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Abstract 
This thesis describes an architecture of a system for isolating sensitive tasks within the context 

of the 8-bit retro revival project, the MEGA65. This system has the potential to provide users 

with a means of secure communication on a platform which is simple enough to be understood 

by the user: A boon for the supporters of privacy and free speech.  

In an attempt to reach the completed system, a sub-system was successfully designed and 

developed that provides the ability for the user to inspect the state of the machine without an 

external host computer. Architectural changes were conceptualised and designed to allow for 

secure exfiltration-resistant compartments to be constructed and used. Furthermore, the 

development and implementation of a rudimentary method of context switching lays a 

foundation for the future development of a multitasking system on this 8-bit platform.  
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Chapter 1 

Introduction 
Modern computers are complex. While this increasing complexity drives the performance we 

have come to depend upon, as the complexity of a system increases so too does the probability 

of flaws. Some of these flaws can potentially be a security risk. Bruce Schneier, Founder and 

CTO of Counterpane Internet Security, Inc., mentioned that “the future of digital systems is 

complexity, and complexity is the worst enemy of security” (Schneier, 2000).  

Major processor architecture changes see an approximate fourfold increase in transistor count 

and a fourfold increase in design bugs (Gelsinger, et al., 2010). Some processor bugs could 

potentially weaken the security of the system by allowing unprivileged code to control the 

privileged state of the processor (Matthew Hicks, 2015). K. Yang, et al. showed that such a 

flaw even has the potential to be maliciously placed by unscrupulous fabrication facilities. (K. 

Yang, et al., 2016).  

Recently, it was revealed that the CIA have been hoarding zero-day vulnerabilities; that is, 

vulnerabilities which were previously unknown to the vendor (WikiLeaks, 2017; US Govt., 

2012). These vulnerabilities exist in major consumer platforms such as Android, iOS, 

Windows, and even consumer Wi-Fi routers. A user may wish to protect themselves from state-

sponsored hackers who may exploit these vulnerabilities. Perhaps they could do this by moving 

to a much simpler platform.   

Such a platform is the MEGA65 project. Developed by Paul Gardner-Stephen in collaboration 

with the M.E.G.A. (Museum of Electronic Games and Art), developers and commodore 

enthusiasts from all over the world, as well as students at Flinders University. The aim of the 

MEGA65 project is to recreate and enhance the popular 8-bit computer, the Commodore 64 

and its never-released successor the Commodore 65 prototype.   

Using a dedicated 8-bit machine to communicate, rather than the ubiquitous smart phones we 

are accustomed to, may be a major regression in convenience. But the increased security could 

provide peace of mind to some users.  
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1.1 Motivation 
Spooked by terrorist attacks worldwide, much of the western world has used this opportunity 

to push for greater surveillance. In early 2015 UK Prime Minister at the time, David Cameron, 

and his team proposed the ban of strong encryption, such as end-to-end encryption used in 

many messaging applications or 256-bit AES used to secure phones, citing national security 

concerns (Griffin, 2015; Morris, 2015; Cowan, 2015). While this is a boon for police 

investigators, it leaves citizens potentially vulnerable.  In this proposal officials requested a 

company be able to remove any electronic protections to access the required information. In 

late 2016 the UK Parliament passed Investigatory Powers Act 2016 of which section 254 

provided them with such a power (UK Parliament, 2016). While companies can still technically 

employ encryption, they must also be able to somehow supply any requested data, coercing 

them into implementing surveillance backdoors, or weakening encryption using techniques 

such as key escrow.  

At a press conference in July 2017, Australian Prime Minister Malcom Turnbull reiterated the 

push for greater powers to police the internet. He argued that the internet should not be used 

for bad people to hide their criminal activities from the law (Turnbull, 2017).  It is becoming 

increasingly difficult to find out what terrorists, drug traffickers and paedophile rings are doing, 

and it appears the blame is on encryption. At the same time, recent new anti-terror laws in 

Queensland have provided the police with the authority to hack consumer electronics to provide 

surveillance.  

Once the knowledge of strong encryption is disseminated and the technology to implement 

such a system is widely available, anti-encryption regulation would only serve to make the 

general public less safe (Bankston, et al., 2015). Key recovery systems, where the third party 

holds the keys or any other backdoor system in place to allow quick access to the plain text for 

law enforcement, have the possibility to be hacked and used by others.  

If the communication service used by the criminals becomes compromised or weakens their 

encryption, it is logical to assume that they will seek out other means of secure communication. 

Whether it is open source projects like this or the development of their own software using 

open source implementations, it would render any regulations moot. This forces criminals into 

the deep web, that is, not using mainstream services, and will only make it harder for law 

enforcement as they will no longer receive any metadata. Metadata is any data other than the 
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message content, such as the sender/recipient and the time it was sent, which could be useful 

information to the police.  

If granted, these new powers could be a slippery slope. Much like the NSA’s existing dragnet 

mass surveillance system, it has the potential to be abused. The increasing surveillance could 

potentially be used to crackdown on protesters or political opponents, especially in the 

repressive regimes of the Middle East. 

1.2 Problem Statement 
For the rightfully paranoid, perhaps existing mainstream closed source platforms cannot be 

completely trusted given that western governments are attempting to boost their surveillance 

powers.  If the user were a person of interest, whether it’s because of political dissent, 

journalism, or whistleblowing, flaws or backdoors hidden in complex hardware and software 

could potentially be exploited by a state-sponsored hacker. Using, instead, a secure simple open 

platform may reduce the likelihood of a security vulnerability, but at the cost of convenience 

and functionality. 

1.3 Objectives  
The primary objectives of this project are:  

o To explore compartmentalisation requirements 

o To design and implement an out-of-band machine state inspection mechanism 

o To design and implement a system to isolate tasks into a secure compartment 

o To design and implement a rudimentary task switcher 
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1.4 Scope 
The scope of this project includes the design and implementation of sub-systems that work 

together to complete the system to enable the compartmentalisation of secure tasks. 

Development of sub-systems which might eventually be a part of the secure task system, such 

as the implementation of a completed task switching system with UI are out of scope of the 

project. Additionally, implementing the requisite hashing and encryption algorithms is not 

within the scope of this project.   

1.5 Research Questions 
With the truly paranoid in mind, how could the secure compartmentalisation of tasks be 

implemented in the simple 8-bit architecture of the MEGA65? And to what extent is it possible 

to protect against physical access attacks, and which use cases can be protected?  

And finally, is it possible to create a functional user-interface that allows for the transparent 

inspection of the machine’s state such that a user can reasonably verify that the machine is 

running the correct software, or similarly, that it is not exfiltrating sensitive data from a secure 

compartment?  

The main criteria for success is whether the functionality of the implemented systems meet the 

requirements of the inspection mechanism and the secure compartments, and whether these 

systems can protect from physical access attacks.  
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1.6 Thesis Organisation 
Chapter 1: Introduction 

Gives an overview of the background of the project, including motivation, problem statement, 

objectives, and scope of the project.  

Chapter 2: Literature Review 

Chapter 2 presents background information and related work. The literature review contains 

synopses on several academic papers concerned with various aspects of computer security, 

including backdoors and physical access attacks, attacks this architecture is aiming to protect 

against, and others which may still be outstanding vulnerabilities.  

Chapter 3: Design of Secure System 

Chapter 3 starts with the software tools and methods used to perform the research, and 

introduces the functionality requirements of the system. Followed by a proposed design 

fulfilling those requirements.  

Chapter 4: Results and Discussion 

Chapter 4 presents the progress made towards implementing the proposed designs on the 

MEGA65. It describes the modules which were developed, an overview of how they were 

implemented and tested, and whether the functionality requirements were met. Then ending 

with a discussion and analysis of how the overall system, when fully implemented, could 

protect against physical access attacks and which cases could be protected. 

Chapter 5: Conclusion and Future Work 

Chapter 5 presents a summary of the project. The chapter concludes with a discussion of the 

future work which could build upon the foundation created by this project.   

 

 

  

 



 

6 
  

Chapter 2 

Literature Review 
There have been attempts in the past to create secure systems, in both software design and in 

hardware design. The following chapter presents some background information on various 

aspects of computer security which relate to the nature of this project and an overview of related 

work.  

2.1 The MEGA65 Project  
The MEGA65 is an open source project that aims to create an understandable computer which 

is near 100% compatible with the 8-bit Commodore 64 and the prototype Commodore 65.  And 

in doing so, supplementing it with newer technology such as support for higher resolution 

display, networking and MicroSD card storage (MEGA65, 2017).  

The device runs on an off-the-shelf field programmable gate array (FPGA) development board. 

The development board was chosen as it was cheap relative to the performance and capacity 

of the included FPGA. Additionally it includes on-board peripherals, such as Ethernet, VGA 

output, USB keyboard input, and audio output (Gardner-Stephens, et al., 2016). Efforts to build 

a custom PCB are underway, with support for the real commodore 64 peripherals, such as the 

keyboard and joysticks. 

As the MEGA65 project has an emphasis on being understandable, it has a potential future in 

education teaching children about the basics of computers at a very low level of abstraction. 

Being taught how to use a modern computer in the 21st century doesn’t impart anything about 

the computer itself, it remains a mysterious box. However, in the early 80s as 8-bit home 

computers were becoming very popular, anyone with an interest could learn to program 

whether it was at school, clubs, or at home. There were difficulties with software distribution 

at the time, so to do much with the machine typically meant typing in programs found in PC 

magazines, or creating one’s own software.   

The machines of this era were inherently simplistic, a limitation of technology at the time, 

which may have promoted a deeper understanding of the underlying hardware.  
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2.2 Complexity and Security  
There’s a wide consensus in the computer security community that complexity is the enemy of 

security, meaning as complexity increases so do the number of potential security flaws. This 

notion is supported by notable security experts such as A.Yoran (Krebs, 2014), B. Schneier 

(Chan, 2012) and McCabe (McCabe Software, INC., 2012). This sentiment also lies at the heart 

of this project.  

According to McCabe, complex systems potentially have more security bugs as they have more 

lines of code and more interactions. Complex systems are harder to fully test, and may have 

some portions untested. Complex systems are harder to design, implement, configure and use 

securely. Lastly and importantly, complex systems are harder for users to understand. Reducing 

the complexity of a computer system has the potential to make it more secure (McCabe 

Software, INC., 2012). 

It is difficult to test for security, functional testing cannot tell us whether or not the device is 

secure as these security features are useful only to prevent things from happening (Schneier, 

1999). The system could be working as intended and a vulnerability elsewhere in the system 

could undermine the feature. However, by keeping the overall system simple, we can reduce 

the effort required to analyse and evaluate the security of the system.  

The CPU in the Commodore 64 has approximately 3510 transistors (Cox, 2011), whereas a 

2017 desktop class CPU from AMD has almost 5 billion transistors. It can easily be seen that 

an 8-bit system, such as a Commodore 64, is definitely not a complex system when compared 

to modern computers.   

2.3 Security by isolation 
The idea of security by isolation is to segregate different sections of a computer system such 

that if one of these sections becomes compromised or malfunctions, the rest of the system is 

unaffected (Rutkowska, 2008).  In 1975, Saltzer and Schroeder proposed eight design 

principles for the protection of information in computer systems. One of these is related to 

isolation: the principle of least privilege. It states that every module must only be able to access 

the information and resources it requires to complete the job (Saltzer & Schroeder, 1975). This 

is analogous to the military “need to know” security rule, where limiting the number of people 

with access to classified information lowers the risk of that information being compromised.  
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By isolating sections of the MEGA65 during a special mode, even if sections, such as the 

hypervisor or cellular modem, become compromised it should not compromise the security of 

activity during secure mode. These ideas will be explored in more depth in later chapters. 

2.4 Electromagnetic Emanation Attacks  
All electronic devices emit some electromagnetic radiation when current passes through their 

circuits. In 1985 Wim Van Eck found that it was possible to pick up and decode these 

electromagnetic emissions from devices such as CRT monitors (Van Eck, 1985). As cathode 

ray tube (CRT) monitors amplify the control signals to a high voltage, it was found that these 

video signals were a dominant component of the EM radiation emitted. The signal showed 

resemblance to a TV broadcast signal. Van Eck demonstrated that eavesdropping was possible 

using off the shelf equipment of the time, a television receiver. Attack of this nature were 

therefore dubbed Van Eck phreaking.  

Attacks targeting electromagnetic radiation aren’t limited to the analog realm. A recent paper 

by experts at Tel Aviv University showed that it was possible to acquire decryption keys from 

laptop computers using off the shelf hardware from a distance of 50cm. (Genkin, et al., 2015). 

Initial attempts using a cheap software defined radio (SDR) device as an acquisition device to 

listen in on specific frequencies were successful. These electromagnetic analysis attacks are a 

type of side-channel attack which exploit the physical implementation of a cryptographic 

system.  

Since 2012 it is been known that encrypted FPGAs from Xilinx series 4 and 5 are susceptible 

to side-channel analysis attacks (Moradi, et al., 2012). By measuring and analysing from a 

single power-up, they were able to extract the AES key. With the key they can decrypt the 

bitstream to enable cloning or reverse engineering of the device. In 2016 another team 

improved the attack, targeting series 6 and 7 devices (Moradi & Schneider, 2016). These 

attacks are especially worrying, considering that the MEGA65 projects use a series 7 Xilinx 

FPGA in the design.  

2.5 Backdoors 
The use of undocumented closed source hardware and software has the potential to hide 

intentional backdoors, or unintentional security vulnerabilities. A backdoor is a method which 

circumvents authentication in a system and may allow unauthorised users to access the system. 
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There are many places a backdoor can be planted in, from the silicon in the underlying CPU, 

the operating system software, user software, and even computer peripherals.  

One such example, which sparked many conspiracy theories, is a system known as the Intel 

Management Engine (IME). The IME system is a closed source embedded microcontroller 

inside recent Intel processors, which has unfettered access to hardware, including a dedicated 

connection to the network interface and memory access (Rutkowska, 2015). By employing 

security-by-obscurity Intel has made the system unable to be easily audited by the public, 

leading to speculation over potential security flaws. Such a flaw was found in mid-February 

2017, which allowed an unprivileged remote attacker to gain control of the features provided 

by the AMT, a module included in the IME (CVE, 2017), affecting a range of products sold 

between 2010 and 2011 (Embedi, 2017). A recent submission to the Black Hat Briefings 

suggests a vulnerability was found in newer versions of the IME, enabling unsigned code to 

execute in the Platform Controller Hub (PCH) of any sixth-generation or above Intel CPU 

(Mark & Goryachy, 2017).  

While Intel may not have been acting maliciously, there are growing concerns due to the 

globalisation of hardware supply chains, specifically hardware vulnerabilities which may be 

implanted during the design stages, unbeknownst to the original designer, by dishonest 

fabrication facilities. As designs get more complex, often third party intellectual property (IP) 

blocks are utilised in a design, and because of this the hardware may contain unspecified 

functionality. These undocumented modifications may introduce a hidden channel to exfiltrate 

data, or an intentionally placed backdoor (Hu, et al., 2016).  

As mention in the introduction, Yang, et al. demonstrated that a hardware backdoor has the 

potential to be maliciously placed by a single dishonest worker in a fabrication facility (Yang, 

et al., 2016). They constructed a circuit that uses nearby wires to charge a capacitor. When the 

wire toggles frequently the capacitor charges, and when the capacitor is charged above a certain 

point, the payload is deployed forcing the targeted flip-flop to change to the desired value. The 

targeted flip-flop would ideally hold the bit for escalated privileges for the processor.   

In March 2012, a team from the UK discovered the first real world backdoor found in military 

grade FPGA. A backdoor exists in the Actel/Microsemi ProASIC3 chip, by providing a key to 

the JTAG interface, extended debugging features were unlocked. By fuzzing the JTAG port 

they were able to identify that a function was requesting a 128-bit key. By using Pipeline 

Emission Analysis (PEA), a type of side-channel attack, similar to differential power analysis, 
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they were able to extract the key providing access to this interface. With this level of access 

they were able to disable all the security, access crypto keys and the unencrypted bitstream. 

This could lead to attackers reverse engineering the design, and re-programming the device 

having modified it with other backdoors or Trojans (Skorobogatov & Woods, 2012). 

Considering fuzzing the JTAG interface on FPGAs is a rather new technique, perhaps it is 

likely similar backdoors will be found in other products. Especially if it were a third party 

JTAG IP block the FPGA manufacturer may have integrated into the design.  

2.6 Evil Maid Attacks 
An evil maid attack is a type of physical access attack, coined by security researcher Joanna 

Rutkowska. It is an exploit that targets devices which have been left unattended and shutdown. 

The name comes from a hypothetical situation where the attacker could be a hotel maid where 

the owner of the device leaves it unattended in the room, giving them physical access to the 

device for a short time, on multiple occasions (Rouse, 2013).  

An example of an evil maid attack could be an attack targeting full disk encrypted (FDE) hard 

drives: A user leaves their laptop unattended in their room, thinking because of FDE their 

important information will be safe. An attacker could come in and install a malicious 

bootloader, once the user unlocks the disk the bootloader may install malware to capture the 

key and send it over the internet. With the key obtained, the attacker could return to copy the 

data and erase any evidence of their attack. A potential solution to these type of attacks could 

be to implement some sort of two-factor authentication, and keeping the token generator with 

you at all times (Schneier, 2009). Or alternatively only store the bootloader you trust on a read 

only USB device, and keep that device on you at all times.  The possibility of similar physical 

access attacks on the system introduced in this thesis will be discussed in later chapters.  

2.7 Secure Operating Systems  
While there have not been any systems like the MEGA65 strictly designed with the aim of 

providing security by simplicity, there exist some operating systems designed with security and 

privacy in mind. These include Tails OS (Tails, 2017), Qubes OS (The Qubes OS Project, 

2017) and certain versions of Windows 10. Each have a different approach to how they secure 

the system.  

The operating system of choice of whistle blower Edward Snowden, Tails OS, or The Amnesic 

Incognito Live System, is a Unix-like operating system bundled with tools to help preserve 



 

11 
  

privacy and anonymity online.  Tails is designed as a stateless system, leaving no trace of 

activity on local storage. Tools such as Tor Browser, a browser based on Firefox with 

modifications to protect your anonymity, and Thunderbird email client with Enigmail for 

OpenPGP (a widely used email encryption standard) support. All communication is routed 

through TOR, The Onion Router. TOR itself is a special network that aims to anonymise the 

user to protect their privacy. While the MEGA65 will not be performing such tasks such as 

web browsing, the ability to anonymise communication using the TOR network or a VPN is 

worth considering.  

The problem with many mainstream operating systems, including Tails OS, is that they use 

monolithic kernels, a kernel running entirely in a single address space. According to Joanna 

Rutkowska, project lead of Qubes OS, this could potentially be a security flaw as a single kernel 

exploit can be used to take over the entire system. (J. Rutkowska 2012). We can’t ever be 

certain that no malicious code can get into the kernel, there’s always going to be a security 

vulnerability that someone finds.  

Qubes OS is a secure operating system designed from the ground up to utilise security by 

compartmentalisation. Qubes utilises the open source virtualisation software, Xen hypervisor, 

to create Xen domains it calls qubes.  These domains provide a way to isolate different sessions, 

services or applications. You could have a personal qube to run sensitive applications or web 

services which require login credentials, and a different qube to run general browsing or work-

related tasks.  
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Figure 1. Qubes OS User Interface 

While each domain has its own micro kernel, the desktop environment itself is unified 

providing a single interface to manipulate windows. The interface of Qubes OS, shown in 

Figure 1, shows two different domains, differentiated by the allegedly unforgeable coloured 

borders (Qubes OS Project, 2017). However a vulnerability was found in the GUI component 

which allowed applications to disable the drawing of the coloured border, potentially providing 

a way for malicious applications to spoof the border (Edge, 2016).  In a system with advanced 

graphics capabilities, it would be difficult to ensure that special on-screen graphics symbolizing 

privilege are produced by the legitimate software system, given that there is the possibility of 

bugs like this.  

Using a similar method as Qubes, recent enterprise and sever versions of Microsoft’s Windows 

operating system have introduced security features leveraging their existing Hyper-V 

hypervisor. Virtual Secure Mode is a feature using security by isolation to solve the problem 

of kernel mode malware and device-based attacks.  Even if the kernel is compromised, there 

are certain things, like credentials, that can be put behind a walled off section so that the kernel 

doesn’t have access.  
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Figure 2. Block diagram of Microsoft's Virtual Secure Mode 

Microsoft’s Hyper-V hypervisor sits between the hardware and the kernel. A block diagram of 

the system is shown in Figure 2. The hypervisor can control which portions of memory that the 

guests can access, using a hardware feature called second level address translation (SLAT). 

Virtual Trust Levels (VTL) are VMs with various trust levels. VTL1 is the most privileged, 

containing a minimal kernel, and is used to contain secure applications. If the normal kernel 

becomes compromised, the SLAT feature is used to contain the potential damage by limiting 

memory access.    

The operating system has device drivers in the kernel, which usually have direct access to 

physical devices and direct memory access (DMA). However, the hypervisor takes advantage 

of another hardware feature called IOMMU. The IOMMU has a page table with memory 

addresses and access permissions. When memory is request from a device the IOMMU checks 

whether that device has permission to access that portion of memory. This is such that a 

compromised device driver cannot access memory outside its allocated memory (Juarez, 2015). 

The two hardware technologies described here work with Microsoft’s Hyper-V virtualisation 

technology to effectively compartmentalise access to memory to protect against rogue device 

drivers.  
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2.8 Physically Secure Hardware 
The ORWL (pronounced Orwell) is purported to be the first physically secure computing 

device (Design Shift, 2016). The device looks like a standard Intel-based small form factor PC 

running a Windows operating system, however it is loaded with security features. The idea is 

to make it safe from someone trying to physically break into the device. A wire mesh lines the 

inside of the glass case; when the circuit detects a break, or when pressure switches are relieved 

by opening the case, the encryption keys are wiped and the device is shut off ensuring any 

information is destroyed rather than stolen.  

There are other features like an NFC (Near Field Communication) key fob required to use the 

device. If the key gets more than 10 meters away the device will automatically lock, preventing 

unauthorised access to the unlocked machine (Design Shift, 2016).    

However, the root of trust lies in a proprietary microcontroller based secure controller. 

Presumably this device relies on security-by-obscurity as no source code for the firmware of 

the microcontroller, nor the NFC or BIOS are supplied, despite claims of open source software 

and hardware, putting this into a similar situation to the Intel’s IME. Figure 3 shows the 

architecture of the security system used in the ORWL computer.  

 

 

Figure 3. Architecture of the ORWL computer’s security system 

While the system may stop nosey roommates or co-workers from snooping around your 

computer, and basic physical access attacks, it may not withstand more sophisticated attacks. 

Depending on how the inertial sensor is utilised, i.e. if physically relocating the device doesn’t 
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trigger a key wipe, the NFC authentication may be susceptible to a relay attack. The attacker 

replaces the entire unit with an identical copy and uses it to relay communication between the 

key fob and the original device (Rutkowska, 2016). 

Additionally, if the device is running a standard operating system, advertised as running 

windows or Linux, the device would still susceptible to any attacks targeting that operating 

system. Interestingly the buyer also has the choice of preloading with Qubes OS.   

2.9 Summary   
This chapter presented an overview of various aspects of computer security relating to the 

project, and a review of similar attempts of creating a secure system. The next chapter 

introduces the design of the secure system.  
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Chapter 3 

Design of Secure System 
As the MEGA65 is a rapidly developing open source project it is not well-documented, and 

source code needed to be analysed to learn about the major systems functions. Additionally, 

problem solving by trial and error were employed to find and fix bugs.  The project utilised an 

iterative development cycle. Requirements for the system were developed, the existing source 

code was analysed, and new additions which met these requirements were devised and 

implemented. Designs were synthesised and deployed on FPGA hardware then the 

functionality was evaluated. These steps were repeated as necessary.  

The development was performed primarily in the software package Xilinx ISE 14.7 using 

VHDL (Very High Speed Integrated Circuit Hardware Description Language), and Ophis as 

the 6502 assembler. The operating system used was Ubuntu 15.04. An existing compile script, 

setup for the MEGA65 project, was used to compile, build and integrate the necessary external 

files (Gerblich, 2017).  

 

 Figure 4. Digilent Nexys 4 DDR FPGA Development Board  

The FPGA development board, Digilent Nexys 4 DDR, shown in Figure 4, was used as the 

target platform. A 512MB microSD card was used to store the configuration bitstream, C65 

ROM, and other necessary files. The Nexys 4 board was connected to a monitor via VGA and 

powered through a USB cable connected to the development PC.  
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3.1 Out-of-band machine state inspection  
In order for a user to reasonably verify that the machine is running the correct software, or 

similarly that it is not exfiltrating sensitive data, a hardware mechanism independent of the 

CPU is required to allow the user to inspect the state of the machine and contents of memory. 

Machine state is defined by contents of memory, RAM, ROM, and the CPU and I/O registers. 

The machine’s CPU must not know that it being inspected or otherwise be able to be 

manipulated by software; therefore, such an inspection mechanism will need a dedicated 

interface to the memory, i.e., out-of-band. Furthermore, this feature must be somehow uniquely 

identifiable to the user such that it cannot possibly be spoofed by software. The basic user 

functionality required for inspection of machine state is the ability to read and write contents 

of RAM, ROM and the CPU registers and be able to halt the CPU such that memory doesn’t 

change during inspection. 

3.1.1 Remote Serial Monitor   
A method of inspecting the machine state is already implemented in the MEGA65 with a 

feature called the remote serial monitor. The remote serial monitor is a rudimentary command 

line interface implemented in hardware, i.e. not software running on the CPU, originally 

designed to help developers debug their programs.  

By connecting a USB cable from the FPGA development board to a PC, the device is identified 

as a virtual serial port. Using a terminal emulator program, such as PuTTY on Windows, and 

connecting at 230400 bps, the user is presented with a text-based interface. This interface can 

be used for displaying the contents of memory, writing to memory, inspecting CPU flags and 

registers, freezing the CPU, single-stepping the CPU and setting break points.  

This already meets some of the requirements mentioned in the previous section; however, 

security wise, there are some drawbacks of external monitoring. To connect to the serial 

monitor requires the device to be physically connected to another computer. This computer 

might be targeted in an attack, allowing remote control of the serial monitor. As the serial 

monitor can be used to dump or fill the entirety of memory it could potentially be used to 

exfiltrate information or introduce a malicious program. The remote nature of this feature 

makes this a potential vulnerability. Modifications need to be made to remove this 

vulnerability.  
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3.1.2 Integrated Serial Monitor 
An internal user interface which moves this functionality from an external computer to the 

VGA monitor directly connected to the MEGA65, would provide users with a more secure and 

convenient method of inspecting the machine state. This mode could be transparently overlayed 

on top of the existing video output. This alpha-blending cannot be reproduced by the VIC-IV 

in software, due to the limitations of that video controller, meaning it cannot be spoofed. Other 

unique indicators could be to set an LED to be a certain colour when this mode is active.   

To modify the current system to provide this functionality would require the development of 

multiple subsystems:  

• A terminal emulator to show the existing output of the serial monitor component on the 

MEGA65’s display. 

• A keyboard-to-serial converter to interface the MEGA65 keyboard with the existing 

input of the serial monitor. 

• A video generator to composite an overlay over the existing video output. 

Chapter 4 gives an overview of the implementation of these systems in more detail.  

This system is colloquially referred to as “Matrix Mode”, as the feature is giving users a look 

into “the matrix”, from the 1999 Wachowski movie, The Matrix. This relates to viewing what 

is happening inside the machine, in a similar way that the digital rain of Matrix code represents 

the activity of the virtual reality environment.  

Matrix mode alone presents some issues. Users will need to understand their machine and 

software competently to fully benefit from this feature, and there may be a steep learning curve 

for those new to the platform or without a background in computer science. However, those 

motivated enough will be able to learn to use this tool. 

Simply identifying that a potential issue is present will not help if your data has already been 

exfiltrated. To fix this the next section presents a design for a system that combines this 

inspection mechanism with the necessary architectural extensions required to allow secure 

exfiltration-resistant compartments to be constructed and used.  
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3.2 Secure Compartmentalisation 

 

Figure 5. Potential methods of data exfiltration 

In order to define an exfiltration-resistant secure compartment the possible ways of exfiltration 

need to be identified. This section describes some of the components which will need to be 

excluded from the secure compartment as they may be able to exfiltrate information. Figure 5 

shows a block diagram showing potential methods of data exfiltration in the MEGA65.  

While in Hypervisor mode, which is a privileged execution mode, the CPU has access to 

ethernet and eventually features like a baseband processor for mobile connectivity. Ethernet 

and mobile connectivity both present an issue as data can easily be pushed out over the internet. 

Therefore, access to the hypervisor and all outside communication must be disabled while in 

the secure container.  

As previously mentioned the existing remote serial monitor has commands to modify or view 

contents of memory without the CPU knowing. If the device were connected to a PC to power 

the device, malicious software could exfiltrate data from the MEGA65. Likewise, if someone 

were to replace hardware inside a USB power brick with a compatible serial interface data 

could be exfiltrated. A similar vulnerability has been seen recently with smart phones and 

public charging stations and has been coined juice jacking (Wiggers, 2017). Therefore, we can 

say that the remote serial monitor should be excluded from the secure container.  
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The SD card or other bulk persistent storage can also be a channel for data exfiltration. Content 

can be transferred to the card and later someone can come and collect that data as part of an 

evil maid attack. Access to the SD Card, the configuration registers and buffer will need to be 

limited while in the secure container.  

There could be other things in future development to consider placing limits on while in the 

secure compartment, such as expansion RAM, floppy disk emulation, and emulation of the 

original C65’s UART serial interface. Support for external USB keyboards may also be 

dropped on the final hardware as there will be an integrated keyboard present.  

Lastly anything within the secure container which has any persistent memory will need to be 

cleared or reset to a known state upon existing the secure compartment such that sensitive 

information cannot possibly remain there.    

3.2.1 Hypervisor  
In the MEGA65’s CPU there are two main modes of operation: user mode and hypervisor 

mode. A program in user mode can perform a system call which temporarily switches the CPU 

into hypervisor mode, also known as trapping.  

If “supervisor” is what an operating system kernel is typically labelled, then “hypervisor” is 

one step above that. Trapping to the hypervisor is akin to system calls to the kernel (or for the 

C64, the Commodore KERNAL). But where a system call allows a program to request services 

from the kernel of the operating system, trapping to the hypervisor runs routines from the 

hypervisor ROM independent from the Commodore KERNAL, and has full access to the 

extended hardware. 

When the hypervisor is called it saves all CPU registers to their respective shadow registers 

such that when the CPU returns from the hypervisor these can be restored and the user program 

can be quickly resumed. These registers are shown in Figure 6.  
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Figure 6. Hypervisor saving of CPU registers 

The hypervisor ROM holds a set of routines which can perform certain tasks. There are 

registers between $D640 and $D67F. A user can write to one of these registers to initiate a trap 

to the hypervisor, which corresponds to a specific service. Additionally, there are some system 

generated traps, which cannot be called by the user, used for things like reset, and page faults. 

The hypervisor ROM is integrated with the kickstart ROM, which is a bootstrap to load the 

original Commodore 65 ROM and the Character ROM, as for legal reasons these cannot be 

included in the bitstream. The source for the hypervisor routines are found in the file 

kickstart_task.a65, this is compiled as part of the kickstart ROM and integrated into the 

bitstream. Or alternatively it is compiled as a separate file, kickup.m65, which will load as an 

updated kickstart ROM. Given that the hypervisor has access to all of the hardware and its own 

memory space, access to hypervisor must be limited while in the secure compartment.  

3.2.2 Secure Mode 
With the secure compartment defined, a method of securely constructing this container and 

transferring the output data from the container is to be developed. The proposed method is 

referred to as “Secure mode”. Secure mode for the MEGA65 should allow the user to request 

for a secure compartment where the user can execute a single secure task without any other 

part of the system knowing anything other than the specified output of the task. 

3.2.2.1 Guiding Use-Case 
An example of an application where this would be beneficial is in an email messaging system, 

the user software would request a secure container for the user to type up a message. The secure 

mode program will allow the user to write the message, then encrypt it and only return the 
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encrypted message, and all other state is wiped before control is returned to the user program. 

Once outside of the secure container the user program is allowed to send this encrypted 

message via Ethernet or some other means. No access to the plain text is provided outside of 

the secure container.  The next section gives a deeper look at the design of the secure mode 

system.  

3.2.2.2 Design 
A flowchart of the secure mode, including the memory contents at each major step, is shown 

in Figure 7. A secure service can be requested by the user program by trapping to the 

hypervisor. The hypervisor will then save the state of the task to the SD card. The hypervisor 

will initiate the clearing of all memory, except for the transfer area, allowing the user program 

to configure the secure service if necessary, or transferring encrypted data to be decrypted in 

the container.  The hypervisor loads in the secure service program, preserving the transfer area 

and then sends a request to enter secure mode to the CPU and exits hypervisor mode.  

In hardware, the matrix mode overlay is activated, the serial buffer is cleared, the CPU is halted, 

and a banner message is displayed asking the user to accept or reject entering secure mode. 

While this prompt for secure mode is active the user can also be checking memory to see 

whether the transfer area is as expected. Additionally, information such as the name of the 

secure service, and a cryptographic hash of the service code is to be provided to the user to 

ensure that the secure service is legitimate.  
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Figure 7. Secure mode flowchart 
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If the user is not happy with the state of the machine, they can type, in full, “reject” to abort 

the secure mode request. Control then returns to the hypervisor which reloads the state of the 

user program, a return value indicating an abort is set and control returns to the user program. 

If the user is happy with the state of the machine, they can type “accept” to continue. After this, 

the machine is confined to the secure compartment, access to communication channels and 

bulk storage is revoked, and trapping to the hypervisor is disabled. The program counter is set 

to a fixed secure service entry point, and the CPU is resumed, to start executing the secure 

program. 

The secure program lets the user do their task, whether it’s typing up an email or document, or 

simply decrypting and viewing an encrypted email they have already received. When the user 

is ready to exit, the secure program will request to exit secure mode by writing to a hypervisor 

trap. The matrix mode overlay will once again be used to prompt the use to accept or reject the 

exiting of the secure container. The user can check all of memory to ensure that the transfer 

area is as expected. If the user accepts, secure mode ends and the hypervisor reloads the user 

program with the transfer area intact and sets a return value indicating successful exit. 

However, if the user decides to reject at this point, all memory is wiped before the user program 

is reloaded such that no sensitive data is leaked. Similarly, at any point while in secure mode 

if a soft reset is triggered by either the reset button, or double tapping the restore button, all 

memory is wiped before control is given back to the user program.  

Changes need to be made to a variety of different parts of the machine in order to implement 

this feature. Implementation of some of these changes are discussed in the next chapter.  

3.3 Summary 
This chapter described the design and functionality of a method of inspecting machine state 

transparently and discussed the potential ways data could be exfiltrated from the system.  

Having defined an area which is to be contained, a method of transferring control to this secure 

compartment was conceptualised. The next chapter describes the attempt at implementing the 

individual modules that make up these systems, ending with discussion of the security of the 

system.  
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Chapter 4 

Results and Discussion 
As the goals of the project were largely involved with the implementation, this chapter presents 

the progress made towards implementing the matrix mode and secure mode on the MEGA65. 

It describes the modules which were developed, an overview of how they were implemented 

and tested, and whether the functionality requirements were met. Then ending with a discussion 

and analysis of how the overall system, when fully implemented, could protect against physical 

access attacks and which cases could be protected.   

4.1 Matrix Mode 

 

Figure 8. MEGA65 component block diagram 
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The matrix mode was envisioned as a method of on-board debugging and review. When a user 

presses a button combination, or a user program requests it, the screen is overlayed with a 

terminal monitor. This system gives the user the ability to review the data in the secure area 

before confirming the exit of secure mode.  

The matrix mode is comprised of some new modules, a keyboard-to-serial converter, a terminal 

emulator, a 4K RAM block for the screen buffer and character ROM, and finally a video 

generator and compositor. These components can be seen in the block diagram in Figure 8.  

Keyboard input will be redirected to a module which will convert the scan codes into serial 

output and then routed to the existing UART (universal asynchronous receiver/transmitter) 

receiver module of the serial monitor in lieu of the physical serial port.  The UART monitor’s 

transmit data will be redirected to a hardware-based terminal emulator, as opposed to running 

the terminal in software. The terminal emulator will convert the serial transmitted by the UART 

monitor module back into characters and stored in memory. The video generator will look up 

the character memory and output the associated character data to the display. The video 

generator will produce this overlay independent of the configuration of the existing video 

generator, the VIC-IV module, so that this type of output cannot be easily spoofed through 

malicious software. Output of both the simple video generator and the VIC-IV will be alpha-

blended by the compositor and sent out to the monitor through the VGA connector or HDMI.  

4.1.1 Keyboard to UART  
The keyboard to UART is a module to convert PS/2 keyboard input into serial data that can be 

read by the existing serial monitor interface. The keyboard input for the MEGA65 project 

supports USB keyboards. To implement a USB host controller in the FPGA itself is not trivial 

and takes up logic space. To avoid this, the manufacturer of this particular development board, 

Digilent, opted to use a microcontroller with a built in USB host controller to convert the input 

into the simpler PS/2 interface. Figure 9 shows the connection from the PIC microcontroller to 

the Artix-7 FPGA on the development board.  
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Figure 9. Nexys4 DDR PIC24 connections showing PS/2 connection 

However, the PIC24FJ128 microcontroller is used for more than just the keyboard. It has an 

SD card interface and is capable of reading a configuration file from either the SD or a USB 

flash drive and configuring the FPGA with a bitstream.  

After powering the device on, the PIC microcontroller will check whether the jumper is set to 

SD or USB, it will then look for the first file with the “.bit” extension on the selected device 

and configures the FPGA. If this microcontroller is reprogrammable it could present a potential 

security risk as it has direct access to configuration of the FPGA. For example it could be 

reprogrammed to configure the FPGA with a specific bitstream hidden elsewhere on the SD 

card, rather than the one the user wants. This method of configuration will likely not be present 

on the real MEGA65 hardware. 

The MEGA65 also has, under development, support for real C64/C65 keyboards. By forcing 

the device to use only an internal keyboard in secure mode and not the USB keyboards could 

prevent any attacks using modifications to the keyboard such as embedded key logger 

hardware.  
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4.1.1.1 Implementation 
 

 

Figure 10. PS/2 Scan codes and the corresponding keys 

The PS/2 keyboard interface sends a scan code when a key is pressed or released. “Make” 

codes are sent when a key is pressed. Make codes and the corresponding keys can be seen in 

Figure 10. When a key is released the “break” code is sent which is, in hexadecimal, 0xF0 and 

then the corresponding make code. Some scan codes are reused, such as the left and right 

control keys. To distinguish these keys an additional code is sent, E0, the extend code.  

As the keyboard sends only the change in key state the host must keep track of what keys are 

down, compared to generic USB HID (Human Interface Device) class devices where the host 

continuously polls to see what keys are held down. This allows any number of keys to be held 

down simultaneously depending on the implementation of the host.  

An existing module, keymapper.vhdl, contains the state machine interfacing with the PS/2 data 

port. The module kept track of the last full scan code it received, taking into account extra 

commands such as whether or not it was a break, and whether it was extended.  

Normally after reading the scan code from the PS/2 keyboard the module would update the 

CIA (Complex Interface Adapter). The CIA is the original chip used for I/O (Input / Output) 

in the Commodore 64 and includes support for the keyboard, joystick and internal timer. 

However when the keyboard is being used for the matrix mode we do not want input to also 

go to the CPU such that we don’t modify the state of the machine we’re trying to inspect. A 

disable flag was set such that it would not update the CIA with key presses while in matrix 

mode.  
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The last_scan_code was originally broken out to the CPU for debugging the keyboard layout. 

But this is all the information from the keyboard we need to implement the ps2_to_uart module, 

so this was routed through to the new module.   

 

Figure 11. Interface of UART_TX module 

An existing UART transmit module, UART_TX, was re-used. The interface can be seen in 

Figure 11. The module READY signal is asserted when the module is idle, data can be put on 

the DATA signal, and when the SEND signal is asserted it will initiate the serial transfer.  

A simple state machine was setup for controlling the flow between waiting for a key, and 

outputting said key. While waiting for a key, the last_scan_code is checked to see if bit 12 is 

low, indicating a make code.  

On any mainstream operating system, after holding down a key the key will start repeating 

itself. To maintain a familiar feel to the user it was decided that this should be implemented. If 

the make key remains the last_scan_code, it indicates that the key is held down. After around 

200 milliseconds the key is repeated, if the key remains held the key will again be repeated 

after around 30 milliseconds. This helps in debugging scenarios where the user wants to step 

the CPU one instruction at a time, holding the enter key in single step mode, until something 

occurs on screen.   

The full code for the implementation can be seen in Appendix A.  

4.1.2 Terminal Emulator 
A computer terminal is a physical hardware device, a keyboard and monitor, used to input data 

to, and display data from, a backend computer mainframe system or server. For non-graphical 

use physical hardware terminals are seldom used today, instead terminal emulators are used. 

These are software programs which emulate a terminal. A connected PC has a serial connection 

to the MEGA65 and using a serial terminal emulator we are able to display the monitor’s 

command line console on the PC. 
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In a similar way this new module interfaces with the serial output of the MEGA65 to display 

the command line console, albeit directly on the MEGA65’s display. This module is a program 

implemented in FPGA logic to behave like a terminal, hence in essence it is a hardware terminal 

emulator. Our terminal is used to control character value and position on the screen from data 

fed to it from the UART monitor module.  

4.1.2.1 Implementation  
Series 7 FPGAs from Xilinx have an amount, depending on the model, of dual-port block 

RAM, each capable of storing 32 kilobits (4 kilobytes) of storage (Mehta, 2012). Only a single 

4 kilobyte block of memory was used for both the character ROM and the screen memory, to 

save on the already scare memory resources on the FPGA. The 4 kilobytes of memory are byte 

addressable such that a 12-bit address is required to address the 4096 elements. The character 

ROM is preloaded with pixel patterns representing each of the displayable characters. The 

screen memory contains information about which character is in each position on the screen.  

To display the 96 different characters, each at 8x8 pixels, would require 8 bytes per character. 

Therefore, the character ROM takes up 768 bytes, leaving 3328 bytes left for screen memory. 

At 80 characters per line, this gives a horizontal resolution of 640 pixels which can divide the 

maximum horizontal resolution, 1920 pixels, evenly such that it can be scaled up exactly.  

 

 

96 ∗ 8𝐵𝐵 = 768𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶ℎ𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅 

4𝐾𝐾𝐵𝐵 − 768𝐵𝐵 = 3328𝐵𝐵 𝑙𝑙𝑎𝑎𝑓𝑓𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠 𝑚𝑚𝑎𝑎𝑚𝑚𝑓𝑓𝑓𝑓𝑚𝑚 

3328𝐵𝐵
80𝐵𝐵/𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎

= 41.6 𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎𝑠𝑠 ≈  40 𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎𝑠𝑠 

 

Each character is mapped to the character rom with an 8-bit value, therefore each line requires 

80 bytes. Given the 3328 bytes left at 80 bytes per line gives a possible 41.6 lines. However, 

to keep the numbers round, this was left at 40 lines, giving a 320 pixel vertical resolution, or 

960 pixels when scaled. Screen memory is mapped to the bottom of the block, leaving 128 

bytes free for additional characters if necessary.  
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Figure 12. State diagram of the terminal emulator 

The serial monitor does not output characters beyond the 96 standard ASCII characters, and 

control characters other than carriage return and linefeed. Since as less than 128 characters are 

represented, the 8th bit is not used, this bit was used to indicate whether the pixels should be 

inverted, providing a method of highlighting for a cursor.   

The terminal emulator was implemented roughly as a finite state machine, as seen in Figure 

12, attempting to be as simple as possible. While in its idle state, waitForInput, it waits until an 

input from the UART module is received. If the input is under 0x20, it indicates that it is a 

control character and is processed as such. If a printable character is received between 0x20 

and 0x7E the character is written to screen memory.  
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Additionally, rather than shifting the entire contents of screen memory up every time the 

terminal scrolls, requiring many read and write operations, a pointer to the top of the frame in 

memory is provided to the output module, like a circular buffer. This means that no reading of 

memory is required for this module to function. Given that there is only a single read and a 

single write port, this is beneficial as this method would not impact reads of the character ROM 

in the video generator. However, as read operations are not available to the terminal emulator 

the cursor feature is limited and cannot be moved back over characters without losing them. 

This limitation is acceptable for now as the serial monitor module does not currently have any 

advanced cursor control.  

The full code for the implementation can be seen in Appendix B.  

4.1.3 Video Generator / Compositor 
The purpose of the video generator is to overlay the terminal emulator on top of the existing 

output from the MEGA65. To do this the module needs to read the screen memory generated 

by the terminal emulator, and retrieve the associated pixel data from the character ROM. This 

is then alpha blended with the output with the original output from the MEGA65. 

Additionally, there are three different modes of pixel scaling available to the user: 1x, 2x, and 

3x scaling modes. Scaling mode 3x will fill the screen with the overlay, and modes 1x and 2x 

will provide a smaller window. This window can be moved around with the arrow keys. This 

provides flexibility to the user if they need to access any information behind the overlay.  
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4.1.3.1 Implementation 
 

 

Figure 13. Nexys 4 DDR VGA interface (Digilent inc., 2016) 

The VGA port on the FPGA development board provides a 12-bit (4-bit per colour) analog 

video output using a resistor DAC (Digital to Analog Converter) as shown in Figure 13. The 

VGA standard was developed back when cathode ray tubes were common, when the RGB 

signals controlled the deflection of electrons. This legacy format is still widely supported today. 

For more information about the VGA standard refer to (Digilent Inc., 2016). 
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Figure 14. Signals between VIC-IV and the compositor module 

The VIC-IV signals were routed through to the compositor module, and the output RGB signals 

from the compositor were routed to the VGA output, as shown in Figure 14. To synchronise 

existing output with the new video generator a 200MHz pixel clock and timing counters, 

xcounter and ycounter, were routed to the module. These counters provide the location of the 

current output pixel. 

  



 

35 
  

The main output generation process consists of two separate circuits, one which loads the next 

character data while another circuit sets the output pixel, taking into account the display mode.  

 

Figure 15. Code snippet: Prepare next character data 

The first circuit starts by retrieving the data from the screen memory in the position of the next 

character we want to read. From this, the bottom 7-bits concatenated with a line offset value 

becomes the address for the pixel data, read from the character ROM. If the 8th bit was set, this 

indicates that the character should be inverted, and an invert flag is set. The character counter 

is incremented after retrieving the character data. This is show in the code snippet in Figure 15.  

 

Figure 16. Code snippet: Shifting new data in buffer 
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The second circuit checks whether the current character has finished being output, and if it has, 

moves the new data to the buffer, and if it hasn’t then the buffer is left-shifted depending on 

the display mode. Each pixel output is either held for 1, 2 or 3 pixelclock cycles to scale up the 

size.  This is shown in the code snippet in Figure 16. 

 

Figure 17. Code snippet: RGB outputs of the compositor 

The top three bits of the green output are set to the value in the 8th bit of the data_buffer, as 

shown in Figure 17. Much of the rest of the code is related to timing, defining the area for the 

windowed modes, and line repeating for vertical scaling. The timing and display issues were 

fixed mainly using trial and error.  

The full code for the implementation can be seen in Appendix C.  
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4.1.4 Testing 
Testing was performed at many stages of development. The approach was to start with the 

components where the output could be viewed such that there was a feedback loop. For 

example, the Keyboard to UART module was implemented first as the keyboard output could 

be easily monitored by the existing remote serial monitor. Similarly, the video generator was 

developed before the terminal emulator as the video overlay could be seen directly on the 

connected display.  

 

Figure 18. Screenshot of initial testing of generated output over existing video output 

Figure 18 shows the initial testing of the compositor with green vertical lines overlaying the 

existing video output. This was only testing pass-through of the video output.  

 

Figure 19. Screenshots of initial testing of the terminal emulator / compositor 

Initially there were some minor problems with the video generator getting the correct 

characters, issues with drawing the characters to the screen and issues with timing and 

alignment of the video generator with the existing video output, as seen in Figure 19. Through 

trial and error, these issues were fixed over time.  
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With the components which make up the matrix mode substantially completed, the full 

functionality of the matrix mode can be shown. 

 

Figure 20. Matrix Mode, Full screen, 3x Scaling 

 

Figure 21. Matrix Mode, 2x Scaling 
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 Figure 22. Matrix Mode, 1x Scaling  

Figures 20 through 21 show the different scaling modes which were implemented. The 2x 

and 1x windowed modes can be moved around using the directional arrow keys.  

 

Figure 23. Matrix Mode, memory read and write 

In the existing serial monitor there are some useful commands which allow the user to 

interact with memory or control the state of the CPU. There are four commands to read from 

memory: “D”, “d”, “M” and “m”, and two commands to write to memory: “s” and “S”. There 

are three commands to control the CPU state: “t0”, “t1” and “tc”.   
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The “d” command, followed by a 16-bit address, displays the memory in that location, as seen 

from the current CPU memory map. The “m” command displays the memory with a 28-bit 

memory address. Similarly, the “s” command sets the value of memory, using up to a 28-bit 

memory address. By putting a space between each hexadecimal input, it writes to successive 

memory addresses starting at the location specified.   

For example, by entering the string “s400 14 9 D 20 B 9 12 2 19” the authors name was printed 

in the top left-hand corner of the screen, show in Figure 23. $0400 is the location of screen 

RAM in C64 mode, the following hexadecimal values are related to the PETSCII characters, 

the character set used in the Commodore line of computers.  

 

Figure 24. Matrix Mode, "D" command 

The “D” or “M” command can be used to display 512 bytes of memory from a given address, 

this can be used to quickly view areas of memory. Issuing the command again without an 

address will show the next 512 bytes. The example shown in Figure 24 uses the “D” command 

to display 512 bytes of the screen RAM starting at $0400.  

By pressing enter or entering the “r” command will print the contents of the machines registers, 

flags, current memory map, and the last operation. This is shown in Figure 25.  
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The commands “t0”, “t1” and “tc”, refer to CPU running state, where “t0” is free running, “t1” 

is freeze CPU, and “tc” is continuous trace. In continuous trace mode the system reports the 

status of the CPU, similar to the “r” command, for every cycle of the CPU. However, this 

adversely affects the systems performance.  

 

Figure 25. Matrix Mode, "r" command, showing CPU registers, operations 

While most of these features were already present in the existing remote serial monitor, the 

ability to utilise the terminal with the internal display allows this to meet our requirements for 

the out-of-band machine state inspection mechanism. Additionally, the use of a transparent 

overlay makes it impossible to spoof using software, as there is no such graphic mode that 

supports this in the MEGA65. In the final hardware there will be an indication LED to remove 

any residual risk of spoofing the Matrix Mode from software.  
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4.2 Secure Mode 
To implement the design of the secure mode as discussed in Chapter 3, changes to the 

architecture need to be defined.  This system would require the following architectural changes: 

• Changes in the Hypervisor ROM 

o Trap to enter and exit from the secure container  

o Routines to save and load the tasks from SD card (Task Switcher) 

• Changes to the serial monitor 

o A command to clear the screen 

o Write the banner prompt to screen 

o Handling of user input for accepting and rejecting 

o Interface with CPU to confirm entry/exit from secure mode 

• Changes in the CPU 

o Interface with monitor to confirm entry/exit from secure mode 

o New CPU states to handle secure mode events: 

 Erasing all memory on rejection or reset 

 Erasing non-transfer memory on exit 

 Triggering the matrix mode on entry/exit 

o Disable trapping to hypervisor 

o Disabling access to I/O (SD, Ethernet, UART) (Secure Compartments) 

• Miscellaneous Additions 

o A hashing algorithm, SHA-3 

o An encryption algorithm, AES 

Due to the time limitations of this project, not all of these features were able to be implemented. 

This section summarises the progress that was made.  
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4.2.1 Task Switcher  
Due to the memory (256KB) and processor constraints (50Mhz, 8-bit), the MEGA65 would 

not be able to run many independent processes at the same time. The task switcher was 

proposed as a way of switching between whichever recent tasks the user has been using, while 

only ever actively running a single task at a time. The secure mode concept required the ability 

for the machine to switch in and out tasks to and from the SD card. As the MEGA65 can only 

run a single process at a time, a single task can be defined by the entire machine state. As the 

complete task switching interface is quite a large undertaking, only the preliminary 

development was within the scope of this project. The aim of the preliminary development for 

task switching was to try and get machine state to save and load from SD card.  

To simplify the moving of bulk data the machine state was mapped to a contiguous address 

space in memory. The machine state consists of all the memory, CPU registers, and I/O 

configuration data. There are some intricacies in the current design of the CPU which make 

exposing this machine state difficult. For example, a certain configuration would be set if a 

register was written to with certain values twice (like a secret knock), or when an I/O register 

has different functions when it is read than when it is written, as well as write-only and read-

only registers. These configurations are not possible to restore easily unless the underlying 

configuration registers are exposed. To find and fix all of these internal registers was out of 

scope for this project.  
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4.2.1.1 Implementation 
The MEGA65 CPU has an enhanced 28-bit address space, compared to the 20-bit C65 or the 

16-bit C64, therefore a total of 256MB of memory can be addressed. The address chosen was 

$7F00000 to $7FFFFFF, this provided us with 1MB of data. Enough to map the memory and 

later additional data such as a thumbnail image of the task.  

 

Figure 8. Proposed layout of the machine state in memory  

To re-map the already exposed registers, the addresses were intercepted in the 

read_long_address procedure in the CPU. There is an intermediate variable real_long_address, 

and if this is within the range of $7F0 0000-$7F1 FFFF, for example, it would modify the 

long_address to $000 0000 - $001 FFFF, and therefore pointing to the actual RAM address.  

Initially these were mapped to the following:   

Type From Address To Address Amount 

RAM $7F0 0000 - $7F1 FFFF  $000 0000 - $001 FFFF 128K 

ROM $7F2 0000 - $7F3 FFFF $002 0000 - $003 FFFF 128K 

Colour RAM $7F4 0000 - $7F4 8000 $FF8 0000 - $FF8 FFFF 32K 

 

This was done to remap and exclude registers as necessary. Some important I/O registers were 

also mapped, such as the CIA1/2 chips. This method only works if the memory is already 

mapped to an existing address.  
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4.2.1.1.1 SD Card Reading and Writing  

The original SD card specification calls for a fixed sector sized of 512 bytes. The SD card that 

the author used was a 512MB MicroSD card, giving a capacity of 510,132,224 bytes or 996,352 

sectors. There is an existing generic VHDL SD card controller module (sd.vhdl) as well as 

module to interface the CPU with the SD controller (sdcardio.vhdl). Currently the interface 

only supports single sector reads or writes.  

To read or write to the SD card there are some registers that need to be set. There is a 512 byte 

SD card buffer mapped at $FFD3E00, this holds the data to be written to, or read from, the SD 

card. There are also four registers at $FFD3681 to $FFD3684 which determine which sector to 

read or write to.  

The control register is mapped to $FFD3680. With the address registers filed in correctly, 

writing to the control register with a value of 0x03 will initiate a write to the SD card. Similarly, 

writing 0x02 to the control register will initiate a read from the SD card. Reading from the 

control register provides the status information.  These registers and their associated addresses 

are listed in Table 1.  

Table 1. SD Card interface registers 

Registers / Memory  Absolute Address Relative Address 

SD Buffer (512B) $FFD3E00 $DE00 

Control Register $FFD3680 $D680 

Address Byte 0 $FFD3681 $D681 

Address Byte 1 $FFD3682 $D682 

Address Byte 2 $FFD3683 $D683 

Address Byte 3 $FFD3684 $D684 
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4.2.1.1.2 DMAgic DMA Controller 

We wish to copy data from the remapped address range to the SD card. Using the CPU to copy 

a large amount of data would take many cycles and program instructions. To avoid this the C65 

introduced a hardware DMA controller called the DMAgic (Bowen, et al., 1991). The DMA in 

the MEGA65 has access to the full 28-bit address space, allowing the movement of data 

independent of the current memory map.  

The DMAgic controller uses a list-based method of fetching DMA command sequences. The 

list contains the command, the source and destination addresses, and the number of bytes to 

process. The list is simply sequence of bytes written anywhere in RAM, the program tells the 

DMA where to look for this list. There are three main commands, copying: copies a block from 

one area to another, swapping: exchanges the contents of two blocks of memory, and filling: 

fills a block with a source byte. Table 2 shows the DMA list bytes and a description of their 

function. 

Table 2. DMA list description 

DMA List byte number  Description 

Byte 0 Command 

Byte 1 Lower byte of copy size 

Byte 2 Upper byte of copy size 

Byte 3 Lower byte of source address (bits 0-7) 

Byte 4 Upper byte of source address (bits 8-15) 

Byte 5 Bank byte of source address (bits 16-19) 

Byte 6 Lower byte of destination address (bits 0-7) 

Byte 7 Upper byte of destination address (bits 8-15) 

Byte 8 Bank byte of destination address (bits 16-19) 

Byte 9 Modulo Byte Lower (not used) 

Byte 10 Modulo Byte Upper (not used) 
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To use the DMA controller, in a similar way to the SD card interface, specific registers are to 

be written to. There are six main registers, 4 bytes to locate the DMA list, and two to provide 

the upper 8 bits for the source and destination address. Table 3 shows these registers and their 

relative address while in the hypervisor.  

Table 3. DMAgic hardware registers  

Register Description Relative Address 

DMA Source MB Upper 8-bits of source address, Write Only $D705 

DMA Destination MB Upper 8-bits of destination address, Write Only $D706 

List Address Low Absolute location of list, bit 0-7, Write Only 

(Writing initiates the DMA transfer) 

$D700 

List Address High Absolute location of list, bit 8-15, Write Only $D701 

List Address Bank Absolute location of list, bit 16-23, Write Only $D702 

List Address MB Absolute location of list, bit 24-27, Write Only $D704 
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4.2.1.1.3 Hypervisor Routines 

There were some hypervisor routines developed to test the reading and writing of machine state 

to the SD card. For ease of development the reading and writing of SD were temporarily 

assigned to the traps already in place for double tapping the restore key, and the alt-tab button 

combination. When the alt-tab button combination is pressed, the state is written to SD, when 

the restore key is tapped twice, the state is read from the SD.  

The general structure of these routines is given as pseudocode in Figures 26 and 27.  

 

Start 

1. Reset SD card  

2. Reset sector counter 

3. Initialise addresses for list, source and destination 

4. Initialise DMA address list location  

5. While sector counter < 512 

a. Initiate DMA to transfer 512 bytes from machine state to SD buffer 

b. Write sector number to SD control register 

c. Initiate write to SD 

i. While SD is busy 

1. Wait 

d. Increment destination address 

e. Increment bytes counter by 512 

f. Increment sector counter 

6. Reset counters 

End 

Figure 26. Pseudocode overview of reading from SD card 
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The full code can be seen in Appendix D.  

 

 

 

 

 

 

 

Start 

1. Reset SD card  

2. Reset sector counter, byte counter 

3. Initialise addresses for list, source and destination 

4. Initialise DMA address list location.  

5. While sector counter < 512 

a. Initiate read from SD 

i. While SD is busy 

1. Wait 

b. Initiate DMA to transfer 512 bytes from SD buffer to machine state 

c. Write next sector number to SD control register 

d. Increment destination address 

e. Increment byte counter by 512 

f. Increment sector counter 

6. Reset counters 

End 

Figure 27. Pseudocode overview of writing from SD card 
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4.2.1.1.4 Testing and Issues   

The SD card writes were tested by taking an image of the SD card with a card reader, and 

inspecting it with a hex editor. This machine state was compared to the memory as dumped 

using the serial monitor. By comparing these we can tell whether there were any issues when 

writing to SD card. Similarly, when testing reading, the memory was checked from the serial 

monitor to see whether it matched what was on the SD card.   

The sector on the SD card to write to was set to start at sector 7816,250, or at around 400MB, 

this is seen in Figure 28.  

 

 Figure 28. State written to sector 781,250 on SD card  

It was found that the machine state, as mapped, was saved successfully. But the mapping was 

still missing some internal configuration states. The time taken to save state was also quite 

long, 16 seconds to save state, and 3 seconds to restore state, this was likely because the SD 

card interface is only implemented using single-sector reads and writes.  

There were some other issues encountered, for example when the state was loaded the screen 

would appear a garbled mess. This was found to be caused by I/O registers which performed 

different actions when written to than the value they give when read.  

There were many instances of this in the CIA modules such that anything that relied on timers 

or interrupts would break, such as the cursor blink. For example, in the original C64, the CIA 

1 registers consist of 16 bytes mapped at $DC00-$DCFF, with the registers mirrored every 16 

bytes. However, in the MEGA65 implementation, each mirrored set of registers was 32 bytes, 

consisting of the normal 16 bytes plus 16 extended registers originally for debugging. These 
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extended registers were only implemented for reading data but were still mapped to their 

original function when they were written. This meant that the registers were overwritten with 

whatever data was in the debugging registers. To fix this these issues, the debug registers where 

modified to expose the internal configuration, such that these could be directly read and written. 

Figure 29 shows the read function of these extended registers, which now expose the internal 

registers of Timer A and the interrupt mask.  

 

Figure 29. Modified extended CIA registers 

A similar issue was found in the CIA 2 module, which caused graphical artefacts when 

loading state, as shown in Figure 30.  

 

Figure 30. Graphical artefacts on loading state 
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The first two bits of the CIA 2 port A register controls the position of the memory for the VIC. 

Manually setting this register to the default value using the remote serial monitor was found to 

fix these display issues, but a proper solution is yet to be implemented. Debugging all of these 

issues was tedious and a lot of time was spent hunting down bugs of this nature. 

4.2.2 CPU Modifications  
There needs to be some modifications to the CPU core itself such that the various components 

can come together to create the secure container. Figure 31 shows the extra states created to 

facilitate secure mode.  Due to the scattered nature of these changes, full code cannot be 

provided in this document, but is available on the GitHub repository. The URL can be seen in 

Appendix E.  

Firstly, the trap entry point for the secure mode was selected to be $D672. When this is written 

to by the user program, the hypervisor routine will initiate the saving and loading of task state 

to SD, and then it will exit when $D672 is written to again.  

 

Figure 31. Code snippet, showing secure mode states in the CPU 

The CPU was modified such that if $D672 is written to while in hypervisor mode it initiates a 

request to enter secure mode, using the flag secure_mode_pending, as seen in Figure 32.  

 

Figure 32. Code snippet, showing state change when writing to $D672 from Hypervisor 

The hypervisor then exits normally, restoring the user mode CPU registers, then in the next 

cycle the state changes to the secure_mode state. While in this state, it enables the matrix mode 

overlay and sends a request to the serial monitor to display a prompt on the screen. It then 

moves to the next state secure_mode1 where it waits, effectively halting the CPU, until the user 

confirms that they want to accept or reject the pending secure mode request.  
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Figure 33. Code snippet, showing the result of accept and reject 

If the request is accepted, then the program counter register is set to $8000, which is mapped 

to the absolute address $24000, and the state is resumed to the normal_fetch_state. If the user 

rejects at this point control is given back to the hypervisor to reload the user program. This can 

be seen in Figure 33.  

 

Figure 34. Code snippet, Return from secure mode 

When the user is ready to exit secure mode the program can do so by writing to $D672. It goes 

to a state called ReturnFromSecureMode, seen in Figure 34. The matrix mode overlay is 

enabled and a request to confirm exit is sent to the serial monitor. Additionally, the size of the 

transfer area can be defined by program by setting the CPU register reg_x, signifying the 

number of kilobytes to keep. Once the user is okay with the contents of the transfer area and 

they confirm, the machine goes to a state called SecureWipeNonTransfer. This state should 

wipe all memory, other than the transfer area, and exit secure mode then trap to the hypervisor 

to restore the user program. If the user rejects at this point the state SecureWipeAll will wipe 

all of memory, including the transfer area, and the hypervisor will then restore the user 

program.  
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4.2.2.1 Secure Compartments  
The secure compartment itself is constructed by denying access to certain I/O during secure 

mode. Figure 35 shows where the iomapper modules fits in between the IO peripherals and the 

memory controller in the CPU. As its name suggests, the iomapper maps the I/O registers to 

memory addresses accessible to the CPU.  

 

Figure 35. Connections to the memory access control 

To restrict these I/O we can route out the secure mode flag to the iomapper module. A 

condition can be put on the chip select line such that the peripheral cannot be selected when 

secure mode is active. The example in Figure 36 shows that sectorbuffercs can only be 

asserted when secure_mode_active is disabled.  
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Figure 36. Chip Select lines for the SD card buffer 

A similar technique can be used to restrict any of the I/O chips. The important features being 

SD card, and Ethernet. The CPU modifications and the secure compartments were not 

substantially completed in time to the point where further testing could be performed.  

4.3 Discussion 
The implementation of the matrix mode and related subsystems were substantially completed 

to the point where they meet the requirements set for the out-of-band machine state inspection 

mechanism. A rudimentary task switching system was completed to some extent, with 

outstanding issues with solutions which are out of the scope of this project. Because of this 

roadblock, implementation and testing on the rest of the architectural modifications and the 

overall secure mode system was not fully completed. The system can still be discussed 

assuming these components will be completed as designed.  

The concept of secure mode helps protect against unauthorised programs from being executed 

in the secure container. In a physical attack, the hypervisor, user task or secure service can 

easily be compromised as these are stored unprotected on the SD card. The system protects 

against attacks exploiting these files by allowing users to inspect memory, through a dedicated 

channel, prior to entering the container. The validity of the secure service can be checked by 

comparing the hash with the known good hash. If it is not what the user is expecting they can 

abort. Additionally, given that the user can inspect the transfer area before exiting the container, 

the user knows the content which could possibly be exfiltrated. These functions put some onus 

on the user to know the software and what to expect.  
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The hypervisor or secure service cannot deconstruct the secure container, without the user 

knowing, as this is controlled by the hardware. For example, the hypervisor cannot load the 

secure service without requesting secure mode, as the user would surely notice that the matrix 

mode is not activating, unless the user does not know what to expect. If this is the case then the 

system could be subverted by user ignorance.  

The kickstart ROM, and therefore the hypervisor ROM, can be easily replaced by placing a file 

on the SD card. While this is good for development, it presents a potential vulnerability. As 

such, a method of safeguarding the hypervisor ROM could be devised, or simply this feature 

could be disabled by the user before bitstream synthesis if they decide security is more 

important. 

Physical attacks targeting the software of the machine can be mitigated to some extent, however 

this system cannot protect against any attack which successfully replaces the bitstream. At the 

moment this an unresolved vulnerability as the bitstream is open source and unencrypted and 

is easily replaced on the SD card. If the bitstream were replaced and the secure compartment 

features were disabled, the machine could seemingly provide the “real” hash and memory 

contents. When the matrix mode appears, and everything looks correct, the user would be lead 

to believe that the software is legitimate while the machine could be keylogging or otherwise 

exfiltrating the user’s secure message.  

It is realised that the bitstream may be the weakest link; given the re-programmable nature of 

FPGAs, there is potential for this to be spoofed. On Xilinx series 7 FPGA's it is possible to 

require an encrypted bitstream to be able to program the device. A 256-bit key is programmed 

by the user via JTAG and stored in either battery backed RAM (BBRAM) or eFUSE. The 

Xilinx bitstream writer on the PC encrypts the bitstream, and the device decrypts the incoming 

bitstream. However, as discussed in the literature review, there have been cases where the AES 

keys can be extracted from Xilinx devices though electromagnetic side-channel attacks. In 

contrast to proprietary designs, with the MEGA65 project, once the key is known there is no 

need to reverse engineer the extracted bitstream to be able to insert a backdoor or Trojan as the 

source is freely available. Furthermore, because it is open hardware even if the user’s FPGA is 

using an encrypted bitstream it is possible that an attacker could replace the entire PCB with a 

compromised version. Perhaps implementing some physical security features similar to the 

ORWL computer, discussed in the literature review, could protect against these types attacks 

which require access to the PCB.  
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Chapter 5 

Conclusion 
The design and implementation of a functional user-interface that allows for transparent 

inspection of the machine state was substantially completed. Design of a system which utilises 

this interface to allow for secure exfiltration-resistant compartments to be constructed and used 

was explored and implementation of parts of this system was discussed.  

It was found that physical attacks or other vulnerabilities which target the software running on 

the MEGA65 could be mitigated to an extent, given the user understands what is expected of 

secure mode. Other physical attacks targeting the configuration bitstream cannot be prevented 

with this system. The use of encryption, as provided by the FPGA manufacturer, may reduce 

the chance of this kind of attack.  

The contribution the author has made to the secure mode implementation on the MEGA65 

provides a foundation to build upon such that the next student or open source contributor can 

come along and complete the implementation of this secure architecture. We’re not aware of 

anyone else making an architecture which has such strong security yet with a focus on being 

understandable. 
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5.1 Future Work 
This thesis outlined an architecture for a secure mode on the MEGA65 project, however the 

implementation was not fully complete. There are a variety of tasks that should be completed 

in the future to complete the working system, and to extend the functionality of the overall 

platform.  

Secure Mode Implementation  

Primary future work would include the full realisation of the secure mode as designed. This 

would require the implementation of the hashing and encryption algorithms. After secure mode 

is complete, some secure services and user programs need to be written to take advantage of 

the system.  

Functionality Enhancements 

There could be work done on the task switcher to implement a full user interface which allows 

the explicit saving, loading and naming of tasks, as was originally envisioned for this feature. 

Machine state saving/loading must be sufficiently bug-free and tested to work with wide variety 

of software. But for task switching to be as seamless as possible, the speed at which the state 

is saved to the SD card must be improved. Multi-sector reads and writes must be implemented 

in the SD card interface. To do this may require modifications to the current DMA system. 

Furthermore, given that SD cards smaller than 4GB are hard to find these days, adding support 

for SDHC and SDXC protocols would be beneficial.  

Ethernet functionality is very limited at the moment, so the development of a TCP/IP stack 

would enable the development of software to take advantage of internet connectivity. This 

would allow for the system to be used as a communications platform as originally envisioned.  

There are also some enhancements which could be made to the matrix mode, such as optimising 

the interface to allow users to easily read memory. Two things could be improved here: Firstly, 

instead of requiring the user to explicitly input commands to read, when secure entry or exit is 

requested the memory interface could be navigated using a keyboard shortcut. Secondly, 

displaying the memory as characters alongside the hexadecimal output would allow the user to 

quickly spot plain text in memory. Such a feature is commonplace in hex editors.  
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Glossary 
Backdoor: A method which circumvents authentication in a system and may allow 

unauthorised users to access the system. 

Bitstream: An FPGA configuration file. 

Cleartext: Readable data transmitted or stored “in the clear” (i.e. unencrypted). 

Ciphertext: Output of an encryption algorithm.  

Cryptographic Keys: String of bits used by a cryptographic algorithm to convert Cleartext 

into Ciphertext or vice versa. 

DMA: Direct Memory Access, access to RAM independent of the CPU. 

Exfiltration: Unauthorised transfer of information out of a system. 

FPGA: Field Programmable Gate Array, a developer-configurable integrated circuit. 

Hypervisor: A manager of virtual machines. Or, in the MEGA65, a privileged CPU mode. 

Keylogger: Malicious software or hardware device, which records keystrokes to steal 

credentials.  

Out-of-Band: Outside of normal communication channel.  

Risk: Product of the probability of an undesirable event and the severity of the event.   

Register: Fast memory element inside a CPU. 

Threat: Any danger which could exploit a vulnerability, leading to someone obtaining, or 

compromising an asset. 

Trojan: A malicious computer program or hardware circuit pretending to be legitimate. Unlike 

a virus or worm, it does not spread by itself.  

Virtualisation: An application, or a guest operation system which is abstracted away from the 

underlying hardware. Either through a software emulation layer or using hardware 

virtualisation features.  

Vulnerability: Weakness or flaw in a system that can be exploited by threats.  
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Appendices 
Appendix A 
Keyboard-to-Serial Implementation 

(PS2_to_uart.vhdl)  

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE ieee.numeric_std.ALL; 
USE work.debugtools.ALL; 
USE ieee.std_logic_unsigned.ALL; 
ENTITY ps2_to_uart IS 
 PORT ( 
  clk : IN STD_LOGIC; --48mhz  
  reset : IN STD_LOGIC; 
  enabled : IN std_logic; 
  scan_code : IN std_logic_vector (12 DOWNTO 0); 
  mm_displayMode_out : OUT std_logic_vector(1 DOWNTO 0); 
  tx_ps2 : OUT STD_LOGIC; 
  display_shift_out : OUT std_logic_vector(2 DOWNTO 0); 
  shift_ready_out : OUT std_logic; 
  matrix_trap_out : OUT std_logic := '0'; 
  shift_ack_in : IN std_logic  
 ); 
END ps2_to_uart; 
 
ARCHITECTURE Behavioral OF ps2_to_uart IS 
 
 COMPONENT UART_TX_CTRL IS 
  PORT ( 
   SEND : IN STD_LOGIC; 
   DATA : IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
   CLK : IN STD_LOGIC; 
   READY : OUT STD_LOGIC; 
   UART_TX : OUT STD_LOGIC 
  ); 
 END COMPONENT; 
  
 -- Determines which display scale mode to use for matrix mode 
 -- 0=1:1 (640x320), 1=2:1 (1280x640), 2=3:1 (1920x960) (Fullscreen) 
 -- CMD: Alt-1 , Alt-2 , Alt-3 
 SIGNAL mm_displayMode : std_logic_vector(1 DOWNTO 0) := b"10"; 
  
 -- Pressing a cursor key will shift the matrix mode display by 8px 
 -- Only on modes 0 and 1 
 SIGNAL display_shift : std_logic_vector(2 DOWNTO 0) := b"000"; --direction 
to shift. 1=up, 2=right, 3=down, 4=left 
 SIGNAL shift_ack : std_logic; --Has the compositor shifted the display 
already. 
 SIGNAL shift_ready : std_logic; 
  
  
 --UART Signals 
 SIGNAL tx_data : std_logic_vector(7 DOWNTO 0); 
 SIGNAL tx_ready : std_logic; 
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 SIGNAL tx_trigger : std_logic := '0'; 
  
 -- States in FSM 
 TYPE ps2_to_uart_state IS (WaitForKey, Enter, KeyPress, Output); 
 SIGNAL state : ps2_to_uart_state := WaitForKey; 
 SIGNAL next_state : ps2_to_uart_state; 
 SIGNAL timer : unsigned(27 DOWNTO 0) := (OTHERS => '0'); 
  
 --Keyboard Timers 
 CONSTANT timer200ms : std_logic_vector(23 DOWNTO 0) := 
b"110100100111110010011001"; 
 CONSTANT timer30ms : std_logic_vector(20 DOWNTO 0) := 
b"111011111100100010111"; 
 SIGNAL repeatCounter1 : std_logic_vector(23 DOWNTO 0) := timer200ms; 
 SIGNAL repeatCounter2 : std_logic_vector(20 DOWNTO 0) := timer30ms;  
 --Keyboard signals 
 SIGNAL caps : std_logic; 
 SIGNAL previousScanCode : std_logic_vector (12 DOWNTO 0); 
 SIGNAL firstPress : std_logic; 
 SIGNAL inputKey : std_logic; 
 SIGNAL firstRepeatDone : std_logic; 
 SIGNAL altcode : std_logic; 
BEGIN 
 uart_tx1 : UART_TX_CTRL 
 PORT MAP( 
  send => tx_trigger,  
  clk => clk,  
  data => tx_data,  
  ready => tx_ready,  
  uart_tx => tx_ps2 
 ); 
 
 uart_test : PROCESS (clk) 
 BEGIN 
  IF rising_edge(CLK) THEN 
   IF enabled = '1' THEN --Input only run when matrix mode is enabled  
    CASE state IS 
     WHEN WaitForKey =>  
      tx_trigger <= '0'; 
  
     WHEN KeyPress =>  
      state <= Output; 
      next_state <= WaitForKey; 
  
     WHEN Enter =>  
      tx_data <= x"0D"; --cr only 
      next_state <= WaitForKey; 
      state <= Output; 
  
     WHEN Output =>  
      IF tx_ready = '1' THEN 
       tx_trigger <= '1'; 
       state <= next_state; 
      END IF; 
    END CASE;  
   END IF; 
  
   --If the scan code is Left Shift 
   IF scan_code(7 DOWNTO 0) = x"12" THEN 
    IF scan_code(12) = '0' THEN --and make code 
     caps <= '1'; 
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    ELSE --break code 
     caps <= '0'; 
    END IF; 
   END IF; 
  
  
  
   --CursorKeys 
   -- E0 75 up 
   -- E0 6B left 
   -- E0 72 down 
   -- E0 74 right 
   -- ScanCode(8) is extended code 
  
   --Check alt-1/2/3 combos 
   -- ALT: x"11" b"00010001" 
   -- Don't care whats in bits 11-8 
   --If the previous key was alt, and is still held. 
 
   -- When keyboard has no keys pressed its last code is a break code 
   -- When a key is pressed scan_code(12) will be '1' i.e. make code 
   -- Input first keystroke 
   -- Wait ~250ms   
   -- firstRepeatDone will be '1' 
   -- When first repeat is done second counter 
   -- will count down ~50msish before inputting keys again  
   -- If breakcode or new code is sent, reset everything. 
   -- If the previous scan code wasnt ALT, do normal keys. (this is so 
1/2/3 arent input when switching modes) 
   IF scan_code(12) = '0' AND firstPress = '0' THEN --and 
(previousScanCode(12)&previousScanCode(7 downto 0) /= b"000010001") then  
    inputKey <= '1'; --input key when first instance of key is pressed  
    firstPress <= '1'; 
    previousScanCode <= scan_code; 
   ELSIF scan_code(12) = '0' AND firstPress = '1' THEN -- if it has been 
held down  
    IF repeatCounter1 = x"000000" THEN  
     IF firstRepeatDone = '0' THEN 
      firstRepeatDone <= '1';  
     END IF;  
    ELSE  
     repeatCounter1 <= repeatCounter1 - 1;  
    END IF;  
   END IF; 
  
   IF firstRepeatDone = '1' THEN 
    IF repeatCounter2 = b"000000000000000000000" THEN  
     repeatCounter2 <= timer30ms; --reload timer 
     inputKey <= '1'; --input character 
    ELSE --otherwise decrement the timer 
     repeatCounter2 <= repeatCounter2 - 1;  
    END IF;  
   END IF;  
  
   IF previousScanCode(12) & previousScanCode(7 DOWNTO 0) = b"000010001" 
AND altcode = '1' THEN 
    --1= x"16", 2=x"1E", 3="26"  
    CASE scan_code(12) & scan_code(7 DOWNTO 0) IS --make sure its a MAKE 
code. 
     WHEN '0' & x"16" => --1 
      mm_displayMode <= b"00"; 
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     WHEN '0' & x"1E" => --2 
      mm_displayMode <= b"01"; 
     WHEN '0' & x"26" => --3 
      mm_displayMode <= b"10";  
     WHEN '0' & x"0D" => --Alt-tab, activates matrix mode. These are 
probably temporary commands 
      matrix_trap_out <= '1'; --setup trap. 
     WHEN OTHERS => --Alt anything 
      --Do Nothing 
      --altcode<='0'; --Why is this here. 
    END CASE; 
   ELSE 
    matrix_trap_out <= '0'; --reset trap 
   END IF; 
  
   --when any key is released or a new key is down, reset repeat timers  
   IF scan_code(12) = '1' OR scan_code /= previousScanCode THEN 
    repeatCounter1 <= timer200ms; 
    repeatCounter2 <= timer30ms; 
    firstRepeatDone <= '0';  
    inputKey <= '0'; --stop any input;  
    firstPress <= '0'; 
   END IF;  
  
   --If a key is lefted, no longer an alt-code (keys need to be down at 
same time) 
   IF scan_code(12) = '1' THEN 
    altcode <= '0'; 
   END IF;  
  
   IF shift_ack = '1' THEN 
    shift_ready <= '0'; 
   END IF; 
 
  
   IF inputKey = '1' THEN 
    inputKey <= '0'; --Disable input character. 
    CASE scan_code(7 DOWNTO 0) IS  
     WHEN x"11" =>  
      altcode <= '1';  
      --up / numpad 8 --Don't bother checking for extended code, as numpad 
isn't implemented 
     WHEN x"75" =>  
      display_shift <= b"001"; 
      shift_ready <= '1'; 
      --left / numpad 4 
     WHEN x"6B" =>  
      display_shift <= b"100"; 
      shift_ready <= '1'; 
      --down / numpad 2 
     WHEN x"72" =>  
      display_shift <= b"011"; 
      shift_ready <= '1'; 
      --right / numpad 6 
     WHEN x"74" =>  
      display_shift <= b"010"; 
      shift_ready <= '1'; 
  
      -- 3, W, A, 4, Z, S, E, left-SHIFT 
     WHEN x"26" =>  
      IF altcode = '0' THEN  
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       IF caps = '0' THEN --3/# 
        tx_data <= x"33"; 
       ELSE 
        tx_data <= x"23"; 
       END IF;  
       state <= KeyPress; 
      END IF; 
  
     WHEN x"1D" => --W 
      IF caps = '0' THEN 
       tx_data <= x"77"; 
      ELSE 
       tx_data <= x"57"; 
      END IF; 
      state <= KeyPress; 
  
     WHEN x"1C" => --A 
      IF caps = '0' THEN 
       tx_data <= x"61"; 
      ELSE tx_data <= x"41"; 
      END IF; 
      state <= KeyPress; 
  
     WHEN x"25" => --4/$ 
      IF caps = '0' THEN 
       tx_data <= x"34"; 
      ELSE tx_data <= x"24"; 
      END IF; 
      state <= KeyPress; 
  
     WHEN x"1A" => --Z 
      IF caps = '0' THEN 
       tx_data <= x"7A"; 
      ELSE tx_data <= x"5A"; 
      END IF; 
      state <= KeyPress; 
  
     WHEN x"1B" => --S 
      IF caps = '0' THEN 
       tx_data <= x"73"; 
      ELSE tx_data <= x"53"; 
      END IF; 
      state <= KeyPress; 
  
     WHEN x"24" => --E 
      IF caps = '0' THEN 
       tx_data <= x"65"; 
      ELSE tx_data <= x"45"; 
      END IF; 
      state <= KeyPress; 
 
  
      -- 5, R, D, 6, C, F, T, X  
     WHEN x"2E" =>  
      IF caps = '0' THEN 
       tx_data <= x"35"; 
      ELSE 
       tx_data <= x"25"; 
      END IF; 
      state <= KeyPress; --5 
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     WHEN x"2D" =>  
      IF caps = '0' THEN 
       tx_data <= x"72"; 
      ELSE tx_data <= x"52"; 
      END IF;  
      state <= KeyPress;--R 
  
     WHEN x"23" =>  
      IF caps = '0' THEN 
       tx_data <= x"64"; 
      ELSE tx_data <= x"44"; 
      END IF; 
      state <= KeyPress;--D 
  
     WHEN x"36" =>  
      IF caps = '0' THEN 
       tx_data <= x"36"; 
      ELSE tx_data <= x"5E"; 
      END IF; 
      state <= KeyPress;--6 
  
     WHEN x"21" =>  
      IF caps = '0' THEN 
       tx_data <= x"63"; 
      ELSE tx_data <= x"43"; 
      END IF; 
      state <= KeyPress;--C 
  
     WHEN x"2B" =>  
      IF caps = '0' THEN 
       tx_data <= x"66"; 
      ELSE tx_data <= x"46"; 
      END IF; 
      state <= KeyPress;--F 
  
     WHEN x"2C" =>  
      IF caps = '0' THEN 
       tx_data <= x"74"; 
      ELSE tx_data <= x"54"; 
      END IF; 
      state <= KeyPress;--T 
  
     WHEN x"22" =>  
      IF caps = '0' THEN 
       tx_data <= x"78"; 
      ELSE tx_data <= x"58"; 
      END IF; 
      state <= KeyPress;--X  
 
      -- 7, Y, G, 8, B, H, U, V 
     WHEN x"3D" =>  
      IF caps = '0' THEN 
       tx_data <= x"37"; 
      ELSE tx_data <= x"26"; 
      END IF; 
      state <= KeyPress; --7/& 
  
     WHEN x"35" =>  
      IF caps = '0' THEN 
       tx_data <= x"79"; 
      ELSE tx_data <= x"59"; 
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      END IF; 
      state <= KeyPress;--Y 
  
     WHEN x"34" =>  
      IF caps = '0' THEN 
       tx_data <= x"67"; 
      ELSE tx_data <= x"47"; 
      END IF; 
      state <= KeyPress;--G 
  
     WHEN x"3E" =>  
      IF caps = '0' THEN 
       tx_data <= x"38"; 
      ELSE 
       tx_data <= x"2A"; --8/* 
      END IF;  
      state <= KeyPress;  
  
     WHEN x"32" =>  
      IF caps = '0' THEN 
       tx_data <= x"62"; 
      ELSE tx_data <= x"42"; 
      END IF; 
      state <= KeyPress;--B 
  
     WHEN x"33" =>  
      IF caps = '0' THEN 
       tx_data <= x"68"; 
      ELSE tx_data <= x"48"; 
      END IF; 
      state <= KeyPress;--H 
  
     WHEN x"3C" =>  
      IF caps = '0' THEN 
       tx_data <= x"75"; 
      ELSE tx_data <= x"55"; 
      END IF; 
      state <= KeyPress;--U 
  
     WHEN x"2A" =>  
      IF caps = '0' THEN 
       tx_data <= x"76"; 
      ELSE tx_data <= x"56"; 
      END IF; 
      state <= KeyPress;--V  
  
      -- 9, I, J, 0, M, K, O, N  
     WHEN x"46" =>  
      IF caps = '0' THEN 
       tx_data <= x"39"; 
      ELSE 
       tx_data <= x"28"; 
      END IF; 
      state <= KeyPress;--9/( 
  
     WHEN x"43" =>  
      IF caps = '0' THEN 
       tx_data <= x"69"; 
      ELSE tx_data <= x"49"; 
      END IF; 
      state <= KeyPress;--I 



 

72 
  

  
     WHEN x"3B" =>  
      IF caps = '0' THEN 
       tx_data <= x"6A"; 
      ELSE tx_data <= x"4A"; 
      END IF; 
      state <= KeyPress;--J 
  
     WHEN x"45" =>  
      IF caps = '0' THEN  
       tx_data <= x"30"; 
      ELSE 
       tx_data <= x"29"; 
      END IF; 
      state <= KeyPress; --0/) 
  
     WHEN x"3A" =>  
      IF caps = '0' THEN 
       tx_data <= x"6D"; 
      ELSE tx_data <= x"4D"; 
      END IF; 
      state <= KeyPress;--M 
  
     WHEN x"42" =>  
      IF caps = '0' THEN 
       tx_data <= x"6B"; 
      ELSE tx_data <= x"4B"; 
      END IF; 
      state <= KeyPress;--K 
  
     WHEN x"44" =>  
      IF caps = '0' THEN 
       tx_data <= x"6F"; 
      ELSE tx_data <= x"4F"; 
      END IF; 
      state <= KeyPress; --O 
  
     WHEN x"31" =>  
      IF caps = '0' THEN 
       tx_data <= x"6E"; 
      ELSE tx_data <= x"4E"; 
      END IF; 
      state <= KeyPress; --N 
  
      -- +, P, L, -, ., :, @, COMMA 
     WHEN x"4E" =>  
      IF caps = '0' THEN 
       tx_data <= x"2D"; 
      ELSE tx_data <= x"5F"; 
      END IF; 
      state <= KeyPress; ---_ 
  
     WHEN x"4D" =>  
      IF caps = '0' THEN 
       tx_data <= x"70"; 
      ELSE tx_data <= x"50"; 
      END IF; 
      state <= KeyPress; --P 
  
     WHEN x"4B" =>  
      IF caps = '0' THEN 
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       tx_data <= x"6C"; 
      ELSE tx_data <= x"4C"; 
      END IF; 
      state <= KeyPress; --L 
  
     WHEN x"55" =>  
      IF caps = '0' THEN 
       tx_data <= x"3D"; 
      ELSE 
       tx_data <= x"2B"; 
      END IF; 
      state <= KeyPress; --=/+ 
  
     WHEN x"49" =>  
      IF caps = '0' THEN 
       tx_data <= x"2E"; 
      ELSE 
       tx_data <= x"3E"; 
      END IF; 
      state <= KeyPress;--./> 
  
     WHEN x"4C" =>  
      IF caps = '0' THEN 
       tx_data <= x"3B"; 
      ELSE 
       tx_data <= x"3A"; 
      END IF; 
      state <= KeyPress;--;/: 
  
     WHEN x"54" =>  
      tx_data <= x"5B"; 
      state <= KeyPress;--[ 
  
     WHEN x"41" =>  
      IF caps = '0' THEN 
       tx_data <= x"2C"; 
      ELSE 
       tx_data <= x"3C"; 
      END IF; 
      state <= KeyPress;--,/< 
  
     WHEN x"16" =>  
      IF altcode = '0' THEN  
       IF caps = '0' THEN  
        tx_data <= x"31"; 
       ELSE 
        tx_data <= x"21";  
       END IF; 
       state <= KeyPress; --1/!  
      END IF; 
  
  
     WHEN x"1E" =>  
      IF altcode = '0' THEN  
       IF caps = '0' THEN  
        tx_data <= x"32"; 
       ELSE 
        tx_data <= x"40";  
       END IF; 
       state <= KeyPress; --2/@  
      END IF; 
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     WHEN x"15" =>  
      IF caps = '0' THEN  
       tx_data <= x"71"; 
      ELSE 
       tx_data <= x"51";  
      END IF; 
      state <= KeyPress; --Q 
  
     WHEN x"5A" =>  
      tx_data <= x"2C"; 
      state <= Enter; --ENTER 
  
     WHEN x"66" => --del 
      tx_data <= x"08"; 
      state <= KeyPress;  
  
     WHEN x"29" => --space 
      tx_data <= x"20"; 
      state <= KeyPress;  
  
     WHEN OTHERS => state <= WaitForKey; 
    END CASE; 
   END IF;  
  END IF;  
 END PROCESS uart_test; 
  
 mm_displayMode_out <= mm_displayMode; 
 shift_ready_out <= shift_ready; 
 shift_ack <= shift_ack_in; 
 display_shift_out <= display_shift; 
END Behavioral;  
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Appendix B  
Terminal Emulator (terminalemulator.vhdl) 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE ieee.numeric_std.ALL; 
USE work.debugtools.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
ENTITY terminalemulator IS 
 PORT ( 
  clk : IN STD_LOGIC; --200Mhz? 
  uart_clk : IN std_logic; --48MHz 
  uart_in : IN STD_LOGIC; 
  topofframe_out : OUT std_logic_vector(11 DOWNTO 0); 
  wel_out : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  addrl_out : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  dinl_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) 
 ); 
END terminalemulator; 
 
ARCHITECTURE Behavioral OF terminalemulator IS 
 
 COMPONENT uart_rx IS 
  PORT ( 
   clk : IN std_logic; 
   UART_RX : IN std_logic; 
   data : OUT std_logic_vector(7 DOWNTO 0); 
   data_ready : OUT std_logic; 
   data_acknowledge : IN std_logic 
  ); 
 END COMPONENT; 
 
 TYPE terminal_emulator_state IS (clearAck,  
 incChar,  
 writeChar, writeChar2,  
 waitforinput,  
 processCommand,  
 newLine, newLine2,  
 newFrame,  
 clearLine,  
 linefeed, linefeed2,  
 backspace,  
 writeCursor, writeCursor2,  
 clearCursor, clearCursor2); 
 SIGNAL state : terminal_emulator_state := waitforinput; 
 SIGNAL next_state : terminal_emulator_state; 
 
 CONSTANT CharMemStart : std_logic_vector(11 DOWNTO 0) := x"302"; 
 CONSTANT CharMemEnd : std_logic_vector(11 DOWNTO 0) := x"F81"; 
 
 SIGNAL rx_data : std_logic_vector(7 DOWNTO 0); 
 SIGNAL rx_ready : std_logic; 
 SIGNAL rx_acknowledge : std_logic; 
 SIGNAL dataToWrite : std_logic_vector(7 DOWNTO 0); 
 SIGNAL charCursor : std_logic_vector(11 DOWNTO 0) := CharMemStart;  
 SIGNAL charX : std_logic_vector(7 DOWNTO 0) := x"00"; 
 SIGNAL lastLineStart : std_logic_vector(11 DOWNTO 0) := CharMemStart;  
 SIGNAL clearLineStart : std_logic_vector(11 DOWNTO 0) := CharMemStart; 
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SIGNAL clearLineEnd : std_logic_vector(11 DOWNTO 0) := CharMemStart + 80; 
 SIGNAL topofframe : std_logic_vector(11 DOWNTO 0) := CharMemStart 
 SIGNAL hasHitEoF : std_logic := '0'; 
BEGIN 
 uart_rx0 : uart_rx 
 PORT MAP( 
  clk => uart_clk,  
  UART_RX => uart_in,  
  data => rx_data,  
  data_ready => rx_ready,  
  data_acknowledge => rx_acknowledge 
 ); 
 
 topofframe_out <= topOfFrame; 
  
 uart_receive : PROCESS (clk) 
 BEGIN 
  IF rising_edge(uart_clk) THEN  
   CASE state IS  
    WHEN waitforinput =>  
     IF rx_ready = '1' AND rx_acknowledge = '0' THEN 
      rx_acknowledge <= '1'; 
      IF rx_data < x"20" AND rx_data /= x"0A" THEN  
       state <= clearCursor; 
       next_state <= processCommand; 
      ELSIF rx_data = x"0A" THEN 
       IF charX = x"00" THEN  
        state <= processCommand; 
       ELSE 
        state <= clearCursor;  
        next_state <= processCommand; 
       END IF; 
  
      ELSE  
       state <= writeChar; 
       dataToWrite <= rx_data - 32; 
      END IF; 
     END IF; 
    WHEN writeCursor =>  
     dinl_out <= b"10000000"; 
     addrl_out <= charCursor; 
     wel_out <= b"1"; 
     state <= writeCursor2; 
  
    WHEN writeCursor2 =>  
     wel_out <= b"0"; 
     state <= next_state; 
 
    WHEN clearCursor =>  
     dinl_out <= b"00000000"; 
     addrl_out <= charCursor; 
     wel_out <= b"1";  
     state <= clearCursor2; 
  
    WHEN clearCursor2 =>  
     wel_out <= b"0"; 
     state <= next_state; 
  
    WHEN writeChar =>  
     addrl_out <= charCursor; --latch address 
     dinl_out <= dataToWrite; --latch output data  
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     wel_out <= b"1"; --enable write 
     state <= WriteChar2; 
  
    WHEN writeChar2 =>  
     rx_acknowledge <= '0'; --clear acknowledged 
     wel_out <= b"0"; 
     state <= incChar; 
 
  
     --Increase char position by 1   
    WHEN incChar =>  
     --Check boundaries  
     IF charX >= x"4F" THEN --if its at the end of a line 
      charX <= (OTHERS => '0'); 
      IF charCursor >= CharMemEnd THEN 
       state <= newFrame;  
       charCursor <= CharMemStart;--(others=>'0'); 
       lastLineStart <= CharMemStart;--others=>'0'); 
       hasHitEoF <= '1'; 
      ELSE 
       charCursor <= charCursor + 1;  
       state <= newLine;  
      END IF; 
  
     ELSE  
      charCursor <= charCursor + 1; 
      charX <= charX + 1; 
      --state<=clearAck; 
      state <= writeCursor; 
      next_state <= clearAck;  
     END IF; 
  
    WHEN newFrame =>  
     charCursor <= CharMemStart; 
     lastLineStart <= CharMemStart; 
     charX <= (OTHERS => '0'); 
     hasHitEoF <= '1'; 
     clearLineStart <= CharMemStart; 
     clearLineEnd <= CharMemStart + 80; 
     state <= ClearLine; 
  
    WHEN newLine =>  
     lastLineStart <= charCursor;  
     clearLineStart <= charCursor; 
     clearLineEnd <= charCursor + 80;  
     --Write new cursor whenever charCursor moves 
     state <= newLine2;  
    WHEN newLine2 =>  
     next_state <= clearAck; 
     state <= clearLine; 
  
    WHEN processCommand =>  
     IF rx_data = x"0D" THEN --CR carriage return  
      charCursor <= lastLineStart; --go back to start of line? 
      charX <= (OTHERS => '0'); 
      state <= clearAck;  
     ELSIF rx_data = x"0A" THEN --LF line feed  
      charCursor <= charCursor + 80; 
      lastLineStart <= lastLineStart + 80; 
      state <= linefeed; 
     ELSIF rx_data = x"08" THEN --BS 
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      charCursor <= charCursor - 1; 
      charX <= charX - 1;  
      dataToWrite <= x"00"; 
      wel_out <= b"1";  
      --state<=backspace; 
      state <= writeCursor; 
      next_state <= clearAck; 
  
     ELSE 
      state <= clearAck; 
     END IF; 
  
    WHEN backspace =>  
     addrl_out <= charCursor; 
     dinl_out <= dataToWrite;  
     state <= clearAck;  
  
     --Clear acknowledge, ready for next Char 
    WHEN clearAck =>  
     wel_out <= b"0"; 
     rx_acknowledge <= '0';  
     state <= waitforinput; 
 
  
    WHEN linefeed =>  
     IF charCursor > CharMemEnd THEN 
      charCursor <= charCursor - 3200; 
      hasHitEoF <= '1';  
     END IF;  
     -- >3120 (the last line start) 
     IF lastLineStart > CharMemEnd - 79 THEN  
      lastLineStart <= CharMemStart; 
      hasHitEoF <= '1'; 
     END IF; 
  
     state <= linefeed2; 
  
    WHEN linefeed2 =>  
     clearLineStart <= lastLineStart; 
     clearLineEnd <= lastLineStart + 80; 
     state <= clearLine;  
  
    WHEN clearLine =>  
     IF hasHitEoF = '1' THEN 
      IF topOfFrame >= CharMemEnd - 79 THEN 
       topOfFrame <= CharMemStart; 
      ELSE --otherwise increase 
       topOfFrame <= topOfFrame + 80; 
      END IF; 
     END IF; 
  
     wel_out <= b"1";  
     addrl_out <= clearLineStart; 
     dinl_out <= (OTHERS => '0'); 
     clearLineStart <= clearLineStart + 1;  
  
     IF (clearLineStart = clearLineEnd) THEN  
      wel_out <= b"0"; 
      state <= clearAck;  
     END IF;  
   END CASE;  
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  END IF;  
 END PROCESS; 
END Behavioral; 

 

Appendix C  
Video Generator (compositor.vhdl) 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE ieee.numeric_std.ALL; 
USE work.debugtools.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
ENTITY compositor IS 
 PORT ( 
  display_shift_in : IN std_logic_vector(2 DOWNTO 0); 
  shift_ready_in : IN std_logic; 
  shift_ack_out : OUT std_logic; 
  mm_displayMode_in : IN std_logic_vector(1 DOWNTO 0); 
  uart_in : IN std_logic; 
  xcounter_in : IN unsigned(11 DOWNTO 0); 
  ycounter_in : IN unsigned(10 DOWNTO 0); 
  clk : IN std_logic; --48Mhz 
  pixelclock : IN std_logic; --200Mhz 
  matrix_mode_enable : IN STD_LOGIC; 
  vgared_in : IN unsigned (3 DOWNTO 0); 
  vgagreen_in : IN unsigned (3 DOWNTO 0); 
  vgablue_in : IN unsigned (3 DOWNTO 0); 
  vgared_out : OUT unsigned (3 DOWNTO 0); 
  vgagreen_out : OUT unsigned (3 DOWNTO 0); 
  vgablue_out : OUT unsigned (3 DOWNTO 0) 
 ); 
END compositor; 
 
ARCHITECTURE Behavioral OF compositor IS 
 
 COMPONENT uart_charrom IS 
  PORT ( 
   clkl : IN STD_LOGIC; 
   wel : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
   addrl : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
   dinl : IN STD_LOGIC_VECTOR(7 DOWNTO 0); 
   clkr : IN STD_LOGIC; 
   addrr : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
   doutr : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) 
  ); 
 END COMPONENT; 
  
 COMPONENT terminalemulator IS 
  PORT ( 
   clk : IN STD_LOGIC; 
   uart_clk : IN std_logic; 
   uart_in : IN STD_LOGIC; 
   topofframe_out : OUT std_logic_vector(11 DOWNTO 0); 
   wel_out : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
   addrl_out : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
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   dinl_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) 
  ); 
 END COMPONENT; 
 
 --Location of start of character memory 
 CONSTANT CharMemStart : std_logic_vector(11 DOWNTO 0) := x"302"; 
 --Location of end of character memory 
 CONSTANT CharMemEnd : std_logic_vector(11 DOWNTO 0) := x"F81"; 
 --Character Map Memory Interface 
 SIGNAL writeEnable : std_logic_vector(0 DOWNTO 0); 
 SIGNAL writeAddress : std_logic_vector (11 DOWNTO 0); 
 SIGNAL dataInWrite : std_logic_vector(7 DOWNTO 0); 
 SIGNAL charAddr : std_logic_vector (7 DOWNTO 0); 
 SIGNAL readAddress_rom : std_logic_vector(11 DOWNTO 0) := CharMemStart; 
 SIGNAL dataOutRead_rom : std_logic_vector (7 DOWNTO 0); 
 -- Frame boundaries 
 SIGNAL startx : unsigned(11 DOWNTO 0) := x"079";  
 SIGNAL endx : unsigned(11 DOWNTO 0) := x"814";  
 SIGNAL starty : unsigned(11 DOWNTO 0) := x"07C";  
 SIGNAL endy : unsigned(11 DOWNTO 0) := x"43C";  
 
 --Mode0 Frame 
 --640x320 
 CONSTANT mode0_startx : unsigned(11 DOWNTO 0) := x"096"; 
 CONSTANT mode0_starty : unsigned(11 DOWNTO 0) := x"07C"; 
 CONSTANT mode0_endx : unsigned(11 DOWNTO 0) := mode0_startx + 647; 
 CONSTANT mode0_endy : unsigned(11 DOWNTO 0) := x"1BB"; 
 CONSTANT mode0_garbage_end_offset : unsigned(11 DOWNTO 0) := x"008"; 
 --Mode1 Frame 
 --1280x640 
 CONSTANT mode1_startx : unsigned(11 DOWNTO 0) := x"096"; 
 CONSTANT mode1_starty : unsigned(11 DOWNTO 0) := x"07C"; 
 CONSTANT mode1_endx : unsigned(11 DOWNTO 0) := mode1_startx + 1295; 
 CONSTANT mode1_endy : unsigned(11 DOWNTO 0) := mode1_starty + 640; 
 CONSTANT mode1_garbage_end_offset : unsigned(11 DOWNTO 0) := x"00F"; 
 
 --Mode2 Frame 
 --1920x960 
 CONSTANT mode2_startx : unsigned(11 DOWNTO 0) := x"079"; 
 CONSTANT mode2_starty : unsigned(11 DOWNTO 0) := x"07C";  
 CONSTANT mode2_endx : unsigned(11 DOWNTO 0) := x"813"; 
 CONSTANT mode2_endy : unsigned(11 DOWNTO 0) := x"43B"; 
 CONSTANT mode2_garbage_end_offset : unsigned(11 DOWNTO 0) := x"01D"; 
 
 SIGNAL xOffset : unsigned(11 DOWNTO 0) := x"000"; 
 SIGNAL yOffset : unsigned(11 DOWNTO 0) := x"000"; 
 SIGNAL shift_ack : std_logic := '0'; 
 SIGNAL garbage_end : unsigned(11 DOWNTO 0) := x"000"; 
 SIGNAL garbage_end_offset : unsigned(11 DOWNTO 0) := x"000"; 
 
 --Character signals 
 SIGNAL charCount : std_logic_vector(11 DOWNTO 0) := CharMemStart; 
 SIGNAL charline : std_logic_vector(3 DOWNTO 0); 
 SIGNAL eightCounter : std_logic_vector(4 DOWNTO 0) := (OTHERS => '0'); 
 SIGNAL bufferCounter : std_logic_vector(1 DOWNTO 0) := (OTHERS => '0'); 
 SIGNAL invert : std_logic; 
 
 --Outputs 
 SIGNAL greenOutput : std_logic := '0'; 
 SIGNAL redOutput : std_logic := '0'; 
 SIGNAL blueOutput : std_logic := '0'; 



 

81 
  

 
 --4-bit Outputs 
 SIGNAL greenOutput_all : unsigned(3 DOWNTO 0); 
 SIGNAL redOutput_all : unsigned(3 DOWNTO 0); 
 SIGNAL blueOutput_all : unsigned(3 DOWNTO 0); 
 
 SIGNAL data_buffer : std_logic_vector(7 DOWNTO 0) := x"00"; 
 SIGNAL lineStartAddr : std_logic_vector(11 DOWNTO 0) := CharMemStart; 
 SIGNAL lineCounter : std_logic_vector(2 DOWNTO 0) := b"000"; 
 SIGNAL topOfFrame : std_logic_vector(11 DOWNTO 0) := CharMemStart; 
 SIGNAL doneEndOfFrame : std_logic := '0'; 
 SIGNAL doneEndOfFrame1 : std_logic := '0'; 
 SIGNAL doneEndOfFrame2 : std_logic := '0'; 
 --Display Mode signals 
 SIGNAL mm_displayMode : std_logic_vector(1 DOWNTO 0) := b"10"; 
 SIGNAL end_of_char : std_logic_vector(4 DOWNTO 0) := b"11000"; 
 CONSTANT mode0_end_of_char : std_logic_vector(4 DOWNTO 0) := b"01000"; --8 
 CONSTANT mode1_end_of_char : std_logic_vector(4 DOWNTO 0) := b"10000"; --
16 
 CONSTANT mode2_end_of_char : std_logic_vector(4 DOWNTO 0) := b"11000"; --
24 
 
BEGIN 
 uart_charrom1 : uart_charrom 
 PORT MAP( 
  clkl => pixelclock,  
  clkr => pixelclock,  
  wel => writeEnable,  
  addrl => writeAddress,  
  addrr => readAddress_rom,  
  dinl => dataInWrite,  
  doutr => dataOutRead_rom 
 ); 
 
 terminalemulator0 : terminalemulator 
 PORT MAP( 
  clk => pixelclock,  
  uart_clk => clk,  
  uart_in => uart_in,  
  topofframe_out => topOfFrame,  
  wel_out => writeEnable,  
  addrl_out => writeAddress,  
  dinl_out => dataInWrite 
 ); 
 
 vgared_out <= vgared_in WHEN matrix_mode_enable = '0' ELSE 
               redOutput_all; 
 vgagreen_out <= vgagreen_in WHEN matrix_mode_enable = '0' ELSE 
greenOutput_all; 
 vgablue_out <= vgablue_in WHEN matrix_mode_enable = '0' ELSE 
blueOutput_all; 
 
 ram_test : PROCESS (pixelclock) 
 BEGIN 
  IF rising_edge(pixelclock) THEN 
   --End of line 2100 
   IF xcounter_in = 2400 AND ycounter_in >= starty AND ycounter_in < endy 
THEN  
    IF lineCounter = mm_displayMode THEN  
     lineCounter <= b"000";  
     IF charline = b"0111" THEN  
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      charline <= b"0000";  
      --Boundary check 
      IF lineStartAddr = CharMemEnd - 79 THEN 
       lineStartAddr <= CharMemStart; 
      ELSE 
       lineStartAddr <= lineStartAddr + 80; 
      END IF;  
     ELSE  
      charline <= charline + 1; 
     END IF;  
    ELSE  
     lineCounter <= lineCounter + 1;  
    END IF;  
   END IF; 
  
   IF xcounter_in = 2401 AND ycounter_in < endy THEN  
    charCount <= lineStartAddr; 
    eightCounter <= (OTHERS => '0'); 
    bufferCounter <= (OTHERS => '0'); 
   END IF; 
  
   --End of Frame, reset counters  
   IF ycounter_in = b"10010110000" THEN 
    IF doneEndOfFrame = '0' THEN 
     mm_displayMode <= mm_displayMode_in; 
     doneEndOfFrame <= '1';  
     lineCounter <= (OTHERS => '0'); 
     charline <= (OTHERS => '0'); 
     charCount <= topOfFrame; 
     lineStartAddr <= topOfFrame; 
     eightCounter <= (OTHERS => '0');  
  
     IF shift_ack = '0' AND shift_ready_in = '1' THEN 
      CASE display_shift_in IS 
       WHEN b"001" => --up 
        IF starty > 25 THEN 
         yoffset <= yoffset - 8; 
        END IF; 
       WHEN b"010" => --right 
        IF endx < x"7F8" THEN 
         xoffset <= xoffset + 8; 
        END IF; 
       WHEN b"011" => --down 
        IF endy < 1200 THEN 
         yoffset <= yoffset + 8; 
        END IF; 
       WHEN b"100" => --left 
        IF garbage_end > 150 THEN 
         xoffset <= xoffset - 8; 
        END IF; 
       WHEN OTHERS =>  
      END CASE;  
      shift_ack <= '1'; 
     ELSE 
      shift_ack <= '0'; --reset ack 
     END IF; 
  
  
     CASE mm_displayMode_in IS  
      WHEN b"00" =>  
       end_of_char <= mode0_end_of_char; 
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       startx <= mode0_startx + xoffset; 
       starty <= mode0_starty + yoffset; 
       endx <= mode0_endx + xoffset; 
       endy <= mode0_endy + yoffset; 
       garbage_end_offset <= mode0_garbage_end_offset; 
      WHEN b"01" =>  
       end_of_char <= mode1_end_of_char; 
       startx <= mode1_startx + xoffset; 
       starty <= mode1_starty + yoffset; 
       endx <= mode1_endx + xoffset; 
       endy <= mode1_endy + yoffset; 
       garbage_end_offset <= mode1_garbage_end_offset; 
      WHEN b"10" =>  
       end_of_char <= mode2_end_of_char; 
       startx <= mode2_startx; 
       starty <= mode2_starty; 
       endx <= mode2_endx; 
       endy <= mode2_endy; 
       garbage_end_offset <= mode2_garbage_end_offset; 
      WHEN OTHERS =>  
       end_of_char <= mode2_end_of_char; 
       startx <= mode2_startx; 
       starty <= mode2_starty; 
       endx <= mode2_endx; 
       endy <= mode2_endy; 
       garbage_end_offset <= mode2_garbage_end_offset; 
     END CASE;  
    END IF; 
   END IF; 
 
 
   IF ycounter_in = b"10010110100" THEN 
    IF doneEndOfFrame1 = '0' THEN 
     garbage_end <= startx + garbage_end_offset; 
    END IF; 
   END IF; 
  
   IF xcounter_in >= startx AND xcounter_in <= endx AND ycounter_in >= 
starty AND ycounter_in <= endy THEN  
 
    --==================== 
    -- Generate Outputs:  
    --==================== 
 
    --Green Outline on modes 0 and 1 Only  
    IF xcounter_in >= garbage_end THEN 
     IF mm_displayMode /= b"10" AND (xcounter_in = garbage_end OR 
xcounter_in = endx OR ycounter_in = starty OR ycounter_in = endy) THEN  
      redOutput_all <= b"00" & vgared_in(1 DOWNTO 0); 
      greenOutput_all <= b"111" & vgagreen_in(0); 
      blueOutput_all <= b"00" & vgablue_in(1 DOWNTO 0); 
     ELSE  
      IF data_buffer(7) = '1' THEN 
       redOutput_all <= b"00" & vgared_in(1 DOWNTO 0); 
       greenOutput_all <= data_buffer(7) & data_buffer(7) & 
data_buffer(7) & vgagreen_in(0); 
       blueOutput_all <= b"00" & vgablue_in(1 DOWNTO 0);  
      ELSE 
       redOutput_all <= b"00" & vgared_in(1 DOWNTO 0); 
       greenOutput_all <= data_buffer(7) & data_buffer(7) & vgagreen_in(1 
DOWNTO 0); 
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       blueOutput_all <= b"00" & vgablue_in(1 DOWNTO 0); 
      END IF; 
     END IF; 
  
    ELSE --If its in garbage display background. 
     IF mm_displayMode = b"10" THEN 
      redOutput_all <= b"00" & vgared_in(1 DOWNTO 0); 
      greenOutput_all <= b"00" & vgagreen_in(1 DOWNTO 0); 
      blueOutput_all <= b"00" & vgablue_in(1 DOWNTO 0); 
     ELSE 
      redOutput_all <= vgared_in; 
      greenOutput_all <= vgagreen_in; 
      blueOutput_all <= vgablue_in; 
     END IF;  
    END IF; 
  
    --====================== 
    --Timing and memory 
    --====================== 
  
    -- We've got 8 clocks to:  
    -- Load read address for next screen Memory 
    -- Save the output into CharAddr 
    -- Load the address of the character in charrom 
    -- Increment charCount 
    -- Save new data into buffer  
    -- Case for first ~8 counts of eightCounter 
    -- End of character count dependent on display mode 
  
    CASE eightCounter IS  
     WHEN b"00001" =>  
      readAddress_rom <= charCount;  
     WHEN b"00011" =>  
      charAddr <= dataOutRead_rom; 
      invert <= dataOutRead_rom(7); --bit 7 is whether to invert or not. 
     WHEN b"00101" =>  
      readAddress_rom <= (b"00" & charAddr(6 DOWNTO 0) & b"000") + 
charline; 
     WHEN b"00111" =>  
      IF charCount = CharMemEnd THEN 
       charCount <= CharMemStart; 
      ELSE --otherwise increase 
       charCount <= charCount + 1;  
      END IF;  
     WHEN OTHERS =>  
      --do nothing; 
    END CASE; 
 
    --If it hasnt just loaded new data, 
    IF eightCounter /= end_of_char THEN 
     eightCounter <= eightCounter + 1; --increment counter  
     IF bufferCounter = mm_displayMode THEN  
      data_buffer <= data_buffer(6 DOWNTO 0) & '0';  
      bufferCounter <= b"00"; 
     ELSE 
      bufferCounter <= bufferCounter + 1; 
     END IF; 
    ELSIF eightCounter = end_of_char THEN 
     --clear end of frame flags anywhere before end of frame 
     doneEndOfFrame <= '0'; 
     doneEndOfFrame1 <= '0'; 
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     doneEndOfFrame2 <= '0'; 
     eightCounter <= b"00001"; --Reset counter 
     IF invert = '1' THEN --invert flag, negate data. 
      data_buffer <= NOT dataOutRead_rom; -- grab new data  
     ELSE 
      data_buffer <= dataOutRead_rom; -- grab new data  
     END IF; 
    END IF;  
   ELSE 
    --If its out of visible area, display background 
    IF ycounter_in > endy THEN 
     lineCounter <= (OTHERS => '0'); 
     charline <= (OTHERS => '0'); 
     charCount <= topOfFrame; 
     lineStartAddr <= topOfFrame; 
     eightCounter <= (OTHERS => '0');  
    END IF; 
  
    IF mm_displayMode = b"10" THEN 
     redOutput_all <= b"00" & vgared_in(1 DOWNTO 0); 
     greenOutput_all <= b"00" & vgagreen_in(1 DOWNTO 0); 
     blueOutput_all <= b"00" & vgablue_in(1 DOWNTO 0); 
    ELSE 
     redOutput_all <= vgared_in; 
     greenOutput_all <= vgagreen_in; 
     blueOutput_all <= vgablue_in; 
    END IF;  
   END IF;  
  
  END IF; 
 
 END PROCESS; 
 
 shift_ack_out <= shift_ack; 
 
END Behavioral; 
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Appendix D 
Truncated kickstart.a64, showing relevant parts only 

 ; variables for task switching 
 
 .space ts_current_sector_byte 4 
 .space ts_dmalist 10 
 .space delayCounter 1 
 .space ts_sector_counter 2 
 
 ; make sure that we don't go past the 256 byte page reserved for 
hypervisor scratch space 
 ; 
 .checkpc $CEFF 
 
 

Truncated kickstart_task.a65, showing relevant parts only 

double_restore_trap: 
 ; Double tapping restore button triggers this trap  
 ; bump border colour so that we know something has happened 
 ; 
 lda $D020 
 inc 
 and #$0f 
 sta $D020 
 jsr sd_unmap_sectorbuffer ;so we can write to cia regs.  
 
 jsr ts_read_from_sd         
 
 ; return from hypervisor         
 sta hypervisor_enterexit_trigger 
  
; ======================== 
 
protected_hardware_config: 
 
 ; store config info passed from register a  
 lda hypervisor_a 
 sta $D672 
 
 ; bump border colour so that we know something has happened 
 ; 
 
 lda $D020 
 inc  
 and #$0f 
 sta $D020 
   
 sta hypervisor_enterexit_trigger 
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; ======================== 
 
matrix_mode_toggle: 
 
 
; Originally used to toggle Matrix Mode 
; Repurposed as 'save state' button for now.  
; Alt-tab to trigger this trap 
     
; bump border colour so that we know something has happened  
  lda $D020 
  inc  
  and #$0f 
  sta $D020 
 
  jsr sd_unmap_sectorbuffer 
  jsr ts_write_to_sd 
  
  sta hypervisor_enterexit_trigger 
  
; ======================== 
 
; Writes the next sector to SD card.  
 
write_next_to_sd: 
 
 
; bump border colour 
 lda $D020 
 inc  
 and #$0f 
 sta $D020 
 
; enable enhanced registers, idk if this is needed?  
 lda #$47 
 sta $d02f 
 lda #$53 
 sta $d02f 
 
; Next Sector 
 jsr next_sector 
 jsr set_sector 
; Next Address 
 jsr inc_address_write 
 
 
; Make sure SD is ready 
;jsr wait_for_ready 
 
; Start DMA transfer 
 jsr ts_initiate_dma 
 
; Start SD card transfer 
 jsr write_to_buffer 
 
; Increment the sector counter  
 jsr inc_sector_counter 
 
rts 
 
; ====================== 
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read_next_from_sd: 
; bump border colour 
 lda $D020 
 inc  
 and #$0f 
 sta $D020 
 
; Next Sector 
 jsr next_sector 
 jsr set_sector 
 
; Next Address 
 jsr inc_address_read 
 jsr inc_sector_counter 
 
; Start SD card transfer 
 jsr read_from_buffer 
 
; Start DMA transfer 
 jsr ts_initiate_dma 
 
rts 
 
 
; ====================== 
 
ts_read_from_sd: 
 
; zero sector counter 
jsr reset_sector_counter 
 
; reset SD card 
jsr sdreset 
jsr sd_unmap_sectorbuffer 
 
; set inital DMA values 
jsr ts_setup_read_address ; initalises DMA list for reading 
 
; read from SD card sector (write into the buffer) 
jsr read_from_buffer 
 
; start DMA transfer from buffer 
 jsr ts_initiate_dma 
 
; increment the sector counter 
 jsr inc_sector_counter 
 
tsr_loop: 
; if upper byte of sector counter is zero 
; check the lower byte of sector counter for sector 102 (103 skip) to skip 
lda ts_sector_counter+1 
and #$01 
beq checkLowerSector 
 
 
tsr_cont: 
 
jsr read_next_from_sd 
lda ts_sector_counter+1 
;RAM+ROM = ?262143? = 512 sectors 
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and #$08 ;stop @ sector ~400 768 512-1  
bne retr 
jmp tsr_loop 
 
;stop on exit 
pause_loop: 
jmp pause_loop; 
 
retr: 
jsr reset_sector_counter 
rts 
 
checkLowerSector: 
lda ts_sector_counter  
cmp #$67 ;Sector 102 (103)  
beq tsr_skip ;on zero go to skip 
jmp tsr_cont;  
 
tsr_skip: 
;Skips a single sector 
;increment sector, adress, etc.  
 jsr next_sector 
 jsr set_sector 
 jsr inc_address_read 
 jsr inc_sector_counter 
;jmp pause_loop 
jmp tsr_cont; 
 
 
 
; ====================== 
 
ts_write_to_sd: 
jsr reset_sector_counter 
jsr sdreset 
jsr sd_unmap_sectorbuffer 
jsr ts_setup_write_address ; initalise DMA list for writing  
jsr ts_initiate_dma ; initiate the DMA transfer 
jsr write_to_buffer ; initiate write to sd 
jsr inc_sector_counter 
 
;write loop 
tsw_loop: 
jsr write_next_to_sd 
lda ts_sector_counter+1 
and #$08 
bne retw ;branch if upper byte of counter reaches 8 (0000 1000 0000 0000 is 
2048) or maybe OBO error?  
jmp tsw_loop 
 
retw: 
jsr reset_sector_counter 
rts  
 
; ===================== 
 
init: 
jsr reset_sector_counter 
jsr sdreset 
jsr sd_unmap_sectorbuffer 
jsr ts_store_dmalist_init; 
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rts 
 
; =================== 
inc_sector_counter: 
 
lda ts_sector_counter 
clc      ;clear carry  
adc #$01 ;add one to counter low byte 
sta ts_sector_counter 
 
lda ts_sector_counter+1 
adc #$00 ;add the carry to low byte 
sta ts_sector_counter+1 
 
rts 
; ================== 
 
reset_sector_counter: 
lda #$00 
sta ts_sector_counter 
sta ts_sector_counter+1 
rts 
 
;==================== 
 
wait_for_ready: 
  lda $d680 
  and #$01 ;Bit test bit 0 
  bne wait_for_ready; 
rts 
 
; ====================== 
 
next_sector:  
;increment current sector bytes by 512: 
 
lda ts_current_sector_byte+1 
clc 
adc #$02 
sta ts_current_sector_byte+1 
 
lda ts_current_sector_byte+2 
adc #$00 
sta ts_current_sector_byte+2 
 
lda ts_current_sector_byte+3 
adc #$00 
sta ts_current_sector_byte+3 
 
rts 
 
; ========================= 
 
set_sector:  
  lda ts_current_sector_byte 
  sta sd_address_byte0 ; is $D681 --sd_sector(7 downto 0) 
  lda ts_current_sector_byte+1 
  sta sd_address_byte1 ; is $d682 --sd_sector(15 downto 8) 
  lda ts_current_sector_byte+2 
  sta sd_address_byte2 ; is $d683 --sd_sector(23 downto 16) 
  lda ts_current_sector_byte+3 
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  sta sd_address_byte3 ; is $d684 --sd_sector(31 downto 24) 
  rts 
  
; ========================= 
 
ts_setup_write_address: 
 
lda #$00 
sta ts_current_sector_byte 
sta sd_address_byte0 
lda #$84 
sta ts_current_sector_byte+1 
sta sd_address_byte1 
lda #$D7 
sta ts_current_sector_byte+2 
sta sd_address_byte2 
lda #$17 
sta ts_current_sector_byte+3 
sta sd_address_byte3 
 
lda #$00 ;DMA list bank (22-16 value(6 downto 0), zeroes addr(27 downto 23) 
sta $d702 
 
; Kickstart ROM is at $FFFE000 - $FFFFFFF, so DMA list is at $FF 
lda #$00 ;DMA list MB (27-20) 
sta $d704 
 
; Copy from MB $7F (7F00000-$00001FF First 512B of RAM) 
lda #$7F 
sta $d705 ;DMA src MB 
 
; Destination MB, also $FF because enhanced io RAM space ? 
lda #$FF 
sta $d706 ;DMA dst MB 
 
; Source Address | 
lda #$00  
sta ts_dmalist+3 ; lower byte 
lda #$00 
sta ts_dmalist+4 ; upper byte 
; Destination Bank 
lda #$00 ;   
sta ts_dmalist+5 
 
 
; map to static SD buffer @ FFD6000-FFD61FFF so mapping of colour ram 
; doesnt matter 
 
; Destination Address | ... to sd buffer at FF|D|3E00 ($DE00-$DFFF) 
;lda #$00  
;sta ts_dmalist+6 ; lower byte 
;lda #$3E 
;sta ts_dmalist+7 ; upper byte 
 
; Destination Address | ... to sd buffer at FF|D|6000 
lda #$00  
sta ts_dmalist+6 ; lower byte 
lda #$60 
sta ts_dmalist+7 ; upper byte 
 
; Destination Bank 
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lda #$0D ;   
sta ts_dmalist+8 
 
; copy + last request in chain 
lda #$00  
sta ts_dmalist 
 
lda #$00 
sta ts_dmalist+1 ; lower byte of copy size 
lda #$02 
sta ts_dmalist+2 ; upper byte of copy size 
 
; Modulo (not used, but I think needs to be zeroed) 
lda #$00 
sta ts_dmalist+9 
lda #$00 
sta ts_dmalist+10 
 
 
rts 
 
; ======================= 
 
ts_setup_read_address: 
 
lda #$00 
sta ts_current_sector_byte 
sta sd_address_byte0 
lda #$84 
sta ts_current_sector_byte+1 
sta sd_address_byte1 
lda #$D7 
sta ts_current_sector_byte+2 
sta sd_address_byte2 
lda #$17 
sta ts_current_sector_byte+3 
sta sd_address_byte3 
 
 
lda #$00 ;DMA list bank (22-16 value(6 downto 0), zeroes addr(27 downto 23) 
sta $d702 
 
; Kickstart ROM is at $FFFE000 - $FFFFFFF, so DMA list is at $FF 
lda #$00 ;DMA list MB (27-20) 
sta $d704 
 
; Source MB, also $FF because enhanced io RAM space ? 
lda #$FF 
sta $d705 ;DMA dst MB 
 
; Destination 
lda #$7F 
sta $d706 ;DMA src MB 
 
; Source Address | ... from sd buffer at FF|D|3E00 ($DE00-$DFFF) 
;lda #$00  
;sta ts_dmalist+3 ; lower byte 
;lda #$3E 
;sta ts_dmalist+4 ; upper byte 
 
; Source Address | ... from sd buffer at FF|D|6000 
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lda #$00  
sta ts_dmalist+3 ; lower byte 
lda #$60 
sta ts_dmalist+4 ; upper byte 
 
; Destination Bank 
lda #$0D ;   
sta ts_dmalist+5 
 
; Destination Address | ... to 7F|0|0000 
lda #$00  
sta ts_dmalist+6 ; lower byte 
lda #$00 
sta ts_dmalist+7 ; upper byte 
; Destination Bank 
lda #$00 ;   
sta ts_dmalist+8 
 
; copy + last reqest in chain 
lda #$00  
sta ts_dmalist 
 
lda #$00 
sta ts_dmalist+1 ; lower byte of copy size 
lda #$02 
sta ts_dmalist+2 ; upper byte of copy size 
 
; Modulo (not used, but I think needs to be zeroed) 
lda #$00 
sta ts_dmalist+9 
lda #$00 
sta ts_dmalist+10 
 
 
rts 
 
 
; ========================= 
 
 
ts_initiate_dma: 
 
lda #>ts_dmalist 
sta $d701 
; set bottom 8 bits of address and trigger DMA. 
lda #<ts_dmalist 
sta $d700 
 
rts 
 
 
; ======================= 
 
write_to_buffer: 
;Assuming buffer has data to be written 
;and D681-D684 is set to correct sector 
 
lda #$03 
sta $d680 
jsr wait_for_ready 
 



 

94 
  

rts 
 
; ======================== 
 
read_from_buffer: 
 
lda #$02 
sta $d680 
jsr wait_for_ready 
rts 
 
; ======================== 
 
;re-write this like the inc_address_read below. but this still works.  
 
inc_address_write: 
; Increment Source Address, byte 1, byte 2, and bank 
; Byte 1: ts_dmalist+3 - Lower Byte 
; Byte 2: ts_dmalist+4 - Upper Byte 
; Byte 3: ts_dmalist+5 - Bank 
 
;increment byte 2 
addw_inc_b2:   
inc ts_dmalist+4 
inc ts_dmalist+4 
beq addw_inc_b3 ;if byte2 result is zero (overflow) 
rts 
 
;increment byte 3 
addw_inc_b3:   
inc ts_dmalist+5 
rts 
 
 
 
 
; ====================== 
 
inc_address_read: 
; Increment Dest Address, byte 1, byte 2, and bank 
; Byte 1: ts_dmalist+6 - Lower Byte 
; Byte 2: ts_dmalist+7 - Upper Byte 
; Byte 3: ts_dmalist+8 - Bank 
 
lda ts_dmalist+7 
clc 
adc #$02 
sta ts_dmalist+7 
 
lda ts_dmalist+8 
adc #$00 
sta ts_dmalist+8 
 
rts 
 
; ====================== 
ts_store_dmalist_init: 
;Address set to scratch space @400M  
;Initialise SD controller sector bytes  
 
lda #$00 
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sta ts_current_sector_byte 
sta sd_address_byte0 
lda #$84 
sta ts_current_sector_byte+1 
sta sd_address_byte1 
lda #$D7 
sta ts_current_sector_byte+2 
sta sd_address_byte2 
lda #$17 
sta ts_current_sector_byte+3 
sta sd_address_byte3 
 
;Initalise DMA list  
 
lda #$00 ;DMA list bank (22-16 value(6 downto 0), zeroes addr(27 downto 23) 
sta $d702 
 
; Kickstart ROM is at $FFFE000 - $FFFFFFF, so DMA list is at $FF 
lda #$00 ;DMA list MB (27-20) 
sta $d704 
 
; Copy from MB $7F (7F00000-$00001FF First 512B of RAM) 
lda #$7F 
sta $d705 ;DMA src MB 
 
; Destination MB, also $FF because enhanced io RAM space ? 
lda #$FF 
sta $d706 ;DMA dst MB 
 
; copy + last reqest in chain 
lda #$00  
sta ts_dmalist 
lda #$00 
sta ts_dmalist+1 ; lower byte of copy size 
lda #$02 
sta ts_dmalist+2 ; upper byte of copy size 
; Source Address | copy from start of RAM at 7F|0|0000 
lda #$00 
sta ts_dmalist+3 ; lower byte 
lda #$00 
sta ts_dmalist+4 ; upper byte 
; Source Bank 
lda #$00 
sta ts_dmalist+5 
; Destination Address | ... to sd buffer at FF|D|3E00 ($DE00-$DFFF) 
lda #$00  
sta ts_dmalist+6 ; lower byte 
lda #$3E 
sta ts_dmalist+7 ; upper byte 
; Destination Bank 
lda #$0D ;   
sta ts_dmalist+8 
; Modulo (not used, but I think needs to be zeroed) 
lda #$00 
sta ts_dmalist+9 
lda #$00 
sta ts_dmalist+10 
 
rts 
 
;==================== 
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Appendix E 
Source code is available at: https://github.com/Kirb0031/mega65-core  

 

 

 

 

 

 

  

https://github.com/Kirb0031/mega65-core
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