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Abstract 

In modern industries, most systems are constructed by multiple components with different 

functionalities. Only when all components function as they are designed to be, the system can 

perform effectively. Once a fault exists in the system, it may cause productivity deterioration or even 

system failure. The goal of this project is to fulfil fault detection and diagnosis (FDD) for additive 

faults on a vibration isolation system. In this project, FDD processes based on the parity relation 

technique for a multiple-input multiple-output (MIMO) vibration control of a mechanical structure is 

designed and examined. 

 

A top plate bonded with three feet on a base plate, which forms a three-input three-output system, 

is used in this project to demonstrate the design of the FDD process. The control goal is to keep the 

top plate vibration free while the base plate is shaken consistently by a disturbance signal. By 

introducing different fault cases into the system, the control performance of the previously designed 

positive position feedback may not provide the best control results. Therefore, identifying when and 

where the fault occurs becomes essential for the fault accommodation. 

 

A system identification study is conducted to experimentally obtain the mathematical model of the 

plant (i.e., the top plate together with the sensors and actuators attached to the plate).  The transfer 

function matrix of the plant is then acquired through curve fitting techniques. Based on the design 

criteria of parity relation, the transfer function matrix is used to produce the state-space 

representation (SSR) of the plant that is further converted into the discrete-time form. 

 

FDD process is a significant feature in fault tolerant control architecture. The FDD processes 

designed in this thesis are based on the parity relation technique, which is a popular mode-based 

fault detection technique that uses the residual as a fault indicator. When a discrete system is fault 

free, the designed residual of the system should be stable and close to zero in value. However, when 

a fault is introduced into the system, the residual will alter to indicate that there exists error(s) in the 

system. The core part of the parity relation technique is to design a parity vector which can eliminate 

the effects of the unknown state X(𝑡). The corresponding residuals can reflect whether the system 

works in a fault free condition or not. To detect fault, firstly one will need to define an order s of the 

parity space, which affects the performance of the FDD process. Secondly, the parity vector 𝑽𝒔 in 

this parity space will be designed based on the condition:  𝑽𝒔 ∗ 𝑯 = 0, where 𝑯 is a deterministic 
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matrix associated with the state 𝑿(𝑡). The designed residual 𝑹(𝑡) is calculated based on the 

measurable system input 𝑼(𝑡) and output 𝒀(𝑡), and is not affected by the state 𝑿(𝑡).  

 

Using the parity relation technique, FDD processes respectively for a SISO system case and a MIMO 

system case are designed and validated through MATLAB Simulink. Firstly, a random system is 

chosen and is injected with a pre-defined single fault. Simulation studies are carried out to show that 

the parity residual value corresponding to the fault indeed changes from zero to non-zero, which 

validates the design principle of the parity relation technique. Secondly, the designed parity relation 

method is implemented to the plant model. Simulation results show that the used parity relation 

technique is able to theoretically detect pre-defined faults for the plant.   

 

Upon the validation of the used parity space technique, an actuator-and-sensor fault isolation is 

implemented through designing different parity vectors 𝑽𝒔. A set of structured residuals are 

generated where each residual is sensitive to all faults apart from one corresponding fault. The 

corresponding fault will then be located through a designed fault-code table. To carry out the fault 

isolation examinations, studies on isolating individual sensor faults among the three sensors of the 

plant are first conducted, and the corresponding scenarios are implemented in MATLAB Simulink. 

Simulation results show that the set of designed residuals has an excellent performance in detecting 

single sensor faults in the real plate system. A similar procedure is arranged for the isolation of 

individual actuator faults among the three actuators of the plant. However, simulation results reveal 

that the effect of the actuator fault isolation is not as clear as that of the sensor fault isolation. Due 

to the existing physical properties of the given plant, the parity vectors designed respectively for 

Actuator 2 fault and Actuator 3 fault of the given plant appear to be very close to each other. This 

leads to the difficulties in clearly distinguishing the responses of these two residuals. It is anticipated 

that further modification of the designed parity vectors that can take into account the existing 

physical properties of the given plant may produce a more reliable FDD process applicable to all 

types of individual actuator faults effectively. 

 

In conclusion, the studies carried out in this thesis have proven that in principle, the parity relation 

technique can be implemented on a MIMO vibration cancellation system successfully for additive 

faults’ detection and diagnosis. Comparing with other methods, the implementation of the FDD 

processes using the parity relation technique is simple and flexible. Using the proposed FDD 

processes, the sensor or actuator fault occurrences of the given plant can be effectively detected. 

Furthermore, the individual fault among the three sensors of the given plant can be diagnosed 
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successively. Although the proposed method can only provide partial individual fault diagnoses 

among the three actuators of the system due to the physical properties of the given plant, the 

general concept of the design is verified via a specific actuator fault scenario. Future work includes 

the modification of the proposed FDD process design method to enable it to diagnose all individual 

actuator faults successfully, and to be physically implemented to the real laboratory experimental rig 

of the given plant. 
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Chapter 1 : Introduction 

The goal of this project is to implement fault detection and diagnosis (FDD) for additive faults on a 

vibration isolation system. In order to achieve the goal, the brief introduction of the study is 

concluded. This chapter briefly states the motivation of the study and provides a basic knowledge of 

the vibration isolation system. Furthermore, the methodology of fault detection and diagnosis is 

introduced. Finally, the outline of this thesis is summarized.  

1.1 Motivation 

Safety is the priority for numerous projects, especially for those systems with high-risk or relating to 

human’s life, such as public transportation including aviation, railway and shipping, military 

equipment and aerospace industry.  Sometimes, a tiny fault may lead to irretrievable consequences, 

such as enormous economic cost and severe casualties.  It is well known that on July 4, 1996, the 

Ariane 5 rocket exploded after launching. The investigative result showed the reason of this aviation 

accident is that faulty Inertial Reference Unit produced incorrect measured data to the control 

system [1].    

Therefore, the main motivation of the study about fault detection and diagnosis is to avoid the 

negative effects of faults and keep property and human safe. With the development of technique, 

fault detection (FD) methods also evolve to suit the requirements of modern industries, from simple 

hardware redundancies to complex analytical redundancies, from slow detection to fast detection 

and from few fields to various industries. 

Consequently, FDD plays a crucial role in modern industrial field. This study aims to design a fault 

detection and diagnosis (FDD) scheme using parity relation technique on a vibration cancellation 

system which has been widely used in many industries and is introduced in next section.     

1.2 Vibration Control 

Vibration widely exists in nature environment, and all the objects are vibrating with specific 

frequencies. According to this character, people invented various musical instruments, whereas 

vibration also brings many demerits. In many early studies, a number of scientists interested on the 

resonance phenomenon as it resulted in negative effects on human development. One of the most 

well-known accident caused by resonance is the collapse of Tacoma Narrows Bridge in 1940 [2]. 

Besides, modern industries require high-precise control systems to produce accurate products. 

However, the extensive unwanted vibration always makes system difficult or unable to achieve its 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.0.0/resultui/dict/
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goal and even results in system failures, therefore, a vibration-free platform is required. Hence, to 

overcome the influence of vibration, vibration control and vibration cancellation attract many 

engineers’ interest. Furthermore, vibration isolation systems are widely used in many fields of 

engineering, particular in the field of earthquake engineering to lessen seismic impacts on buildings 

and other structures.   

The topic of vibration control usually involves passive control, active control and hybrid control that 

means both passive control and active control are used together. Initially, passive control is to utilize 

the natural characters of the materials and some specific structures to absorb the energy of 

vibration and reduces the damage brought by external force to the system, such as vibration 

dampers and absorbers [3]. An obvious disadvantage of passive control is that it has low- frequency 

resonance problem and another problem is that it needs a system with large size and huge weight, 

which does not match the requirements of plenty of modern industries[3]. However, active control 

can provide a force that is equal but opposite to the force imposed by external vibration [4]. Active 

vibration control can cancel vibration at any frequency and has a relatively shorter setting time. 

Besides, it is easy to install and duplicate for any project, and the relatively smaller size and weight 

makes it use in some projects flexibly with constrains on space and weight.  

This study concerns on vibration cancellation using active control, a laboratory model is designed to 

reduce the external vibration through three actuators. The details of this study are illustrated in next 

Section 1.3. 

1.3 Laboratory Model Specification 

A real plate structure is constructed to imitate a vibration cancellation platform in Flinders control 

laboratory. As shown in Figure 1.1, the laboratory model is comprised of a base plate, a top plate, 

three accelerometers (namely, S1, S2, S3 respectively), four transducers (namely, T1, T2, T3 and T4 

respectively). The first three transducers act as actuators to keep the top plate vibration-free and 

the T4 generates external disturbance to vibrate the whole structure. On the base plate, the four 

transducers are positioned at predefined location and the top plate is fixed on top of the first three 

transducers by screws. On the top plate, three accelerometers are mounted at the same positions 

with T1, T2 and T3. After applying a variant periodic voltage to the fourth actuator, the whole 

structure including the top plate will vibrate.   

The goal of this structure is to eliminate the vibration of the top plate and keep it vibration-free 

while the external disturbance persistently exists. However, once one sensor or actuator cannot 

work properly, the control performance will deteriorate, or even destabilizes the system. 
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Hence, when a fault occurs, in order to maintain the system works successfully, a fault detection and 

diagnosis (FDD) subsystem should find the fault and identify the type and location of the fault. Then, 

the current controller is replaced by a new controller which can eliminate the negative effect of the 

fault and keep the system working at an acceptable performance. The main scope of this study is to 

implement FDD processes using on this vibration cancellation system. The knowledge of FDD is 

introduced in the next section. 

 

Figure 1.1: Laboratory model used in this vibration cancellation project 

1.4 Methodology 

In order to eliminate the negative effects of a fault, it is required that faults have to be detected as 

quickly as possible and the corresponding measures should be taken to correct the faults and 

maintain the system work successfully.  This is known as fault tolerant control which usually contains 

two tasks [5]: 

 Fault detection and diagnosis:  The aim of the task is to detect whether a system has any 

fault and further identify the fault. 

 Fault accommodation: Upon the information obtained in first step, an adjusted controller 

will replace the old one in this step so that the system cannot be affected by faults and work 

properly. 

The structure of fault tolerant control of an open loop system is described in Figure1.2. On the 

supervision level, the block ‘Diagnosis’ and the block ‘Fault Accommodation’ stand for the two tasks 

of fault tolerant control respectively. The diagnostic block utilizes the mathematical model and the 

information of known input and output to detect a fault and identify the fault, and then sends the 

fault information to fault accommodation block. This block will modify the controller parameters or 

 T2 
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choose pre-designed controller from controller library according to the fault information [5].  On the 

execution level, when the system is fault-free, the nominal controller can ensure the system meet 

the requirements of engineers and minimize the effect of disturbance at the same time.  If a fault 

appears in the system, it will cause the system state differ from the fault-free state. Then, the 

diagnostic block will identify the fault and the fault accommodation block can provide a new 

controller to eliminate the impact of the fault on the system and maintain the system with satisfied 

performance [5]. 

 

Figure 1.2: Structure of fault tolerant control [5].  

1.5 Thesis Outline 

In this thesis, the fault detection and diagnosis processes for a vibration cancellation system are 

realized via parity relation technique. The thesis outline is as follows: 

In Chapter 2, an overall literature review about fault detection and diagnosis is given. The history of 

techniques used for fault detecting and diagnosis are summarized. The advantages and 

disadvantages of both hardware redundancy and software redundancy are illustrated.  Furthermore, 

some important mode-based techniques, such as Kalman filter, BJ filter and parity relation are 

introduced and compared, including their merits and demerits, applications and so on. 

In Chapter 3, the physical structure and vibration cancellation system setup are described and the 

aim of system identification is achieved, especially the state space representation which plays an 

important role in implementation of fault detection and isolation. 

In Chapter 4, the design principles of FDD using parity relation method are presented. Firstly, fault 

detection method is illustrated, and then the selection of parity space order is analyzed.  Lastly, 

validations of parity relation technique on SISO and MIMO systems are designed and evaluated 

separately via using  MATLAB Simulink. 
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In Chapter 5, the simulation are proposed regarding to sensor fault and actuator fault. The 

simulation results are demonstrated and the performance of FDD using parity relation method is 

analysed and discussed.  

In Chapter 6, the conclusion of this project is drawn. The problems encountered in this study are 

analysed and summarized. Besides, some advisable suggestions about future work are presented. 
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Chapter 2 : Literature Review 

This chapter critically reviews contemporary literature concerning fault detection and diagnosis 

(FDD). Sometimes, it can be ignored that a minor fault occurred in one component. However, it may 

result in irreversible damage to the whole system if it accumulates or propagates in the system. This 

is why FDD becomes so considerable. Therefore, many researchers concentrate on developing FDD 

and figure out many methods or application in various fields. These methods can be basically 

summarized into two categories: hardware redundancy and software redundancy (also known as 

analytical redundancy). Firstly, the history of fault detection (FD) is introduced. Then, the features of 

hardware redundancy and software redundancy are outlined and compared with each other. Finally, 

this chapter will review several popular methods of analytical redundancy and their applications. 

2.1 Fault  

In modern society, the increasing enterprises require large-scale technological processes to produce 

highly-integrated products or high-precision products [5]. To achieve these purposes, these 

production lines must be equipped many different components and subsystems that are designed to 

fulfil certain tasks. Obviously, the availability and reliability of all the components and subsystems 

will determine the performance of the whole production line. This can be illustrated by numerous 

examples. Electricity plays a crucial role in people’s daily life as well as in industrial production. The 

power grid has millions of components which transform and distribute electricity to match the 

requirements of users, whereas, a single fault may lead to major effects on wide areas, even result in 

damage to electric appliances. Similarly, in manufactory, many different machines and tools 

collaborate to produce qualitied products, and strict regulations are implemented to prevent faults 

damaging the machines and humans. Overall, a fault can be defined as something unwanted that 

causes negative impacts on a system, so that the system cannot achieve its goal [6].  

Generally, faults are classified as additive faults and multiplicative faults in a time-varying system.  

Additive faults are considered as an unknown input of the system and do not change the original 

system model. The influences of additive faults are added into the system through the system 

model. Usually, additive faults contain sensor faults, actuator faults and some component faults and 

these types of faults just alter the system responses. However, multiplicative faults will change the 

system parameters which multiply with the inputs or system state variables [7]. For instant, the 

structure of a system is changed or the mass of a physical plant alters, which are thought as 

multiplicative faults. Moreover, disturbances and model errors act on a system like faults and lead to 

similar effects. In common, disturbances can be represented as unknown inputs added on the 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.0.0/resultui/dict/
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system, but model errors can change the system parameters and act on the system like 

multiplicative faults.  For this study, only sensor fault and actuator fault are analysed due to the 

limitation of time and the requirements of this project. 

2.2 Fault Detection History 

The concept of fault detection and isolation was widely used in computer field, large-scale 

integrated circuits and system control  fields to detect and deal with logic fault in the 1970s’  [8]. 

Take the aviation as an example, some early studies in the area generally mentioned that in order to 

get the improved performance of airplane, such as dragging reduction and saving fuel, the more 

complex and accurate control technique including wings control and failure detection, were 

researched [9].  

Meanwhile, many methods are not suitable for the rapidly developing control system. For instance, 

one of the traditional fault indication methods usually checks the limit of some important variables 

or analysis of particular signals, and it sets a threshold value regarding tolerances of the normal 

value [10]. If the value monitored exceeds the pre-set threshold, the system will indicate a fault 

happened. However, by using this method, some fault likes abrupt change or accumulated fault 

cannot be found immediately. Meanwhile, with the development of computer science and state 

space theory, the analytical redundancy method attracted more attention and became the main 

stream in 1980s’ and developed with two branches: mode-based techniques and signal- based 

techniques (or data-based techniques)[11].  

2.3 Hardware Redundancy and Software Redundancy 

In engineering, hardware redundancy means to duplicate or triplicate some crucial components or 

functions to prevent a system failure and improve the performance [12]. This technique is mostly 

used in many safety-critical systems, such as emergency stop system, uninterruptible power supply 

and aircraft control system. Obviously, hardware redundancy has perfect reliability. Comparing to 

software redundancy (introduced later), hardware redundancy is naturally more stable, and it is the 

last-wall to protect the system and avoid further destruction in many life-relevant applications. 

Besides, it can be implemented and maintained easily and quickly, which is relatively suitable for 

some large projects or critically important subsystems. 

Based on many practical experiences, engineers gradually found that due to the constraints of space, 

weight and cost, hardware redundancy could not achieve the requirements of investigators in small-

scale projects. Since 1980s’, with the emergence of advanced control system theory, the software 

redundancy (or analytical redundancy) has replaced the position of hardware redundancy in many 
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projects and become the main stream [13, 14]. Compared with hardware redundancy, analytical 

redundancy has been more widely used in different industries as it has many advantages: 

 Cost-competition: It dramatically reduces the cost of projects. 

 Flexibility: It is easy to duplicate and applied to other similar projects. Besides, evolution of 

current project is convenient to be implemented.  

 Wide applications: It is the best choice when hardware redundancy unavailable or 

restrained.    

Similarly, analytical redundancy also has some demerits. Initially, it is vulnerable to environmental 

noise or disturbance. Furthermore, it is based on the information of plants, so the modelling error or 

measure error should not be ignored [13].  For some complex system, robustness and sensitivity are 

hardly controlled, so there is a trade-off between the performance and stability. Hence, according to 

the system requirement and practical limits, different methods are suitable for different projects. In 

the next section, some methods will be involved and analysed.     

2.4 Model-based Methods 

Since 1980s’, advanced control theory has brought powerful techniques for mathematical modelling 

and system identification, with progresses of computer technology. For mode-based technique, the 

base of this technique is to use an precise mathematical model to replace the physical plant [11].  

Figure 2.1 depicts the main schematic of model-based fault diagnosis. The system consists of four 

parts: Actuator, Process, Sensor and Controller. The involved faults include actuator fault 𝑓𝑎, process 

fault 𝑓𝑐 and sensor fault 𝑓𝑠. The diagnosis algorithm is to carry out a residual by using input u and 

output y and check the consistency of the residual of the real-time process against the prediction of 

a healthy system [13], and make the decision upon the diagnosis result. In the next three 

subsections, three main model-based methods are introduced and compared; especially the 

development of parity relation technique is highlighted.  
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Figure 2.1: The main schematic of model-based fault diagnosis (adapted from [7]). 𝑉 is the reference 
command, 𝑈 is the input signal and Y is the measured output signal. 𝑓𝑎 , 𝑓𝑐 and 𝑓𝑠 are actuator fault 

signal, component fault signal and sensor fault signal, respectively. 

2.4.1 Kalman Filter  

Kalman Filter, an excellent linear filter, has a numerous application in science such as navigation, 

vehicle control and signal process, and can be used to detect a variety of fault in linear system, 

especially for the sensor fault. Besides, Kalman filter has been developed into a number of kinds: 

Extended Kalman Filter, Unscented Kalman Filter and Hybid Kalman Filter, which tremendously 

extend the applications of Kalman filter. For instance, NASA’s Advanced Detection, Isolation, and 

Accommodation (ADIA) Program investigated how to use a bank of Kalman filter to deal with sensor 

failure [15]. In [16], Takahisa. K and Donald. L.S used a set of Kalman filters to detect and isolate 

aircraft gas turbine engine sensor and actuator fault and components faults. They also applied 

hybrid  Kalman filter for aircraft engine in-flight diagnosis [17]. 

It is common that Kalman filters and its family members have played a crucial role in linear and non-

linear estimation, and the aircraft and spacecraft control. However, some flaws should be pointed 

out in the practical utilities. Firstly, Kalman filter is based on the linear transfer function of the 

control system, and it requires the precise mathematic model of the plant to predict system states. 

This requirement strictly restrains Kalman filter’s application, particularly for some systems that the 

transfer functions are not available. Secondly, a basic step of Kalman filter operation is to introduce 

a Gaussian noise variable to approximate the real trajectory. During updating, this can result in 

inevitable errors and worse performance [18].       

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.0.0/resultui/dict/
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2.4.2 BJ Filter 

The BJ filter, also known as Beard-Jones Detection Filter, is one kind of diagnostic observer. Beard 

[19]and Jones [20] respectively described a scheme for system fault detection in 1970s.  This 

detection filter originates from Luenberger observer and can detect and isolate the occurrence of 

faults in systems via imposing a directional constraint on the residual. In [21, 22] a geometric 

interpretation and a spectral approach of BJ filter are developed respectively.  BJDF is extended to 

uncertain system in [23]. Besides,[24] presents two FD observer design methods to achieve multiple 

and simultaneous fault isolation and improve robustness to structural uncertainties. The residuals 

can fulfil disturbance decoupling and output direction to pre-defined fault. For Gaussian white noise 

affected system,  [25] shown detailed analysis of noise response and proposed an optimal procedure 

using the error covariance. 

2.4.3 Parity Relation 

As one of the main implement of analytical redundancy, parity relation directly reflects the basic 

concept of analytical redundancy. The residuals are the difference between the real output of 

physical system and the prediction of system model. In general, the residuals are zero or a near zero 

pattern in the absence of fault and nonzero if a fault occurs. Through mathematic transformation 

the researchers can find out residual generator and finally carry out the fault detection and isolation 

properties [26].  

The early studies show that the parity relation technique is closely related with aerospace industry, 

using transfer function and state space forms[26]. These ideas described by several author and their 

colleagues [8, 9, 27]. Gertler made a great contribution in fault detection and isolation with 

analytical redundancy. Firstly, Gertler in 1988 in [11] outlined some normal techniques to the 

problem of FDD, such as limit checking, installation of special sensors, physical redundancy, 

frequency analysis and Expert system approach, and presented the general structure of model-

based methods. More importantly, he discussed three different ways of generating residual, input-

output residuals, state-space residuals and identification-based methods. Finally, he stated the 

importance of isolation, sensitivity and robustness, and how to improve the sensitivity and 

robustness. After that, Gertler in [27] developed the parity equation-based FDD method, in which 

parity relation method was explained particularly with equations and some examples. This method 

can be applied to detect single additive fault with some robustness, however, for parametric fault or 

multiple fault, it is useless and the efficiency also needs to be improved, some research should be 

done to deal with complex situation. In 1997, Gertler shown the equal relation between parity 

relation and residual generator that parity relation can be used for describing any linear residual  
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generator, and residual enhancement for fault isolation that includes three schemes: diagonal 

residuals, directional residuals and structured residuals, and successfully extended from single fault 

to multiple fault. In this paper, parity relation method is respectively used for detecting additive 

faults and parametric faults[26]. The latter utility is also known as “Chow-Willsky scheme”, which is 

relied on state-space system description and firstly revealed by Chow and Willsky in [28]. Similarly, 

[29] compared the residuals based on parity relation and residuals based on observer and stated 

that both of them are constructed in the same way.   

Besides, parity relation FDD technique has been developed into many branches to improve detection 

performance or extend its applications. [30] derived the characteristics of all parity vectors, 

constructed a relationship between the dimension of the parity space and the order of the parity 

relations, and developed a Matlab toolbox which can prove the fact that the large order of parity 

relations may increase the reliability and robustness. [31] presented the methodology of parity 

relations FDD on linear parameter varying system and demonstrated an example based on a vehicle 

lateral dynamics model. [32] proposed a fault detection scheme using parity space technique for 

LDTV system, and shown the heavy computational burdens if the parity space order becomes large. 

Finally, through Krein space projection, the computation cost is reduced via introducing recursions.  
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Chapter 3 : System Identification 

In this chapter, the method to model the physical system mathematically is described. Firstly, 

experimental setup of the laboratory structure is introduced. Then ModalVIEW, a modal analysis 

software, is used to model the real system via recording the frequency response function (FRF) of 

the plate as well as the parameters of the transfer functions, including natural frequencies, damping 

ratios, and mode shpes 1. Lastly, for the purpose of the FDD design, the transfer function matrix of 

the MIMO system is converted into state-space representation (SSR) systematically.  

3.1 Laboratory Plate Structure Setup  

The physical model used for this study has been introduced in Chapter 1. This section states the 

connections of every component in order to model the system mathematically. The hardware 

connection of the whole system is described in Figure 3.1[34]. 

The details of the main components in Figure 3.1 are listed as follows: 

 NI DAQ module: The DAQ 9234 module is utilized to acquire vibration signals on the plate 

structure. Channel 0 is linked with input exciting signal and Channel 1 to Channel 3 are 

connected to 3 response signals of the three transducers respectively through 

accelerometers (model number: 353B17). The Software ModalVIEW uses all the signals from 

four channels to generate frequency response function (FRF) curve of the three transducers 

[35]. 

 Signal generator: It constantly provides an amplified sinusoidal signal to the disturbance 

transducer that result to vibration of the structure. To mimic a real external disturbance, the 

sine signal has fixed magnitude, but variable frequency that increases from 20 Hz to 60Hz 

within 10 seconds. When modelling the structure through ModalVIEW, it also provides the 

same signal to each transducer as input signal. The details are discussed in Section 3.3. 

 

                                                           
 

 

1
 Mode shape:  In vibration analysis, vibration can be describes by combination of modes. A normal mode of a 

system is a pattern of motion. Modes are determined by the physical property of a structure. A mode of 
vibration can be described by a modal frequency and a mode shape. [33] R. D. Blevins and R. Plunkett, 
"Formulas for natural frequency and mode shape," Journal of Applied Mechanics, vol. 47, p. 461, 1980. 
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Figure 3.1: The hardware connection of the whole system 

 Current amplifier: As the output signals from accelerometers are too small, the current 

amplifier filters and enlarges the accelerometer signals 100 times in order to avoid losing 

accuracy.  

 Interface board: the interface board connects the transducers with the A/D modules and 

D/A modules of dSPACE together. The function of the interface board is to isolate the 

induced voltage of transducers before measuring and ensure they can be measure 

accurately.  

 dSPACE: the abbreviation of ‘Digital Signal Processing and Control Engineering’. It is a 

powerful tool used in engineering. It includes the software dSPACE and the hardware 

DS1103 PPC controller board used in this study. DS1103 PPC controller board contains a set 

of Analog-to-Digital (A/D) and Digital-to-Analog (D/A) channels, digital I/O ports, and a serial 

interface. 

3.2 Multivariable System Identification 

The mechanical structure used in this study can be represented by a multi-input multi-output 

(MIMO) system, actually a three-input three-output system. However, to control the system 
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precisely, the mathematical model of a physical system is required, which can monitor and predict 

the status of the physical system conveniently [36].  

In [37], the author presented a numerical analysis method with the software ANSYS and MATLAB, 

and carried out the transfer function through ANSYS modal analysis. Nevertheless, the accuracy of 

the model obtained through this method is not good enough because of limitation on the accuracy 

of the software. This project uses the physical experiment method to figure out the mathematical 

model. As described in Chapter 1, the software ModalVIEW is used to drive the open-loop transfer 

function in this study, which can quickly obtain the accurate natural frequency, damping ratio and 

mode shape of each mode.  

ModalVIEW generates the frequency response functions (FRF) of the system for each pair of input-

output signals through physical experiment. Then, a multiple-degree-of-freedom polynomial curve 

fitting method is applied to each of the measured FRF curves to calculate the corresponding transfer 

function [35]. After that, the acquired transfer functions are combined to form the system transfer 

matrix 𝑮(𝑠), which is shown in Equation (3.1). Reference [35] precisely stated the procedure how to 

implement through ModalVIEW and lay solid foundation for further research. 

3.3 State-space Representation Derivation 

The general input-output representation of a MIMO system in s-domain [34] is expressed as: 

𝒀(𝑠) = 𝑮(𝑠) ∗ 𝑼(𝑠)                                               (3.1) 

Since the physical model used in this study is a three-input three-output system, one has:  

𝒀(𝑠) =     [

𝑦1(𝑠)
𝑦2(𝑠)
𝑦3(𝑠)

]                𝑮(𝑠) = [

𝐺11(𝑠)  

𝐺21(𝑠)  

𝐺31(𝑠)  

𝐺12(𝑠)  

𝐺22(𝑠)  

𝐺32(𝑠)  

𝐺13(𝑠)  

𝐺23(𝑠)  

𝐺33(𝑠)  
] 

𝑼(𝑠) = [

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]               

where  𝑢1, 𝑢, 𝑢3 stand for three input signals and 𝑦1, 𝑦2, 𝑦3 represent three output signals. 

Therefore, Equation (3.1) becomes: 

    [

𝑦1(𝑠)
𝑦2(𝑠)
𝑦3(𝑠)

] = [

𝐺11(𝑠)  

𝐺21(𝑠)  

𝐺31(𝑠)  

𝐺12(𝑠)  

𝐺22(𝑠)  

𝐺32(𝑠)  

𝐺13(𝑠)  

𝐺23(𝑠)  

𝐺33(𝑠)  

] ∗ [

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]                                       (3.2) 
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Since the studied system is a linear system, each component of the transfer matrix 𝐺(𝑠) can be 

expressed by the sum of  n second-order systems as follows: 

𝐺𝑖𝑗(𝑠) = ∑ (
𝜑𝑖𝑗
𝑘

𝑠2+2𝜁𝑖𝑗
𝑘𝑤𝑖𝑗

𝑘+𝑤𝑖𝑗
𝑘 2

𝑛
𝑘=1 )                                                       (3.3) 

where 𝑖, 𝑗, and k represent the 𝑖𝑡ℎe  output, the 𝑗𝑡ℎ input and the 𝑘𝑡ℎ mode respectively [34]. For a 

second-order system, ζ is the damping ratio, w is the natural frequency and 𝜑𝑖𝑗
𝑘  is the product of 

mode shape𝜑𝑖
𝑘  and mode shape 𝜑𝑗

𝑘 [34]. The number n should be infinite in practice, however in 

this study, 𝑛 is set to be three since only the first three modes are taken into consideration. The 

reason why the transfer function is truncated into only three modes is that in this experiment, the 

first three modes impose the dominant impacts on the system performance and the effects of high-

frequency vibration can be ignored. In [35], the idea of simplification has been proved via the 

comparison of truncated model and complete model. Hence, every term of 𝐺𝑖𝑗(𝑠) is a sum of three 

transfer functions of second-order systems which stand for the three modes respectively.  

Take  𝐺11(𝑠) as an example,  

𝐺11(𝑠) =
𝜑11
1

𝑠2+2Ϛ11
1 𝑤11

1 𝑠+𝑤11
1 2 +

𝜑21
2

𝑠2+2Ϛ21
2 𝑤21

2 𝑠+𝑤21
2 2 +

𝜑31
3

𝑠2+2Ϛ31
3 𝑤31

3 𝑠+𝑤31
3 2                             (3.4) 

In order to implement FDD, the state-space representation of the mechanical structure is required. 

The transfer function matrix is re-combined according to the number of mode 𝑘. The details of 

derivation is explicitly explained as below. It is noted that only the first three modes are considered 

and analysed.   

Firstly, rewrite the transfer function matrix of this system according to the mode number 𝑘. Derive 

the transfer function for output 𝑦1(𝑠) regarding to the three modes.  

𝑦1(𝑠) = 𝑦1
1(𝑠) + 𝑦1

2(𝑠) + 𝑦1
3(𝑠) = ∑ [𝑦1

𝑘(𝑠)]3
𝑘=1                                          (3.5) 

where 𝑘 stands for the mode number, ranging from 1 to 3. 

Secondly, as each 𝑦1
𝑘(𝑠) relates with input vector 𝑢𝑗, it can be written as follows: 

𝑦1
𝑘(𝑠) = ∑ [𝑦1𝑗

𝑘 (𝑠)] = 𝑦11
𝑘 (𝑠) + 𝑦12

𝑘 (𝑠) + 𝑦13
𝑘 (𝑠)3

𝑗=1                                     (3.6) 

where 𝑦𝑖𝑗
𝑘  stands for the relation of the 𝑗𝑡ℎ input and 1𝑠𝑡 output of mode 𝑘. 

Hence, it is found that nine second-order equations are summed together to form one element yi in 

output vector 𝑌. According to Equation (3.6), it is obtained that:  
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 when 𝑘 = 1 which means only mode 1 is considered, the transfer function for output y1(s) 

of mode 1 is as follows: 

𝑦1
1(𝑠) = 𝑦11

1 (𝑠) + 𝑦12
1 (𝑠) + 𝑦13

1 (𝑠) 

=
𝜑11
1

𝑠2+2Ϛ11
1 𝑤11

1 𝑠+𝑤11
1 2 𝑢1(𝑠) +

𝜑12
1

𝑠2+2Ϛ12
1 𝑤12

1 𝑠+𝑤12
1 2 𝑢2(𝑠) +

𝜑13
1

𝑠2+2Ϛ13
1 𝑤13

1 𝑠+𝑤13
1 2 𝑢3(𝑠)       (3.7) 

Similarly, the transfer function for output 𝑦2(𝑠) of mode 1 is: 

𝑦2
1(𝑠) = 𝑦21

1 (𝑠) + 𝑦22
1 (𝑠) + 𝑦23

1 (𝑠) 

=
𝜑21
1

𝑠2+2Ϛ21
1 𝑤21

1 𝑠+𝑤21
1 2 𝑢1(𝑠) +

𝜑22
1

𝑠2+2Ϛ22
1 𝑤22

1 𝑠+𝑤22
1 2 𝑢2(𝑠) +

𝜑23
1

𝑠2+2Ϛ23
1 𝑤23

1 𝑠+𝑤23
1 2 𝑢3(𝑠)       (3.8) 

The transfer function for output 𝑦3(𝑠) of mode 1 is: 

𝑦3
1(𝑠) = 𝑦31

1 (𝑠) + 𝑦32
1 (𝑠) + 𝑦33

1 (𝑠) 

=
𝜑31
1

𝑠2+2Ϛ31
1 𝑤31

1 𝑠+𝑤31
1 2 𝑢1(𝑠) +

𝜑32
1

𝑠2+2Ϛ32
1 𝑤32

1 𝑠+𝑤32
1 2 𝑢2(𝑠) +

𝜑33
1

𝑠2+2Ϛ33
1 𝑤33

1 𝑠+𝑤33
1 2 𝑢3(𝑠)       (3.9) 

 when 𝑘 = 2, the transfer function for output 𝑦1(𝑠) of mode 2 is: 

𝑦1
2(𝑠) = 𝑦11

2 (𝑠) + 𝑦12
2 (𝑠) + 𝑦13

2 (𝑠) 

=
𝜑11
2

𝑠2+2Ϛ11
2 𝑤11

2 𝑠+𝑤11
2 2 𝑢1(𝑠) +

𝜑12
2

𝑠2+2Ϛ12
2 𝑤12

2 𝑠+𝑤12
2 2 𝑢2(𝑠) +

𝜑13
2

𝑠2+2Ϛ13
2 𝑤13

2 𝑠+𝑤13
2 2 𝑢3(𝑠)     (3.10) 

The transfer function for output 𝑦2(𝑠) of mode 2 is: 

𝑦2
2(𝑠) = 𝑦21

2 (𝑠) + 𝑦22
2 (𝑠) + 𝑦23

2 (𝑠) 

=
𝜑21
2

𝑠2+2Ϛ21
2 𝑤21

2 𝑠+𝑤21
2 2 𝑢1(𝑠) +

𝜑22
2

𝑠2+2Ϛ22
2 𝑤22

2 𝑠+𝑤22
2 2 𝑢2(𝑠) +

𝜑23
2

𝑠2+2Ϛ23
2 𝑤23

2 𝑠+𝑤23
2 2 𝑢3(𝑠)     (3.11) 

The transfer function for output 𝑦3(𝑠) of mode 2 is: 

𝑦3
2 = 𝑦31

2 (𝑠) + 𝑦32
2 (𝑠) + 𝑦33

2 (𝑠) 

=
𝜑31
2

𝑠2+2Ϛ31
2 𝑤31

2 𝑠+𝑤31
2 2 𝑢1(𝑠) +

𝜑32
2

𝑠2+2Ϛ32
2 𝑤32

2 𝑠+𝑤32
2 2 𝑢2(𝑠) +

𝜑33
2

𝑠2+2Ϛ33
2 𝑤33

2 𝑠+𝑤33
2 2 𝑢3(𝑠)     (3.12) 

 when 𝑘 = 3, the transfer function for output 𝑦1(𝑠) of mode 3 is: 

𝑦1
3(𝑠) = 𝑦11

3 (𝑠) + 𝑦12
3 (𝑠) + 𝑦13

3 (𝑠) 

=
𝜑11
3

𝑠2+2Ϛ11
3 𝑤11

3 𝑠+𝑤11
3 2 𝑢1(𝑠) +

𝜑12
3

𝑠2+2Ϛ12
3 𝑤12

3 𝑠+𝑤12
3 2 𝑢2(𝑠) +

𝜑13
3

𝑠2+2Ϛ13
3 𝑤13

3 𝑠+𝑤13
3 2 𝑢3(𝑠)     (3.13) 

The transfer function for output 𝑦2(𝑠) of mode 3 is: 
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𝑦2
3(𝑠) = 𝑦21

3 (𝑠) + 𝑦22
3 (𝑠) + 𝑦23

3 (𝑠) 

=
𝜑21
3

𝑠2+2Ϛ21
3 𝑤21

3 𝑠+𝑤21
3 2 𝑢1(𝑠) +

𝜑22
3

𝑠2+2Ϛ22
3 𝑤22

3 𝑠+𝑤22
3 2 𝑢2(𝑠) +

𝜑23
3

𝑠2+2Ϛ23
3 𝑤23

3 𝑠+𝑤23
3 2 𝑢3(𝑠)          (3.14) 

The transfer function for output 𝑦3(𝑠) of mode 3 is: 

𝑦3
3(𝑠) = 𝑦31

3 (𝑠) + 𝑦32
3 (𝑠) + 𝑦33

3 (𝑠) 

=
𝜑31
3

𝑠2+2Ϛ31
3 𝑤31

3 𝑠+𝑤31
3 2 𝑢1(𝑠) +

𝜑32
3

𝑠2+2Ϛ32
3 𝑤32

3 𝑠+𝑤32
3 2 𝑢2(𝑠) +

𝜑33
3

𝑠2+2Ϛ33
3 𝑤33

3 𝑠+𝑤33
3 2 𝑢3(𝑠)          (3.15) 

It is observed that all the first modes of the transfer functions for the output 𝑦𝑖  have the much 

similar natural frequencies and slightly different damping ratios. Therefore, an average value  

method is chosen in order to reduce and merge the terms of Equation (3.7) – Equation (3.15). A 

scenario of parameters selection is as follows:  

 For damping ratio Ϛ, select the largest value of nine sets of data in same mode.  

 For natural frequency w, choose the average frequency in one mode.  

Therefore, these nine different sets of Ϛ𝑖𝑗
1 ,  Ϛ𝑖𝑗

2  and Ϛ𝑖𝑗
3  are merged into Ϛ1, Ϛ2 and Ϛ3 respectively, 

and these nine different sets o𝑤𝑖𝑗
1 , 𝑤𝑖𝑗

2 f  and 𝑤𝑖𝑗
3  are merged into 𝑤1, 𝑤2 and 𝑤3. 

After simplification, Equation (3.7) – Equation (3.9) become: 

𝑦1
1(𝑠) = 𝑦11

1 (𝑠) + 𝑦12
1 (𝑠) + 𝑦13

1 (𝑠) =
𝜑11
1 𝑢1(𝑠)+𝜑12

1 𝑢2(𝑠)+𝜑13
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2                      (3.16) 

𝑦2
1(𝑠) = 𝑦21

1 (𝑠) + 𝑦22
1 (𝑠) + 𝑦23

1 (𝑠) =
𝜑21
1 𝑢1(𝑠)+𝜑22

1 𝑢2(𝑠)+𝜑23
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2                      (3.17) 

𝑦3
1(𝑠) = 𝑦31

1 (𝑠) + 𝑦32
1 (𝑠) + 𝑦33

1 (𝑠) =
𝜑31
1 𝑢1(𝑠)+𝜑32

1 𝑢2(𝑠)+𝜑33
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2                      (3.18) 

Equation (3.10) – Equation (3.12) become: 

𝑦1
2(𝑠) = 𝑦11

2 (𝑠) + 𝑦12
2 (𝑠) + 𝑦13

2 (𝑠) =
𝜑11
2 𝑢1(𝑠)+𝜑12

2 𝑢2(𝑠)+𝜑13
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2                       (3.19) 

𝑦2
2(𝑠) = 𝑦21

2 (𝑠) + 𝑦22
2 (𝑠) + 𝑦23

2 (𝑠) =
𝜑21
2 𝑢1(𝑠)+𝜑22

2 𝑢2(𝑠)+𝜑23
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2                       (3.20) 

𝑦3
2(𝑠) = 𝑦31

2 (𝑠) + 𝑦32
2 (𝑠) + 𝑦33

2 (𝑠) =
𝜑31
2 𝑢1(𝑠)+𝜑32

2 𝑢2(𝑠)+𝜑33
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2                       (3.21) 

Equation (3.13) – Equation (3.15) become: 

𝑦1
3(𝑠) = 𝑦11

3 (𝑠) + 𝑦12
3 (𝑠) + 𝑦13

3 (𝑠) =
𝜑11
3 𝑢1(𝑠)+𝜑12

3 𝑢2(𝑠)+𝜑13
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2                       (3.22) 
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𝑦2
3(𝑠) = 𝑦21

3 (𝑠) + 𝑦22
3 (𝑠) + 𝑦23

3 (𝑠) =
𝜑21
3 𝑢1(𝑠)+𝜑22

3 𝑢2(𝑠)+𝜑23
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2                       (3.23) 

𝑦3
3(𝑠) = 𝑦31

3 (𝑠) + 𝑦32
3 (𝑠) + 𝑦33

3 (𝑠) =
𝜑31
3 𝑢1(𝑠)+𝜑32

3 𝑢2(𝑠)+𝜑33
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2                       (3.24) 

After obtaining these nine transfer functions from mode 1 to mode 3, the mathematical model can 

be rewritten as follows:  

𝒀 = [

𝑦1(𝑠)
𝑦2(𝑠)
𝑦3(𝑠)

] = [

𝑦1
1(𝑠) + 𝑦1

2(𝑠) + 𝑦1
3(𝑠)

𝑦2
1(𝑠) + 𝑦2

2(𝑠) + 𝑦2
3(𝑠)

𝑦3
1(𝑠) + 𝑦3

2(𝑠) + 𝑦3
3(𝑠)

] 

=

[
 
 
 
 
 
𝜑11
1 𝑢1(𝑠)+𝜑12

1 𝑢2(𝑠)+𝜑13
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑11
2 𝑢1(𝑠)+𝜑12

2 𝑢2(𝑠)+𝜑13
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑11
3 𝑢1(𝑠)+𝜑12

3 𝑢2(𝑠)+𝜑13
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2

𝜑21
1 𝑢1(𝑠)+𝜑22

1 𝑢2(𝑠)+𝜑23
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑21
2 𝑢1(𝑠)+𝜑22

2 𝑢2(𝑠)+𝜑23
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑21
3 𝑢1(𝑠)+𝜑22

3 𝑢2(𝑠)+𝜑23
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2

𝜑31
1 𝑢1(𝑠)+𝜑32

1 𝑢2(𝑠)+𝜑33
1 𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑31
2 𝑢1(𝑠)+𝜑32

2 𝑢2(𝑠)+𝜑33
2 𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑31
3 𝑢1(𝑠)+𝜑32

3 𝑢2(𝑠)+𝜑33
3 𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2 ]

 
 
 
 
 

        (3.25)                    

In [35], it has been theoretically proven that the term 𝜑𝑖𝑗
𝑘  is the product of mode shape 𝜑𝑗

𝑘 and 𝜑𝑖
𝑘, 

so a common term can be taken out in one mode. The mathematical model is modified as shown 

below: 

𝒀 = [

𝑦1(𝑠)

𝑦2(𝑠)

𝑦3(𝑠)
] = 

[
 
 
 
 
 
𝜑1
1(𝜑1

1𝑢1(𝑠)+𝜑2
1𝑢2(𝑠)+𝜑3

1𝑢3(𝑠))

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑1
2(𝜑1

2𝑢1(𝑠)+𝜑2
2𝑢2(𝑠)+𝜑3

2𝑢3(𝑠))

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑1
3(𝜑1

3𝑢1(𝑠)+𝜑2
3𝑢2(𝑠)+𝜑3

3𝑢3(𝑠))

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2

𝜑2
1(𝜑1

1𝑢1(𝑠)+𝜑2
1𝑢2(𝑠)+𝜑3

1𝑢3(𝑠))

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑2
2(𝜑1

2𝑢1(𝑠)+𝜑2
2𝑢2(𝑠)+𝜑3

2𝑢3(𝑠))

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑2
3(𝜑1

3𝑢1(𝑠)+𝜑2
3𝑢2(𝑠)+𝜑3

3𝑢3(𝑠))

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2

𝜑3
1(𝜑1

1𝑢1(𝑠)+𝜑2
1𝑢2(𝑠)+𝜑3

1𝑢3(𝑠))

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 +

𝜑3
2(𝜑1

2𝑢1(𝑠)+𝜑2
2𝑢2(𝑠)+𝜑3

2𝑢3(𝑠))

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 +

𝜑3
3(𝜑1

3𝑢1(𝑠)+𝜑2
3𝑢2(𝑠)+𝜑3

3𝑢3(𝑠))

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2 ]

 
 
 
 
 

      (3.26) 

For the purpose of simplification, variables  𝑚1, 𝑚2 and 𝑚3 are defined as follows: 

𝑚1(𝑠) =
𝜑1
1𝑢1(𝑠)+𝜑2

1𝑢2(𝑠)+𝜑3
1𝑢3(𝑠)

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2 =

[𝜑1
1 𝜑2

1 𝜑3
1][

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]

𝑠2+2Ϛ1𝑤1𝑠+𝑤1
2                                    (3.27) 

𝑚2(𝑠) =
𝜑1
2𝑢1(𝑠)+𝜑2

2𝑢2(𝑠)+𝜑3
2𝑢3(𝑠)

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2 =

[𝜑1
2 𝜑2

2 𝜑3
2][

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]

𝑠2+2Ϛ2𝑤2𝑠+𝑤2
2                                    (3.28) 

𝑚3(𝑠) =
𝜑1
3𝑢1(𝑠)+𝜑2

3𝑢2(𝑠)+𝜑3
3𝑢3(𝑠)

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2 =

[𝜑1
3 𝜑2

3 𝜑3
3][

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]

𝑠2+2Ϛ3𝑤3𝑠+𝑤3
2                                    (3.29) 
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Via substituting Equation (3.27) – Equation (3.29) into Equation (3.26), the relation of output Y and 

vector J can be deduced as follows:  

𝒀 = [

𝑦1(𝑠)
𝑦2(𝑠)
𝑦3(𝑠)

] = [

𝜑1
1𝑚1 + 𝜑1

2𝑚2 + 𝜑1
3𝑚3

𝜑2
1𝑚1 + 𝜑2

2𝑚2 + 𝜑2
3𝑚3

𝜑3
1𝑚1 + 𝜑3

2𝑚2 + 𝜑3
3𝑚3

] = [

𝜑1
1 𝜑1

2 𝜑1
3

𝜑2
1 𝜑2

2 𝜑2
3

𝜑3
1 𝜑3

2 𝜑3
3

] [

𝑚1(𝑠)
𝑚2(𝑠)
𝑚3(𝑠)

]                   (3.30) 

Equation (3.30) can be simplified as follows: 

𝒀 = 𝝍 ∗𝑴                                                                          (3.31) 

where        𝝍 = [

𝜑1
1 𝜑1

2 𝜑1
3

𝜑2
1 𝜑2

2 𝜑2
3

𝜑3
1 𝜑3

2 𝜑3
3

]       𝑴 = [

𝑚1(𝑠)
𝑚2(𝑠)
𝑚3(𝑠)

] 

In order to carry out the state space representation from the input-output form, some 

transformations should be done as follows: 

Through Equation (3.27), one has: 

 𝑠2𝑚1(𝑠) + 2Ϛ1𝑤1𝑠𝑚1(𝑠) + 𝑤1
2𝑚1(𝑠) = [𝜑1

1 𝜑2
1 𝜑3

1] [

𝑢1(𝑠)
𝑢2(𝑠)
𝑢3(𝑠)

]                                  (3.32) 

Then, Equation (3.33) can be derived through taking inverse Laplace transform on Equation (3.27): 

 �̈�1(𝑡) + 2Ϛ1𝑤1�̇�1(𝑡) + 𝑤1
2𝑚1(𝑡) = [𝜑1

1 𝜑2
1 𝜑3

1] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                                (3.33) 

Similarly, Equation (3.34) and Equation (3.35) are derived as follows: 

�̈�2(𝑡) + 2Ϛ2𝑤2�̇�2(𝑡) + 𝑤2
2𝑚2(𝑡) = [𝜑1

2 𝜑2
2 𝜑3

2] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                                (3.34) 

�̈�3(𝑡) + 2Ϛ3𝑤3�̇�3(𝑡) + 𝑤3
2𝑚3(𝑡) = [𝜑1

3 𝜑2
3 𝜑3

3] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                                (3.35) 

Combining Equations (3.33) - (3.35) into Equation (3.36) yields: 
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[

�̈�1(𝑡)
�̈�2(𝑡)
�̈�3(𝑡)

] + [

2Ϛ1𝑤1
2Ϛ2𝑤2

2Ϛ3𝑤3

] [

�̇�1(𝑡)
�̇�2(𝑡)
�̇�3(𝑡)

] + [

𝑤1
2

𝑤2
2

𝑤3
2

] [

𝑚1(𝑡)
𝑚2(𝑡)
𝑚3(𝑡)

]

= [

𝜑1
1 𝜑2

1 𝜑3
1

𝜑1
2 𝜑2

2 𝜑3
2

𝜑1
3 𝜑2

3 𝜑3
3

] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

] 

(3.36) 

In order to implement parity relation technique, the state space form of a dynamic system should be 

in a Canonical form. Hence, a new definition is introduced as below: 

{
�̇�1(𝑡) = �̇�1(𝑡) = 𝑥2(𝑡)

�̈�1(𝑡) = �̈�1(𝑡) = �̇�2(𝑡)
                                                               (3.37) 

Substituting Equation (3.37) into Equation (3.33) yields: 

{
 

 
�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = [𝜑1
1 𝜑2

1 𝜑3
1] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

] − 2Ϛ1𝑤1𝑥2(𝑡) − 𝑤1
2𝑥1(𝑡)

                       (3.38) 

The state space form of Equation (3.38) is derived as follows: 

[
�̇�1(𝑡)
�̇�2(𝑡)

] = [
0 1
−𝑤1

2 −2Ϛ1𝑤1
] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
0 0 0
𝜑1
1 𝜑2

1 𝜑3
1] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                        (3.39) 

Through applying the same method, the other two equations in state space form can be obtained as 

follows: 

[
�̇�3(𝑡)
�̇�4(𝑡)

] = [
0 1
−𝑤2

2 −2Ϛ2𝑤2
] [
𝑥3(𝑡)
𝑥4(𝑡)

] + [
0 0 0
𝜑1
2 𝜑2

2 𝜑3
2] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                        (3.40) 

[
�̇�5(𝑡)
�̇�6(𝑡)

] = [
0 1
−𝑤3

2 −2Ϛ3𝑤3
] [
𝑥5(𝑡)
𝑥6(𝑡)

] + [
0 0 0
𝜑1
3 𝜑2

3 𝜑3
3] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]                        (3.41) 

Finally, through stacking Equations (3.39) - (3.41) together, the final state equation of the laboratory 

model is obtained as below: 
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[
 
 
 
 
 
 
�̇�1(𝑡)

�̇�2(𝑡)

�̇�3(𝑡)

�̇�4(𝑡)

�̇�5(𝑡)

�̇�6(𝑡)]
 
 
 
 
 
 

=

[
 
 
 
 
 
0 1
−𝑤1

2 −2Ϛ1𝑤1
0 1
−𝑤2

2 −2Ϛ2𝑤2
0 1
−𝑤3

2 −2Ϛ3𝑤3]
 
 
 
 
 

[
 
 
 
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)

𝑥5(𝑡)

𝑥6(𝑡)]
 
 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
𝜑1
1 𝜑2

1 𝜑3
1

0 0 0
𝜑1
2 𝜑2

2 𝜑3
2

0 0 0
𝜑1
3 𝜑2

3 𝜑3
3]
 
 
 
 
 

[

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

] 

                                                              (3.42) 

In order to carry out the output equation of the laboratory model, taking inverse Laplace transform 

of Equation (3.31) can figure out the output equation of the laboratory model: 

[

𝑦1(𝑡)
𝑦2(𝑡)
𝑦3(𝑡)

] = [

𝜑1
1 𝜑1

2 𝜑1
3

𝜑2
1 𝜑2

2 𝜑2
3

𝜑3
1 𝜑3

2 𝜑3
3

] [

𝑚1(𝑡)
𝑚2(𝑡)
𝑚3(𝑡)

] = [

𝜑1
1 0 𝜑1

2 0 𝜑1
3 0

𝜑2
1 0 𝜑2

2 0 𝜑2
3 0

𝜑3
1 0 𝜑3

2 0 𝜑3
3 0

]

[
 
 
 
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)

𝑥5(𝑡)

𝑥6(𝑡)]
 
 
 
 
 
 

                (3.43) 

Finally, for the laboratory model, the system matrix A is: 

𝑨 =

[
 
 
 
 
 
0 1
−𝑤1

2 −2Ϛ1𝑤1
0 1
−𝑤2

2 −2Ϛ2𝑤2
0 1
−𝑤3

2 −2Ϛ3𝑤3]
 
 
 
 
 

    

The input matrix B is: 

 𝑩 =

[
 
 
 
 
 
0 0 0
𝜑1
1 𝜑2

1 𝜑3
1

0 0 0
𝜑1
2 𝜑2

2 𝜑3
2

0 0 0
𝜑1
3 𝜑2

3 𝜑3
3]
 
 
 
 
 

   

The output matrix C is: 

𝑪 = [

𝜑1
1 0 𝜑1

2 0 𝜑1
3 0

𝜑2
1 0 𝜑2

2 0 𝜑2
3 0

𝜑3
1 0 𝜑3

2 0 𝜑3
3 0

] 

The block diagram of the laboratory model is drawn, as shown in Figure 3.2. The relation of input 

signals and output signals is shown clearly in Figure 3.2, which is beneficial to understand the inner 

of the physical model.  As shown in Figure 3.2, this is the open loop system model, in which the 

three inputs are zero. However, if a set of controllers are added, the inputs signals are connected 

with the output port of controllers, and then are sent to transducers T1, T2 and T3. The three 

outputs are measured by sensor S1, S2 and S3 that are shown in Figure 1.1. 
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Figure 3.2: The block diagram of the laboratory model in state space representation 

3.4 State-space Representation Calculation 

This section calculates the values of state space matrixes A, B and C using the experiment data 

obtained by ModalVIEW. 

After simplification in Section 3.3, the data of three modes obtained from ModalVIEW for each 

mode are  listed in Table (3.1) - Table (3.3) respectively: 

 Mode 1 

 Frequency (rad/s) Damping ratio (%) Mode shape 

𝐺11 22.66 2.667 0.132387 
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𝐺12 22.66 2.667 0.092623 

𝐺13 22.66 2.667 0.07954 

𝐺21 22.66 2.667 0.117467 

𝐺22 22.66 2.667 0.079589 

𝐺23 22.66 2.667 0.063085 

𝐺31 22.66 2.667 0.098985 

𝐺32 22.66 2.667 0.042448 

𝐺33 22.66 2.667 0.056874 

Table 3.1: The data of mode 1 for all transfer functions 

 Mode 2 

 Frequency (rad/s) Damping ratio (%) Mode shape 

𝐺11 29.05 2.533 0.522717 

𝐺12 29.05 2.533 0.238071 

𝐺13 29.05 2.533 0.094088 

𝐺21 29.05 2.533 0.081823 

𝐺22 29.05 2.533 0.230657 

𝐺23 29.05 2.533 0.235156 

𝐺31 29.05 2.533 0.082337 

𝐺32 29.05 2.533 0.249072 

𝐺33 29.05 2.533 0.198524 

Table 3.2: The data of mode 2 for all transfer functions  

 Mode 3 

 Frequency (rad/s) Damping ratio (%) Mode shape 

𝐺11 34.86 2.419 0.20722 

𝐺12 34.86 2.419 0.386224 

𝐺13 34.86 2.419 0.336231 

𝐺21 34.86 2.419 0.36751 

𝐺22 34.86 2.419 0.70789 

𝐺23 34.86 2.419 0.588276 

𝐺31 34.86 2.419 0.321649 

𝐺32 34.86 2.419 0.609829 

𝐺33 34.86 2.419 0.574678 

Table 3.3: The data of mode 3 for all transfer functions 
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In MATLAB, the matrixes of the mathematical model are calculated and shown as below: 

𝑨 =

[
 
 
 
 
 

0 1
−20271 −0.008

0 1
−33316 9

0 1
47975 11]

 
 
 
 
 

 

𝑩 =

[
 
 
 
 
 

0 0 0
0.3639 0.2821 0.2385
0 0 0

0.723 0.4803 0.4456
0 0 0

0.4552 0.8414 0.7581]
 
 
 
 
 

 

𝑪 = [
0.3639 0 0.7230 0 0.4452 0
0.2821 0 0.4803 0 0.8414 0
0.2385 0 0.4456 0 0.7581 0

] 

Since parity relation technique is utilised in discrete system, these matrixes then are converted into 

discrete system forms in MATLAB using function ‘c2d’. The sampling time is chosen as 0.01s. The 

new matrixes for discrete system are shown as below: 

𝑨𝒅 =

[
 
 
 
 
 
0.1669 0.0067

−135.6312 −0.1161
0.2164 0.0051

−168.7472 −0.2631
−0.5315 0.0035
−169.2504 −0.5689]

 
 
 
 
 

 

𝑩𝒅 =

[
 
 
 
 
 

0 0 0
0.0024 0.0019 0.0016
0 0 0

0.0037 0.0024 0.0023
0 0 0

0.0016 0.0030 0.0027]
 
 
 
 
 

 

𝑪𝒅 = [
0.3639 0 0.7230 0 0.4452 0
0.2821 0 0.4803 0 0.8414 0
0.2385 0 0.4456 0 0.7581 0

] 

Figure 3.3 depicts the step responses of continuous system and discrete system that are calculated 

according to the obtained data. From Figure 3.3, the two curves in each subplot have extremely 

similar shapes and the same trends, which proves that these two kinds of systems are almost the 

same and can be used for further research.  
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Figure 3.3: Step responses of continuous system and discrete system 
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Chapter 4 : Parity Relation Technique 

The basic concept of fault detection and diagnosis and the main mode-based methods for 

implementing FDD have been introduced respectively in Chapter 1 and Chapter 2. Besides, the open 

loop discrete state space model is derived in Chapter 3 since the implementation of parity relation 

technique is based on the open loop model. Finally, the FDD using parity relation method is designed 

based on the assumption that all the signals of the given system are measurable and known.  

This chapter focuses on the design of FDD processes using parity relation method, including two 

main parts: 

 The theoretical research regarding to parity relation technique is illustrated, including the 

design of fault detection, parity space order and fault isolation.  

 The validations for SISO and MIMO systems are programed in MATLAB and the designed 

residuals are displayed and compared respectively.  

Finally, the conclusion is drawn. For various simulations, the results are discussed and compared. 

Besides, the problem of this study is analysed and meanwhile some reasonable advices are given for 

further study. 

4.1 Model structure 

A general linear time-invariant discrete-time system is written in state-space representation (SSR) 

form: 

𝑥(𝑘 + 1) = 𝑨𝑥(𝑘) + 𝑩𝑢(𝑘)                                                (4.1)                                                       

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑫𝑢(𝑘)                                                       (4.2)         

where 𝑥𝜖ℝ𝑛 denotes the state vector, 𝑢𝜖ℝ𝑟 denotes the input vector, 𝑦𝜖ℝ𝑚 is the vector of output 

signal. A is System Matrix with dimension of 𝑛 × 𝑛, B is Input Matrix with dimension of  𝑛 × 𝑟, C is 

Output Matrix with dimension of  𝑚 × 𝑛, and D is Direct Transmission Matrix with dimension of 

𝑚 × 𝑟. Note that Equation (4.1) and Equation (4.2) describe a system model without any fault. 

As mentioned before, only the sensor faults and actuator faults are considered in this project. The 

SSR of the system with faults can be expressed as follows: 

𝑥(𝑘 + 1) = 𝑨𝑥(𝑘) + 𝑩𝑢(𝑘) + 𝑭𝑓𝑎(𝑘)                                         (4.3)        

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑫𝑢(𝑘) + 𝑓𝑠(k)                                            (4.4) 

where 𝑓𝑎 𝜖 ℝ
𝑟and 𝑓𝑠 𝜖 ℝ

𝑛 denotes the actuator fault vector and sensor fault vector respectively, and 

𝑭 is Actuator Fault Matrix with dimension of  𝑛 × 𝑟 [7]. 
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4.2 Fault detection 

The core idea of parity relation technique is to check the parity (or consistency) of the 

measurements of a measureable system. In order to detect a fault, a parity equation is required to 

be generated firstly. According to [6], there are two main cases according to the dimension of 

Output Matrix 𝑪 for a system. It should be noted that in Case 1, only the sensor fault is considered as 

this case is only used in some particular linear systems and it is not suitable for the real laboratory 

model as well. 

1. Case 1  𝑟𝑎𝑛𝑘(𝑪) = 𝑛 < 𝑚 

This means that the dimension of  𝑦(𝑘) is larger than the dimension of  𝑥(𝑘). Under this situation, 

matrix C is a singular matrix, so there exists at least a vector 𝑽 that satisfies the condition: 

                                                                     𝑽𝑪 = 0                                                                          (4.5) 

in which the vector V is called parity vector.  

Hence, based on previous analysis and Equations (4.1) and (4.2), the residual of the system can be 

defined as follows:  

                                     𝑹(𝑘) =  𝑽[𝑦(𝑘) − 𝑫𝑢(𝑘)] = 𝑽𝑪𝑥(𝑘)                                                (4.6) 

Now, when the system is fault-free and noise-free, the residual 𝑹(k) should be zero. Then, when any 

sensor fault occurs, Equation (4.6) becomes 

                                       𝑹(𝑘) =  𝑽[𝑦(𝑘) − 𝑫𝑢(𝑘)] = 𝑽𝑪𝑥(𝑘) + 𝑽𝑓(𝑘)  

        = 𝑣1𝑓1(𝑘) + 𝑣2𝑓2(𝑘) +⋯+ 𝑣𝑚𝑓𝑚(𝑘)                                                      (4.7) 

where 𝑣𝑚 is the 𝑚𝑡ℎ element of 𝑽,  and 𝑓𝑚(𝑘) is the 𝑚𝑡ℎ element of 𝑓(𝑘) which stands for the fault 

signal in the 𝑖𝑡ℎ  sensor. Equation (4.7) states that the generated residual only contains information 

of faults and the unknown state 𝑥(𝑘) is cancelled by the parity vector 𝑽 [6]. Consequently, for Case 

1, the fault detection process is implemented successfully through checking the residual signal. 

2. Case 2  𝑟𝑎𝑛𝑘(𝑪) = 𝑚 < 𝑛 

As in Case 2, the parity vector 𝑽 does not exist because matrix 𝑪 is full rank. To overcome this 

problem, an extended parity relation technique called temporal redundancy relation is presented in 

[28]. The temporal redundancy is constructed by checking the inputs and the outputs data within a 

time window [𝑘 − 𝑠, 𝑘] of the dynamic system.  

For the fault-free system given in Equation (4.1) and Equation (4.2), the system variable 𝑥(𝑘 − 𝑠) 

and output 𝑦(𝑘 − 𝑠) for time (𝑘 − 𝑠) can be expressed as follows 

𝑥(𝑘 − 𝑠 + 1) = 𝑨𝑥(𝑘 − 𝑠) + 𝑩𝑢(𝑘 − 𝑠)                                         (4.8)         

𝑦(𝑘 − 𝑠) = 𝑪𝑥(𝑘 − 𝑠) + 𝑫𝑢(𝑘 − 𝑠)                                         (4.9) 

Then, at the time (𝑘 − 𝑠 + 1), one has: 

𝑦(𝑘 − 𝑠 + 1) = 𝑪𝑥(𝑘 − 𝑠 + 1) + 𝑫𝑢(𝑘 − 𝑠 + 1)                                        (4.9a) 
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Substituting Equation (4.8) into Equation (4.9a) yields:  

𝑦(𝑘 − 𝑠 + 1) = 𝑪𝑨𝑥(𝑘 − 𝑠) + 𝑪𝑩𝑢(𝑘 − 𝑠) + 𝑫𝑢(𝑘 − 𝑠 + 1)                      (4.10) 

Similarly, the below equations can be yielded via recursion: 

𝑦(𝑘 − 𝑠 + 2) = 𝑪𝑨2𝑥(𝑘 − 𝑠) + 𝑪𝑨𝑩𝑢(𝑘 − 𝑠) + 𝑪𝑩𝑢(𝑘 − 𝑠 + 1) + 𝑫𝑢(𝑘 − 𝑠 + 1) 

    (4.11) 

⋮ 

𝑦(𝑘) = 𝑪𝑨𝑠𝑥(𝑘 − 𝑠) + 𝑪𝑨𝑠−1𝑩𝑢(𝑘 − 𝑠) +⋯+ 𝑪𝑩𝑢(𝑘 + 1) + 𝑫𝑢(𝑘)                (4.12) 

 

Stacking these 𝑠 + 1 equations together can yield the following relation: 

                                                 𝒀(𝑘) =  𝑯𝑥(𝑘 − 𝑠) + 𝑸𝑼(𝑘)                                                    (4.13) 

where 

𝒀(𝑘) = (

𝑦(𝑘 − 𝑠)
𝑦(𝑘 − 𝑠 + 1)

⋮
𝑦(𝑘)

)єℝ𝑚(𝑠+1)×1,       𝑼(𝑘) = (

𝑢(𝑘 − 𝑠)
𝑢(𝑘 − 𝑠 + 1)

⋮
𝑢(𝑘)

)єℝ𝑟(𝑠+1)×1            (4.14) 

𝑯 =

(

 
 

𝑪
𝑪𝑨
𝑪𝑨2

⋮
𝑪𝐴𝑠)

 
 
єℝ𝑚(𝑠+1)×𝑛        𝑸 =

(

 
 

𝑫 0 0 0
𝑪𝑩 𝑫 0 0
𝑪𝑨𝑩 𝑪𝑩 𝑫 0
⋮ ⋮ ⋮ ⋮

𝑪𝑨𝑠−1𝑩 𝑪𝑨𝑠−2𝑩 ⋯ 𝑫)

 
 
єℝ𝑚(𝑠+1)×𝑟(𝑠+1)      (4.15) 

 

It is noted that for the given system in Equation (4.13), 𝒀(𝑘) and 𝑼(𝑘) are not scalar values. The 

vector 𝒀(𝑘) is a column vector with dimension 𝑚(𝑠 + 1) × 1 , and the vector 𝑼(𝑘) is also a column 

vector with dimension 𝑟(𝑠 + 1) × 1 [7]. 

Therefore, as shown in Equation (4.13), the relation of input vectors and output vectors is 

generated, which is so called parity equation. Note that if the variable 𝑠 is given, 𝒀(𝑘) and 𝑼(𝑘) are 

known, which include the temporal and past outputs and inputs respectively [7]. Besides, all the 

elements of matrix 𝑯 and matrix 𝑸 are all known. Only the past state vector 𝑥(𝑘 − 𝑠) is unknown in 

Equation (4.13). 

To eliminate the term related to the past state vector in Equation (4.13), a non-zero vector 𝑽 can be 

designed so that it satisfies the condition 

                                                   𝑽𝒔𝑯 = 0                                                                       (4.16) 

The vector 𝑽𝒔 is called ‘parity vector’ with dimension 1 ×𝑚(𝑠 + 1). According to Equation (4.16), 

the parity vector belongs to the left null space of matrix 𝑯 and plays an essential role in parity 

relation technique [38]. All parity vectors belong to a space 𝑷 defined by 𝑷 = {𝑽|𝑽𝑯 = 0} and this 

space is known as parity space with 𝑠𝑡ℎ order. The order 𝑠 decides whether the parity vector can be 

found or not, and the design of 𝑠 is illustrated in Section 4.3.   
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According to [28], a residual can be constructed as follows 

                                                  𝑹(𝑘) =  𝑽𝒔[𝒀(𝑘) − 𝑸𝑼(𝑘)]                                                      (4.17) 

This algorithm is known as ‘Chow - Willsky scheme’, first proposed by Chow and Willsky in 1984 [39].  

Substituting Equation (4.13) into Equation (4.17), the residual generator can be found as follows: 

𝑹(𝑘) =  𝑽𝒔𝑯𝑥(𝑘 − 𝑠) = 0   ∀𝑥                                                     (4.18) 

Now, taking sensor faults and actuator faults into account, Equation (4.17) becomes 

𝑹(𝑘) =  𝑽𝒔[𝒀(𝑘) − 𝑸𝑼(𝑘)] = 𝑽𝒔[𝑯𝑥(𝑘 − 𝑠) + 𝑸𝒂𝑭𝒂(𝑘) + 𝑭𝒔(𝑘)]                     (4.19) 

where  

𝑭𝒔(𝑘) = (

𝑓𝑠(𝑘 − 𝑠)
𝑓𝑠(𝑘 − 𝑠 + 1)

⋮
𝑓𝑠(𝑘)

) єℝn(s+1)×1     𝑭𝒂(𝑘) = (

𝑓𝑎(𝑘 − 𝑠)
𝑓𝑎(𝑘 − 𝑠 + 1)

⋮
𝑓𝑎(𝑘)

) єℝr(s+1)×1         (4.20) 

 

𝑸𝒂 =

(

 
 

0 0 0 0
𝑪𝑭 0 0 0
𝑪𝑨𝑭 𝑪𝑭 0 0
⋮ ⋮ ⋮ ⋮

𝑪𝑨𝑠−1𝑭 𝑪𝑨𝑠−2𝑭 ⋯ 0)

 
 
єℝ𝑚(𝑠+1)×𝑟(𝑠+1)                                         (4.21) 

It is noted that in Equation (4.19),  

 𝑭𝒔  is a vector of sensor faults 

 𝑭𝒂  is a vector of actuator faults 

For fault detection using parity relation technique, it is easy to implement once the parity vector 𝑽𝒔  

is found. When a system is fault free, the residual generated by parity relation is zero constantly, and 

when any fault exists in the system, the designed residual differs from zero, which indicates the 

occurrence of the fault. Therefore, it is easy to detect fault in control system using parity relation 

method.  Nevertheless, to isolate the fault type and fault location requires more strict conditions, 

which are introduced in Section 4.4.          

4.3 Design of parity space order s 

In the last section, the core of parity relation technique is to find a suitable parity vector V, so the 

below condition must hold: 

𝑟𝑎𝑛𝑘(𝐻) < the row number of matrix 𝐻 = (𝑠 + 1)𝑚                           (4.22) 

Commonly, parity space order 𝑠 is chosen as follows: 

𝑠 ≥ 𝑛                                                                              (4.23) 

In Chen & Patton’s book [6], the minimal order 𝑠0 of parity space satisfies the condition: 

𝑟𝑎𝑛𝑘(𝐻0)

𝑟𝑎𝑛𝑘(𝐶)
≤ 𝑠0 ≤ 𝑟𝑎𝑛𝑘(𝐻0) − 𝑟𝑎𝑛𝑘(𝐶) + 1                                     (4.24) 

where 𝐻0 is the observability matrix of pair (𝑪, 𝑨).  
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Additionally, if a system is observable, and the output matrix 𝑪 is full rank, Equation (4.24) becomes: 

𝑛

𝑚
≤ 𝑠0 ≤ 𝑛 −𝑚 + 1                                                              (4.25) 

Hence, for the laboratory model used in this study, the minimal order 𝑠0 can be solved as follows: 

1. Check the observability of the system through the observability matrix 𝝑, 

𝝑 =

[
 
 
 
 
 
𝑪
𝑪𝑨
𝑪𝑨2

𝑪𝑨3

𝑪𝑨4

𝑪𝑨5]
 
 
 
 
 

                                                                        (4.26) 

Through substituting the data obtained in Section 3.4, it could be found that the 

observability matrix 𝝑 does not contain any 6 × 6 singular matrixes, hence, the system is 

completely state-observable. This result can be checked via MATLAB with the function 

‘obsv(A,C)’, where 𝑨 and 𝑪 are system matrix and output matrix of the laboratory system 

respectively. 

2. Check the rank of matrix 𝑪 in MATLAB, 

𝑟𝑎𝑛𝑘(𝑪) = 3                                                                   (4.27) 

According to Equation (4.25), the minimal order s0 is obtained: 

𝑛

𝑚
= 2 ≤ 𝑠0 ≤ 𝑛 −𝑚 + 1 = 5                                                     (4.28) 

Therefore, the minimal order 𝑠0 of parity space is two. However, the parity order 𝑠 is set to be six in 

the next simulations and experiments as the larger the order 𝑠 is, the better performance of FDD 

processes is. Moreover, a larger s provides more freedom of designs. 

4.4 Fault Isolation Design 

In the previous section, the fault detection process has been designed and analysed. It is easy to 

understand that a single residual is not enough to isolate the fault in FDD design. In [26], Gertler 

introduced several methods to enhance the ability of fault isolation using parity relation technique, 

such as diagonal residuals, directional residuals and structured residuals. This study chooses to 

design a set of structured residuals for fault isolation, which is easy to be implemented. 

4.4.1 Residual Sensitivity 

Before designing a set of structured residuals, a concept of residual sensitivity (or insensitivity) is 

introduced firstly, which is the basis of fault isolation.       

To distinguish different faults, a residual is required to be insensitive to a specific fault, but sensitive 

to other faults. So that, it can be predicted that a residual is close to zero when a fault that the 

residual is insensitive to appears in a system, however, other residuals deviate from zero.  
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Initially, a new notation for 𝑽𝒔 is introduced: 

𝑽𝒔 = [𝑽𝟎, 𝑽𝟏, ⋯𝑽𝒊],          𝑖 = 0,1,⋯𝑠,       𝑽𝒊 ϵ ℝ
m  

If a residual is designed to be insensitive to a sensor fault, the element of 𝑽𝒊 that multiplies the 

signal of this sensor is set to zero. This means that there are (𝑠 + 1) zeros per sensor fault in the 

vector 𝑽𝒔. For example, if a residual is designed to be insensitive to faults in the  𝑖𝑡ℎ sensor, the 

modified parity vector should be as follows: 

𝑽𝒔 = [𝑽𝟎,𝟏,⋯ , 𝑽𝟎,𝒊−𝟏, 𝟎, 𝑽𝟎,𝒊+𝟏,⋯ , 𝑽𝟎,𝒎⏟                    
𝑽𝟎

, ⋯ , 𝑽𝒊,𝟏,⋯𝑽𝒊,𝒊−𝟏, 𝟎, 𝑽𝒊,𝒊+𝟏,⋯𝑽𝒊,𝒎⏟                  
𝑽𝒔

]       (4.29) 

Example： 

Given a one-input two-output discrete system, the system model is assumed as below:  

𝑥(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝑢(𝑘) 

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑫𝑢(𝑘) + 𝑓𝑠(𝑘)                                        (4.30)                                                                                                      

where 𝑥 = [
𝑥1
𝑥2
], 𝑦 = [

𝑦1
𝑦2
] and 𝑓𝑠 is a sensor fault.  The dimensions of matrixes A and C are both 

2 × 2, and B and D have the dimensions 2 × 1. The order of parity space s is set to two. 

According to Equation (4.16) and Equation (4.29), if a residual is designed to be insensitive to the 

fault in sensor 1 that senses the value of output 𝑦1, the parity vector 𝑽𝒔 should be as below: 

𝑽𝒔 = [𝟎, 𝑽𝒔𝟎,𝟐, 0, 𝑽𝒔𝟏,𝟐, 0, 𝑽𝒔𝟐,𝟐]                                                    (4.31)                                                                                                      

Meanwhile, another condition should be satisfied as follows:  

[𝑽𝒔𝟎,𝟐, 𝑽𝒔𝟏,𝟐, 𝑽𝒔𝟐,𝟐]𝑯𝟏 = 0 

where 𝑯𝟏 = [(𝑯(:，2);𝑯(:，4);𝑯(:，6)] and H is referred to Equation (4.15). Note that only the 

columns of matrix 𝑯 that are related with sensor 2 are left. 

Therefore, the designed residual 𝑅(𝑘) is only sensitive to sensor fault in sensor 2 as whenever a fault 

occurs in sensor 1 or not, the residual is constantly zero like below: 

𝑅(𝑘) =  𝑽𝒔[𝒀(𝑘) − 𝑸𝑼(𝑘)] = 𝑽𝒔[𝑭𝒔(𝑘)] = 𝑽𝒔[𝑓𝑠1(𝑘 − 2); 0; 𝑓𝑠1(𝑘 − 1); 0; 𝑓𝑠1(𝑘); 0]
𝑇 = 0 

                                                (4.32) 

Consequently, through designing different residuals with altered sensitivities, it is able to isolate a 

fault. For this example, when a fault occurs in sensor 1, the residual designed in Equation (4.32) is 

close to zero, however, the residual designed in Equation (4.19) for the purpose of fault detection 

becomes non-zero; similarly, when a fault appears in sensor 2, both of the two residuals become 

non-zero. Hence, it is available to isolate the sensor faults in the example, but for more complex 

system (e.g. more than two sensors), a set of residuals are required to be designed in order to 

isolate the fault. Additionally, this method can be used to design residual for actuator fault.                          
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4.4.2 Structured Residual Design 

The residual sensitivity for two pairs of has been discussed in Section 4.4.1, however, it is not 

enough to fulfil FDD processes when a system has more than two sensors or actuators. In [27, 40, 

41], Gertler and his colleagues presented the enhancement of residual and introduced several 

schemes to isolate particular fault, such as diagonal residuals, directional residuals and structured 

residuals. Through comparing these methods, the method of this study to FDD is to design 

structured residuals as it is a strongly isolating method and it is reliable and easy to implement. Note 

that to illustrate the design principle, only the sensor faults are considered in this section and the 

actuator faults are dealt with in the same way, which is explained in Chapter 5. 

It has been mentioned that in order to isolate a fault, a set of residuals are designed. For example, it 

is assumed that a system with three sensors and all of them may malfunction. Three residuals 

R1, R2 and R3are designed, each one of which is only insensitive to one fault but sensitive to others. 

Note that: 

 𝑅1 is sensitive to the fault in sensor 2 and sensor 3, which means that when sensor 1 

malfunctions, 𝑅1is still zero, but when a fault occurs in other sensors, it deviates from zero. 

 𝑅2  is sensitive to the fault in sensor 1 and sensor 3, which means when sensor 2 

malfunctions, 𝑅2is still zero, but when a fault occurs in other sensors, it deviates from zero. 

 𝑅3  is sensitive to the fault in sensor 1 and sensor 2, which means when sensor 3 

malfunctions, 𝑅3is still zero, but when a fault occurs in other sensors, it deviates from zero. 

After constructing these residuals, a fault code table is built in Table 4.1.  

Table 4.1: Fault code table 

 𝑓1 𝑓2 𝑓3 

𝑅1 0 1 1 

𝑅2 1 0 1 

𝑅3 1 1 0 

In Table 4.1, each row stands for a residual and each column represents a sensor fault. A ‘1’ in row 𝑖  

and column 𝑗 means that residual 𝑅𝑖 is sensitive to fault 𝑓𝑗, and a ‘0’ in row 𝑖  and column 𝑗 implies 

that fault 𝑓𝑗 does not affect residual 𝑅𝑖. Obviously, the fault code table depicts how the residual is 

impacted by faults.  

It is assumed that only one fault can occur in the system at one time, and the multiple-fault isolation 

is part of the future work. Therefore, no column has more than one ‘0’ and all of them are unique to 

identify a fault. 

When the three residual are calculated by the control system, the faulty sensor could be isolated 

using Table 4.1 according to the principle as follows： 
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 Sensor 1 malfunctions if and only if when 𝑅2 and 𝑅3 fire , and 𝑅1 does not  

 Sensor 2 malfunctions if and only if when 𝑅1 and 𝑅3 fire , and 𝑅2 does not  

 Sensor 3 malfunctions if and only if when 𝑅1 and 𝑅2 fire , and 𝑅3 does not  

4.5 FDD Process Design and Validation 

So far, the design of FDD process theoretically has been finished, the further study is to validate this 

method via different system models. The validation includes two stages: the validation on SISO 

system and the validation on MIMO system. 

Assumption: 

1. Only sensor faults and actuator faults are considered.  

2. Only a fault occurs in the system at one time.  

The validations of FDD processes for SISO and MIMO systems are based on these assumptions later.  

Furthermore, a crucial question is that how to simulate fault signals of a system. Actually, in practice, 

transducer (sensor or actuator) faults are usually classified as several situations: 

1) The value of a transducer is zero or negative value constantly. This malfunction usually 

means the transducer power is cut off or it has been completely broken. This type of fault is 

the easiest fault to be detected since it can be found easily through limit-checking method. 

For a digital system, some functions can limit the value of transducers and alert the system 

if the reading of a transducer exceeds its limitation. Hence, this type of fault is not 

considered in this study. 

2) The value of a transducer fluctuates or changes dramatically. This phenomenon indicates 

that there is a bias between the transducer reading and real data, and a fault may occur. To 

mimic this type of fault, a step function is used with some modifications to simulate a real 

fault. The further research of FDD mainly focuses on this type of fault.  

3) The value of a transducer is slightly higher or lower than the right value, and the difference 

increases gradually by a tiny amount. This kind of fault is usually impossible to detect in the 

early stage. Sometimes, if the system is robust and tolerant to this transducer, this fault will 

be ignored until the negative effects of the fault exceed the system’s tolerance. For this 

type of fault, it makes the system deteriorate in a long term and it is actually hard to detect 

and simulate at this stage. Hence, this kind of fault is not considered in the next validations 

and simulations.     

In the next two Sections 4.5.1 and 4.5.2, validations are implemented based on a random SISO 

system and a MIMO system respectively. Note that the residual signals designed for sensor faults 

and actuator faults have a similar principle, so that only sensor fault is considered at this chapter. 
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The actuator fault detection and isolation will be designed and explained in Chapter 5 based on the 

laboratory model.  

4.5.1 Example: SISO System FDD Design and Validation 

A single-input single-output system (SISO) model in state-space representation is given: 

𝑥(𝑘 + 1) = 𝑨𝑥(𝑘) + 𝑩𝑢(𝑘) + 𝑭𝑓𝑎(𝑘)                                    (4.33)         

𝑦(𝑘) = 𝑪𝑥(𝑘) + 𝑫𝑢(𝑘) + 𝑓𝑠(𝑘)                                          (4.34) 

where 𝑥 = [
𝑥1
𝑥2
] and 𝑓𝑠 means the sensor fault and 𝑓𝑎 represents the actuator fault in this model. A, 

B, C, D and F are constant matrixes with appropriate dimensions. The dimensions of matrixes A, B, C 

and D are 2 × 2, 2 × 1, 1 × 2 and 1 × 1 respectively. In this system, A, B, C and D are known 

matrixes and the order of parity space is set to be four. As actuator faults are added to the input 

signals, F is set to be the same with matrix B. The data used in this section is attached in Appendix A. 

As a SISO system, it is assumed that only one sensor and one actuator are used in the system. So 

that only the sensor fault (or actuator fault) detection is required to design, and fault isolation is not 

necessary.  

Following the principle of Section 4.3, the codes for FD process are designed properly. Figure 4.1 

shows the construction of SISO Simulink model. The input and output data are saved via the Block’ 

To Workspace’ for FDD design in Editor later. The fault signal which is a unit step and occurs at 2 sec 

is injected into the system through a multiport switch. When the fault switch is set as ‘2’, the system 

acts without sensor fault. However, when the switch is set as ‘1’, a step input signal with proper 

magnitude which acts as the fault signal is added to the system output signal.       

 

Figure 4.1: Simulink model of a random SISO system for FDD validation 

The simulation result of fault detection design for SISO random system is depicted in Figure 4.2 and 

Figure 4.3. Figure 4.2 sketches the fault detection residual in the fault-free system, and Figure 4.3 
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shows the residual when a sensor fault occurs. Obviously, once the fault signal is introduced into the 

system at 2 sec, the designed residual increases quickly.  

 

Figure 4.2: Residual response in fault-free SISO system 

 

Figure 4.3: Residual response with sensor fault in SISO system 
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4.5.2 Example: MIMO System FDD Design and Validation 

After the FDD processes for SISO case designed by parity relation technique is successfully validated 

through ‘MATLAB Simulink’, the application of parity relation technique is extended to a random 

MIMO system. The data used in this section is attached in Appendix B. The simulated fault signals 

has the same property with that used in SISO systems.  The simulation model is shown in Figure 4.4.  

 

Figure 4.4: Simulink model of a MIMO system for FDD validation 

The design procedure is similar with SISO system, whereas two sensors are assumed in this MIMO 

system, so that the residuals for fault isolation are required. The simulation results of fault detection 

design for MIMO random system is described in Figure 4.5, Figure 4.6 and Figure 4.7 for different 

cases. Figure 4.5 sketches different residuals’ plots when no sensor fault appears in the MIMO 

system. It is seen clearly that when the system is fault free, all of three residuals are pretty small and 

close to zero. Figure 4.6 shows the change of these residuals when a fault occurs in sensor 1, in 

which the residual designed for sensor 2 and fault detection dramatically increase when the fault 

appears in sensor 1, but the residual generated for sensor 1 is still close to zero. According to the 

fault code table in Section 4.5, the change of this set of residuals indicates that sensor 1 is likely to 

have malfunction. Similar to Figure 4.6, Figure 4.7 displays the plots of residuals when sensor 2 is 

broken. Note that whenever a fault occurs in sensor 1 or sensor 2, the residual for fault detection 

always non-zero. 
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Figure 4.5: Residual responses without sensor fault in MIMO 

 

Figure 4.6: Residual responses with sensor 1 fault in MIMO 
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Figure 4.7: Residual responses with sensor 2 fault in MIMO 
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Chapter 5 : Simulation  

In Chapter 4, the designs of FDD processes for various situations have been implemented and the 

validations of random SISO and MIMO systems have been checked as well. However, it is required to 

prove whether the parity relation technique can be used for FDD process design regarding to a 

vibration isolation system. Hence, a simulated implementation of single sensor fault and actuator 

fault detection and isolation on the plate structure is presented in this chapter. Besides, the 

discussions of the simulated results are stated and some useful suggestions are provided for further 

research. 

5.1 Simulation Setup with Sensor Fault  

In Chapter 4, the system identification of the laboratory plant has been derived successfully and all 

the parameters of the mathematical model have been obtained, so that the simulation model based 

on these data could be built in MATLAB Simulink, as shown in Figure 5.1. 

 

Figure 5.1: The design of FDD processes in Simulink 

The simulation structure consists four main parts as follows: 

1. Discrete system model of the laboratory plant 

As shown in Figure 5.1, in order to mimic the real disturbance force that imposed on the 

laboratory plant the input signals of the model is the sum of three sine wave signal 

generators whose frequencies are the natural frequency of three modes, 141.3088 rad/s, 

176.11768rad/s  and 219.4088 rad/s respectively. (See Chapter 3).  
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Figure 5.2: Sensor fault signal design 

2. Data memory block 

It has been mentioned that the parity space order 𝑠 is set to 6, the same with the system 

order. Therefore, in order to use parity relation technique, the history data of (𝑠 + 1) steps 

are demanded, including input signals and output signals. Figure 5.3 displays the inner 

structure of the data memory block. Input signal from port In1 and In2 are system input and 

output signals at time 𝑘, and output signal exported to port Out1 is all the organized input-

output data from time (𝑘 − 𝑠) to time (𝑘).  These data are manipulated to produce the fault 

residuals. 

 

Figure 5.3: Inner structure of data memory block 

3. Residual generation block 

As what have been discussed in Chapter 5, a set of residuals are designed for the purposes 

of sensor fault detection and isolation respectively. A ‘MATLAB function’ block is placed in 

the simulation model, which can combine the script and Simulink together, so that 
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implementation of FDD using parity relation method is able to be run online instead of 

saving the system data first and then calculating residuals. This improvement can reduce the 

time consumed by FDD process and alert the system quickly.  

In the Residual generation block, four parity vectors are designed corresponding to four 

residuals used to detect and isolate a fault. Particularly,  𝑽𝒔_𝑭𝑫  is designed for fault 

detection, and  𝑽𝒔_𝒔𝟏,  𝑽𝒔_𝒔𝟐 and  𝑽𝒔_𝒔𝟑 are designed to be insensitive to sensor 1 fault, 

sensor 2 fault and sensor 3 fault respectively. The designed parity vectors are listed in Table 

5.1.  

Table 5.1: Designed parity vectors for sensor fault detection and isolation 

 𝑉𝑠_𝐹𝐷 
𝑇  𝑉𝑠_𝑠1 

𝑇  𝑉𝑠_𝑠2 
𝑇  𝑉𝑠_𝑠3 

𝑇 

0.0925 

-0.0462 

0.0835 

-0.0548 

-0.1608 

0.4226 

-0.0688 

-0.2620 

0.7804 

-0.0013 

0.1407 

0.1194 

0.0623 

0.0943 

0.0704 

0.1499 

-0.0476 

-0.0375 

-0.0628 

0.0705 

0.0746 
 

0.0000 

-0.2445 

0.3720 

0.0000 

0.2348 

-0.1014 

0.0000 

-0.1626 

0.4814 

0.0000 

0.1357 

0.1045 

0.0000 

0.5603 

-0.3555 

0.0000 

0.0485 

0.0604 

0.0000 

0.0499 

0.0103 
 

-0.1154 

0.0000 

0.1497 

0.0791 

0.0000 

-0.2487 

0.3235 

0.0000 

0.0229 

0.0098 

0.0000 

-0.1109 

0.7820 

0.0000 

-0.0345 

0.0094 

0.0000 

-0.0007 

0.3744 

0.0000 

0.1601 
 

-0.1192 

0.1470 

0.0000 

0.0668 

-0.2170 

0.0000 

0.3346 

0.0184 

0.0000 

0.0208 

-0.1279 

0.0000 

0.7898 

-0.0331 

0.0000 

-0.0011 

0.0048 

0.0000 

0.3604 

0.1694 

0.0000 
 

4. Fault isolation block 

Despite of the fact that a residual generator is created to indicate the occurrences of faults, 

a residual evaluation and decision-maker block is necessary to isolate a fault directly. 

Usually, there are two main strategies to evaluate the residuals, one of which is norm-based 

residual evaluation and another one is statistic-based residual evaluation. This study uses 

the second method as the statistics of the experiment have been recorded. 
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5.2 Sensor Fault Simulation Results 

Based on the simulation built in Section 5.1, the simulation results of sensor faults are illustrated and 

discussed in this section. The illustrated results are considered according to four cases, including 

fault-free, sensor 1 fault, sensor 2 fault and sensor 3 fault and are analysed in the next four sections 

respectively.  

Additionally, for each fault case, a set of residuals are designed. Specifically, residual R_1, R_2 and 

R_3 are not sensitive to fault 1, fault 2 and fault 3 individually and residual R_d is designed for the 

purpose of fault detection.  

5.2.1 Simulation Results of Sensor Fault for Case 1: No Fault 

This section displays the simulation results when no fault occurs in the system. Figure 5.4, Figure 5.5, 

Figure 5.6 and Figure 5.7 display the plots of the designed four residuals respectively. The 

implementation of FDD processes can be conducted through analysing these plots of residuals. 

Clearly, it is seen that all of four residual signals are small and their values are less than 1 × 10−4, 

which proves that there is no fault happened in the system. 

 

Figure 5.4: Case 1 - The responses of residual R_1 for sensor fault 
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Figure 5.5: Case 1 - The responses of residual R_2 for sensor fault 

 

Figure 5.6: Case 1 - The responses of residual R_3 for sensor fault 
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Figure 5.7: Case 1 - The responses of residual R_d for sensor fault 

5.2.2 Simulation Results of Sensor Fault for Case 2: Sensor 1 Fault 

In this section, a fault signal is introduced into sensor 1 of the analysed system at 4-second time with 

a magnitude of 0.1. Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 display the plots of the four 

residuals respectively when a fault appears in sensor 1.  

It can be found that all of four residual signals are still minor before the fault appears in sensor 1. All 

the residual signals fluctuate at 4-second time. Additionally, the value of residua R_1 is still very 

small, about −0.5 × 10−5 unit, as shown in Figure 5.8. The value of residua R_2 and R_3 increase 

dramatically and are times larger than before. Meanwhile, the value of residual R_d also enlarges 

about 1 × 103 times, which states that a fault happened at 4-second time. This is due to the fact 

that residual R_1 is insensitive to sensor 1 fault and the other residuals are sensitive to sensor 1 

fault, so that once a bias fault arises in sensor 1, residual R_2 and R_3 differ from zero and residual 

R_1 is still close to zero. Hence, it can deduce that sensor 1 may be broken.  

In conclusion, through observing the change of the set of designed residuals, FDD process for sensor 

1 can be implemented successfully. 
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Figure 5.8: Case 2 - The responses of residual R_1 for sensor fault 

 

Figure 5.9: Case 2 - The responses of residual R_2 for sensor fault 
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Figure 5.10: Case 2 - The responses of residual R_3 for sensor fault 

 

Figure 5.11: Case 2 - The responses of residual R_d for sensor fault 

5.2.3 Simulation Results of Sensor Fault for Case 3: Sensor 2 Fault 

A pre-defined fault signal is added into sensor 2 and the simulation results are analysed in this 

section. Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15 display the curves of the four designed 

residuals respectively when a fault appears in sensor 2.  
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It has known that the fault occurred at 3-second time. The simulation results show that before the 

fault happed, all of three residuals are close to zero. Nevertheless, when sensor 2 has a malfunction, 

residual R_1 and residual R_3 are not close to zero anymore and have a rise,  reaching 0.06 and 

0.005 unit respectively, but residual R_2 does not have a distinct change. In addition, residual R_d is 

almost zero at the beginning, but there is a dramatic rise after the fault is injected.  

Consequently, the simulated results illustrate that a fault happened in the system after running for 3 

seconds and the location of the fault is most possibly in sensor 2. Hence, the fault in sensor 2 can be 

quickly detected and isolated. 

 

 

Figure 5.12: Case 3 - The responses of residual R_1 for sensor fault 
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Figure 5.13: Case 3 - The responses of residual R_2 for sensor fault 

 

Figure 5.14: Case 3 - The responses of residual R_3 for sensor fault 
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Figure 5.15: Case 3 - The responses of residual R_d for sensor fault 

5.2.4 Simulation Results of Sensor Fault for Case 4: Sensor 3 Fault 

A different fault is imposed on sensor 3 in this section, which happens at 3-secod time , and lasts for 

5 seconds then disappears. The simulation results are shown in Figure 5.16, Figure 5.17, Figure 5.18 

and Figure 5.19.  

As shown in Figure 5.16 and Figure 5.17, residual R_1 and residual R_2 are close to zero during the 

period from 0-second to3-second. When the pre-defined fault exists, they increase or decrease to a 

non-zero value. Once, the fault is fixed at 8-second time, both of them become zero again. Besides, 

residual R_d reflects when a fault occurs in the system properly in Figure 5.19. 

However, residual R_3 in Figure 5.18 is approximate to zero constantly whenever a fault happens or 

not. This result supports the design principle that residual R_3 is not insensitive to sensor fault 3.  

To conclude, the responses of the three residuals reflect whether there is a fault in sensor 3, and the 

residuals return to zero to prove that the system is fault free when the fault disappears. 
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Figure 5.16: Case 4 - The responses of residual R_1 for sensor fault 

 

 

Figure 5.17: Case 4 - The responses of residual R_2 for sensor fault 
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Figure 5.18: Case 4 - The responses of residual R_3 for sensor fault 

 

Figure 5.19: Case 4 - The responses of residual R_d for sensor fault 

5.3 Simulation Results of Decision-making Block 

The decision-making block evaluates the residuals and concludes the fault information, which is 

prepared for further study of fault accommodation. The simulation results are shown in Figure 5.20, 

Figure 5.21, Figure 5.22 and Figure 5.23 corresponding to different fault cases individually. 
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It can be seen that there are four signals in each graph, defined as ‘indicator of sensor 1 fault’, 

‘indicator of sensor 2 fault’, ‘indicator of sensor 3 fault’ and ‘indicator of any sensor fault’. The ‘1’ 

value of these signals means a fault exists in corresponding location; the ‘0’ value represents that no 

fault happens.  

 Figure 5.20 displays the fault information exported by Decision-making block when no fault 

signal is added onto any sensor, and it can be observed that the values of four fault indicator 

signals are zero.  

 As shown in Figure 5.21, the values of signal ‘sensor 1 fault indicator’ and signal ‘any sensor 

fault indicator’ are one and the other two signals remain zero when a fault signal is added on 

sensor 1. 

 Figure 5.22 describes the fault information when a fault occurs in sensor 2, in which the 

values of signal ‘sensor 2 fault indicator’ and signal ‘any sensor fault indicator’ become one 

to indicate the occurrence of the fault and the other signals maintain at zero.  

 Figure 5.23 displays the fault information when a fault signal is added on sensor 3. The signal 

‘sensor 2 fault indicator’ and signal ‘any sensor fault indicator’ follows the shape of the 

injected fault signal in Section 5.2.4.  

In conclusion, it has proven that the fault information produced by the decision-making block is 

correct because the results displayed by these indicators are the same with what has been discussed 

in Section 5.2 regarding to different fault cases.  
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Figure 5.20: Fault information when no fault exists in the system. (a)-fault indicator for sensor 1: ‘0’ 
means no fault and ‘1’ means sensor 1 malfunctions. (b)-fault indicator for sensor 2:  ‘0’ means no 
fault and ‘1’ means sensor 2 malfunctions. (c)-fault indicator for sensor 3:  ‘0’ means no fault and ‘1’ 
means sensor 3 malfunctions. (d)-fault indicator for all sensors:  ‘0’ means no fault and ‘1’ means 
one of the three sensor malfunctions. 

 

Figure 5.21: Fault information when a fault exists in sensor 1. (a)-fault indicator for sensor 1: ‘0’ 
means no fault and ‘1’ means sensor 1 malfunctions. (b)-fault indicator for sensor 2:  ‘0’ means no 
fault and ‘1’ means sensor 2 malfunctions. (c)-fault indicator for sensor 3:  ‘0’ means no fault and ‘1’ 
means sensor 3 malfunctions. (d)-fault indicator for all sensors:  ‘0’ means no fault and ‘1’ means 
one of the three sensor malfunctions 
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Figure 5.22: Fault information when a fault exists in sensor 2. (a)-fault indicator for sensor 1: ‘0’ 
means no fault and ‘1’ means sensor 1 malfunctions. (b)-fault indicator for sensor 2:  ‘0’ means no 
fault and ‘1’ means sensor 2 malfunctions. (c)-fault indicator for sensor 3:  ‘0’ means no fault and ‘1’ 
means sensor 3 malfunctions. (d)-fault indicator for all sensors:  ‘0’ means no fault and ‘1’ means 
one of the three sensor malfunctions 

 

Figure 5.23: Fault information when a fault exists in sensor 3. (a)-fault indicator for sensor 1: ‘0’ 
means no fault and ‘1’ means sensor 1 malfunctions. (b)-fault indicator for sensor 2:  ‘0’ means no 
fault and ‘1’ means sensor 2 malfunctions. (c)-fault indicator for sensor 3:  ‘0’ means no fault and ‘1’ 
means sensor 3 malfunctions. (d)-fault indicator for all sensors:  ‘0’ means no fault and ‘1’ means 
one of the three sensor malfunctions 
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5.3 Simulation Setup with Actuator Fault  

Similar to the model built in Section 5.1, Figure 5.21 illustrates the simulation model for actuator 

fault. 

 

Figure 5.24: Simulation model with actuator fault 

5.4 Actuator Fault Simulation Results 

The simulation results of actuator fault are illustrated and discussed in this section. The simulated 

results are analysed for four different cases, including fault-free, actuator 1 fault, actuator 2 fault 

and actuator 3 fault, and each case is analysed in the next four sections respectively. 

In each case, four residuals are designed to implement fault detection and isolation. Specifically, the 

designed residual R_1, R_2 and R_3 are not sensitive to fault 1, fault 2 and fault 3 individually, and 

the residual R_d  are created to detect fault.  

Table 5.2: Designed parity vectors for actuator fault detection and isolation 

 𝑉𝑠_𝐹𝐷 
𝑇  𝑉𝑠_𝑎1 

𝑇  𝑉𝑠_𝑎2 
𝑇  𝑉𝑠_𝑎3 

𝑇 

-0.0802 

-0.0658 

-0.2541 

0.1613 

0.3523 

-0.2862 

-0.0155 

-0.1043 

0.7718 

-0.0401 

-0.0951 

-0.0590 

-0.0892 

0.1661 

0.1538 

-0.0860 

-0.0808 

0.1819 

0.1728 

-0.3990 

-0.2436 

0.2601 

-0.3118 

0.1019 

0.1697 

-0.0222 

-0.0249 

0.0488 

0.5209 

-0.3085 

-0.1282 

-0.1198 

0.2463 

-0.0574 

-0.1091 

0.1729 

0.2047 

-0.0863 

-0.0902 

0.1405 

0.2110 

-0.3615 

-0.2920 

0.2487 
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-0.1990 

-0.0357 

-0.0580 

-0.1420 

-0.0088 

-0.0002 

-0.0645 

0.0327 

0.0697 

0.0252 
  

-0.0099 

-0.2265 

-0.3127 

0.6030 

0.0987 

0.0085 

-0.1229 

0.1251 

0.0011 

-0.1443 
  

-0.1626 

-0.0240 

0.1594 

-0.1536 

0.1036 

0.1414 

-0.2497 

-0.2137 

-0.1803 

0.3935 
  

-0.0114 

-0.1993 

-0.3585 

0.5767 

0.0992 

0.0107 

-0.1025 

0.1368 

-0.0007 

-0.1236 
  

 

5.4.1 Simulation Results of Actuator Fault for Case 1: No Fault 

In this section, the simulation results when no fault occurs in the system are displayed and 

discussed. Figure 5.22, Figure 5.23, Figure 5.24 and Figure 5.25 show the curves of the designed four 

residuals respectively. The implementation of FDD processes can be conducted through comparing 

these residuals with the fault code Table 5.1 in Section 5.4 with replacing sensor fault by actuator 

fault. 

 

Figure 5.25: Case 1 - The responses of residual R_1 for actuator fault 
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Figure 5.26: Case 1 - The responses of residual R_2 for actuator fault 

 

Figure 5.27: Case 1 - The responses of residual R_3 for actuator fault 
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Figure 5.28: Case 1 - The responses of residual R_d for actuator fault 

It is clearly seen that all of four residual signals are close to zero and their values are less than 

1 × 10−4, which prove that there is no fault happened during the simulation. Therefore, the 

designed fault detection process is available for vibration cancellation system.  

5.4.2 Simulation Results of Actuator Fault for Case 2: Actuator 1 Fault 

Similar to Section 5.2.2, a pre-defined fault signal is added into actuator 1 and the simulation results 

are analysed in this section. Figure 5.26, Figure 5.27, Figure 5.28 and Figure 5.29 display the curves 

of the four designed residuals respectively when a fault occurs in actuator 1.  

It has known that the fault occurred at 2-second time. The simulation results show that before the 

fault happened, all of four residuals are close to zero. Nevertheless, when actuator 1 malfunctions, 

all the residuals have a sharp rise and then gradually drop to zero again within 1 second. Note that 

this phenomenon is different from the residual responses in Section 5.2.2 that maintain at a stable 

value. This is because that the fault signals in sensors are directly added onto the system output 

signals without other calculation, but the fault signals in actuators are considered as unknown input 

signals and are transformed through the system model. However, through comparing the magnitude 

of these residuals, it can be found that the magnitude of residual R_2 and residual R_3 are still much 

larger than that of residual R_1 when the fault is just introduced, but residual R_2 does not have a 

distinct difference. Therefore, the actuator fault isolation is still achieved  but not a strong isolation 

at this stage. In addition, residual R_d is almost zero at the beginning, but there is a dramatic rise 

after the fault is injected. So the goal of fault detection is fulfilled. 
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Consequently, the simulated results illustrate that a fault happened in the system after running for 2 

seconds and the location of the fault is most possibly in actuator 1. Hence, the designed residuals 

react at the injected fault, and the fault detection and isolation for actuator 1 is able to be 

implemented . 

 

Figure 5.29: Case 2 - The responses of residual R_1 for actuator fault 

 

Figure 5.30: Case 2 - The responses of residual R_2 for actuator fault 
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Figure 5.31: Case 2 - The responses of residual R_3 for actuator fault 

 

Figure 5.32: Case 2 - The responses of residual R_d for actuator fault 

 

5.4.3 Simulation Results of Actuator Fault for Case 3: Actuator 2 Fault 

The task of this section is to detect the injected fault and isolate it. Like to last Section 5.4.2, a pre-

defined fault is added onto actuator 2 separately. The residual responses are shown in Figure 5.30, 

Figure 5.31, Figure 5.32 and Figure 5.33 respectively. 
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As shown in these figures, the responses of residual R_d indicates that a fault appears in the system 

and the magnitude of residual R_1 is also larger than that in Section 5.4.2 when a fault is introduced 

. Nevertheless, the responses of residual R_2 and R_3 have extremely shapes, so it is impossible to 

identify that the fault is in actuator 2 or actuator 3. Furthermore, the simulation results for Case 4 

are almost same with Case 3, so that the plots of residuals are omitted.  

To conclude, the isolation of actuator 2 fault and actuator 3 fail at this stage because the designed 

residual R_2 and R_3 have similar specifications. A possible reason is that the input matrix B contains 

two extremely similar columns corresponding to input signal 2 and input signal 3 and the effects on 

the output signals from input signal 2 and signal 3 are almost same. 

 

Figure 5.33: Case 3 - The responses of residual R_1 for actuator fault 
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Figure 5.34: Case 3 - The responses of residual R_2 for actuator fault 

 

Figure 5.35: Case 3 - The responses of residual R_3 for actuator fault 
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Figure 5.36: Case 3 - The responses of residual R_d for actuator fault 

5.5 Simulation Summary 

The FDD simulation of the laboratory structure is implemented in this chapter. According to 

simulation results in Section 5.2 and 5.4,  

 For sensor fault, the FDD processes are completely successful. Wherever a fault occurs, the 

FDD processes can find the fault and identify it location quickly and reliably. 

 For actuator fault, the goal of fault detection can be achieved properly, however, only the 

actuator 1 fault can be isolated and due to the similarity of columns in input matrix B, the 

fault in actuator 2 and actuator 3 could not identified clearly. 

Therefore, it is advised that the further research could focus on how to distinguish the residuals 

designed for isolating actuator 2 and actuator 3, such as modelling the system in a different way or 

find a suitable parity vector to identify the above residuals. 
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Chapter 6 : Conclusions and Future Works  

6.1 Project Conclusion 

The main contribution of this project is to implement FDD processes via using parity relation 

technique on a plate-structured vibration cancellation system. This project first addresses the 

principle of parity relation technique and then illustrates a procedure of fault detection and isolation 

process through using parity relation technique. After that, the designed FDD processes in terms of 

sensor faults are validated in SISO and MIMO systems. Finally, the FDD processes, including both 

sensor fault and actuator faults, are tested in MATLAB Simulink based on the real laboratory 

mathematical model. In term of sensor fault, the designed FDD processes work successfully. For 

actuator fault, fault detection process can be implemented properly, but fault isolation process 

cannot identify the location of an actuator fault in Actuator 2 or Actuator 3 due to the symmetric 

positions of two actuators.  

The brief review of this project is draw as follows:  

Initially, the laboratory model setup and hardware components are proposed. The laboratory 

structure is comprised of a base plate, a top plate supported by three transducers, one transducer 

providing external disturbance and three accelerometers placed on the top plate at the same 

location with transducers. The control goal is to maintain the top plate vibration-free while a 

disturbance signal is introduced to the base plate consistently and forces the top plate vibrating. So 

far, the laboratory model is clearly stated.  

Furthermore, a physical experiment method is used to obtain the mathematical model by using 

model analysis software ‘ModalVIEW’. Especially, the input-output transfer function form is 

manually converted into state-space representation upon the theoretical analysis method and 

experiment data, which is the preparation of FDD design.  

After that, the theory of parity relation technique is illustrated. FDD is a significant aspect of fault 

tolerant control architectures. The core part of parity relation method is to build a constant equation 

through designing a parity vector which can eliminate the effects of unknown system variables. 

When the system is fault free, the designed residual of the system is stable and close to zero in 

value. However, when a fault is introduced into the system, the residual will alter to indicate there 

exists error(s) in the system. To detect fault, firstly need to define an order of the parity space, in 

which the designed parity vector 𝑽𝒔  satisfies certain condition:  𝑽𝑠 ∗ 𝑯 = 0 , where 𝑯  is a 

deterministic matrix associated with system variable X(t). The designed residual is calculated based 

on the measurable system input and output, and is not affected by system variables 𝑿(𝑡). 



Chapter 6: Conclusion 

65 
 

Additionally, fault isolation process is implemented through designing different parity vectors Vs and 

forming a set of structured residuals.  Each residual is sensitive to all, but only insensitive to one 

fault. The fault will be located through a fault code table. 

Based on the theoretical design, parity space technique for SISO system case and MIMO system case 

are designed and validated through MATLAB Simulink. The faulty system is created by injecting pre-

defined single fault into the normal system. Simulation results of both SISO and MIMO systems show 

that the designed residual signals corresponding to a fault change from zero to non-zero when the 

fault is injected, which validates the FDD design using parity relation technique. After then, the 

parity relation method is extended to the real plate model in MATLAB. Simulation result shows that 

the parity relation technique is able to detect pre-defined faults for the real plate system. 

Additionally, fault isolation process can locate a fault through a fault code table. Simulation results 

show that parity relation method has an excellent performance in detecting single sensor fault of the 

studied vibration cancellation system.  

6.2 Future Works 

Although FDD processes for sensor fault have been proven and fulfilled on the laboratory model, 

some improvements should be made in future. It has been mentioned in Chapter 5 that the fault 

isolation for actuator fault failed in the laboratory model simulation. The reason may be complex 

and multiple, such as the mathematical model that is not enough accurate or symmetric positions of 

actuator 2 and actuator 3. The future research should focus on addressing fault isolation process for 

actuator fault.  

Moreover, the experiments of the designed FDD processes are not completed due to time limitation. 

As an experimental validation may be affected easily by unknown noise for vibration cancellation 

system, the designed parity vector is required to be robust to noise and sensitive to a fault. The 

author mainly uses a directly mathematical method to generate the parity vector, which is easy to 

achieve and fast responses to dynamic systems. However, the performance is not as good as desired 

in practice. There are still a few mathematical methods to improve the performance of FDD 

processes using parity relation technique. [6] states that how to use singular value decomposition 

(SVD) to find a sub-optimal parity vector that has a strong robustness to noise.  

Consequently, for future work, fault isolation for actuator fault could be researched and experiment 

methods should be addressed and tested on the real plate structure with an evolved parity vector. 
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Appendix A: MATLAB Code for SISO System Validation 

The continuous system parameters used for SISO system validation are shown as follow: 

𝑨 = [
−1.6688 4.125
−0.2926 −3.8177

]  

𝑩 = [
6

2.3077
]  

𝑪 = [0 1] 

𝑫 = [0] 

The sampling time 𝑇 =  0.01𝑠 and the parity order 𝑠 = 4. 

The parity vector  𝑉𝑠 = [0.06 −0.5495 0.8030 −0.1699 −0.144] 

The MATLAB code is kept within the advanced control research group, Flinders University. 

The Code can be provided upon request. 
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Appendix B: MATLAB Code for MIMO System 

Validation 

The continuous system parameters used for MIMO system validation are shown as follow: 

𝑨 = [
−1.6688 4.125
−0.2926 −3.8177

]  

𝑩 = [
0 410.3077

55.6064 0
]  

𝑪 = [
1 0
0 1

] 

𝑫 = [
0 0
0 0

] 

The sampling time 𝑇 =  0.01𝑠 and the parity order 𝑠 = 4. 

The parity vector  

 𝑉𝑠1 = [0 0.0742 0 −0.547 0 0.8006 0 −0.175 0 −0.1541] 

 𝑉𝑠2 = [−0.2692 0 0.7022 0 −0.2831 0 −0.4889 0 0.3395 0] 

The MATLAB code is kept within the advanced control research group, Flinders University. 

The Code can be provided upon request. 
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Appendix C: MATLAB Code for Residual Generation 

The MATLAB code is kept within the advanced control research group, Flinders University. 

The Code can be provided upon request.  
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Appendix D: MATLAB Code for Fault Isolation Block 

The MATLAB code is kept within the advanced control research group, Flinders University. 

The Code can be provided upon request.  
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