:

‘euclidean’

https://scikit-learn.org/

stable/modules/generated/

sklearn.manifold.TSNE.

html

UMAP 0.5.1 min_dist 0.1, n_neighbors 15,

metric: ‘euclidean’

https://github.com/

lmcinnes/umap

PCA scikit-

learn

0.24.1

N/A https://scikit-learn.org/

stable/modules/generated/

sklearn.decomposition.

PCA.html

6.2.4 Computational time

To estimate the run time of each dimensionality reduction method, I calculated the average

over five run times. The run time was estimated with time function in Python. The code was

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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run on a single node of a Deepthought high performance computer2 with 128 threads and

500G RAM.

6.2.5 Correlation of pairwise distances

I randomly selected two data points on the deep acoustic feature space. The Euclidean

distance between these two points (x1,x2, ...xn) and (y1,y2, ...yn) on n-dimensional space is

calculated as follows:

d(x,y) =

√
i=n

∑
i=1

(xi− yi)2 (6.1)

The above process was repeated for 10,000 times to estimate 10,000 pairwise distances

on the deep acoustic feature space. This process was also applied to embedding space to

estimate 10,000 corresponding pairwise distances. To quantify the preservation of distances,

I computed the Pearson correlation coefficient between pairwise distances in the deep and

the embedding space.

6.2.6 Performance of deep acoustic features

To evaluate the ability of deep acoustic features to identify WFN AM, I used a recent advanced

and successful machine learning method called Extreme Gradient Boosting (XGBoost)

(Chen and Guestrin, 2016) to identify AM in data set 1. The XGBoost algorithm uses

multiple decision trees to capture nonlinear relationships between input variables (acoustic

features) and output (AM vs. no AM) to make an ensemble prediction. I also used XGboost

classifiers to evaluate the ability of deep acoustic features to reveal spatial and temporal

characteristics of WFN. All XGboost classifiers were trained on 80% and evaluated on 20%

of the data. Hyperparameters of XGboost classifiers such as learning_rate and max_depth

were optimised with the Bayesian hyperparameter tuning method (Snoek et al., 2012).

The searching space and optimised hyperparameters of the AM classifiers are provided in

2https://doi.org/10.25957/FLINDERS.HPC.DEEPTHOUGHT

https://doi.org/10.25957/FLINDERS.HPC.DEEPTHOUGHT
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TABLE 6.2. Hyperparameter tuning.

Parameter Searching space Distribution
max_depth {1,20} discrete uniform (step=1)
learning_rate {0.05,1} continuous uniform
gamma {1,20} continuous uniform
reg_alpha {0,30} discrete uniform (step=1)
reg_lambda {0,1} continuous uniform
colsample_bytree {0.1,1} continuous uniform
min_child_weight {1,50} discrete uniform (step=1)

TABLE 6.3. Optimised Hyperparameters.

Parameter

AM detection
(traditional fea-
tures & AM
features)

AM detection
(deep features)

max_depth 13 19
learning_rate 0.07 0.13
gamma 1.65 1.1
reg_alpha 1 5
reg_lambda 0.64 0.79
colsample_bytree 0.7 0.92
min_child_weight 50 31

Table 6.2 and Table 6.3. I report the performance of the classifiers on the test sets throughout

this study.

6.2.7 Statistical analysis

Statistical analyses including Pearson’s correlations and receiver operating characteristic

(ROC) curve analyses were performed using R3 version 4.0.0. ROC area under curve (AUC)

was used as the main classifier performance metric throughout this study. All visualisation

was implemented in R using ggplot2 and circlize packages. All grouped data are reported as

mean ± standard deviation (SD).
3http://www.r-project.org/

http://www.r-project.org/
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6.2.8 Data and code availability

The data sets used in this study are available in Nguyen (2021b). The source code used to

extract deep acoustic features and generate the main figures is published at GitHub4.

6.3 Results

6.3.1 Deep acoustic features

I proposed a different approach to previous studies (Sethi et al., 2020), in which features in

convolutional and embedding layers were extracted instead of features in the embedding layer

only. I hereafter refer to features extracted from convolutional layers as low-level acoustic

features, while features extracted from the embedding layer as high-level acoustic features

(Figure 6.1b). While high-level acoustic features can capture global acoustic content of an

input spectrogram such as energy distribution as a function of frequency and time, I also

expected that low-level acoustic features could indicate local patterns in the input spectrogram

such as intermittent acoustic features represented by vertical and horizontal lines. Combining

these features was expected to capture both the general and detailed characteristics of the

noise. To investigate the meaning of each layer in the deep model, and to test if low-level

acoustic features indeed capture detailed patterns of the input spectrogram, I show a case

study in Figure 6.1b. In this case study, a spectrogram of a 0.96-second audio recording was

input to the deep model. The input spectrogram was convoluted with 64 filters to create 64

new images in the CONV1 layer. Each filter was trained to detect different patterns of the

input spectrogram. To visualise this, I highlighted two fundamental filters and showed the

corresponding images in the CONV1 layer (Figure 6.1b). The filters successfully detected

vertical (distribution of acoustic energy over frequency bands) and horizontal (intermittent

acoustic energy over time) patterns of the spectrogram. There were 64 filters in the CONV1

layer that can thus detect other detailed patterns of the input spectrogram. These new

spectrogram images representing local patterns of the input were then passed to deeper

4https://github.com/ducphucnguyen/TransferLearningWFN

https://github.com/ducphucnguyen/TransferLearningWFN
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layers (i.e., CONV2-4 layers), where the number of filters were doubled after each layer,

resulting in much more detailed and comprehensive patterns of the input spectrogram. I

reasoned that this combination of low- and high-level acoustic features (see Figure 6.1b) can

comprehensively capture both detailed and general information about the input noise sample.

However, features extracted from deeper CONV layers were very localised rather than global.

In this study, I only used the low-level acoustic features extracted from the CONV1 layer

(Figure 6.1b). The explanations for this are analysed in details in Section 6.3.2. Finally, the

deep acoustic features include 10 low-level features and 20 high-level features.

6.3.2 Deep acoustic features reveal noise characteristics

To investigate potential relationships between deep and traditional acoustic features and WFN

unique features (i.e., AM characteristics), I ran a pairwise correlation analysis, in which all

possible pairs between these features were determined, and their corresponding Pearson’s

correlation coefficients, r, were then calculated. The traditional acoustic features included

spectral shape features (i.e., spectral slope, spectral spread, spectral flux) and environmental

noise indicators (i.e., A-, C-weighted SPLs). The AM features included AM fundamental

frequency and AM depth. A full list of these features and their physical meaning is provided

in Table 3.2 (or Table 3 in (Nguyen et al., 2021b)). The pairwise correlation coefficients

were presented in a Chord diagram5 as shown in Figure 6.2a. I observed moderate to

strong correlations between these features. Both low-and high-level acoustic features were

correlated with traditional acoustic features and AM features, indicating that both low- and

high-level acoustic features are useful for capturing information about the noise character.

Deep acoustic features were correlated with the most important AM features, such as the AM

fundamental frequency, peakloc; AM strength (depth), DAM, AM f actor; rising and decay

slopes of AM peaks, pos_slope, neg_slope; and variations of unweighted SPL in octave

bands centred at 1,000 Hz, L_1000. Furthermore, deep acoustic features were also correlated

with common traditional acoustic features such as A-, C-, G-weighted SPLs and spectral

shape features such as spectral spread and spectral slope. This is striking as the correlation

5http://circos.ca/

http://circos.ca/
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FIGURE 6.1. VGGish and deep acoustic features. a The architecture of the VGGish model. The
general architecture is that the image size after each convolutional layer was reduced to half, while the
number of filters were doubled. The embedding layer is the layer before the output layer. b An illustration
of the VGGish feature extraction. Curved paths represent how the input spectrogram is convoluted with the
filters to create new images in the CONV1 layer. I draw these paths for only two fundamental filters, which
are horizontal and vertical detectors. I also show random images in the CONV2-4 layers for illustrative
purposes. I finally combine the features in the CONV1 and embedding layers to represent the acoustic
information of the input noise sample. These combined features are referred to as deep acoustic features.
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FIGURE 6.2. Deep acoustic features reveal unique noise characteristics. a Chord diagram describing
the relationship between deep acoustic features, traditional acoustic and AM features. The colour of
the curves connected between the two features indicates the degree of correlation. I only show curves
representing correlation levels ranging from moderate to very strong ( r > 0.39 or r <−0.39). b Performance
of models trained with features extracted from CONV1-4 layers, embedding layers and deep acoustic
features. The black dot points indicate the mean value of AUC, while the small coloured dot points indicate
AUC values from 10 repeated runs. c Performance of the model trained with deep acoustic features is
compared with previously published methods.

analysis reveals that the deep acoustic features are not only able to represent traditional

acoustic features, but are also related to unique characteristics of WFN.

To further investigate the ability of deep acoustic features to detect AM, I trained an

XGBoost classifier to detect AM in data set 1 and measured the performance using AUC (see

Methods section). I also compared the performance of deep acoustic features and features

extracted from CONV and embedding layers. The models trained with features extracted

from CONV1 and embedding layers had higher performance compared with those trained

with features extracted from CONV2-4 layers (Figure 6.2b). The deep acoustic features

showed the best performance. This was expected, as the deep acoustic features were a

combination of features extracted from CONV1 and embedding layers (Figure 6.1b).



6.3 Results 128

Finally, I compared the performance of the deep acoustic features method with previously

published methods for identifying AM, including the Reference method developed by the

Institute of Acoustics UK (AMWG, 2015) and our previously published method (Nguyen

et al., 2021b) using all traditional acoustic and AM features. The performance of the deep

acoustic features method was high and better than the Reference method. However, the deep

acoustic features method had a lower performance than the model trained with all traditional

acoustic and AM features. This was expected, as these features were designed specifically

for AM detection, including features from other AM detectors such as DAM, AM f actor,

and prominence ratio. Furthermore, all of these features were carefully selected by acoustic

experts for the AM detection task. It is thus not surprising that its performance was the best,

but the main advantage of deep acoustic features is that it had high performance without

involving an acoustic expert. I expected that deep acoustic features could be used to detect

other unique characteristics of WFN such as tonal and impulsive characteristics.

6.3.3 Performance of dimensionality reduction methods

I measured the computational costs of five dimensionality reduction methods, and as expected

I found that PCA was the fastest method (Figure 6.3a). UMAP was also a very efficient

method that was much faster than t-SNE. Using PCA initialisation reduced run times of

t-SNE and UMAP. The run time of each method was 11 secs (PCA), 2.2 hrs (t-SNE), 477

secs (UMAP), 1.4 hrs (PCA-t-SNE) and 344 secs (PCA-UMAP). I found that UMAP was

much better than t-SNE in preserving global data structure (Figure 6.3b). Using PCA

initialisation could improve the ability of t-SNE and UMAP to preserve the global data

structure. The global structure of the data is especially important in the case where distances

in the two-dimensional data are used as a new metric for assessing environmental noise. Our

results here suggest that UMAP with PCA initialisation appeared to be a suitable method

for environmental noise data. Specifically, UMAP with PCA initialisation is efficient for

analysing large data sets, shows comparable performance to other nonlinear dimensionality

reduction methods for classification tasks and has the highest ability to preserve the global

data structure.
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FIGURE 6.3. Dimensionality reduction methods. a, Average computational time of five dimensionality
reduction methods. t-SNE was much slower than UMAP. Although using PCA to initialise data can slightly
improve the speed of t-SNE, it is still much slower compared to UMAP and PCA-UMAP. The speed is
important because environmental noise monitoring was usually carried over months or years. b, Preservation
of global structure of data. The correlation analysis clearly illustrated that UMAP is significantly better
than t-SNE in terms of preserving the global structure of data. Using PCA to initialise the data can
improve the global structure of UMAP, but not t-SNE.

6.3.4 Deep acoustic features reveal spatial and temporal structures of

wind farm noise

Motivated by the ability of deep acoustic features to represent acoustic information and

unique characteristics of WFN, I further explored if I could use deep acoustic features to

reveal the spatial and temporal characteristics of WFN. I refer to the spatial and temporal

noise characteristics as unique characteristics of the noise within a given area or particular

time. I observed four clear clusters as shown in Figure 6.4b, corresponding with noise

measured at four locations 1-4 as shown in Figure 6.4a. This indicates that the characteristics

of the noise at these locations are different from one another. The distances between these

clusters could be used to assess the degree by which the noise differs between locations. To

evaluate the performance of deep acoustic features, I trained an XGboost model to classify

noise at different locations. I found that the performance of deep acoustic features was
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remarkable (AUC = 0.98± 0.003). The performance of traditional and AM features for

this task was 0.76±0.008, and even lower AUC = 0.71±0.01 if only A- and C-weighted

SPLs (two commonly used metrics for WFN assessment) were used. These results indicate

that the traditional acoustic features used here are not as sensitive to spatial variations in

WFN as deep acoustic features. Although I observed differences in noise characteristics

measured at different locations using the deep acoustic features, the underlying reason for

these differences remain unclear and the results could be affected by local ambient noise,

distance to the wind farm and the number of wind turbines. Larger and more suitable data

sets are needed to investigate if the deep acoustic features are sensitive to these changing

conditions.

Daytime and nighttime noise characteristics were expected to be different due to atmo-

spheric stability which changes between night-time and daytime and that is also what was

revealed using deep acoustic features (Figure 6.4c). The diurnal pattern corresponds to the

UMAP1 axis where the nighttime data points were clustered on the left while the daytime

data points were clustered on the right. Interestingly, I also observed a transition between

the daytime and nighttime noise dependencies. For example, the centroid of data points

at clock times close to midnight (22:00 to 2:00) and midday (10:00 to 15:00) were well

separated into two groups (Figure 6.4c). The transition hours were distributed between these

two groups. These findings indicate that the deep acoustic features are very sensitive to

small changes in the diurnal noise dependencies. Although the characteristic of the noise at

different seasons was also expected to be different, due to changes in weather conditions,

this was however not observed (Figure 6.4d), except for a slightly higher standard deviation

in winter. This observation is likely due to specific seasonal effects. It is possible that

the weather conditions were not sufficiently different across seasons at our measurement

locations to create detectable difference in noise features. For example, there is no snow

cover during winter, resulting in a reduced change in the ground impedance compared to

other locations in colder climates. Furthermore, the average temperature difference between

winter and summer during the measurement period was approximately 15 degrees (Nguyen

et al., 2021a). Finally, the wind farm power output between months was not significantly
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FIGURE 6.4. Spatial and temporal structure of WFN. a Noise measured at four locations in South
Australia. b The number of data points at locations 1-4 are N1-2=3,000 and N3-4 = 1,000. The elliptical
shape shows one standard deviation of the data in the cluster. c Colours of data points indicate clock
time. The numbers indicate the centroid of data points at different clock times from 0 to 23. The number
of data points are 56,356. d Seasonal characteristic of the noise with Summer: Dec-Feb; Autumn: Mar -
May; Winter: Jun-Aug; Spring: Sep-Nov.
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different. These factors could explain the small changes in noise characteristics between

seasons.

6.4 Discussion

This work shows that deep acoustic features can produce similarly meaningful representations

of noise as traditional acoustic features such as A-, C-, G-weighted SPL and spectral shape

indicators, but can also represent unique spatial and temporal characteristics such as AM.

Although the current approach to assess WFN is mainly based on common metrics such as

A- or C-weighted SPLs, there is still debate around these metrics as they do not capture unique

noise characteristics associated with WFN (Hansen and Hansen, 2020). The advantages

of traditional acoustic features are that they are already widely implemented, accepted and

interpretable. However, these weighted measures have largely evolved around measurement

and interpretation convenience with uncertain relationships with human impacts. Given

recent advances in computational resources, publicly available deep models, and especially

the ability of deep acoustic features to provide more detailed information, more systematic

and evidence-based measures beyond traditional approaches for assessing WFN should be

considered. For example, the baseline characteristic of the noise can be established using

deep acoustic features extracted from data measured during the pre-construction phase of

wind farms. The operational characteristic of the noise during the operational phase of a

wind farm could also be monitored. The difference in the characteristics of the noise during

the pre-construction and operational phases of a wind farm could be estimated and used as an

overall indicator to quantify how a wind farm alters the noise characteristics with potential

impacts on amenity in surrounding communities specific to the localised environment. A

similar approach has indeed been successfully applied in other systems such as for civil

(Khoa et al., 2018) and mechanical structural health monitoring (Stetco et al., 2019) systems.

I thus anticipate that this approach will have significant utility for more comprehensive

evaluation of environmental noise impacts.
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A limitation of this study is that using deep acoustic features is a useful approach for

characterising WFN and environmental noise in general, but the WFN frequency content

below 125 Hz was removed automatically by the VGGish model. This configuration of the

model resulted in infrasound and very low-frequency content being missed. The main reason

is that the VGGish model was not able to include this frequency content as it was trained

using YouTube audio that is unlikely to contain infrasound and very low frequency contents.

Also, as mentioned in previous chapters, background noise contamination is a major issue

in wind farm noise assessment given the fact that the deep learning method cannot separate

WFN and ambient noise, and thus investigating approaches to remove it from wind farm

noise remains an active area of research (Hansen and Hansen, 2020). Recent studies have

proposed some promising approaches, but these methods have not been tested using real

wind farm noise data.

6.5 Conclusion

I conclude that using deep acoustic features is a useful approach for characterising WFN and

environmental noise in general. I showed that deep acoustic features represent both overall

physical properties and characteristics unique to WFN. Deep acoustic features can clearly

reveal the spatial and temporal characteristic of WFN, providing more detailed insight into

the noise character than traditional acoustic features. Future use of deep acoustic features

holds major promise for comprehensive assessment of the overall character of environmental

noise in regions surrounding wind farms.



Chapter 7

Conclusions and Recommendations for

Future Work

In this chapter, I first reiterate the main aims of this PhD thesis. I then summarise the findings

and contributions to the field. Finally, conclusions and recommendations for future work are

also included at the end of this chapter.

7.1 Overview of thesis aims

The general aim of this PhD thesis was to quantify and characterise WFN at long-range

locations via long-term noise monitoring. To achieve this general aim, I divided the work

into several studies that began with (1) developing and validating a comprehensive model

to detect AM; then (2) quantifying and characterising AM at long-range locations in the

vicinity of South Australian wind farms; (3) investigating the audibility and characteristics

of infrasound and AM tones using a probabilistic approach; and finally (4) exploring a new

approach for WFN characterisation using a transfer learning method.
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7.2 Summary findings

Chapter 1 introduced the major recent developments relating to the wind industry and the

ongoing concerns regarding associated noise issues. A brief overview was also provided of

the characteristics of WFN, the underlying noise generation mechanism and possible impacts

on humans. Also, promising applications of machine learning to environmental noise was

introduced. Within this contextual framework, the major aims were presented.

Chapter 2 provided important knowledge on the technical aspects of WFN measurement.

Following a description of the study region and wind farm properties an overview was

provided of the key technical aspects that warrant consideration to ensure the collection of

high quality acoustic data relevant to measurements of WFN. This included details regarding

the selection of microphone types, microphone positions, calibration, wind screen design,

data acquisition details and system power supply. This chapter provided a detailed description

of methods relevant to Chapters 3-6.

Chapter 3 developed a comprehensive AM detection method based on a machine learning

algorithm. The human scored data set was then used to establish benchmark AM charac-

teristics. The results in this chapter showed that this novel method could detect AM as

accurately as an expert listener. This advanced AM detection method substantially outper-

formed traditional AM detection methods which rely on a single noise indicator. The work

described in Chapter 3 also showed that human scoring is a feasible and valuable approach to

identify prominent features of AM readily perceived by humans. This approach is invaluable

for detecting unique characteristics of wind farm noise in cases where the performance

of automated detectors is low or not validated against features most obvious to humans.

Benchmark characteristics of AM such as the fundamental frequency, AM depth and its

relationship with SPL and meteorological conditions were also established.

Chapter 4 leveraged the advanced AM detection method developed in Chapter 3 and a

large data set to investigate long-term characteristics of AM at long-range locations. The

results showed that AM occurs 2 to 5 times more often during the nighttime compared to

the daytime. Indoor AM occurred 1.1 to 1.7 times less often than outdoor AM. A diurnal

variation in AM prevalence was also clearly observed. Also, AM prevalence was strongly
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associated with sunset and sunrise time. AM occurred most often during both downwind

and crosswind conditions. Other characteristics of AM such as AM depth, fundamental

frequency and AM event duration were also revealed through application of this novel and

comprehensive AM detection approach.

Chapter 5 investigated other characteristics of WFN such as infrasound and AM tones,

which are dominant at long-range locations. This chapter used a comprehensive computa-

tional approach to evaluate the audibility of infrasound and low frequency noise at these

locations. The results confirmed that infrasound is highly unlikely to be audible to normal

hearing people living at long-range locations. However, the work presented in Chapter 5

also showed that AM tones occurring at low-frequencies were likely to be audible to most

normal hearing people living up to, and likely beyond, 9 km from a wind farm. This work

also showed that downwind conditions and high power output were consistently associated

with a higher probability of audibility of AM tones.

Finally, Chapter 6 presented an exploratory investigation of the successful use of a

transfer learning technique in machine learning to characterise WFN. I demonstrated that

deep acoustic features extracted from deep CNN models can very usefully represent a

physical meaning for acoustic signals. The deep acoustic features revealed an improved

temporal and spatial structure of WFN compared to traditional noise features such as spectral

shape or commonly used summary noise metrics. Although suitable data are needed to

further validate the results presented in this chapter, this novel approach shows major promise

towards use as a new and more comprehensive framework for WFN assessment than is

currently practical in field measurements.

7.3 Conclusions

In this thesis I characterised and quantified WFN at long-range locations in a region with

a dry climate. I successfully developed an AM detection method which has a predictive

power close to the practical limit set by human scoring. Applying this algorithm to the

long-term data set revealed strong associations between AM prevalence and meteorological
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conditions. The nighttime AM prevalence was much higher than the daytime prevalence.

On average, indoor AM occurred less often than outdoor AM, but the indoor AM depth was

higher than that measured outdoors. There was also an association between AM prevalence

and sunset and sunrise. AM occurred more often during downwind and crosswind conditions.

Regarding the impacts of WFN characteristics, AM tones were likely audible at distances

up to 9 km, depending on wind direction and wind farm power output. In an exploratory

study, I demonstrated that deep acoustic features extracted from a deep CNN model reveal

the temporal and spatial structure of WFN better than traditional noise indicators, which

could give rise to a new WFN assessment framework. Taken together, these novel methods

and findings make an important contribution needed to improve our understanding of WFN.

Further application of these methods is likely to facilitate an improved understanding of

noise generation and impacts on humans needed to help guide improved design of wind

turbines, more comprehensive WFN assessment guidelines and a better framework for WFN

assessment, ultimately making wind energy more acceptable to surrounding communities.

7.4 Future directions

Given advances in WFN research in recent years, there are numerous opportunities for

future work on this topic since there are many research questions for which answers are still

uncertain.

Mechanisms of WFN characteristics. The noise generation mechanisms of some WFN

characteristics such as infrasound, ‘swishing’ noise or broadband low frequency noise are

well understood. Due to sound propagation loss, these characteristics of WFN have less

impact compared to ‘enhanced AM’ or AM tones at long-range locations. Although a

considerable amount of research effort has been expended on attempts to understand the

cause of these characteristics, causal mechanisms remain uncertain. A greater understanding

of the mechanisms responsible for these characteristics would be very useful to help guide

wind turbine design improvements and potentially other noise control approaches that could
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reduce noise associated with these specific components. AM tones occurring within the low

frequency range could be audible to people living at long-range distances. This characteristic

of WFN could potentially impact on wind energy acceptance and thus future work is needed

to mitigate this problematic AM feature. Quantifying the prevalence of this phenomenon is

also important for future studies, especially at wind farms located in other parts of the world.

Reducing noise impacts of wind farms. It is impractical to design inaudible wind turbines,

and thus the impacts of WFN on residents living nearby wind farms should be quantified

both subjectively and objectively to help facilitate acceptance in neighbouring communities

exposed to WFN. It is useful to investigate noise impacts in a field-based setting and using

population-based studies to identify the key components of WFN that contribute most to

disturbance. Potential mitigation strategies should then be explored to reduce the impacts of

WFN on local residents. Due to the remarkably rapid expansion of the wind industry and

long-term nature of noise exposure, even modest reductions in noise impacts have major

potential to benefit both a wide population and the wind farm industry.

Probabilistic noise prediction. A key stage in the wind farm development process is envi-

ronmental noise modelling. WFN predictions are usually carried out following procedures

outlined in the International Standard, ISO 1996-231 as this model is considered adequate by

many practitioners. However, discrepancies between measured and predicted SPLs has been

reported in the literature and thus more accurate models, including detailed topography and

more accurate calculations of ground and meteorological effects should be developed and

validated. In fact, the accuracy of these models is strongly dependent on the reliability of

input data and each model has unique strengths and weaknesses. Similar challenges exist in

other fields, and while remarkable progress has been made using multi-model ensembles for

weather forecasting, crop yield predictions and climate projections, this has not yet translated

into the field of acoustics and thus warrants immediate application and advances. It would

be useful to explore new multi-model noise prediction methods with improved uncertainty

estimates to allow for better evidence-based optimisation of wind farm layouts, reduced

instances of non-compliance, and improved public amenity and acceptance of wind energy.
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New framework for wind farm noise assessment. WFN measurement is required to

follow high standards with regards to equipment, inclusion of a range of weather conditions

and measurement durations. However, the assessment of WFN is typically based on a

single indicator such as LAeq or LA90. Other unique characteristics of WFN such as AM,

tonality, imbalanced spectrum or other psychoacoustic-related indicators are not usually

considered and may well contribute to annoyance. It would be valuable to develop a more

comprehensive framework for WFN assessment. Although an early step towards an improved

assessment approach using machine learning techniques was demonstrated in in Chapter

6, future work is necessary to improve these algorithms and to validate the performance of

these machine learning algorithms on a wide range of data sets. With recent advances in

computational resources and publicly available deep models, the next step beyond current

approaches for assessing WFN should be considered. The new framework should consider

the most important features of noise most relevant to human impacts, including both physical

and psychoacoustic characteristics. This new framework should examine multiple acoustic

indicators, thus minimising bias towards any particular acoustic indicator until sufficient

evidence becomes available to guide which WFN features are most closely related to negative

impacts on humans.
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