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1 ABSTRACT  

The project undertaken is ‘mapping the temporal dynamics during audio-visual speech 

processing using connectivity analysis’. Speech processing relies on both auditory and visual 

sensory input. The visual stimulation observed during speech can influence what is 

perceived. This is an effect which is processed in well-defined regions of the brain.  

The stimulus to be presented to the subjects was a series of individual stimuli of ‘ABBA, 

‘AGGA’, ‘ATHA’ or ‘APPA’. The ‘ATHA’ is an artificial perception of auditory of ‘ABBA’ and the 

video of ‘AGGA’. There were also static ‘AGGA’ and ‘ABBA’’s where there was the auditory 

sound but no visual stimulation. These were presented at three different volume levels. The 

data was recorded at a very high sampling rate of 9600Hz with 21 subjects. 

Components were fit to the data for the connectivity measure. This component fitting was 

done across all subjects as a group to result in common components across all subjects for 

comparison and higher amount of data for stimuli. This resulted in a final set of components 

that are common for all subjects that were in the regions of interest.  

Transfer entropy and conditional granger causality were used to provide a directed measure 

of connectivity. Transfer entropy was not the best measure, as none of the results were 

significant. Conditional granger causality was a better measure of connectivity providing 

some statistically significant results. To be a temporal analysis, the connectivity was taken in 

small 200ms windows across the post stimulus period. 

An increase in the level of acoustic background noise caused there to be an increase in 

connection to the STS and more recruitment of the visual cortex, suggesting recruitment of 

STS in recognising speech in noisy conditions. There was obvious recruitment of the STS in 

the correct compared to little or no recruitment in incorrect. The ATHA stimulus caused 

there to be recognition of ABBA, as ATHA in high noise conditions, due to this pre-disposure 

to the sound with a different visual. This was then found to be a frontal activity that then 

recruited the STS and visual streams in recognising this from memory. In comparing a 

McGurk stimulus to a non-McGurk stimulus, it is obvious that in high noise conditions there 

is still this recruitment of the STS in understanding noisy speech, even when this does not 

change what is perceived. When there is no visual stimulation, there are still signals sent to 

the STS but just no output from it, however interestingly there are still signals sent from the 

visual cortex, which may be signals that are saying there is no visual input of significance. 

The STS recruitment was almost always a very initial process in the first 200-300ms, except 

when being accessed from memory – such as the case of guessing ATHA in a high noise 

ABBA.   
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4 INTRODUCTION 

The processing of speech information is a complex process in the brain (McGurk & 

MacDonald, 1976; Van Engen, et al., 2017). The speech processing relies on both auditory 

and visual sensory input (Nath & Beauchamp, 2012; Poeppel, et al., 2008; Van Engen, et al., 

2017). Visual stimulation can influence what is perceived (McGurk & MacDonald, 1976). This 

can be particularly observed when investigating the McGurk effect. The McGurk effect is 

when there are sounds being presented to the person with visual input, and this addition of 

the visual input changes the perception (McGurk & MacDonald, 1976). For example, when 

hearing the ‘ba’ syllable, with a ‘ga’ mouth movement, there is often a perception of ‘tha’ or 

‘da’, due to the visual input changing the perception (Tiippana, 2014). This is a process 

which can also facilitate speech processing in noisy environments – often called the cocktail 

party effect.  

The processing occurs in well-defined regions of the brain (Nath & Beauchamp, 2012). The 

auditory processing occurs in the primary auditory cortex and the visual processing occurs in 

the visual cortex (Barraclough, et al., 2005). There is evidence that the integration occurs in 

another region of the brain, the superior temporal sulcus (Nath & Beauchamp, 2012). These 

regions of the brain interact together, and with the prefrontal cortex, to integrate the 

information (Barraclough, et al., 2005). But this integration of sensory information is not 

well understood. These parts of the brain are known in their use, but the nature of the 

connection and timing is not. There is the question of which acts first and how they relay 

the information.  

EEG is the best tool in order to investigate this problem due to its temporal resolution 

(Haufe, et al., 2013).  EEG is recorded with electrodes on the outside of the head in order to 

record the electrical activity (Casson, et al., 2017). This data will be used to map the sources 

activating inside the head, then these sources will be used to observe the connectivity 

between them. There are many ways in which this connection can be investigated in the 

brain. One such way is using connectivity analysis (Friston, 2011). This investigated 

synchrony of brain sources with other sources can be analysed to determine whether there 

is a relation between them (Haufe, et al., 2013). This connectivity can then be mapped 

across the temporal domain in order to obtain this nature of the connection.  These 

connections will be checked for statistical significance (Zalesky, et al., 2010).   
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5 BACKGROUND RESEARCH 

5.1 ELECTROENCEPHALOGRAM 
Electroencephalogram (EEG) is still used widely in brain research due to its low costs, non-

invasiveness, portability and time resolution (Haufe, et al., 2013). Although EEG has very 

good temporal resolution, it has poor spatial resolution (Bell & Cuevas, 2012). The signals 

travel from their source through the brain and through the skull out to the electrodes 

(Casson, et al., 2017). The skull acts like a low-pass filter which retains and distorts brain 

signals (Bell & Cuevas, 2012). A dense array of electrodes could get better spatial resolution 

but can be very costly in obtaining and maintaining (Bell & Cuevas, 2012). A dense array of 

electrodes will be used in the project.  

The other common measure to use in brain research is functional magnetic resonance 

imaging (fMRI) (Pittau, et al., 2011). However, fMRI can be even more costly and difficult to 

obtain (Sharon, et al., 2007). The signal measured is the blood oxygen level dependent 

(BOLD) changes occurring in the brain, which has a temporal resolution across a time frame 

of seconds, whereas the temporal resolution of EEG is in the milliseconds (Pittau, et al., 

2011). In this study of mapping the temporal dynamics, it is important to have a good 

temporal resolution since the effect is to be measured across small time windows. This 

would be unable to be done using fMRI. While EEG has poor spatial resolution, there are still 

ways to work around this, and EEG has the appropriate temporal range for the study.  

EEG has a number of other issues which need to be considered. There is the problem of 

muscle signals present in the recorded EEG (Casson, et al., 2017). These muscle signals have 

magnitudes much larger than the EEG signal, since it is not impeded by the skull and is a 

higher amplitude electrical signal (Duffy, et al., 1989). This can be reduced by the use of low 

frequency filters and other techniques (Duffy, et al., 1989). This brain signal is also 

conducted through the brain to the electrode, causing each electrode to contain a number 

of sources information with volume conduction errors, which makes it difficult to separate 

the scalp recorded EEG into individual brain sources (Kayser & Tenke, 2014). There is also 

electrooculography (EOG) signal from eye movement, eye blinks, electrode movement and 

incoming noise signals, such as 50Hz line noise (Duffy, et al., 1989). The EOG signal will be 

filtered by using electrodes around the eyes to pick up these signals and filter for them 

(Wyczesany, et al., 2015). Eye blinks, electrode movement and noise signals can be filtered 

out using filters within the frequency range of the noise but not EEG, by rejecting epochs 

with a high amount of noise or using independent component analysis to reject these 

sources (Wyczesany, et al., 2015). 

5.2 MCGURK EFFECT 
Speech processing is very complex process in the brain, which relies on both auditory and 

visual sensory input (McGurk & MacDonald, 1976; Van Engen, et al., 2017). This visual 

stimulation of what humans see can affects what is perceived (Nath & Beauchamp, 2012; 

Poeppel, et al., 2008; Van Engen, et al., 2017). This can be particularly observed when 
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investigating the McGurk effect (McGurk & MacDonald, 1976). McGurk and MacDonald 

(1976) found that if different acoustic speech signal was combined with a visual stimulation 

that is incongruent, then the listener heard a sound which was different from the sound or 

the visual stimulation, but a combination of the two (Tiippana, 2014; Nath & Beauchamp, 

2012; Van Engen, et al., 2017). The illusion was termed as the ‘McGurk effect’, due to the 

discoverer of this phenomenon (McGurk & MacDonald, 1976). This phenomenon has had 

great impact in psychology and neuroscience field, as it shows the effect of the integration 

of information from both the visual and auditory senses into a unified, integrated 

perception (Tiippana, 2014; Gentilucci & Cattaneo, 2005; Stevenson, et al., 2012).  

The most common use of this is to dub the auditory ‘b’, over a visual ‘g’, and the perceived 

is ‘d’ or ‘th’ (Tiippana, 2014; Nath & Beauchamp, 2012). There are a number of other 

‘McGurk’ effects that can be used, such as the ‘b’ auditory and ‘d’ acoustic is heard as ‘d’ 

(Tiippana, 2014; McGurk & MacDonald, 1976; Nath & Beauchamp, 2012). One challenge 

with using this interpretation is that if the user responds ‘d’, it is impossible to determine 

whether they did this in response to the visual stimulation alone or the McGurk effect of the 

integration of the auditory and visual (Tiippana, 2014; Noesselt, et al., 2007). The audio ‘b’ 

and visual ‘g’ being perceived as ‘d’ is thought to emerge due to fusion of the features; since 

the place of articulation is bilabial in audition (front), in visual it is velar (back), and so 

alveolar is perceived (middle) (Tiippana, 2014). However, one must also take into account 

that the ‘g’ can also be easily mistaken visually for ‘d’ so the choice of ‘d’ does not guarantee 

that the perception was a McGurk perception (Tiippana, 2014).  The McGurk effect is an 

excellent tool for investigating the multisensory integration in speech perception (Tiippana, 

2014). This is a very useful research tool, as it reflects the strength of the integration 

(Tiippana, 2014; Noesselt, et al., 2007; Stevenson & James, 2009; Pearl, et al., 2009). One of 

the best choices is, therefore, the ‘b’ auditory with ‘g’ visual stimulus as the auditory visual 

integration of speech, as it has a differing result to record whether or not the participant 

perceived the effect. It is also one of the most used in literature and as such, a good choice, 

as it is very commonly used and accepted in the field (Nath & Beauchamp, 2012; Nahorna, 

et al., 2012; Boliek, et al., 2010; McGurk & MacDonald, 1976).  

This effect is not experienced by all individuals with susceptibility noted to range from 26% 

to 98% (Nath & Beauchamp, 2012; McGurk & MacDonald, 1976; Gentilucci & Cattaneo, 

2005). One study by Van Engen in 2017 claimed the opposite to many others; that the 

susceptibility to the McGurk effect does not predict audio-visual recognition. They state that 

the susceptibility to the McGurk effect is dependent on lip-reading ability and other external 

influences (Van Engen, et al., 2017). This should be taken into account in the study that if 

this is true then there may still be integration occurring in the McGurk non-perceived tasks 

and can not necessarily be used as a baseline for comparison.   

The strength of the McGurk effect is taken to increase when the acoustic amplitude 

decreases (Tiippana, 2014; Nahorna, et al., 2012).  This will be investigated in the study by 

making the stimulus of the study to have a differing level of volume, with a constant level of 

background noise of a ‘cocktail party’ effect, to investigate the effect of this noise level on 
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the McGurk effect. By using a constant background noise, the perceiver is not affected by 

the change in background noise as an effect as well as stimulus presentation. This has been 

investigated in a number of other studies; however, none have investigated the nature of 

the connection over time. This will be investigated in this study to have better perspective 

of the influence of this noise level on the nature of the connection.  

The auditory processing occurs in the primary auditory cortex and the visual processing 

occurs in the visual cortex (Nath & Beauchamp, 2012). There is evidence by numerous fMRI, 

PET and other studies that the integration occurs in another region of the brain, the superior 

temporal sulcus (Nath & Beauchamp, 2012; Barraclough, et al., 2005; Beauchamp, et al., 

2004; Stevenson & James, 2009; Noesselt, et al., 2007; Macaluso, et al., 2004). An fMRI 

study by Nath and Beauchamp in 2012 hypothesised that the left STS was the strongly active 

component in McGurk perceivers, and tested the hypothesis that the McGurk non-

perceivers must have lesser activity levels in this area. They found that a weaker response in 

the left STS reflected lesser perception of the McGurk effect (Nath & Beauchamp, 2012). 

These regions of the brain interact together, along with the prefrontal cortex, to integrate 

the information (Nath & Beauchamp, 2012). But the nature of this integration of sensory 

information is not well understood, especially from the perspective of the timing of the 

interaction between these regions. There have been a number of hypothesis made about 

the way this connection works but, as of yet, it has not been investigated. 

There are a number of similar EEG studies to the one to be undertaken. There was a study 

done by Simon and Wallace in 2017 that investigated the integration of temporal processing 

of asynchronous audio-visual speech (Simon & Wallace, 2017). They did a time-frequency 

analysis on the ERPs to investigate where the effect was occurring and when (Simon & 

Wallace, 2017). They found an auditory led suppression in ERP signal in audio-visual speech 

integration (Simon & Wallace, 2017). Another study by Kumar investigated the networks 

during audio-visual speech using EEG (Kumar, et al., 2016). They did a global time-frequency 

coherogram analysis on the event related potentials to investigate the reaction at the alpha, 

beta and gamma bands; pre and post stimulus (Kumar, et al., 2016). They found a 

heightened coherence in the gamma band and a decreased coherence in the alpha and 

theta bands during audio-visual integration (Kumar, et al., 2016). They stated that beta 

activity has been seen in top-down processing and therefore inferred that this may be what 

is occurring in this integration of audio-visual processing (Kumar, et al., 2016). There is a 

study by Wyczesany that used a similar method of investigation to this study to be 

undertaken but is on visual processing and the effect of emotional state (Wyczesany, et al., 

2015). They used effective connectivity analysis between sources to investigate this effect 

(Wyczesany, et al., 2015). There are no studies in the audio-visual field that use the same 

level of connectivity analysis between sources acting across the temporal domain; only 

time-frequency analysis of ERPs of scalp electrodes to investigate the coherence across the 

temporal domain. There are some other studies that investigate the areas of the brain 

involved, as previously mentioned, which are all fMRI studies, instead of EEG, so are not in 

the temporal domain. This investigation would fill a gap in the field that has not been 

explored in this particular investigation of audio-visual integration in the temporal domain.  
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5.3 CONNECTIVITY MEASURES 
EEG is often used for the studying of brain dynamics in humans (Haufe, et al., 2013). 

However, it is hindered by the signals from the brain being measured by numerous 

electrodes from other areas of the scalp and each scalp electrode measuring data from 

many sources within the brain (Haufe, et al., 2013). This causes finding the spatial position 

of the source of the signal within head difficult (Haufe, et al., 2013). Connectivity measures 

are methods of measuring the way sources in the brain or predefined regions of the brain 

interact with one another (Friston, 2011). The correct form of connectivity measure needs 

to be selected for the study, and as such, this is an area of interest which needs to be 

investigated.  

The analysis of these networks is computed using different measures; structural 

connectivity, functional connectivity and effective connectivity (Lang, et al., 2012; Friston, 

2011). Structural connectivity is when spatially known regions in the brain are used as the 

sources and the connectivity between these is measured (Lang, et al., 2012; Friston, 2011). 

Functional connectivity is the temporal dependency of patterns; it uses statistical 

dependencies of correlation, covariance, spectral coherence and phase-locking to determine 

the sources and the connections (Lang, et al., 2012; Friston, 2011). It is based on cross 

correlation of variance in the time or frequency domain or spectral coherence (Lang, et al., 

2012). Effective connectivity describes the influence one neural system has on another and 

reflects the causal interactions (Lang, et al., 2012; Friston, 2011). Effective connectivity is 

better for a distributed system, since it investigates the influence each part has on one 

another, not relying on comparison of when the stimulus was presented. Functional 

connectivity can often be affected by the underlying neural networks of the brain; since 

these will be picked up in correlation (Lang, et al., 2012; Friston, 2011). Therefore, much 

study has been done to determine the default mode network, to determine only the effect 

due to the task being investigated and not just the resting state performance (Lang, et al., 

2012). The default mode network is found from the resting state of a person when they are 

awake and alert but not actively involved in any task (Lang, et al., 2012). While performing 

cognitive tasks, there is a response where networks of synchronised activity occur, and they 

reorganise to have task orientated manner (Lang, et al., 2012). This is often referred to as 

the anti-correlated network (Lang, et al., 2012). When one is active, the other is less so 

(Lang, et al., 2012).  

Using predefined areas of the brain would not be a very practical model in this study since 

there is no MRI or other means of accurately determining the predefined anatomical regions 

of each subject’s brains. As such, it is best to use an effective or functional measure of 

connectivity, which does not need these predefined areas as input – it can be any source of 

activity. Both functional and effective connectivity have their advantages and disadvantages. 

These resting or default networks that are present all the time can be accounted for in the 

study by recording baseline data of a person with their eyes open and closed for a period of 

time to find this.  
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Within the field of effective and functional connectivity, there are still many different 

measures to be investigated. Many are looking at phase frequency, where they are all in 

phase then that region is assumed to be a region acting together at this point in time 

(Blinowska, 2011). Phase synchrony is when the phases are in the same synchrony, even if 

not in phase together (Blinowska, 2011). This assumes when a portion of the brain is being 

used, all the neurons are in phase in their function (Blinowska, 2011). A common phase 

synchrony measure is phase locking value (Aydore, et al., 2013). This measures the 

instantaneous phase of the signals and assumes connected areas work in the same phase 

(Aydore, et al., 2013). Phase locking value as with other phase synchrony measures, are only 

applicable across data which is approximately stationary over the time interval which is 

being measured (Aydore, et al., 2013). Correlation is a method based on using the Pearson 

correlation coefficient (Wang, et al., 2014). It considers time delays and can be directed or 

undirected measures (Wang, et al., 2014). It is a simple approach which can be directed but 

as a linear method also suffers the effects of false connections through indirect pathways 

(Ide, et al., 2007). Coherence is measured from the cross-spectral density obtained by the 

conjugate multiplication of the frequency domain of the difference in the signals. It is very 

difficult in linear predications. It is only a unidirectional interaction, and bilateral, but 

directional interactions are obtained by using linear predication and granger causality; such 

as coherent granger causality (Wang, et al., 2014). The correlation and coherence families 

are more susceptible to variations in structure across data (Wang, et al., 2014; Ide, et al., 

2007). 

The linear predications are an assumption of the time signal by a weighted value of the 

signal, which is derived by using the past signal; an assumption of the behaviour based in its 

own past. There can also be a bivariate model, which uses two signals and uses the past of 

both to predict each other. This takes the Granger causality of the two to predict whether 

they influence one another. Granger causality is an estimator of a signal based on the past 

of other signals in correlation.  Some measures which use this estimator include Granger 

Causality Index (GCI), Directed Transfer Function (DTF) and Partial Directed Coherence 

(PDC). Granger causality index uses granger casualty to see whether the information 

contributed by the channel improves the prediction of the first (Blinowska, 2011). This can 

give misleading information, since the other channels may also have an influence on each 

other (Blinowska, 2011). This issue is resolved by the Granger causality measures using 

multivariate models; they use Granger causality across the connections to determine 

whether or not there is an established connection between every possible connection (Liu & 

Aviyente, 2012). These can only determine linear relations between each connection which 

can be misleading when there are nonlinear dependencies (Liu & Aviyente, 2012). This is 

good for noisy data but is a very computational heavy and therefore time-consuming 

calculation method (Wang, et al., 2014). Directed transfer function is one of these methods, 

which describe the causal influence of the channels on each other, taking into account the 

influence of others (Blinowska, 2011).  

Some non-linear methods are mutual information, transfer entropy, generalised 

synchronisation, continuity measure, synchronization likelihood and phase synchronization 
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(Friston, 2011). Continuity measure, generalized synchronisations and synchronisation 

likelihood are very similar in their function, as they are based on the reconstruction of the 

signals in the phase space. Out of these measures, only transfer entropy allows for 

directionality (Blinowska, 2011). It is a non-linear measure of a multivariate method (Liu & 

Aviyente, 2012). It is used for effective connectivity in high density EEG data, which also 

accounts better for volume conduction (Olejarczyk, et al., 2017; Liu & Aviyente, 2012). It 

determines causality from a deviation of the observed data from the generalised condition 

(Liu & Aviyente, 2012). It can be seen as equivalent to Granger causality for Gaussian 

variables but requires much less computation time (Wang, et al., 2014). These non-linear 

methods require very large continuous segments of signal for processing (Friston, 2011). 

They are prone to systematic errors and very sensitive to noise (Friston, 2011). When 

nonlinear methods were compared with linear correlation with a noisy signal, the non-linear 

estimators were of poorer performance (Friston, 2011; Liu & Aviyente, 2012).  Mutual 

information uses the time series to estimate the shared information between the sources 

(Wang, et al., 2014). In theory it can measure both linear and non-linear dependencies 

(Wang, et al., 2014). Mutual information is found to fail in some EEG data when determining 

the appropriate structure in tests where it is known (Wang, et al., 2014). 

In comparison of bivariate and multivariate estimators, the bivariate estimators can give 

misleading information when the channels are interrelated (Blinowska, 2011). The signals of 

the sources could be acting at the same time and or a slight time delay in the reading of one 

of the signals and with bivariate estimators this causes dense disorganised structures of 

connections (Blinowska, 2011).  

Many of these effective methods can have partial methods added in which partial results 

from the bivariate results are obtained, that are filtered by matrix inversion where the 

connectivity is evaluated between any two nodes while considering the influence of other 

nodes (Wang, et al., 2014). They suppress the connectivity when the two nodes receive 

input from the same source (Wang, et al., 2014).  

From these many different measures, there are a number of potential measures that may 

be applicable. Conditional granger causality and transfer entropy were measures which are 

directed, commonly used and seem appropriate for this study. This takes into account the 

high-density data and nature of the connections required for the audio-visual speech 

processing. Some measures may be applicable, such as some of the other granger causality 

measures, but they are very time consuming and if other measures are sufficient, then they 

would be chosen over these. However, should the others be insufficient, they are very good 

for noisy or hard to define connections so would be used then. Methods to then evaluate 

would be multivariate granger causality, directed transfer function or possibly mutual 

information.  

Once calculated, the graph of the connections can then be made by using a threshold from 

the connection value to only show those connections with a strength above a certain 

threshold (Wang, et al., 2014). For any of these methods, choosing the most appropriate 

strength threshold can be the problem (Wang, et al., 2014). Choosing a higher threshold can 
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show very few connections but choosing a smaller one can possibly show connections which 

are not statistically significant (Wang, et al., 2014). This will need to be considered when 

analysing the results. 

5.4 ICA AND GROUP ICA 
Source modelling needs to be done on the data to be able to investigate the connectivity 

between these sources. This takes the signals measured at the scalp and uses them in 

relation to one another to find where they originate from (Stone, 2002). This is done by 

assuming the sources are non-Gaussian signals that are statistically independent (Stone, 

2002). It is called independent component analysis (ICA) (Stone, 2002). In EEG, a data driven 

model is used since it needs to be sources found from the data, not predefined areas (Stone, 

2002). There are a number of assumptions made in this analysis in terms of propagation of 

the signals to the scalp (Onton, et al., 2006). It assumes a linear propagation with no 

refraction or time delays in signals (Onton, et al., 2006). Principal component analysis is also 

sometimes used, which finds temporally orthogonal directions of the data to define the 

sources (Onton, et al., 2006). But ICA also accounts for propagating back the data whose 

activity is independent from one another, allowing for a better separation of the sources 

(Onton, et al., 2006). There are a large number of algorithms possible in ICA and a number 

of main algorithms used are readily available through MATLAB toolboxes; Infomax (Bell & 

Sejnowski, 1995), fastICA (Hyvarinen & Oja, 1997), JADE (Cardoso & Souloumiac, 1993), 

AMUSE (Cardoso & Souloumiac, 1993), SIMBEC (Tong, 1991) and AMICA (Palmer, et al., 

2011). Out of these it was found that AMICA was the most reliable, then Infomax and 

fastICA were reliable but not as well performing and SIMBEC, AMUSE and JADE did not 

perform reliably (Youssofzadeh, et al., 2012; Leutheuser, et al., 2013). AMICA will be the ICA 

used for the current study. AMICA uses a Newton method for maximum likelihood 

estimation of the ICA mixture model (Palmer, et al., 2011). This method accommodates for 

non-stationary environments and source densities in EEG by using a probabilistic mixture 

framework (Palmer, et al., 2011).  

Most studies calculate a set of components on each subject individually using ICA and 

attempt to cluster ICA between subjects based on region or event responses (Kirschner, et 

al., 2012). To be able to get the connectivity as a mutual set of components across all the 

subjects, the sources need to be the same in all the subjects. This can be done by calculating 

and applying the ICA weight matrix across the subjects to get common sources (Huster, et 

al., 2015). The weights of these are then applied individually to the subjects to obtain the 

component time series in relation to the subject (Huster, et al., 2015). These then need to 

be analysed by a regression to determine if the component is present in the subject, 

otherwise it is discarded (Huster, et al., 2015). The common components between the 

subjects that are active are then obtained. This is useful in analysis as this can be used in 

comparison of the activity between subjects. This technique is recently used in the field, 

however, is not extensively used in the literature in this study of analysis of the audio-visual 

integration, providing a new perspective on this area of the field of research.  
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5.5 CONNECTIVITY STATISTICS 
Once the sources have been found and the connections between these established, then 

the statistical significance between these need to be investigated in order to determine 

which are significant. This is done using network-based statistics (Zalesky, et al., 2010).  

The network-based statistics can test, via some hypothesis, whether or not the observation 

is true.  The mean of the data is computed, a standard deviation is found and from this, it is 

determined whether this is considered to be a valid hypothesis by performing a t test (Maris 

& Oostenveld, 2007; Zalesky, et al., 2010). This is inferential statistics (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). There is an experimental observation between two conditions. 

There will be a distribution of the data at one condition and the other (Maris & Oostenveld, 

2007). Therefore, a t value can be found between the two conditions (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). This requires a known distribution of the test statistic and often 

the data in EEG is not normally distributed, making a t test or f test not necessarily valid 

(Maris & Oostenveld, 2007; Zalesky, et al., 2010). Another problem faced is multiple 

comparisons are needed since there are many frequencies at any point in time which need 

to be analysed (Maris & Oostenveld, 2007; Zalesky, et al., 2010). By having such a large 

number of tests, the chance of a false result is increased to a large probability, as there is an 

assumption of independence in the tests which is not a valid assumption (Maris & 

Oostenveld, 2007). There is an even higher probability of false positives, since these tests 

are across the difference sources or electrodes (Maris & Oostenveld, 2007; Zalesky, et al., 

2010). The Monte-Carlo approximation is the randomisation of distribution using the 

maximum statistic (Maris & Oostenveld, 2007; Zalesky, et al., 2010). The Monte-Carlo 

approach takes the two sets of data and combines them in different ways to get the 

distribution and then uses this distribution for the statistical analysis (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). This can have different shapes of distribution but can still be 

used to analyse whether these falls in the distribution (Maris & Oostenveld, 2007; Zalesky, 

et al., 2010). This is non-parametric statistics, since it has randomisation of the independent 

variable and the hypothesis is about the data not a specific parameter (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). 

The Bonferroni correction can be utilised here, which takes into account the number of tests 

done and alters the significance of the threshold accordingly by dividing it by the number of 

tests performed (Maris & Oostenveld, 2007). The problem with using this is with a large 

number of tests, this makes the threshold extremely small, so there will have to be an 

extremely strong effect to register, increasing a probability of a false negative (Maris & 

Oostenveld, 2007; Zalesky, et al., 2010). Another method is to use false discovery rate by 

controlling the expected proportion of false positives making it similar to Bonferroni 

correction but more sensitive (Maris & Oostenveld, 2007; Zalesky, et al., 2010).  

To avoid the multiple comparison problem, rather than testing everything, only the most 

extreme condition can be tested (Maris & Oostenveld, 2007; Zalesky, et al., 2010). A 

randomisation distribution is done for the most extreme statistic (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). To increase the sensitivity, it is conventional to do a univariate 
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parametric approach where the data is considered at many channels, time points and 

frequencies (Maris & Oostenveld, 2007; Zalesky, et al., 2010). This increases sensitivity since 

the channel, frequency and time points are not independent as they show similar behaviour 

(Maris & Oostenveld, 2007; Zalesky, et al., 2010). Neighbouring samples will show similar 

behaviours, so incorporating all of them means that this is taken into account by 

accumulating evidence; cluster-based statistics (Maris & Oostenveld, 2007; Zalesky, et al., 

2010). To avoid multiple comparison problems, the largest observed cluster can be 

compared to the randomised distribution of the largest clusters (Maris & Oostenveld, 2007; 

Zalesky, et al., 2010).  

In the current study, controlling false positives needs to be considered, but also reducing 

the false negative rate (Maris & Oostenveld, 2007; Zalesky, et al., 2010). The solution is to 

have a multi-comparison problem, where testing one hypothesis per source, in time and at 

frequency level, and do this for a number of different comparisons (Maris & Oostenveld, 

2007; Zalesky, et al., 2010). But it is one hypothesis per all the data to be tested (Maris & 

Oostenveld, 2007). To increase the sensitivity the study should be using cluster-based 

statistics or multivariate analysis (Maris & Oostenveld, 2007; Zalesky, et al., 2010). 

5.6 PURPOSE OF STUDY  
The deeper understanding of brain networks and the way the brain integrates information, 

helps to be able to understand and classify the usual behaviour of the brain for audio-visual 

integration. This could then be able to be used in further research to determine how it 

differs in disease or disorder cases. This could be used as both a diagnosis tool and to be 

able to better understand the disorder or damage done and what this causes to happen. 

Audio-visual integration has been shown to identify or investigate many clinical groups, such 

as those with autism spectrum disorder (Irwin, et al., 2011; Woynaroski, et al., 2013; Boliek, 

et al., 2010; Ujiie, et al., 2014), schizophrenia (de Gelder, et al., 2003; Pearl, et al., 2009), 

stroke patients (Hamilton, et al., 2006), and dyslexia (Blau, et al., 2009) 
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6 METHODS AND ANALYSIS 

6.1 STIMULUS 
The stimulus to be presented to the subjects was a series of individual stimuli of ‘ABBA’, 

‘AGGA’, ‘ATHA’ or ‘APPA’. The ‘ATHA’ is an artificial perception of auditory of ‘ABBA’ and the 

video of ‘AGGA’. There was also a static ‘AGGA’ and ‘ABBA’, where there was the auditory 

sound but no visual stimulation.  

The ‘ATHA’ stimulus was presented to the subjects as the McGurk stimulus to test the 

perception and whether there was a change in perception and to ensure they were 

attending both the auditory and visual stimuli. A ‘correct’ perception of ‘ATHA’ suggests that 

the participant has fused the information from both modalities. The ‘ABBA’ and ‘AGGA’ 

were therefore presented in order to challenge this stimulus. ‘APPA’ was included as an 

opposition to ‘ABBA’, so that the person had to pay attention to the sound. With only 

‘ABBA’ and ‘AGGA’, the subject would be able to tell which was coming just by seeing the 

lips come together for ‘ABBA’. Then the static sounds were added in to able to later test the 

effect of visual or no visual on the connection.  

There was a background ‘cocktail party’ noise, which was made of vague background talking 

sounds and other background noises. This was chosen to have some syllable like speech 

sounds in it, to further concentrate on the stimulus, but also have some conflicting 

background non-speech to make it more difficult a task. The stimulus was be presented at 

three different volumes with a constant background noise; low noise of 100% volume, 

medium noise of 75% volume and low noise of 50% volume, while the background noise 

was at a constant 50% volume. This choice was made to alter the stimulus level, rather than 

the actual background noise level, to keep the background as constant and not add another 

stimulus in there that the subject may be reacting to along with the actual stimulus 

presented.  

This was presented in 10 blocks. There were 72 stimuli per block; the number of sound 

levels by the number of stimulus by 4; to results in at least 4 of each stimulus types, per 

block. This results in 40 of each stimulus, per person, across the experiment. The duration of 

the stimulus presentation was around 45 minutes. This was chosen to be the longest 

amount of data to be able to be taken since a lot of data is needed for connectivity. 

However, any longer than this and it is unreasonable to ask for the participation and 

concentration of subjects. The stimulus was presented using the software SNAP (Kothe, 

2013), written in Python. 

6.2 EXPERIMENT 
The experiment was conducted in the multimodal recording facilities at Tonsley. The 

recording of EEG signal was done in the faraday cage, Figure 1, while the presentation was 

controlled outside, Figure 2. LabRecorder (Stenner, et al., 2018) was used to record the 
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different layers of incoming information for the test; EEG data, triggers, and eye tracker 

data. This information can be seen on the screen in Figure 2.  

 

Figure 1: The equipment set-up within the faraday cage; (a) presentation screen currently showing the impedance of 
electrodes, (b) EEG cap with 128 active electrodes, (c) eye tracker, (d) presentation speakers  

This allows for the data and output triggers and spectra to be monitored during the 

experiment, while having as little influence in the cage to affect the data. An active 

electrode cap by g.tec was used; g.GAMMAsys. There were 128 electrodes, with four EOG 

electrodes, a ground and a reference included. The data was recorded at a very high 

sampling rate of 9600Hz using a g.HIamp amplifier. This very high sampling rate was chosen 

in order to have enough data for connectivity. As discussed in part 5.3, connectivity needs a 

large amount of data to obtain results, as the more data there is the better the results will 

be. 9600Hz was the highest frequency possible to record at on the hardware so was chosen 

as the rate for recording. This way the time resolution of the connectivity can be made to 

have as high number of samples as possible to best observe the nature of the connections.  
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Figure 2: The different outgoing information from cage that can be monitored during the experiment; (a) output of markers 
from SNAP, (b) control interface for presentation to participants screen, (c) output of network connection to screen, (d) EEG 
data stream, (e) frequency of EEG data stream 

The study received ethics approval from the Social and Behavioural Research Ethics 

Committee (SBREC), Flinders University (Project no. 6452). There was a consent form for the 

participant to fill to agree to the experiment and use of data. The participant was presented 

with a practice trial before the task started, to give them an opportunity to trial the 

experiment and ask questions before everything was set up. Then the entire head was 

rubbed down with alcohol, for removal of any residue, to lower the impedance between 

skin electrode interfaces. The placement of Cz was found using 50% of the distance from 

nasion to inion, and 50% between the preauricular of the ears and marked. The cap is then 

placed on head and Cz put in the appropriate place, and orientation of cap corrected.  The 

EOG electrodes were placed on the face around 1 cm to the left of both eyes and 1 cm from 

the top and bottom of eye. The electrodes were then electronically located in 3D space 

using Polhemus hardware. This involved placing placeholders on the head at the temples 

and inion, then locating the ears and nasion with the 3D locating pen or orientation of the 

head. Once this was calibrated, each electrodes placement is input using the locating pen 

until all are in the system. This is to be used for more accurate spatial awareness of the 

electrodes for better connectivity analysis. To get good sources, the accurate location data 

is important since it uses back propagation from the electrode placement to predict the 

source in the head. Then the locators are taken off and the gel is put into the electrodes in 

the cap. The impedance is tested, and the impedance reduced until most of the impedance 

is below 5 kΩ. Then the eye tracker is set up and calibrated.  
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The participant is explained the tasks once more and instructed on how to conduct the 

experiment. The participant is then closed into the faraday cage to begin the experiment. 

Firstly, the eye tracker calibration is tested to correlate where they are looking in terms of 

eye tracker coordinates, to where on the screen they are looking. Next an eyes-open test is 

conducted for a minute. Then an eyes closed task for 5 minutes to record baseline data. 

Then the audio-visual degradation task is begun, and the 10 blocks presented. The subject is 

advised that should they need a rest they can take this in the breaks between blocks. After 

the completion of this there was another eyes-closed task for 5 minutes.  

The timing of the stimulus was recorded with a marker to show when the audio started and 

when the syllable of interest was presented. The presentation of the start of selected 

stimulus can be seen as the spikes in red in Figure 3, and the green line the presentation of 

the start of the articulation of the target part of the stimulus. This target part is the start of 

the mouth movement of the ‘BBA’, ‘THA’, ‘PPA’ or ‘GGA’ section of the ‘ABBA’, ‘ATHA’, 

‘APPA’ or ‘AGGA’.  

 

Figure 3: Presentation of audio of stimulus and timing  

The audio marker was produced by using the left channel as the audio signal and the right 

channel as timing signal. This stereo signal was feed into custom built trigger box (Kleiss, 

Engineering Services) that split the signal by converting the audio signal into stereo output 

by bridging the left output channel to the right and the trigger channel was converted to a 

1V, 0.5ms pulse and sent directly into the EEG amplifier digital input. The video marker was 

inserted by adding a white square to the trigger frame of the video and this square was 

identified by a light sensor attached to the screen (detecting the transition from black to 

white). The output from the light sensor is feed into the custom trigger box and converted 

to a 1V, 0.5ms pulse and sent directly into the EEG amplifier digital input. This allowed for 

precise timing of the stimulus presentation as software and hardware presentation on 

modern computers cannot always be guaranteed to deliver precise timing in a complex 

experiment setup. The visual articulation start marker was found using video images of the 

frames of each of the stimulus and selecting visually when the beginning of the articulation 

of the target sound was, as demonstrated in Figure 4. These video images in Figure 4 were 

also how the pink line representing the visual articulation start was found, by using the 
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video to find when the mouth first moved for visual stimulation. These markers will be later 

used in order to define the baseline region before any stimulation. 

 

Figure 4: Frames of video for identification of the articulation of target syllable  

There were 21 subjects tested on between the ages of 18 and 35, 9 female and 12 males. 

There was one subject whose data was not used in the analysis, due to high noise levels in 

the recording from a broken electrode in the active cap affecting the data. They were used 

for the statistics of the responses, but the EEG data was not included leaving 20 subjects for 

the analysis.  

6.3 DATA PROCESSING 
Once the data was obtained the data then needed to be cleaned and used for the 

connectivity between sources. The event markers were found, and the data established into 

the 10 different blocks of data. This removes the data in between which is not needed since 

the data at such a high sampling rate, it is very high in data size and so time-consuming to 

process. The blocks are large enough to be enough continuous data for cleaning of baselines 

in continuity. The analysis pipeline was as seen in Figure 5. 

 

Figure 5: Analysis Pipeline 

These steps will be shown in the following sections. 
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6.3.1 Behavioural Data Analysis 

The responses were investigated to see any anomalies in responses and investigate the 

response times. The accuracy of the response at the different noise levels and stimulus was 

investigated. The response time can be investigated to see the difference between the 

speed to process and act upon the information. This was done using MATLAB to extract out 

the markers for each stimulus and noise level and then write these out and find the 

response time. To get the exact response time, there were markers input by the system 

when the screen showed the stimulus at the time of articulation. There was a response 

marker when the subject responded. These were used to get an exact timing of the 

response with no delay due to different stimulus length timings.  

Statistics were then done on these results to determine the accuracy of each sound and 

sound level. This was done using MATLAB, by summating the target and actual response 

into a matrix, to create a confusion matrix out of the responses with a recall and precision 

measure. Precision is a measure of how many were correct out of the guesses that were the 

target. This is a useful measure to consider if subjects got the selection they should have. 

Recall is a measure of when they selected this choice, including the times that that answer 

was guessed that was not the right answer. So, this shows when they selected the sound for 

a different sound included. Together they give a better overview of the results by being able 

to investigate what was answered when they guessed incorrectly. 

6.3.2 Cleaning of Data 

The data was then converted into a format for a MATLAB based toolbox EEGLAB (Delorme & 

Makeig, 2004). The data was cleaned using a number of steps. The equipment was cutting 

out, due to a bad connection in some experiments, so the data was padded with zeros 

instead of NaNs when there was no input. This data will then be thrown away when it is 

epoched, rather than immediately, so that if half a block is still viable, it is used rather than 

throwing away a larger chunk of data than needed. The data was then converted into 

EEGLAB format to use the toolbox. The channels were added using the exact locations from 

the Polhemus data.  The data was then tested for any bridged electrodes using the custom 

eBridge function in MATLAB to throw out any of the bridged electrodes which are giving the 

same information due to connection via conductive gel. The data was then de-trended using 

the function from EEGLAB to apply a linear, piecewise normalisation with segment length of 

0.33 and step size of 0.0825. The EOG channels that were recorded were cleaned using the 

basic function of clean_rawdata from EEGLAB to remove artefacts from the EOG and 

convert it to an eeg3 format to be saved.  

6.3.3 ICA for data cleaning 

The data was then cleaned by using an ICA on each of the subjects. This will be done using a 

measure of independent component analysis (ICA). There are a number of algorithms, but 

the best choice would be an AMICA algorithm, as it was found to be reliable. The algorithm 

fits the subject’s data into sources that this data is acting from. This uses the input 

parameters of the number of ICA models to be trained, the number of mixture components 
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to be assumed in the input data, the learning rate for the newton method and the initial 

learning rate gradient (Leutheuser, et al., 2013).  

These components are then analysed by EEGLAB by inspecting the spectra, the activation in 

trials and the heat map representation on the head to automatically reject any sources that 

are not classified as brain activity. This can include muscle activity, outside influences or any 

other sources of noise. The sources are then fit with dipoles to check if any are situated 

outside the head to reject those as they are also not brain activity. The data is then 

projected back to sensor space to reconstruct the EEG without sources that were 

considered non-brain activity.  

6.3.4 Source Analysis 

Source modelling needs to be done on the individual participants reconstructed EEG data to 

be able to investigate the connectivity between these sources. This will be done using a 

measure of independent component analysis (ICA). There are a number of algorithms, but 

the choice used was the same as in the individual ICA; the AMICA algorithm. The process to 

fit sources for the connectivity analysis is outlined in Figure 6. To be able to get the 

connectivity as a mutual set of components across all the subjects, the sources need to be 

the same in all the subjects. This can be achieved by completing the independent 

components analysis across the subjects to get common sources. This is to obtain the same 

sources across subjects for comparison when performing the connectivity analysis as a 

group.  

 

Figure 6: Outline of the group source analysis method 

The components are fit using the valid data from all the subjects. Any sources that are 

classified by EEGLAB to be non-brain activity are rejected. These are classified using the 

spectra, trials and head map. These sources are then fit with dipoles for the location and 

orientation of the sources. These dipoles can be used in rejecting any sources that are 

outside the head as they are not brain sources. These component weights then applied to 

the individual subjects. These are analysed in the individual subjects and rejected for any 

individuals that they are not present in. These are then applied across the whole group to 

end up with a common set of components that are acting in all individual and are classified 

as brain activity.  
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6.3.5 Connectivity 

To map the brain dynamics, there needs to be an analysis of the EEG data to process the 

connections in the brain. This was obtained using connectivity analysis. There are a number 

of different methods of measuring connectivity but an effective or functional measure of 

would be the best choice. Of these measures’ coherent granger causality and transfer 

entropy were measures which are directed, commonly used and seem appropriate for this 

study. Some other measures that could be used if these fail are multivariate granger 

causality, directed transfer function or possibly mutual information; however, these are very 

time consuming to measure and would be left as a last resort.  

Transfer entropy can be defined as computing the different joint and marginal probability 

distributions as seen in Equation 1 (Vincente, et al., 2011). 

Equation 1: Transfer entropy; sum of four Shannon entropies (Vincente, et al., 2011) 

 

Transfer entropy for two observed time series xt and yt can be written as Equation 2 where t 

a time-index value, u shows the prediction time, ydy
t and xdx

t are dimensional delay vectors 

(Vincente, et al., 2011). 

Equation 2: Transfer entropy; two observed time series (Vincente, et al., 2011) 

 

Therefore, the reconstructed state space of a pair of time series as a sum of four Shannon 

entropies can be calculated as Equation 3 (Vincente, et al., 2011). 

Equation 3: Transfer entropy; two observed time series as a sum of four Shannon entropies (Vincente, et al., 2011) 

 

Conditional granger causality is defined by a linear vector autoregression (VAR) model with 

two stationary time series that are explained by their own past using linear modelling 

(Franciotti & Falasca, 2018). This is then made as a lagged model to account for the 

difference in conduction of signals (Franciotti & Falasca, 2018). This results in the series in 

Equation 4, where ε1 and ε2 are the error estimators, m is the maximum number of lag 

observations, bj and dj are the gain factors, Y(t) is the influencing the signal and X(t) is the 

recipient signal (Franciotti & Falasca, 2018). 
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Equation 4: Conditional granger causality; lagged linear VAR model (Franciotti & Falasca, 2018) 

 

As shown in some of the previous studies of EEG, mentioned in Section 5.2, there were 

some differences in activity at different frequency bands (Kumar, et al., 2016; Simon & 

Wallace, 2017). Kumar in 2016 found that there was an increase in coherence in the theta 

and gamma bands and a decrease in the alpha and beta bands (Kumar, et al., 2016). 

Therefore, analysis at different frequency bands, instead of across the spectra, might lead to 

different brain processing. The best bands to investigate would be delta (1-4Hz) theta (4-

8Hz), alpha (8–14Hz), beta (14–30Hz), and gamma (30–45Hz) (Kumar, et al., 2016).  

6.3.5.1 Evaluating Connectivity Measures 

Before using the measures, an analysis was done on them to prove their validity. This was 

done by creating some artificial brain signals in MATALB that are simple sinusoids, as seen in 

Figure 7. These were made to have a high sampling rate equal to that of the actual data; 

9600Hz. The lengths of the epochs were 2.5 seconds, since this is the length of most of the 

epochs that will be used in the connectivity. Channel 1 and 2 were made to be the same 

frequency, 6.1Hz, but with a 0.1 second offset for channel 1. These two signals are the two 

that are in phase and therefore should show connectivity between them with channel 1 as 

the leading channel. Channel 3 was made as an out of phase channel at 15.793Hz; this 

should not be a resonant frequency. Therefore channel 3 should be classified as no 

connectivity to 1 or 2.  

  

Figure 7: Artificial signals for testing; raw signals of 6.1Hz offset 0.1s, 6.1Hz and 15.793Hz respectively 

The channels do not resemble EEG data as EEG data is very noisy. So, two conditions of 

noise were made; low noise and high noise. This is to be able to test the effect of noise on 

the connectivity measure. The low noise condition was made to have a signal to noise ratio 
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of 10 with just white noise added to the signal. This can be seen in Figure 8. Then a high 

noise condition was created with a signal to noise ratio of 0.1. This can be seen in Figure 9.  

  

Figure 8: Artificial signals for testing; low noise added to a ratio of 10 

 

Figure 9: Artificial signals for testing; high noise added to a ratio of 0.1 

 These were then used in the connectivity measures of transfer entropy and conditional 

granger causality. There was also a frequency banded conditional granger causality used in 

order to test if this is valid. The output was an adjacnenvy matrix showing the connections 

of the signals.   

6.3.5.2 Analysis Methods 

The analysis is in the temporal domain, so the timing of the events is important. The zero 

point of the epochs was defined to be when the target sound of the stimulus was presented 

to the subject, green line in Figure 10. This was the ‘ba’, ‘ga’ or ‘pa’ sound. A baseline region 

needs to be defined to have an accurate representation of resting state of the brain before a 

stimulus is presented. If the resting state is not accurately defined, then the connections 

present during this resting state may be found instead of the audio-visual connections.  If 

the time right before the zero point was used, then this would be within the first section of 
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the audio, the ‘a’ sound. Before this would still have an initial mouth movement that would 

be interpreted by the subject as a stimulus. Therefore, as seen in section 6.2, the region of 

the video before any mouth movement was found as represented by the pink line in Figure 

10. Therefore, the baseline region is before this at -0.6 to –0.4 seconds before the stimulus 

presentation. This is shown as the blue region in Figure 10. The region of interest is defined 

as after the stimulus until after the decision has been made which from 0 to 0.8 seconds. 

This is the purple region in Figure 10.  

 

Figure 10: Audio of stimulus to define the regions for analysis 

As a temporal analysis, the connectivity is measured in small time windows across this 

region of interest. 200ms windows were used in order to have enough data for temporal 

analysis. The more data that is present the more accurate the connectivity results. This 

means there is 200ms of data at 9600Hz, which is 1920 samples for connectivity per 

window. This is the best compromise between enough data for an effective connectivity 

analysis and temporal resolution. By slightly overlapping the windows, there can be a very 

small change recorded over time with the better temporal resolution. This is done across 

the entire region of interest as seen as an example of the first three windows of connectivity 

in Figure 11. See Appendix B – Code, Section 12.1 for the script that was used in colossus for 

the connectivity analysis. 

 

Figure 11: Audio of stimulus to show the method of temporal connectivity analysis 
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6.3.5.3 Connectivity stats 

Once the components are found, then the validity of these connections needs to be 

statistically significant. This was done using cluster-based statistics or multivariate analysis 

using inferential statistics. The choice of method would be network based statistics using a 

method to control false discovery rate. It was calculated in MATLAB using the Brain 

Connectivity Toolbox. This has a network-based statistics package for the testing of 

hypotheses about the human connectome (Zalesky, et al., 2010).  

The data for each stimulus type and comparison was all collated for comparison by looking 

at each stimulus type, noise level and correct or incorrect answer were analysed. This 

breakdown of each of the types is in Figure 12. This put all of the combinations of each of 

the subject’s data into categories and analysed whether the changed between the reaction 

and the baseline were significant or not.  

 

Figure 12: Breakdown of the compartmentalisation of data 

The network-based statistics threshold was 0.3 and the alpha value 0.05. It was run as a t 

test not an f test, and for false discovery rate method. This then took in all the subjects’ 

epochs for each type and compared it to the region baselines to test for statistical 

significance, taking a eyes-open no task base off of both of these to eliminate this base 

network in the functioning. It resulted in a 6 by 3 by 3 matrices of the statistical results. This 

included p values and matrices of significant connections. The results noise level and 

reaction type were also taken since this will also be investigated, so then this was just taken 
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across the stimulus. See Appendix B – Code, Section 12.3 for the script for calculating the 

connectivity statistics. 

6.3.5.4 Connectivity Visualisation 

Once the connections are checked to be significant or not, then the adjacency matrix of the 

connection can be determined to be valid. This adjacency matrix is obviously quite hard to 

visualise, so tools were used in MATLAB plotting to be able to visualise and investigate this 

mapped onto the head, as seen in Figure 13. 

 

Figure 13: Visualisation method of connectivity 

This was done using a number of steps.  Firstly, the head mesh was created using Fieldtrip 

toolbox (Oostenveld, et al., 2011). This plots a mesh from an example MRI brain. Then the 

dipoles were plotted on the head by using their coordinates in the brain. Then the 

connectivity matrix is used to plot arrows between the chosen connections using base 

MATLAB functions. Then the Brainnetome atlas was used to map the brain regions that 

were found from MRI scans of the brain (Fan, et al., 2016). Appendix B – Code, Section 12.2 

for the script for plotting the results of conditional granger causality results.  
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7 RESULTS 

7.1 RESPONSE STATISTICS 
The percentage of each response type being correct or incorrect can be seen in Figure 14. 

 

Figure 14: Comparison of correct or incorrect responses across stimuli with 5% error 

There was very high accuracy on most of the results. AGGA and APPA were almost always 

correct, the ATHA around 90% correct. ABBA audio only presentation where there was no 

visual stimulus had the highest amount incorrect. This can be broken down further to the 

different noise levels to investigate the effect of the differing noise levels on the response, 

as seen in Figure 15. 
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Figure 15: Comparison of responses at different noise levels with 5% error 

It can be seen from Figure 15, there is a slight decline in accuracy across noise levels for 

AGGA, AGGA-AO and APPA as the noise increases. This is to be expected as it is a slightly 

more difficult task in the higher noise. However, the ATHA accuracy improved as the noise 

increased and there was a very large decrease in the accuracy of the ABBA and ABBA-AO as 

the noise increased. This can be further investigated by using a confusion matrix. 

The confusion matrix with the precision and accuracy for the low noise results can be seen 

in Figure 16. The answers were all generally precise, except for the few exceptions. Not all 

subjects perceived the ATHA; two did not so that is only at 70%. This is higher than expected 

as compared to many studies, showing a relatively good ATHA stimulus since the values can 

range from 26% to 98% (Nath & Beauchamp, 2012; McGurk & MacDonald, 1976; Gentilucci 

& Cattaneo, 2005). There was also confusion with ATHA where ABBA audio only was 

identified as ATHA due to preconditioning.   
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Figure 16: Confusion matrix of responses with precision and recall for low noise results 

The medium noise and high noise confusion matrices are seen in Figure 17 and Figure 18 

respectively. They can be compared to Figure 16 and each other to see the effect of an 

increase in noise. As can be seen this misconception of ABBA audio only for ATHA increased 

as the noise increased. So as the subjects could not hear the sound as clearly, they were 

more likely to identify ABBA as ATHA without the aid of visual stimulation. There was also an 

increase in incorrect answers overall, particularly in ATHA, since this is audio driven. 

 

Figure 17: Confusion matrix of responses with precision and recall for medium noise results 
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Figure 18: Confusion matrix of responses with precision and recall for high noise results 

The response times of the data were extracted from the data to be able to investigate the 

effect of stimulus and noise level on the timing of the response,  Figure 19. 

 

Figure 19: Comparison of the response times at different noise levels with standard error 

From the response times of the data, the response time of incorrectly identified AGGA and 

AGGA-AO (AGGA with no visual), were quite long. This could be correlated to the fact that 

this is one of the easier stimuli to determine so the subjects may have not heard the 

stimulus and taken a bit longer and taken a guess at which one it was resulting in a longer 

time, but a very quick response time when it is properly recognised. Most of the other 
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responses were relatively insignificant though there was a slight increase in timing as the 

noise increase as it was more difficult a task.  

7.2 CLEANING OF DATA 
There were 21 subjects, however the actual data of one subject was removed, since there 

was a bad fitting of the cap and lots of the electrodes were not against the head, along with 

a failure of recording equipment, resulting in not enough data to include the subject. 

However, an extra subject was recorded to achieve the goal of 20 subjects. An example of 

the original data was as seen in Figure 20. This data has a lot of baseline drift and is 

extremely noisy.  

 

Figure 20: Raw data of subject 1 

As can be seen in Figure 21, this is much cleaner data in comparison to the raw data after 

the cleaning methods have been applied. It has a straight baseline with much clearer signals. 
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Figure 21: Cleaned data for subject 1 

Each of the subject’s data was fitted with components to isolate for muscle or other non-

brain activity to be able to further clean the data. As can be seen in Figure 22, the good 

component has a good frequency spectrum and activation pattern, if they do not they are 

rejected. This then results in the more refined EEG activity data in Figure 23.  

 

Figure 22: Good components kept,  subject 1 example 
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Figure 23: Data further cleaned using ICA 

7.3 SOURCE ANALYSIS 
The results for the final set of components that are common for all subjects can be seen in 

mapped in Figure 25. The ERPs of these components can be seen in Figure 24. They have 

good ERP shape to assess they are valid. They have the usual shape of when a stimulus 

presented with the P300 present. There were 27 components left. They are fit in one side of 

the head since brain processes are often unilateral and the region of interest was the left 

side of the brain. 

 

Figure 24: ERP components for the final sources  
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Figure 25: The dipole locations mapped of final components 

The components can be analysed to see whether they are relevant. As seen in Figure 26 the 

components are in the regions of interest of the areas which were identified to be working 

in the MRI studies.  

 

Figure 26: Components mapped with relevant areas of interest 

The components were classified as brain regions to be able to determine the activity that is 

occurring in these components, Table 1. 

Table 1: List of components with corresponding relevant brain regions 

Brain Region Component 

Primary Visual Cortex 

24 

21 
10 

Primary Auditory Cortex 
12 

8 

Superior Temporal Sulcus 
14 

9 

Primary Somatosensory 
Cortex 

6 

22 

5 
13 

15 

Primary Motor Cortex 

1 

3 

11 
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7.4 CONNECTIVITY 

7.4.1 Testing Measures 

The ideal directed and ideal undirected adjacency matrix shows the expected result of a 

perfect solution, Figure 27.  

 

Figure 27: (a) Ideal directed adjacency matrix, (b) Ideal undirected adjacency matrix 

As can be seen in Figure 28 (a), transfer entropy is not a very reliable measure and is 

relatively undirected in the results. Granger causality is a good measure of connectivity and 

is directed, Figure 28 (b). The frequency banded results were a good measure but less able 

to determine direction of the connection, Figure 28 (c).   

 

Figure 28: (a) Transfer entropy result at low noise artificial signal, (b) Condition granger causality result at low noise 
artificial signal, (c) Condition granger causality frequency banded result at low noise artificial signal 

As seen in Figure 29 (a), as the noise increased transfer entropy did improve slightly to get 

better results, as compared to Figure 28. One of the reasons it is used in this study is that it 

is good for noisy data. However, granger causality was still a better measure even at higher 

noise, Figure 29 (b). The frequency banded results, Figure 29 (c), got worse in directionality 

with the increased noise but were still a relatively good measure. 
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Figure 29: (a) Transfer entropy result at high noise artificial signal, (b) Condition granger causality result at high noise 
artificial signal, (c) Condition granger causality frequency banded result at high noise artificial signal 

7.4.2 Transfer Entropy 

Transfer entropy was predicted to not be the best measure of connectivity in the trial of the 

connectivity measures. However, the advantage of transfer entropy algorithm used was the 

speed of calculation of the measure. So, a small investigation was done using transfer 

entropy while the calculation of the other results was processing. 

7.4.2.1 Connectivity Statistics 

As expected from the small trial of artificial data, the results were all not statistically 

significant. However, the results will still be examined for any patterns even if they are not 

significant changes in connectivity.  

7.4.2.2 Results 

To visualise the connectivity the parts of the brain were mapped. The small investigation 

was on the effect of noise level on the connectivity. There are arrow heads on the 

connections which indicate the direction of the connection. The strength of connection is 

shown by the colour of arrow; zero is the centre of colour bar so warm colours are increased 

connection and cool colours are a decrease.  

From Figure 30, it can be seen that at low noise it can be seen that in comparison to the 

baseline there was no STS activation and a decrease in activation between the auditory and 

visual cortex. 

Figure 31 shows that at medium noise there was an increase between the STS and the visual 

cortex. There was a decrease between the somatosensory and visual cortex. There was also 

a decrease between auditory and visual cortex. 
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Figure 30: Low noise transfer entropy connectivity results 



41 | P a g e  

 

 

Figure 31: Medium noise transfer entropy connectivity results 
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Figure 32: High noise transfer entropy connectivity results 

Figure 32 shows that at high noise there was an increase in activation between sensory to 

visual and auditory cortex. There was also an increase in connection between visual and 

auditory cortex, but no apparent STS connection increase or decrease which is unexpected. 

This is considered the ‘hard task’ which could explain the connectivity to the frontal cortex 

as it is recruited in the decision making. Transfer entropy did not have the best results as 

expected. The comparison of time intervals of correct vs incorrect was chaotic and did not 

appear to show a pattern.  

7.4.3 Condition Granger Causality  

A better method of mapping the regions was found to be able to automatically have an 

anatomical region using the Brainnetome brain atlas for the region colours as seen in Figure 

33.  
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Figure 33: Brain regions mapped using the Brainnetome atlas 

One downside of this method of imaging is that although the dots are made transparent to 

see the connections through, the dots themselves are not that transparent in respect to one 

another and as such the regions that are behind another do not show through well.  

In the visualisation of the results there are arrow heads on the connections which indicate 

the direction of the connection. The strength of connection is shown by the colour of arrow; 

zero is the centre of colour bar so warm colours are increased connection and cool colours 

are a decrease. 

7.4.3.1 Connectivity Statistics 
The results had some statistically significant outcomes. The comparison of the truth and 
perceived results were all significant as seen in  

 

Table 2. However, from  

 

Table 2, not all the truth only or perceived only were statically significant. This is not 

particularly surprising since this is when subjects got incorrectly this perceived response 

would include when they were not paying attention and other such times. From Table 3 

across stimulus but at different noise levels, all the noise levels were significant. Table 4 

shows that the correct vs incorrect stimulus comparison was not statistically significant. 
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Results that were not statistically significant will still be investigated however, as they are 

still interesting results.  

 

 

Table 2: p values showing statistical significance of results across the stimulus and perception (purple significant) 

 Truth + Perceived Truth Only Perceived Only 

ABBA 0.0058 0.1232 0.2846 

ABBA-AO 0.0484 0.0020 0.0164 

ATHA 0.0110 0.6948 0.4308 

APPA 0.0094 0.2824 0.4460 

AGGA 0.0280 0.0124 0.0110 

AGGA-AO 0.0024 0.0152 0.0026 

 

Table 3: Noise level effect on p values (purple statistically significant) 

 Low Noise Medium Noise High Noise 

All Stimulus 0.0466 0.0818 0.0152 

 

Table 4: Correct vs incorrect effect on p values (purple statistically significant) 

 Correct Incorrect 

All Stimulus 0.2736 0.4546 

 

7.4.3.2 Noise Level 

To investigate the effect of the noise level on the connectivity, this was the average across 

the different stimulus but at the different noise levels.  

Table 5: Low noise connectivity results (scalebar -2.5*10-3 to 2.5*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 
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200-400 ms 

   

300-500 ms 

   

400-600 ms 
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As seen in Table 5, at low noise the stimulus is easy to hear and therefore not a difficult task 

meaning there is little frontal activity occurring. Initially, there is an increase in connection 

between the sensory components to the STS. There are signals sent to the visual cortex, and 

some return from it. There are no signals from the STS. 

Table 6: Medium noise connectivity results (scalebar -2.5*10-3 to 2.5*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 

   

200-400 ms 

   

300-500 ms 
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400-600 ms 

   
 

The results of the medium noise connectivity are as seen in Table 6. There is some frontal 

processing showing there is a requirement of processing for the more difficult task. There is 

an initial increased connection from the visual cortex to the STS initially. Then there is 

connection from the STS and visual cortex to auditory cortex.  

Table 7: High noise connectivity results (scalebar -2.5*10-3 to 2.5*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 
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200-400 ms 

   

300-500 ms 

   

400-600 ms 
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The results of the high noise connectivity can be seen in Table 7. There is some frontal 

processing, although not as much as expected. There are immediately signals from the STS 

to the visual cortex. Then there are signals back to the STS from visual and auditory cortex. 

The signals then go out from the visual cortex. 

7.4.3.3 Correct compared to incorrect 

The correct responses were compared to the incorrect for comparison.  

Table 8: Correct connectivity responses (scalebar -2*10-3 to 2*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 

   

200-400 ms 



50 | P a g e  

 

   

300-500 ms 

   

400-600 ms 

   
 

 

Table 9: Incorrect connectivity responses (scalebar -2*10-3 to 2*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 
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100-300 ms 

   

200-400 ms 

   

300-500 ms 
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400-600 ms 

   
 

In the correct there is initially a connection to the STS.  In the incorrect there was 

connection within the STS but not externally to. There were also more decreases in frontal 

activity implying less thinking and processing. 

7.4.3.4 McGurk Effect 

To investigate the McGurk effect on the data there was an investigation done comparing the 

ATHA response to an AGGA response at the same noise level – low noise. The comparison of 

ATHA and AGGA for the McGurk effect was chosen since there was the confusion in the 

choosing of ABBA for ATHA so this would not be the best choice. This is just the ATHA 

chosen correctly and the AGGA chosen correctly. 

Table 10: ATHA chosen correctly connectivity response (scalebar -15*10-3 to 15*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 
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200-400 ms 

   

300-500 ms 

   

400-600 ms 
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In the ATHA chosen correctly, as seen in Table 10, it can be seen there are connections to 

the STS from auditory cortex and sensory components. Then there are connections from the 

STS to the auditory, then signals sent out from there.    

Table 11: AGGA chosen correctly connectivity response (scalebar -15*10-3 to 15*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 

   

200-400 ms 

   

300-500 ms 
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400-600 ms 

   
 

In AGGA connectivity, seen in Table 11, there is an initial signal from somatosensory to the 

STS. There are also connections of the auditory cortex and the STS. There are connections 

from the visual cortex as well. This is similar to the ATHA would imply that there is the 

integration of the STS and visual always, not just when it is needed. 

7.4.3.5 Audio only compared to audio-visual 

A comparison was done of the connections when a visual stimulation was presented with 

the audio as in comparison to when just an auditory stimulation was presented. There was 

confusion in ABBA guessing ATHA, so the comparison was made between AGGA and AGGA-

AO.  

Table 12: AGGA at high noise chosen correctly (scalebar -15*10-3 to 15*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 
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100-300 ms 

   

200-400 ms 

   

300-500 ms 
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400-600 ms 

   
 

In the AGGA with video, Table 12, there is the obvious recruitment of the STS in those initial 

times of recruitment and then later connections of the auditory cortex and visual with the 

sensory and frontal regions.   

Table 13: AGGA audio-only at high noise chosen correctly (scalebar -15*10-3 to 15*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 

   

100-300 ms 

   

200-400 ms 
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300-500 ms 

   

400-600 ms 

   
 

In the AGGA- audio only, Table 13, there is recruitment of the visual cortex and STS, but the 

STS has little output. There is still output of the visual cortex. 

7.4.3.6 Preconditioning of Stimulus 

From the behavioural results there was this mistake of choosing ABBA audio only as ATHA at 

high noise levels. The connectivity under these conditions was investigated.  

Table 14: ATHA chosen but not correct (scalebar -15*10-3 to 15*10-3) 

Superior transverse view Left sagittal view Posterior coronal view 

0-200 ms 
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100-300 ms 

   

200-400 ms 

   

300-500 ms 
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400-600 ms 

   
 

As can be seen from Table 14, there is a more frontal activity and then later recruitment of 

the STS and the visual cortex. This implies it is from memory of a similar sound that then 

recruits the STS to decipher and the result is confusing ABBA with ATHA.  
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8 DISCUSSION 

In comparison of the conditional granger causality and transfer entropy, conditional granger 

causality appeared to have much better results. Transfer entropy is useful in the study as it 

is a very fast computing measure so that it can be applied in an initial study. However, it is 

not the best measure to use for EEG applications. It does improve in accuracy as the EEG 

noise increases but still gives a worse measure than conditional granger causality. 

Conditional granger causality appeared to be a good measure of connectivity. There were 

statistically significant results for many of the relevant stimulus of the conditional granger 

causality measure.  

When the different stimuli were averaged across noise level there were many different 

results.  At low noise the stimulus is not a difficult task so there is little frontal activity 

occurring. Initially, there is an increase in connection between the sensory components to 

the STS. There are signals sent to the visual cortex, and some return from it. There are no 

signals from the STS. At medium noise there is some frontal processing showing there is a 

requirement of processing for the more difficult task. There is an initial increased 

connection from the visual cortex to the STS initially. Then there is connection from the STS 

and visual cortex to auditory cortex. At high noise there is some frontal processing, although 

not as much as expected. There are immediately signals from the STS to the visual cortex. 

Then there are signals back to the STS from visual and auditory cortex. The signals then go 

out from the visual cortex. This shows that the noise level does have an effect on the 

connections. As the noise level increases, so does the connection to the STS, in order to 

process these signals. It shows how the connection to the STS was always within these first 

0-300ms and then slightly later from the STS. The frontal processing in the initial stages of 0-

400ms is generally with an increase in difficulty of the task. The signal conduction appears to 

be a signal sent to the STS and the visual cortex, and then if needed there is a signal 

returned from then to the auditory cortex and sensory components.  

In the comparison of the correct and incorrect guessed stimuli, there were a few major 

differences. In the correct, there is initially a connection to the STS.  In the incorrect, there 

was connection within the STS but not externally to. There were also more decreases in 

frontal activity implying less thinking and processing. This shows that the STS were recruited 

in the correctly guessed as compared to incorrect. A very interesting result showing that the 

recruitment of the STS helps in the processing of the audio-visual information, along with 

frontal processing.  

The ATHA response and an AGGA response at the same noise level, low noise, were 

compared in order to investigate the McGurk effect on the connections in the brain. The 

comparison of ATHA and AGGA for the McGurk effect was chosen, since there was the 

confusion in the choosing of ABBA for ATHA, so this would not be the best choice. This was 

just the ATHA chosen correctly and the AGGA chosen correctly. In the ATHA chosen 

correctly, it can be seen there are connections to the STS from auditory cortex and sensory 

components. Then there are connections from the STS to the auditory, and then signals sent 
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out from there.  In AGGA connectivity, there is an initial signal from somatosensory to the 

STS. There are also connections of the auditory cortex and the STS. There are connections 

from the visual cortex as well. This is similar to the ATHA would imply that there is the 

integration of the STS and visual always, not just when it is needed. So, the brain functions 

by always recruiting the STS in functioning when the stimulus is difficult to interpret, and 

then when there is a need for it due to a difference between the visual and auditory, from 

signals sent to the STS, then it sends signals to the auditory cortex to process this.  

In the comparison of a visual stimulation being presented with the audio to when just an 

auditory stimulation was presented, there were some significant differences. There was 

confusion in ABBA guessing ATHA, so the comparison was made between AGGA and AGGA-

AO. In the AGGA with video, there is the recruitment of the STS in those initial times of 

recruitment and then later connections of the auditory cortex and visual with the sensory 

and frontal regions. In the AGGA- audio only, there is recruitment of the visual cortex and 

STS, but the STS has little output. There is still output of the visual cortex. This builds on the 

findings in the McGurk effect examination to see that there are signals sent to the STS when 

the stimulus needs to be interpreted and is difficult. However, when there is no visual input 

or no conflicting visual input, such as in the McGurk effect, there is no signals sent out of the 

STS. However, there is always signal still sent out to the auditory cortex or somatosensory 

cortex, even when there is no conflicting visual or even no visual at all. 

There was an interesting behavioural result of participants responding with ATHA for the 

ABBA audio only stimulus at high noise levels. The connectivity under these conditions was 

investigated. There is a more frontal activity and then later recruitment of the STS and the 

visual complex. This implies it is from memory of a similar sound that then recruits the STS 

to decipher and the result is confusing ABBA with ATHA. 

There are several limitations of this study. The sample size of 20 subjects was sufficient in 

order to do these connectivity measures, but for a better study with better statistical results 

across more stimuli, there could be more subjects included in this. The other interesting 

results that were unable to be completed in time, due to the high computational power 

needed were the frequency banded results. These would be able to show the different 

types of functioning and see the connections. It results in a better outcome generally, since 

the other level processing is filtered out. A final limitation of this study would be fact that a 

general MRI was used to fit the dipoles and other spatial awareness in the subjects. While 

the use of the Polhemus to 3D locate the electrodes helped in accurate location data, the 

data would be better fit and located into brain regions if subjects personal MRI were used 

that could then take in the different brain regions for subjects.   
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9 CONCLUSIONS 

There were a number of results from this study in mapping the temporal dynamics during 

audio-visual speech processing using connectivity analysis. Conditional granger causality was 

found to be a much better measure of connectivity than transfer entropy resulting in 

statistically significant connections. The ATHA stimulus caused there to be recognition of 

ABBA as ATHA in high noise conditions due to this pre-disposure. This was then found to be 

a frontal activity that then recruited the STS and visual streams in recognising this from 

memory. The level of noise caused there to be an increase in connection to the STS and 

increase in recruitment of the visual cortex as the noise increased, to be able to better 

understand the speech in noisy conditions. There was shown recruitment of the STS in the 

correct vs incorrect in the first 300ms, showing it helps in correct processing; although this 

was not statistically significant. In comparing a McGurk stimulus to a non-McGurk stimulus, 

it is shown that in high noise conditions there is still this recruitment of the STS in 

understanding noisy speech, even when this does not change what is perceived. When 

there is no visual stimulation there are still signals sent to the STS but just no output from it, 

however interestingly there are still signals sent from the visual cortex, which may be signals 

that are saying there is no visual. The STS recruitment was almost always a very initial 

process in the first 200-300ms except when being accessed from memory – such as the case 

of guessing ATHA in a high noise ABBA, although this was not statistically significant. The 

recruitment of the STS and visual cortex was generally through the auditory cortex, except 

when it was low noise then the visual cortex sent signals to the somatosensory cortex or 

frontal areas.  
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11 APPENDIX A – EXTRA FIGURES 

11.1 NUMBER OF STIMULUS 

11.1.1 ABBA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 66 70 58 15 13 23 
Subject02 74 79 75 6 1 7 
Subject03 50 47 39 30 35 45 
Subject04 118 119 120 1 1 3 
Subject05 68 61 59 12 19 22 

Subject06 57 46 52 14 26 22 
Subject07 63 59 51 22 24 32 
Subject08 58 52 43 24 33 38 
Subject09 53 54 44 20 18 28 
Subject10 67 63 49 20 17 28 
Subject11 77 66 58 6 15 23 
Subject12 70 63 61 10 17 19 

Subject13 72 71 57 8 9 23 
Subject14 60 65 62 21 18 22 
Subject15 78 71 60 5 9 20 
Subject16 62 61 56 18 19 22 
Subject17 59 53 58 20 25 21 
Subject18 111 112 96 2 0 4 
Subject19 93 77 49 5 11 34 
Subject20 75 63 64 5 15 14 

Subject21 97 89 73 8 10 24 
Figure 34: ABBA Stimulus Presented 

11.1.2 ABBA – Audio only 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 26 28 19 14 12 21 
Subject02 34 39 39 6 1 1 
Subject03 11 9 6 29 31 34 
Subject04 39 39 38 1 1 2 
Subject05 28 21 23 12 19 17 
Subject06 22 11 16 14 25 20 
Subject07 19 19 14 21 21 26 
Subject08 22 13 12 18 27 28 
Subject09 17 18 10 19 18 26 
Subject10 18 23 16 20 15 23 
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Subject11 34 26 17 6 14 23 
Subject12 30 24 22 10 16 18 
Subject13 32 31 21 8 9 19 
Subject14 21 22 21 19 18 19 
Subject15 35 32 25 5 8 15 
Subject16 23 20 17 16 18 19 
Subject17 20 15 20 20 24 20 
Subject18 36 38 38 1 0 0 
Subject19 36 30 15 4 10 25 
Subject20 33 24 26 5 13 13 
Subject21 35 32 21 5 8 19 
Figure 35: ABBA Audio only Stimulus Presented 

11.1.3 AGGA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 79 78 79 2 2 2 
Subject02 80 80 81 0 0 1 
Subject03 79 77 74 1 3 7 
Subject04 83 81 81 0 0 1 
Subject05 81 81 78 0 0 2 
Subject06 68 71 68 3 2 5 
Subject07 80 80 78 1 0 3 
Subject08 81 79 83 2 2 3 
Subject09 72 72 72 0 1 0 
Subject10 75 71 77 7 9 6 
Subject11 80 79 79 0 1 1 
Subject12 81 81 80 0 0 1 
Subject13 80 80 79 0 0 2 
Subject14 82 83 80 0 0 1 
Subject15 80 81 81 0 0 1 
Subject16 77 80 79 1 0 0 
Subject17 79 79 80 0 0 0 
Subject18 80 79 90 1 0 0 
Subject19 82 79 77 0 1 4 
Subject20 94 103 113 1 0 0 
Subject21 79 75 77 2 6 7 
Figure 36: AGGA Stimulus Presented 

11.1.4 AGGA – Audio only 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 40 39 40 0 1 0 
Subject02 40 40 40 0 0 0 
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Subject03 40 38 36 0 2 4 
Subject04 40 40 40 0 0 0 
Subject05 40 40 38 0 0 2 
Subject06 35 36 34 1 0 2 
Subject07 40 40 39 0 0 1 
Subject08 38 38 39 2 2 1 
Subject09 36 35 36 0 1 0 
Subject10 35 32 34 4 5 4 
Subject11 40 40 40 0 0 0 
Subject12 40 40 40 0 0 0 
Subject13 40 40 39 0 0 1 
Subject14 40 40 39 0 0 1 
Subject15 40 40 40 0 0 0 
Subject16 38 39 39 1 0 0 
Subject17 39 39 40 0 0 0 
Subject18 37 38 38 1 0 0 
Subject19 40 39 38 0 1 2 
Subject20 37 39 37 1 0 0 
Subject21 40 38 33 0 2 7 
Figure 37: AGGA Audio only Stimulus Presented 

11.1.5 ATHA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 53 52 60 0 0 1 
Subject02 45 41 37 1 0 4 
Subject03 71 73 79 0 0 0 
Subject04 0 0 0 40 40 40 
Subject05 51 59 54 1 0 0 
Subject06 47 59 49 1 0 3 
Subject07 61 60 65 0 1 3 
Subject08 59 63 73 2 6 2 
Subject09 56 52 59 0 0 0 
Subject10 51 50 61 5 7 6 
Subject11 45 53 60 1 1 0 
Subject12 49 55 57 1 0 1 
Subject13 48 50 58 0 0 1 
Subject14 57 55 59 2 2 0 
Subject15 42 47 45 3 1 2 
Subject16 50 56 54 6 2 2 
Subject17 60 63 57 0 0 1 
Subject18 0 0 0 37 37 37 
Subject19 28 47 67 16 5 1 
Subject20 23 27 17 18 19 29 
Subject21 21 36 47 23 15 12 
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Figure 38: ATHA Stimulus Presented 

11.1.6 APPA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 41 40 42 1 1 1 
Subject02 41 40 46 0 0 0 
Subject03 40 43 48 0 2 4 
Subject04 39 40 37 1 1 6 
Subject05 40 39 49 0 1 1 
Subject06 42 40 47 0 1 1 
Subject07 36 41 45 4 2 1 
Subject08 41 42 40 1 1 3 
Subject09 35 36 41 1 0 0 
Subject10 35 36 39 6 5 2 
Subject11 38 42 43 3 0 1 
Subject12 40 41 42 0 1 0 
Subject13 40 39 46 0 1 0 
Subject14 41 37 38 1 3 5 
Subject15 40 41 53 0 0 0 
Subject16 42 37 43 1 3 2 
Subject17 39 40 40 1 0 0 
Subject18 38 38 40 3 0 1 
Subject19 37 37 46 5 4 5 
Subject20 36 40 39 2 1 2 
Subject21 41 38 42 4 6 9 
Figure 39: APPA Stimulus Presented 

11.2 RESPONSE TIMES 

11.2.1 ABBA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 1.90 1.91 1.94 1.41 1.65 1.80 
Subject02 1.84 1.88 1.81 1.75 2.09 2.00 
Subject03 2.00 2.13 2.04 2.05 2.01 2.10 
Subject04 1.44 1.47 1.49 1.36 1.46 1.41 
Subject05 1.89 1.93 1.97 1.98 1.93 2.13 
Subject06 1.80 1.71 1.80 1.67 1.81 1.76 
Subject07 1.54 1.51 1.57 1.47 1.40 1.52 
Subject08 2.00 2.23 2.06 2.50 2.16 2.45 
Subject09 2.11 2.04 2.04 2.12 1.92 2.14 
Subject10 1.68 1.68 1.79 1.89 1.75 1.87 
Subject11 1.84 1.80 1.87 1.84 1.79 1.91 
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Subject12 1.64 1.70 1.80 2.02 2.06 2.01 
Subject13 1.88 1.90 2.01 1.91 1.97 2.18 
Subject14 1.89 1.83 1.81 1.67 1.73 1.67 
Subject15 1.68 1.71 1.70 1.68 1.82 1.85 
Subject16 1.96 1.97 2.03 1.95 1.95 2.20 
Subject17 1.69 1.76 1.85 1.75 1.79 1.81 
Subject18 1.99 2.02 2.05 2.08 - 1.89 
Subject19 1.70 1.81 1.78 1.71 1.82 1.82 
Subject20 1.70 1.70 1.86 1.97 2.25 2.19 
Subject21 1.90 1.81 1.94 2.56 2.23 2.18 
Figure 40: ABBA Stimulus Presented 

11.2.2 ABBA – Audio only 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 2.00 1.76 2.07 1.41 1.69 1.79 
Subject02 1.85 1.94 1.77 1.75 2.09 1.90 
Subject03 2.17 2.04 2.05 2.04 1.97 2.00 
Subject04 1.38 1.46 1.45 1.36 1.46 1.51 
Subject05 1.89 1.87 1.96 1.98 1.93 2.11 
Subject06 1.83 1.72 1.96 1.67 1.77 1.76 
Subject07 1.65 1.46 1.59 1.45 1.43 1.51 
Subject08 1.91 2.20 2.14 2.16 2.11 2.31 
Subject09 2.24 2.02 2.17 2.14 1.92 2.12 
Subject10 1.80 1.67 1.88 1.89 1.75 1.88 
Subject11 1.88 2.00 1.88 1.84 1.79 1.91 
Subject12 1.66 1.77 1.89 2.02 2.05 2.01 
Subject13 1.94 1.85 2.07 1.91 1.97 2.14 
Subject14 1.96 1.92 1.70 1.71 1.73 1.62 
Subject15 1.67 1.75 1.73 1.68 1.78 1.89 
Subject16 2.00 2.09 1.98 1.95 1.92 2.11 
Subject17 1.88 1.76 1.94 1.75 1.78 1.79 
Subject18 1.92 1.94 1.93 1.85 - - 
Subject19 1.68 1.78 1.82 1.74 1.81 1.74 
Subject20 1.69 1.73 1.79 1.97 2.29 2.23 
Subject21 1.87 1.75 1.90 2.66 2.14 2.17 
Figure 41: ABBA Audio only Stimulus Presented 

11.2.3 AGGA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 1.79 1.73 1.84 3.56 3.15 0.53 
Subject02 1.68 1.77 1.80 - - 0.47 
Subject03 1.82 1.80 1.88 1.97 2.35 2.44 
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Subject04 1.46 1.49 1.51 - - 1.78 
Subject05 1.97 1.88 1.89 - - 3.40 
Subject06 1.66 1.72 1.78 1.95 2.21 2.12 
Subject07 1.44 1.47 1.45 0.73  1.45 
Subject08 1.88 1.86 1.90 1.89 2.41 2.51 
Subject09 2.13 2.11 2.13 - - - 
Subject10 1.93 1.88 2.06 1.83 1.63 2.17 
Subject11 1.52 1.59 1.59 - 2.56 0.14 
Subject12 1.72 1.77 1.85 - - 3.28 
Subject13 1.75 1.75 1.83 - - 2.39 
Subject14 1.74 1.71 1.73 - - 2.73 
Subject15 1.66 1.68 1.68 - - 1.63 
Subject16 2.04 2.00 2.03 - - - 
Subject17 1.59 1.62 1.65 - - - 
Subject18 1.77 1.96 2.04 4.04  - 
Subject19 1.56 1.55 1.63  2.25 2.10 
Subject20 1.68 1.72 1.77 0.51 - - 
Subject21 1.82 2.01 1.89 2.82 2.43 2.89 
Figure 42: AGGA Stimulus Presented 

11.2.4 AGGA – Audio only 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 1.89 1.71 1.86 - 4.22 - 
Subject02 1.65 1.82 1.79 - - - 
Subject03 1.76 1.79 1.90 - 1.94 2.19 
Subject04 1.45 1.48 1.50 - - - 
Subject05 2.04 1.91 1.84 - - 3.40 
Subject06 1.67 1.68 1.88 1.96 - 2.34 
Subject07 1.49 1.48 1.48 - - 1.52 
Subject08 1.82 1.81 1.95 1.89 2.41 0.89 
Subject09 2.15 2.03 2.13 - - - 
Subject10 1.85 1.99 2.08 2.07 1.19 2.24 
Subject11 1.52 1.60 1.68 - - - 
Subject12 1.68 1.79 1.87 - - - 
Subject13 1.77 1.73 1.82 - - 2.68 
Subject14 1.78 1.73 1.75 - - 2.73 
Subject15 1.68 1.67 1.68 - - - 
Subject16 2.07 2.04 2.06 - - - 
Subject17 1.58 1.66 1.75 - - - 
Subject18 1.76 2.02 2.06 4.04 - - 
Subject19 1.57 1.59 1.69 - 2.25 2.12 
Subject20 1.55 1.58 1.63 0.51 - - 
Subject21 1.91 2.15 1.81 - 0.94 2.89 
Figure 43: AGGA Audio only Stimulus Presented 
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11.2.5 ATHA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 1.63 1.59 1.77 - - -0.15 
Subject02 1.86 1.85 1.90 2.17 - 2.80 
Subject03 1.91 1.92 1.95 - -  
Subject04 - - - 1.53 1.54 1.62 
Subject05 1.84 2.06 2.02 2.13 -  
Subject06 1.70 1.72 1.76 3.51 - 2.01 
Subject07 1.49 1.44 1.50 - 1.67 1.52 
Subject08 2.27 2.31 2.36 1.16 2.76 1.32 
Subject09 2.02 1.90 1.96 - - - 
Subject10 1.86 1.85 1.84 1.95 1.46 2.32 
Subject11 1.79 1.79 1.82 0.08 0.29 - 
Subject12 1.96 2.05 2.01 1.99 - 2.42 
Subject13 1.83 1.93 2.03 - - 1.65 
Subject14 1.71 1.67 1.72 1.32 2.26 - 
Subject15 1.75 1.75 1.70 2.17 2.54 1.62 
Subject16 1.87 2.05 2.01 2.64 1.98 2.53 
Subject17 1.76 1.80 1.88 - - 1.96 
Subject18 - - - 2.20 2.24 2.37 
Subject19 1.64 1.62 1.72 1.73 2.13 1.43 
Subject20 2.21 2.07 2.09 2.04 2.14 2.18 
Subject21 2.19 2.20 2.10 2.17 2.16 1.94 
Figure 44: ATHA Stimulus Presented 

11.2.6 APPA 

Subjects Low-noise 
Correct 

Medium-
noise 
Correct 

High-noise 
Correct 

Low-noise 
Incorrect 

Medium-
noise 
Incorrect 

High-noise 
Incorrect 

Subject01 1.90 1.76 2.03 2.22 2.26 3.77 
Subject02 1.82 1.87 1.86 - - - 
Subject03 2.17 2.17 2.10 - 1.92 2.29 
Subject04 1.45 1.49 1.42 1.62 1.87 1.51 
Subject05 2.20 2.01 2.30 - 0.70 1.50 
Subject06 1.72 1.68 1.73 - 1.87 2.24 
Subject07 1.67 1.56 1.60 1.77 1.65 2.00 
Subject08 2.09 2.11 1.91 2.71 3.74 1.35 
Subject09 2.03 2.17 2.07 2.06 - - 
Subject10 1.86 1.88 1.82 2.02 1.99 1.63 
Subject11 1.77 2.06 1.91 1.76 - 1.40 
Subject12 1.92 1.92 1.86 - 2.34 - 
Subject13 1.91 1.91 1.90 - 2.88 - 
Subject14 2.03 1.94 2.00 2.03 2.26 1.86 
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Subject15 1.76 1.68 1.76 - - - 
Subject16 2.09 2.41 2.28 0.74 2.01 2.70 
Subject17 1.81 1.83 1.83 1.92 - - 
Subject18 2.03 1.94 1.89 2.17 - 2.27 
Subject19 1.64 1.63 1.74 1.63 1.72 1.88 
Subject20 1.93 1.89 2.00 0.87 1.60 2.18 
Subject21 1.99 1.94 1.92 2.65 1.60 2.00 
Figure 45: APPA Stimulus Presented 

11.3 COMPLETE SET OF CONDITIONAL GRANGER CAUSALITY PICTURES 
For complete set of pictures of all connectivity see attached zip under ‘ConnectivityPictures’. 

12 APPENDIX B – CODE 

For a full set of code see attached zip file ‘code’. 

12.1 CONNECTIVITY SCRIPT IN COLOSSUS 
The connectivity script that was run in colossus is as seen below.  

function Connectivity_run( task, CONN_method, recalculate_connectivity, 

freqrange), 

  

  
% first set up the paths 
homepath = '/home/wout0004'; 
matlabrootpath = fullfile( homepath, 'matlab'); 
addpath( fullfile( homepath, 'Scripts-McGurk')); 
addpath( genpath( fullfile( homepath, 'matlab'))); 

  
% load subject IDs 
subjects = { 'Subject01', 'Subject02', 'Subject03', 'Subject05', 

'Subject06', ... 
    'Subject07', 'Subject08', 'Subject09', 'Subject10', ... 
    'Subject11', 'Subject12', 'Subject13', 'Subject14', 'Subject15', ... 
    'Subject16', 'Subject17', 'Subject18', 'Subject19', 'Subject20', 

'Subject21'}; 
% - later 
Ns = numel( subjects); 

  
% work out iteration matrix 
sounds = { 'ABBA', 'AGGA', 'ATHA', 'APPA', 'ABBA-AO', 'AGGA-AO'}; 
noises = { 'LN', 'MN', 'HN'}; 
conditions = {'Truth-only' 'Perceived-only' 'Truth+Perceived'}; 
tasks = { 'McGurk-Audio-degradation'}; 
Nso = numel(sounds); 
Nno = numel( noises); 
Npp = numel(conditions); 

  
% what time did we start? 
fprintf( 'Time started: %s\n', datestr( now)); 

  
% default values 
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if nargin < 2, recalculate_connectivity = false; end 
if isequal( recalculate_connectivity, 'false'), recalculate_connectivity = 

false; end 
if isequal( recalculate_connectivity, 'true'), recalculate_connectivity = 

true; end 
if nargin < 3 
    fre = [4 45]; 
else 
    switch (freqrange) 
        case 'delta' 
            fre = [0.5 4]; 
        case 'theta' 
            fre = [4 8]; 
        case 'alpha' 
            fre = [9 13]; 
        case 'beta' 
            fre = [14 30]; 
        case 'gamma' 
            fre = [30 45]; 
        case 'NA' 
            fre = []; 
        otherwise 
            fprintf( 'Invalid frequency range'); 
            exit 
    end 
end 
%if nargin < 1, 
%    tasks = ''; 
%elseif ~iscell( tasks), 
%    tasks = { tasks}; 
%end 

  
%% trying to reduce the writing 
%if strcmpi( tasks, 'test'), 
%    tasks = { 'McGurk-Audio-degredation', 'McGurk-EO-start', ... 
%        'McGurk-EC-start', 'McGurk-EC-end'}; 
%end 
%Nt = numel( tasks); 

  
ME = 1; 
fail_count = 0; 
fprintf( '|| '); 
while ~isempty( ME), 
    try 
        setpref( 'eeg3', 'verbose', 0); 
        ME = []; 
    catch ME; 
        fail_count = fail_count + 1; 
    end 
    fprintf( '%d ', fail_count); 
    if fail_count==1000, break; end 
    if fail_count>0 && rem( fail_count, 100)==0 && ~isempty( ME), 
        pause_time = randi( 100, 1); 
        fprintf( '\npausing for %d seconds\n', pause_time); 
        pause( pause_time); 
    end 
end 
fprintf( '||'); 
fprintf( '\nFail count = %d\n', fail_count); 
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if strcmp( task, 'McGurk-Audio-degradation'), 
    IM = zeros( Ns*Nso*Nno*Npp, 2); 
    count = 1; 
    for ss = 1:Ns 
        for ii = 1:Nso*Nno*Npp 
            IM( count, :) = [ ss, ii]; 
            count = count + 1; 
        end 
    end 
else 
    IM = zeros( Ns, 2); 
    for ss = 1:Ns 
        IM( ss, :) = [ ss, 1]; 
    end 
end 

  
% get iteration ID 
[ ~, task_id] = system( 'printenv SGE_TASK_ID'); 
iter_ind = sscanf( task_id, '%d'); 

  
% determine subject ID 
subject = subjects{ IM( iter_ind, 1)}; 

  
%%% work out which subject this process is working on 
%[ ~, task_id] = system( 'printenv SGE_TASK_ID'); 
%subject_ind = sscanf( task_id, '%d'); 
%if isempty( subject_ind), 
%    subject = 'Subject01'; 
%else 
%    subject = subjects{ subject_ind}; %#ok<USENS> 
%end 

  
% identify folder where the data will reside 
input_folderpath = fullfile( homepath, 'Data-McGurk', subject, task); 
if strcmp(CONN_method, 'CGC_freq') 
    output_folderpath = fullfile( homepath, 'Data-McGurk', 'Connectivity', 

[CONN_method ' Connectivity'], freqrange, subject, task); 
else 
    output_folderpath = fullfile( homepath, 'Data-McGurk', 'Connectivity', 

[CONN_method ' Connectivity'], subject, task); 
end 

  
% make output folder if it doesnt exist 
if ~exist( output_folderpath, 'dir') 
    mkdir( output_folderpath); 
end 

  
% calculate connectivity 
conn_files = filesearch( sprintf( '%s_AMICA_forCONN', task), 

input_folderpath); 
Ncf = numel( conn_files); 

  
% determine input and output files 
if IM( iter_ind, 2) > Ncf, disp( 'iteration index is beyond number of 

connectivity files'); return; end 
input_fn = conn_files( IM( iter_ind, 2)).name; 
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splits = strsplit( input_fn, filesep); 
input_fn = splits{ end}; 
output_fn = sprintf( '%s_%s_%s.mat', input_fn( 1:strfind( input_fn, 

'_forCONN')-1), ... 
    CONN_method, input_fn( strfind( input_fn, '_forCONN')+9:strfind( 

input_fn, '.eeg3-eeg')-1)); 
input_fp = fullfile( input_folderpath, input_fn); 
output_fp = fullfile( output_folderpath, output_fn); 

  
% determine time conditions 
clear times 
if strcmp( task, 'McGurk-Audio-degradation'), 
    times( :, 1) = -1:0.1:1; 
    times( :, 2) = 0:0.1:2; 
else 
    times = [ 0, 5.9]; 
end 
Nti = size( times, 1); 

  
wait1 = tic; 
%for cf = 1:Ncf 
%   input_fn = conn_files( cf).name; 
%   output_fn = sprintf( '%s_%s_%s.mat', input_fn( 1:strfind( input_fn, 

'_forCONN')-1), ... 
%           CONN_method, input_fn( strfind( input_fn, 

'_forCONN')+9:strfind( input_fn, '.eeg3-eeg')-1)); 

  

disp( '----------------------------------------------------'); 
fprintf( 'Connectivity method: %s\n', CONN_method); 
fprintf( 'Subject: %s\n', subject); 
fprintf( 'Task: %s\n', task); 
fprintf( '%s, %d of %d\n', input_fp, IM( iter_ind, 2), Ncf); 
disp( '----------------------------------------------------'); 

  
% check for pre-existing input data 
if ~exist( input_fp, 'file') 
    disp( 'file does not exist, skipping ..'); 
    return 
end 

  
% check for pre-existing output data 
if exist( output_fp, 'file') && ~recalculate_connectivity 
    disp( 'file pre-exists, skipping ..'); 
    return 
end 

  
% load data 
try; 
    ep = eeg3.eeg.load( input_fp); 
catch; 
    error( 'data cannot be loaded, likely corrupt: %s', input_fp); 
end 

  
% channel info 
chans = ep( 1).chan.getlabels; 
Nchan = numel( chans); 

  
% allocate room for AM 
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AM = zeros( Nchan, Nchan, Nti, numel( ep)); 

  
% load temporary file 
temp_file = sprintf( '%s_temp.mat', output_fp( 1:strfind( output_fp, 

'.mat')-1)); 
if exist( temp_file, 'file'), 
    try 
        load( temp_file); 
    catch ME; 
        disp( ME); 
        delete( temp_file); 
        clear ME; 
    end 
end 

  
% calculate connectivity 
switch CONN_method 
    case 'dPLV' 

         
        for ti = 1:Nti 

             
            % skip time period if completed 
            if ~all( all( AM( :, :, ti, 1)==0)), 
                fprintf( 'time period %d of %d pre-completed\n', ti, Nti); 
                continue 
            end 

             

            disp( '----------------------------------------------------'); 
            fprintf( 'Connectivity method: dPLV\n'); 
            fprintf( 'Subject: %s\n', subject); 
            fprintf( 'Task: %s\n', task); 
            fprintf( 'Epoch element: %d of %d\n', IM( iter_ind, 2), Ncf); 
            fprintf( 'Time period: %d of %d\n', ti, Nti); 
            disp( '----------------------------------------------------'); 

             
            wait2 = tic; 
            AM( :, :, ti, :) = directionalphaselockingvalue( ... 
                ep.selecttime( times( ti, 1), times( ti, 2))); 
            how_much_longer( toc( wait2), [ti Nti]); 

             
            % save temporary file 
            save( temp_file, 'AM'); 
        end 

         
    case 'TE' 
        min_lag = 1; 
        step = 1; 
        max_lag = 20; 

         
        for ti = 1:Nti 

             
            % skip time period if completed 
            if ~all( all( AM( :, :, ti, 1)==0)), 
                fprintf( 'time period %d of %d pre-completed\n', ti, Nti); 
                continue 
            end 

             
            disp( '----------------------------------------------------'); 
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            fprintf( 'Connectivity method: TE\n'); 
            fprintf( 'Subject: %s\n', subject); 
            fprintf( 'Task: %s\n', task); 
            fprintf( 'Epoch element: %d of %d\n', IM( iter_ind, 2), Ncf); 
            fprintf( 'Time period: %d of %d\n', ti, Nti); 
            disp( '----------------------------------------------------'); 

             
            wait2 = tic; 
            AM( :, :, ti, :) = transferentropy( ... 
                ep.selecttime( times( ti, 1), times( ti, 2)), ... 
                'min_lag', round( ep( 1).time.samplerate*(min_lag/1000)), 

... 
                'lag_step', round( ep( 1).time.samplerate*(step/1000)), ... 
                'max_lag', round( ep( 1).time.samplerate*(max_lag/1000))); 
            how_much_longer( toc( wait2), [ti Nti]); 

             
            % save temporary file 
            save( temp_file, 'AM'); 
        end 

         
    case 'CGC' 

         
        for ti = 1:Nti 

             
            % skip time period if completed 
            if ~all( all( AM( :, :, ti, 1)==0)), 
                fprintf( 'time period %d of %d pre-completed\n', ti, Nti); 
                continue 
            end 

             
            disp( '----------------------------------------------------'); 
            fprintf( 'Connectivity method: CGC\n'); 
            fprintf( 'Subject: %s\n', subject); 
            fprintf( 'Task: %s\n', task); 
            fprintf( 'Epoch element: %d of %d\n', IM( iter_ind, 2), Ncf); 
            fprintf( 'Time period: %d of %d\n', ti, Nti); 
            disp( '----------------------------------------------------'); 

             
            wait2 = tic; 
            AM( :, :, ti, :) = C_GRanger_t( ... 
                ep.selecttime( times( ti, 1), times( ti, 2))); 
            how_much_longer( toc( wait2), [ti Nti]); 

             
            % save temporary file 
            save( temp_file, 'AM'); 
        end 

         
    case 'CGC_freq' 

         
        for ti = 1:Nti 

             
            % skip time period if completed 
            if ~all( all( AM( :, :, ti, 1)==0)), 
                fprintf( 'time period %d of %d pre-completed\n', ti, Nti); 
                continue 
            end 

             
            disp( '----------------------------------------------------'); 
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            fprintf( 'Connectivity method: CGC_freq\n'); 
            fprintf( 'Subject: %s\n', subject); 
            fprintf( 'Task: %s\n', task); 
            fprintf( 'Epoch element: %d of %d\n', IM( iter_ind, 2), Ncf); 
            fprintf( 'Time period: %d of %d\n', ti, Nti); 
            disp( '----------------------------------------------------'); 

             
            wait2 = tic; 
            AM( :, :, ti, :) = CGC_s_test( ... 
                ep.selecttime( times( ti, 1), times( ti, 2)),... 
                'mean', 'Y', 'fre', fre/ep( 1).time.samplerate, 'fres', ep( 

1).time.samplerate/2); 
            how_much_longer( toc( wait2), [ti Nti]); 

             
            % save temporary file 
            save( temp_file, 'AM'); 
        end 
end 

  
delete( temp_file); 
save( output_fp, 'AM', 'chans', '-v7.3'); 
%end 

  
fprintf( 'Connectivity calculation took %0.2f minutes to complete\n', toc( 

wait1)/60); 

 

12.2 PLOT RESULTS 
This script was used to plot different results. 

 
%% switches 
warning( 'off', 'all'); 
clear all 
new_file = false; 

  
%% preamble 
sharedrootpath = getpref( 'tsg', 'sharedrootpath'); 
homepath = fullfile( sharedrootpath, 'Projects\AVSP\McGurk'); 
matlabrootpath = getpref( 'tsg', 'matlabrootpath'); 
addpath( genpath( 'V:\EEG\People\Caitlin')); 
eeglabpath = fullfile( matlabrootpath, 'Matlab', 'eeglab'); 
hdmfile = fullfile(eeglabpath,'plugins','dipfit2.3', ... 
    'standard_BEM','standard_vol.mat'); 

  

%% define variables 
subjects = { 'Subject01', 'Subject02', 'Subject03', 'Subject05', 

'Subject06', ... 
     'Subject07', 'Subject08', 'Subject09', 'Subject10', ... 
     'Subject11', 'Subject12', 'Subject13', 'Subject14', 'Subject15', ... 
    'Subject16', 'Subject17', 'Subject18', 'Subject19', 'Subject20', 

'Subject21'}; 
tasks = { 'McGurk-Audio-degradation'}; 
ICA = 'AMICA'; 
CONN = 'CGC'; 
sounds = { 'ABBA', 'ABBA-AO', 'APPA', 'ATHA', 'AGGA', 'AGGA-AO'}; 
noises = { 'LN', 'MN', 'HN'}; 
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perception = { 'Truth+Perceived', 'Perceived-only', 'Truth-only'}; 
bands = {'theta', 'alpha', 'beta', 'gamma'}; 

  
%% Number of ... 
Ns = numel( subjects); 
Nt = numel( tasks); 
Nso = numel( sounds); 
Nno = numel( noises); 
Np = numel( perception); 
Nba = numel(bands); 

  
%% load data 
wait1 = tic; 
for t = 1:Nt 
    task = tasks{ t}; 

     
    switch task 
        case 'McGurk-Audio-degradation' 
            AMs = cell( Nso, Nno, Np, Ns); 

             

             
            % time definition 
            times( :, 1) = -1:0.1:0.8; 
            times( :, 2) = -0.8:0.1:1; 

             

             
            for s = 1:Ns 
                subject = subjects{ s}; 

                 
                % define folderpath 
                folderpath = fullfile( homepath, 'data', subject, task); 

                 
                % load epoch file 
                d = eeg3.eeg.load( fullfile( folderpath, sprintf( 

'%s_%s_epoched_IC.eeg3-eeg', ... 
                    task, ICA))); 
                chaninfo{ s} = d{ 1}( 1).chan; 
%                 clear d 

                 
                % load connectivity file 
                temp = load( fullfile( folderpath, sprintf( '%s_%s_%s.mat', 

... 
                    task, ICA, CONN))); 
                AMs( :, :, :, s) = temp.AMs; 
                chans{ s} = temp.chans; 
                clear temp 

                 
                disp( '------------------------------------'); 
                fprintf( 'Subject: %d of %d\n', s, Ns); 
                fprintf( 'Task: %s, %d of %d\n', task, t, Nt); 
                disp( 'Data loading completed'); 
                disp( '------------------------------------'); 

                 
            end 

             
            % intersect channels 
            channels = chans{ 1}; 
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            chanlabels = channels; 
            for s = 2:numel( chans) 
                chanlabels = intersect(chans{ s}, chanlabels); 
            end 

             
            % index into AMs 
            for s = 1:size( AMs, 4) 
                ind = find( ismember( chans{ s}, chanlabels)); 
                AM = AMs( :, :, :, s); 
                for ep = 1:numel( AM), 
                    if isempty( AM{ ep}), continue; end 
                    AM{ ep} = AM{ ep}( ind, ind, :, :); 
                end 
                AMs( :, :, :, s) = AM; 
                clear AM 
            end 

             
            % number of channels 
            Nchan = numel( chanlabels); 

             

             
    end 
end 

  
%% calculate baseline 
poststimtimeframes = 5; 
baselines = cell(Nso,Nno,Np); 
poststim = cell(Nso,Nno,Np,poststimtimeframes); 

  
for k = 1:Nso 
    for kk = 1:Nno 
        for kkk = 1:Np 
            if ~isempty(AMs(k,kk,kkk,~cellfun( @isempty, AMs(k,kk,kkk,:)))) 

                 
                clear temp 
                clear temp2 

                 
                temp = AMs(k,kk,kkk,~cellfun( @isempty, AMs(k,kk,kkk,:))); 
                baseline = cellfun( @(x) mean(mean( x( :, :, 2:5, :), 

3),4), temp, ... 
                    'uniformoutput', false); 
                baselineaverage = 

zeros(length(baseline{:,1,1,1}),length(baseline{1,:,1,1}),length(baseline))

; 

                 
                for i = 1:length(baseline) 
                    baselineaverage(:,:,i) = baseline{:,:,1,i}; 
                end 

                 
                baselines{k,kk,kkk} = mean(baselineaverage,3); 

                 
                for frame = 1:poststimtimeframes 
                    clear temppoststimframe; 
                    clear temppoststimframeaverage; 
                    temppoststimframe = cellfun( @(x) mean( x( :, :, 

10+frame, :), 4), temp, ... 
                        'uniformoutput', false); 
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                    temppoststimframeaverage = 

zeros(length(temppoststimframe{:,1,1,1}),length(temppoststimframe{1,:,1,1})

,length(temppoststimframe)); 

                     
                    for i = 1:length(temppoststimframe) 
                        temppoststimframeaverage(:,:,i) = 

temppoststimframe{:,:,1,i}; 
                    end 

                     
                    poststim{k,kk,kkk,frame} = 

mean(temppoststimframeaverage,3); 

                     
                end 
            end 
        end 
    end 
end 

  
%% visual plot of the connectivity matricies with colours 
% 

  
imagesc(baselineaverage); 
title('Baseline') 
colorbar 
caxis([0 0.3]) 
figure 
imagesc(mean(poststimframe1average,3)); 
colorbar 
caxis([0 0.3]) 
figure 
imagesc(mean(poststimframe2average,3)); 
colorbar 
caxis([0 0.3]) 
figure 
imagesc(mean(poststimframe3average,3)); 
colorbar 
caxis([0 0.3]) 

  
imagesc(mean(poststimframe1average,3)-mean(baselineaverage,3)); 
colorbar 
figure 
imagesc(mean(poststimframe2average,3)-mean(baselineaverage,3)); 
colorbar 
figure 
imagesc(mean(poststimframe3average,3)-mean(baselineaverage,3)); 
colorbar 

  

  
%% 
% comparison file 
comp_fn = 'V:\EEG\Projects\AVSP\McGurk\Data\Subject01\McGurk-Audio-

degradation\McGurk-Audio-degradation_AMICA_epoched_IC.eeg3-eeg'; 
ep = eeg3.eeg.load( comp_fn); 

  

  
%% get difference from baseline 
difference = cell(Nso,Nno,Np,poststimtimeframes); 
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for k = 1:Nso 
    for kk = 1:Nno 
        for kkk = 1:Np 
            if ~isempty(baselines{k,kk,kkk}) 
                for frame = 1:length(poststim(1,1,1,:)) 
                    difference{k,kk,kkk,frame} = poststim{k,kk,kkk,frame}-

baselines{k,kk,kkk}; 
                end 
            end 
        end 
    end 
end 

  

  
%% plots 

  

maxvals = cellfun( @(x) max( x(:)), difference, ... 
    'uniformoutput', false); 
limitmax = maxvals; 
absolutemax = max([limitmax{:}]); 
minvals = cellfun( @(x) min( x(:)), difference, ... 
    'uniformoutput', false); 
limitmin = minvals; 
absolutemin = min([limitmin{:}]); 
if (abs(absolutemin)>absolutemax) 
    absolutemax = abs(absolutemin); 
else 
    absolutemin = -absolutemax; 
end 

  
ind = find( ismember(chans{1}, chanlabels)); 

  
percentshow = 0.35; 

  
chanlocarray(:,:,1) = [[ep{1}(1).chan(ind).x]',[ep{1}(1).chan(ind).x]']; 
chanlocarray(:,:,2) = [[ep{1}(1).chan(ind).y]',[ep{1}(1).chan(ind).y]']; 
chanlocarray(:,:,3) = [[ep{1}(1).chan(ind).z]',[ep{1}(1).chan(ind).z]']; 

  
poststimtimeframes = 5; 
load('backview.mat'); 
load('sideview.mat'); 

  

  

  
for k = 1:Nso 
    for kk = 1:Nno 
        for kkk = 1:Np 
            if ~isempty(ep{k,kk,kkk}) 
                stimulus = ep{k,kk,kkk}(1).label; 
                stimtitle = stimulus; 
                stimulus = strrep(stimulus,' ','_'); 
                im = []; 
                %             writerObj = VideoWriter(['stimulus_' stimulus 

'.avi']); 
                %             writerObj.FrameRate = 0.2; 
                for frame = 1:poststimtimeframes %change back 
                    if ~isempty(difference{k,kk,kkk,frame}) 
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                        percentshow = 0; 
                        mat2plot = 

((difference{k,kk,kkk,frame}>(limitmax{k,kk,kkk,frame}*percentshow)) + 

(difference{k,kk,kkk,frame}<(limitmin{k,kk,kkk,frame}*percentshow))).*diffe

rence{k,kk,kkk,frame}; 
                        mat2plot(isnan(mat2plot)) = 0; 
                        limitloop = 0; 
                        while (sum(~(mat2plot(:) == 0))>=8 && limitloop == 

0) 
                            percentshow = percentshow + 0.000001; 
                            mat2plot = 

((difference{k,kk,kkk,frame}>(limitmax{k,kk,kkk,frame}*percentshow)) + 

(difference{k,kk,kkk,frame}<(limitmin{k,kk,kkk,frame}*percentshow))).*diffe

rence{k,kk,kkk,frame}; 
                            mat2plot(isnan(mat2plot)) = 0; 
                            if percentshow >= 1 
                                limitloop = 1; 
                            end 
                        end 
                        plot_connections3d_regions(mat2plot, chanlabels, 

'', 'xyz', chanlocarray, 'method', 'arrow', 'conlims', [absolutemin 

absolutemax]); 
                        title({['Timeframe ' num2str(frame)],'Stimulus: 

',stimtitle}) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_top.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_top.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                            im = []; 
                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_top.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 

                         
                        view(backviewaz, backviewel) 
                        title({['Timeframe ' num2str(frame)],'Stimulus: 

',stimtitle}) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_back.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_back.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                            im = []; 
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                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_back.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 

                         
                        view(sideviewaz, sideviewel) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_side.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_side.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_side.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 
                        close all 

                         
                    end 
                    %                 imwrite(im,map,['stimulus_' stimulus 

'.gif'], 'gif', 'DelayTime', 5, 'LoopCount', inf); 

                     
                end 
                %             close(writerObj); 
                %             clear im 
                close all 
            end 
        end 
    end 
end 

  

%% plot using con_mats from statistics 

  
maxvals = cellfun( @(x) max( x(:)), difference, ... 
    'uniformoutput', false); 
limitmax = maxvals*1.05; 
absolutemax = max([limitmax{:}]); 
minvals = cellfun( @(x) min( x(:)), difference, ... 
    'uniformoutput', false); 
limitmin = minvals*1.5; 
absolutemin = min([limitmin{:}]); 
if (abs(absolutemin)>absolutemax) 
    absolutemax = abs(absolutemin); 
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else 
    absolutemin = -absolutemax; 
end 

  
ind = find( ismember( chans{1}, chanlabels)); 

  
percentshow = 0.35; 

  
chanlocarray(:,:,1) = [[ep{1}(1).chan(ind).x]',[ep{1}(1).chan(ind).x]']; 
chanlocarray(:,:,2) = [[ep{1}(1).chan(ind).y]',[ep{1}(1).chan(ind).y]']; 
chanlocarray(:,:,3) = [[ep{1}(1).chan(ind).z]',[ep{1}(1).chan(ind).z]']; 

  
poststimtimeframes = 5; 
load('backview.mat'); 
load('sideview.mat'); 

  

  

for k = 1:Nso 
    for kk = 1:Nno 
        for kkk = 1:Np 
            if ~isempty(ep{k,kk,kkk}) 
                stimulus = ep{k,kk,kkk}(1).label; 
                stimtitle = stimulus; 
                stimulus = strrep(stimulus,' ','_'); 
                im = []; 
                %             writerObj = VideoWriter(['stimulus_' stimulus 

'.avi']); 
                %             writerObj.FrameRate = 0.2; 
                for frame = 1:poststimtimeframes %change back 
                    if ~isempty(difference{k,kk,kkk,frame}) 
                        percentshow = 0; 
                        mat2plot = (dec_con_mats{k,kk,kkk,frame}{1} + 

inc_con_mats{k,kk,kkk,frame}{1}).*difference{k,kk,kkk,frame}; 
                        plot_connections3d(mat2plot, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [absolutemin absolutemax]); 
                        title({['Timeframe ' num2str(frame)],'Stimulus: 

',stimtitle}) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_top.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_top.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                            im = []; 
                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_top.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 
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                        view(backviewaz, backviewel) 
                        title({['Timeframe ' num2str(frame)],'Stimulus: 

',stimtitle}) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_back.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_back.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                            im = []; 
                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_back.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 

                         
                        view(sideviewaz, sideviewel) 
                        saveas(gcf,['stimulus_' stimulus '_timeframe_' 

num2str(frame) '_side.jpg']); 
                        if isempty(im) 
                            f = getframe(gcf); 
                            [im,map] = rgb2ind(f.cdata,256); 
                            %                         open(writerObj); 
                            %                         writeVideo(writerObj, 

f); 
                            imwrite(im,map,['stimulus_' stimulus 

'_side.gif'],'gif','LoopCount',inf,'DelayTime',1); 
                        else 
                            f = getframe(gcf); 
                            ifr = frame2im(f); 
                            %                         writeVideo(writerObj, 

f); 
                            [im,map] = rgb2ind(f.cdata,map); 
                            imwrite(im,map,['stimulus_' stimulus 

'_side.gif'],'gif','DisposalMethod', 'leaveInPlace', 

'WriteMode','append','DelayTime',1); 
                        end 

                         

                         
                    end 
                    %                 imwrite(im,map,['stimulus_' stimulus 

'.gif'], 'gif', 'DelayTime', 5, 'LoopCount', inf); 

                     
                end 
                %             close(writerObj); 
                %             clear im 
                close all 
            end 
        end 
    end 
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end 

  

  

  
%% noise results 

  
lownoiseresults = zeros([size(difference{1,1,1,1}), 

length(difference(1,1,1,:))]); 
mednoiseresults = zeros([size(difference{1,1,1,1}), 

length(difference(1,1,1,:))]); 
highnoiseresults = zeros([size(difference{1,1,1,1}), 

length(difference(1,1,1,:))]); 

  

  
for frame = 1:poststimtimeframes %change back 
    clear temp 
    clear temp2 
    empty = ~cellfun( @isempty, difference(:,1,:,frame)); 
    temp = difference(:,1,:,frame); 
    temp = temp(empty); 
    for i = 1:length(temp) 
        temp2(:,:,i) = temp{i}; 
    end 
    lownoiseresults(:,:,frame) = mean(temp2,3); 
    clear temp 
    clear temp2 
    empty = ~cellfun( @isempty, difference(:,2,:,frame)); 
    temp = difference(:,2,:,frame); 
    temp = temp(empty);     
    for i = 1:length(temp) 
        temp2(:,:,i) = temp{i}; 
    end 
    mednoiseresults(:,:,frame) = mean(temp2,3); 
    clear temp 
    clear temp2 
    empty = ~cellfun( @isempty, difference(:,3,:,frame)); 
    temp = difference(:,3,:,frame); 
    temp = temp(empty);     
    for i = 1:length(temp) 
        temp2(:,:,i) = temp{i}; 
    end 
    highnoiseresults(:,:,frame) = mean(temp2,3); 
end 

  
maxlow = max(lownoiseresults(:)); 
maxmed = max(mednoiseresults(:)); 
maxhigh = max(highnoiseresults(:)); 
minlow = min(lownoiseresults(:)); 
minmed = min(mednoiseresults(:)); 
minhigh = min(highnoiseresults(:)); 

  
maxoverall = max([maxlow maxmed maxhigh]); 
minoverall = min([minlow minmed minhigh]); 
if maxoverall>abs(minoverall) 
    minoverall = -maxoverall; 
else 
    maxoverall = abs(minoverall); 
end 
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shownum = 8; 
im = []; 
for frame = 1:poststimtimeframes %change back 
    percentshow = 0; 
    limitloop = 0; 
    mat2plotlow = (((lownoiseresults(:,:,frame)>(maxlow*percentshow)) + 

(lownoiseresults(:,:,frame)<(minlow*percentshow))).*lownoiseresults(:,:,fra

me)); 
    mat2plotlow(isnan(mat2plotlow)) = 0; 
    while ((sum([sum(~(mat2plotlow == 0))])>=shownum) && (limitloop == 0)) 
        percentshow = percentshow + 0.00001; 
        mat2plotlow = (((lownoiseresults(:,:,frame)>(maxlow*percentshow)) + 

(lownoiseresults(:,:,frame)<(minlow*percentshow))).*lownoiseresults(:,:,fra

me)); 
        mat2plotlow(isnan(mat2plotlow)) = 0; 
        if percentshow >= 1 
            limitloop = 1; 
        end 
    end 
    plot_connections3d_regions(mat2plotlow, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [minoverall maxoverall]); 
    title({['Timeframe ' num2str(frame)],'Stimulus: Low Noise'}) 
    saveas(gcf,['stimulus_lownoise_timeframe_' num2str(frame) '_top.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_lownoise_top.gif','gif','LoopCount',inf,'DelayTime

',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_lownoise_top.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(backviewaz, backviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Low Noise'}) 
    saveas(gcf,['stimulus_lownoise_timeframe_' num2str(frame) 

'_back.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_lownoise_back.gif','gif','LoopCount',inf,'DelayTim

e',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_lownoise_back.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     



93 | P a g e  

 

    view(sideviewaz, sideviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Low Noise'}) 
    saveas(gcf,['stimulus_lownoise_timeframe_' num2str(frame) 

'_side.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_lownoise_side.gif','gif','LoopCount',inf,'DelayTim

e',1); 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_lownoise_side.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 
    if (frame == 1) 
        im = []; 
    end 
    close all 

     
    percentshow = 0; 
    limitloop = 0; 
    mat2plotmed = (((mednoiseresults(:,:,frame)>(maxmed*percentshow)) + 

(mednoiseresults(:,:,frame)<(minmed*percentshow))).*mednoiseresults(:,:,fra

me)); 
    mat2plotmed(isnan(mat2plotmed)) = 0; 
    while ((sum([sum(~(mat2plotmed == 0))])>=shownum) && (limitloop == 0)) 
        percentshow = percentshow + 0.00001; 
        mat2plotmed = (((mednoiseresults(:,:,frame)>(maxmed*percentshow)) + 

(mednoiseresults(:,:,frame)<(minmed*percentshow))).*mednoiseresults(:,:,fra

me)); 
        mat2plotmed(isnan(mat2plotmed)) = 0; 
        if percentshow >= 1 
            limitloop = 1; 
        end 
    end 
    plot_connections3d_regions(mat2plotmed, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [minoverall maxoverall]); 
    title({['Timeframe ' num2str(frame)],'Stimulus: Medium Noise'}) 
    saveas(gcf,['stimulus_mednoise_timeframe_' num2str(frame) '_top.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_mednoise_top.gif','gif','LoopCount',inf,'DelayTime

',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_mednoise_top.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     

    view(backviewaz, backviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Medium Noise'}) 
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    saveas(gcf,['stimulus_mednoise_timeframe_' num2str(frame) 

'_back.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_mednoise_back.gif','gif','LoopCount',inf,'DelayTim

e',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_mednoise_back.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(sideviewaz, sideviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Medium Noise'}) 
    saveas(gcf,['stimulus_mednoise_timeframe_' num2str(frame) 

'_side.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_mednoise_side.gif','gif','LoopCount',inf,'DelayTim

e',1); 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_mednoise_side.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 
    if (frame == 1) 
        im = []; 
    end 
    close all 

     

     
    percentshow = 0; 
    limitloop = 0; 
    mat2plothigh = (((highnoiseresults(:,:,frame)>(maxhigh*percentshow)) + 

(highnoiseresults(:,:,frame)<(minhigh*percentshow))).*highnoiseresults(:,:,

frame)); 
    mat2plothigh(isnan(mat2plothigh)) = 0; 
    while ((sum([sum(~(mat2plothigh == 0))])>=shownum) && (limitloop == 0)) 
        percentshow = percentshow + 0.00001; 
        mat2plothigh = 

(((highnoiseresults(:,:,frame)>(maxhigh*percentshow)) + 

(highnoiseresults(:,:,frame)<(minhigh*percentshow))).*highnoiseresults(:,:,

frame)); 
        mat2plothigh(isnan(mat2plothigh)) = 0; 
        if percentshow >= 1 
            limitloop = 1; 
        end 
    end 
    plot_connections3d_regions(mat2plothigh, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [minoverall maxoverall]); 
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    title({['Timeframe ' num2str(frame)],'Stimulus: High Noise'}) 
    saveas(gcf,['stimulus_highnoise_timeframe_' num2str(frame) 

'_top.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_highnoise_top.gif','gif','LoopCount',inf,'DelayTim

e',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_highnoise_top.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     

    view(backviewaz, backviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: High Noise'}) 
    saveas(gcf,['stimulus_highnoise_timeframe_' num2str(frame) 

'_back.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_highnoise_back.gif','gif','LoopCount',inf,'DelayTi

me',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        

imwrite(im,map,'stimulus_highnoise_back.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     

    view(sideviewaz, sideviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: High Noise'}) 
    saveas(gcf,['stimulus_highnoise_timeframe_' num2str(frame) 

'_side.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_highnoise_side.gif','gif','LoopCount',inf,'DelayTi

me',1); 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        

imwrite(im,map,'stimulus_highnoise_side.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 
    close all 

     
end 
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%% correct/incorrect results 

  
correctresults = zeros([size(difference{1,1,1,1}), 

length(difference(1,1,1,:))]); 
incorrectresults = zeros([size(difference{1,1,1,1}), 

length(difference(1,1,1,:))]); 

  

  
for frame = 1:poststimtimeframes %change back 
    clear temp 
    clear temp2 
    empty = ~cellfun( @isempty, difference(:,:,1,frame)); 
    temp = difference(:,:,1,frame); 
    temp = temp(empty); 
    for i = 1:length(temp) 
        temp2(:,:,i) = temp{i}; 
    end 
    correctresults(:,:,frame) = mean(temp2,3); 

     
    clear temp 
    clear temp2 
    empty = ~cellfun( @isempty, difference(:,:,2:3,frame)); 
    temp = difference(:,:,2:3,frame); 
    temp = temp(empty); 
    for i = 1:length(temp) 
        temp2(:,:,i) = temp{i}; 
    end 
    incorrectresults(:,:,frame) = mean(temp2,3); 

     
end 

  

  
maxcorrect = max(correctresults(:)); 
maxincorrect = max(incorrectresults(:)); 
mincorrect = min(correctresults(:)); 
minincorrect = min(incorrectresults(:)); 

  
maxoverall = max([maxcorrect maxincorrect]); 
minoverall = min([mincorrect minincorrect]); 
if maxoverall>abs(minoverall) 
    minoverall = -maxoverall; 
else 
    maxoverall = abs(minoverall); 
end 

  
shownum = 8; 
im = []; 
for frame = 1:poststimtimeframes %change back 
    percentshow = 0; 
    limitloop = 0; 
    mat2plotcorrect = 

(((correctresults(:,:,frame)>(maxcorrect*percentshow)) + 

(correctresults(:,:,frame)<(mincorrect*percentshow))).*correctresults(:,:,f

rame)); 
    mat2plotcorrect(isnan(mat2plotcorrect)) = 0; 
    while ((sum([sum(~(mat2plotcorrect == 0))])>=shownum) && (limitloop == 

0)) 



97 | P a g e  

 

        percentshow = percentshow + 0.00001; 
        mat2plotcorrect = 

(((correctresults(:,:,frame)>(maxcorrect*percentshow)) + 

(correctresults(:,:,frame)<(mincorrect*percentshow))).*correctresults(:,:,f

rame)); 
        mat2plotcorrect(isnan(mat2plotcorrect)) = 0; 
        if percentshow >= 1 
            limitloop = 1; 
        end 
    end 
    plot_connections3d_regions(mat2plotcorrect, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [minoverall maxoverall]); 
    title({['Timeframe ' num2str(frame)],'Stimulus: Correct'}) 
    saveas(gcf,['stimulus_correct_timeframe_' num2str(frame) '_top.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_correct_top.gif','gif','LoopCount',inf,'DelayTime'

,1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_correct_top.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(backviewaz, backviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Correct'}) 
    saveas(gcf,['stimulus_correct_timeframe_' num2str(frame) '_back.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_correct_back.gif','gif','LoopCount',inf,'DelayTime

',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_correct_back.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(sideviewaz, sideviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Correct'}) 
    saveas(gcf,['stimulus_correct_timeframe_' num2str(frame) '_side.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_correct_side.gif','gif','LoopCount',inf,'DelayTime

',1); 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
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        imwrite(im,map,'stimulus_correct_side.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 
    if (frame == 1) 
        im = []; 
    end 
    close all 

     

     
    percentshow = 0; 
    limitloop = 0; 
    mat2plotincorrect = 

(((incorrectresults(:,:,frame)>(maxincorrect*percentshow)) + 

(incorrectresults(:,:,frame)<(minincorrect*percentshow))).*incorrectresults

(:,:,frame)); 
    mat2plotincorrect(isnan(mat2plotincorrect)) = 0; 

     

    while ((sum([sum(~(mat2plotincorrect == 0))])>=shownum) && (limitloop 

== 0)) 
        percentshow = percentshow + 0.00001; 
        mat2plotincorrect = 

(((incorrectresults(:,:,frame)>(maxincorrect*percentshow)) + 

(incorrectresults(:,:,frame)<(minincorrect*percentshow))).*incorrectresults

(:,:,frame)); 
        mat2plotincorrect(isnan(mat2plotincorrect)) = 0; 
        if percentshow >= 1 
            limitloop = 1; 
        end 
    end 
    plot_connections3d_regions(mat2plotincorrect, chanlabels, '', 'xyz', 

chanlocarray, 'method', 'arrow', 'conlims', [minoverall maxoverall]); 
    title({['Timeframe ' num2str(frame)],'Stimulus: Incorrect'}) 
    saveas(gcf,['stimulus_incorrect_timeframe_' num2str(frame) 

'_top.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_incorrect_top.gif','gif','LoopCount',inf,'DelayTim

e',1); 
        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        imwrite(im,map,'stimulus_incorrect_top.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(backviewaz, backviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Incorrect'}) 
    saveas(gcf,['stimulus_incorrect_timeframe_' num2str(frame) 

'_back.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_incorrect_back.gif','gif','LoopCount',inf,'DelayTi

me',1); 
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        im = []; 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        

imwrite(im,map,'stimulus_incorrect_back.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 

     
    view(sideviewaz, sideviewel) 
    title({['Timeframe ' num2str(frame)],'Stimulus: Incorrect'}) 
    saveas(gcf,['stimulus_incorrect_timeframe_' num2str(frame) 

'_side.jpg']); 
    if isempty(im) 
        f = getframe(gcf); 
        [im,map] = rgb2ind(f.cdata,256); 
        

imwrite(im,map,'stimulus_incorrect_side.gif','gif','LoopCount',inf,'DelayTi

me',1); 
    else 
        f = getframe(gcf); 
        ifr = frame2im(f); 
        [im,map] = rgb2ind(f.cdata,map); 
        

imwrite(im,map,'stimulus_incorrect_side.gif','gif','DisposalMethod', 

'leaveInPlace', 'WriteMode','append','DelayTime',1); 
    end 
    close all 

     
end 

 

12.3 CONNECTIVITY STATISTICS  
This is the script to calculate the statistics of the across stimulus p values – statistics of the 

correct vs incorrect only or the noise level comparison is attached in a zip file of all the code. 

%% switches 
warning( 'off', 'all'); 
clear all 
new_file = false; 

  
%% preamble 
sharedrootpath = getpref( 'tsg', 'sharedrootpath'); 
homepath = fullfile( sharedrootpath, 'Projects\AVSP\McGurk'); 
matlabrootpath = getpref( 'tsg', 'matlabrootpath'); 
addpath( genpath( 'V:\EEG\People\Tyler')); 
addpath( genpath( 'V:\EEG\People\Caitlin')); 
addpath( genpath( 'V:\EEG\People\Kenneth\Matlab\bin\connectivity 

measures\')); 
addpath( genpath( 'V:\EEG\People\Kenneth\Matlab\contrib')); 
eeglabpath = fullfile( matlabrootpath, 'Matlab', 'eeglab'); 
hdmfile = fullfile(eeglabpath,'plugins','dipfit2.3', ... 
    'standard_BEM','standard_vol.mat'); 

  

%% define variables 
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subjects = { 'Subject01', 'Subject02', 'Subject03', 'Subject05', 

'Subject06', ... 
     'Subject07', 'Subject08', 'Subject09', 'Subject10', ... 
     'Subject11', 'Subject12', 'Subject13', 'Subject14', 'Subject15', ... 
    'Subject16', 'Subject17', 'Subject18', 'Subject19', 'Subject20', 

'Subject21'}; 
tasks = { 'McGurk-Audio-degradation'}; 
ICA = 'AMICA'; 
CONN = 'CGC'; 
sounds = { 'ABBA', 'ABBA-AO', 'APPA', 'ATHA', 'AGGA', 'AGGA-AO'}; 
noises = { 'LN', 'MN', 'HN'}; 
perception = { 'Truth+Perceived', 'Perceived-only', 'Truth-only'}; 
bands = {'theta', 'alpha', 'beta', 'gamma'}; 

  
%% Number of ... 
Ns = numel( subjects); 
Nt = numel( tasks); 
Nso = numel( sounds); 
Nno = numel( noises); 
Np = numel( perception); 
Nba = numel(bands); 

  
% STILL NEED TO ADJUST FOR BANDS 

  
%% calculate coherence 
wait1 = tic; 
for t = 1:Nt 
    task = tasks{ t}; 

     
    switch task 
        case 'McGurk-Audio-degradation' 
            AMs = cell( Nso, Nno, Np, Ns); 

             

             
            % time definition 
            times( :, 1) = -1:0.1:0.8; 
            times( :, 2) = -0.8:0.1:1; 

             
            %load subject channels and connectivity 
            for s = 1:Ns 
                subject = subjects{ s}; 

                 
                % define folderpath 
                folderpath = fullfile( homepath, 'data', subject, task); 

                 
                % load epoch file 
                d = eeg3.eeg.load( fullfile( folderpath, sprintf( 

'%s_%s_epoched_IC.eeg3-eeg', ... 
                    task, ICA))); 
                chaninfo{ s} = d{ 1}( 1).chan; 
                clear d 

                 
                % load connectivity file 
                temp = load( fullfile( folderpath, sprintf( '%s_%s_%s.mat', 

... 
                    task, ICA, CONN))); 
                AMs( :, :, :, s) = temp.AMs; 
                chans{ s} = temp.chans; 
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                clear temp 

                 

                 
                disp( '------------------------------------'); 
                fprintf( 'Subject: %d of %d\n', s, Ns); 
                fprintf( 'Task: %s, %d of %d\n', task, t, Nt); 
                disp( 'Data loading completed'); 
                disp( '------------------------------------'); 

                 
            end 

             
            % intersect channels 
            channels = chans{ 1}; 
            chanlabels = channels; 
            for s = 2:numel( chans) 
                chanlabels = intersect( chans{ s}, chanlabels); 
            end 

             
            % index into AMs 
            for s = 1:size( AMs, 4) 
                ind = find( ismember( chans{ s}, chanlabels)); 
                AM = AMs( :, :, :, s); 
                for p = 1:numel( AM), 
                    if isempty( AM{ p}), continue; end 
                    AM{ p} = AM{ p}( ind, ind, :, :); 
                end 
                AMs( :, :, :, s) = AM; 
                clear AM 
            end 

             
            % number of channels 
            Nchan = numel( chanlabels); 

             
            %% stats processing 

             

             

            dec = cell(Nso, Nno, Np); 
            inc = cell(Nso, Nno, Np); 

             
            for i = 1:Nso %cycle through sounds 
                for ii = 1:Nno %cylce through noises 
                    for iii = 1:Np %cycle thorugh perceptions 
                        AM = []; 
                        clear tempall 
                        tempall = AMs(i,ii,iii,:); 
                        tempall = tempall(:); 
                        k = 1; 
                        for l = 1:length(tempall) 
                            clear temp3 
                            if (~isempty(tempall{l})) 
                                temp3 = tempall{l}; 
                                for frame = 11:15 
                                    if (length(size(temp3))>3) 
                                        for m = 1:length(temp3(1,1,1,:)) 
                                            AM(:,:,k) = 

mean(temp3(:,:,4:5,m),3) - mean(temp3(:,:,2,m),3); 
                                            AM(:,:,k+1) = 

temp3(:,:,frame,m) - mean(temp3(:,:,2,m),3); 



102 | P a g e  

 

                                            k = k + 2; 
                                        end 
                                    else 
                                        AM(:,:,k) = mean(temp3(:,:,4:5),3) 

- mean(temp3(:,:,2),3); 
                                        AM(:,:,k+1) = temp3(:,:,frame) - 

mean(temp3(:,:,2),3); 
                                        k = k + 2; 
                                    end 
                                end 
                            end 
                        end 

                         
                        num = 1:2:size( AM, 3); 
                        design = zeros( size( AM, 3), 2); 
                        design( num, 1) = 1; 
                        design( num+1, 2) = 1; 

                         

                        %define stats parameters 
                        stats_method = 'NBS'; 
                        GLM.perms = fastif( strcmp( stats_method, 'FDR'), 

50000, 5000); 
                        GLM.X = design; 
                        GLM.test = 'ttest'; % 'ttest' or 'ftest' 
                        STATS.size = 'Intensity'; %'Intensity' or 'Extent' 
                        STATS.thresh = 0.3; 
                        STATS.alpha = 0.05; 

                         
                        if (~isempty(AM)) 

                             
                            % increase 
                            GLM.contrast = [-1 1]; 
                            inc{i,ii,iii} = NBS_directional_hack( AM, GLM, 

STATS, chanlabels); 

                             
                            % decrease 
                            GLM.contrast = [1 -1]; 
                            dec{i,ii,iii} = NBS_directional_hack( AM, GLM, 

STATS, chanlabels); 

                             
                        end 

                         
                        clear AM 

                         
                    end 
                end 
            end 

             
            save(['V:\EEG\People\Caitlin\' CONN '_inc.mat'], 'inc'); 
            save(['V:\EEG\People\Caitlin\' CONN '_dec.mat'], 'dec'); 

             
            %% pull out for easy viewing 

             
            decsize = size(dec); 
            incsize = size(inc); 
            dec_p_val = cell(decsize(1),decsize(2),decsize(3)); 
            dec_con_mats = cell(decsize(1),decsize(2),decsize(3)); 
            inc_p_val = cell(incsize(1),incsize(2),incsize(3)); 
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            inc_con_mats = cell(incsize(1),incsize(2),incsize(3)); 
            for k = 1:decsize(1) 
                for kk = 1:decsize(2) 
                    for kkk = 1:decsize(3) 
                            dec_struct = dec{k,kk,kkk}; 
                            inc_struct = inc{k,kk,kkk}; 
                            if (~isempty(dec_struct) && 

~isempty(dec_struct.pval)) 
                                dec_p_val{k,kk,kkk} = dec_struct.pval; 
                                dec_con_mats{k,kk,kkk} =  

dec_struct.con_mat; 
                            end 
                            if (~isempty(inc_struct) && 

~isempty(inc_struct.pval)) 
                                inc_p_val{k,kk,kkk} = inc_struct.pval; 
                                inc_con_mats{k,kk,kkk} =  

inc_struct.con_mat; 
                            end 
                    end 
                end 
            end 

             
            save(['V:\EEG\People\Caitlin\' CONN '_dec_p_val.mat'], 

'dec_p_val'); 
            save(['V:\EEG\People\Caitlin\' CONN '_dec_con_mats.mat'], 

'dec_con_mats'); 
            save(['V:\EEG\People\Caitlin\' CONN '_inc_p_val.mat'], 

'inc_p_val'); 
            save(['V:\EEG\People\Caitlin\' CONN '_inc_con_mats.mat'], 

'inc_con_mats'); 

             

             
    end 
end 
fprintf( 'Time elapsed from connectivity stats: %0.2f minutes\n', toc( 

wait1)/60); 

 

 


