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ABSTRACT 

In this thesis, novel universal model-free adaptive controllers based on neural 

networks are designed to control various types of model-free coupled Multiple-

Input Multiple-Output (MIMO) systems. For each controller, a specific model-

free adaptive learning algorithm, with accumulated gradients using the error 

back-propagation algorithm, is defined and developed to be automatically trained 

based on the history of inputs and outputs of the system. The system is 

considered as a ‘black box’ with no pre-knowledge of its internal structure. By 

online monitoring of the system inputs and system outputs, the controller is able 

to adjust itself to the new conditions such as changing the desired outputs, 

structural uncertainty of the system’s model, and unwanted disturbances. In this 

study, the design of the proposed controller is developed step-by-step as follows: 

(i) Firstly, by designing an Adaptive Neural Network Controller (ANNC) for 

controlling model-free Single-Input Single-Output (SISO) systems (in Chapter 2); 

(ii) Secondly, by expanding the ANNC to a Multivariable Adaptive Neural 

Network Controller (MANNC) to apply to square coupled MIMO systems (in 

Chapter 3); (iii) Thirdly, by improving the MANNC to Multivariable Adaptive 

Neural Network Controller with two dynamic layers (MANNC2) to deal with the 

non-linear characteristic of square coupled MIMO systems (in Chapter 4); (iv) 

and finally, by modifying the MANNC2 to a universal Multivariable Adaptive 

Neural Network Controller for Non-Square MIMO systems (MANNCNS), a 

general framework for controlling non-linear model-free non-square coupled 

MIMO systems is provided as the final product of this thesis (in Chapter 5); The 

Lyapunov stability criteria are developed for each multivariable controller and 

are embedded in their learning algorithms to guarantee the stability of the 

closed loop control system during the entire time of the adaptive control process. 

Several meaningful experiments by computer simulations relevant to each 

controller are performed in this study. The simulation results demonstrate the 

proper performance of the introduced controllers such as set-point tracking, 

accumulated error reduction, high control speed, unwanted overshoot/undershoot 

reduction, disturbance rejection, and dead-time compensation. These are 

compared to the best recent counterparts in significant examples with properties 

such as time-variance, non-linearity, and hybrid structure. The usefulness of the 

controllers in a wide range of applications, makes them potential candidatures to 

be implemented in industrial control software packages for use in many practical 

applications. 



Chapter 1 

13 
 

1 CHAPTER 1: INTRODUCTION 

Overview 

It is often observed that the performance of an industrial controller deteriorates 

during its operational life and, as time goes by, the controller may not perform as 

good as it was initially intended. This is largely due to the fact that the 

parameters of the controller that was chosen based an original system’s nominal 

features at the time of the design, may have changed over time as the dynamic 

characteristics of the given system may vary during the system operation due to 

reasons such as aging, disturbances, environmental changes, and other 

unexpected circumstances. This problem will become compound when the system 

to be controlled is highly-nonlinear, strongly-coupled, Multiple-Input Multiple-

Output (MIMO) in nature. Such systems are frequently seen in industrial 

applications. Although an off-line routine inspection procedure can be employed 

to check and correct a controller’s performance for a considered industry plant, 

this procedure can’t be implemented in real time and is often time-consuming, 

expensive, and involving human errors.  

Given that the reason for the sensitivity of a controller often comes from the 

model of the considered system based on which the controller was initially 

designed, the sensitivity issue of the controller may be addressed if the design of 

the controller is less dependent on the model of the system. If the fundamental 

design principle of a controller relies only on the current exhibited actual 

dynamics of the system, by tuning the parameters of the controller online based 

on the input/output history of the system, the changes in the underlying dynamic 

system will be automatically accounted for. A controller whose design is 

independent of a pre-defined analytical model of a given system is thus of 

particular preferable. 

There are many efforts in designing less-model-dependent or model-independent 

controllers that have auto-tuning-parameter capabilities for specific applications. 

However, a universal control method that can deal with a wide range of 

nonlinear, time-varying (or model-changing), multi-input, and multi-output 
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plants commonly existed in industrial applications, is clearly missing. To fill this 

gap, in this thesis, by using the framework of neural networks, a step-by-step 

design process of a universal nonlinear MIMO controller is presented. Utilising 

the features provided by a neural network, the produced controller will process a 

self-learning capability that can tune its parameters online to adapt to changes 

in system dynamics. The controller will be model-independent, suitable for 

implementation in industrial plants, and potentially operatable in real time. 

The development of the intended universal nonlinear MIMO controller will take 

a few stages, reflecting the gradual evolvement of the design complexities. 

Firstly, an Adaptive Neural Network Controller (ANNC) for nonlinear Single-

Input Single-Output (SISO) systems is produced. This controller does not use the 

model of a system, and can adjust its parameters online to track a desired 

behaviour of the system using solely the input/output history of the system. 

Secondly, by expanding the framework of the ANNC, a Multivariable Adaptive 

Neural Network Controller (MANNC) applicable for nonlinear square MIMO 

systems is derived. Although this controller can potentially cope with a range of 

nonlinearities, its capability in dealing with highly nonlinear industrial plants 

will be strengthened if its one-dynamic-layer neural-network structure can be 

further evolved. Thus, thirdly, a Multivariable Adaptive Neural Networks 

Controller with two-dynamic layers (MANNC2) for nonlinear square MIMO 

systems is introduced. This controller is fundamentally more mature towards the 

goal of the universal model-independent nonlinear MIMO controller, and its 

structure is naturally generalizable to include almost all industrial plants where 

the numbers of system inputs and system outputs are random. By modifying the 

MANNC2, finally, the intended universal Multivariable Adaptive Neural 

Network Controller for Non-Square systems (MANNCNS) is formed. At each of 

the above development stages, the performance of the proposed nonlinear 

controller is adequately compared with that of its justifiable counterpart, and the 

effectiveness of the proposed controller is evidently approved via comparative 

simulation studies on chosen examples that can reflect typical nonlinear features 

of industrial plants.   
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In the following sections of this chapter, an overview of the whole project 

including the importance, the research steps, the research process, the literature 

review, and the motivation of this study, is provided. Control methods are 

categorised into two classes: model-based and model-free. The restrictions of 

model-based methods in industrial applications are discussed, and the benefits 

and importance of model-free methods are described. A brief review of controlling 

multivariable systems based on their various types is presented, which is 

followed by a presentation of neuro-adaptive methods and their inherent 

advantages in controlling systems with nonlinear characteristics. The reason for 

using neural networks as a design framework of this thesis is thus justified. As 

necessary background knowledge of the thesis, concepts of neural-network 

topology, learning rules, learning rates, activation functions, and number of 

layers, that are associated with a neural-network structure and useful for the 

materials presented in the next chapters, are explained. To substantiate the 

importance of developing the proposed universal nonlinear MIMO controller for 

industrial applications, the shortcomings of the existing approaches in the 

literature are discussed, which bring about the thesis outline describing the 

development procedure of the universal controller and the list of original 

contributions to be presented in this thesis.  

The aforementioned contents are described according to the following outline of 

this chapter: 

 MODEL-BASED ADVANCED CONTROL METHODS .................................................. 17 

 MODEL-FREE CONTROL TECHNIQUES ................................................................ 18 

 RECENTLY INTRODUCED MODEL-FREE CONTROL METHODS ................................ 19 

 CONTROL OF MULTIVARIABLE SYSTEMS ............................................................. 22 

 NEURAL NETWORK ADAPTIVE FEEDBACK CONTROL .......................................... 25 

 MULTI-LAYERS PERCEPTRONS (MLPS) ......................................................... 28 

 BACK-PROPAGATIONAL NEURAL NETWORKS ................................................. 30 

 IMPORTANCE OF LEARNING RATE IN NEURAL NETWORKS ............................. 32 

 IMPORTANCE OF ACTIVATION FUNCTION IN NEURAL NETWORKS .................. 33 

 NEURAL NETWORK CONTROL TOPOLOGY ...................................................... 33 
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 SINGLE ADJUSTABLE LAYER VS MULTIPLE ADJUSTABLE LAYER NEURAL 

NETWORK ................................................................................................................. 34 

 BEST PERFORMANCE OF NEURAL NETWORKS AND WHY WE USED IT ............ 34 

 CURRENT APPROACHES AND SHORTCOMINGS ..................................................... 35 

 ORIGINAL CONTRIBUTION AND PROPOSED SOLUTION ......................................... 38 

 THE AIM OF THE THESIS ................................................................................. 38 

 ORIGINAL CONTRIBUTION OF THE THESIS ...................................................... 39 

 THE OUTCOME OF THE THESIS ....................................................................... 40 

 THESIS OUTLINE .............................................................................................. 41 

REFERENCES ......................................................................................................... 44 
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 Model-based advanced control methods 

Systems in control theory are identified as having internal dynamics, inputs that 

can be manipulated and outputs that can be measured. Feedback control of a 

dynamic system involves supplying suitable control inputs, according to the 

difference between observed behaviour and desired behaviour of the system, so 

that the observed behaviour of the system matches with a pre-defined desired 

behaviour. There are well-established methods for designing and analysing 

feedback control systems which have led to many successes in many industrial 

applications. These methods include classical methods for linear control, 

multivariable control, adaptive control, robust control, nonlinear control, optimal 

control, H-infinity control, and others. In many real industrial systems, the 

systems often possess unknown dynamics, modelling errors, and different types 

of disturbances, noises and uncertainties. There are many adaptive algorithms 

proposed to find the system’s model in the literature. In these methods, a 

structure of the dynamical system is identified and only the unknown 

parameters are computed in an online manner to provide the controller with the 

plant dynamic model. As the complexity of the modern dynamic systems 

increases, the demand for more advanced control techniques such as adaptive 

control, predictive control and feedback linearization that can handle complex 

control problems currently limited by the available feedback control strategies 

increases. 

The majority of the current advanced control methods are largely based on pre-

identified models of the systems to be controlled [1]. In these methods, using an 

identified model of a system, a controller is designed to lead the outputs of the 

system (controlled variables) to their desired values (setpoints). By having the 

exact or estimated model of the system, it is possible to determine the system’s 

outputs for any applied system’s inputs. A main problem of these model-based 

control methods in industrial applications is that real industrial systems are 

often nonlinear in nature. Consequently, a predicted (typically linear) model of 

such a system would be dynamically different than the real system itself, and a 

controller designed for the predicted model of the system would have a limited 



Chapter 1 

18 
 

effective working range. In addition, due to having uncertainties in a dynamic 

system and unknown environmental changes, the procedure for finding the exact 

model could be expensive and time-consuming. Furthermore, if one parameter of 

the system for any reasons such as the plant’s aging changes, in order to achieve 

the desired outcomes, the whole system’s model may need to be reidentified, 

which can even lead to redesigning the multivariable controller. Although the 

adaptive control algorithms dealing with structural and parametric uncertainty 

have resolved the problem of the absence of an exact model for some 

applications, the assumption of known structure for the dynamic system is still a 

constraint in the design procedure. Indeed, real-time implementations of such a 

control system would pose both high-complexities in realizing the required 

performances and high-demands in meeting the required computational powers. 

The system modelling becomes even more challenging when the system is 

identified with time-varying characteristics in nature. Because time variation is 

a result of system parameters changing as a function of time, all industrial 

systems are time-varying in principle e.g. circuit parameters in electronic 

circuits aerodynamic coefficients of aircrafts, hydrodynamic terms in marine 

vessels, and mechanical parameters in machinery. Time variation also occurs as 

a result of linearizing a nonlinear system about a family of operating points 

and/or about a time-varying trajectory for developing control system. Due to 

these problems, it is not always possible to control an industrial system using its 

identified predicted model, if the system is either highly nonlinear or highly 

time-varying or both. 

 Model-free control techniques 

Despite significant improvements in designing controllers using model-based 

advanced control techniques in control theory, they still suffer from the difficulty 

of having a proper and exact mathematical model of the process in some 

industrial applications. In order to deal with the problem of model identification, 

Machine Learning Control Methods (MLCM) are being used in a wide range of 

applications to predict the system’s behaviour when an actual pattern of inputs 

and outputs is mysterious in large datasets [2-5]. Therefore, machine learning 
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techniques which do not require the model of the system - known as “model-free 

control methods” in control theory - have been introduced. In these methods, the 

controlled system is identified by the history of inputs and outputs rather than 

the exact or approximate model of the system. In model-free control methods, 

design of the controller depends on the inputs and outputs measurement data of 

the controlled system without using the system model explicitly regardless of 

linearity or non-linearity of the plant. However, the controller may be designed 

using implicit information from the dynamics or structure of the controlled 

system. Due to the fact that the data-based model-free adaptive control method 

does not require the plant model in the controller designing process, in these 

methods there are no theoretical assumptions, modelling process and dynamics 

of the controlled system. Model-free control methods use the information in 

massive amounts of process inputs and outputs data samples to design 

controllers, predictors and monitoring systems. These methods are attentive to 

improvement of the control system performance by optimisation methods where 

no information exists for a priori model or very limited such information is 

available. Therefore, model-free control methods are often associated with the 

available datasets for the system’s inputs and outputs. 

In addition to dealing with the constraints of the model-based methods explained 

in the previous section, if during the control process, the modelling phase of a 

system can be skipped, the time required for the adjustment of the real-time 

controller will be significantly reduced, which will result in a faster and more 

precise control outcome [1, 6, 7]. Therefore, a general model-free controller which 

does not require knowledge of the structure is required to remove this 

constraint [8]. As a result, model-free controllers are gradually becoming more 

preferred than model-based ones for industrial applications.  

 Recently introduced model-free control methods  

In this section, a literature review to model-free control methods is given, despite 

studies on this topic are found to be much more limited in the literature 

compared to the advanced model-based control methods. Recently, various 

model-free control methods have been introduced with different names in 
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publications. They are called by data-driven [1, 9-18], data-based [19-22], model-

free [1, 6-8, 10, 11, 14, 22-30], unfalsified control [31-34], iterative learning 

control [27], iterative feedback tuning [35, 36] and virtual reference feedback 

tuning [9, 28, 37]. In this study, control methods which are independent of the 

system’s model are called “Model-Free Control Methods”.  

Model-free advanced control methods play a significant role in control of 

engineering systems. Several applications can be found based on the new model-

free control algorithms in the literature [25, 26, 38-41]. As the first model-free 

control method Ziegler and Nichols proposed a procedure for tuning PID 

controllers which was a graphical method based on the controlled system step 

responses, but it was not applicable to other control problems [42-44]. ILC 

method is proposed as an appropriate control method on a finite time interval 

with a data-based feature for repeating control tasks [13, 17]. In the past decade, 

UC method has been used for falsifying controllers that fail to complete a 

performance specification using online inputs and outputs pattern of a controlled 

system directly [45, 46]. VRFT and IFT are other data-based control methods 

which can be placed in the controller parameters tuning framework. VRFT is 

developed for an unknown discrete-time linear single-input single-output system 

without requiring identification of the model of the controlled system. In this 

method, the controller parameters are identified by applying a virtual reference 

signal under the assumption that the controller’s structure is already recognised 

as a priori. Therefore, in this method the design of controller has been changed to 

an identification problem for the controller’s parameters [9, 27, 37]. In IFT 

method, as a replacement for one-shot tuning of the controller’s parameters, 

three experiments recursively occur in each iteration to compute the controller 

parameters for controlling an unknown discrete-time SISO linear system is also 

suggested for an unknown discrete-time SISO linear system [35, 36, 47, 48].  In 

the VRFT and IFT, the significant concerns are the stability and limitation of 

implementing the method on multivariable systems.  

In the recently introduced method of MFAC which a model-free adaptive control 

method for nonlinear single inputs single outputs systems is developed, instead 

of identifying the nonlinear model of the controlled system, a new dynamic 
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linearization technique (DLT) is utilised to build a series of equivalent local 

dynamic linearization data models along the dynamic operation points of the 

system [49, 50]. This model-free method is limited to SISO systems, however in 

some studies this method has been generalised to a certain class of MIMO 

systems [11, 15, 16, 28, 29, 51].  

In [24] the essentials of model-free control for single-input and single-output 

systems have been introduced by employing some old functional analysis and 

some elementary differential algebra. By using a recent online parameter 

identification approach, the estimation techniques become quite straightforward. 

The significance of iPIs and particularly of iPs is deduced from the presence of 

friction. The strange industrial ubiquity of classical PIDs and the great difficulty 

for tuning them in complex situations is deduced, using an elementary sampling, 

from their connections with iPIDs. In the introduced method the system has 

been estimated by: 

𝑦(௩) = 𝐹 + 𝛼𝑢           (1) 

Which 𝑦(௩) is the derivative of order 𝑣 ≥ 1 of 𝑦. The integer 𝑣 is selected by the 

researcher. 𝛼 ∈ 𝑅 is a non-physical constant parameter, 𝐹 subsumes the poorly 

known parts of the plant as well as of the various possible disturbances. In this 

study the plant is not considered as a complete unknown model and the model is 

estimated via the above equation which is in contrast with some definitions 

about model-free control methods. Also, the discussed methods are not applicable 

to multi-input multi-output systems.   

Because of the complexity and coupling difficulty of inputs, the majority of the 

model-free control methods developed for SISO systems cannot be directly 

applied to multiple-input multiple-output (MIMO) nonlinear systems. In order to 

decouple the inputs, generally a decoupling invertible matrix is required to be 

identified. However, it is not always possible to guarantee the non-singular 

property of the decoupling matrix. In [52, 53] decoupling control was studied for 

MIMO system, and the linearized mathematical model of the controlled MIMO 

system and all the state variables are assumed to be available, that are too 

restrictive to be obtained in practical applications. So far, few papers have 
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investigated the adaptive control problem in the general nonlinear discrete-time 

system, and they focused on some special classes of nonlinearities. Over the past 

few years, there has been a great interest in designing model-free controllers 

without the need of mathematical model of controlled system to control the 

MIMO system online and automatically by using the functions of biological 

processes. These techniques include “artificial neural networks” which are based 

on biological neuronal structures of interconnected nodes and “fuzzy logic 

control” which mimics linguistic and reasoning functions. Despite lots of efforts 

in this area, there is still a gap in developing a universal mode-free controller 

applicable to general form of industrial multivariable systems. In the following 

section a brief overview of different types of control of multivariable systems is 

introduced.  

 Control of multivariable systems  

In real-life processes in industry, not only do we deal with single-input single-

output (SISO) systems but also it is quite common to face multiple-input 

multiple-output (MIMO), multiple-input single-output (MISO) or single-input 

multiple-output (SIMO) systems in various applications. Currently, many SISO 

control methods have been expanded for controlling SIMO and Uncoupled Multi-

Input Multi-Output (U-MIMO) systems by cascading multiple SISO controllers 

together. However, these methods are not applicable to Multi-Input Single-

Output as well as Coupled Multi-Input Multi-Output (C-MIMO) systems, 

because due to cross coupling in the structure of these systems, one setpoint not 

only affects the output variable corresponding to this setpoint, but also causes a 

response in each of the process output variables. In some improved methods, 

ordinary single-loop classical control method with multiple decentralised PI or 

PID controllers at lower level are used for coupled MIMO control systems [54]. 

Nevertheless, these single loop controllers are not able to suppress the 

interactions of the coupled MIMO process, and therefore each input affects not 

only its corresponding output but also the other ones, therefore the stability and 

robustness of the control system may become worse. Many articles have dealt 

with this drawback of decentralized control. In addition, as the PID and PI 
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controllers are linear, the performance of these controllers in non-linear systems 

e.g. heating, ventilation and air conditioning (HVAC) systems is not reliable. In 

another approach, cross-coupled gains are defined for a multi-variable controller 

[55] which are largely based on the identified linear model of the MIMO system 

to be controlled e.g. in [56] which has been applied to a high-speed train model. 

In these methods, based on the linear identified model of a MIMO system, a 

multivariable controller is designed to lead the outputs of the system to their 

desired values. The main problem of these methods in industrial applications is 

that the exact model of the real MIMO system is often challenging to be 

identified. Accordingly, a multivariable controller designed for the predicted 

model of the MIMO system wouldn’t work properly or would work in a limited 

range, because the predicted linear model of such a system would be dynamically 

different from the original system especially where the system has nonlinear 

characteristic.  

In the recent two decades, adaptive control methods have been introduced to 

adjust parameters of a designed multivariable controller’s automatically. An 

extensive variety of adaptive control systems have been used in various 

industrial applications whereas variables of MIMO processes are controlled in 

real-time using advanced control methods instead of their classical counterparts 

[57-59]. By emerging computer-based controllers online, industrial plants and 

processes have become more and more effectively automated. In fact, auto-tuned 

controllers with adaptive capabilities have become extremely in demand by 

industry, and their developments are increasing speedily. 

With regard to the number of inputs and outputs, multivariable systems can be 

categorised into square MIMO systems and non-square MIMO systems. A 

system which contains an equal number of inputs and outputs is called a square 

multi-input multi-output system. However, a system with an unequal number of 

inputs and outputs which is very common in the industrial processes is called a 

non-square multi-input multi-output system. Non-Square MIMO systems may 

have either more inputs than outputs or more outputs than inputs, therefore 

they can be separated into two classes in system analysis, system control and 

system identification. Some typical industrial samples for non-square systems 
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are, shell standard control problem (a 2-input 3-output system), hot oil 

fractionator problem (a 2-input 4-output system), distillation column (a 2-input 

3-output system) and DC motor control problem (a 3-input 2-output system).  

Over the past few years, there has been an increasing interest in the 

development of control techniques for both square and non-square multivariable 

systems. Some of those techniques are defined specifically for controlling square 

multivariable systems and some of them are specified for non-square ones. 

However, a common approach towards the control of non-square systems is to 

obtain a square system matrix by squaring up or squaring down through adding 

or removing appropriate inputs (manipulated variables) or outputs (controlled 

variables). Nevertheless, as a limitation of this approach, adding unnecessary 

outputs to be measured can be costly, while deleting inputs leaves fewer 

variables to be manipulated to achieve the desired control target. Likewise, the 

amount of feedback information available to the system can be reduced by 

decreasing the number of measured outputs, and arbitrarily adding new 

manipulated inputs can incur an unnecessary cost.  

In closed-loop control of multivariable systems, each output to be controlled 

(controlled variable), requires a desired output (a setpoint) as a reference. In 

industry, a number of variable parameters in the controller are to be adjusted 

some of which depend on model of the multivariable system. If there are cross 

couplings in the process, the system can be difficult or impossible to control by 

classical controllers, because each output is coupled with two or more process’s 

inputs. There are some difficulties of controlling a multivariable process if these 

cross couplings are not counteracted by the multivariable controller. Some 

examples of the potential problems are as follows: (i) A change in one setpoint 

will cause a response not only in the output variable corresponding to the 

setpoint but also in each of the process output variables. (ii) Assuming that 

ordinary single loop classical control method with multiple PI or PID controllers 

is used, the controllers will observe a complicated dynamic system which consists 

of the multivariable process with all control loops. This can make it difficult to 

tune each of the controllers, and the stability and robustness of the control 

system may become worse. (iii) As the classical controllers such as PID and PI 



Chapter 1 

25 
 

controllers are linear, and symmetric, the performance of these controllers in 

non-linear systems such as HVAC (Heating, ventilation, and air conditioning) 

systems is variable. As a meaningful example, in temperature control, a common 

use case is active heating (via a heating element) instead of passive cooling 

(heating off, but no cooling). Therefore, overshoot can only be corrected slowly, 

and it cannot be forced downward. In this case, the PID controller should be 

tuned to be overdamped, to prevent or reduce overshoot, though this can reduce 

control performance via increasing the response settling time. Many of the 

current advanced control methods for controlling MIMO systems are largely 

applicable only in uncoupled multivariable systems. In some limited scenarios a 

cross-coupled gain is defined to apply the controllers in coupled MIMO systems 

[55] which are largely based on identified models of systems to be controlled e.g. 

[56]. Therefore, the model-free MIMO controllers are found limited in the 

literature compared to the model-based methods.  

 Neural Network Adaptive Feedback Control 

Due to presence of nonlinearities in complex system dynamics, the linearized 

models are ineffective for controller design in many applications. Thus, nonlinear 

multivariable control has constantly been the topic of research over the past 

several decades. A wide variety of adaptive control systems have been employed 

by various industries where variables of plants or processes are controlled in 

real-time using advanced control methods versus their classical counterparts 

[57-59]. By developing computer-based controllers online, industrial plants and 

processes become more and more effectively automated. In fact, auto-tuned 

controllers with adaptive capabilities have become highly sought-after by 

industry, and their developments are growing rapidly. The online adjustment of 

the controller’s parameters is the primary issue of adaptive control, as these 

parameters are time varying. Nevertheless, the majority of these control 

schemes are normally based on algorithms which require specific knowledge of 

the process dynamics. These also need assessment and evaluation of the outputs’ 

variation versus the inputs’ variation. The implementation of neural networks is 

a promising alternative for the control of multi-input multi-output nonlinear 
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dynamical systems. There has been an increasing amount of interest in recent 

years regarding adaptive control methodologies based on neural networks [60-

66]. Using neural networks in feedback control systems was firstly introduced by 

Werbos in 1989 [67]. Later, neural network control has been studied by many 

researchers such as [68] and this field has been the mainstream of control theory 

as a branch of adaptive control systems with nonlinear adjustable parameters.  

Originally, Artificial neural network (ANN) has been identified as being of 

potential interest to the area of control systems for their capability to 

approximate nonlinear mapping and their ability to learn and adapt. ANN has 

been introduced as a mathematical computational model, inspired by biological 

networks. It involves interconnected groups of artificial neurons. These neurons 

process information for computation. An ANN is an adaptive system with a 

structure that varies based on external and/or internal information during 

learning processes. More precisely, neural networks can be considered as 

statistical nonlinear data modelling tools. In the last few decades, widespread 

research has been conducted to develop the theory as well as the application of 

the neural networks. Neural networks have emerged to be a powerful 

computational tool for solving several problems in different research fields such 

as advanced control, medical imaging, pattern recognition and classification, 

speech recognition to name a few.  

As a useful and widespread strategy, neural networks have been found as a 

powerful approximator in the group of advanced multivariable adaptive control 

methods. However most of researches that used neural network for adaptive 

control have been applied to single-input single-output (SISO) systems [30] and 

applications of neural network in multi-input multi-output (MIMO) control are 

limited in the literatures [69]. Adaptive neural networks can be utilised for 

different aspects of multivariable systems such as control, modelling and 

identification. Recently, using neurons with dynamic structure has being rapidly 

increased. By means of dynamic elements embedded in a static neuron structure, 

such as adaptive delays, embedded adaptive filter at the output of each neuron, 

the desired dynamics can be formed. 
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A neural network control system can work promisingly for controlling 

multivariable systems via taking the advantage multi-input multi-output 

structure of neural networks as well as parallel computation capability using 

high-speed and multi-task processors. Neural networks have been proven to be 

suitable for many important control applications because of their abilities in 

nonlinear approximation, adaptation and parallel hardware implementation. 

Adding adaptive features to the neural network schemes, adaptive neural 

networks have been seen in controlling multivariable systems successfully [70-

76]. Depending on the nature of the application and the strength of the internal 

data patterns it is generally expected that a network to be trained appropriately. 

This applies to problems where the relationships may be quite dynamic or non-

linear. ANNs provide an analytical alternative to conventional techniques which 

are often limited by strict assumptions such as normality, linearity and variable 

independence. Recently, the control community has applied neural networks for 

different application to provide better control solutions to old control problems. 

Some of the features that make ANN attractive in the area of control systems 

are listed below: 

i. Due to the ability of performing arbitrary nonlinear mappings, ANN are 

considered as a cost-efficient tool to produce accurate forward and inverse 

models of nonlinear systems. This capability allows traditional control 

schemes to be extended to the control of nonlinear plants without the 

requirement of detailed information of the plant. 

ii. The ability to produce arbitrary decision regions means that ANN have 

the capability to be applied to fault detection problems on existing 

operational conditions. 

iii. As the ANN training can be done online or off-line, their applications 

could be designed for an online or off-line adaptive control scheme. 

iv. Based on ANN parallel structure, high-speed and real-time 

implementations are feasible which is a critical feature in control systems 

application.  

v. If the ANN is tuned online, it is considered a system with internal 

dynamic states. The learning algorithms make the neural networks 
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strictly passive in a certain novel strong sense called as ‘state-strict 

passivity’, so that by the power delivered to the system, the energy in the 

internal states is bounded. It makes the closed-loop control system using 

neural networks robust to bounded unknown disturbances.  

vi. It is understood that neural networks offer a sophisticated extension of 

adaptive control methods to systems that are nonlinear with unknown 

parameters. 

Today, majority of the neural network feedback controllers are implemented by 

computer software. Therefore, it requires the requirement of control algorithms 

in discrete-time domain. In order to design these controllers, the discrete-time 

dynamics below may be considered: 

𝑥(𝑘 + 1) = 𝑓൫𝑥(𝑘)൯ + 𝑔൫𝑥(𝑘)൯𝑢(𝑘)       (2) 

which  𝑓(. ) and 𝑔(. ) are unknown. The learning algorithm for a discrete-time 

neural network controller for the 𝑖௧௛ layer is of the form below: 

𝑊௜(𝑘 + 1) = 𝑊௜(𝑘) − 𝛼௜𝜑௜(𝑘)         (3) 

where 𝜑௜(𝑘) are the output functions of layer 𝑖 and 𝛼௜ are the design functions 

base on the learning method used. 

Among several different Artificial Neural Networks models, three models are 

identified to be the most suitable ones for control systems applications: The 

Cerebellar Model Articulation Controller (CMAC), The Hopfield model, and the 

Multi-Layer Perceptrons (MLPs) [77]. Among these models, the Multi-Layer 

Perceptron (MLP) with error back-propagation (BP) learning algorithm is found 

to be useful for solving a wide range of real-world control systems problems [78-

81] as a result of their suitable flexible topology, nonlinearity, feedback and 

feedforward capabilities. As MLP model is used in this study a brief introduction 

about it is given in the next sub-section.    

 Multi-Layers Perceptrons (MLPs)  

MLPs are undoubtedly the most commonly employed neural networks structure 

in control systems theory. In this model neurons are grouped into different 

layers, as input layer, output layer or hidden layers depending on whether 
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respectively they receive, send, or do not have direct communication with the 

exterior. The topology of a multilayer perceptron with a single hidden layer is 

illustrated in Figure 1-1. 

 

Figure 1-1. Multi-Layer Perceptron 

The possibility of having feedback in the topology of MLPs and also having 

connections between the non-adjacent layers make this structure the main 

candidate to be used in control applications.  In terms of the operating procedure 

of MLPs, data is fed at the input layer, where the neurons perform as input 

buffers. For each neuron in the layer immediately above, its net input is 

computed using weights and biases and is then passed through an output 

function (f) via equation (4) and (5): 

𝑛𝑒𝑡௜ = ∑ 𝑜௝𝑤௝,௜ + 𝑏௜         (4) 

𝑜௜ = 𝑓(𝑛𝑒𝑡௜)          (5) 

Where 𝑛𝑒𝑡௜ , 𝑜௝ , 𝑤௝,௜ , 𝑏௜ and 𝑜௜  are respectively 𝑖௧௛ layer’s input, 𝑗௧௛ layer’s output, 

weight between 𝑖௧௛  and 𝑗௧௛ layers, 𝑖௧௛  layer’s bias and 𝑖௧௛ layer’s output. This 

process is repeated through all the other layers until the output layer is reached. 

This operation is typically called the recall operation. With the introduction of 

the error back-propagation algorithm by Rumelhart and the PDP group [82] a 

generic learning rule for MLPs with hidden layers has been introduced.  
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 Back-propagational Neural Networks 

Neural network applications in closed-loop control are completely different from 

open-loop applications such as image processing and classification. Back-

propagation is the basic multi-layer neural network tuning strategy in closed-

loop control. In general, back-propagational neural networks have been designed 

for systems in which there is no relationship available between the inputs and 

output called “Black box” systems. In this case, after defining the general 

architecture of the network and learning algorithm and perhaps initially setting 

it with random numbers, the user only needs to feed in the inputs and watch the 

network to be trained and wait for the outputs. Back-propagation is a powerful 

learning method in neural networks yet on the other hand in some textbooks has 

been defined as a "you almost don't know what you're doing!" method [83]. 

However, it is possible for the user to monitor and sample the networks’ progress 

at regular time intervals in some software packages such as NevProp, bp, 

Mactivation and LAtlab Simulink.  

Back-propagational neural networks are generally slower to train than other 

types of training techniques and typically require hundreds or thousands of 

epochs. If it is simulated on a serial machine training, it can take some time due 

to the required computation of nodes and connections’ function separately by 

machines CPU. Therefore, it can be problematic in large-scale neural networks 

with a large number of connections and weights. Nevertheless, the speed of 

recent computers has overcome this problem by using multi-processing and 

parallel computational techniques. 

By using the procedure of error-based learning algorithms, back propagation can 

train multilayer artificial neural networks. Supervised algorithms work by using 

error signals generated by comparing external reference signals and the actual 

outputs. In order to improve the system performance, neural networks adjust 

their connection weights based on the error signals. In this method, it is always 

assumed that the desired outputs are known. By computing the errors of the 

output layer, back-propagation learns to find the errors in the hidden layers. 

Because of this optimal capability of back-propagating, this method is vastly 
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recommended for problems in which no relationship is defined between the 

neural networks’ outputs and inputs. Additionally, due to its learning 

capabilities and flexibility, back-propagation is able to be implemented in a wide 

variety of applications such as controlling systems with unknown models 

successfully. This fact introduces back-propagation neural networks as a 

powerful candidate to design a model-free controller.    

Back-propagation networks contain no less than three layers. There is always 

one input-layer, one output-layer and at least one hidden-layer in the back-

propagation neural networks structure. 

In order to train neural networks using the error back-propagation algorithm, 

inputs’ patterns are presented at the input layer. Formerly, the neurons transfer 

the patterns activations to the hidden layer. The outputs of the hidden layer 

neurons can be obtained by using a bias, and also an activation function 

determined by the weights and the inputs. Afterwards, hidden layer outputs are 

used as inputs of the output neurons. Finally, the outputs of the neural networks 

are determined by the output layer’s activations. By comparing the computed 

pattern and the input pattern, the error for each component of the output 

pattern is calculated to adjust the output weights of connections between the 

hidden layer and the output layer based on minimising the errors. For the 

connection weights between the input and hidden layers, a similar process in the 

output, is derived. For each pattern pair assigned for training the neural 

network, this procedure must be repeated. A cycle or an epoch means one pass 

through all the training patterns. This process which is referred as learning 

algorithm is then repeated as many cycles as required until the point at which 

the error is settled in a prescribed range. By applying the learning algorithm, the 

change ∆𝐶 in the cost function and the change ∆𝑤௝,௜ in the weights are related by: 

∆𝐶 ≈
డ஼

డ௪ೕ,೔
∆𝑤௝,௜         (6) 

This relationship shows a possible approach to compute డ஼

డ௪ೕ,೔
 by tracking the 

changes in the weights and the cost function. Also, if ∆𝑎௝
௟  is the change in 

activation of 𝑗௧௛ neuron in the 𝑙௧௛ layer, it can be given by: 
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 ∆𝑎௝
௟ ≈

డ∆௔ೕ
೗

డ௪ೕ,೔
∆𝑤௝,௜

௟           (7) 

This change in the activation causes subsequent changes in activations in the 

next layer, therefore: 

∆𝑎௤
௟ାଵ ≈

డ௔೜
೗శభ

డ௔ೕ
೗ ∆𝑎௝

௟         (8) 

Substituting (4) in (5), one has: 

∆𝑎௤
௟ାଵ ≈

డ௔೜
೗శభ

డ௔ೕ
೗

డ∆௔ೕ
೗

డ௪ೕ,೔
∆𝑤௝,௜

௟         (9) 

If the path passes through all the activations in all layers, we have: 

∆𝐶 ≈
డ஼

డ௔೘
ಽ

డ௔೘
ಽ

డ௔೙
ಽషభ

డ௔೙
ಽషభ

డ௔೛
ಽషమ …

డ௔೜
೗శభ

డ௔ೕ
೗

డ௔ೕ
೗

డ௪ೕ,೔
೗ ∆𝑤௝,௜

௟               (10) 

The total change in 𝐶 should be sum over all the possible paths between the 

weight and the final cost function as illustrated in Figure 1-2. 

Hence: 

∆஼

∆௪ೕ,೔
೗ ≈ ∑

డ஼

డ௔೘
ಽ

డ௔೘
ಽ

డ௔೙
ಽషభ

డ௔೙
ಽషభ

డ௔೛
ಽషమ …

డ௔೜
೗శభ

డ௔ೕ
೗

డ௔ೕ
೗

డ௪ೕ,೔
೗௠௡௣…௤                (11) 

 

Figure 1-2. Back-propagation in MLPs 

 Importance of Learning Rate in Neural Networks 

In a training cycle, the extent of weight adjustment, can be limited or expanded 

by changing learning rates. While a high learning rate may lead to instability in 

the network, on the contrary, the training time of the network can be increased 

when the learning rate is too low. Generally, in the beginning of weight 

adjustment process a high learning rate is utilised to speed up the learning 
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process until the it starts to reach plateau. In many cases, based on the problem, 

the learning rates is selected by trial-and-error methods. In reality, different 

values for learning rate are used for each weight during the learning process 

because there is no optimal value for all dimensions of a neural network, 

however some constraints (such as stability criteria in control problems) can 

restrict the learning rate in a limited range. In neural network-based control 

methods, it is important to use dynamic learning rate, to be able change it 

during the learning algorithm to keep the control system stable. In this study, 

tuning the learning rate is used to guarantee the stability of the controlled 

system at all time during the weight training process.  

 Importance of Activation Function in Neural Networks 

There is a vast library of many activation functions to use in neural networks 

structure. As well as this, it is also possible to define a custom activation 

function for a specific application. Choosing a proper activation function plays an 

important role in the convergence speed of the learning algorithms and may 

strongly impact the performance and complexity of neural networks. In addition, 

it is also related to the application which the neural networks are used for. 

Despite, in order to define activation functions for neural network-based control 

methods it is typical to use the same functions used in classical control methods, 

but there is no restriction to define new activation functions for specific 

applications. This capability of customising activation functions in neural 

networks introduce it as a proper candidate to define innovative solutions in 

control theory. 

 Neural Network Control Topology 

The most significant criteria in designing a successful neural network model to 

be able to converge properly is defining a suitable topology of the network. 

Designing a suitable neural network topology requires a comprehensive 

understanding of its application and it can be improved gradually by performing 

various experiments and trial-and-error methods. Selecting the elements of 

neural networks is not a very straight forward task and often, several aspects 
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must be considered including, but not limited to the type of the activation 

functions, the number of hidden layers, and the number of neurons in different 

layers.  

As feedback control involves the measurement of output signals from a dynamic 

system and computing the difference between the measured values and desired 

values to make system’s inputs, it is critical to guarantee the tracking 

performance and the internal stability of all variables at the same time. Failure 

to do so can cause serious complications in the closed-loop system, such as 

instability of system’s responses that can result in system failure. In using 

neural networks for feedback control, the challenge is to choose an appropriate 

neural network topology for the controller, and to demonstrate how the neural 

networks weights can be adjusted using mathematically satisfactory methods so 

that performance and closed-loop stability are guaranteed as well.  

  Single Adjustable Layer vs Multiple Adjustable Layer Neural Network 

A single adjustable layer neural network is normally considered as a linear 

classifier, and as such is ineffective at learning a sizable variety of tasks. Most 

notably, it is proved that single-layer neural networks could not learn to model 

non-linear functions even when as simple as the “XOR” function amongst other 

non-linearly separable classification problems [84-86], unless the function is 

assumed to be linear around its operation point. Therefore, neural networks with 

more than one adjustable layer for nonlinear modelling and classification are 

preferable to those with just one adjustable layer. However, more layers in the 

neural network structure leads to a greater number of weights to be adjusted 

and slower training and learning process. Therefore, number of layers in neural 

network topology in a controller must be selected wisely considering the type of 

the application and system of concern and also the required controller’s 

parameters learning speed.   

 Best performance of Neural Networks and Why We Used It 

In general, neural networks have their best performance in applications with the 

following conditions [83]: 
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(i) When it is required to discover regularities within a mysterious set of 

patterns and previous behaviour; 

(ii) In circumstances where the number of variables, volume or range of 

the data is extremely large; 

(iii) Whereas understanding of relationships between variables is 

ambiguous;  

(iv) In problems which the conventional approaches cannot sufficiently 

describe the relationships between the variables. 

The above-mentioned criteria lead us to use neural networks as a powerful and 

practical adaptive method in designing the previously-mentioned model-free 

controller for nonlinear multi-input multi-output systems because of the 

following reasons in respective order to the list above: 

(i) In the proposed solution, we are looking for an adaptive self-learner 

controller which can be trained by having the history of previous 

behaviour of the system’s inputs and outputs; 

(ii) Our proposed control solution will be a generic solution for controlling 

coupled multivariable systems that can have several inputs and 

outputs which can lead to an extreme number of weights to be tuned; 

(iii) We are going to use the input-output information of the system and 

restrict the controller’s parameters to the manipulated inputs, the 

controlled outputs and the desired values.  

(iv) Dynamic and non-linear systems are commonly used in industrial 

plants and for many reasons such as changing the process’s 

parameters, aging and the structural uncertainty, the model of the 

systems is unknown and variable, and therefore the classical and 

conventional control methods could be ineffective.  

  Current approaches and shortcomings 

By adding adaptive features to the neural networks schemes, adaptive neural 

networks have been seen in controlling single-input single-output (SISO) 

systems successfully [75, 87-89]. In these works, structure of a conventional 

proportional, integral and derivative (PID) controller have been used, and PID 
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coefficients have been tuned by neural network adaptive learning rules. For 

instance, in [87-89], an auto-tuned PID-like controller based on neural network 

principles is proposed and the neural network plays the role of estimating a 

suitable set of PID coefficients automatically. This method can be considered as a 

successful auto-tuning method which is suitable for linear systems or 

approximately linearized nonlinear systems. 

In 2006, PID Neural Network (PIDNN) has been introduced in [90] as a 

combination of neural network and the PID control method. This method used 

the development of neural network theory for automatic control of systems. By 

adding the function of auto-tuning by neural networks, PID provided the 

memory and prediction capability in this technique.  

A decoupling method for controlling MIMO plants using PIDNN has been 

studied in [91] which had a better performance compared to the previous PIDNN 

methods. However, since in this method the online learning algorithm for 

weights training uses the gradient descent method, it leads to the problem that 

the controller falls into the local minimum. As it is not possible to determine the 

position and the time of the local minimum, the control effect has the 

shortcoming of randomness. Afterwards, [92] proposed a solution based on an 

algorithm called PSO to optimize the initial weights of PIDNN. The online 

learning time of the PID neural network has been reduced significantly using 

this method and the local minimum problem has been resolved for a particular 

application. Nevertheless, in this technique the optimization strategy requires 

that the precise model of the controlled system be known. Therefore, this method 

cannot be considered as a model-free control method and inherits the problems of 

the model-based control methods introduced in section 1.1.  

According to the literature review in using neural networks in controlling 

various systems, the following shortcoming have been observed: 

- The majority of proposed adaptive methods have only been applicable in 

controlling SISO systems [93, 94] and in their best performance on MIMO 

systems several cascaded controllers have been used for non-coupled 

controlled systems. However, in many applications in industry controlling 
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the coupled MIMO systems are necessary as they cannot be decoupled by 

traditional methods. Therefore, lack of a universal solution to deal with 

inputs-outputs coupling in MIMO system was observed in the neural 

network adaptive control solutions in the literature.  

-  In some proposed solutions for controlling coupled MIMO systems, 

decoupling the MIMO systems using traditional MIMO control methods 

has been considered which needs the model of the system. Nevertheless, 

the model of the system in many applications is not achievable. Refer to 

section 1.2. for more information regarding the benefits of model-free 

control methods [95, 96].  

- Some of the proposed methods are applied to specific linear applications 

and the performance of the controller as a general method on non-linear 

system has not been investigated [97-102]. 

- Stability and robustness of the proposed methods in the literature has not 

been discussed and checked thoroughly. In limited studies the possibility 

of falling the controlled system into a local minimum has been resolved by 

using conservative learning rates which disadvantage the training speed 

and also leads to lower quality performance of the controlled system [91]. 

- In the solutions based on neural networks, using only two previous 

samples of the output signals in all the proposed learning algorithm of 

PIDNN, instead of using the full history of the outputs has led to low 

accuracy and low reliability in the control process [94, 95, 102-105].  

- The performance of the controllers on disturbance cancellation has not 

been tested in the proposed neural networks methods in [43, 44, 55, 63, 73, 

75, 87-91, 93-95, 97-104, 106-115] except [105]. 

- There is no universal solution proposed for non-square MIMO systems. 

Most of the MIMO methods are only applied to specific square MIMO 

systems. However, it is very common to have non-square MIMO systems 

in industry as formerly explained in 1.4. 

- In the majority of the similar closed loop adaptive control methods which 

are based on repeating a learning algorithm, the stopping point for 
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running the learning process has not yet been discussed thoroughly and 

an optimum number of iterations has not been identified.   

  

  Original contribution and proposed solution 

 The aim of the thesis 

The aim of this study is a step by step development of a universal automatic real-

time model-free controller for coupled square and non-square multi-input multi-

output systems. The designed controller works independently from the model of 

the system and only requires the history of manipulated and controlled 

variables.  

This universal controller practices only the real time input output measurement 

of the controlled system. In this method, there is no need for structural 

information and mathematical model of the controlled system, which indicates 

that the controller can be designed independently to the model of the system. 

The proposed controller and the controlled system have the following properties: 

i. The controlled system is assumed to be an unknown coupled MIMO 

nonlinear system, but it is assumed to be known accurately in terms of 

the full history of inputs and outputs. 

ii. The controller does not require any offline training process of the open 

loop system. The training process is performed during the control action 

in the closed loop system. 

iii. The control method has been designed by only using the measurement of 

input and output data of the controlled system. The traditional 

unmodelled dynamics does not appear in this solution, therefore, they 

have very strong robustness when compared with the model-based control 

methods. 

iv. The analysis approach of the proposed controller for the MIMO nonlinear 

system is also a novel model-free one, which is based on minimization of 

accumulated error during the training process.  
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v. Using the new learning method based on accumulated error 

minimisation, the possibility of falling into the local minimum has been 

significantly lowered. In addition, the stability of the systems has been 

continuously checked during the adaptive training process and the 

learning rates have been revised accordingly when necessary.  

 Original Contribution of the thesis 

To the author’s knowledge, the development of the learning algorithms, the 

development of the stability analysis, the use of the real-time stability criteria 

mixed with the weight training algorithms, the simulation studies in various 

MIMO applications and determination of the optimum number of trainings in 

chapter 2, 3, 4 and 5 are original. More specifically, the original contributions in 

each chapter are highlighted as follows: 

 Chapter 2: 

i) An online model-free dynamic neural network learning algorithm using 

the accumulated gradient in the error back-propagation algorithm is 

developed. The proposed method is able to control single-input single-

output systems. The introduced method significantly improves the 

algorithms used in the existing counterpart [7, 75, 88, 89], and can 

provide a faster and more precise learning capacity to the system.  

ii) Specific stability criteria have been defined for the proposed control 

method and have been checked in each training step to assure it can 

eliminate the potential instability during the training process. 

 Chapter 3: 

i) The developed version of the online dynamic neural network learning 

algorithm to be used for model-free control of square couple multi-input 

multi-output systems is novel. This method is applied to the proposed 

controller called MANNC. Different challenging applications are tested 

with the proposed controller in this section and compared with the 

latest solutions and counterparts. 

ii) A specific Lyapunov stability analysis has been established for the 

aforementioned controller. The Lyapunov stability criteria and 



Chapter 1 

40 
 

continuous online observation of that during the learning process to 

regulate learning rates is novel.  

 Chapter 4: 

i) A novel online dynamic neural network learning algorithm has been 

modified for two adjustable layers to improve the performance of the 

controller for non-linear applications. The proposed method is applied 

in the proposed controller called MANNC2.   

ii) A specific Lyapunov stability analysis has been developed considering 

two adjustable layers in the controller. The Lyapunov stability criteria 

embedded in the learning procedure during the neural network weight 

training process is novel. 

 Chapter 5 

i) For the first time, an online universal model-free neural network 

controller has been designed to be applied to non-square non-linear 

couple multi-input multi-output systems. The neural network structure 

and learning algorithm are novel and original. The proposed method is 

applied to the proposed controller called MANNCNS.   

ii) A specific Lyapunov stability analysis has been developed and 

embedded in the designed controller. The Lyapunov criteria and real-

time observation of that during the learning process is novel. 

iii) Capability of the controller to deal with external disturbances in 

MIMO systems is a novel investigation in controllers using neural 

networks. 

 The outcome of the thesis 

Overall, the outcome of this thesis is a universal model-free framework for 

controlling non-square and square Multiple-Input Multiple-Output (MIMO) 

systems with nonlinear characteristics. This outcome is mostly demonstrated 

and concluded in chapter 5 and the previous chapters reveal the research steps 

that have been taken to gradually build the final universal controller. This 

controller has been constructed by 2-layer adjustable neural networks which are 

automatically trained by having the history of inputs and outputs of the system 
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and their desired values. Real-time and automatic control of this controller along 

with online real-time Lyapunov stability criteria checks develop a universal 

control method as a framework which can be implemented and programmed in 

industrial control software packages.  

  Thesis Outline 

To illustrate the development of the proposed control method, the following 

process has been performed to design the methodology and generalise the 

suggested method step by step: 

i) In chapter 2 a method is proposed for non-linear model-free single 

input single output systems. The learning algorithm for a basic neural 

network structure is designed to declare the proper functionality and 

performance of the method for model-free systems. It yields to propose 

an Adaptive Neural Network Controller called ANNC. Although the 

proposed ANNC in this chapter is considered in the context of SISO 

systems, it is developed in such a way that the proposed structure can 

establish a foundation upon which new adaptive neural network 

methods for MIMO coupled systems. 

ii) In chapter 3, by having a fundamental structure of the proposed 

controller for SISO systems (ANNC), it is used as the basic element of a 

model-free multivariable adaptive neural network controller (MANNC) 

for coupled multi-input multi-output systems. MANNC contains one 

adjustable layer in its neural network structure and the learning 

algorithm has been developed based on accumulated error 

minimisation by considering the online stability criteria check during 

the training process. 

iii) In chapter 4, the MANNC has been improved to two adjustable layers 

in its neural network structure to introduce MANNC2 which is 

applicable to square multi-input multi-output systems. By adding 

another dynamic layer to the neural network structure of the 

controller, it is improved to apply to square MIMO systems with more 
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non-linear characteristic. The learning algorithm and stability criteria 

for this novel controller structure has been developed accordingly. 

iv) In chapter 5, by considering the improved results for MANNC2 

compared with MANNC in chapter 4, the method with two adjustable 

layer neural networks has been extended to non-square multi-input 

multi-output systems. The method has been developed for both types of 

non-square MIMO systems either the number of inputs is more than 

the number of outputs or vice versa. The learning algorithm and 

stability criteria have been modified and applied to different types of 

simulation studies. 

The above step by step procedure is illustrated in the diagram below: 

Chapter 2
Introducing adaptive neural 
network controller (ANNC) 

for SISO

Chapter 3
Developing ANNC to multivariable 
adaptive neural network controller  

for square MIMO (MANNC)

Chapter 4
Developing MANNC to multivariable 
adaptive neural network controller 
with 2-layer  for nonlinear square 

MIMO (MANNC2)

Chapter 5
Developing MANNC2 to multivariable 

adaptive neural network controller 
with 2-layer  for nonlinear non-square 

MIMO (MANNCNS)
 

Chapter 2 to 5 of this thesis are organised on the basis of the following peer 

reviewed publications: 

Chapter 2: 

 Introducing a Model-free Adaptive Neural Network Auto-tuned Control 

Method for Nonlinear SISO Systems 

This paper has been accepted and published in the proceeding of the 

IEEE International Conference on Information and Automation Wuyi 

Mountain, China, August 2018 

Chapter 3: 

 Introducing a Novel Model-free Multivariable Adaptive Neural Network 

Controller (MANNC) for Square MIMO Systems 

This paper has been submitted to the journal of “IEEE Transactions on 

Automatic Control”. 

Chapter 4: 

 Modification of Model-Free Multivariable Adaptive Neural Network 

Controller Using Two Dynamic Layers for Controlling Nonlinear Square 
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MIMO Systems 

This paper has been submitted to the journal of “IEEE Transactions on 

Control Systems Technology” 

Chapter 5: 

 Introducing a Universal Model-free Multivariable Adaptive Neural 

Network Controller for Non-Square MIMO Systems  

This paper has been submitted to the journal of “IEEE Transactions on 

Automation Science and Engineering” 
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 CHAPTER 2: INTRODUCING A MODEL-FREE ADAPTIVE 
NEURAL NETWORK AUTO-TUNED CONTROL METHOD 
FOR NONLINEAR SISO SYSTEMS 

Aim 

In this chapter, an introduction of a model-free Adaptive Neural Network 

Controller (ANNC) for SISO systems is presented in such a way that the 

proposed structure can establish a foundation upon which new adaptive neural 

network method for MIMO coupled systems in the following chapters as per 

diagram below: 

Chapter 2
Introducing adaptive neural 
network controller (ANNC) 

for SISO

Chapter 3
Developing ANNC to multivariable 
adaptive neural network controller  

for square MIMO (MANNC)

Chapter 4
Developing MANNC to multivariable 
adaptive neural network controller 
with 2-layer  for nonlinear square 

MIMO (MANNC2)

Chapter 5
Developing MANNC2 to multivariable 

adaptive neural network controller 
with 2-layer  for nonlinear non-square 

MIMO (MANNCNS)
 

Description 

To achieve this aim, firstly the structure of a neural network-based adaptive 

controller including the overview of the used neurons is introduced. Then 

considering transfer function of the closed-loop system and stability analysis, the 

dynamic neural network learning method using accumulated gradient in the 

error back-propagation algorithm is described. For this purpose, a typical tank 

system is chosen as a sample representative of a non-linear SISO model-free 

system for which the designed controller is tested.  

The above sections are described in a paper: 

 Arash Mehrafrooz and Fangpo He, “Introducing a model-free adaptive neural 

network auto-tuned control method for nonlinear SISO systems” published in 

the proceeding of the IEEE International Conference on Information and 

Automation Wuyi Mountain, China, August 2018. 

The outline of this paper is given below: 

 INTRODUCTION ................................................................................................ 52 

 ADAPTIVE NEURAL NETWORK CONTROLLER (ANNC) ....................................... 55 

 P-TYPE NEURONS .......................................................................................... 57 
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Results 

The original contribution in this study is the development of a novel advanced 

control method including the neural network structure of the controller and 

associated learning algorithm. The obtained results clarify the capability of the 

chosen method to control model-free nonlinear SISO systems. 

Conclusion 

Overall, we show with the powerful learning abilities inherent in a neural 

network strategy, the proposed ANNC is capable of controlling model-free SISO 

systems with nonlinear properties to achieve the desirable control outcomes and 

has the ability of expanding this method for different types of multivariable 

systems in the following chapters. 
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Abstract - In this study, a novel Adaptive Neural Networks Controller (ANNC) is 

proposed for controlling single-input single-output nonlinear systems. The proposed 

ANNC does not rely on an existing model of a system for its weights’ training, and does 

make a full use of the history of the system input and output information for achieving a 

suitable control effect. The model of the system is used for checking the stability of the 

system after the calculation of the learning algorithm at each training step, and the 

controller weights are appropriately tuned to deliver a stable system during the entire 

training process. Using the accumulated gradient of the system error, the weights’ 

adjustment convergence of the system can be observed and an optimal training number 

of the system can be selected. The effectiveness of the ANNC in controlling nonlinear 

industrial plants is demonstrated via simulation. The proposed control scheme provides 

a building block for the development of comparable schemes useful for more 

complicated systems involving multiple inputs and outputs.  

Keywords - adaptive neural networks; model-free control; auto-tuning; error back-
propagation; accumulated gradient; nonlinear systems; closed-loop stability  

  Introduction  

Current advanced control methods are largely based on identified models of 

systems to be controlled [1]. In these methods, using an identified model of a 

system, a controller is designed to lead the output of the system to its desired 

value. A main problem of these methods in industrial applications is that real 

industrial systems are often highly nonlinear in nature. Consequently, a 

predicted (typically linear) model of such a system would be dynamically 

different than the real system itself, and a controller designed for the predicted 
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model of the system would have a limited effective working range. Furthermore, 

if a parameter of the system changes, the system may need to be remodelled, 

which may lead to the need to redesign the system controller in order to achieve 

the desired outcomes. Indeed, real-time implementations of such a control 

system would pose both high-complexities in realizing the required performances 

and high-demands in meeting the required computational powers. Due to these 

difficulties, it is not always feasible to control a real-life system using its 

identified model, if the system is either highly nonlinear or highly time-varying 

or both. As a result, model-free controllers are generally preferred for industrial 

applications. Clearly, if the modelling phase of a control system can be ignored, 

the time required for the adjustment of the real-time controller will be 

significantly shortened, which will result in a faster and more efficient control 

effect [1-3]. 

To adjust a controller’s parameters automatically, adaptive control methods are 

required. A wide variety of adaptive control systems have been employed by 

various industries where variables of plants or processes are controlled in real-

time using advanced control methods versus their classical counterparts [4-6]. 

By developing computer-based controllers online, industrial plants and processes 

become more and more effectively-automated. In fact, auto-tuned controllers 

with adaptive capabilities have become highly sought-after by industry, and 

their developments are growing rapidly.  

As a versatile and universal method, Neural Network (NN) strategy has been 

found as a powerful approximator in the library of advanced control methods. An 

NN control system can work best by taking the advantage of the computational 

speed offered by modern computers and processors. Adding adaptive features to 

the NN schemes, adaptive NNs have been seen in controlling Single-Input 

Single-Output (SISO) systems successfully [7-10]. In these works, conventional 

PID controller structures are used, and PID coefficients are tuned by NN 

adaptive learning rules. For instance, in [7-9], an auto-tuned PID-like controller 

based on NN principles is proposed and the NN plays the role of estimating a 

suitable set of PID coefficients automatically. This method can be considered as 

an auto-tuning method which is suitable for linear systems or approximately-
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linearized nonlinear systems. However, a few fundamental drawbacks are 

involved in this method. Firstly, the method depends on an existing model of a 

system in order to perform the auto-tuning of the system controller parameters, 

which means that the method does not offer the model-free characteristic 

favoured by industrial applications. Secondly, the method ignores the need to 

check the system stability criteria during the NN weights’ training process, 

which means that the method may run the risk of producing an unstable closed-

loop system in one or more steps of the auto-tuning process. Thirdly, the method 

relies on the use of conservative learning rules in order to keep a system in 

stable conditions, which means that the method is fundamentally limited in 

providing the utmost control performance with the fastest control speed. 

Fourthly, the method uses the current gradient of the system error in the NN 

learning algorithms and provides no information about the controller weights’ 

adjustment convergences, which means that the method does not guarantee the 

adopted weights being the best possible adjustments to the controllers and nor 

does it provide a clear indication on what the optimum number of a training 

process is.  

To overcome the above-mentioned deficiencies associated with the existing 

method, a new advanced adaptive NN control method is proposed in this paper. 

Firstly, while keeping the predicated model of a system (as the existing method 

does), the proposed method provides a model-free auto-tunning of the controller 

parameters in which the system is considered as a grey box and only the 

assessable input and output signals of the system are used. Secondly, the 

proposed method uses the predicated model of the system to check the stability 

criteria of the system during the controller weights’ adjustment process, which 

safeguards the closed-loop stability of the overall system in each of the training 

steps. Thirdly, as the system dynamic stability is ensured, the proposed method 

uses a new online dynamic NN learning algorithm for the weights’ training, 

which allows the closed-loop system to achieve its utmost control performance 

with a superior control speed. Fourthly, the proposed method uses the 

accumulated gradient of the system error in the NN learning algorithm, thus 

enabling the provision of the controller weights’ adjustment convergence as well 
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as the identification of the suitable number of the training process. 

The proposed method potentially possesses several key benefits over its existing 

counterpart. (i) By generating control actions independent to the model of a 

system, the proposed method is able to control nonlinear and/or time-varying 

systems (including servo systems) over a wide range of operating conditions. (ii) 

Since the system stability is checked in each training step, the proposed method 

can eliminate the potential unstable chances caused by, e.g., an inappropriate 

choice of the initial conditions of the controller parameters and/or an unwanted 

transient of the adopted adaptive learning algorithm. (iii) The new online 

dynamic NN learning algorithm used in the proposed method significantly 

improves the algorithms used in the existing counterpart [3, 8-10], and can 

provide a fast learning ability to the system. (iv) By applying accumulated 

gradient in the error back-propagation algorithm, the proposed method uses the 

history of the system’s output together with the current weights to find the 

weights for the next step. In doing so, the proposed method can ensure the 

convergence of the weights’ adjustments which is an important indicator for the 

implementation of the controller in practical applications.  

To demonstrate the proposed method, the rest of the paper is organized as 

follows. In Section 2.2, the structure of the new NN-based adaptive controller is 

introduced. The transfer function of the closed-loop system used for the system 

stability analysis is presented in Section 2.3. In Section 2.4, the dynamic NN 

learning method using accumulated gradient in the error back-propagation 

algorithm is described. The system stability criteria using the proposed 

controller are investigated in Section 2.5. Section 2.6 contains the validation 

results in simulation where the proposed method is seen to control a highly-

nonlinear SISO system effectively. Meaningful conclusions in relation to the 

design are drawn in Section 2.7.  

  Adaptive Neural Network Controller (ANNC) 

A new structure of a dynamic neuron capable of creating dynamics for an 

adaptive controller is proposed in this paper. The neuron includes a number of 

inputs and outputs, and its general structure is illustrated in Figure 2-1. A 
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specific use of this neuron is identified by its activation function which defines 

the relationship between the outputs and the inputs, the number of inputs, the 

number of outputs, and the weight of each input that determines the influence of 

each input as compared with the other inputs.   

If the neuron in Figure 2-1 is numbered as neuron number j, then the input 

equation of the neuron is described as: 

𝑛𝑒𝑡௝(𝑘) = ∑ 𝑤௝௜𝑥௜(𝑘)  ௡
௜ୀଵ                                                     (1) 

where n is the number of inputs, j is the neuron’s unique number, k is the time 

sample number, net is the sum of weighted inputs, xi are the inputs, and 𝑤௝௜ are 

the weights to be trained. Expressing the activation function of the neuron by f, 

one has: 

𝑜௝(𝑘) = 𝑓 ቀ𝑛𝑒𝑡௝(𝑘)ቁ                                                                 (2) 

where 𝑜௝ is the neuron output. It is possible to use the neuron output as inputs to 

other parts of the neural networks. Therefore, one can have more than one 

output for each neuron. The introduced neuron is Multi-Input Multi-Output 

(MIMO) in its configuration, with its outputs being arranged to have the same 

value. Essentially, equation (2) describes the principal behaviour of the neuron 

and plays the key role in an NN structure. The proposed neuron can be readily 

used in different NN structures via definitions of the corresponding proper 

activation functions. 

In the context of conventional PID control principles, the controller output is the 

sum of the proportional component, integral component, and derivative 

component of the input. This structure is used to construct the proposed 

controller, where distinguished Proportional-type (P-type), Integral-type (I-type), 

and Differential-type (D-type) neurons are presented. Each type of neurons is 

classified by its specific activation function which describes the behaviour of the 

particular functionality of the type of neurons.  
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Figure 2-1. Schematic of a proposed neuron 

 P-type Neurons  

The activation function of the P-type neurons is characterized in the continuous-

time domain as: 

𝑜௝(𝑡) = 𝑛𝑒𝑡௝(𝑡)                  (3) 

and in the discrete-time domain as: 

𝑜௝(𝑘) = 𝑛𝑒𝑡௝(𝑘)                  (4)  

A neuron of this type only adds up the inputs by applying a weight to each of 

them. Based on Figure 2-1, the input of this neuron is described as: 

𝑛𝑒𝑡௝(𝑘) = ∑ 𝑤௝௜𝑥௜(𝑘)௡
௜ୀଵ                (5) 

This neuron has a linear activation function and behaves as an adaptive 

weighted adder. In fact, a P-type neuron is considered as a “Unit Gain Block”.  

 I-type Neurons 

An I-type neuron acts as an integrator with its output being the integral of its 

weighted inputs. Its input-output relationship in the continuous and discrete 

forms are respectively described as:  

𝑜௝(𝑡) = ∫ 𝑛𝑒𝑡௝(𝑡ᇱ)
௧

଴
𝑑𝑡ᇱ                     (6)  

and 

𝑜௝(𝑘) = ∑ 𝑛𝑒𝑡௝(𝑘ᇱ)௞
௞ᇲୀଵ            (7) 

In the discrete form, it is possible to present the output as an addition of the 
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output in the previous sample together with the current input, expressed as: 

𝑜௝(𝑘) = ∑ 𝑛𝑒𝑡௝(𝑘ᇱ)௞
௞ᇲୀଵ = ∑ 𝑛𝑒𝑡௝(𝑘ᇱ)௞ିଵ

௞ᇲୀଵ + 𝑛𝑒𝑡௝(𝑘) =𝑜௝(𝑘 − 1) + 𝑛𝑒𝑡௝(𝑘)  (8) 

 D-type Neurons 

A D-type neuron behaves as a derivative operator. The input-output relationship 

of the neuron in the continuous-time domain and the discrete-time domain are 

respectively presented as: 

𝑜௝(𝑡) =
ௗ

ௗ௧
𝑛𝑒𝑡௝(𝑡)                   (9) 

and 

𝑜௝(𝑘) = 𝑛𝑒𝑡௝(𝑘) − 𝑛𝑒𝑡௝(𝑘 − 1)               (10) 

The output of the neuron in the discrete form can be expressed as the difference 

between the current-sample input and the previous-sample input.  

Upon definitions of the three basic-types of neurons as described above, these 

elements can be combined together to form dedicated controllers inspired by 

classic PI, PD, and PID controllers. 

 Proposed ANNC Structure 

Considering the structure of a conventional PID controller, a new Adaptive 

Neural Network Controller (ANNC) structure is proposed in Figure 2-2. The 

ANNC contains six neurons and three layers. In the input layer, there are two P-

type neurons which perform the distribution of the inputs in the constructed 

neural network. In the hidden layer, there are three neurons each being a P-

type, an I-type, and a D-type, respectively; the P-neuron compares the desired 

output with the actual output; the I-neuron provides the necessary action to 

eliminate the steady-state error; the D-neuron predicts the future behavior of the 

error. In the output layer, there is a P-type neuron which performs the 

summation of the PID functionalities of the neuron. There are six weights (𝑤ଵ,ଵതതതതത, 

𝑤ଵ,ଶതതതതത, 𝑤ଶ,ଵതതതതത, 𝑤ଶ,ଶതതതതത, 𝑤ଷ,ଵതതതതത, and 𝑤ଷ,ଶതതതതത) in the hidden layer associated with the P-neuron, I-

neuron, and D-neuron, respectively, and three weights (𝑤ଵ, 𝑤ଶ, and 𝑤ଷ) in the 

output layer each dedicated to the output of the P-neuron, I-neuron, and D-



Chapter 2  

59 
 

neuron, respectively. Applying the proposed ANNC structure to a SISO system, 

G(s), the closed-loop system can be illustrated in Figure 2-3. 

To demonstrate the capability of the proposed ANNC in replacing a conventional 

PID controller, the following values of the hidden-layer weights can be selected 

in order to generate the error for each of the hidden-layer neurons to be the 

difference between the system setpoint 𝑟 and the system output 𝑦:  

𝑤ଵ,ଵതതതതത = 1, 𝑤ଵ,ଶതതതതത = −1, 

𝑤ଶ,ଵതതതതത = 1, 𝑤ଶ,ଶതതതതത = −1, 

𝑤ଷ,ଵതതതതത = 1, 𝑤ଷ,ଶതതതതത = −1. 

Considering the output-layer weights as the parameters of a conventional PID 

controller, one would have: 𝑤ଵ = 𝐾௉, 𝑤ଶ = 𝐾ூ, and 𝑤ଷ = 𝐾஽, where 𝐾௉, 𝐾ூ, and 𝐾஽ 

denote respectively the proportional, integral, and derivative parameters of the 

conventional PID controller.  

To evoke the adaptive feature of the proposed ANNC, however, the weights of 

the hidden layer are in fact deliberately left unlocked to +1 or -1 in order to allow 

the weights to be freely adjusted. The same arrangement is made to the output-

layer weights as well, so that the overall structure of the proposed ANNC will be 

highly adjustable to suit the need of a real nonlinear and/or time-varying system 

setting. This specific capability of adjusting all nine weights simultaneously in 

real-time in the proposed ANNC is a significant advantage as compared to its 

conventional counterpart which has only three fixed (off-line tuned) parameters 

and could only ideally work for linear or linearized systems. In comparison with 

the existing adaptive NN-PID controllers (e.g., [8]) in which only three 

parameters can be adjusted online, the proposed ANNC offers a much higher 

level of flexibilities to allow a control system to achieve a better control outcome. 

Incorporating with a properly-selected auto-tuning method, a larger degree of 

freedom provided by the larger number of weights in the proposed ANNC 

structure would bring direct benefits to the overall control system performance 

in terms of fast-gaining the desired output of the system while keeping the 

system in its stable condition. 
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Figure 2-2. Proposed ANNC structure 

 

Figure 2-3. Applying Proposed ANNC to SISO system 

 Transfer function Derivation 

The closed-loop transfer function of a SISO system using the proposed ANNC, as 

illustrated in Figure 2-3, is derived in this section in order to establish an 

analysis base upon which investigations of the closed-loop control system 

stability can be conducted in Section V of this paper. Let G(s) be the estimated 

linear model of the SISO system. The output of the system can be expressed as: 

𝑌(𝑠) = 𝐺(𝑠)𝑂ଶ(𝑠)                   (11) 

Since the output-layer neuron is a P-type neuron, one has: 

𝑂ଶ(𝑠) = 𝑁𝐸𝑇ଶ(𝑠)                 (12) 

and 
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𝑁𝐸𝑇ଶ(𝑠) = 𝑤ଵ 𝑂ଵ
ଵ(𝑠) +  𝑤ଶ 𝑂ଶ

ଵ(𝑠) + 𝑤ଷ 𝑂ଷ
ଵ(𝑠)            (13) 

As the hidden layer has P-type, I-type, and D-type neurons, the following 

relationships are established: 

𝑂ଵ
ଵ(𝑠) = 𝑁𝐸𝑇ଵ

ଵ(𝑠)                (14) 

𝑂ଶ
ଵ(𝑠) = 𝑠. 𝑁𝐸𝑇ଶ

ଵ(𝑠)                (15) 

𝑂ଷ
ଵ(𝑠) =

ଵ

ௌ
𝑁𝐸𝑇ଷ

ଵ(𝑠)               (16) 

Hence: 

𝑂ଵ
ଵ(𝑠) = 𝑤ଵ,ଵതതതതത𝑅(𝑠) + 𝑤ଵ,ଶതതതതത𝑌(𝑠)              (17) 

𝑂ଶ
ଵ(𝑠) = 𝑠 ቀ𝑤ଶ,ଵതതതതത𝑅(𝑠) + 𝑤ଶ,ଶതതതതത𝑌(𝑠)ቁ              (18) 

𝑂ଷ
ଵ(𝑠) =

ቀ௪య,భതതതതതതோ(௦)ା௪య,మതതതതതത௒(௦)ቁ

ௌ
                            (19) 

Substituting (12)-(19) into (11), one obtains: 

𝑌(𝑠) = 𝑌(𝑠)𝐺(𝑠) ൬𝑤ଵ𝑤ଵ,ଶതതതതത + 𝑠𝑤ଶ𝑤ଶ,ଶതതതതത +
𝑤ଷ𝑤ଷ,ଶതതതതത

𝑠
൰ + 

𝑅(𝑠)𝐺(𝑠) ቀ𝑤ଵ𝑤ଵ,ଵതതതതത + 𝑠𝑤ଶ𝑤ଶ,ଵതതതതത +
௪య௪య,భതതതതതത

ௌ
ቁ             (20) 

The closed-loop transfer function of the system then becomes: 

௒(௦)

ோ(௦)
=

ீ(௦)ቀ௪భ௪భ,భതതതതതതା௦௪మ௪మ,భതതതതതതା
ೢయೢయ,భതതതതതതത

ೞ
ቁ

ଵିீ(௦)(௪భ௪భ,మതതതതതതା௦௪మ௪మ,మതതതതതതା
ೢయೢయ,మതതതതതതത

ೞ
)
                                       (21) 

 Learning algorithm  

To achieve a precise control effect for the SISO system, the ANNC weights are 

adjusted using the principle of the multi-step error back-propagation algorithm 

[11]. However, instead of using merely the current gradient of the system error 

as the literature does [8-10], the accumulated gradient of the system error is 

proposed to be used in this paper to achieve a better control result. The proposed 

method minimises the squared accumulated gradient of the system error, where 

the system error is taken as the difference between the desired system output 

r(k) (i.e., the system setpoint) and the actual system output y(k). Euclidean 

Norm J is defined for calculating the quadratic cost function of the system for the 
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system error. Power of two in this expression makes the error of each sample 

positive so that larger errors will be more significant. The cost function is thus 

defined as: 

𝐽(𝑘) =
ଵ

ଶ
൫𝑟(𝑘) − 𝑦(𝑘)൯

ଶ
                (22) 

Using the accumulated gradient of the system error, a learning algorithm must 

be designed to minimize the system error and to bring the system output as close 

as possible to the system setpoint. According to the principle of the error back-

propagation learning algorithm, the output-layer weights must be adjusted so 

that in each step they move slightly in the opposite direction of the gradient of 

the cost function. This is to ensure that the cost function will be decreasing step 

by step. The weight x between the hidden layer and the output layer will 

therefore be adjusted based on the following learning rule: 

𝑤௫(ℎ + 1) = 𝑤௫(ℎ) −
ఒ

௠
∑

డ௃

డ௪ೣ

௠
௞ୀଵ                 (23) 

where 1 ≤  𝑥 ≤ 3 ; h is the step number of the learning algorithm; 𝑤௫(ℎ)  and  

𝑤௫(ℎ + 1)are the weights of the output layer in the current and next steps, 

respectively; 𝜆 decides how fast the cost is changing and particularly determines 

the weight adjustment learning speed; m is the required number of discrete 

samples in the system output and setpoint. By increasing m, the system output 

will be compared more accurately with the system setpoint. However, a large 

value of m may decrease the adjustment speed of the controller and become 

undesirable when the speed of the control system (often a critical requirement 

for a real-time industrial system) is of concern. Therefore, a reasonable value of 

m must be used to make a necessary trade-off between the desired accuracy and 

the required speed of the control system by considering the nature of the 

application of concern.  

The gradient of the error subject to each weight is required to be calculated. 

Using partial derivatives, one has: 

డ௃

డ௪ೣ
=

డ௃

డ௬
×

డ௬

డ௢మ
×

డ௢మ

డ௡௘௧మ
×

డ௡௘௧మ

డ௪ೣ
                                          (24) 

where: 
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డ௃

డ௬
= 𝑦(𝑘) − 𝑟(𝑘)                          (25) 

డ௬

డ௢మ
≅

௬(௞)ି௬(௞ିଵ)

௢మ(௞)ି௢మ(௞ିଵ)
                                           (26) 

డ௢మ

డ௡௘௧మ
= 1                  (27) 

as the output neuron is a P-type neuron, and 

డ௡௘௧మ

డ௪ೣ
= 𝑜௫

ଵ(𝑘)

                  
(28) 

Substituting (25)-(28) into (24) yields:  

డ௃

డ௪ೣ
≅ ൫𝑦(𝑘) − 𝑟(𝑘)൯ ×  

௬(௞)ି௬(௞ିଵ)

௢మ(௞)ି௢మ(௞ିଵ)
× 𝑜௫

ଵ(𝑘)                               (29)                                                                            

Defining  𝛾(𝑘) as:  

𝛾(𝑘) = ൫𝑦(𝑘) − 𝑟(𝑘)൯ ×  
௬(௞)ି௬(௞ିଵ)

௢మ(௞)ି௢మ(௞ିଵ)
                (30) 

the output-layer weight adjustment rule can then be derived as: 

𝑤௫(ℎ + 1) = 𝑤௫(ℎ) −
ఒ

௠
  ∑ [𝛾(𝑘) × 𝑜௫

ଵ(𝑘)]௠
௞ୀଵ              (31) 

As equation (31) is used for calculation of the weights in the next step, therefore 

equal sign has been used rather than approximately equal sign. Using this 

learning method, all weights are simultaneously tuned, and their values at the 

current step, together with the current input and current output, are used for 

the weights’ training at the next step. This online dynamic learning feature of 

the proposed method makes it stand out from the current existing counterpart 

pool [7, 8]. It should be noted that the weights of the hidden layer are preserved 

to guarantee the stability of the system according the stability conditions defined 

in the following section. It should be note that the number of weight trainings 

depends on the specific properties of the application. The weight adjustment 

process can be stopped after reaching a specific error, settling time, and any 

other measurable specification of the response. 

 Stability Analysis for first order system 

The stability of the closed-loop system using the proposed ANNC structure is 

analyzed in this section to determine the criteria by which the controller’s free 
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weights are tuned to deliver the desired output performance while the closed-

loop system is maintained in its stable region. For this purpose, the first-order 

Taylor series approximation for nonlinear system dynamics about an operating 

point is used. Generally, a first order linear model of the SISO system can be 

expressed as: 

𝐺(𝑠) =
ఈ

ௌାఉ
                  (32) 

where ଵ

ఉ
 is the time constant and ఈ

ఉ
 is the gain of the first order system. 

Substituting (32) into (21), the closed-loop transfer function of the first-order 

linear model of the system can be expressed as:  

𝐻(𝑠) =

ഀ

ೄశഁ
ቀ௪భ௪భ,భതതതതതതା௦௪మ௪మ,భതതതതതതା

ೢయೢయ,భതതതതതതത

ೞ
ቁ

ଵି
ഀ

ೄశഁ
(௪భ௪భ,మതതതതതതା௦௪మ௪మ,మതതതതതതା

ೢయೢయ,మതതതതതതത

ೞ
)
              (33) 

which leads to: 

𝐻(𝑠) =
ఈ௪మ௪మ,భതതതതതത௦మାఈ௪భ௪భ,భതതതതതത௦ାఈ௪య௪య,భതതതതതത

൫ଵିఈ௪మ௪మ,మതതതതതത൯௦మା൫ఉିఈ௪భ௪భ,మതതതതതത൯௦ିఈ௪య௪య,మതതതതതത
              (34) 

The characteristic equation of system (34) is represented by: 

൫1 − 𝛼𝑤ଶ𝑤ଶ,ଶതതതതത൯𝑠ଶ + ൫𝛽 − 𝛼𝑤ଵ𝑤ଵ,ଶതതതതത൯𝑠 − 𝛼𝑤ଷ𝑤ଷ,ଶതതതതത = 0           (35) 

According to the Routh-Hurwitz stability criterion for a generic quadratic 

polynomial [12], the conditions for the stability of system (34) are derived as: 

൫1 − 𝛼𝑤ଶ𝑤ଶ,ଶതതതതത൯൫−𝛼𝑤ଷ𝑤ଷ,ଶതതതതത൯ > 0                                 (36)   

and    

( 𝛽 − 𝛼𝑤ଵ𝑤ଵ,ଶതതതതത)(−𝛼𝑤ଷ𝑤ଷ,ଶതതതതത) > 0                           (37) 

Conditions (36)-(37) form the closed-loop stability criteria for system (34). They 

are used when the initial values of the controller weights are selected and after 

each-step calculation of the learning algorithm. They ensure that the selected 

weights can indeed deliver a stable closed-loop system at each learning step, and 

that the overall system can remain stable constantly during the entire training 

process. 
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  Simulation results 

To investigate the performance of the ANNC proposed in Section 2.2 together 

with the dynamic NN learning algorithm developed in Section 2.4, simulation 

studies are conducted where the plant is chosen as a typical liquid tank system. 

The level of the liquid within the tank is to be controlled via controlling the input 

pump flow of the tank. The input pump injects fluid into the tank from the top 

(non-gravitational filling), and the injection speed can be varied by an input 

voltage applied to the pump. Such a system is very popular and often challenging 

in industrial applications, as the presented system is highly nonlinear in nature. 

The output tracking behavior of the system using the proposed control method is 

compared with that using a pre-designed fixed-parameter PID controller 

suggested by Matlab and that using an existing adaptive NN-PID controller 

suggested in [8].  

Assume that the pump’s output (the flow rate) is linearly related to the pump’s 

input current. The changes in the fluid level inside the tank depend on the 

difference between the input flow to the tank and the output flow from the tank. 

The rate of change in the liquid volume inside the tank is therefore described as: 

ௗ௩௢௟

ௗ௧
= 𝑏. 𝑐 − 𝑎√ℎ                 (38) 

where 𝑣𝑜𝑙 is the tank’s liquid volume, 𝑏 depends on the input flow rate linearly 

(i.e., a coefficient determined by the pump’s characteristics), c is the control 

signal applied to the control valve with a magnitude of 4mA to 20mA, 𝑎 is the 

characteristics coefficient of the tank’s output pipe, and ℎ  is the height of the 

liquid in the tank. By having: 

ௗ௩௢௟

ௗ௧
= 𝐴

ௗ௛

ௗ௧
                 (39) 

where A is the area of the tank’s base, one has: 

ௗ௛

ௗ௧
=

௕.௖

஺
−

௔√௛

஺
                 (40) 

Clearly, the term √ℎ  shown in (40) makes the liquid tank system highly 

nonlinear and difficult to control. Assuming the tank has a circular base of 10 

meters in diameter and a height of 12 meters, and considering the pump has a 
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control valve at a rate of 50m3/hr, the desired level of the liquid in the tank, ℎ଴, is 

set to be 5 meters. Let the pump starts at time t = t0. The nonlinear differential 

equation describing the relationship between the input c and output ℎ of the 

system is then expressed as:  

ௗ௛

ௗ௧
=

௕.௖

஺
u(t − 𝑡଴) − ቀ

௔√௛

஺
ቁ                (41) 

where u(t) is the unit step function.  

Applying the proposed ANNC to the liquid tank system, the overall control 

system is illustrated in Figure 2-4. For comparison purposes, the parameters of a 

Matlab pre-designed PID controller are determined as 𝐾௉ = 2, 𝐾ூ = 3, and 𝐾஽ =

0.2. Applying the existing adaptive NN-PID control method suggested in [8] 

(where the current gradient of the system error is used instead), the weights of 

the hidden layer are obtained as wଵ = 4.598, wଶ = 4.901 , and wଷ = 4.303.  The 

performance of the ANNC controlled system is compared with that of the above 

specified fixed-parameter PID controlled system together with that of the above 

obtained existing adaptive NN-PID controlled system. The simulation results are 

given in Figure 2-5. 

Figure 2-5 demonstrates the liquid level control effects of the three control 

schemes when the tank system is subjected to a step change in its setpoint. 

According to the simulation result of the fixed-parameter PID controlled system, 

when the input pump starts, the water level increases to 7.88m which represents 

a significant overshoot that may result in overflowing of the liquid from the tank.  

To apply the ANNC to the liquid tank system, the initial values of the output-

layer weights are set to be: wଵ = 1, wଶ = 1, and wଷ = 1. The weights of the hidden 

layer for a reasonable comparison with the fixed-parameter PID controller are 

selected as follows to generate the error signal as the difference between the 

desired system output and the actual system output: 

𝑤ଵ,ଵതതതതത = 1, 𝑤ଵ,ଶതതതതത = −1, 

𝑤ଶ,ଵതതതതത = 1, 𝑤ଶ,ଶതതതതത = −1, 

𝑤ଷ,ଵതതതതത = 1, 𝑤ଷ,ଶതതതതത = −1.  
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After repeating the online and simultaneous learning algorithm on the output-

layer weights for 100 times, the following values are achieved: 

wଵ = 5.848, 

wଶ = 3.941,  

wଷ = 5.622. 

 

 
Figure 2-4. The ANNC controlled liquid tank system 

While the weight learning algorithm of the ANNC was running, the closed-loop 

stability of the system was checked at each learning step according to the 

inequalities mentioned in (36)-(37). It is observed that the selected weights have 

kept the system stable at all time, and that the hidden-layer weights remain 

constant as their selected initial values. If the inequalities were not satisfied, it 

would be required to change the hidden-layer weights according to the 

mentioned stability criteria in (36)-(37).    

As shown in Figure 2-5, compared to the ANNC controlled system, the classical 

fixed-parameter PID controlled system and the existing adaptive NN-PID 

controlled system have much larger system errors, particularly in the overshoot 

and undershoot time periods. By using the ANNC, however, the overshoot and 

undershoot can be reduced, respectively, from 57.6% and 35.2% to 28.1% and 

from 27.2% and 12.2% to 8.5%. In addition, the settling time of the liquid level 

can be reduced from 29 and 27 time-samples to 23 time-samples. 

Figure 2-6 represents the accumulated error versus the iteration number of the 

ANNC weight learning algorithm. The error shown in this figure is the difference 
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between the actual system output (the real liquid-level) and the desired system 

output (the liquid-level of 5 meters). It is observed that, with the ANNC, the 

magnitude of the error decreases as the number of iterations in the weight 

learning algorithm increases. This is an important result which demonstrates 

the suitable performance of the proposed ANNC for the considered tank system. 

As shown in this figure, the error reduction rate slows down as the number of 

iterations reaches to 50 (the fraction point in Figure 2-6). Hence, the optimal 

training number of the learning algorithm is around 50 for this particular 

system, which indicates the trade-off between the control speed and the control 

performance of the ANNC controlled system. 

 

Figure 2-5. Tank level control performance comparison using the three schemes 

 
Figure 2-6. ANNC accumulated error vs. number of trainings 
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 Conclusion 

With the powerful learning abilities inherent in a neural network strategy, the 

proposed ANNC is capable of controlling SISO systems with nonlinear 

properties. The ANNC uses a new auto-tune dynamic online learning algorithm 

with accumulated error back-propagation for the proposed neural network 

structure, and effectively tunes its parameters to achieve the desirable control 

outcomes.  By checking the stability of the system at each step of the controller 

parameters’ update, the closed-loop system is guaranteed to remain stable 

during the entire controller training process. The effectiveness of the proposed 

ANNC is validated via simulation studies. When compared with the 

representatives of existing counterparts, the ANNC is seen to provide a better 

and faster system performance. By selecting an appropriate number of samples, 

the ANNC can be effectively used for several types of control systems in 

industrial applications, such as flow, level, and temperature control systems in 

water or wastewater plants. 

Although the proposed ANNC currently discussed in this paper is in the context 

of SISO systems and PID control strategies, it is developed in such a way that 

the proposed structure can establish a foundation upon which new adaptive NN 

methods for MIMO coupled systems and/or other types of control laws can be 

readily derived. The aspects of those studies will be revealed in the authors’ 

future papers.  
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 CHAPTER 3: INTRODUCING A NOVEL MODEL-FREE 
MULTIVARIABLE ADAPTIVE NEURAL NETWORK 
CONTROLLER (MANNC) FOR SQUARE MIMO SYSTEMS  

Aim 

In this chapter, using the foundation of an Adaptive Neural Network Controller 

(ANNC) introduced for controlling SISO systems in Chapter 2, a Multivariable 

Adaptive Neural Network Controller (MANNC) for controlling MIMO systems is 

represented in such a way that the proposed structure is able to control coupled 

square MIMO systems without any knowledge of the systems’ models. The 

represented controller will be expandable to include two dynamic layers, the 

development of which will be discussed in Chapters 4 and 5 as per diagram 

below: 

Chapter 2
Introducing adaptive neural 
network controller (ANNC) 

for SISO

Chapter 3
Developing ANNC to multivariable 
adaptive neural network controller  

for square MIMO (MANNC)

Chapter 4
Developing MANNC to multivariable 
adaptive neural network controller 
with 2-layer  for nonlinear square 

MIMO (MANNC2)

Chapter 5
Developing MANNC2 to multivariable 

adaptive neural network controller 
with 2-layer  for nonlinear non-square 

MIMO (MANNCNS)
 

Description 

To achieve this aim, the structure of a multivariable neural network adaptive 

controller for closed-loop model-free control systems is firstly built using the 

basic structure of the ANNC controller introduced in Chapter 2. It is noted that 

the structure of the MANNC is developed in such a way that can be extended 

into a greater number of adjustable layers with a different number of inputs and 

outputs, so that the proposed structure will be able to be further modified in the 

following chapters. Subsequently, a novel dynamic learning method for the 

neural network structure with one adjustable layer and using the error back-

propagation algorithm is designed, which utilizes the real-time history of the 

actual system inputs and outputs rather than the model of the system. The 

learning algorithm for the neural network weights of the proposed MANNC is 

developed, and its associated Lyapunov stability analysis is conducted to ensure 

the global asymptotical stability of the resulting control system during the 

training process. In this chapter, to demonstrate that the proposed MANNC is 
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able to perform as a general controller for a wide range of square MIMO systems, 

three different cases of coupled nonlinear MIMO systems are chosen: a time-

invariant drum boiler system, a sample nonlinear time-variant system, and a 

nonlinear hybrid two-tank system. Simulation studies for all three cases are 

carried out in which the designed controller is tested and compared with the 

existing methods. The above-mentioned contents are described in a paper: 

 Arash Mehrafrooz and Fangpo He, “Introducing a Novel Model-free 

Multivariable Adaptive Neural Network Controller (MANNC) for Square 

MIMO Systems”, Submitted to journal of “IEEE Transactions on 

Automatic Control”. 

The outline of this paper is given below: 

 INTRODUCTION ................................................................................................ 74 

 MULTIVARIABLE ADAPTIVE NEURAL NETWORKS CONTROLLER (MANNC) ......... 78 

 CLOSED-LOOP STRUCTURE OF MANNC ........................................................ 78 

 STRUCTURE OF SUB-MANNC (S-MANNC) .................................................. 80 

 MATRIX REPRESENTATION ............................................................................. 81 

 LEARNING ALGORITHM ..................................................................................... 84 

 STABILITY ANALYSIS ........................................................................................ 87 

 SPECIFYING MANNC TO CONTROL SISO SYSTEMS ........................................... 90 

 SIMULATION RESULTS ...................................................................................... 91 

 CASE 1 – APPLICATION OF MANNC ON A TIME-INVARIANT NONLINEAR SQUARE 

MIMO SYSTEM ......................................................................................................... 92 

 CASE 2 – APPLICATION OF MANNC ON A TIME-VARIANT NONLINEAR MIMO 

SYSTEM ..................................................................................................................... 98 

 CASE 3 – APPLICATION OF MANNC ON A HYBRID SYSTEM .......................... 101 

 CONCLUSION ................................................................................................. 105 
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Results 

To improve the ANNC (introduced in Chapter 2) that is only applicable to SISO 

systems and its stability is checked by the traditional Routh-Hurwitz stability 
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criterion, a novel advanced control method comprising a neural network 

controller (MANNC) and its associated learning algorithm together with its 

Lyapunov stability constraint is developed in this chapter for square MIMO 

systems. This development constitutes the original contribution of this chapter. 

The obtained simulation results justify that the proposed MANNC can achieve 

an appropriate set-point tracking of all outputs of a square MIMO system via the 

controller’s powerful auto-tuning capability, while keeping the system stable 

during the entire turning process. 

Conclusion 

Overall, this chapter demonstrates that with the powerful learning abilities 

inherent in a neural network strategy, the proposed MANNC is capable of 

controlling model-free square coupled MIMO systems with nonlinear properties 

and achieving the desired control outcomes. The MANNC can be effectively used 

for a wide range of square MIMO control systems in industrial applications, 

especially for those systems whose outputs’ overshoots are unwanted and for 

which a fast set-point tracking is desirable. The proposed MANNC will be 

further improved in the next chapter by changing its neural network structure 

and defining new learning algorithms to be more reliable for MIMO systems with 

nonlinearities. 
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Abstract - In this study, a novel Multivariable Adaptive Neural Network Controller 

(MANNC) is developed for coupled model-free n-input n-output systems. The learning 

algorithm of the proposed controller does not rely on the model of a system, and uses 

only the history of the system inputs and outputs. The system is considered as a ‘black 

box’ with no pre-knowledge of its internal structure. By online monitoring and 

possessing the system inputs and outputs, the parameters of the controller are adjusted. 

Using the accumulated gradient of the system error along with the Lyapunov stability 

analysis, the weights’ adjustment convergence of the controller can be observed and an 

optimal training number of the controller can be selected. The Lyapunov stability of the 

system is checked during the entire weight training process to enable the controller to 

handle any possible nonlinearities of the system. The effectiveness of the MANNC in 

controlling nonlinear square multiple-input multiple-output (MIMO) systems is 

demonstrated via three simulation studies covering the cases of a time-invariant 

nonlinear MIMO system, a time-variant nonlinear MIMO system, and a hybrid MIMO 

system, respectively. In each case, the performance of the MANNC is compared with 

that of a properly-selected existing counterpart. Simulation results demonstrate that the 

proposed MANNC is capable of controlling various types of square MIMO systems with 

much improved performance over its existing counterpart. The unique properties of the 

MANNC will make it a suitable candidate for many industrial applications.  

Key Words - square MIMO; model free control; neural network control; learning 
algorithm; Lyapunov Stability; 

 Introduction 

Over the past few years, there has been a significant improvement in controlling 

Multiple-Input Multiple-Output (MIMO) systems using adaptive control methods 
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[1]. Many proposed adaptive controllers rely on model-based approaches [2, 3] 

where mathematical models of the respective dynamic systems must be 

identified either directly or indirectly in advance. For majority industry 

applications in practice, however, there exist major challenges in relation to 

MIMO systems’ model identifications. For instance, a predicted model of an 

industrial plant can be dynamically different than the true plant itself, due 

largely to the plant’s structural uncertainties, unmodelled nonlinearities, and 

time-varying natures [4-6]. In some cases, if a constraint of an actual system for 

any reason changes, in order to achieve the desired outcomes, the system’s model 

may need to be re-identified resulting in a redesigning of the corresponding 

controller [7]. Even at the circumstances where an exact model of a MIMO 

system could be identified, the controller designed for the predicted model of the 

system may still be subjected to conditional variations both internal and external 

to the system [8]. Due to these practical problems associated with model-based 

approaches, many existing adaptive control schemes are seen to be impractical or 

limited in controlling real industrial MIMO plants. In contrast to model-based 

approaches, model-free approaches [9-12] can entirely omit the modelling phase 

of a system, thus significantly reducing the time required for the design and 

tuning of the system’s real-time controller. This will result in a faster and more 

precise control outcome [13-15]. Due to this consideration, model-free controllers 

are becoming more preferable than their corresponding model-based 

counterparts, especially for industrial MIMO control applications where the 

modelling phase of a true plant can be time-consuming and inaccurate. Among 

the recently introduced model-free control methods [13, 15-19], the neural 

network technique stands out as a powerful and practical tool for controlling 

MIMO systems due mainly to its astonishing capabilities in dealing with large 

volumes of data, estimating ambiguous relationships between a system’s inputs 

and outputs, and predicting future behaviours of a system.   

Recently, by adding adaptive features to neural network schemes, adaptive 

neural networks have been seen in controlling MIMO systems successfully [20-

26]. Many adaptive control methods based on neural networks have been 

introduced to Single-Input Single-Output (SISO) systems and further developed 
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for Uncoupled Multiple-Input Multiple-Output (U-MIMO) systems [27-30]. In 

[23], a neural-network controller and its associated learning rules are proposed 

which can be successfully applied to Single-Input Multi-Output (SIMO) plants. 

This controller is a combination of several SISO controllers cascaded together 

and, therefore, is unable to be further developed for coupled MIMO systems. 

Since in general control problems are more challenging if cross-couplings among 

the various inputs and outputs of a MIMO system exist, model-free control of 

coupled MIMO systems has become an active area of research with a growing 

number of publications [31-37]. Despite some improvements, however, neural 

network based controllers have not been extensively used in industrial model-

free control systems due to the following apparent deficiencies [38]:  

 During the weight training process of the neural networks, the controlled 

systems can become unstable;  

 It is not always clear when to stop the weight training process;  

 A long training time for the weights can be unsatisfactory for the speed of 

the control systems;  

 The traditional activation functions employed in the neural networks may 

not be suitable for control purposes;  

 The common error back-propagation learning algorithm uses only the last 

two consecutive samples of the outputs in discrete derivative functions, 

and does not comply with the requirement of a proper model-free approach 

in which a full history of inputs and outputs must be used in order to 

generate an effective control action. 

In order to overcome the above-listed deficiencies, in this study, a novel model-

free Multivariable Adaptive Neural Network Controller (MANNC) is proposed 

for controlling coupled MIMO systems in which: 

 By using the constraint generated from the Lyapunov stability conditions 

at each step of the online weight training process, the overall control 

system stability can be guaranteed at all time – This eliminates the risk of 

the system been falling into its local minimum [39, 40] and prevents the 
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loss of the control speed due to conservative learning rate selections [15, 

18, 25, 40, 41];   

 By constantly observing the accumulated errors and comparing them with 

their desired values, the controller can decide to stop the learning 

algorithm and lock the neural network weights at an optimal point – This 

ensures the convergence of the controller weight adjustments and provides 

a clear optimal number for the weight training steps;  

 By choosing proper initial learning rates and dynamically changing them 

during the learning process according to the system stability criteria, the 

weight training speed can be significantly increased – This forms a clear 

comparison with and improvement over the traditional static learning 

rates [15, 18, 25, 40, 41];  

 By designing specific activation functions that utilize typical proportional, 

integral, and derivative operations in the neural network structure of the 

controller, the proposed controller is simple and straightforward in its 

configuration – This makes the controller a potential candidate suitable 

for replacing classical PID controllers in industrial applications;  

 By applying accumulated gradients in the error back-propagation 

algorithm and using new partial derivative estimations, the proposed 

method fully uses the history of the system outputs together with the 

current weights to produce the outputs of the controller (the inputs of the 

system) for the next step – This new learning method significantly reduces 

the overshoot and settling time of the system by minimising the 

summation of errors of the system outputs in each step rather than using 

only the last two consecutive samples of the system outputs as its 

traditional counterparts do [39, 42-45], and allows the closed-loop system 

to achieve its best control performance with a minimum number of weight 

training steps. 

It is anticipated that, being truly model-free, the proposed MANNC can generate 

adequate control actions over a wide range of operating conditions. Also, by using 

a new cross-coupling network structure, the proposed controller is expected to be 

able to control strongly-coupled MIMO systems effectively. It should be 



Chapter 3 

78 
 

mentioned that, according to the design to be presented in this paper, the 

proposed MANNC will only be applicable for square (𝑛 × 𝑛) MIMO systems. If an 

industrial MIMO system has different numbers of inputs and outputs, by 

squaring up (adding) or squaring down (removing) the inputs (i.e., the 

manipulated variables) or the outputs (i.e., the controlled variables), the given 

non-square MIMO system can be rewritten as a corresponding square MIMO 

system [46] to which the proposed MANNC will be applicable.  

To reveal the proposed MANNC, the rest of this paper is organised as follows. In 

Section 3.2, the structure and matrix representation of the new neural network 

based adaptive controller are introduced. In Section 3.3, the new learning 

method of the neural network based on the error back-propagation algorithm is 

described. The closed-loop system stability is analysed in Section 3.4. In Section 

3.5, the controlled system and the introduced method are specified for SISO 

systems. Section 3.6 demonstrates the validation results via simulation studies 

where the proposed method is seen to control three chosen nonlinear MIMO 

systems without the use of their respective models. Conclusions in relation to the 

design are drawn in Section 3.7.  

 Multivariable Adaptive Neural Networks Controller (MANNC)  

 Closed-loop Structure of MANNC 

As previously proposed in [18] by the authors, the outputs of three types of 

neurons: P-type, I-type, and D-type, in the discrete form can be respectively 

expressed as: 

𝑜௉(𝑘) = 𝑛𝑒𝑡௉(𝑘)            (1) 

𝑜ூ(𝑘) = 𝑜ூ(𝑘 − 1) + 𝑛𝑒𝑡ூ(𝑘)             (2)  

𝑜஽(𝑘) = 𝑛𝑒𝑡஽(𝑘) − 𝑛𝑒𝑡஽(𝑘 − 1)           (3) 

where 𝑜௑(𝑘) and 𝑛𝑒𝑡௑(𝑘) represent the X-type neuron’s output and input at the 

𝑘୲୦  sample time, respectively. In this study, for stability concerns, further 

constraints to the neurons’ activation functions of (1)-(3) are applied as follows: 
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𝑜௉(𝑘) = ቐ

1                                        𝑛𝑒𝑡௉(𝑘) > 1

𝑛𝑒𝑡௉(𝑘)               − 1 ≤ 𝑛𝑒𝑡௉(𝑘) ≤ 1

−1                                       𝑛𝑒𝑡௉(𝑘) < −1

      (4) 

𝑜ூ(𝑘) = ቐ

1                                                        𝑛𝑒𝑡ூ(𝑘) > 1

𝑜ூ(𝑘 − 1) + 𝑛𝑒𝑡ூ(𝑘)        − 1 ≤ 𝑛𝑒𝑡ூ(𝑘) ≤ 1

−1                                                      𝑛𝑒𝑡ூ(𝑘) < −1

     (5) 

𝑜஽(𝑘) = ቐ

1                                                            𝑛𝑒𝑡஽(𝑘) > 1

𝑛𝑒𝑡஽(𝑘) − 𝑛𝑒𝑡஽(𝑘 − 1)        − 1 ≤ 𝑛𝑒𝑡஽(𝑘) ≤ 1

−1                                                            𝑛𝑒𝑡஽(𝑘) < −1

    (6) 

Considering the structure of the Adaptive Neural Network Controller (ANNC) 

proposed in [18], a new Multivariable Adaptive Neural Network Controller 

(MANNC) is proposed in Figure 3-1 as a closed-loop MIMO controller applicable 

to coupled square (𝑛 × 𝑛) multivariable systems.  
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Figure 3-1. Structure of the proposed MANNC 

Assuming that there are strong cross-coupling between the 𝑛  inputs and 𝑛 

outputs of a MIMO system of concern, the proposed MANNC is designed using a 

𝑛 − 3𝑛 − 𝑛 neural network structure. In this structure, the error for each output 
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(i.e., the difference between each desired output (𝑟௜) and its corresponding actual 

output (𝑦௜)  (𝑖 = 1, 2, … , 𝑛)) is generated, and the generated errors propagate to 

the two layers, the hidden layer and the output layer, of the MANNC network. In 

the hidden layer, there are 3𝑛 neurons including clusters of P-type, I-type, and 

D-type neurons that are repeated consecutively. In the output layer, there are 𝑛 

P-type neurons that form the outputs of the MANNC, i.e., the inputs of the 𝑛 × 𝑛 

MIMO system. There are 3𝑛ଶ weights in the output layer that are associated 

with the hidden-layer neurons and decide the impact of each neuron of the 

hidden layer on the generation of the inputs applied to the MIMO system. 

 Structure of Sub-MANNC (S-MANNC) 

To be able to deal with the cross-couplings of an 𝑛 × 𝑛 MIMO system of concern, 

the proposed MANNC structure in Figure 3-1 is further decomposed into 𝑛-

parallel sub-controllers each named as a Sub-MANNC (S-MANNC) and 

illustrated in Figure 3-2. The neural network associated with the  𝑙௧௛  S-MANNC 

with input 𝑟௟  and output 𝑦௟  (𝑙 = 1, 2, … , 𝑛) is designed to have two layers (hidden 

layer and output layer) and four neurons; each neuron is able to be connected 

with the neurons of the other S-MANNCs in order to account for the cross-

coupling effects of the underlying MIMO system. In the hidden layer of the 𝑙௧௛ S-

MANNC, there are three neurons each being a P-type, an I-type, and a D-type, 

respectively. The P-neuron amplifies the difference between the desired output 

and the actual output, the I-neuron provides the necessary action to eliminate 

the steady-state error, and the D-neuron predicts the future behaviour of the 

error. In the output layer of the 𝑙௧௛ S-MANNC, there is a P-type neuron which 

performs the summation of the PID functionalities of the hidden-layer neurons. 

This neuron accumulates the outputs of the hidden layer and forms the control 

command applied to the 𝑙௧௛  output of the 𝑛 × 𝑛 MIMO system. 

Due to the fact the MANNC will be used for controlling coupled multivariable 

systems, the output neuron of each S-MANNC has ‘𝑛’ number of inputs to be able 

to produce each control command by considering all the desired outputs and 

actual outputs. The inputs of the P-type, I-type, and D-type neurons (𝑛𝑒𝑡ଷ௟ିଶ
ଵ , 

𝑛𝑒𝑡ଷ௟ିଵ
ଵ , and 𝑛𝑒𝑡ଷ௟

ଵ ) and the outputs of these neurons (𝑂ଷ௟ିଶ
ଵ , 𝑂ଷ௟ିଵ

ଵ , and 𝑂ଷ௟
ଵ ) are 
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related together by the activation functions of the neurons represented in (4)-(6). 

There are three weights (𝑤ଵ,ଷ௟ିଶ, 𝑤ଵ,ଷ௟ିଵ, and 𝑤ଵ,ଷ௟) in the output layer of each S-

MANNC, relating to the P-type, I-type, and D-type neurons in the hidden layer.  

 

P-type

I-type

D-type

P-type

 n-input
 n-output

 MIMO
 System

𝑦𝑙  𝑟𝑙  
+         

 
Figure 3-2. S-MANNC structure 

 Matrix representation  

The matrix representation of a closed-loop square MIMO system using the 

proposed MANNC (Figure 3-1) and S-MANNC (Figure 3-2) is derived as follows.  

Let 𝑂௟
ଶ  and 𝑦௟  be, respectively, the 𝑙௧௛  input and the 𝑙௧௛  output of the system 

where 1 ≤  𝑙 ≤ n, and let 𝐺௜௝ be the transfer function relating the 𝑗௧௛-component 

of the 𝑖௧௛  output (𝑦௜ ) to the 𝑗௧௛  input (𝑂௝
ଶ) where 1 ≤  𝑖 ≤ n and 1 ≤  𝑗 ≤ n. The 

vectors and matrices associated with Figure 3-2 are named in Table 3-1 and are 

defined as:  

𝒀𝒏×𝟏 𝑹𝒏×𝟏 𝑶𝒏×𝟏
𝟐  𝑮𝒏×𝒏 

System’s outputs System’s desired 

outputs 

System’s inputs 

 

System’s transfer 

matrix 

𝒏𝒆𝒕𝒏×𝟏
𝟐  𝑾𝒏×𝟑𝒏 𝑶𝟑𝒏×𝟏

𝟏  𝑷𝟑𝒏×𝟑𝒏 

Output layer’s 

inputs 

Neural Network 

Weights 

Neurons’ outputs Activation 

functions 

𝒏𝒆𝒕𝟑𝒏×𝟏
𝟏  𝑹𝟑𝒏×𝟏

(𝟑)  𝒀𝟑𝒏×𝟏
(𝟑)  𝑰𝟑𝒏×𝒏

(𝟑)  

Hidden layer’s 

inputs 

Triple desired 

outputs 

Triple system’s 

outputs 

Triple Unit 

Table 3-1 – Matrices defined for MANNC 
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𝑌 = 𝑌௡×ଵ = [𝑦ଵ 𝑦ଶ ⋯ 𝑦௟ ⋯ 𝑦௡]ଵ×௡
்          (7) 

𝑂ଶ = 𝑂௡×ଵ
ଶ = ൣ𝑂ଵ

ଶ 𝑂ଶ
ଶ ⋯ 𝑂௟

ଶ ⋯ 𝑂௡
ଶ

௡൧
ଵ×௡

்
        (8) 

𝐺 = 𝐺௡×௡ =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺ଵଵ

𝐺ଶଵ

⋮

𝐺ଵଶ

𝐺ଶଶ

⋮

⋯ 𝐺ଵ௟ ⋯ 𝐺ଵ௡

⋯ 𝐺ଶ௟ ⋯ 𝐺ଶ௡

 ⋮
𝐺௟ଵ

⋮
𝐺௡ଵ

𝐺௟ଶ

⋮
𝐺௡ଶ

⋯ 𝐺௟௟ ⋯ 𝐺௟௡

 ⋮  ⋮
⋯ 𝐺௡௟ ⋯ 𝐺௡௡⎦

⎥
⎥
⎥
⎥
⎤

௡×௡

         (9) 

𝑛𝑒𝑡ଶ = 𝑛𝑒𝑡௡×ଵ
ଶ = [𝑛𝑒𝑡ଵ

ଶ 𝑛𝑒𝑡ଶ
ଶ ⋯ 𝑛𝑒𝑡௟

ଶ ⋯ 𝑛𝑒𝑡௡
ଶ]ଵ×௡

்
                 (10) 

𝑊 = 𝑊௡×ଷ௡ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଵ

𝑤ଶ,ଵ

⋮

𝑤ଵ,ଶ

𝑤ଶ,ଶ

⋮

𝑤ଵ,ଷ ⋯ 𝑤ଵ,ଷ௟ିଶ 𝑤ଵ,ଷ௟ିଵ

𝑤ଶ,ଷ ⋯ 𝑤ଶ,ଷ௟ିଶ 𝑤ଶ,ଷ௟ିଵ

 ⋮
𝑤௟,ଵ

⋮
𝑤௡,ଵ

𝑤௟,ଶ

⋮
𝑤௡,ଶ

𝑤௟,ଷ ⋯ 𝑤௟,ଷ௟ିଶ 𝑤௟,ଷ௟ିଵ

 ⋮
𝑤௡,ଷ ⋯ 𝑤௡,ଷ௟ିଶ 𝑤௡,ଷ௟ିଵ

 

𝑤ଵ,ଷ௟

𝑤ଶ,ଷ௟

⋮

⋯ 𝑤ଵ,ଷ௡ିଶ 𝑤ଵ,ଷ௡ିଵ 𝑤ଵ,ଷ௡

⋯ 𝑤ଶ,ଷ௡ିଶ 𝑤ଶ,ଷ௡ିଵ 𝑤ଶ,ଷ௡

 ⋮
 𝑤௟,ଷ௟

⋮
𝑤௡,ଷ௟

⋯ 𝑤௟,ଷ௡ିଶ 𝑤௟,ଷ௡ିଵ 𝑤௟,ଷ௡

 ⋮ ⋮ ⋮
 ⋯  𝑤௡,ଷ௡ିଶ 𝑤௡,ଷ௡ିଵ 𝑤௡,ଷ௡⎦

⎥
⎥
⎥
⎥
⎤

௡×ଷ௡

   

        (11) 

𝑂ଵ = 𝑂ଷ௡×ଵ
ଵ = [𝑂ଵ

ଵ 𝑂ଶ
ଵ 𝑂ଷ

ଵ ⋯ 𝑂ଷ௡
ଵ ]ଵ×ଷ௡

்                        (12) 

𝑃 = 𝑃ଷ௡×ଷ௡ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 𝐷ିଵ 0
0 0 𝐷

⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯
1 0 0
0 𝐷ିଵ 0
0 0 𝐷⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×ଷ௡

                (13) 

𝑛𝑒𝑡ଵ = 𝑛𝑒𝑡ଷ௡×ଵ
ଵ = [𝑛𝑒𝑡ଵ

ଵ 𝑛𝑒𝑡ଶ
ଵ 𝑛𝑒𝑡ଷ

ଵ ⋯ 𝑛𝑒𝑡ଷ௡
ଵ ]ଷ௡×ଵ

்                (14) 

𝑅
(ଷ)

= 𝑅ଷ௡×ଵ
(ଷ) =[𝑟ଵ 𝑟ଵ

𝑟ଵ 𝑟ଶ 𝑟ଶ 𝑟ଶ ⋯ 𝑦௡ 𝑦௡ 𝑦௡]ଵ×ଷ௡
்               (15) 

𝑌
(ଷ)

= 𝑌ଷ௡×ଵ
(ଷ)

= [𝑦ଵ 𝑦ଵ 𝑦ଵ 𝑦ଶ 𝑦ଶ 𝑦ଶ ⋯ 𝑦௡ 𝑦௡ 𝑦௡]ଵ×ଷ௡
்               (16) 

𝐼
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×௡

                    (17) 

𝑅 = 𝑅௡×ଵ = [𝑟ଵ 𝑟ଶ
𝑟ଷ ⋯ 𝑟௡]ଵ×௡

்                     (18) 



Chapter 3 

83 
 

Considering that the system at each calculation step can be identified as being 

linear or been linearized around an operation point, the relationship between the 

inputs and outputs of the system will be: 

𝑌௡×ଵ = 𝐺௡×௡𝑂௡×ଵ
ଶ                          (19) 

Since 𝑛𝑒𝑡௟
ଶ is the 𝑙௧௛ input of the P-type neuron in the output layer, one has: 

𝑂௡×ଵ
ଶ = 𝑛𝑒𝑡௡×ଵ

ଶ                             (20) 

where the relationship between the inputs and outputs in the output layer of the 

neural networks can be expressed as: 

𝑛𝑒𝑡௡×ଵ
ଶ = 𝑊௡×ଷ௡

ଶ 𝑂ଷ௡×ଵ
ଵ                      (21) 

As the hidden layer has clusters of P-type, I-type, and D-type neurons, the 

proportional, integral, and derivative operators (1, 𝐷ିଵ, and 𝐷) are considered 

respectively in the matrix form of the activation function. Thus, one has: 

𝑂ଷ௡×ଵ
ଵ = 𝑃ଷ௡×ଷ௡𝑛𝑒𝑡ଷ௡×ଵ

ଵ                      (22) 

where the inputs of the hidden layer are defined as the differences between the 

desired outputs and the actual outputs and are expressed as: 

𝑛𝑒𝑡ଷ௡×ଵ
ଵ = 𝑅ଷ௡×ଵ

ଷ − 𝑌ଷ௡×ଵ
ଷ                      (23) 

By having: 

𝑅ଷ௡×ଵ
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

× 𝑅௡×ଵ                     (24) 

and: 

𝑌ଷ௡×ଵ
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

× 𝑌௡×ଵ                      (25) 

and using (19)-(25), one obtains:  

𝑌 = 𝐺𝑊𝑃(𝑅(ଷ) − 𝑌(ଷ)) = 𝐺𝑊𝑃൫𝐼(ଷ)𝑅 − 𝐼(ଷ)𝑌൯                (26) 

Hence, the system’s outputs can be derived as: 

𝑌 = 𝐺𝑊𝑃𝐼(ଷ)𝑅൫𝐼 + 𝐺𝑊𝑃𝐼(ଷ)൯
ିଵ

                    (27) 

where: ห𝐼 + 𝐺𝑊𝑃𝐼(ଷ)ห ≠ 0.    

Additionally, by having: 
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𝑌 = 𝐺𝑊𝑃𝐼(ଷ)(𝑅 − 𝑌)                    (28) 

one has: 

𝐺ିଵ𝑌 = 𝑊𝑃𝐼(ଷ)(𝑅 − 𝑌)                          (29) 

where: |𝐺| ≠ 0.   

Since 𝑃𝐼(ଷ)(𝑅 − 𝑌) is a non-square matrix and 𝑃 is symmetrical, from: 

𝐺ିଵ𝑌൛𝑃𝐼(ଷ)(𝑅 − 𝑌)ൟ
்

= 𝑊𝑃𝐼(ଷ)(𝑅 − 𝑌)൛𝑃𝐼(ଷ)(𝑅 − 𝑌)ൟ
்
                   (30) 

one derives: 

𝑊 = 𝐺ିଵ𝑌(𝑅 − 𝑌)்𝐼(ଷ)்
𝑃 ቂ𝑃𝐼(ଷ)(𝑅 − 𝑌)(𝑅 − 𝑌)்𝐼(ଷ)்

𝑃ቃ
ିଵ

                (31) 

where 𝑊 is expressed as a function of the desired outputs and the actual outputs, 

and: ቚ𝑃𝐼(ଷ)(𝑅 − 𝑌)(𝑅 − 𝑌)்𝐼(ଷ)்
𝑃ቚ ≠ 0 and |𝑊| ≠ 0.  

The system can then be identified as: 

𝐺 = 𝑌(𝑅 − 𝑌)்𝐼(ଷ)்
𝑃 ቂ𝑃𝐼(ଷ)(𝑅 − 𝑌)(𝑅 − 𝑌)்𝐼(ଷ)்

𝑃ቃ
ିଵ

𝑊ିଵ                         (32) 

where: |𝑊| ≠ 0. 

It should be pointed out that although Equations (19)-(32) are derived under the 

assumption that the system is linear or can be linearized around an operating 

point, they can potentially be used for nonlinear systems where the 

nonlinearities of the systems can be approximated by piece-wise linear systems 

whose time-varying nature can account for the nonlinearities of the systems 

satisfactorily. It should also be pointed out that if any of the non-singularity 

conditions for matrices (𝐼 + 𝐺𝑊𝑃𝐼(ଷ)), (𝐺), (𝑃𝐼(ଷ)(𝑅 − 𝑌)(𝑅 − 𝑌)்𝐼(ଷ)்
𝑃), and (𝑊) 

could not be met, the selected weights (matrix 𝑊) would not be acceptable and 

would be re-updated until all these matrices become non-singular.  

 Learning algorithm 

To achieve a precise control effect for a square MIMO system, the neural 

network weights of the MANNC are adjusted using the principle of the multi-

step error back-propagation algorithm described in [47]. The choice of this 
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algorithm is based on the considerations that the system is treated as a “black-

box” and the controller will be designed based on a model-free approach. In this 

study, instead of using merely the current gradient of the system error as the 

literature does for SISO systems [25, 40, 41], an accumulated gradient of the 

system error for the last 𝑚 samples is proposed to be used to achieve a more 

precise control performance. The proposed method minimises the sum of the 

square accumulated gradient of the error for each system output in each learning 

step, where the error is taken as the difference between the desired output 𝑟௟(𝑘) 

(i.e., the system set-point) and the actual output 𝑦௟(𝑘) . Euclidean Norm 𝐸  is 

defined for calculating the quadratic cost function of the system for the system 

error. Power of two in this expression makes the error of each output positive so 

that larger errors will be more significant than the smaller errors. The cost 

function for the 𝑙୲୦ S-MANNC in Figure 3-2 is then defined as: 

𝑬𝒍(𝒉) =
𝟏

𝟐
(∑ (𝒓𝒍[𝒌] − 𝒚𝒍(𝒉)[𝒌])𝒎

𝒌ୀ𝟏 )𝟐                       (33)   

where 𝐸௟(ℎ) is the error of the 𝑙୲୦ output in the ℎ୲୦ step number of the learning 

algorithm and 𝑚 is the required number of discrete samples in the system output 

and the set-point. By increasing 𝑚, the system output will be compared more 

accurately with the set-point. However, a large value of 𝑚 may decrease the 

adjustment speed of the controller and become undesirable when the speed of the 

control system (often a critical requirement for a real-time industrial system) is 

of concern. Therefore, a reasonable value of 𝑚 must be used to make a necessary 

trade-off between the desired accuracy and the required speed of the control 

system. The total cost function of the system (𝐽) which is the sum of 𝑛 errors by 

considering all outputs is written as: 

𝐽(ℎ) = ∑ 𝐸௟(ℎ)௡
௟ୀଵ =

ଵ

ଶ
∑ (∑ (𝑟௟[𝑘] − 𝑦௟(ℎ)[𝑘])௠

௞ୀଵ )ଶ௡
௟ୀଵ                        (34)    

Using the accumulated gradient of the system error, a learning algorithm must 

be designed to minimise the defined cost function and to bring the system 

outputs as close as possible to the desired outputs. According to the principle of 

the error back-propagation learning algorithm, the output layer’s weights must 

be adjusted so that in each step they move slightly in the opposite direction of 

the gradient of the cost function. This is to ensure that the cost function will be 
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decreasing step by step. The weights of the output layer will therefore be 

adjusted based on the following learning rule: 

𝑤௟,௫(ℎ + 1) = 𝑤௟,௫(ℎ) − 𝜆௟
డ௃(௛)

డ௪೗,ೣ
                       (35) 

where 1 ≤  𝑥 ≤ 3𝑙  and 1 ≤  𝑙 ≤ n; ℎ is the step number of the learning algorithm; 

𝑤௟,௫(ℎ) and  𝑤௟,௫(ℎ + 1) are the weights of the output layer in the current and the 

following steps, respectively; 𝜆௟ is the learning rate which decides how fast the 

cost is changing and, in particular, determines the weight adjustment speed. The 

gradient of the error subject to each weight is required to be calculated. Using 

partial derivatives, one has: 

డ௃

డ௪೗,ೣ
=

డ௃

డா೗

డா೗

డ௬೗

డ௬೗

డை೗
మ

డை೗
మ

డ௡௘௧೗
మ

డ௡௘௧೗
మ

డ௪೗,ೣ
                    (36) 

where: 

డ௃

డா೗
= 1                      (37) 

డா೗

డ௬೗
= ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠

௞ୀଵ                     (38) 

డ௬

డை೗
మ ≅

∑ (௬(௛)[௞])೘
ೖసభ ି∑ (௬(௛ିଵ)[௞])೘

ೖసభ

∑ ൫ை೗
మ(௛)[௞]൯೘

ೖసభ ି∑ ൫ை೗
మ(௛ିଵ)[௞]൯೘

ೖసభ

                    (39) 

డை೗
మ

డ௡ ೗
మ = 1                       (40) 

Because the output neuron is a ‘P-type’ neuron, one writes: 

డ௡௘௧೗
మ

డ௪೗,ೣ
= ∑ (𝑂௫

ଵ(ℎ)[𝑘])௠
௞ୀଵ                       (41) 

Substituting (37)-(41) into (36), one obtains: 

డ௃

డ௪೗,ೣ
≅ 1 × ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠

௞ୀଵ
∑ (௬(௛)[௞])೘

ೖసభ ି∑ (௬(௛ିଵ)[௞])೘
ೖసభ

∑ ൫ை೗
మ(௛)[௞]൯೘

ೖసభ ି∑ ൫ை೗
మ(௛ିଵ)[௞]൯೘

ೖసభ

𝑂௫
ଵ(ℎ)[𝑘]               (42) 

Defining 𝛾௟(𝑘) as:  

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ

∑ (௬(௛)[௞])೘
ೖసభ ି∑ (௬(௛ିଵ)[௞])೘

ೖసభ

∑ ൫ை೗
మ(௛)[௞]൯೘

ೖసభ ି∑ ൫ை೗
మ(௛ିଵ)[௞]൯೘

ೖసభ

              (43) 

the output layer weight adjustment rule can thus be derived as: 

𝑤௟,௫(ℎ + 1) = 𝑤௟,௫(ℎ) − 𝜆௟[𝛾௟(ℎ) ∑ (𝑂௫
ଵ(ℎ)[𝑘])௠

௞ୀଵ ]                 (44) 
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The resulting weight adjustment algorithm is summarized in Table 3-2: 

1 ≤  𝑙 ≤ n 

1 ≤  𝑥 ≤ 3n 

 

𝑤𝑙,𝑥(ℎ + 1) = 𝑤𝑙,𝑥(ℎ) − 𝜆𝑙[𝛾
𝑙
(ℎ) ෍(𝑂𝑥

1(ℎ)[𝑘])

𝑚

𝑘=1

] 

𝛾
𝑙
(ℎ) = ෍(𝑦

𝑙
(ℎ)[𝑘] − 𝑟𝑙(ℎ)[𝑘])

𝑚

𝑘=1

∑ (𝑦(ℎ)[𝑘])𝑚
𝑘=1 − ∑ (𝑦(ℎ − 1)[𝑘])𝑚

𝑘=1

∑ (𝑂𝑙
2(ℎ)[𝑘])𝑚

𝑘=1 − ∑ (𝑂𝑙
2(ℎ − 1)[𝑘])𝑚

𝑘=1

 

Table 3-2. Weights adjustment learning algorithm 

Using the described learning method, all weights are simultaneously tuned, and 

their values at the current step, together with all the current inputs and all the 

current outputs, are used to create the outputs for the weights’ training at the 

next step. This online dynamic learning feature of the proposed method (i.e., 

applying the accumulated gradient and the accumulated errors) makes it more 

suitable for MIMO systems than its existing counterparts that are mainly 

applicable for SISO systems [39, 40, 48]. The neural network structure presented 

for the MANNC is designed for a general 𝑛-input 𝑛-output system with cross-

couplings among all its inputs and outputs. This structure can be simplified for 

systems with less cross-couplings to reduce the number of the associated weights 

and, consequently, to increase the learning speed.   

 Stability Analysis 

It is well known that when a new control method is proposed, it is necessary to 

investigate the stability condition of the resultant closed-loop system in order to 

ensure the achievement of the desired control outcomes. For an unconstrained 

control system, the system stability can be defined using Bounded-Input 

Bounded-Output (BIBO) stability criteria. While the eigenvalue analysis concept 

based on the BIBO stability criteria can be used to investigate the stability 

condition of a linear system, it can’t be applied to nonlinear systems. Instead, the 

Lyapunov stability analysis concept becomes a useful tool for nonlinear systems. 

As the proposed model-free MANNC method will inherently result in a nonlinear 

closed-loop control system, its closed-loop stability investigation will need to be 

carried out using the Lyapunov stability analysis concept.  

Although, unlike a linear system, the stability of a nonlinear system may not 

need to be global as the system can have multiple equilibrium points and limit 
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cycles, global asymptotic stability is sought in this study for the proposed 

MANNC to ensure its satisfactory closed-loop performance over a wide range of 

operating points. This will make the controller more suitable for use in industrial 

applications. According to the Lyapunov global asymptotic stability theorem, for 

a defined function 𝑉(𝑥), if: 

(i) 𝑉(0) = 0 

(ii) For all 𝑥 ≠ 0, 𝑉(𝑥) > 0 (i.e., V is positive definite) 

(iii) For all 𝑥 ≠ 0, ∆𝑉(𝑥) < 0 

then every trajectory of 𝑋(𝑘 + 1) = 𝑋(𝑘) + 𝑓(𝑋(𝑘)) will converge to zero as k → ∞ 

and the system will be globally asymptotically stable. 

Consider a model-free MANNC control system whose Lyapunov function for each 

of its outputs is defined as: 

𝑉௟(ℎ) = (𝐸௟(ℎ))ଶ                      (45) 

where 𝐸௟(ℎ) is the cost function related to the ℎ௧௛ step of the learning algorithm. 

One can write: 

∆𝑉௟(ℎ) = ൫𝐸௟(ℎ) + ∆𝐸௟(ℎ)൯
ଶ

− (𝐸௟(ℎ))ଶ = 2𝐸௟(ℎ)∆𝐸௟(ℎ) + ൫∆𝐸௟(ℎ)൯
ଶ
              (46) 

and: 

∆𝐸௟(ℎ) ≅ ∆𝑤௟,௫(ℎ) ∑
డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ                      (47) 

From (46), one has: 

∆𝑤௟,௫(ℎ) = −
ఒ೗

௠
∑

డ௃

డ௪೗,ೣ

௠
௞ୀଵ                       (48) 

where: 

డ௃

డ௪೗,ೣ
=

డ௃

డா೗(௛)

డா೗(௛)

డ௪೗,ೣ
=

డா೗(௛)

డ௪೗,ೣ
                     (49) 

Substitute (49) into (47), respectively, one derives: 

 ∆𝑤௟,௫(ℎ) = −
ఒ೗

௠
∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ                     (50) 

and: 
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 ∆𝐸௟(ℎ) ≅ −
ఒ೗

௠
൬∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ ൰

ଶ

                    (51) 

Hence, (46) can be expressed as: 

∆𝑉(ℎ) ≅ −
ଶఒ೗ா೗(௛)

௠
൬∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ ൰

ଶ

+
ఒ೗

మ

௠మ
൬∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ ൰

ସ

                (52) 

Define: 

𝐻௟(ℎ) = ∑
డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ  ≅ ∑

∆ா೗(௛)[௞]

∆௪೗,ೣ(௛)
௠
௞ୀଵ                    (53) 

The condition for ∆𝑉(ℎ) < 0 will yield the following constraint on the selection of 

the learning rate 𝜆௟ defined in (44): 

0 < 𝜆௟ <
ଶ௠ ೗(௛)

ு೗(௛)మ
                      (54) 

If the above constraint is satisfied at each training step, the system will be 

globally asymptotically stable during the entire training process. This indicates 

that (54) must be checked in a real-time and simultaneous fashion at each 

training step during the operation of the weight adjustment algorithm. The 

flowchart of the whole real-time weight training process, including both the 

learning algorithm (Table 3-2) and the stability criteria check (54), is illustrated 

in Figure 3-3. 

 

Figure 3-3. Flowchart of real-time simultaneous stability criteria check and weight adjustment 
algorithm for MANNC 
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 Specifying MANNC to control SISO systems 

The proposed MANNC can be used in a SISO environment where the number of 

inputs and outputs of the controller is chosen as one, i.e., 𝑛 = 1. The resultant 

SISO closed-loop system is shown in Figure 3-4. 

P-type

I-type

D-type

P-type

SISO 
SYSTEM+         

r y

y

w1

w2

w3

 

Figure 3-4. Applying MANNC to SISO system 

Considering Figure 3-4 and assuming a linear and time-invariant estimation for 

the system’s SISO transfer function, one has: 

𝑌 = 𝐺(𝑠)𝑂ଶ = 𝐺(𝑠)(𝑤ଵ𝑂ଵ
ଵ(𝑠) + 𝑤ଶ𝐷ିଵ𝑂ଶ

ଵ(𝑠) + 𝑤ଷ𝐷𝑂ଷ
ଵ(𝑠))             (55) 

where: 

𝑂ଵ
ଵ(𝑠) = 𝑂ଶ

ଵ(𝑠) = 𝑂ଷ
ଵ(𝑠) = 𝑅(𝑠) − 𝑌(𝑠)                (56) 

Then, 

𝑌(𝑠) = 𝐺(𝑠)(𝑤ଵ + 𝑤ଶ𝑠ିଵ + 𝑤ଷ𝑠)(𝑅(𝑠) − 𝑌(𝑠))               (57) 

and: 

௒(௦)

ோ(௦)
=

ீ(௦)(௪భା௪మ௦షభା௪య௦)

ଵାீ(௦)(௪భା௪మ௦షభା௪య௦)
                  (58) 

If 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ are taken as the coefficients of a classical proportional, integral, 

and derivative controller, i.e., 𝐾୔, 𝐾୍, and 𝐾஽, respectively, the resultant control 

system will perform similar to an auto-tune SISO PID control system whose 

closed-loop transfer function is expressed as: 

𝑇(𝑠) =
ீ(௦)(௄ುା௄಺௦షభା௄ವ௦)

ଵାீ(௦)(௄ುା௄಺௦షభା௄ವ௦)
                  (59) 
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The weight learning algorithm illustrated in Table 3-2 can be customized for 

SISO system applications and described in Table 3-3 where 𝜆 is the learning rate. 

 

𝐾௉(ℎ + 1) = 𝐾௉(ℎ) − 𝜆𝛾(ℎ) ෍(𝑂ଵ
ଵ(ℎ)[𝑘])

௠

௞ୀଵ

] 

𝐾ூ(ℎ + 1) = 𝐾ூ(ℎ) − 𝜆𝛾(ℎ) ෍(𝑂ଶ
ଵ(ℎ)[𝑘])

௠

௞ୀଵ

] 

𝐾஽(ℎ + 1) = 𝐾஽(ℎ) − 𝜆𝛾(ℎ) ෍(𝑂ଷ
ଵ(ℎ)[𝑘])

௠

௞ୀଵ

] 

𝛾(ℎ) = ∑ (𝑦(ℎ)[𝑘] − 𝑟(ℎ)[𝑘])௠
௞ୀଵ

∑ (௬(௛)[௞])೘
ೖసభ ି∑ (௬(௛ିଵ)[௞])೘

ೖసభ

∑ (ைమ(௛)[௞])೘
ೖసభ ି∑ (ைమ(௛ିଵ)[௞])೘

ೖసభ

  

Table 3-3. Specified weight learning algorithm for auto-tune classical PID controller 

Following the Lyapunov stability analysis described in (45)-(52) and redefining 

(53) as: 

𝐻(ℎ) = ∑
డா(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ  ≅ ∑

∆ா(௛)[௞]

∆௪ೣ(௛)

௠
௞ୀଵ                    (60) 

the condition for ∆𝑉(ℎ) < 0 yields: 

0 < 𝜆 <
ଶ௠ா(௛)

ு(௛)మ
                       (61) 

 Simulation results 

Simulation studies using Matlab are carried out to evaluate the performances of 

the proposed MANNC in tracking set-points, reducing unwanted overshoots or 

undershoots, and securing the global stability of a closed-loop system during the 

system’s entire control process. The structure of the MANNC proposed in Section 

3.2, the dynamic neural network algorithm developed in Section 3.3, and the 

stability criteria checking condition discussed in Section 3.4 are used in three 

simulation cases, each presenting a type of square MIMO systems. They are: a 

time-invariant nonlinear system, a time-variant nonlinear system, and a hybrid 

system.  
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 Case 1 – Application of MANNC on a time-invariant nonlinear square 
MIMO system 

In this case, a drum-boiler plant (Figure 3-5) which is a generic nonlinear time-

invariant coupled two-input two-output system with heat flow rate and mass 

flow rate as inputs and pressure and level as outputs, is chosen. The 

nonlinearities of the plant cause the system dynamic characteristics to vary with 

operating conditions. In addition, cross-couplings and parameter variations of 

the plant makes it a challenging case to control. For years, constructing a 

nonlinear controller directly from the original nonlinear model of the drum-boiler 

has been a general approach to use in order to improve the system performance 

in compensating the plant’s nonlinearities. In this study, however, the proposed 

model-free MANNC method is used in which the nonlinear model of the drum-

boiler is not required by the controller design process and only the inputs and 

outputs of the plant are used for the construction of the controller. The 

performances of the MANNC in improving the system set-point tracking time 

and reducing undesirable overshoots are compared with those of the best and 

foremost existing neural network method reported in the literature.  

 

Figure 3-5. Two-input two-output drum-boiler system 

The nonlinear state equations describing the relationships between the inputs 

and outputs of the drum-boiler system of Figure 3-5 are written as:  

𝑥ଵ̇(𝑡) = −𝑥ଵ(𝑡) + 𝑢ଵ(𝑡)                     (62) 

𝑦ଵ(𝑡) = 𝑥ଵ(𝑡) + 2𝑥ଵ
ଷ(𝑡)                    (63) 

𝑥ଶ(𝑡) = 𝑦ଵ(𝑡) + 𝑢ଶ(𝑡)                     (64) 

𝑦ଶ̈(𝑡) + 2𝑦ଶ̇(𝑡) + 𝑦ଶ(𝑡) = 𝑥ଶ̇(𝑡) + 2𝑥ଶ(𝑡)                  (65) 
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where “dot” denotes time derivative, 𝑢ଵ(𝑡) and 𝑢ଶ(𝑡) are respectively heat flow 

rate and mass flow rate as the system inputs, 𝑦ଵ(𝑡) and 𝑦ଶ(𝑡) are respectively 

pressure and level as the system outputs, and 𝑥ଵ(𝑡)  and 𝑥ଶ(𝑡)  are the state 

variables. The simulation block diagram of the given nonlinear system is 

presented in Figure 3-6 where box ‘Fcn1’ produces the highly nonlinear 

relationship between the inputs and outputs of the system. Due to the fact that 

Input 1 affects both Output 1 and Output 2, the system is also a cross-coupled 

MIMO system and, thus, will not be able to be controlled by multiple ANNC 

controllers introduced in [18], nor by any other SISO or non-coupled MIMO 

counterparts.  

 

Figure 3-6. Two-input two-output nonlinear drum-boiler model 

Figure 3-7 demonstrates the implementation of the proposed MANNC in the two-

input two-output system. In this neural network, 12 weights in the hidden layer 

must be trained. 
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Figure 3-7. Two-input two-output system controlled by MANNC  
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The following desired outputs are selected for the drum-boiler system.  

- 𝑟ଵ(𝑡) = 5.0𝑢(𝑡 − 1) where 𝑢(𝑡) is the standard unit step function. 

- 𝑟ଶ(𝑡) = 0.2𝑟(𝑡 − 1) where 𝑟(𝑡) is the standard unit ramp function. 

These desired outputs represent a scenario in which the pressure will tend to 

reach 5 bars and the level will increase following a smooth ramp function. The 

ramp function is chosen to be the set-point for Output 2 in order to make the 

MANNC control more challenging. The objective is to find suitable values for the 

weights of the output layer so as to force the outputs, 𝑦ଵ and 𝑦ଶ, to follow the 

desired set-points, 𝑟ଵ and 𝑟ଶ, respectively.  

To apply the MANNC to the drum-boiler system, all initial weights are set to 1, 

the learning rates are set to 0.1 ( 𝜆ଵ = 𝜆ଶ = 0.1), and the number of samples is set 

to 40 (𝑚 = 40). After repeating, simultaneously, the online learning algorithm 

(Table 3-2) and the Lyapunov stability criteria check (Figure 3-3) for 20 times, 

the final weight values of the output layer of the MANNC neural network are 

obtained and reported in Table 3-4. 

𝑤௟,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

𝑙 = 1 10.23 0.33 6.93 -2.23 -2.13 -2.10 

𝑙 = 2 -1.35 3.59 1.36 3.22 3.24 1.94 

Table 3-4. Final weight values of the output layer 

 

During the running of the weight training algorithm, the control system remains 

stable all the time as 𝜆ଵ  and 𝜆ଶ  are kept unchanged. If the control system 

becomes unstable at a training step, the learning rates will be reduced and the 

learning algorithm will be continued with a lower training speed that is dictated 

by the new learning rates. Applying the final adjusted weights (Table 3-4) to the 

control system, Figure 3-8 shows that Output 1 tracks the desired step output 

properly with a zero-overshoot. This zero-overshoot effect is most desirable for 

many industrial control systems, as unwanted overshoots during set-point 

changes can bring devastated results to the industrial plants. For example, when 

filling a hazardous liquid tank in a water plant, overshoots can result in 

overflows if the set-point is close to the tank’s height [49]. 
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Figure 3-8. Case 1 - Output one and desired output one (MANNC) 

Figure 3-9 demonstrates that Output 2 tracks the desired ramp output properly, 

and in less than 9 samples the output can reach the desired level with a less 

than 5% error.  

 

Figure 3-9. Case 1 - Output two and desired output two (MANNC) 

To demonstrate the anticipated highly improved performance of the MANNC 

over its existing adaptive counterparts, a most recent neural network controller 

(named PIDNN) introduced in [39] is chosen for the drum-boiler system. The 

PIDNN uses a learning algorithm that is based on two consecutive time-samples. 

The weights of the PIDNN are set after running the learning algorithm for 20 

times – the same condition upon which the weights of the MANNC are obtained. 

The comparison results are given in Figure 3-10 and Figure 3-11. It is seen that 

using the PIDNN method, Output 1 presents a 22% undesirable overshoot and 

Output 2 exhibits a slower set-point tracking with larger fluctuations.  
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Figure 3-10. Case 1 - Output one and set-point one (PIDNN) 

 

Figure 3-11. Case 1 - Output two and set-point two (PIDNN) 

The comparison results between the MANNC and the PIDNN control effects 

with an equal number of trainings are given in Table 3-5. It is evident that, as 

compare to the PIDNN control system, the MANNC control system can 

significantly reduce the required training time (by 59%), achieve a zero-

overshoot (100% reduction), and reach the 5% and 2% error bands in much 

shorter times (47% and 50% faster for Output 1, and 47% and 36% faster for 

Output 2). These results demonstrate a superior performance of the MANNC 

over its existing counterpart. In particular, Output 1 under MANNC control 

exhibits a deadbeat-like response with minimum rise-time, minimum settling-

time, no overshoot, and no steady-state error, comparable with an optimal 

closed-loop response. This remarkable result is attributed to the MANNC 

strategy that uses the accumulated error and the response of the system in 

consecutive learning steps rather than in consecutive sample times.  
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Controller Number 

of 

trainings 

Time of 

training 

Output 1 

Overshoot  

Output 1 

maximum 

error less 

than 5%  

Output 1 

maximum 

error less 

than 2% 

Output 2 

maximum 

error less 

than 5%  

Output 2 

maximum 

error less 

than 2% 

MANNC 20 1.48 s 0% 8 s.t.* 10 s.t. 9 s.t. 14 s.t. 

PIDNN 20 3.67 s 22% 15 s.t. 20 s.t. 17 s.t. 22 s.t. 

*s.t. stands for sample times. 

Table 3-5. Case 1 - MANNC vs. PIDNN 

Figure 3-12 and Figure 3-13 represent, respectively, the accumulated error versus 

the iteration number of the MANNC weight learning algorithm for Output 1 and 

Output 2. The errors shown in these figures are the differences between the 

actual outputs and the desired outputs. It is observed that, with the MANNC, 

the magnitudes of the errors generally decrease as the number of iterations in 

the weight learning algorithm increases. This is an evidence for the convergence 

of the proposed learning algorithm in Section 3.3, and is viewed as a significant 

result that demonstrates the suitable performance of the proposed MANNC for 

the considered coupled two-input two-output nonlinear system. As shown in 

these figures, with 35 trainings, the errors are reasonably low and the values of 

the weights can be locked in at this point. By continuing the weight adjustment 

algorithm up to 50 times, the steady-state errors for both outputs become nearly 

zero. In general, choosing the optimal training number in this method depends 

on the particular application where the controller is employed, and implies a 

trade-off between the control speed and the control performance of the closed-

loop system. It is possible to pre-define a desired accumulated error, so that 

when the actual error reaches to that value the training process stops and the 

weights become locked until the next change in the system happens (e.g. a 

change in the model of the system and/or a change in any of the set-points). 
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Figure 3-12. Case 1 - Error value for Output one versus the repeating number 

 

Figure 3-13. Case 1 - Error value for Output two versus the repeating number 

 Case 2 – Application of MANNC on a time-variant nonlinear MIMO 
system 

In this case, a discrete-time highly-nonlinear time-variant two-input two-output 

coupled system is chosen to test the suitability and performance of the MANNC 

for time-variant MIMO systems. The chosen system is expressed as:  

 𝑦ଵ(𝑘 + 1) =
ଵ

௬భ
మ(௞)ାଵ

(0.8𝑦ଵ(𝑘) + 𝑣ଵ(𝑘 − 2) + 0.2𝑣ଶ(𝑘 − 3))                  (66) 
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𝑦ଶ(𝑘 + 1) =
ଵ

௬మ
మ(௞)ାଵ

(0.9𝑦ଶ(𝑘) + 0.3𝑣ଵ(𝑘 − 3) + 𝑣ଶ(𝑘 − 2))             (67) 

where 𝑦ଵ(𝑘)  and 𝑦ଶ(𝑘)  are the system outputs, and 𝑣ଵ(𝑘)  and 𝑣ଶ(𝑘)  are the 

system inputs. The desire outputs are selected as 𝑟ଵ(𝑘) = 0.6 and 𝑟ଶ(𝑘) = 0. 

By applying, simultaneously, the online learning algorithm (Table 3-2) and the 

stability criteria check (Figure 3-3) for 50 times, the final weight values of the 

output layer of the MANNC neural network are obtained and reported in Table 

3-6. 

𝑤௟,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

𝑙 = 1 3.34 2.43 4.73 -5.12 -8.13 -2.19 

𝑙 = 2 -11.30 -4.44 -7.74 6.32 3.55 3.82 

Table 3-6. Final weight values of the output layer 

The simulation results of the final adjusted weights of the MANNC are shown in 

Figure 3-14 and Figure 3-15. In order to compare the MANNC results with those 

of a properly-selected existing counterpart, the PIDNN introduced in [39] is 

applied to the same system. The system outputs under the PIDNN control are 

shown in Figure 3-16 and Figure 3-17. 

 

Figure 3-14. Case 2 - Output one and desired output one by MANNC 

 

Figure 3-15. Case 2 - Output two and desired output two by MANNC 
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Figure 3-16. Case 2 - Output one and desired output one by PIDNN 

 

Figure 3-17. Case 2 - Output two and desired output two by PIDNN 

It is demonstrated that both outputs of the MANNC control system track the 

desired outputs faster than those of the PIDNN control system. In addition, a 

zero-overshoot in Output 1 using the MANNC is achieved, which is a significant 

result as this is not achievable by using the PIDNN. Decreasing the accumulated 

error by increasing the number of iterations, as shown in Figure 3-18, 

demonstrates the convergence of the proposed learning algorithm for the 

MANNC evidently. Table 3-7 presents the performance comparison between the 

MANNC controller and the PIDNN controller with equal number of trainings. As 

can be seen, the MANNC control results outperform the PIDNN control results 

in all aspects. 

 

Figure 3-18. Case 2 - Accumulated error vs repeating number for MANNC 
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Controller Number  

of  

trainings 

Time  

of  

training 

Output 1 

Overshoot  

Output 1 

maximum 

error less 

than 5%  

Output 2 

maximum 

error less than 

5%  

MANNC 50 2.39 s 0% 0.01 s 0.05 s 

PIDNN 50 3.99 s 22% 0.03 s 0.08 s 

Table 3-7. Case 2 - MANNC vs. PIDNN 

 Case 3 – Application of MANNC on a hybrid system 

Since the MANNC has been designed as a universal controller for black-box 

square MIMO systems, in this case, the performance of this controller is tested 

on a hybrid system. By definition, a hybrid system is a dynamic system that 

switches between continuous states and, thus, involves both continuous and 

discrete behaviours. Due to sudden changes in system dynamics at the time of 

switching between two states, conventional control methods are usually 

unsuccessful for hybrid systems. 

In this study, a two-tank plant shown in Figure 3-19 is selected to test the 

control performance of the MANNC.  

 

Figure 3-19. Two-tank hybrid system 
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The plant consists of two tanks, where tank T1 is filled by flow 𝐹ଵ through a fully 

open valve 𝑉ଵ . The liquid is transferred from tank T1 into tank T2 via a 

connecting pipe. Valve 𝑉ଶ is an on-off valve which is either fully open or fully 

closed to adjust flow 𝐹ଶ discretely. Similarly, flow 𝐹ଷ is adjusted by another on-off 

valve 𝑉ଷ.    

When the behaviour of the given plant is modelled, it must be considered that 

the liquid levels, 𝐻ଵ and 𝐻ଶ, respectively for both tanks will change separately 

when 𝐻ଶ crosses level 𝐿. At 𝐻ଶ = 𝐻ଵ + 𝐿 the direction of flow through the inter-

connecting pipe is reversed. Hence, for 𝐹ଶ, two dynamics must be modelled as: 

𝐹ଶ = ቊ
𝑘ଵ. 𝑉ଶ. ඥ(𝐻ଵ − 𝐻ଶ + 𝐿)                        𝑖𝑓     𝐻ଶ > 𝐿 

       𝑘ଵ. 𝑉ଶ. ඥ(𝐻ଵ)                                          𝑖𝑓     𝐻ଶ ≤ 𝐿          
             (68) 

and: 

𝐻̇ଵ = (𝐹ଵ − 𝐹ଶ)/𝑘ଷ                   (69) 

𝐻̇ଶ = (𝐹ଶ − 𝑘ଶ. 𝑉ଷ. ඥ𝐻ଶ)/𝑘ସ                  (70) 

where 𝑘ଵ, 𝑘ଶ, 𝑘ଷ, and 𝑘ସ are constants depending on characteristic coefficients of 

the pipes and the cross-section areas of the tanks, and 𝑉ଶ and 𝑉ଷ represent the 

Boolean values in which “1” and “0” signify, respectively, a fully-open valve and a 

fully-closed valve.  

It is evident that the given plant is a nonlinear hybrid system with two inputs 

(𝑉ଶ and 𝑉ଷ) and two outputs (𝐻ଵ and 𝐻ଶ). The control problem is defined as: 

Using the on-off control valves 𝑉ଶ and 𝑉ଷ, the liquid heights (𝐻ଵ and 𝐻ଶ) in tanks 

should be derived from an initial state of 𝐻଴ = (0.01,0.01) to a target area of 𝑅୘ 

with the following conditions: 

𝐻 ∈ [0,10] × [0,8]                   (71) 

𝐻୤ ∈ 𝑅் = [6,10] × [6,8]                  (72) 

where 𝐻୤ represents the final desired heights located in the target area (𝑅்). In 

addition, the forbidden areas, 𝑅ிଵ and 𝑅ிଶ, are considered as: 

𝐻 ∉ 𝑅ிଵ = [0,5] × [4,8]                  (73) 
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𝐻 ∉ 𝑅ிଶ = [4,10] × [0,3]                  (74) 

The desired liquid heights that lead the actual liquid heights to the target area 

are defined as: 

𝑅ுଵ = 0.08𝑟(𝑡)                             (75) 

𝑅ுଶ = ቐ

𝑅ுଵ                                𝑖𝑓  𝑅ுଵ < 3.5
3.5                        𝑖𝑓 3.5 ≤ 𝑅ுଵ < 5.5

1.8𝑅ுଵ − 6.4                𝑖𝑓 5.5 ≤ 𝑅ுଵ ≤ 8
                 (76) 

where 𝑟(𝑡) is a standard ramp function. The final desired heights for both tanks 

in this simulation are selected as eight meters i.e. 𝐻୤ = [8,8].  

After repeating, simultaneously, the online learning algorithm (Table 3-2) and 

the stability criteria check (Figure 3-3) for 20 times, the state trajectories of the 

MANNC control system for the liquid heights are achieved and are shown in 

Figure 3-20 where the forbidden areas and the desired track are also illustrated. 

 

Figure 3-20. Actual and desired state trajectories  

It is clear that by using the MANNC in this complex nonlinear hybrid control 

problem, the liquid height trajectory can pass the narrow zone between the 

forbidden areas successfully and eventually reach the target area. This is 
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achieved due to the powerful and fast set-point tracking property of the proposed 

method that can cope with changes in the system dynamics. In addition, the 

liquid heights of the two tanks versus time during this process are shown in 

Figure 3-21. 

 

Figure 3-21. Height of liquid in tank T1 and tank T2 

The above results are achieved using the final weight values of the output layer 

of the MANNC neural network, shown in Table 3-8. 

𝑤௟,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

𝑙 = 1 3.1 1.21 2.43 -1.68 -4.34 -5.2 

𝑙 = 2 -0.13 -1.58 4.28 0.88 2.06 3.41 

Table 3-8. Final weight values of the output layer 

Since the final desired liquid heights can be selected as any points in the target 

area, simulation studies are carried out for several points in this area and the 

accumulated errors are computed in a range of 285 to 310, as shown in Figure 

3-22. It is clear that, regardless of the location of the selected target point in the 

target area, the accumulated error is restricted and the convergence is evidently 

achieved. This justifies the suitability and adequacy of the proposed MANNC in 

controlling the highly complex hybrid system.  
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Figure 3-22. Accumulated error for the target area 

 Conclusion 

By using a powerful learning algorithm designed for its neural network structure 

and making use of the parallel computational strength offered by its neural 

network structure, the proposed model-free MANNC is capable of controlling 

nonlinear square MIMO systems with significant cross-couplings satisfactorily 

within a short period of time. The MANNC uses a new auto-tune dynamic online 

learning algorithm with accumulated error back-propagation for the proposed 

neural network structure, and effectively tunes its weights to achieve the 

desirable control outcomes. The learning algorithm is integrated with the 

Lyapunov stability criteria while running and applied to the control system. The 

effectiveness of the proposed MANNC is validated via simulation studies on 

typical time-invariant and time-variant square MIMO systems. When compared 

with the best representative of existing counterparts (i.e., the PIDNN) for 

applications to both time-invariant and time-variant systems, the MANNC in the 

time domain is seen to provide less overshoot, less settling time, less 

accumulated errors, and faster set-point tracking. By selecting an appropriate 

number of samples, the MANNC can be effectively used for several types of 

square MIMO control systems in industrial applications, especially when 
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overshoots in outputs are undesirable and a fast set-point tracking is critical. 

The simulation results for controlling a complex and challenging MIMO hybrid 

system demonstrate the superior performance of the MANNC when it deals with 

significant changes in the system dynamics. As a future study, adding more 

layers to the neural network structure of the MANNC can be considered in order 

to further improve the control performance especially for highly nonlinear 

plants. 
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 CHAPTER 4: MODIFICATION of MODEL-FREE 
MULTIVARIABLE ADAPTIVE NEURAL NETWORK 
CONTROLLER USING TWO DYNAMIC LAYERS FOR 
CONTROLLING NONLINEAR SQUARE MIMO SYSTEMS 

Aim 

In this chapter, a Multivariable Adaptive Neural Network Controller with two 

dynamic layers (MANNC2) for application in square MIMO systems is 

introduced. This controller is designed in such a way that the new proposed 

structure is able to improve the control performance of the Multivariable 

Adaptive Neural Network Controller (MANNC) introduced in Chapter 3 in 

controlling coupled square MIMO systems with highly nonlinear characteristics. 

The MANNC2 presented in this chapter will be able to be re-structured and 

further developed for controlling black-box non-square MIMO systems in 

Chapter 5 as per diagram below: 

Chapter 2
Introducing adaptive neural 
network controller (ANNC) 

for SISO

Chapter 3
Developing ANNC to multivariable 
adaptive neural network controller  

for square MIMO (MANNC)

Chapter 4
Developing MANNC to multivariable 
adaptive neural network controller 
with 2-layer  for nonlinear square 

MIMO (MANNC2)

Chapter 5
Developing MANNC2 to multivariable 

adaptive neural network controller 
with 2-layer  for nonlinear non-square 

MIMO (MANNCNS)
 

Description 

To achieve this aim, firstly, by considering the basic structure of the Adaptive 

Neural Network Controller (ANNC) introduced in Chapter 2 and using the 

neural network structure of the MANNC proposed in Chapter 3, a modified 

multivariable neural network structure for controlling highly nonlinear square 

MIMO systems is represented. By acknowledging the fact that using two 

adjustable layers in neural networks can potentially improve the performance of 

a controller for nonlinear systems, the new modified neural network structure is 

designed with two dynamic layers. Subsequently, modified Lyapunov stability 

criteria together with a set of dynamic learning methods are developed for the 

new neural network structure. The modified learning algorithms for both layers 

and their associated stability-criterion checks are executed online 

simultaneously in order to guarantee the real-time performance of the controller 
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and to ensure the corresponding global asymptotical stability of the resulting 

control system during the neural network weight training process at all time. To 

demonstrate the improved performance of the MANNC2 versus that of the 

MANNC introduced in Chapter 3 for nonlinear systems, a time-invariant drum 

boiler and a twin-tank level-control system are chosen for which the new 

MANNC2 is tested and compared with the results of the MANNC. The above-

mentioned contents are described in a paper: 

 Arash Mehrafrooz and Fangpo He, “Modification of Model-Free 

Multivariable Adaptive Neural Network Controller Using Two Dynamic 

Layers for Controlling Nonlinear Square MIMO Systems” Submitted to 

Journal of “IEEE Transactions on Control Systems Technology” 

The outline of the paper is given below: 

 INTRODUCTION .............................................................................................. 113 

 MULTIVARIABLE ADAPTIVE NEURAL NETWORK CONTROLLER (MANNC2) ...... 117 

 CLOSED-LOOP STRUCTURE OF MANNC2 .................................................... 117 

 STRUCTURE OF SUB-MANNC2 (S-MANNC2) ............................................ 119 

 MATRIX REPRESENTATION ........................................................................... 120 

 LEARNING ALGORITHM ................................................................................... 123 

 OUTPUT LAYER WEIGHT LEARNING ALGORITHM ......................................... 125 

 HIDDEN LAYER WEIGHT LEARNING ALGORITHM ......................................... 126 

 STABILITY ANALYSIS ...................................................................................... 133 

 SIMULATION RESULTS .................................................................................... 139 

 CASE 1 – APPLICATION OF MANNC2 ON DRUM BOILER MIMO SYSTEM ...... 139 

 CASE 2 – APPLICATION OF MANNC2 ON TWIN-TANK LEVEL-CONTROL SYSTEM . 

  .................................................................................................................... 148 

 CONCLUSION ................................................................................................. 153 

REFERENCES ....................................................................................................... 155 

 

Results 

The original contribution of this study is the development of an advanced control 

method including the new neural network structure of the controller and its 
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associated learning algorithm as applied to coupled square multivariable 

systems. The obtained simulation results clarify the significantly improved set-

point tracking and substantial error reduction with the controller’s powerful 

auto-tuning capability compared to the MANNC introduced in Chapter 3 for non-

linear square MIMO systems while the system remains stable during the entire 

training process. 

Conclusion 

Overall, this chapter demonstrates that using the powerful learning abilities 

inherent in a neural network approach, the proposed MANNC2 is capable of 

controlling model-free coupled MIMO systems with highly nonlinear properties 

to achieve more reliable control outcomes as compared to the MANNC. Although 

the current structure of the MANNC2 is only designed for square MIMO 

systems, it potentially can be further developed into a universal controller for 

non-square MIMO systems with nonlinear characteristics, as demonstrated in 

the next chapter. 
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Modification of Model-Free Multivariable 
Adaptive Neural Network Controller Using 

Two Dynamic Layers for Controlling 
Nonlinear Square MIMO Systems 

Arash Mehrafrooz1, aand Fangpo He1, b  
1Advanced Control Systems Research Group, College of Science and Engineering, Flinders 

University, Australia 
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Abstract. In this paper, a novel model-free Multivariable Adaptive Neural Network 

Controller with two-dynamic layers (MANNC2) is introduced for controlling black-box 

coupled square Multi-Input Multi-Output (MIMO) systems with highly nonlinear 

characteristics. Specific learning algorithms with accumulated gradients in the error 

back-propagation algorithm are developed for the output and hidden layers of the 

MANNC2, and the Lyapunov stability criteria for ensuring the real-time global 

asymptotic stability of the ensuing control system are established. The performance of 

the two-layer MANNC2 is compared with its single-layer predecessor, the MANNC 

introduced in [1], in two highly nonlinear square MIMO cases. The simulation results 

approve the superiority of the MANNC2 over its counterpart. The usefulness of the 

MANNC2 in dealing with a wider range of nonlinear characteristics makes it a potential 

candidature for use in many practical industrial applications. 

Key Words – square MIMO; coupled MIMO; multi-layer neural networks; accumulated 
error back-propagation; Nonlinear control; Lyapunov stability;   

 Introduction 

Current advanced control techniques (such as adaptive control, robust control, 

sliding-mode control, and back-stepping control) that are used for controlling 

nonlinear Multiple-Input Multiple-Output (MIMO) systems are largely 

developed using model-based approaches [2]. Although model-based approaches 

can function satisfactorily in many industrial applications, they suffer from 

several limitations in real-time operations. For instance, a model-based 

controller may be difficult to cope with modelling errors or structural 

uncertainties. It may have a limited effective working range, and produce 



Chapter 4 

114 
 

uncertain parameters that may need to be properly identified in a timely fashion 

during online operations [3, 4]. In addition, model-based nonlinear MIMO 

controllers are usually limited to specific classes of nonlinear systems or 

applications, and cannot be generalised as universal or generic control strategies. 

Considering these limitations associated with model-based approaches, model-

free approaches [5] that can avoid the complications involved in system 

modelling and identification have been adopted in engineering control systems in 

recent years. In a model-free approach, a massive amount of input/output data 

samples of a system of concern is used for controller design and performance 

monitoring, without the need for a system model. This is particularly useful 

when no sufficient information about the system is available for producing a 

priori model of the system. For improving the system dynamic performance, a 

model-free approach can afford to use a more advanced control strategy that 

would otherwise rely heavily on the accuracy of an existing model of the system 

and thus be vulnerable for any changes in the system if a model-based approach 

were to be employed. Several model-free control system designs can be found in 

the recent literature [6-11], in which the effectiveness of the model-free 

approaches in industrial applications is demonstrated.  

From the literature, neural network techniques have been seen as a popular and 

powerful model-free approach that can be employed for controlling poorly-known 

nonlinear dynamics [12, 13]. Using their highly adequate approximation 

capabilities catered for real-time operations, various neural network control 

schemes have been applied to industrial plants where a required modelling 

process would have been challenging [14-16]. In [1], a model-free Multivariable 

Adaptive Neural Network Controller (MANNC) was introduced, in which a 

neural network of one layer of adjustable weights is used for controlling black-

box coupled square (𝑛 × 𝑛 ) MIMO systems. Although the MANNC has been 

successfully tested using real industrial examples with different types of MIMO 

characteristics, and its superior performance has been evident shown as 

compared to its most competitive existing counterpart, its potential in dealing 

with highly nonlinear systems is still limited by its inherent nature of being a 

single-dynamic layer controller. Typically, a single-dynamic layer neural 
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network is in theory considered as a linear classifier, and as such may not be 

very effective in learning highly nonlinear relationships such as the “XOR” 

function among other nonlinearly separable classification problems [17-19]. 

Though the MANNC has not been purposely designed for working with “XOR”-

like nonlinear systems and the time-varying nature of the MANNC can indeed 

account for nonlinearities to a certain degree, the capacity of the controller can 

still be significantly improved if the number of its dynamic layer is increased. As 

supported by the literature, to maximize the control outcomes for systems with 

highly nonlinear characteristics and to develop a more universal controller 

useful for a wider range of nonlinear systems, neural networks with more than 

one-dynamic layer are preferred. For this reason, in this study, the former 

single-layer MANNC is further developed to include an additional layer and to 

form a new Multivariable Adaptive Neural Network Controller with two-

dynamic layers (MANNC2). Unlike the two-layer Adaptive Neural Network 

Controller (ANNC) introduced in [13] for Single-Input Single-Output (SISO) 

systems where the hidden layer of the controller is static with no associated 

learning algorithm, the newly proposed MANNC2 will be for coupled square 

MIMO systems with both layers of the controller being dynamic and with their 

associated learning algorithms. Furthermore, unlike many existing neural-

network controllers where the critical closed-loop system stability issue has 

either been ignored [20-25] or been bypassed (by using conservative learning 

rates that will reduce the instability risk, but will sacrifice the training speed 

and lead to a low quality control performance [26]), the stability issue of the 

MANNC2 method will be investigated in this study to bring up the necessary 

conditions upon which the resultant closed-loop system stability is guaranteed in 

real-time operations. It is anticipated that the proposed MANNC2 will 

outperform the MANNC and further advance the performances presented by 

other existing counterparts. 

The proposed MANNC2 will be designed to possess the following features that 

can distinguish itself from the previous MANNC and the other existing 

counterparts: 

(i) A new two-dynamic layer neural-network structure with cross-coupled 
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connections in the output layer will be used to construct the MANNC2 

– This structure will enable the MANNC2 to control coupled square 

MIMO systems with highly nonlinear characteristics.  

(ii) Specific learning algorithms with accumulated gradients in the error 

back-propagation algorithm will be developed for the output and 

hidden layers of the MANNC2, together with the development of new 

partial derivative estimations for the MANNC2 – This development 

will give the MANNC2 a much-improved set-point tracking ability over 

those of the MANNC and the other existing counterparts ([25], [12, 27-

29]). 

(iii) The closed-loop system stability of the MANNC2 will be investigated 

using the Lyapunov stability conditions to yield the constraints for the 

weight training of both dynamic layers – This investigation will result 

in a simultaneous weight-training and stability-checking process of the 

MANNC2 to be executed in real time in order to guarantee its closed-

loop system stability at all time.  

(iv) Dynamic learning rates for the learning algorithms of the MANNC2 

will be used to allow the controller to automatically adjust itself to 

avoid its neural networks falling into the local minimum – This 

arrangement will permit a continuous weight training process of the 

MANNC2 to deliver improved output responses with minimum errors, 

less overshoots and undershoots, and faster settling times. 

(v) The accumulated errors versus the numbers of iterations of the 

learning algorithms of the MANNC2 will be automatically monitored 

constantly to produce an optimal training-step number for each specific 

application based on required control specifications – This optimal 

number will allow the MANNC2 to determine its ideal control speed 

whilst maintaining its best control performance.   

It should be pointed out that although the MANNC2 is designed for square 

MIMO systems as many multivariable systems in industrial applications are in 

square forms [30], it can be applied to a non-square MIMO case where the given 

system can be converted into a square form by adding or removing its inputs or 
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outputs. Non-square multivariable industrial plants can often be reformed into 

desirable square MIMO forms with which the proposed MANNC2 can be applied. 

To demonstrate the proposed MANNC2, the rest of this paper is organised as 

follows. In Section 4.2, the structure and matrix representation of the new 

neural- network-based adaptive controller is introduced. In Section 4.3, the 

learning method of the neural networks using the error back-propagation 

algorithm is described. The closed-loop system stability criteria are developed in 

Section 4.4. Section 4.5 demonstrates the simulation results where the proposed 

method is applied to two highly nonlinear MIMO cases and, in each case, the 

performance of the MANNC2 is compared with that of the former MANNC to 

validate the anticipated improvement quantitatively. Meaningful conclusions in 

relation to the MANNC2 design are given in Section 4.6.  

 Multivariable Adaptive Neural Network Controller (MANNC2) 

 Closed-loop Structure of MANNC2 

For the proposed P-type, I-type, and D-type neurons in [1], the outputs of these 

neurons in discrete form can be expressed respectively as: 

𝑜௉(𝑘) = ቐ

1                                        𝑛𝑒𝑡௉(𝑘) > 1

𝑛𝑒𝑡௉(𝑘)               − 1 ≤ 𝑛𝑒𝑡௉(𝑘) ≤ 1

−1                                      𝑛𝑒𝑡௉(𝑘) < −1

      (1) 

𝑜ூ(𝑘) = ቐ

1                                                        𝑛𝑒𝑡ூ(𝑘) > 1

𝑜ூ(𝑘 − 1) + 𝑛𝑒𝑡ூ(𝑘)        − 1 ≤ 𝑛𝑒𝑡ூ(𝑘) ≤ 1

−1                                                     𝑛𝑒𝑡ூ(𝑘) < −1

     (2) 

𝑜஽(𝑘) = ቐ

1                                                            𝑛𝑒𝑡஽(𝑘) > 1

𝑛𝑒𝑡஽(𝑘) − 𝑛𝑒𝑡஽(𝑘 − 1)        − 1 ≤ 𝑛𝑒𝑡஽(𝑘) ≤ 1

−1                                                            𝑛𝑒𝑡஽(𝑘) < −1

    (3) 

where 𝑜௑(𝑘) and 𝑛𝑒𝑡௑(𝑘) are the X-type neuron’s output and the X-type neuron’s 

sum of inputs at the 𝑘௧௛ sampling time, respectively, as illustrated in Figure 4-1.  
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X-type neuron
operator

Inputs Output

 

Figure 4-1.General structure of a X-type neuron 

Considering the structure of the ANNC proposed in [13] and the MANNC 

proposed in [1], a new Multivariable Adaptive Neural Network Controller with 

two- dynamic layers (MANNC2), illustrated in Figure 4-2 is proposed as a closed-

loop MIMO controller that is applicable to coupled square MIMO nonlinear 

systems. In the structure of the MANNC2, in contrast to the MANNC in [1], the 

errors of the outputs are not generated in the neural network structure. The sum 

of the weighted desired outputs and the weighted actual outputs are produced in 

the first dynamic layer of the controller and, consequently, propagated to the 

second dynamic layer of the controller. 
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Figure 4-2. MANNC2 control system structure 
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 Structurally, the MANNC2 contains three layers: the input layer, the hidden 

layer, and the output layer; only the latter two layers are dynamic layers. There 

are 2𝑛 P-type neurons within the input layer. In the hidden layer, there are 3𝑛 

neurons including P-type, I-type, and D-type neurons in clusters of three, 

respectively. In the output layer, there are 𝑛 P-type neurons to generate the 

outputs of the MANNC2. The outputs of the output-layer neurons enter into the 

multivariable system as inputs. There are 6𝑛 adjustable weights in the hidden 

layer which are multiplied by the input layer’s outputs to make the hidden 

layer’s inputs. In addition, there are 3𝑛ଶ adjustable weights in the output layer 

associated with the hidden-layer neurons, and they determine the impact of each 

neuron in the hidden layer and generate the multivariable system’s inputs. 

 Structure of Sub-MANNC2 (S-MANNC2) 

Using the concept of the sub-controllers introduced in [1] for the MANNC, the 

proposed MANNC2’s structure illustrated in Figure 4-2 is further decomposed 

into 𝑛-parallel sub-controllers each named as a Sub-MANNC2 (S-MANNC2) as 

shown in Figure 4-3. The functionality of the sub-controllers is to enable the 

neural-network controller to account for the cross-couplings of an 𝑛 × 𝑛 MIMO 

system of concern. For the 𝑙௧௛ S-MANNC2 with input 𝑟௟  (which is also the desired 

output) and (actual) output 𝑦௟  (𝑙 = 1, 2, … , 𝑛) as shown in Figure 4-3, there are in 

total three layers and six neurons. The first layer is called the input layer and 

contains two ‘P-type’ neurons. The desired output (𝑟௟) and the actual output (𝑦௟) 

propagate via those ‘P-type’ neurons to the second layer named the hidden layer. 

Within the hidden layer, there are three neurons each being a P-type, an I-type, 

and a D-type, respectively. The P-neuron is responsible for producing the total 

sum of the weighted desired outputs and the weighted actual outputs, the I-

neuron provides the necessary action to eliminate the steady-state error, and the 

D-neuron predicts the future behaviour of the error. The third layer is named as 

the output layer that accumulates the outputs of the hidden layer, generates the 

control commands, and applies the control commands to the 𝑛 × 𝑛 MIMO system. 

Since the MANNC2 is used for controlling coupled multivariable systems, the 

output neuron of each S-MANNC2 contains ‘𝑛’ number of inputs in order to be 
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able to generate each control command respective to all desired outputs and 

actual outputs. The inputs of the P-type, I-type, and D-type (named 𝑛𝑒𝑡ଷ௟ିଶ
ଵ , 

𝑛𝑒𝑡ଷ௟ିଵ
ଵ , and 𝑛𝑒𝑡ଷ௟

ଵ , respectively) and the outputs of these neurons (named 𝑂ଷ௟ିଶ
ଵ , 

𝑂ଷ௟ିଵ
ଵ , and 𝑂ଷ௟

ଵ , respectively) are related together by the activation functions of the 

neurons represented in (1)-(3). In the hidden layer of the S-MANNC2, there are 

in total six weights ( 𝑤ഥଵ,ଶ௟ିଵ , 𝑤ഥଶ,ଶ௟ିଵ ,  𝑤ഥଷ,ଶ௟ିଵ , 𝑤ഥଵ,ଶ௟,  𝑤ഥଶ,ଶ௟ , and  𝑤ഥଷ,ଶ௟ ) that are 

associated with the neurons of the input layer and hidden layer. Likewise, in the 

output layer of the S-MANNC2, there are in total three weights (𝑤ଵ,ଷ௟ିଶ, 𝑤ଵ,ଷ௟ିଵ, 

and 𝑤ଵ,ଷ௟) that are associated with the P-type, I-type, and D-type neurons in the 

hidden layer as well as the P-type neuron in the output layer. 
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Figure 4-3. S-MANNC2 structure 

 

 Matrix representation  

The matrix representation of a closed-loop square MIMO control system using 

the proposed MANNC2 (Figure 4-2) and S-MANNC2 (Figure 4-3) is derived as 

follows. 

 

Let 𝑂௟
ଶ  and 𝑦௟  be, respectively, the 𝑙௧௛  input and the 𝑙௧௛  output of the system 

where 1 ≤  𝑙 ≤ 𝑛, and let 𝐺௜௝ be the transfer function relating the 𝑗௧௛-component 

of the 𝑖௧௛  output (𝑦௜ ) to the 𝑗௧௛  input (𝑂௝
ଶ) where 1 ≤  𝑖 ≤ 𝑛 and 1 ≤  𝑗 ≤ 𝑛. The 



Chapter 4 

121 
 

vectors and matrices associated with Figure 4-2 and Figure 4-3 are defined as 

follows. 

𝑌 = 𝑌௡×ଵ = [𝑦ଵ 𝑦ଶ ⋯ 𝑦௟ ⋯ 𝑦௡]ଵ×௡
்              (4) 

𝑂ଶ = 𝑂௡×ଵ
ଶ = [𝑂ଵ

ଶ 𝑂ଶ
ଶ ⋯ 𝑂௟

ଶ ⋯ 𝑂௡
ଶ]ଵ×௡

்
               (5) 

𝐺 = 𝐺௡×௡ =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺ଵଵ

𝐺ଶଵ

⋮

𝐺ଵଶ

𝐺ଶଶ

⋮

⋯ 𝐺ଵ௟ ⋯ 𝐺ଵ௡

⋯ 𝐺ଶ௟ ⋯ 𝐺ଶ௡

   ⋮
𝐺௟ଵ

⋮
𝐺௡ଵ

𝐺௟ଶ

⋮
𝐺௡ଶ

⋯ 𝐺௟௟ ⋯ 𝐺௟௡

 ⋮   ⋮
⋯ 𝐺௡௟ ⋯ 𝐺௡௡⎦

⎥
⎥
⎥
⎥
⎤

௡×௡

                             (6) 

𝑛𝑒𝑡ଶ = 𝑛𝑒𝑡௡×ଵ
ଶ = [𝑛𝑒𝑡ଵ

ଶ 𝑛𝑒𝑡ଶ
ଶ ⋯ 𝑛𝑒𝑡௟

ଶ ⋯ 𝑛𝑒𝑡௡
ଶ]ଵ×௡

்
              (7) 

𝑊 = 𝑊௡×ଷ௡

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଵ

𝑤ଶ,ଵ

⋮

𝑤ଵ,ଶ

𝑤ଶ,ଶ

⋮

𝑤ଵ,ଷ ⋯ 𝑤ଵ,ଷ௟ିଶ 𝑤ଵ,ଷ௟ିଵ

𝑤ଶ,ଷ ⋯ 𝑤ଶ,ଷ௟ିଶ 𝑤ଶ,ଷ௟ିଵ

   ⋮
𝑤௟,ଵ

⋮
𝑤௡,ଵ

𝑤௟,ଶ

⋮
𝑤௡,ଶ

𝑤௟,ଷ ⋯ 𝑤௟,ଷ௟ିଶ 𝑤௟,ଷ௟ିଵ

    ⋮
𝑤௡,ଷ ⋯ 𝑤௡,ଷ௟ିଶ 𝑤௡,ଷ௟ିଵ

 

𝑤ଵ,ଷ௟

𝑤ଶ,ଷ௟

⋮

⋯ 𝑤ଵ,ଷ௡ିଶ 𝑤ଵ,ଷ௡ିଵ 𝑤ଵ,ଷ௡

⋯ 𝑤ଶ,ଷ௡ିଶ 𝑤ଶ,ଷ௡ିଵ 𝑤ଶ,ଷ௡

   ⋮
 
 
 

𝑤௟,ଷ௟

⋮
𝑤௡,ଷ௟

⋯ 𝑤௟,ଷ௡ିଶ 𝑤௟,ଷ௡ିଵ 𝑤௟,ଷ௡

 ⋮ ⋮ ⋮
 ⋯  𝑤௡,ଷ௡ିଶ 𝑤௡,ଷ௡ିଵ 𝑤௡,ଷ௡⎦

⎥
⎥
⎥
⎥
⎤

௡×ଷ௡

 

                          (8) 

𝑂ଵ = 𝑂ଷ௡×ଵ
ଵ = [𝑂ଵ

ଵ 𝑂ଶ
ଵ 𝑂ଷ

ଵ ⋯ 𝑂ଷ௡
ଵ ]ଵ×ଷ௡

்
                    (9) 

𝑃 = 𝑃ଷ௡×ଷ௡ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 𝐷ିଵ 0
0 0 𝐷

⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯
1 0 0
0 𝐷ିଵ 0
0 0 𝐷⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×ଷ௡

                  (10) 

𝑛𝑒𝑡ଵ = 𝑛𝑒𝑡ଷ௡×ଵ
ଵ = [𝑛𝑒𝑡ଵ

ଵ 𝑛𝑒𝑡ଶ
ଵ 𝑛𝑒𝑡ଷ

ଵ ⋯ 𝑛𝑒𝑡ଷ௡
ଵ ]ଷ௡×ଵ

்
                   (11) 

 𝑊ഥ ௥ = 𝑊ഥଷ୬×ଷ௡
௥ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଵതതതതത 0 0

0 𝑤ଶ,ଵതതതതത 0

0 0 𝑤ଷ,ଵതതതതത
⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯

𝑤ଵ,ଶ௡ିଵതതതതതതതതത 0 0

0 𝑤ଶ,ଶ௡ିଵതതതതതതതതതത 0

0 0 𝑤ଷ,ଶ௡ିଵതതതതതതതതതത⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×ଷ௡

   12) 
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𝑊ഥ
௬

= 𝑊ഥଷ୬×ଷ௡
௬ = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଶതതതതത 0 0

0 𝑤ଶ,ଶതതതതത 0

0 0 𝑤ଷ,ଶതതതതത
⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯

𝑤ଵ,ଶ௡തതതതതതത 0 0

0 𝑤ଶ,ଶ௡തതതതതതത 0

0 0 𝑤ଷ,ଶ௡തതതതതതത⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×ଷ௡

             (13)  

𝑅
(ଷ)

= 𝑅ଷ௡×ଵ
(ଷ) =[𝑟ଵ 𝑟ଵ

𝑟ଵ 𝑟ଶ 𝑟ଶ 𝑟ଶ ⋯ 𝑟௡ 𝑟௡ 𝑟௡]ଵ×ଷ௡
்                 (14) 

𝑌
(ଷ)

= 𝑌ଷ௡×ଵ
(ଷ)

= [𝑦ଵ 𝑦ଵ 𝑦ଵ 𝑦ଶ 𝑦ଶ 𝑦ଶ ⋯ 𝑦௡ 𝑦௡ 𝑦௡]ଵ×ଷ௡
்           (15) 

𝐼
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௡×௡

                (16) 

𝑅 = 𝑅௡×ଵ = [𝑟ଵ 𝑟ଶ
𝑟ଷ ⋯ 𝑟௡]ଵ×௡

்               (17) 

Assuming that the nonlinear system of concern is linearized around an operation 

point, the relationship between the inputs and outputs of the system will be: 

𝑌௡×ଵ = 𝐺௡×௡𝑂௡×ଵ
ଶ                    (18) 

Since 𝑛𝑒𝑡௟
ଶ is the 𝑙௧௛ input of the P-type neuron in the output layer, one has:  

𝑂௡×ଵ
ଶ = 𝑛𝑒𝑡௡×ଵ

ଶ                    (19) 

where the relationship between the inputs and outputs in the output layer of the 

neural networks can be expressed as: 

𝑛𝑒𝑡௡×ଵ
ଶ = 𝑊௡×ଷ௡

ଶ 𝑂ଷ௡×ଵ
ଵ                   (20) 

As the hidden layer holds P-type, I-type, and D-type neurons, the proportional, 

integral, and derivative operators (1, 𝐷ିଵ, and 𝐷) are considered respectively in 

the matrix form of the activation function. Hence, one has: 

𝑂ଷ௡×ଵ
ଵ = 𝑃ଷ௡×ଷ௡𝑛𝑒𝑡ଷ௡×ଵ

ଵ                   (21) 

where the inputs of the hidden-layer neurons are the total sum of the weighted 

desired outputs and the actual outputs, and are described as: 

𝑛𝑒𝑡ଷ௡×ଵ
ଵ = 𝑊ഥଷ୬×ଷ௡

௥ 𝑅ଷ௡×ଵ
ଷ + 𝑊ഥଷ୬×ଷ௡

௬
𝑌ଷ௡×ଵ

ଷ                 (22) 
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By having: 

𝑅ଷ௡×ଵ
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

× 𝑅௡×ଵ                  (23) 

and: 

𝑌ଷ௡×ଵ
(ଷ)

= 𝐼ଷ௡×௡
(ଷ)

× 𝑌௡×ଵ                   (24) 

and using (18)-(22), one obtains:  

𝑌 = 𝐺𝑂ଶ = 𝐺. 𝑛𝑒𝑡ଶ = 𝐺𝑊𝑂ଵ = 𝐺𝑊𝑃. 𝑛𝑒𝑡ଵ = 𝐺𝑊𝑃(𝑊ഥ ௥𝑅ଷ + 𝑊ഥ ௬𝑌ଷ)             (25) 

Substituting (23) and (24) into (25), one has: 

𝑌 = GWP(𝑊ഥ ௥𝐼(ଷ)𝑅 + 𝑊ഥ ௬𝐼(ଷ)𝑌)                  (26) 

Hence, the system output can be derived as: 

𝑌 = ൫𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯
ିଵ

𝐺𝑊𝑃𝑊ഥ ௥𝐼(ଷ)𝑅                 (27) 

where: ห𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)ห ≠ 0.                

It should be pointed out that although Equations (18)-(27) are derived under the 

assumption that the system is linear or can be linearized around an operating 

point, they can potentially be used for nonlinear systems where the 

nonlinearities of the systems can be approximated by piece-wise linear systems 

whose time-varying nature can account for the nonlinearities of the systems 

satisfactorily. It should also be pointed out that if the non-singularity condition 

for ൫𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯ could not be met, the selected weights (matrices 𝑊, 𝑊ഥ ௬, and 

𝑊ഥ ௥ ) would not be acceptable and would be re-updated until ൫𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯ 

becomes non-singular.  

 Learning algorithm 

To achieve a precise control effect for a square MIMO system, the MANNC2 

weights are adjusted using the principle of the multi-step error back-propagation 

algorithm described in [31]. However, instead of using the current gradient of the 

system error as the literature does for SISO systems in neural-network-based 

controllers [27-29], an accumulated gradient of the system error that utilises the 

full history of the system outputs and the desired outputs is used to achieve a 
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more accurate control result. The proposed method minimises the sum of the 

squared accumulated gradient of the error for each system output, where the 

error is taken as the difference between the desired output 𝑟௟(𝑘) (i.e., the system 

set-point) and the actual output 𝑦௟(𝑘) . Euclidean Norm (𝐸)  is defined for 

calculating the quadratic cost function of the system for the system error. Power 

of two in this expression makes the error of each sample positive so that larger 

errors become weightier than the smaller errors. Thus, the cost function for the 

𝑙୲୦ S-MANNC2 (Figure 4-3) is defined as: 

𝐸௟(ℎ) =
ଵ

ଶ
(∑ (𝑟௟[𝑘] − 𝑦௟(ℎ)[𝑘])௠

௞ୀଵ )ଶ                         (28) 

where 𝐸௟(ℎ) is the error of the 𝑙୲୦ output at the ℎ୲୦ step of the learning algorithm, 

and 𝑚  is the required number of discrete samples of the actual output and 

desired output. By increasing 𝑚 , the system output will be compared more 

accurately with the system set-point. However, a large value of 𝑚 may slow down 

the controller’s learning process, which is undesirable especially when the speed 

of the control action is critical in many demanding real-time industrial 

operations. Therefore, a reasonable value of 𝑚  must be chosen to make a 

necessary trade-off between the desired control accuracy and the essential speed 

of the control system. 

The total cost function of the system (𝐽) which is the sum of all errors described 

in (28) is expressed as: 

𝐽(ℎ) = ∑ 𝐸௟(ℎ)௡
௟ୀଵ =

ଵ

ଶ
∑ (∑ (𝑟௟[𝑘] − 𝑦௟(ℎ)[𝑘])௠

௞ୀଵ )ଶ௡
௟ୀଵ               (29) 

where 𝑛 is the number of inputs and outputs of the square MIMO system. This 

expression will be used to derive the learning algorithm for weights of both 

dynamic layers of the neural networks of the MANNC2. 

Using the accumulated gradient of the system error, a learning algorithm is to be 

developed to minimise the defined cost function and to bring the system actual 

outputs as close as possible to the system desired outputs. There are two-

dynamic layers of weights in the neural network structure of the MANNC2 that 

are required to be trained: the output layer and the hidden layer, for which two 

learning algorithms are derived in Subsections 1.3.1 and 1.3.2, respectively. 
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 Output Layer Weight Learning Algorithm  

A learning algorithm of the output layer is defined to train the output-layer 

weights and to link with the learning algorithm of the hidden layer (to be 

represented in the following subsection) together in order to run simultaneously 

during a control action. According to the principle of the error back-propagation 

learning algorithm, the output-layer weights must be adjusted so that in each 

step they slightly move in the opposite direction of the gradient of the cost 

function respective to the weights of the output layer. This is to guarantee that 

the cost function will be decreasing gradually while the learning algorithm is 

running. Therefore, the weights between the hidden layer and the output layer 

will be adjusted based on the following learning rule: 

𝑤௟,௫(ℎ + 1) = 𝑤௟,௫(ℎ) − 𝜆௟
డ௃(௛)

డ௪೗,ೣ
                      (30) 

where 3𝑙 − 2 ≤  𝑥 ≤ 3𝑙 ; 1 ≤  𝑙 ≤ 𝑛; ℎ is the step number of the learning algorithm; 

𝑤௟,௫(ℎ) and  𝑤௟,௫(ℎ + 1) are the weights of the output layer at the current and 

following steps, respectively; 𝜆௟ is the output-layer learning rate that decides how 

fast the cost is changing and principally determines the weight-training speed of 

the output layer. Using partial derivatives to calculate the gradient of the error 

subject to each weight, one has: 

డ௃

డ௪೗,ೣ
=

డ௃

డா೗

డா೗

డ௬೗

డ௬೗

డை೗
మ

డை೗
మ

డ௡௘௧೗
మ

డ௡௘௧೗
మ

డ௪೗,ೣ
                             (31) 

where: 

డ௃

డா೗
= 1                     (32) 

డா೗

డ௬೗
= ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠

௞ୀଵ                    (33) 

By a reasonable approximation, one has: 

డ௬೗

డை೗
మ ≅

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

                   (34) 

Due to having P-type neuron in the output layer, one writes:  

డை೗
మ

డ௡௘௧೗
మ = 1                      (35) 
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and: 

డ௡௘௧೗
మ

డ௪೗,ೣ
= ∑ (𝑂௫

ଵ(ℎ)[𝑘])௠
௞ୀଵ                   (36) 

Substituting (32)-(36) into (31), one obtains: 

డ௃

డ௪೗,ೣ
≅ 1 × ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠

௞ୀଵ ×
∑ (௬೗(௛)[௞])೘

ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘
ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

× 1 × 𝑂௫
ଵ(ℎ)[𝑘]   

(37) 

Defining 𝛾௟(𝑘) as:  

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

             (38) 

the output-layer weight-adjustment rule is derived as: 

𝑤௟,௫(ℎ + 1) = 𝑤௟,௫(ℎ) − 𝜆௟[𝛾௟(ℎ) × ∑ (𝑂௫
ଵ(ℎ)[𝑘])௠

௞ୀଵ ]                 (39) 

 Hidden Layer Weight Learning Algorithm  

Similar to the weight training algorithm performed for the output layer, 

according to the principle of the error back-propagation learning algorithm, the 

hidden-layer weights (i.e, the weights between the input layer and the hidden 

layer) must be adjusted so that in each step they move slightly in the opposite 

direction of the gradient of the cost function respective to the weights of the 

hidden layer. This will cause the cost function to decrease gradually during the 

learning process. The hidden-layer weights are therefore adjusted based on the 

following learning rule: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟
డ௃(௛)

డ௪ೌ,್തതതതതതത
                 (40) 

where  1 ≤  𝑎 ≤ 3 ; 2𝑙 − 1 ≤ b ≤  2𝑙 ; 1 ≤  𝑙 ≤ 𝑛 ; ℎ  is the step number of the 

learning algorithm; 𝑤௔,௕തതതതതത(ℎ) and 𝑤௔,௕തതതതതത(ℎ + 1) are the weights of the hidden layer at 

the current and following steps, respectively; 𝜇௟ is the hidden-layer learning rate 

that decides how fast the cost is changing and principally determines the weight-

training speed of the hidden layer. The gradient of the error with respect to each 

weight is required to be calculated. Using partial derivatives, one has: 

డ௃

డ௪ೌ,್തതതതതതത
=

డ௃

డா೗

డா೗

డ௬೗

డ௬೗

డை೗
మ

డை೗
మ

డ௡௘௧೗
మ

డ௡௘௧೗
మ

డைೣ
భ

డைೣ
భ

డ௡௘௧ೣ
భ

డ௡௘ ೣ
భ

డ௪ೌ,್തതതതതതത
                          (41) 
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Since 𝑥 = 3𝑙 − 3 + 𝑎, 𝑥 must be chosen adequately based on 𝑎 so that a proper 

partial derivative path within the hidden layer can be selected. Considering the 

partial derivative calculations of the output layer, one has: 

డ௃

డா೗
×

డா೗

డ௬೗
×

డ௬೗

డை೗
మ ×

డை೗
మ

డ௡௘௧೗
మ = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠

௞ୀଵ ×
∑ (௬೗(௛)[௞])೘

ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘
ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

     (42) 

Define 𝛾௟(ℎ) as: 

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (43) 

Considering the output layer, one has: 

డ௡௘ ೗
మ

డைೣ
భ = 𝑤௟,௫(ℎ)                   (44) 

where 𝑤௟,௫(ℎ) is derived from the output-layer weight-adjustment algorithm given 

in Subsection 4.3.1. It is seen that the weight adjustment processes for both the 

hidden layer and the output layer must run step by step and one after another 

alternately. 

As the neurons in the hidden layers are from various types of P-type, I-type, and 

D-type, consecutively, the calculation of term డைೣ
భ

డ௡௘௧ೣ
భ in (41) depends on the type of 

the selected neuron. Because the inputs of the hidden layer are the desired 

output (𝑟௟ ) or the actual output of the system (𝑦௟ ), term డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
 in (41) is also 

relevant to the selection of the actual output or the desired output. Hence, the 

gradient of the cost function should be expressed in six different types of 

expressions depending on 𝑎 and 𝑏 as listed below: 

 Type 1)  𝒂 = 𝟏 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 − 𝟏 

In this type, the cost function’s partial derivative path has a P-type neuron in the 

hidden layer, therefore: 

డைೣ
భ

డ௡௘௧ೣ
భ = 1                    (45) 

The input of the hidden layer is the desired output (𝑟௟), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௟                    (46) 
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Thus, one has: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟ିଶ(ℎ) × 𝑟௟(ℎ)                 (47) 

Substituting (41)-(47) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଶ(ℎ)𝑟௟(ℎ)[𝑚]              (48) 

where:  

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

             (49) 

 Type 2) 𝒂 = 𝟏 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 

In this type, the cost function’s partial derivative path has a P-type neuron in the 

hidden layer, therefore: 

డைೣ
భ

డ௡௘௧ೣ
భ = 1                    (50) 

The input of the hidden layer is the desired output (𝑦௟), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௟(ℎ)                    (51) 

Thus, one has: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟ିଶ(ℎ) × 𝑦௟(ℎ)                 (52) 

Substituting (41)-(44) and (50)-(52) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଶ(ℎ)𝑦௟(ℎ)[𝑚]              (53) 

where:   

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (54) 

 Type 3) 𝒂 = 𝟐 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 − 𝟏 

In this type, the cost function’s partial derivative path has an I-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞
௞ᇲୀଵ = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞ିଵ
௞ᇲୀଵ + 𝑛𝑒𝑡௫

ଵ(𝑘) = 𝑂௫
ଵ(𝑘 − 1) + 𝑛𝑒𝑡௫

ଵ(𝑘)            (55) 

and: 
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డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                (56) 

The input of the hidden layer is the desired output (𝑟௟), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௟                    (57) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, if 

𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟ିଵ(ℎ) × 𝑠𝑖𝑔𝑛[

௡௘௧ೣ
భ[௠]

௡௘௧ೣ
భ[௠]ି௡௘௧ೣ

భ[௠ିଵ]
] × 𝑟௟(ℎ)[𝑚]             (58) 

Substituting (41)-(44) and (55)-(57) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଵ(ℎ)𝑠𝑖𝑔𝑛[
௡௘௧య೗షభ

భ (௛)[௠]

௡௘௧య೗షభ
భ (௛)[௠]ି௡௘௧య೗షభ

భ (௛)[௠ିଵ]
]𝑟௟(ℎ)[𝑚]  (59) 

where:   

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (60) 

If [ ௡௘௧య೗షభ
భ (௛)[௠]

௡௘௧య೗షభ
భ (௛)[௠]ି௡௘௧య೗షభ

భ (௛)[௠ିଵ]
] is undefined due to zero denominator in any step of 

the learning algorithm, the associated weight will remain unchanged until the 

next step. 

 Type 4) 𝒂 = 𝟐 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 

In this type, the cost function’s partial derivative path has an I-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞
௞ᇲୀଵ = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞ିଵ
௞ᇲୀଵ + 𝑛𝑒𝑡௫

ଵ(𝑘) = 𝑂௫
ଵ(𝑘 − 1) + 𝑛𝑒𝑡௫

ଵ(𝑘)            (61) 

and: 

డைೣ
భ

డ௡௘ ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘ ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                (62) 

The input of the hidden layer is the desired output (𝑦௟), which gives: 

డ௡௘ ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௟(ℎ)                    (63) 
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Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, if 

𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟ିଵ(ℎ) × 𝑠𝑖𝑔𝑛[

௡௘௧య೗షభ
భ [௠]

௡௘௧య೗షభ
భ [௠]ି௡௘௧య೗షభ

భ [௠ିଵ]
] × 𝑦௟(ℎ)[𝑚]            (64) 

Substituting (41)-(44) and (61)-(63) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଵ(ℎ)𝑠𝑖𝑔𝑛 ൤
௡௘௧య೗షభ

భ [௠]

௡௘௧య೗షభ
భ [௠]ି௡௘௧య೗షభ

భ [௠ିଵ]
൨ 𝑦௟(ℎ)[𝑚]           

(65) 

where:   

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (66) 

If [ ௡௘௧య೗షభ
భ (௛)[௠]

௡௘௧య೗షభ
భ (௛)[௠]ି௡௘௧య೗షభ

భ (௛)[௠ିଵ]
] is undefined due to zero denominator in any step of 

the learning algorithm, the associated weight will remain unchanged until the 

next step. 

 Type 5) 𝒂 = 𝟑 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 − 𝟏 

In this type, the cost function’s partial derivative path has a D-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = 𝑛𝑒𝑡௫

ଵ(𝑘) − 𝑛𝑒𝑡௫
ଵ(𝑘 − 1)                 (67) 

and: 

డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                       (68) 

The input of the hidden layer is the desired output (𝑟௟), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௟                    (69) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡ ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, 

if 𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟(ℎ) × 𝑠𝑖𝑔𝑛[

௡௘௧య೗
భ [௠]ିଶ௡௘௧య೗

భ [௠ିଵ]ା௡௘௧య೗
భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
] × 𝑟௟(ℎ)[𝑚]           (70) 
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Substituting (41)-(44) and (68)-(70) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟(ℎ)𝑠𝑖𝑔𝑛[
௡௘௧య೗

భ [௠]ିଶ௡௘௧య೗
భ [௠ିଵ]ା௡௘௧య೗

భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
]𝑟௟(ℎ)[𝑚]   

(71) 

where:   

𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (72) 

If [௡௘௧య೗
భ [௠]ିଶ௡௘௧య೗

భ [௠ିଵ]ା௡௘௧య೗
భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
] is undefined due to zero denominator in any step 

of the learning algorithm, the associated weight will remain unchanged until the 

next step. 

 Type 6) 𝒂 = 𝟑 𝐚𝐧𝐝 𝐛 = 𝟐𝒍 

In this type, the cost function’s partial derivative path has a D-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = 𝑛𝑒𝑡௫

ଵ(𝑘) − 𝑛𝑒𝑡௫
ଵ(𝑘 − 1)                       (73) 

and: 

డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘ ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
              (74) 

The input of the hidden layer is the desired output (𝑦௟), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௟(ℎ)                    (75) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, 

if 𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= 𝛾௟(ℎ) × 𝑤௟,ଷ௟(ℎ) × 𝑠𝑖𝑔𝑛[

௡௘௧య೗
భ [௠]ିଶ௡௘௧య೗

భ [௠ିଵ]ା௡௘௧య೗
భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
] × 𝑦௟(ℎ)[𝑚]          (76) 

Substituting (41)-(44) and (74)-(76) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟(ℎ)𝑠𝑖𝑔𝑛[
௡௘௧య೗

భ [௠]ିଶ௡௘௧య೗
భ [௠ିଵ]ା௡௘௧య೗

భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
]𝑦௟(ℎ)[𝑚] (77) 

where: 
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𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (௬೗(௛)[௞])೘
ೖసభ ି∑ (௬೗(௛ିଵ)[௞])೘

ೖసభ

∑ (ை೗
మ(௛)[௞])೘

ೖసభ ି∑ (ை೗
మ(௛ିଵ)[௞])೘

ೖసభ

            (78) 

If [௡௘௧య೗
భ [௠]ିଶ௡௘௧య೗

భ [௠ିଵ]ା௡௘ య೗
భ [௠ିଶ]

௡௘௧య೗
భ [௠]ି௡௘௧య೗

భ [௠ିଵ]
] is undefined due to zero denominator in any step 

of the learning algorithm, the associated weight will remain unchanged until the 

next step.  

The weight learning algorithms for both the output layer and the hidden layer of 

the neural networks of the MANNC2 are summarised in Table 4-1. From the 

summary shown in Table 4-1, it is noted that since the weights in the output 

layer are used by the hidden-layer learning algorithm at each step, the neural 

networks of the both layers must be trained simultaneously (i.e., one after 

another alternately). The fact that the calculations of the output-layer weights 

and the hidden-layer weights must be linked together indicates that the weights 

of the different layers of the neural networks of the MANNC2 are dependent on 

each other. This dependence reflects the inherent capacity of the MANNC2 in 

dealing with strong cross-couplings of the MIMO system of concern. It is also 

noted that the overall weight training procedure must initially start from the 

output layer, because at each learning step the calculation of the hidden-layer 

weights needs the values of the output-layer weights from the previous learning 

step. 
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Output layer 

3l − 2 ≤  𝑥 ≤ 3𝑙   

1 ≤  𝑙 ≤ n 

 

𝑤௟,௫(ℎ + 1) = 𝑤௟,௫(ℎ) − 𝜆௟[𝛾௟(ℎ) × ෍(𝑂௫
ଵ(ℎ)[𝑘])

௠

௞ୀଵ

] 

  𝛾௟(ℎ) = ∑ (𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])௠
௞ୀଵ ×

∑ (𝑦𝑙(ℎ)[𝑘])𝑚
𝑘=1 −∑ (𝑦𝑙(ℎ−1)[𝑘])𝑚

𝑘=1

∑ (𝑂𝑙
2(ℎ)[𝑘])𝑚

𝑘=1 −∑ (𝑂𝑙
2

(ℎ−1)[𝑘])𝑚
𝑘=1

  

Hidden layer 

𝑎 = 1 

 b = 2𝑙 − 1 

 

𝑎 = 1 

 b = 2𝑙 

 

𝑎 = 2 

 b = 2𝑙 − 1 

 

𝑎 = 2 

 b = 2𝑙 

 

𝑎 = 3 

 b = 2𝑙 − 1 

 

𝑎 = 3 

 b = 2𝑙 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଶ(ℎ)𝑟௟(ℎ)[𝑚] 

 

 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଶ(ℎ)𝑦௟(ℎ)[𝑚] 

 

 

𝑤௔,௕തതതതതത(ℎ + 1)

= 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଵ(ℎ)𝑠𝑖𝑔𝑛[
𝑛𝑒𝑡ଷ௟ିଵ

ଵ (ℎ)[𝑚]

𝑛𝑒𝑡ଷ௟ିଵ
ଵ (ℎ)[𝑚] − 𝑛𝑒𝑡ଷ௟ିଵ

ଵ (ℎ)[𝑚 − 1]
]𝑟௟(ℎ)[𝑚] 

 

𝑤௔,௕തതതതതത(ℎ + 1) = 𝑤௔,௕തതതതതത(ℎ)

− 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟ିଵ(ℎ)𝑠𝑖𝑔𝑛[
𝑛𝑒𝑡ଷ௟ିଵ

ଵ [𝑚]

𝑛𝑒𝑡ଷ௟ିଵ
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௟ିଵ

ଵ [𝑚 − 1]
]𝑦௟(ℎ)[𝑚] 

𝑤௔,௕തതതതതത(ℎ + 1)

= 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟(ℎ)𝑠𝑖𝑔𝑛[
𝑛𝑒𝑡ଷ௟

ଵ [𝑚] − 2𝑛𝑒𝑡ଷ௟
ଵ [𝑚 − 1] + 𝑛𝑒𝑡ଷ௟

ଵ [𝑚 − 2]

𝑛𝑒𝑡ଷ௟
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௟

ଵ [𝑚 − 1]
]𝑟௟(ℎ)[𝑚] 

 

𝑤௔,௕തതതതതത(ℎ + 1)

= 𝑤௔,௕തതതതതത(ℎ) − 𝜇௟𝛾௟(ℎ)𝑤௟,ଷ௟(ℎ)𝑠𝑖𝑔𝑛[
𝑛𝑒𝑡ଷ௟

ଵ [𝑚] − 2𝑛𝑒𝑡ଷ௟
ଵ [𝑚 − 1] + 𝑛𝑒𝑡ଷ௟

ଵ [𝑚 − 2]

𝑛𝑒𝑡ଷ௟
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௟

ଵ [𝑚 − 1]
]𝑦௟(ℎ)[𝑚] 

where, 1 ≤  𝑙 ≤ n 

𝛾௟(ℎ) = ෍(𝑦௟(ℎ)[𝑘] − 𝑟௟(ℎ)[𝑘])

௠

௞ୀଵ

×
∑ (𝑦௟(ℎ)[𝑘])௠

௞ୀଵ − ∑ (𝑦௟(ℎ − 1)[𝑘])௠
௞ୀଵ

∑ (𝑂௟
ଶ(ℎ)[𝑘])௠

௞ୀଵ − ∑ (𝑂௟
ଶ(ℎ − 1)[𝑘])௠

௞ୀଵ

 

 If the 𝑠𝑖𝑔𝑛[… ] is unknown due to zero denominator, the associated weight 

will remain unchanged for the next step. 

Table 4-1. Weight adjustment learning algorithms 

 Stability Analysis 

When a new control method is proposed, in order to achieve the desired control 

outcomes, the stability criteria of the resultant closed-loop system must be 

derived and any ensuing time-dependent conditions or constraints must be 
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checked online during the entire dynamic process of the closed-loop control. For 

an unconstrained control system, the system stability is satisfied if all the output 

responses are bounded for all bounded inputs. Because the eigenvalue analysis 

concept applies only to linear systems with model-based approaches, it cannot be 

used in nonlinear systems with model-free approaches. Therefore, for the 

proposed MANNC2, the Lyapunov stability analysis concept that is suitable for 

nonlinear systems, relies only on a system’s inputs and outputs, and does not 

need to use the model of the system, must be used. Although, unlike linear 

systems, the stability of a nonlinear system does not need to be always global as 

the system can have multiple equilibrium points and limit cycles, the global 

asymptotic stability of a nonlinear MIMO system under the MACCN2 control is 

to be sought in this study in order to guarantee that the ensuing closed-loop 

system will never be locked in its local minimum during the entire dynamic 

control process. 

As summarised in Table 4-1, there are two sets of free parameters, 𝜆௟ and 𝜇௟ (1 ≤

 𝑙 ≤ 𝑛), for the output-layer and hidden-layer weight-learning algorithms of the 

MANNC2, respectively. These parameters are denoted as the learning rates of 

the respective dynamic layers of the MANNC2. They determine the weight-

training speed of the respective layers and can dynamically change during the 

controller learning process. A set of constraints for these learning rates will be 

developed when the closed-loop system stability issue of the MANNC2 method is 

to be examined.  

According to the Lyapunov global asymptotic stability theorem, for a defined 

function 𝑉(𝑥), if: 

(i) 𝑉(0) = 0 

(ii) For all 𝑥 ≠ 0, 𝑉(𝑥) > 0 (i.e. 𝑉 is positive definite) 

(iii) For all 𝑥 ≠ 0, ∆𝑉(𝑥) < 0 

then every trajectory of 𝑋(𝑘 + 1) = 𝑋(𝑘) + 𝑓(𝑋(𝑘)) will converge to zero as k → ∞ 

and the system will be globally asymptotically stable. Let the Lyapunov function 
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for each output of a nonlinear MIMO system under the MANNC2 control be the 

total cost function of that output, i.e.: 

𝑉௟(ℎ) = (𝐸௟(ℎ))ଶ                      (79) 

where 𝐸௟(ℎ) is the cost function related to the ℎ௧௛ step of the learning algorithm. 

One writes: 

∆𝑉௟(ℎ) = (𝐸௟(ℎ) + ∆𝐸௟(ℎ))ଶ − (𝐸௟(ℎ))ଶ = 2𝐸௟(ℎ)∆𝐸௟(ℎ) + (∆𝐸௟(ℎ))ଶ              (80) 

and: 

∆𝐸௟(ℎ) ≅ ∆𝑤௟,௫(ℎ) ∑
డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ                      (81) 

For the output layer of the MANNC2, considering the Lyapunov function 𝑉௟(ℎ) in 

(79) and the expression ∆𝑉௟(ℎ) in (80), from the learning rule expressed in (30) for 

the output-layer weights, one has: 

∆𝑤௟,௫(ℎ) = −
ఒ೗

௠
∑

డ௃

డ௪೗,ೣ

௠
௞ୀଵ                      (82) 

and: 

డ௃

డ௪೗,ೣ
=

డ௃

డா೗(௛)

డா೗(௛)

డ௪೗,ೣ
=

డா೗(௛)

డ௪೗,ೣ
                     (83) 

Substituting (83) into (82), one obtains: 

 ∆𝑤௟,௫(ℎ) = −
ఒ೗

௠
∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ                     (84) 

and: 

 ∆𝐸௟(ℎ) ≅ −
ఒ೗

௠
(∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ )ଶ                    (85) 

Therefore, (80) can be expressed as: 

∆𝑉(ℎ) ≅ −
ଶఒ೗ா೗(௛)

௠
(∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ )ଶ +

ఒ೗
మ

௠మ
(∑

డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ )ସ               (86) 

Define: 

𝐻௟(ℎ) = min (∑
డா೗(௛)[௞]

డ௪೗,ೣ

௠
௞ୀଵ )  ≅

min
3l − 2 ≤  𝑥 ≤ 3𝑙 

 (∑
∆ா೗(௛)[௞]

∆௪೗,ೣ(௛)
)௠

௞ୀଵ               (87) 

The condition for ∆𝑉(ℎ) < 0 yields the following constraint on the selection of 

learning rate 𝜆௟ defined in (30): 
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0 < 𝜆௟ <
ଶ௠ா೗(௛)

ு೗(௛)మ
                     (88) 

The above constraint for learning rate 𝜆௟  must be satisfied as a necessary 

condition of the MANNC2 control system at the ℎ௧௛ step. This constraint must be 

met at each training step in order for the MANNC2 to maintain its closed-loop 

system’s global asymptotical stability during the entire learning process.  

For the hidden layer of the MANNC2, considering the same Lyapunov function 

𝑉௟(ℎ)  in (79) and the same expression ∆𝑉௟(ℎ)  in (80), one has the following 

estimation based on the hidden-layer weights described in (77): 

∆𝐸௟(ℎ) ≅ ∆𝑤௔,௕തതതതതത(ℎ) ∑
డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                 (89) 

Thus, (40) can be expressed as: 

∆𝑤௔,௕തതതതതത(ℎ) = −
ఓ೗

௠
∑

డ௃

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                   (90) 

where: 

డ௃

డ௪ೌ,್തതതതതതത
=

డ௃

డா೗(௛)

డா೗(௛)

డ௪ೌ,್തതതതതതത
=

డா೗(௛)

డ௪ೌ,್തതതതതതത
                 (91) 

Substituting (91) into (90), one obtains: 

 ∆𝑤௔,௕തതതതതത(ℎ) = −
ఓ೗

௠
∑

డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                (92) 

Also, substituting (92) into (89), one writes: 

 ∆𝐸௟(ℎ) ≅ −
ఓ೗

௠
(∑

డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ଶ                      (93) 

Hence, ∆𝑉௟(ℎ) can be expressed as: 

∆𝑉(ℎ) ≅ −
ଶఓ೗ா೗(௛)

௠
(∑

డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ଶ +

ఓ೗
మ

௠మ
(∑

డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ସ                   (94) 

Define: 

𝐻௟
തതത(ℎ) = min (∑

డா೗(௛)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )  ≅  

min
2l − 1 ≤  𝑏 ≤ 2𝑙 & 1 ≤ 𝑎 ≤ 3 

(∑
∆ா೗(௛)[௞]

∆௪ೌ,್തതതതതതത(௛)
௠
௞ୀଵ )          (95) 

The condition for ∆𝑉(ℎ) < 0 yields the following constraint on the selection of 

learning rate 𝜇௟ defined in (40): 
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0 < 𝜇௟ <
ଶ௠ா೗(௛)

ு೗തതതത(௛)మ
                   (96) 

The above constraint for learning rate 𝜇௟ must be satisfied as another necessary 

condition of the MANNC2 control system at the ℎ௧௛ step. This constraint must 

also be met at each training step in order for the MANNC2 to maintain its 

closed-loop system’s global asymptotical stability during the entire learning 

process. 

Collectively, conditions (92) and (100) must both be satisfied at each training 

step in order to guarantee the global asymptotical stability of the MANNC2 

control system at the next training step. Simultaneous satisfaction of these two 

conditions is then considered as the sufficient condition for the global 

asymptotical stability of the MANNC2 control system, as summarised in Table 

4-2.  

Output layer 

constraint 

0 < 𝜆௟ <
ଶ௠ா೗(௛)

ு೗(௛)మ
   

where:     𝐻௟(ℎ) =
min

3l − 2 ≤  𝑥 ≤ 3𝑙 
 (∑

∆ா೗(௛)[௞]

∆௪೗,ೣ(௛)
௠
௞ୀଵ ) 

Hidden layer 

constraint 

0 < 𝜇௟ <
ଶ௠ா೗(௛)

ு೗തതതത(௛)మ
   

where:    𝐻௟
തതത(ℎ) =

min
2l − 1 ≤  𝑏 ≤ 2𝑙 & 1 ≤ 𝑎 ≤ 3 

 (∑
∆ா೗(௛)[௞]

∆௪ೌ,್തതതതതതത(௛)
௠
௞ୀଵ ) 

Table 4-2. Stability criteria for hidden layer and output layer 

It should be pointed out that it is necessary to check the stability conditions at 

each learning step, due to the fact that these conditions depend on the real-time 

values of the cost function (𝐸௟(ℎ)), the change of cost function (∆𝐸௟(ℎ)), and the 

change of weights (∆𝑤௟,௫(ℎ)) at each training step. Both 𝜆௟ and 𝜇௟ can dynamically 

change to keep the closed-loop control system stable while the weights are 

trained by the learning algorithms. To avoid changing 𝜆௟ and 𝜇௟ dynamically, a 

small conservative constant value (e.g. 0.01 or less) can be selected for these 

parameters during the entire weight learning process. However, this 

arrangement would lead to a slower weight-adjustment rate and would require a 

greater number of training steps in order to achieve satisfactory results. In 

addition, it is noted from (92) and (100) that, by choosing a larger sampling 

number (𝑚), the possibility of an instable system will become lower as there will 
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be a larger range for 𝜆௟ and 𝜇௟. However, a larger sampling number (𝑚) will lead 

to a slower weight-adjustment rate and, thus, a slower control speed of the 

resultant closed-loop system.  

The stability criteria presented in Table 4-2 will be checked in a real-time 

manner together with the computation of the weight adjustment algorithms 

presented in Table 4-1 at each training step. This online simultaneous procedure 

is illustrated in Figure 4-4 as a flowchart. It can be seen from the flowchart that, 

when the stability criteria (92) and (100) are not met, the values of the learning 

rates are halved in order to enable the continuation of the learning process. It is 

acknowledged that while halving the learning rates may lead to a better control 

performance in terms of the error reductions, this arrangement may prolong the 

weight adjustment process and reduce the control speed of the system as a 

result.  

 

Figure 4-4. Real-time simultaneous stability criteria check and weight adjustment algorithm 
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 Simulation results 

Simulation studies using Matlab are carried out to evaluate the performances of 

the proposed MANNC2 in tracking set-points, reducing unwanted overshoots 

and undershoots, reducing settling times, and securing the global stability of a 

closed-loop system during the system’s entire control process. The MANNC2 

structure proposed in Section 4.2, the dynamic neural network algorithm 

developed in Section 4.3, and the stability conditions derived in Section 4.4 are 

used in the simulations. Two highly nonlinear MIMO cases are chosen for this 

study. In each case, the performances of the MANNC2 are compared with those 

of the MANNC introduced in [1]. As the performance superiority of the MANNC 

over its most competitive existing counterpart [25] has already been established 

in [1], the comparison of the MANNC2 with other existing counterparts, apart 

from the MANNC, is omitted here for brevity. 

 Case 1 – Application of MANNC2 on drum boiler MIMO system 

In this case, an industrial drum-boiler plant that is a highly non-linear coupled 

two-input two-output system is selected. As illustrated in Figure 4-5, the system 

inputs are: heat flow rate and mass flow rate, and the system outputs are: 

pressure and level. 

 

Figure 4-5. Two-input two-output drum-boiler plant 

The state equations that describe the nonlinear relationships between the 

system inputs, the system outputs, and the state variables of the drum-boiler 

plant are:  

𝑥ଵ̇(𝑡) = −𝑥ଵ(𝑡) + 𝑢ଵ(𝑡)                 (97) 
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𝑦ଵ(𝑡) = 𝑥ଵ(𝑡) + 2𝑥ଵ
ଷ(𝑡)                   (98) 

𝑥ଶ(𝑡) = 𝑦ଵ(𝑡) + 𝑢ଶ(𝑡)                  (99) 

𝑦ଶ̈(𝑡) + 2𝑦ଶ̇(𝑡) + 𝑦ଶ(𝑡) = 𝑥ଶ̇(𝑡) + 2𝑥ଶ(𝑡)                (100) 

where “dot” denotes the time derivative, 𝑢ଵ(𝑡) and 𝑢ଶ(𝑡) are the system inputs 

(heat flow rate and mass flow rate), 𝑦ଵ(𝑡)  and 𝑦ଶ(𝑡)  are the system outputs 

(pressure and level), and 𝑥ଵ(𝑡)  and 𝑥ଶ(𝑡)  are the state variables. Figure 4-6 

represents the functional block diagram of the aforementioned nonlinear system, 

in which block “Fcn1” marks the highly nonlinear relationship between the 

system inputs and the system outputs. Because Input 1 affects both Output 1 

and Output 2, the system is considered as a cross-coupled MIMO system that 

cannot be feasibly controlled by multiple cascaded SISO controllers such as the 

ANNC [13], nor by any other existing SISO or non-coupled MIMO counterparts.  

 

Figure 4-6. Functional block diagram of drum-boiler plant  

 

Figure 4-7 demonstrates the implementation of the MANNC2 for the two-input 

two-output drum-boiler plant. All blue arrows in the hidden layer and the output 

layer represent the dynamic weights. The green links between the hidden layer 

and the output layer are added into the structure to enable the controller to 

handle any cross-couplings between the inputs and outputs of the system. 
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Figure 4-7. MANNC2 controlled drum-boiler plant 

The following desired outputs are selected for the drum-boiler plant.  

- 𝑟ଵ(𝑡) = 5𝑢(𝑡 − 1) where 𝑢(𝑡) is the standard unit step function. 
- 𝑟ଶ(𝑡) = 0.2𝑟(𝑡 − 1) where 𝑟(𝑡) is the standard unit ramp function. 

The control objective is for 𝑦ଵ (Output 1) and 𝑦ଶ (Output 2) to track, respectively, 

the set-points 𝑟ଵ  and 𝑟ଶ , with smaller overshoots and undershoots, shorter 

settling times, and minimum errors, and with  a set of suitable and converged 

dynamic weights of controller.  

To apply the MANNC2 to the underlying drum-boiler plant, the initial values of 

the weights are set to 1, the initial learning rates are set to 0.1 ( 𝜆ଵ = 𝜆ଶ = 𝜇ଵ =

𝜇ଶ = 0.1), and the number of samples used in the learning algorithms is set to 40 

(𝑚 = 40). After running, online and simultaneously, the learning algorithms 

presented in Table 4-1 and the stability criteria presented in Table 4-2 for 15 

training steps, the converged values of the dynamic weights of both the output 

and hidden layers of the MANNC2 are achieved, as summarised in Table 4-3 and 

Table 4-4, respectively. These converged weights approve the convergences of the 

respective learning algorithms of the MANNC2 and, thus, the output 

convergences of the MANNC2 control system. During the simulation, it is 

observed that all learning rates of the MANNC2 are automatically reduced to 

0.05 in the middle of the weight training process (at the 11th training step) to 

keep the control system stable for the next step. This designed-capability of the 
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MANNC2 enables the controller to work dynamically with highly nonlinear 

characteristics of the system.    

𝑤௟,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

𝑙 = 1 9.26 2.21 5.58 -2.32 -2.30 -2.53 

𝑙 = 2 -1.43 1.58 1.42 4.13 4.01 0.41 

Table 4-3. Converged MANNC2 output-layer weights’ values 

𝑤௔,௕തതതതതത 𝑏 = 1 𝑏 = 2 𝑏 = 3 𝑏 = 4 

𝑎 = 1 0.780 -1.015 0.992 -1.000 

𝑎 = 2 0.949 -1.014 1.004 -1.042 

𝑎 = 3 0.993 -1.002 0.998 -1.002 

Table 4-4. Converged MANNC2 hidden-layer weights’ values  

Figure 4-8 demonstrates that Output 1 with the MANNC2 can track the desired 

step output 𝑟ଵ(𝑡) satisfactorily with a tiny negligible overshoot of less than 2%. 

This can be considered as a perfect result for industrial applications. Overshoots 

during set-point changes are undesirable for many industrial control systems, 

especially when a set-point is ultimately close to the higher boundary of the 

output range (e.g. the risk of liquid overflow when filling a tank). Furthermore, a 

less than 8% of the undershoot of Output 1 with the MANNC2 is also shown 

Figure 4-8. This is a remarkable result, as such a low undershoot arising from 

switching or changing the set-point could not be achieved by conventional 

industrial controllers [32]. In Figure 4-9, Output 2 with the MANNC2 is seen to 

be able to track the desired ramp output 𝑟ଶ(𝑡) in less than 8 training steps. A 

satisfactory set-point tracking ability of the MANNC2 control system when 

dealing with a highly nonlinear plant is then evident. 

 

Figure 4-8. Desired Output 1 and Actual Output 1 with MANNC2 
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Figure 4-9. Desired Output 2 and Actual Output 2 with MANNC2 

 

In order to have a meaningful comparison between the proposed MANNC and its 

predecessor, the MANNC introduced in [1], the results of both controllers for the 

same nonlinear MIMO system with the same desired outputs are presented in 

Figure 4-10 and Figure 4-11. Faster set-point tracking, lower undershoot, shorter 

settling time, and smaller accumulated error for both outputs of the MANNC2 

control system, as compared to those of the MANNC control system, are 

evidently shown in these simulations. 

 

Figure 4-10. Desired Output 1 and Actual Output 1 with MANNC2 and MANNC 
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Figure 4-11. Desired Output 2 and Actual Output 2 with MANNC2 and MANNC  

 

To effectively demonstrate the overall improved performance of the MANNC2 

over that of the MANNC, the accumulated error versus the iteration number of 

the weight learning algorithm for each of the system outputs of the MANNC2 

and the MANNC is simulated. The error is taken as the difference between the 

desired system output and the actual system output. A continuous reduction in 

the magnitude of the accumulated error while the iteration number of the 

respective weight learning algorithm is increasing would indicate the smooth 

convergence of the respective weight learning algorithm and, thus, the 

superiority of the respective control system. For a predefined level of the 

accumulated error, the smaller the required iteration number, the better the 

anticipated control system performance. Therefore, by comparing the continuous 

reductions in accumulated errors and the iteration numbers associated with the 

MANNC2 and MANNC, respectively, evidence as to which controller would be 

more effective could be established. 

Figure 4-12 and Figure 4-13 represent the accumulated error versus the 

iteration number of the MANNC2 weight learning algorithm for Output 1 and 

Output 2 of the MANNC2 control system, respectively. Likewise, Figure 4-14 

and Figure 4-15 represent the accumulated error versus the iteration number of 

the MANNC weight learning algorithm for Output 1 and Output 2 of the 

MANNC control system, respectively. From these four figures, it can be seen that 
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while the accumulated errors of the two outputs of the MANNC2 are in general 

decreased continuously as the iteration number of the MANNC2 weight learning 

algorithm increases, the accumulated error of Output 2 of the MANNC presents 

a huge increase during the increment of the iteration number of its weight 

learning algorithm. This fact demonstrates a weaker learning capability of the 

MANNC when facing a highly nonlinear system and, thus, a worse control effect 

of the MANNC control system. The MANNC2 is thus seen to be a better choice 

for drum-boiler plant. Furthermore, from the results shown in these four figures, 

for a pre-selected common allowable level of the accumulated error, say 2%, the 

required iteration number associated with the MANNC2 (15) is seen to be much 

smaller than that associated with the MANNC (35), as indicated in Table 4-5 

 MANNC2 MANNC 

Output 1 15 20 

Output 2 11 32 

Table 4-5. Iteration number for less than 2% accumulated error with MANNC and MANNC2 

This fact further proves that the MANNC2 will provide a faster and more 

satisfactory control effect than the MANNC. The superiority of the MANNC2 

over its predecessor, the MANNC, is thus established.  

 

Figure 4-12. Accumulated error versus iteration number for Output 1 with MANNC2 
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Figure 4-13. Accumulated error versus iteration number for Output 2 with MANNC2 

 

 

Figure 4-14. Accumulated error versus iteration number for Output 1 with MANNC 
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Figure 4-15. Accumulated error versus iteration number for Output 2 with MANNC 

From Figure 4-12 and Figure 4-13, it is seen that an optimal training number of 

the learning algorithms can be automatically chosen by the MANNC2 control 

system by comparing a predefined allowable error with the system’s actual error, 

so that the training process can be stopped at the 15th step and the weights 

become locked at their 15th-step values for the rest of the control process until a 

new change either in the model of the system or in any of the set-points of the 

system occurs. By doing so, the resultant closed-loop control system will be 

anticipated to have a less computation load (thus a less power consumption) but 

a slightly worsen control performance, as compared to a non-stop training case. 

Choosing an optimal training number depends on the specific application that 

the controller is designed for, and requires a trade-off between the computational 

demand and the control performance of the resultant closed-loop system of 

concern. 

It should be point out that as the MANNC2 involves two-dynamic layers whereas 

the MANNC involves only one-dynamic layer, the time required by each training 

step of the MANNC2 will need to be physically longer than that of the MANNC 

(as illustrated in the example of the next case). Although this is a recognisable 

fact, it may become a constraint for systems with critical real-time requirements.   



Chapter 4 

148 
 

 Case 2 – Application of MANNC2 on twin-tank level-control system 

In this case, a twin-tank level-control system that is a complex and significant 

nonlinear coupled two-input two-output system is selected. The same system has 

been adopted as a typical example for evaluating the performances of many novel 

advanced control methods in the literature [33, 34]. The given physical system 

consists of two tanks, two pumps, two discharging valves, and one inter-

connected valve between the two tanks. Each tank has its own pump for inflow of 

liquid, and the two tanks are connected by the inter-connected valve at their 

common base level. The system inputs are: the flow rate of Pump 1 (𝑄௜ଵ) and the 

flow rate of Pump 2 (𝑄௜ଶ), and the system outputs are: the liquid height of the left 

tank (𝐻ଵ) and the liquid height of the right tank (𝐻ଶ), as illustrated in Figure 

4-16.  

 

Figure 4-16. Twin-tank system 

From Figure 4-16, according to the Bernoulli’s equation for non-viscous and 

incompressible fluid, one writes: 

𝑄ଵ = 𝑠ଵ. 𝑎଴. ඥ2𝑔𝐻ଵ                    (101) 

𝑄ଶ = 𝑠ଶ. 𝑎଴. ඥ2𝑔𝐻ଶ                 (102) 

𝑄ଷ = 𝑠ଷ. 𝑎ଵ. ඥ2𝑔(𝐻ଵ − 𝐻ଶ)                (103) 

where 𝑄ଵ , 𝑄ଶ , and 𝑄ଷ  are the flow rates associated with the respective three 

valves; 𝑠ଵ , 𝑠ଶ , and 𝑠ଷ  are the cross-sectional areas of the channels that are 

connected to the three valves (𝑄ଵ, 𝑄ଶ, and 𝑄ଷ), respectively; 𝑎଴ is the discharge 

coefficient of Channel 1 (with 𝑄ଵ) and Channel 2 (with 𝑄ଶ); 𝑎ଵ is the discharge 
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coefficient of Channel 3 (with 𝑄ଷ ); 𝑔  is the acceleration due to gravity. By 

defining 𝛼ଵ = 𝑠ଵ. 𝑎଴. ඥ2𝑔, 𝛼ଶ = 𝑠ଶ. 𝑎଴. ඥ2𝑔, and 𝛼ଷ = 𝑠ଷ. 𝑎ଵ. ඥ2𝑔 as constant values, 

(105)-(107) are simplified as: 

𝑄ଵ = 𝛼ଵඥ𝐻ଵ                  (104) 

𝑄ଶ = 𝛼ଶඥ𝐻ଶ                  (105) 

𝑄ଷ = 𝛼ଷඥ𝐻ଵ − 𝐻ଶ                 (106) 

Thus, the nonlinear equations describing the dynamics of the twin-tank system 

are written as: 

𝐴ଵ
ௗுభ

ௗ௧
= 𝑄௜ଵ − 𝑄ଵ − 𝑄ଷ = 𝑄௜ଵ − 𝛼ଵඥ𝐻ଵ − 𝛼ଷඥ𝐻ଵ − 𝐻ଶ            (107) 

𝐴ଶ
ௗுమ

ௗ௧
= 𝑄௜ଶ − 𝑄ଶ + 𝑄ଷ = 𝑄௜ଶ − 𝛼ଶඥ𝐻ଶ + 𝛼ଷඥ𝐻ଵ − 𝐻ଶ            (108) 

where 𝐴ଵ and 𝐴ଶ are the two tanks’ cross-sectional areas, respectively. (111)-(112) 

show clearly the high-nonlinearity and coupling between the outputs of the given 

MIMO system. The selections of the parameters of the twin-tank system are 

given in Table 4-6. 

It is assumed that the initial liquid heights of both tanks are at one meter and 

the desired liquid heights of both tanks are at seven meters. The control 

objective in this case is to achieve the desired heights in tanks by controlling the 

pumps’ flow. In this experiment, according to the limited heights of the tanks in 

a real industrial application, large overshoots in liquid heights are counted as 

highly undesirable, and controllers capable of achieving satisfactory overshoot 

reduction and set-point tracking are considered as highly valuable.    

Symbol Description Value 

𝐴ଵ, 𝐴ଶ Tank cross-sectional area 45 𝑚ଶ 

𝑠ଵ, 𝑠ଶ, 𝑠ଷ Channels cross-sectional area 0.02 𝑚ଶ 

𝑎଴,  Discharge coefficient of Channel 1 and Channel 2 0.5 

𝑎ଵ Discharge coefficient of Channel 3 0.25 

𝑔 Acceleration due to gravity 9.81 𝑚/𝑠ଶ 

Table 4-6. Parameters of given twin-tank system  
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To demonstrate a meaningful comparison between the proposed MANNC2 and 

the previous MANNC, both controllers are applied to the same nonlinear two-

input two-output system, and the outputs of their respective resultant control 

systems are represented in Figure 4-17 and Figure 4-18, respectively. The initial 

learning rates of both controllers are set to 0.1 (i.e., 𝜆ଵ = 𝜆ଶ = 0.1 for MANNC 

and 𝜆ଵ = 𝜆ଶ = 𝜇ଵ = 𝜇ଶ = 0.1 for MANNC2), and the number of samples used in 

the learning algorithms of both controllers is set to 40 (i.e., 𝑚 = 40). The learning 

algorithms of both controllers are shut down at the 35th training step, and the 

weights of the respective controllers are locked at their respective the 35th-step’s 

values for the rest of the control processes. As can be seen in Figure 4-17 and 

Figure 4-18, faster set-point tracking, reduced undesirable overshoot, shorter 

settling time, and lower accumulated error can be achieved by the MANNC2 

control system, as compared with those achieved by the MANNC control system. 

The superiority of the MANN2 over its counterpart, the MANNC, is again 

evidently confirmed in this case study. The detailed results of the application of 

the MANNC2 and the MANNC to the twin-tank system are represented in Table 

4-7. 

 

Figure 4-17. Liquid height of left tank controlled by MANNC2 and MANNC 
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Figure 4-18. Liquid height of right tank controlled by MANNC2 and MANNC 

 

Controller Number 

of 

trainings 

Time of 

training 

Output 1 

Overshoot  

Output 2 

Overshoot 

Output 1 

settling 

time  

Output 2 

settling 

time 

MANNC 35 1.65 s 14.1% 11.7% 137 s 47 s 

MANNC2 35 3.9 s 1.9% 0.7% 64s 47 s 

Table 4-7. Comparison of MANNC2 and MANNC controlled twin-tank system  

From Table 4-7, it is evident that although the overall required time of training 

for the MANNC2 is more than that of the MANNC, the overshoot of both outputs 

of the MANNC2 as well as the settling time of Output 1 of the MANNC2 are 

significantly less than those of the MANNC. The reason for a longer weight 

training time of the MANNC2 is justified, as the controller has two-dynamic 

layers in its structure and, thus, a greater number of weights to be trained as 

compared to the MANNC. This fact demonstrates that training an extra layer 

can lead to a better system performance but with the expense of spending longer 

time to compute the control action at each training step and, thus, requiring a 

higher computation load. Hence, choosing between the MANNC2 and the 

MANNC depends on the expected system performance and the required duration 

of the each-step’s control action for a particular application.  
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The weight training time versus the variation of the number of samples between 

5 ≤ 𝑚 ≤ 40 in both the MANNC2 and the MANNC is further investigated, and 

the comparative result is shown in Figure 4-19. As expected, due to the two-

dynamic-layer structure, the weight training time of the MANNC2 is longer than 

that of the MANNC. In addition, it is observed that, unlike the MANNC, the 

required training time of the MANNC2 significantly depends on the number of 

samples (𝑚) and increases with the increase in 𝑚 exponentially. Therefore, when 

the MANNC2 is used, the number of samples must be selected carefully to avoid 

unwanted excessive training time. Nevertheless, to reduce the total training 

time of the MANNC2, the number of training steps of the MANNC2 can be 

optimally selected to be lesser than that of the MANNC, for achieving a similar 

accumulated error. For instance, in Case 1 presented in Subsection 4.5.1, a 

number of 15 can be selected as the optimal training number of the MANNC2 

versus the number 35 that must be selected as the optimal training number for 

the MANNC in order to achieve a similar level of acceptable accumulated error. 

The overall advantage of having an adjustable hidden layer in addition to an 

adjustable output layer in the MANNC2 structure is clearly verified via both of 

the case studies.      
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Figure 4-19. Weight training time vs number of samples taken for MANNC2 and MANNC 

    Conclusion 

By the use of the powerful learning abilities inherent in a neural network 

strategy, the proposed MANNC2 can effectively control highly-nonlinear coupled 

square MIMO systems. Using a two-dynamic-layer structure in which each layer 

has its own auto-tune learning algorithm that is equipped with a dynamic 

accumulated-error back-propagation capability, the MANNC2 can successfully 

tune its weights online to achieve the desirable control outcomes while keeping 

the global stability of the resultant closed-loop system during the entire control 

process. The effectiveness of the proposed MANNC2 is validated via simulation 

studies. When compared to the MANNC introduced in [1], the MANNC2 is seen 

to provide a better control performance especially for systems with more complex 

nonlinear characteristics. By selecting an appropriate number of samples, the 

MANNC2 can be effectively used for a wide range of nonlinear square MIMO 

control systems found in industrial applications where minimum overshoot and 

undershoot in the system outputs are particularly desirable. Although the total 

training time required by the MANNC2 is more dependent on the number of 
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samples taken in the learning algorithms, by selecting a proper optimal training 

number, the required training steps of the MANNC2 can be much less than that 

of the MANNC, thus reducing the effective total training time of the MANNC2 

significantly. Overall, it is demonstrated that the MANNC2 makes a more 

suitable candidate for industrial applications than its predecessor, the MANNC, 

as well as its relevant competitors in the literature. 
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 CHAPTER 5: INTRODUCING UNIVERSAL MODEL-FREE 
MULTIVARIABLE ADAPTIVE NEURAL NETWORK 
CONTROLLER FOR NON-SQUARE MULTIVARIABLE 
SYSTEMS 

Aim 

In this chapter, an introduction of a Multivariable Adaptive Neural Networks 

Controller for Non-Square MIMO systems (MANNCNS) is represented. Using 

the controllers designed in previous chapters namely ANNC, MANNC, and 

MANNC2, this controller is designed in such a way to represent the ultimate 

product of this thesis as a universal controller to provide a framework to control 

MIMO coupled systems with unknown models, highly non-linear characteristics 

and any different number of inputs and outputs as per diagram below: 

Chapter 2
Introducing adaptive neural 
network controller (ANNC) 

for SISO

Chapter 3
Developing ANNC to multivariable 
adaptive neural network controller  

for square MIMO (MANNC)

Chapter 4
Developing MANNC to multivariable 
adaptive neural network controller 
with 2-layer  for nonlinear square 

MIMO (MANNC2)

Chapter 5
Developing MANNC2 to multivariable 

adaptive neural network controller 
with 2-layer  for nonlinear non-square 

MIMO (MANNCNS)
 

Description 

To achieve this aim, firstly, the neural network structure of the multivariable 

adaptive controller and matrix representation of the closed loop control system 

for a general non-square MIMO system is represented. The neural network 

topology of the MANNCNS is designed via the modification of the square neural 

network structure of the MANNC2 introduced in Chapter 4. Subsequently, a 

fully modified learning algorithm for a 2-layer neural network structure and the 

Lyapunov stability criteria for the non-square structure of the controlled system 

are developed. The Lyapunov stability criteria are being checked simultaneously 

with running the learning algorithm to guarantee that the neural network 

control system does not fall in its local minimum. In order to validate the 

performance of the MANNCNS, this controller is applied to a non-square MIMO 

case of a distillation column system (with three manipulated variables and two 

controlled variables) and also a non-square MIMO case of DC motor (with two 

manipulated variables and three controlled variables). Subsequently, the 
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designed controller is tested and compared with the best existing counterparts. 

The above-mentioned contents are described in a paper: 

 Arash Mehrafrooz and Fangpo He, “Introducing a Universal Model-free 

Multivariable Adaptive Neural Network Controller for Non-Square MIMO 

Systems” submitted to “IEEE Transactions on Automation Science and 

Engineering”. 

 INTRODUCTION .............................................................................................. 160 

 MULTIVARIABLE ADAPTIVE NEURAL NETWORKS CONTROLLER FOR NON-SQUARE 

MULTIVARIABLE SYSTEMS (MANNCNS) ............................................................. 165 

 CLOSED-LOOP STRUCTURE OF MANNCNS ................................................. 165 

 STRUCTURE OF SUB-MANNCNS (S-MANNCNS) ...................................... 166 

 MATRIX REPRESENTATION ........................................................................... 168 

 LEARNING ALGORITHM ................................................................................... 171 

 OUTPUT-LAYER WEIGHTS LEARNING ALGORITHM ....................................... 172 

 HIDDEN-LAYER WEIGHTS LEARNING ALGORITHM ....................................... 173 

 STABILITY ANALYSIS ...................................................................................... 181 
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 CASE 1 – APPLICATION OF MANNCNS ON A 3-INPUT 2-OUTPUT SYSTEM .... 186 

 CASE 2 – APPLICATION OF MANNCNS ON A 2-INPUT 3-OUTPUT SYSTEM .... 196 
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Results 

In this chapter, the MANNC2 introduced in the Chapter 4 - which was 

applicable on “square” nonlinear model-free MIMO systems - is modified to a 

universal controller for “non-square” non-linear model-free MIMO systems. The 

original contribution in this study is the development of a novel advanced control 

method including the new neural network structure of the controller and 

associated learning algorithm to be applied to general non-square coupled 

multivariable systems with unknown models. The obtained results clarify the 

appropriate set-point tracking, error reduction, and unexpected disturbance 
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cancelation of the controller with its powerful auto-tuning capability in 

industrial applications. 

Conclusion 

Overall, this chapter shows that with the powerful learning abilities inherent in 

a neural network strategy, the proposed MANNCNS is capable of controlling 

model-free coupled non-square MIMO systems with non-linear properties to 

achieve the desirable control outcomes. The MANNCNS can be effectively used 

as a general novel solution for industrial applications as a practical framework. 

Future proposed studies will be outlined in Chapter 6 of this thesis. 
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Introducing a Universal Model-free 
Multivariable Adaptive Neural Network 

Controller for Non-Square MIMO Systems  
Arash Mehrafrooz1, aand Fangpo He1, b  

1Advanced Control Systems Research Group, College of Science and Engineering, Flinders 
University, Australia 

a<arash.mehrafrooz@flinders.edu.au>, b<fangpo.he@flinders.edu.au> 
 
Abstract - In this paper, a universal model-free Multivariable Adaptive Neural Network 

Controller for Non-Square systems (MANNCNS) is introduced for controlling black-

box nonlinear non-square couple Multiple-Input Multiple-Output (MIMO) systems. 

The controller follows a model-free adaptive learning algorithm to train weights in two 

dynamic layers of its neural networks automatically. By having the history of the 

system’s inputs and outputs, the controller is able to adjust itself with the new 

conditions such as changes in the desired outputs, structural uncertainties in the model 

of the system, and unwanted disturbances. Two adjustable layers in the neural network 

structure have been considered to deal with nonlinear behavior of the non-square 

multivariable system of concern. The Lyapunov stability criteria which are defined 

based on the data from input signals and output signals can guarantee stability of the 

closed loop control system during the entire learning process. The simulation results 

demonstrate the proper control performance as well as powerful disturbance rejection 

of the controller for a model of distillation column with three manipulated variables 

(inputs) and two controlled variables (outputs). Additionally, the performance of the 

designed controller is checked for MIMO systems when the number of outputs is more 

than the number of inputs via applying to a highly non-linear DC motor model. To 

demonstrate the highly improved performance of MANNCNS, the simulation results 

are compared to the best recent neuro-fuzzy counterpart, namely RHONN. 

Key Words – auto tuning, disturbance rejection, learning algorithm, Lyapunov stability, 
neural network control, non-square MIMO.  

 Introduction 

Control of non-square MIMO systems that is frequently required in many 

industrial applications, has always been a challenging problem in the field of 

multivariable control systems due to asymmetrical structure of their system’s 
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model  [1, 2]. The control problem becomes more challenging where strong cross-

couplings exist between inputs and outputs of the non-square MIMO system, as 

interactions among control loops cause controlled variables (system’s outputs) to 

be affected by multiple manipulated variables (system’s inputs). In the 

literature, there are many control problems defined for non-square MIMO 

industrial applications, to name a few: mixing-tank process with 2 inputs and 3 

outputs (e.g. [3]), distillation column with 3 inputs and 2 outputs (e.g. [2]), Shell 

control problem with 7 inputs and 5 outputs (e.g. [4]), air path scheme of a turbo 

charged diesel engine with 3 input and 2 outputs (e.g. [5]), crude distillation unit 

with 5 inputs and 4 outputs (e.g. [6]), and hot oil fractionators with 4 inputs and 

2 outputs (e.g. [7]). This diversity of applications with different number of inputs 

and number of outputs demonstrates the importance of having a universal 

control solution with dimensional flexibility to apply to coupled non-square 

MIMO systems.  

In model-based control solutions for non-square MIMO systems, there are many 

drawbacks with regard to the difficulty of inverting non-square system model’s 

matrices. To cope with this difficulty, many of the modern strategies for 

controlling non-square MIMO systems are designed based on square control 

methods. This is to take the advantage of system’s invertible matrix for 

simplicity in mathematical computations. For this purpose, in model-based 

approaches, adding / removing the appropriate number of rows or columns to / 

from the system’s matrices is being used. By doing so, the non-square system’s 

model is converted to a square one via squaring up or squaring down the original 

non-square system’s model. Once the non-square MIMO system becomes square, 

then a control solution can be developed for the new square MIMO system’s 

model. [8] has compared square and non-square structures of different case 

studies and found the square system was much more sensitive to modelling 

errors. Squaring up/down method is also used in some model-free approaches by 

adding/removing inputs or outputs to achieve a symmetrical input-output 

structure for the system of concern. Despite the fact that this approach has been 

successful for many applications, it has practical shortcomings in industrial 

applications as follows: (i) Adding unnecessary outputs to be measured can be 
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costly. (ii) Deleting inputs leaves fewer variables to be set to achieve the desired 

control outcome. (iii) The amount of feedback information available to the 

controller can be reduced by decreasing the number of measured outputs. (iv) 

adding new manipulated inputs can incur an unnecessary cost. Considering the 

mentioned problems in squaring up or squaring down non-square MIMO 

systems, it has been recently demonstrated that there are many benefits in 

synthesizing a controller for the original non-square system over using the 

square models in many industrial applications.  

In model-based control methods that use the non-square model of the MIMO 

systems, the procedure for finding the exact model of the system is a time-

consuming and costly process due to unmodelled nonlinearities, structural 

uncertainties, and time-varying natures. Also, application of a non-square model-

based control methods is limited to particular classes of non-square MIMO 

systems. As a meaningful example, in [5] a static decoupling method based on 

the structure of internal model control is proposed that used a Smith 

compensator for non-square multivariable systems. The simulation results 

demonstrated that although this method can achieve a reasonable control 

performance, this type of static decoupling only guarantees complete decoupling 

for low frequency responses, and does not address the high frequency responses 

happening in many industrial applications [9].  

Due to the above-mentioned deficiencies related to model-based methods, over 

the past few years, model-free control methods play an important role in the 

control of non-square MIMO industrial systems [10, 11]. MFC method which was 

firstly proposed for controlling single-input single-output (SISO) systems in [12], 

was modified to control a non-square MIMO dynamic system via model 

approximation of nonlinear dynamic system in [13]. MFC method for non-square 

MIMO was applied to a linear time-invariant system and the optimal control 

equation included a term that was derived from the solution of a linear quadratic 

regulator (LQR) problem. In the mentioned method, optimal control problem was 

solved off-line. Although, this off-line control method is applicable for model-free 

non-real time (NRT) applications, it did not address the situations that an online 

and real-time control action is required.  



Chapter 5 

163 
 

Nowadays, neural networks have been proven to be suitable for implementation 

of important machine learning algorithms for model-free control approaches [14]. 

By using parallel structure and adding adaptive features to neural network 

scheme, adaptive neural networks have been seen in real-time multivariable 

control systems. The multi-layer neural networks have been used in controlling 

coupled nonlinear MIMO systems for their abilities in nonlinear approximation. 

Due to the capacity of having non-square neural network structures, non-square 

neural networks can be chosen to be used in controlling non-square MIMO 

systems. In [15], a direct adaptive control scheme is introduced for regulation of 

nonlinear unknown MIMO plants. The control method is based on a new Neuro-

Fuzzy Dynamical Systems method, that used the concept of Fuzzy Dynamical 

Systems (FDS) operating in conjunction with High Order Neural Network 

Functions (HONNF). The unknown system was expressed by a F-RHONN 

introduced in [16] and contains a number of unknown constant-value parameters 

known as synaptic weights. The control signal is constructed to be valid for both 

square and non-square systems. This method is used to compare and validate the 

performance of MANNCNS in simulation case in this paper.   

Considering the above-mentioned deficiencies associated with the existing 

model-based methods, off-line model-free methods and neural network-based 

methods for controlling non-square MIMO systems, it is noted that there is a 

need to develop a general online model-free control method for black-box non-

square MIMO systems. In this study, by using the parallel computation 

capability and the superior flexibility in the topology of neural networks, the 

neural network controller introduced in [17] is modified to a Multivariable 

Adaptive Neural Network Controller for Non-Square MIMO systems called 

MANNCNS. The proposed controller potentially possesses several key benefits 

over MANNC and MANNC2 introduced in [17, 18] and the existing counterparts 

as follows: 

 By knowing the fact that in many applications, it is not suitable to convert 

a non-square multivariable system to a square multivariable one by 

adding or removing extra inputs or outputs, MANNCNS provides a 
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general model-free control framework for controlling original non-square 

MIMO systems with various number of inputs and number of outputs.  

 By using flexible and cross-coupled properties and non-square structure of 

multi-layer neural networks, MANNCNS provides a universal controller 

solution that is capable of controlling non-square coupled MIMO systems 

with unknown models and therefore can cope with nonlinearities, 

structural uncertainties, and environmental disturbances.  

 The new online dynamic neural network learning algorithm used in the 

proposed method significantly modifies the previous learning methods for 

square MIMO systems introduces by the authors in [17, 18] to be applied 

to non-square MIMO systems.  

 By applying an accumulated gradient in the error back-propagation 

algorithm, the proposed method uses the history of the system’s outputs 

together with the current weights to find the weights for the next step and 

significantly improves current model-free methods for controlling a non-

square MIMO in a real-time manner.  

 New stability conditions are established for the non-square closed loop 

control system, and yield to constraints to be checked during the weight 

learning process to guarantee the stability of the control system at entire 

time of the control process.  

 The proposed method enables the provision of the weights’ adjustment 

convergence which is an important indicator for the implementation of the 

controller in industrial applications to identify the optimal number of 

weight trainings automatically during the learning process.  

To reveal the proposed MANNCNS, the rest of the paper is organized as follows: 

In section 5.2 the structure and matrix representation of the new neural 

network-based adaptive controller is demonstrated. In section 5.3, the learning 

algorithm of the neural networks for two layers using error back-propagation 

algorithm is illustrated. The controlled system’s stability criteria are 

investigated in section 5.4. Section 5.5 contains the simulation results where the 

proposed method is applied to two case-studies of non-square MIMO system to 

validate the performance of the controller on both types of non-square MIMO 
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systems and compared with its utmost counterpart. The paper’s conclusion is 

given in Section 5.6.  

 Multivariable Adaptive Neural Networks Controller for Non-
Square Multivariable Systems (MANNCNS) 

 Closed-loop Structure of MANNCNS 

According to the proposed structure of P-type, I-type, and D-type neurons 

introduced by the authors in [17, 18], the output of the neurons in the discrete 

form can be expressed respectively as: 

𝑜௉(𝑘) = ቐ

1                                        𝑛𝑒𝑡௉(𝑘) > 1

𝑛𝑒𝑡௉(𝑘)               − 1 ≤ 𝑛𝑒𝑡௉(𝑘) ≤ 1

−1                                      𝑛𝑒𝑡௉(𝑘) < −1

       (1) 

𝑜ூ(𝑘) = ቐ

1                                                        𝑛𝑒𝑡ூ(𝑘) > 1

𝑜ூ(𝑘 − 1) + 𝑛𝑒𝑡ூ(𝑘)        − 1 ≤ 𝑛𝑒𝑡ூ(𝑘) ≤ 1

−1                                                     𝑛𝑒𝑡ூ(𝑘) < −1

      (2) 

𝑜஽(𝑘) = ቐ

1                                                            𝑛𝑒𝑡஽(𝑘) > 1

𝑛𝑒𝑡஽(𝑘) − 𝑛𝑒𝑡஽(𝑘 − 1)        − 1 ≤ 𝑛𝑒𝑡஽(𝑘) ≤ 1

−1                                                            𝑛𝑒𝑡஽(𝑘) < −1

     (3) 

where 𝑜௑(𝑘) and 𝑛𝑒𝑡௑(𝑘) are the X-type neuron’s output and the X-type neuron’s 

sum of inputs at the 𝑘௧௛ sampling time, respectively. Considering the structure of 

ANNC, MANNC, and MANNC2 ,respectively, proposed in [19], [18], and [17], a 

new Multivariable Adaptive Neural Networks Controller for Non-Square MIMO 

systems (MANNCNS) illustrated in Figure 5-1 is developed as a closed-loop 

controller to be applied to coupled non-square (𝑝 × 𝑞) MIMO systems, where 𝑝 

and 𝑞 are the number of the system inputs and number of the system outputs, 

respectively. In this structure, the sum of the weighted desired outputs and 

weighted actual outputs are produced in the first dynamic layer of the controller 

and, subsequently, propagated to the second dynamic layer of the controller. 

Structurally, the MANNCNS contains three layers called the input layer, the 

hidden layer, and the output layer; There are 2𝑞 P-type neurons within the input 

layer.  In the hidden layer, there are 3𝑞 neurons including P-type, I-type, and D-

type neurons in clusters of three, respectively. In the output layer, there are 𝑝 P-

type neurons to supply the outputs of the MANNCNS. The outputs of the output 
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layer enter to the multivariable system as inputs. There are 6𝑞  adjustable 

weights in the hidden layer which are multiplied by the input layer’s outputs to 

make the hidden-layer inputs. Additionally, there are 3𝑝𝑞 adjustable weights in 

the output layer associated with the hidden-layer neurons. Hidden-layer weights 

determine the impact of each neuron in the hidden layer to generate the 

multivariable system’s inputs. 
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Figure 5-1. MANNCNS control system structure  

 Structure of Sub-MANNCNS (S-MANNCNS) 

Using the concept of the sub-controllers introduced in [17] for the MANNC2, the 

proposed MANNCNS’s structure illustrated in Figure 5-1 is further decomposed 

into 𝑝𝑞  sub-controllers each named as a Sub-MANNCNS (S-MANNCNS) as 

shown in Figure 5-2. The functionality of the sub-controllers is to enable the 

neural-network controller to account for the cross-couplings of an 𝑝 × 𝑞  non-

square MIMO system of concern. 
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For the S-MANNCNS associated with the desired output 𝑟௙ and actual output 𝑦௙ 

(𝑓 = 1, 2, … , 𝑞), and the ℎ௧௛ system’s input (ℎ = 1, 2, … , 𝑝) as shown in Figure 5-2,  

there are in total three layers and six neurons. The first layer is called the input 

layer and contains two ‘P-type’ neurons. The desired output (𝑟௙) and the system’s 

output (𝑦௙) propagate via those P-type neurons to the second layer named hidden 

layer. Within the hidden layer, there are three neurons each being a P-type, an I-

type, and a D-type, respectively. The P-neuron is responsible for producing the 

total sum of the weighted desired outputs and the weighted actual outputs, the I-

neuron provides the necessary action to eliminate the steady-state error, and the 

D-neuron predicts the future behaviour of the error. The third layer is named as 

the output layer that accumulates outputs of the hidden layer, generates the 

control commands respective to all desired outputs and actual outputs, and 

applies the control commands to the non-square MIMO system as inputs. The 

inputs of the P-type, I-type, and D-type (named 𝑛𝑒𝑡ଷ௙ିଶ
ଵ , 𝑛𝑒𝑡ଷ௙ିଵ

ଵ , and 𝑛𝑒𝑡ଷ௙
ଵ , 

respectively) and the outputs of these neurons (named 𝑂ଷ௙ିଶ
ଵ , 𝑂ଷ௙ିଵ

ଵ , and 𝑂ଷ௙
ଵ , 

respectively) are related together by the activation functions of the neurons 

represented in (1)-(3). In the hidden layer of S-MANNCNS, there are total six 

weights (𝑤ഥଵ,ଶ௙ିଵ, 𝑤ഥଶ,ଶ௙ିଵ, 𝑤ഥଷ,ଶ௙ିଵ, 𝑤ഥଵ,ଶ௙, 𝑤ഥଶ,ଶ௙, and  𝑤ഥଷ,ଶ௙) associated with the input layer 

and hidden layer. Likewise, in the output layer of the S-MANNCNS there are three 

weights (𝑤௛,ଷ௙ିଶ, 𝑤௛,ଷ௛ିଵ, and 𝑤௛,ଷ௛) that connect the P-type, I-type, and D-type 

neurons in the hidden layer to the P-type neuron in the output layer. 

P-type

I-type

D-type

P-type

 p-input
 q-output

 MIMO
 System

𝑦𝑓  

𝑟𝑓  
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Figure 5-2. S-MANNCNS structure 
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 Matrix representation  

The matrix representation of a closed-loop non-square MIMO system using the 

proposed MANNCNS (Figure 5-1) and S-MANNCNS (Figure 5-2), is derived as 

follows. Let 𝑂௛
ଶ  and 𝑦௙  be, respectively, the ℎ௧௛  input and 𝑓௧௛  output of the 

system, where, 1 ≤ ℎ ≤ p  and 1 ≤  𝑓 ≤ q , and let 𝐺௜௝  be the transfer function 

relating the system input 𝑂௝
ଶ to the system output 𝑦௜, where 1 ≤  𝑗 ≤ p and 1 ≤

 𝑖 ≤ q . The vectors and matrices associated with Figure 5-1 and Figure 5-2 

(named 𝑌௤×ଵ , 𝑂௣×ଵ
ଶ , 𝐺௤×௣ , 𝑛𝑒𝑡௣×ଵ

ଶ , 𝑊௣×ଷ௤ , 𝑂ଷ௤×ଵ
ଵ , 𝑃ଷ௤×ଷ௤ , 𝑛𝑒𝑡ଷ௤×ଵ

ଵ , 𝑊ഥଷ௤×ଷ௤
௥ , 𝑊ഥଷ௤×ଷ௤

௬ , 

𝑅ଷ௤×ଵ
(ଷ) , 𝑌ଷ௤×ଵ

(ଷ) , 𝐼ଷ௤×௤
(ଷ) , and 𝑅௤×ଵ) are, respectively, defined as follows. 

𝑌 = 𝑌௤×ଵ = [𝑦ଵ 𝑦ଶ
⋯ 𝑦௟ ⋯ 𝑦௤]ଵ×௤

்       (4) 

𝑂ଶ = 𝑂௣×ଵ
ଶ = ൣ𝑂ଵ

ଶ 𝑂ଶ
ଶ ⋯ 𝑂௟

ଶ ⋯ 𝑂௣
ଶ൧

ଵ×௣

்
                  (5) 

𝐺 = 𝐺௤×௣ =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺ଵଵ

𝐺ଶଵ

⋮

𝐺ଵଶ

𝐺ଶଶ

⋮

⋯ 𝐺ଵ௛ ⋯ 𝐺ଵ௣

⋯ 𝐺ଶ௛ ⋯ 𝐺ଶ௣

   ⋮
𝐺௙ଵ

⋮
𝐺௤ଵ

𝐺௙ଶ

⋮
𝐺௤ଶ

⋯ 𝐺௙௛ ⋯ 𝐺௙௣

 ⋮   ⋮
⋯ 𝐺௤௛ ⋯ 𝐺௤௣⎦

⎥
⎥
⎥
⎥
⎤

௤×௣

                     (6) 

𝑛𝑒𝑡ଶ = 𝑛𝑒𝑡௣×ଵ
ଶ = ൣ𝑛𝑒𝑡ଵ

ଶ 𝑛𝑒𝑡ଶ
ଶ ⋯ 𝑛𝑒𝑡௟

ଶ ⋯ 𝑛𝑒𝑡௣
ଶ൧

ଵ×௣

்
      (7) 

𝑊 = 𝑊௣×ଷ௤ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଵ

𝑤ଶ,ଵ

⋮

𝑤ଵ,ଶ

𝑤ଶ,ଶ

⋮

𝑤ଵ,ଷ ⋯ 𝑤ଵ,ଷ௙ିଶ 𝑤ଵ,ଷ௙ିଵ

𝑤ଶ,ଷ ⋯ 𝑤ଶ,ଷ௙ିଶ 𝑤ଶ,ଷ௙ିଵ

   ⋮
𝑤௛,ଵ

⋮
𝑤௣,ଵ

𝑤௛,ଶ

⋮
𝑤௣,ଶ

𝑤௛,ଷ ⋯ 𝑤௛,ଷ௙ିଶ 𝑤௛,ଷ௙ିଵ

    ⋮
𝑤௣,ଷ ⋯ 𝑤௣,ଷ௙ିଶ 𝑤௣,ଷ௙ିଵ

 

𝑤ଵ,ଷ௙

𝑤ଶ,ଷ௙

⋮

⋯ 𝑤ଵ,ଷ௤ିଶ 𝑤ଵ,ଷ௤ିଵ 𝑤ଵ,ଷ௤

⋯ 𝑤ଶ,ଷ௤ିଶ 𝑤ଶ,ଷ௤ିଵ 𝑤ଶ,ଷ௤

   ⋮
 
 
 

𝑤௛,ଷ௙

⋮
𝑤௣,ଷ௙

⋯ 𝑤௛,ଷ௤ିଶ 𝑤௛,ଷ௤ିଵ 𝑤௛,ଷ௤

 ⋮ ⋮ ⋮
 ⋯  𝑤௣,ଷ௤ିଶ 𝑤௣,ଷ௤ିଵ 𝑤௣,ଷ௤⎦

⎥
⎥
⎥
⎥
⎤

௣×ଷ௤

   

 (8) 

𝑂ଵ = 𝑂ଷ௤×ଵ
ଵ = ൣ𝑂ଵ

ଵ 𝑂ଶ
ଵ 𝑂ଷ

ଵ ⋯ 𝑂ଷ௤
ଵ ൧

ଵ×ଷ௤

்
        (9) 
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𝑃 = 𝑃ଷ௤×ଷ௤ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 𝐷ିଵ 0
0 0 𝐷

⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯
1 0 0
0 𝐷ିଵ 0
0 0 𝐷⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௤×ଷ௤

               (10) 

𝑛𝑒𝑡ଵ = 𝑛𝑒𝑡ଷ௤×ଵ
ଵ = ൣ𝑛𝑒𝑡ଵ

ଵ 𝑛𝑒𝑡ଶ
ଵ 𝑛𝑒𝑡ଷ

ଵ ⋯ 𝑛𝑒𝑡ଷ௤
ଵ ൧

ଷ௤×ଵ

்
              (11) 

𝑊ഥ ௥ = 𝑊ഥଷ௤×ଷ௤
௥ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଵതതതതത 0 0

0 𝑤ଶ,ଵതതതതത 0

0 0 𝑤ଷ,ଵതതതതത
⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯

𝑤ଵ,ଶ௤ିଵതതതതതതതതത 0 0

0 𝑤ଶ,ଶ௤ିଵതതതതതതതതത 0

0 0 𝑤ଷ,ଶ௤ିଵതതതതതതതതത⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଷ௤×ଷ௤

           (12) 

𝑊ഥ
௬

= 𝑊ഥଷ௤×ଷ௤
௬

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑤ଵ,ଶതതതതത 0 0

0 𝑤ଶ,ଶതതതതത 0

0 0 𝑤ଷ,ଶതതതതത
⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯

𝑤ଵ,ଶ௤തതതതതതത 0 0

0 𝑤ଶ,ଶ௤തതതതതതത 0

0 0 𝑤ଷ,ଶ௤തതതതതതത⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଷ௤×ଷ௤

            (13) 

𝑅
(ଷ)

= 𝑅ଷ௤×ଵ
(ଷ) =[𝑟ଵ 𝑟ଵ

𝑟ଵ 𝑟ଶ 𝑟ଶ 𝑟ଶ ⋯ 𝑟௤ 𝑟௤ 𝑟௤]ଵ×ଷ௤
்              (14) 

𝑌
(ଷ)

= 𝑌ଷ௤×ଵ
(ଷ)

= [𝑦ଵ 𝑦ଵ
𝑦ଵ 𝑦ଶ 𝑦ଶ 𝑦ଶ ⋯ 𝑦௤ 𝑦௤ 𝑦௤]ଵ×ଷ௤

்             (15) 

𝐼
(ଷ)

= 𝐼ଷ௤×௤
(ଷ)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

ଷ௤×௤

                  (16) 

𝑅 = 𝑅௤×ଵ = [𝑟ଵ 𝑟ଶ
𝑟ଷ ⋯ 𝑟௤]ଵ×௤

்                 (17) 

Assuming that the nonlinear system of concern is linearized around an operation 

point, the relationship between the inputs and outputs of the system will be: 

𝑌௤×ଵ = 𝐺௤×௣𝑂௣×ଵ
ଶ                          (18) 

Since 𝑛𝑒𝑡௛
ଶ is the ℎ௧௛ input of the P-type neuron in the output layer, one has:  
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𝑂௣×ଵ
ଶ = 𝑛𝑒𝑡௣×ଵ

ଶ                     (19) 

where the relationship between the inputs and outputs in the output layer of the 

neural networks can be expressed as: 

𝑛𝑒𝑡௣×ଵ
ଶ = 𝑊௣×ଷ௤

ଶ 𝑂ଷ௤×ଵ
ଵ                   (20) 

As the hidden layer has P-type, I-type, and D-type neurons, the proportional, 

integral, and derivative operators (1, 𝐷ିଵ, and 𝐷) are considered respectively in 

the matrix form of the activation function as: 

𝑂ଷ௤×ଵ
ଵ = 𝑃ଷ௤×ଷ௤𝑛𝑒𝑡ଷ௤×ଵ

ଵ                   (21) 

where inputs of the hidden-layer neurons are the total sum of the weighted 

desired outputs and the actual outputs. Hence, 𝑛𝑒𝑡ଷ௤×ଵ
ଵ  can be described as: 

𝑛𝑒𝑡ଷ௤×ଵ
ଵ = 𝑊ഥଷ୯×ଷ௤

௥ 𝑅ଷ௤×ଵ
ଷ + 𝑊ഥଷ୯×ଷ௤

௬
𝑌ଷ௤×ଵ

ଷ                 (22) 

By having: 

𝑅ଷ௤×ଵ
(ଷ)

= 𝐼ଷ௤×௤
(ଷ)

× 𝑅௤×ଵ                  (23) 

and: 

𝑌ଷ௤×ଵ
(ଷ)

= 𝐼ଷ௤×௤
(ଷ)

× 𝑌௤×ଵ                   (24) 

and using equations (18)-(22), one obtains:  

𝑌 = 𝐺𝑂ଶ = 𝐺. 𝑛𝑒𝑡ଶ = 𝐺𝑊𝑂ଵ = 𝐺𝑊𝑃. 𝑛𝑒𝑡ଵ = 𝐺𝑊𝑃(𝑊ഥ ௥𝑅ଷ + 𝑊ഥ ௬𝑌ଷ)              (25) 

Substitute (23) and (24) into (25), one has: 

𝑌 = GWP(𝑊ഥ ௥𝐼(ଷ)𝑅 + 𝑊ഥ ௬𝐼(ଷ)𝑌)                  (26) 

Hence, the system output can be derived as: 

𝑌 = ൫𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯
ିଵ

𝐺𝑊𝑃𝑊ഥ ௥𝐼(ଷ)𝑅                 (27) 

where: ห𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)ห ≠ 0.     

It should be pointed out that although Equations (18)-(27) are derived under the 

assumption that the system can be linearized around an operating point, they 

can potentially be used for nonlinear systems where the nonlinearities of the 

systems can be approximated by piece-wise linear systems whose time-varying 
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nature can account for the nonlinearities of the systems satisfactorily. It should 

also be pointed out that if the non-singularity condition for matrix ൫𝐼 −

𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯ could not be met, the selected weights (matrices 𝑊, 𝑊ഥ ௬, and 𝑊ഥ ௥) 

would not be acceptable and would be re-updated until ൫𝐼 − 𝐺𝑊𝑃𝑊ഥ ௬𝐼(ଷ)൯ becomes 

non-singular.   

 Learning algorithm 

In order to achieve a precise control effect for a non-square MIMO system, the 

neural network weights of the MANNCNS are adjusted using the principle of the 

multi-step error back-propagation algorithm described in [20]  . However, 

instead of using merely the current gradient of the system error as the literature 

does for SISO systems in [21-23], an accumulated gradient of the system error 

that utilises the full history of the system outputs and the desired outputs to 

achieve a more accurate control outcome. The proposed method minimises the 

sum of the square accumulated gradient of the error for each system output, 

where the error is taken as the difference between the desired output 𝑟௙(𝑘) (i.e., 

the system set-point) and the actual output 𝑦௙(𝑘). Euclidean Norm (𝐸) is defined 

for computing the quadratic cost function of the system for the system error. The 

cost function for the ‘𝑙୲୦’ S-MANNCNS (Figure 5-2) is thus defined as: 

𝐸௙(𝑣) =
ଵ

ଶ
൫∑ (𝑟௙[𝑘] − 𝑦௙(𝑣)[𝑘])௠

௞ୀଵ ൯
ଶ
                         (28) 

where 𝐸௙(𝑣) is the error of the 𝑓୲୦ output at the 𝑣୲୦ step of the learning algorithm 

and 𝑚  is the required number of discrete samples of the actual output and 

desired output. It should be noted that power of two in this expression makes the 

error of each sample positive so that, larger errors become weightier than the 

smaller errors. By increasing 𝑚 , the system output will be compared more 

accurately with the system set-point. However, a large value of 𝑚 may slow down 

the controller ‘s learning process which is undesirable when the speed of the 

control action is critical in many demanding real-time industrial operations. 

Therefore, a reasonable value for the number of samples (𝑚) must be used to 

compromise between the desired control accuracy and the essential speed of the 
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control action. The total cost function of the system (𝐽) which is the sum of all 

errors described in (28) is written as: 

𝐽(𝑣) = ∑ 𝐸௙(𝑣)
௤
௙ୀଵ =

ଵ

ଶ
∑ ൫∑ (𝑟௙[𝑘] − 𝑦௙(𝑣)[𝑘])௠

௞ୀଵ ൯
ଶ௤

௙ୀଵ               (29) 

where 𝑞 is the number outputs of the non-square MIMO system. This expression 

will be used to derive the learning algorithm for weights of both dynamic layers 

of the neural networks of the MANNCNS. 

Using the accumulated gradient of the system error, a learning algorithm is to be 

developed to minimise the defined cost function and to bring the system actual 

outputs as close as possible to the system desired outputs. There are two-

dynamic layers of weights in the neural network structure of the MANNCNS 

that are required to be trained: the output layer and the hidden layer, for which 

two learning algorithms are derived in Subsections 1.3.1 and 1.3.2, respectively. 

 Output-layer Weights Learning Algorithm  

A learning algorithm of the output layer is defined to train the output-layer 

weights and to link with the learning algorithm of the hidden layer (to be 

represented in the following subsection) together in order to run simultaneously 

during a control action. According to the principle of the error back-propagation 

learning algorithm, the output-layer weights must be adjusted so that in each 

step they slightly move in the opposite direction of the gradient of the cost 

function respective to the weights of the output layer. This is to guarantee that 

the cost function will be decreasing gradually while the learning algorithm is 

running. Therefore, the weights between the hidden layer and the output layer 

will be adjusted based on the following learning rule: 

𝑤௛,௫(𝑣 + 1) = 𝑤௛,௫(𝑣) − 𝜆௛
డ௃(௩)

డ௪೓,ೣ
                      (30) 

where 1 ≤ ℎ ≤ 𝑝, 3𝑓 − 2 ≤  𝑥 ≤   3𝑓  and 1 ≤  𝑓 ≤ 𝑞, and 𝑣 is the step number of 

the learning algorithm; 𝑤௛,௫(𝑣) and  𝑤௛,௫(𝑣 + 1) are weights of the output layer in 

the current and following steps, respectively; 𝜆௛ determines weight training rate 

and speed that decides how fast the cost is changing and principally determines 
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the weight-training speed of the output layer. Using partial derivatives to 

calculate the gradient of the error subject to each weight, one has 

డ௃

డ௪೓,ೣ
=

డ௃

డா೑

డா೑

డ௬೑

డ௬೑

డை೓
మ

డை೓
మ

డ௡௘௧೓
మ

డ௡௘௧೓
మ

డ௪೓,ೣ
                    (31) 

where: 

డ௃

డா೑
= 1                     (32) 

డா೑

డ௬೑
= ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠

௞ୀଵ                     (33) 

డ௬೑

డை೓
మ ≅

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

                    (34) 

Due to having P-type neuron in the output layer, one writes:  

డை೓
మ

డ௡௘௧೓
మ = 1                        (35) 

and: 

డ௡௘௧೓
మ

డ௪೓,ೣ
= ∑ (𝑂௫

ଵ(𝑣)[𝑘])௠
௞ୀଵ                     (36) 

Substituting (32)-(36) into (31), one obtains: 

డ௃

డ௪೓,ೣ
≅ 1 × ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠

௞ୀଵ ×
∑ (௬೑(௩)[௞])೘

ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘
ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

× 1 × 𝑂௫
ଵ(𝑣)[𝑘](37) 

Defining 𝛾௟(𝑘) as:  

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

                   (38) 

the output-layer weight adjustment rule thus be derived as: 

𝑤௛,௫(𝑣 + 1) = 𝑤௛,௫(𝑣) − 𝜆௛[𝛾௙௛(𝑣) × ∑ (𝑂௫
ଵ(𝑣)[𝑘])௠

௞ୀଵ ]                 (39) 

 Hidden-layer Weights Learning Algorithm  

Corresponding to the output-layer weight adjustment in the previous section, 

according to the principle of the error back-propagation learning algorithm, the 

hidden-layer weights (i.e, the weights between the input layer and the hidden 

layer) must be adjusted so that in each step they move slightly in the opposite 

direction of the gradient of the cost function respective to the weights in this 
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layer. This is to guarantee that the cost function will be decreasing gradually 

during the learning process. The hidden-layer weights are therefore adjusted 

based on the following learning rule: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − 𝜇௙
డ௃(௩)

డ௪ೌ,್തതതതതതത
                 (40) 

where  𝑎 = 1, 2, 3 , 𝑏 = 2𝑓 − 1, 2𝑓  and 𝑓 = 1, 2, … , 𝑞 ; 𝑣  is the step number of the 

learning algorithm; 𝑤௔,௕തതതതതത(𝑣) and 𝑤௔,௕തതതതതത(𝑣 + 1) are the weights of the hidden layer at 

the current and following steps, respectively; 𝜇௟ is the hidden-layer learning rate 

that decides how fast the cost is changing and principally determines the weight-

training speed of the hidden layer. The gradient of the error with respect to each 

weight is required to be calculated. Using partial derivatives, one has: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (

డ௃

డா೑
×

డா೑

డ௬೑
×

డ௬೑

డை೓
మ ×

డை೓
మ

డ௡௘௧೓
మ ×

డ௡௘௧೓
మ

డைೣ
భ ×

డைೣ
భ

డ௡௘௧ೣ
భ ×

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
)

௣
௛ୀଵ

௤
௙ୀଵ             (41) 

Since 𝑥 = 3𝑓 − 3 + 𝑎, 𝑥 must be chosen adequately based on 𝑎 so that a proper 

partial derivative path within the hidden layer can be selected. Considering the 

partial derivative calculations of the output layer, one has: 

డ௃

డா೑
×

డா೑

డ௬೑
×

డ௬೑

డை೓
మ ×

డை೓
మ

డ௡௘௧೓
మ = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠

௞ୀଵ ×
∑ (௬೑(௩)[௞])೘

ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘
ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

   (42) 

Define 𝛾௙௛(ℎ) as: 

𝛾௙௛(ℎ) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (43) 

Considering the output layer, one has: 

డ௡௘௧೓
మ

డைೣ
భ = 𝑤௛,௫(ℎ)                   (44) 

where 𝑤௛,௫(𝑣) are derived from the output-layer weight adjustment algorithm 

given in Subsection 1.3.1. It is seen that the weight adjustment processes for both 

the hidden layer and the output layer must run step by step and one after 

another alternately. 

 

As the neurons in the hidden layers are from various types of P-type, I-type and 

D-type, consecutively, the calculation of term డைೣ
భ

డ௡௘௧ೣ
భ in (41) depends on the type of 
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the selected neuron in the hidden layer. Because the inputs of the hidden layer 

are the desired output (𝑟௙) or the actual output of the system (𝑦௙), term డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
 in 

(41) is also relevant to the selection of the actual output or the desired output. 

Hence, the gradient of the cost function should be expressed in six different types 

of expressions depending on 𝑎 and 𝑏 as listed below: 

 Type 1)  𝒂 = 𝟏 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 − 𝟏 

In this type, the cost function’s partial derivative path has a P-type neuron in the 

hidden layer, therefore: 

డைೣ
భ

డ௡௘௧ೣ
భ = 1                    (45) 

The input of the hidden layer is the desired output (𝑟௙), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௙                    (46) 

Thus, one has: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(ℎ) × 𝑤௛,ଷ௙ିଶ(ℎ) × 𝑟௙(ℎ))

௣
௛ୀଵ

௤
௙ୀଵ                 (47) 

Substituting (41)-(47) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ∑ ∑ (𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଶ(𝑣)𝑟௙(𝑣)[𝑚])
௣
௛ୀଵ

௤
௙ୀଵ             (48) 

where,   

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

             (49) 

 Type 2) 𝒂 = 𝟏 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 

In this type, the cost function’s partial derivative path has a P-type neuron in the 

hidden layer, therefore: 

డைೣ
భ

డ௡௘௧ೣ
భ = 1                    (50) 

The input of the hidden layer is the actual output (𝑦௙), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௙(ℎ)                    (51) 

Thus, one has: 
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డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(ℎ) × 𝑤௛,ଷ௙ିଶ(𝑣) × 𝑦௙(𝑣))

௣
௛ୀଵ

௤
௙ୀଵ                (52) 

Substituting (41)-(44) and (50)-(52) into (40) the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ∑ ∑ ൛𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଶ(𝑣)𝑦௙(𝑣)[𝑚]ൟ
௣
௛ୀଵ

௤
௙ୀଵ                   (53) 

where,   

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (54) 

 Type 3) 𝒂 = 𝟐 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 − 𝟏 

In this type, the cost function’s partial derivative path has an I-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞
௞ᇲୀଵ = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞ିଵ
௞ᇲୀଵ + 𝑛𝑒𝑡௫

ଵ(𝑘) = 𝑂௫
ଵ(𝑘 − 1) + 𝑛𝑒𝑡௫

ଵ(𝑘)               

(55) 

and: 

డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘ ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                (56) 

The input of the hidden layer is the desired output ( 𝑟௙ ), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௙                    (57) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, if 

𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(𝑣) × 𝑤௛,ଷ௙ିଵ(𝑣) × 𝑠𝑖𝑔𝑛 ቂ

௡௘௧ೣ
భ[௠]

௡௘௧ೣ
భ[௠]ି௡௘௧ೣ

భ[௠ିଵ]
ቃ × 𝑟௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ               

(58) 

Substituting (41)-(44) and (56)-(58) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) −

∑ ∑ (𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଵ(𝑣)𝑠𝑖𝑔𝑛 ൤
௡௘௧య೑షభ

భ (௩)[௠]

௡௘௧య೑షభ
భ (௩)[௠]ି௡௘௧య೑షభ

భ (௩)[௠ିଵ]
൨ 𝑟௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ                   

(59) 
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where,   

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (60) 

If ൤
௡௘௧య೑షభ

భ (௩)[௠]

௡௘௧య೑షభ
భ (௩)[௠]ି௡௘௧య೑షభ

భ (௩)[௠ିଵ]
൨ is undefined due to zero denominator in any step of 

the learning algorithm, the associated weight will remain unchanged until the 

next step. 

 Type 4) 𝒂 = 𝟐 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 

In this type, the cost function’s partial derivative path has an I-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞
௞ᇲୀଵ = ∑ 𝑛𝑒𝑡௫

ଵ(𝑘ᇱ)௞ିଵ
௞ᇲୀଵ + 𝑛𝑒𝑡௫

ଵ(𝑘) = 𝑂௫
ଵ(𝑘 − 1) + 𝑛𝑒𝑡௫

ଵ(𝑘)            (61) 

and: 

డைೣ
భ

డ௡ ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                (62) 

The input of the hidden layer is the actual output (𝑦௙), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௙(𝑣)                    (63) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, if 

𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(𝑣) × 𝑤௛,ଷ௙ିଵ(𝑣) × 𝑠𝑖𝑔𝑛 ൤

௡௘௧య೑షభ
భ [௠]

௡௘௧య೑షభ
భ [௠]ି௡௘௧య೑షభ

భ [௠ିଵ]
൨ × 𝑦௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ    

(64) 

Substituting (41)-(44) and (62)-(64) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) −

∑ ∑ ൜𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଵ(𝑣)𝑠𝑖𝑔𝑛 ൤
௡௘௧య೑షభ

భ [௠]

௡௘௧య೑షభ
భ [௠]ି௡௘௧య೑షభ

భ [௠ିଵ]
൨ 𝑦௙(𝑣)[𝑚]ൠ

௣
௛ୀଵ

௤
௙ୀଵ              (65) 

Where:   

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (66) 
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If [
௡௘௧య೑షభ

భ [௠]

௡௘௧య೑షభ
భ [௠]ି௡௘௧య೑షభ

భ [௠ିଵ]
] is undefined due to zero denominator in any step of the 

learning algorithm, the associated weight will remain unchanged until the next 

step. 

 Type 5) 𝒂 = 𝟑 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 − 𝟏 

In this type, the cost function’s partial derivative path has a D-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = 𝑛𝑒𝑡௫

ଵ(𝑘) − 𝑛𝑒𝑡௫
ଵ(𝑘 − 1)                 (67) 

and: 

డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                       (68) 

  

The input of the hidden layer is the desired output (𝑟௙), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑟௙                    (69) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
, 

if 𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(𝑣) × 𝑤௛,ଷ௙(𝑣) × 𝑠𝑖𝑔𝑛 ൤

௡௘௧య೑
భ [௠]ିଶ௡௘௧య೑

భ [௠ିଵ]ା௡௘௧య೑
భ [௠ିଶ]

௡௘௧య೑
భ [௠]ି௡௘௧య೑

భ [௠ିଵ]
൨ × 𝑟௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ  

                    (70) 

Substituting (41)-(44) and (68)-(70) into (40), the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) −

∑ ∑ (𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙(𝑣)𝑠𝑖𝑔𝑛 ൤
௡௘௧య೑

భ [௠]ିଶ௡௘௧య೑
భ [௠ିଵ]ା௡௘௧య೑

భ [௠ିଶ]

௡௘௧య೑
భ [௠]ି௡௘௧య೑

భ [௠ିଵ]
൨ × 𝑟௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ             

(71) 

Where:   

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (72) 
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If ൤
௡௘௧య೑

భ [௠]ିଶ௡௘௧య೑
భ [௠ିଵ]ା௡௘௧య೑

భ [௠ିଶ]

௡௘௧య೑
భ [௠]ି௡௘௧య೑

భ [௠ିଵ]
൨ is undefined due to zero denominator in any step 

of the learning algorithm, the associated weight will remain unchanged until the 

next step. 

 Type 6) 𝒂 = 𝟑 𝐚𝐧𝐝 𝐛 = 𝟐𝒇 

In this type, the cost function’s partial derivative path has a D-type neuron in 

the hidden layer, therefore: 

𝑂௫
ଵ(𝑘) = 𝑛𝑒𝑡௫

ଵ(𝑘) − 𝑛𝑒𝑡௫
ଵ(𝑘 − 1)                 (73) 

and: 

డைೣ
భ

డ௡௘௧ೣ
భ =

ைೣ
భ(௞)ିைೣ

భ(௞ିଵ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
=

௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
                       (74) 

The input of the hidden layer is the actual output (𝑦௙), which gives: 

డ௡௘௧ೣ
భ

డ௪ೌ,್തതതതതതത
= 𝑦௙(ℎ)                    (75) 

Thus, because of the possibility of significant changes in ௡௘௧ೣ
భ(௞)ିଶ௡௘௧ೣ

భ(௞ିଵ)ା௡௘௧ೣ
భ(௞ିଶ)

௡௘௧ೣ
భ(௞)ି௡௘௧ೣ

భ(௞ିଵ)
 

if 𝑛𝑒𝑡௫
ଵ(𝑘) − 𝑛𝑒𝑡௫

ଵ(𝑘 − 1) ≪ 1, the sign of this term will be used to determine the 

direction of the gradient as: 

డ௃

డ௪ೌ,್തതതതതതത
= ∑ ∑ (𝛾௙௛(𝑣) × 𝑤௛,ଷ௙(𝑣) × 𝑠𝑖𝑔𝑛 ൤

௡௘௧య೑
భ [௠]ିଶ௡௘௧య೑

భ [௠ିଵ]ା௡ య೑
భ [௠ିଶ]

௡௘௧య೑
భ [௠]ି௡௘௧య೑

భ [௠ିଵ]
൨ × 𝑦௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ                                   

                    (76) 

Substituting (41)-(44) and (74)-(76) into (40) the learning rule is derived as: 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) −

∑ ∑ (𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙(𝑣)𝑠𝑖𝑔𝑛 ൤
௡௘௧య೑

భ [௠]ିଶ௡௘௧య೑
భ [௠ିଵ]ା௡௘௧య೑

భ [௠ିଶ]

௡௘௧య೑
భ [௠]ି௡௘௧య೑

భ [௠ିଵ]
൨ × 𝑦௙(𝑣)[𝑚])

௣
௛ୀଵ

௤
௙ୀଵ             

(77) 

where:  

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ

            (78) 

The weight learning algorithms for both the output layer and the hidden layer of 

the neural networks of the MANNCNS are summarised in Table 5-1. 
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Output layer 

   1 ≤ 𝑓 ≤ q 

   1 ≤ ℎ ≤ p  

 3f − 2 ≤ 𝑥 ≤ 3f  

 

𝑤௛,௫(𝑣 + 1) = 𝑤௛,௫(𝑣) − 𝜆௛[𝛾௙௛(𝑣) × ෍(𝑂௫
ଵ(𝑣)[𝑘])

௠

௞ୀଵ

] 

𝛾௙௛(𝑣) = ∑ (𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])௠
௞ୀଵ ×

∑ (௬೑(௩)[௞])೘
ೖసభ ି∑ (௬೑(௩ିଵ)[௞])೘

ೖసభ

∑ (ை೓
మ(௩)[௞])೘

ೖసభ ି∑ (ை೓
మ(௩ିଵ)[௞])೘

ೖసభ
   

Hidden layer 

 

𝒂 = 𝟏 

𝐛 = 𝟐𝐟 − 𝟏 

𝒂 = 𝟏 

𝐛 = 𝟐𝐟 

 

𝒂 = 𝟐 

𝐛 = 𝟐𝐟 − 𝟏 

 

𝒂 = 𝟐 

𝐛 = 𝟐𝐟 

 

𝒂 = 𝟑 

𝐛 = 𝟐𝐟 − 𝟏 

 

 

𝒂 = 𝟑 

𝐛 = 𝟐𝐟 

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ෍ ෍(𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଶ(𝑣)𝑟௙(𝑣)[𝑚])

௣

௛ୀଵ

௤

௙ୀଵ

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ෍ ෍൛𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଶ(𝑣)𝑦௙(𝑣)[𝑚]ൟ

௣

௛ୀଵ

௤

௙ୀଵ

 

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ෍ ෍(𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଵ(𝑣)𝑠𝑖𝑔𝑛 ቈ
𝑛𝑒𝑡ଷ௙ିଵ

ଵ (𝑣)[𝑚]

𝑛𝑒𝑡ଷ௙ିଵ
ଵ (𝑣)[𝑚] − 𝑛𝑒𝑡ଷ௙ିଵ

ଵ (𝑣)[𝑚 − 1]
቉ 𝑟௙(𝑣)[𝑚])

௣

௛ୀଵ

௤

௙ୀଵ

 

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣) − ෍ ෍(𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙ିଵ(𝑣)𝑠𝑖𝑔𝑛 ቈ
𝑛𝑒𝑡ଷ௙ିଵ

ଵ [𝑚]

𝑛𝑒𝑡ଷ௙ିଵ
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௙ିଵ

ଵ [𝑚 − 1]
቉ 𝑦௙(𝑣)[𝑚])

௣

௛ୀଵ

௤

௙ୀଵ

 

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣)

− ෍ ෍(𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙(𝑣)𝑠𝑖𝑔𝑛 ቈ
𝑛𝑒𝑡ଷ௙

ଵ [𝑚] − 2𝑛𝑒𝑡ଷ௙
ଵ [𝑚 − 1] + 𝑛𝑒𝑡ଷ௙

ଵ [𝑚 − 2]

𝑛𝑒𝑡ଷ௙
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௙

ଵ [𝑚 − 1]
቉

௣

௛ୀଵ

௤

௙ୀଵ

× 𝑟௙(𝑣)[𝑚]) 

 

𝑤௔,௕തതതതതത(𝑣 + 1) = 𝑤௔,௕തതതതതത(𝑣)

− ෍ ෍(𝜇௙𝛾௙௛(𝑣)𝑤௛,ଷ௙(𝑣)𝑠𝑖𝑔𝑛 ቈ
𝑛𝑒𝑡ଷ௙

ଵ [𝑚] − 2𝑛𝑒𝑡ଷ௙
ଵ [𝑚 − 1] + 𝑛𝑒𝑡ଷ௙

ଵ [𝑚 − 2]

𝑛𝑒𝑡ଷ௙
ଵ [𝑚] − 𝑛𝑒𝑡ଷ௙

ଵ [𝑚 − 1]
቉

௣

௛ୀଵ

௤

௙ୀଵ

× 𝑦௙(𝑣)[𝑚]) 

where,   

𝛾௙௛(𝑣) = ෍(𝑦௙(𝑣)[𝑘] − 𝑟௙(𝑣)[𝑘])

௠

௞ୀଵ

×
∑ (𝑦௙(𝑣)[𝑘])௠

௞ୀଵ − ∑ (𝑦௙(𝑣 − 1)[𝑘])௠
௞ୀଵ

∑ (𝑂௛
ଶ(𝑣)[𝑘])௠

௞ୀଵ − ∑ (𝑂௛
ଶ(𝑣 − 1)[𝑘])௠

௞ୀଵ

 

1 ≤ 𝑓 ≤ q   and    1 ≤ ℎ ≤ p 

 If the 𝑠𝑖𝑔𝑛[… ] is unknown due to zero denominator, the associated weight 

will remain unchanged until the next step. 

Table 5-1. Weights adjustment learning algorithms 

From the summary shown in Table 5-1, it is noted that since the weights in the 

output layer are used by the hidden-layer learning algorithm at each step, the 

neural networks of the both layers must be trained simultaneously (i.e., one after 

another alternately). The fact that the calculations of the output-layer weights 

and the hidden-layer weights must be linked together indicates that the weights 

of the different layers of the neural networks of the MANNCNS are dependent 
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on each other. This dependence reflects the inherent capacity of the MANNCNS 

in dealing with strong cross-couplings of the MIMO system of concern. It is also 

noted that the overall weight training procedure must initially start from the 

output layer, because at each learning step the calculation of the hidden-layer 

weights needs the values of the output-layer weights from the previous learning 

step. 

 Stability Analysis 

It is acknowledged that a feedback control system must be stable as a 

precondition for a satisfactory control method. When a new control method is 

proposed, in order to achieve the desired control outcomes, the stability criteria 

of the resultant closed-loop system must be derived, and any ensuing time-

dependent conditions or constraints must be checked online during the entire 

dynamic process of the closed-loop control. For an unconstrained control system, 

the system stability is satisfied if all the output responses are bounded for all 

bounded inputs. Because the eigenvalue analysis concept applies only to linear 

systems with model-based approaches, it cannot be used in nonlinear systems 

with model-free approaches. Therefore, for the proposed MANNCNS, the 

Lyapunov stability analysis concept that is suitable for nonlinear systems, relies 

only on a system’s inputs and outputs, and does not need to use the model of the 

system, must be used. Although, unlike linear systems, the stability of a 

nonlinear system does not need to be always global as the system can have 

multiple equilibrium points and limit cycles, the global asymptotic stability of a 

nonlinear MIMO system under the MANNCNS control is to be sought in this 

study in order to guarantee that the ensuing closed-loop system will never be 

locked in its local minimum during the entire dynamic control process. 

As summarised in Table 5-1, there are two sets of free parameters 𝜆௛  (1 ≤ ℎ ≤

p)  and 𝜇௙  (1 ≤ 𝑓 ≤ q)   for the output-layer and hidden-layer weight-learning 

algorithms of the MANNCNS, respectively. These parameters are denoted as the 

learning rates of the respective dynamic layers of the MANNCNS. They 

determine the weight-training speed of the respective layers and can 

dynamically change during the controller learning process. A set of constraints 
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for these learning rates will be developed when the closed-loop system stability 

issue of the MANNCNS method is to be examined.  

According to the Lyapunov global asymptotic stability theorem, for a defined 

function 𝑉(𝑥), if: 

 (i) 𝑉(0) = 0 

(ii) For all 𝑥 ≠ 0, 𝑉(𝑥) > 0 (𝑉 is positive definite) 

(iii) For all 𝑥 ≠ 0, ∆𝑉(𝑥) < 0 

then every trajectory of 𝑋(𝑘 + 1) = 𝑋(𝑘) + 𝑓(𝑋(𝑘)) will converge to zero as k → ∞ 

and the system will be globally asymptotically stable. Let the Lyapunov function 

for each output of a nonlinear MIMO system under the MANNCNS control be 

the total cost function of that output, i.e.: 

𝑉௙(𝑣) = (𝐸௙(𝑣))ଶ                      (79) 

where 𝐸௙(𝑣) is the cost function related to 𝑣௧௛ step of the learning algorithm. One 

writes: 

∆𝑉௙(𝑣) = (𝐸௙(𝑣) + ∆𝐸௙(𝑣))ଶ − (𝐸௙(𝑣))ଶ = 2𝐸௙(𝑣)∆𝐸௙(𝑣) + (∆𝐸௙(𝑣))ଶ              (80) 

and: 

∆𝐸௙(𝑣) ≅ ∆𝑤௛,௫(ℎ) ∑
డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ                      (81) 

 

For the output layer of the MANNCNS, considering the Lyapunov function 𝑉௙(ℎ) 

in (79) and the expression ∆𝑉௙(ℎ) in (80), from the learning rule expressed in (30) 

for the output-layer weights, one has: 

∆𝑤௛,௫(𝑣) = −
ఒ೓

௠
∑

డ௃

డ௪೓,ೣ

௠
௞ୀଵ                      (82) 

and: 

డ௃

డ௪೓,ೣ
=

డ௃

డா೑(௩)

డா೑(௩)

డ௪೓,ೣ
=

డா೑(௩)

డ௪೓,ೣ
                     (83) 

Substituting (83) into (82), one obtains: 
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 ∆𝑤௛,௫(𝑣) = −
ఒ೓

௠
∑

డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ                     (84) 

and:  

 ∆𝐸௙(𝑣) ≅ −
ఒ೓

௠
(∑

డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ )ଶ                       (85) 

therefore (80) can be expressed as: 

∆𝑉(𝑣) ≅ −
ଶఒ೓ா೑(௩)

௠
(∑

డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ )ଶ +

ఒ೓
మ

௠మ
(∑

డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ )ସ                (86) 

Define: 

𝐻௛(𝑣) = 𝑚𝑖𝑛 ∑
డா೑(௩)[௞]

డ௪೓,ೣ

௠
௞ୀଵ  ≅

min
3f − 2 ≤ 𝑥 ≤ 3f  

∑
∆ா೑(௩)[௞]

∆௪೓,ೣ(௩)

௠
௞ୀଵ                 (87) 

The condition for ∆𝑉(𝑣) < 0 yields the following constraint on the selection of 

learning rate 𝜆௛ defined in (39): 

0 < 𝜆௛ <
ଶ௠ா೑(௩)

ு೓(௩)మ
                      (88) 

The above constraint for learning rate 𝜆௛  must be satisfied as a necessary 

condition of the MANNCNS control system at the 𝑣௧௛ step. This constraint must 

be met at each training step in order for the MANNCNS to maintain its closed-

loop system’s global asymptotical stability during the entire learning process.  

For the hidden layer of the MANNCNS, considering the same Lyapunov function 

𝑉௙(ℎ)  in (79) and the same expression ∆𝑉௙(ℎ)  in (80), one has the following 

estimation based on the hidden-layer weights described in (40): 

∆𝐸௙(𝑣) ≅ ∆𝑤௔,௕തതതതതത(ℎ) ∑
డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                  (89) 

and: 

∆𝑤௔,௕തതതതതത(𝑣) = −
ఓ೑

௠
∑

డ௃

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                    (90) 

where: 

డ௃

డ௪ೌ,್തതതതതതത
=

డ௃

డா೑(௩)

డா೑(௩)

డ௪ೌ,್തതതതതതത
=

డா೑(௩)

డ௪ೌ,್തതതതതതത
                  (91) 

Substituting (91) into (90), one obtains: 



Chapter 5 

184 
 

 ∆𝑤௔,௕തതതതതത(𝑣) = −
ఓ೑

௠
∑

డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ                  (92) 

Also, substituting (92) into (89): 

 ∆𝐸௙(𝑣) ≅ −
ఓ೑

௠
(∑

డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ଶ                    (93) 

Hence, ∆𝑉௙(𝑣) can be expressed as: 

∆𝑉(𝑣) ≅ −
ଶఓ೑ா೑(௩)

௠
(∑

డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ଶ +

ఓ೑
మ

௠మ
(∑

డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )ସ                (94) 

Define: 

𝐻௙
തതത(ℎ) = min (∑

డா೑(௩)[௞]

డ௪ೌ,್തതതതതതത

௠
௞ୀଵ )  ≅

min
2f − 1 ≤  𝑏 ≤ 2𝑓 & 1 ≤ 𝑎 ≤ 3 

(∑
∆ா೑(௩)[௞]

∆௪ೌ,್തതതതതതത(௩)
௠
௞ୀଵ )              (95) 

condition of ∆𝑉(ℎ) < 0  yields to the following constraint on the selection of 

learning rate 𝜇௙ defined in (77): 

0 < 𝜇௙ <
ଶ௠ா೑(௩)

ு೑തതതത(௩)మ
                     (96) 

The above constraint for learning rate 𝜇௙ must be satisfied as another necessary 

condition of the MANNCNS control system at the 𝑣௧௛ step. This constraint must 

also be met at each training step in order for the MANNCNS to maintain its 

closed-loop system’s global asymptotical stability during the entire learning 

process. 

Collectively, conditions (96) and (88) must both be satisfied at each training step 

in order to guarantee the global asymptotical stability of the MANNNS control 

system at the next training step. Simultaneous satisfaction of these two 

conditions is then considered as the sufficient condition for the global 

asymptotical stability of the MANNNS control system, as summarised in Table 

5-2. 
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Output layer 

constraint 
0 < 𝜆௛ <

ଶ௠ா೑(௩)

ு೓(௩)మ
        

 where:     𝐻௛(𝑣)  ≅
min

3f − 2 ≤ 𝑥 ≤ 3f  
(∑

∆ா೑(௩)[௞]

∆௪೓,ೣ(௩)
)௠

௞ୀଵ  

Hidden 

layer 

constraint 

0 < 𝜇௙ <
ଶ௠ா೑(௩)

ு೑തതതത(௩)మ
        

 where:     𝐻௙
തതത(ℎ)  ≅

min
2f − 1 ≤  𝑏 ≤ 2𝑓 & 1 ≤ 𝑎 ≤ 3 

(∑
∆ா೑(௩)[௞]

∆௪ೌ,್തതതതതതത(௩)
௠
௞ୀଵ ) 

Table 5-2. Stability criteria for hidden layer and output layer  

It should be pointed out that it is necessary to check the stability conditions at 

each learning step, due to the fact that these conditions depend on the real-time 

values of the cost function (𝐸௙(𝑣)), the change of cost function (∆𝐸௙(𝑣)), and the 

change of weights (∆𝑤௛,௫(𝑣) and ∆𝑤௔,௕തതതതതത(𝑣)) at each training step. Both 𝜆௛ and 𝜇௙ 

can dynamically change to keep the closed-loop control system stable while the 

weights are trained by the learning algorithms. To avoid changing 𝜆௛  and 𝜇௙ 

dynamically, a small conservative constant value (e.g. 0.01 or less) can be 

selected for these parameters during the entire weight learning process. 

However, this arrangement would lead to a slower weight-adjustment rate and 

would require a greater number of training steps in order to achieve satisfactory 

results. In addition, it is noted from (88) and (96) that, by choosing a larger 

sampling number (𝑚), the possibility of an instable system will become lower as 

there will be a larger range for 𝜆௛ and 𝜇௙. However, a larger sampling number 

(𝑚) will lead to a slower weight-adjustment rate and, thus, a slower control 

speed of the resultant closed-loop system.  

The stability criteria presented in Table 5-2 will be checked in a real-time 

manner together with the computation of the weight adjustment algorithms 

presented in Table 5-1 at each training step. This online simultaneous procedure 

is illustrated in Figure 5-3 as a block diagram.  

It should be pointed out that, when the stability criteria (88) and (96) are not 

met, the values of the learning rates are halved in order to enable the 

continuation of the learning process. It is acknowledged that while halving the 

learning rates may lead to a better control performance in terms of the error 
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reductions, this arrangement may prolong the weight adjustment process and 

reduce the control speed of the system as a result.  

 

Figure 5-3. Block diagram of the controller and stability criteria checking process 

 Simulation results 

Simulation studies using Matlab are carried out to assess the performances of 

the proposed MANNCNS in controlling both cases of non-square systems (i.e. 

number of inputs is more than number of outputs or vice versa), particularly in 

set-points tracking, continuous error reduction, weight re-adjustment when set-

point changes, and rejecting unwanted disturbances, while the global stability of 

the closed-loop control system is secured during the system’s entire control 

process. The MANNNS structure proposed in Section 5.2, the dynamic neural 

network algorithm developed in Section 5.3, and the stability conditions derived 

in Section 5.4 are used in the simulations. 

 Case 1 – Application of MANNCNS on a 3-input 2-output system 

In this case, a typical industrial distillation column as shown in Figure 5-4 is 

considered to test the performance of the proposed control method via a 

computer simulation study.  
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Figure 5-4. Plant Diagram of a distillation column [2] 

 

Distillation is used to purify the end products, chemical and fuel industries as a 

separation technology. A range of components constitute the distillation columns, 

and each of these either moves the heat energy or augments mass transfer. 

Normally, a distillation column is comprised of a vertical column, wherein trays 

or plates are employed to improve the separation of the components; a reboiler 

positioned at the base of the column, which supplies the heat needed for 

vaporization; a condenser situated at the top of the column, which cools and 

condenses the vapor; lastly, a reflux drum which saves the vapor so condensed, 

whereby it can be recycled to repeat the process all over again [2]. To analyse the 

comparative study on the above control technique, a coupled distillation column with 

3 inputs and 2 outputs is considered that is modelled by Levein and Morari in [24] 

with a linear estimation of the transfer function matrix with deadtime. 



Chapter 5 

188 
 

𝐺(𝑠) = ቎

଴.଴ହଶ షఴೞ

ଵଽ.଼௦ାଵ

ି଴.଴ଷ(ଵିଵହ.଼௦)

ଵ଴଼௦మା଺ଷ௦ା

଴.଴ଵଶ(ଵିସ଻௦)

ଵ଼ଵ௦మାଶଽ௦ା
଴.଴଻ଶହ

଼ଽ଴௦మା଺ସ௦ାଵ

ି଴.଴଴ଶଽ(ଵିହ଺଴ )

ଶଽଷ௦మାହଵ௦ାଵ

଴.଴଴଻଼

ସଶ.ଷ௦ାଵ

቏              (97) 

The functional block diagram of the closed loop MANNCNS control system for 

the non-square MIMO distillation column plant in represented in Figure 5-5. 

Mole fraction of ethanol in distillate (𝑦ଵ) and mole fraction of water in bottoms 

(𝑦ଶ) are the controlled variables (system outputs) and the distillate flow rate 

(𝑀𝑉ଵ), steam flow rate (𝑀𝑉ଶ), and product fraction from the side column (𝑀𝑉ଷ) are 

the manipulated variables (system inputs). According to the mentioned transfer 

function in (97), and due to the fact that all system inputs affect both systems 

outputs, the system is a cross-coupled non-square MIMO and cannot be feasibly 

controlled by multiple cascaded ANNC controllers introduced in [19] by the 

authors. Also, MANNC and MANNC2 introduced in [17, 18] by the authors, are 

not able to control this system due to their restrictions of controlling square 

MIMO systems. Due to having 𝑒ି଼௦  in member 𝐺ଵଵ  of the transfer function 

matrix, the system experiences a delay between input one and output one. 

Therefore, the ability of MANNCNS on controlling systems with deadtime is 

tested in this simulation. It should be pointed out that, although the transfer 

function matrix of the system is known in (97), it is not used for the controller 

design and the plant is treated as a black-box system by utilising only the history 

of the input signals and output signals, but the transfer function matrix is used 

for generating the system outputs in the computer simulation. Hence, the 

MANNCNS performs as a fully model-free controller without attainment of any 

information from the system model.  

 

Figure 5-5. Block diagram of distillation column system and MANNCNS controller 
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Neural network structure of a MANNCNS for controlling the 3-input 2-output 

system is demonstrated in Figure 5-6. In this structure, there are totally, 12 

dynamical weights in the hidden layer and 18 dynamical weights in the output 

layer of the MANNCNS to be adjusted. All blue, green, and red arrows in the 

hidden layer and the output layer represent the dynamical weights. The green 

arrows and red arrows are added into the structure to enable the controller to 

handle cross-couplings between the three inputs and two outputs of the plant. 

The implementation of online and real-time stability criteria check presented in 

Table 5-2 in represented in Figure 5-7. 
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Figure 5-6. MANNCNS controlled 3-input 2-output distillation column plant 

The following desired outputs are selected for the distillation column plant.  

- 𝑟ଵ(𝑡) = 2𝑢(𝑡 − 1) − 𝑢(𝑡 − 500)  

- 𝑟ଶ(𝑡) = 2𝑢(𝑡 − 1) − 𝑢(𝑡 − 500); which, 𝑢(𝑡) is the standard unit step function. 

The control objective is for 𝑦ଵ (Output 1) and 𝑦ଶ (Output 2) to track, respectively, 

the set-points 𝑟ଵ  and 𝑟ଶ , with minimum errors, and a set of suitable and 

converged dynamic weights of the controller.  
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Figure 5-7. Adding stability criteria check to MANNCNS controlled distillation column plant 

Due to set-points changes at 500th sample time this simulation will demonstrate 

the capability of the automatic set-point tracking of the MANNCNS. In order to 

apply the MANNCNS to the non-square multivariable system, all the initial 

weights in the output layer are set to one. In the hidden layer, the initial weights 

associated with the desired outputs are set to positive one and the ones 

associated with the systems outputs are set to negative one. In order to find the 

optimal number of weights training it is required to monitor the accumulated 

errors of the system outputs that are the absolute values of the accumulated 

difference between the actual outputs and the desired outputs. Figure 5-8 and 

Figure 5-9 represent, respectively, the accumulated error versus the iteration 

number of the MANNCNS weight learning algorithm for output 1 and output 2. 

After running, online learning algorithms presented in Table 5-1 it is observed 

that, convergence and the suitable performance of the proposed MANNCNS for 
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the considered coupled 3-input 2-output non-square multivariable system 

happens after the 27th running of the training algorithm and errors don’t change 

dramatically after that point. By running the training algorithm for subsequent 

8 times, the weights after the 35th number of iterations are locked in their values 

at this point (i.e. optimal point). It should be pointed out that choosing the 

optimal training number depends on the particular application that the 

controller is used for. It should indicate a trade-off between the control speed and 

control performance of the controlled system. It is possible to define a desired 

error so that when the actual error has reached that value the training process 

stops, and the weights become frozen until the next change in the system e.g. 

change in the model of the system or change in any of the set-points. 

 

Figure 5-8. Error value for output 1 versus the repeating number 

 

Figure 5-9. Error value for output 2 versus the repeating number 
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After running, online and simultaneously, the learning algorithms presented in 

Table 5-1 and the stability criteria presented in Table 5-2 for 35 training steps, 

the converged values of the dynamic weights of both the output and hidden 

layers of the MANNC2 are achieved, as summarised in Table 5-3 and Table 5-4. 

𝑤௛,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

ℎ = 1 1.28 6.55 1.01 1.61 14.66 1.01 

ℎ = 2 1.53 5.48 1.04 1.40 12.03 1.03 

ℎ = 3 1.34 4.34 1.02 1.36 9.87 1.02 

Table 5-3. Converged MANNCNS output-layer weights’ values  

𝑤௔,௕തതതതതത 𝑏 = 1 𝑏 = 2 𝑏 = 3 𝑏 = 4 

𝑎 = 1 1.04 -0.96 1.27 -0.93 

𝑎 = 2 0.56 -1.44 0.75 -1.25 

𝑎 = 3 1.21 -0.79 0.95 -1.05 

Table 5-4. Converged MANNCNS hidden-layer weights’ values  

To compare the variation of the adjusted weights, the output-layer weights, and 

the hidden-layer weights are illustrated as surface diagrams in Figure 5-10 and 

Figure 5-11, respectively. 

 

Figure 5-10. Output-layer weights diagram 
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Figure 5-11. Hidden-layer weights diagram 

Figure 5-12 represents the variation trend of all 12 weights in the hidden layer 

during the 35 times weight training process. 

 

Figure 5-12. Hidden-layer weight adjustment during training process 

By running the weight training algorithms and real-time applying updated 

weights to the output layer and the hidden layer for the controlled system during 

35 times of iterations, Figure 5-13 and Figure 5-14 demonstrate the Output 1 

and Output 2 of the non-square MIMO controlled system which both track the 

desired outputs properly with a reasonable settling time (200 sampling time) for 

the distillation column system. As control of the distillation column is a slow 

process the achieved settling time is considered as a remarkable result. 
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Figure 5-13. Desired output 1 and actual output 1 with MANNCNS 

 

 

Figure 5-14. Desired output 2 and actual output 2 with MANNCNS 

 

 Robustness Against Disturbance 

To demonstrate the ability of MANNCNS in terms of disturbance cancelation, 

three disturbance signals at sample time 80 are applied to all the inputs of the 

multivariable systems, that are added with the manipulated system’s variables 

with signals below, as Figure 5-15: 

𝑑ଵ(𝑡) = 𝑑ଶ(𝑡) = 𝑑ଷ(𝑡) = 0.2𝑢(𝑡 − 80) 
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Figure 5-15. Applying disturbance to the system 

The simulation result for the mole fraction of water shows the controller is able 

to re-train itself by the learning algorithm, and the system’s outputs follow the 

desired outputs in a short time frame (60 sample time) after applying the 

disturbance signals according to Figure 5-16. The final weights after the 

disturbance cancellation are modified automatically and re-converged according 

to Table 5-5 and Table 5-6. 

 

Figure 5-16. Output 2 and desired output 2 after applying disturnace signal 
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𝑤௛,௫ 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

ℎ = 1 1.33 6.55 0.99 1.63 12.66 1.01 

ℎ = 2 1.56 5.45 1.02 1.42 10.14 1.05 

ℎ = 3 1.25 3.34 1.01 1.35 7.43 1.01 

Table 5-5. Output-layer modified weight values after disturbance cancellation 

𝑤௔,௕തതതതതത 𝑏 = 1 𝑏 = 2 𝑏 = 3 𝑏 = 4 

𝑎 = 1 1.03 -0.97 1.17 -0.91 

𝑎 = 2 0.55 -1.35 0.69 -1.30 

𝑎 = 3 1.22 -0.88 0.92 -1.03 

Table 5-6. Hidden-layer modified weight values after disturbance cancellation 

 Case 2 – Application of MANNCNS on a 2-input 3-output system 

In this case, simulation studies are conducted on a highly non-linear coupled 2-

input 3-output multivariable system. In this simulation, the ability of the 

proposed control method is tested to regulate a DC Motor with non-linear 

behaviour. The simulation results compare the performance of MANNCNS with 

a direct adaptive neuro-fuzzy control method called RHONN introduced in [15, 

16] as the utmost counterpart. The control objective is the speed regulation of a 

1KW DC motor designated by the following non-linear equations:  

𝑇௔
ௗூೌ

ௗ௧
= −𝐼௔ − 𝜑𝜔 + 𝑉௔                    (98) 

𝑇௠
ௗఠ

ௗ௧
= 𝜔𝐼௔ − 𝐾௢𝜔                         (99) 

𝑇௙
ௗఝ

ௗ௧
= 𝐼௙ + 𝑉௙                   (100) 

𝜔 =
௔ூ೑

ଵା௕ூ೑
                     (101) 

where 𝐼௔, 𝜔, and 𝜑 respectively are armature current, angular speed and stator 

flux of the DC motor which are the controlled system outputs. The system’s 

manipulated variables are 𝑉௔ and 𝑉௙ which should be generated by the controller. 

The following constant values in Table 5-7 have been considered for the DC 

motor’s parameters: 
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Parameter Constant value 

1/𝑇௔ 148.88 𝑠𝑒𝑐ିଵ 

1/𝑇௠ 42.91 𝑠𝑒𝑐ିଵ 

𝐾௢/𝑇௔ 0.0129 𝑠𝑒𝑐ିଵ 

𝑇௙ 31.88 𝑠𝑒𝑐 

𝑎 2.6 

𝑏 1.6 

Table 5-7. DC motor parameters 

The regulation problem of the DC motor is interpreted as finding a state 

feedback, in which could force the angular velocity and the armature current 𝐼௔ 

to go to zero or very close to zero, while the modelling errors exists, and the 

magnetic flux varies slowly [25]. The functional block diagram of MANNCNS 

controller applied to the multivariable non-square DC motor system is shown in 

Figure 5-17. 

 

Figure 5-17. Block diagram of DC motor system and MANNCNS controller 

Neural network structure of a MANNCNS for controlling a 2-input 3-output 

system is demonstrated in Figure 5-18. The green and blue connection in the 

hidden layer are used to enable the controller to handle cross-coupling between 

the inputs and outputs of the system. In this structure, there are totally 18 

weights in the hidden layer and 18 weights in the output layer of the MANNCNS 

to be adjusted.  
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Figure 5-18. MANNCNS controlled 2-input 3-output DC motor system 

The Lyapunov stability criteria illustrated in Table 5-2 have been applied to the 

controlled system to check and adjust the learning rates during the weight 

training algorithm demonstrated in Figure 5-19. 
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Figure 5-19. Adding stability criteria check to the 2-input 3-output controlled system 
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By choosing the number of samples as 𝑚 = 100 and also the learning rates in 

Table 5-1 as 𝜆௛ = 0.2 and 𝜆௙ = 0.2, respectively, for ℎ = 1, 2, … , p and 𝑓 = 1, 2, , q, 

after 8 milliseconds the system becomes marginally stable. Therefore, all of the 

learning rates have been reduced to 0.1 to avoid the control system falling in the 

local minimum. The following response in Figure 5-20 for the motor speed has 

been obtained for MANNCNS after 60 times iteration of the learning algorithm. 

In this graph the response related to an adaptive control method counterpart 

called RHONN which is a neuro-fuzzy solution is also shown. It is observed that 

by using MANNCNS, the motor speed converges to zero faster when compared to 

the RHONN adaptive algorithm. Also, by using MANNCNS unlike the RHONN 

method, there is no rise or peak in the motor speed during the control process 

which is a significant result. In addition, the accumulated error of the motor 

speed is calculated for up to 200 trainings. The error versus the number of 

iterations is illustrated in Figure 5-21. In this graph it is evident that after 60 

times training, the accumulated error is improved significantly. Hence, the 

optimal number of trainings in this case study is set to 60 and the weights are 

locked at this point.   

 
Figure 5-20. Motor speed by MANNCNS and RHONN  
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Figure 5-21. Motor speed accumulated error versus the number of iterations  

 Conclusion 

By the use of flexible topology of neural networks in providing non-square Input-

Output structures and powerful self-learning abilities inherent in a neural 

network strategy, this paper demonstrates that the proposed MANNCNS is 

capable of controlling model-free non-square coupled MIMO. In this design, the 

MANNCNS contains two layers with adjustable weights in its neural network 

structure and uses a modified auto-tune dynamic online learning algorithm with 

accumulated error back-propagation for the proposed neural network structure, 

and effectively tunes its weights in the output layer as well as the hidden layer 

simultaneously to achieve the desirable control outcomes. The effectiveness of 

the proposed MANNCNS is validated via simulation studies for a famous 

industrial application of distillation column known as a non-square MIMO 

system when the number of inputs is more than the number of outputs. In this 

example, the capability of the proposed controller for dealing with the deadtime 

and also affected by unwanted disturbances is tested and the results 

demonstrate that the controller can adapt itself appropriately in these 

circumstances and the outputs follow their desired values in case of having 
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unwanted situations. Likewise, MANNCNS is tested for speed regulation of a DC 

motor which is identified as a 2-input 3-output MIMO system (number of outputs 

is more than the number of inputs) with highly non-linear characteristics. The 

controller’s response is compared with its best counterpart that used a neuro-

fuzzy algorithm. The simulation results demonstrate that the armature current 

response is improved significantly by using MANNCNS. Overall, it is 

demonstrated that the MANNCNS is a suitable candidate for many industrial 

applications.  
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 CHAPTER 6: CONCLUSION AND SUGGESTIONS FOR 
FUTURE WORKS 

In this thesis, a step by step design process of a universal controller based on 

neural networks is described. The aim is defined as designing a controller for 

square and non-square multi-input multi-output systems which is able to handle 

non-linearity, coupling, and time variance in the system. Therefore, the control 

method is designed in a way that the learning algorithms and stability analysis 

are independent from the model of the system and work as a model-free contro 

method.  

To achieve the above-mentioned purpose, firstly in chapter 2, with the powerful 

learning abilities inherent in a neural network strategy, an Adaptive Neural 

Network Controller (ANNC) is introduced which is capable of controlling single-

input single-output (SISO) systems with nonlinear properties. The ANNC uses a 

new auto-tune dynamic online learning algorithm with accumulated error back-

propagation for the proposed neural network structure, and effectively tunes its 

parameters to achieve the desirable control outcomes.  By checking the stability 

of the system in each step of the controller parameters’ update, the closed-loop 

system is guaranteed to remain stable during the entire controller training 

process. The effectiveness of the proposed ANNC is validated via simulation 

studies. When compared with the representatives of existing counterparts, the 

ANNC is seen to provide a better and faster system performance. By selecting an 

appropriate number of samples, the ANNC can be effectively used for several 

types of control systems in industrial applications, such as flow, level, and 

temperature control systems in water or wastewater plants. Although the 

proposed ANNC currently discussed in chapter 2 is in the context of SISO 

systems and PID control strategies, it is developed in such a way that the 

proposed structure can establish a foundation upon which new adaptive neural 

network methods for MIMO coupled systems and/or other types of control laws 

can be readily derived. The aspects of those studies are revealed in chapter 3 to 5 

when the controller is generalized to apply to multi-input multi-output systems. 
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In chapter 3, the proposed Multivariable Adaptive Neural Networks Controller 

(MANNC), using the fundamental structure proposed in chapter 2, is capable of 

controlling coupled square MIMO systems. The MANNC uses a new auto-tune 

dynamic online learning algorithm with accumulated error back-propagation for 

the proposed neural network structure, and effectively tunes its weights to 

achieve the desirable control outcomes. The effectiveness of the proposed 

MANNC is validated via three significant simulation studies i.e. a drum boiler 

non-linear time invariant system, an example of a nonlinear time-variant system 

and a nonlinear 2-tank hybrid system. When compared with the representatives 

of existing counterparts, the MANNC is seen to provide smaller overshoots and 

faster system performance with better and more reliable setpoint tracking. The 

stability of the system and controller is analysed by Lyapunov global asymptotic 

stability theorem and it leads to stability criteria for the controller parameters 

and must be checked online while the controller’s weights are getting trained. 

MANNC is generally suitable for square coupled multivariable systems, however 

when it comes to non-linear system control, because of having only one 

adjustable layer in its neural networks structure, it does not show the best 

performance as it has for linear systems or systems with less non-linear 

characteristics. Therefore, this matter leads us to develop the controller by 

adding another layer to the neural network structure of that in chapter 4.  

In chapter 4, the proposed Multivariable Adaptive Neural Networks Controller 

with two adjustable layers (MANNC2) is introduced which is capable of 

controlling square coupled MIMO systems with higher non-linear characteristics. 

When compared with the MANNC, the MANNC2 is seen to provide much 

smaller undershoots, faster system performance, and better setpoint tracking 

which results in a significant reduction in errors. The stability of the system and 

controller is analysed by Lyapunov global asymptotic stability theorem and leads 

to new stability criteria for the controller parameters in both layers which must 

be checked online while the controller’s weights are getting trained. In case of 

possibility of instability in the system, the learning rates can be updated 

automatically to prevent the controlled system from falling in local minimum. 

Having two adjustable layers in the neural networks structure of the controller 
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improves the results in the simulation studies. The limitation of the MANNC2 is 

that this controller is only applicable to square multi-input multi-output 

systems, however, in the industry it is highly common to deal with non-square 

multivariable systems. Hence, the concept of generalizing and modifying the 

MANNC2 controller to apply to non-square multi-input multi-output systems is 

introduced as the topic of Chapter 5. 

In chapter 5, the final product of this study is presented. A Multivariable 

Adaptive Neural Networks Controller for Non-Square systems (MANNCNS) is 

introduced along with its automatic training algorithm and online real-time 

Lyapunov stability criteria check. This controller has two adjustable layers in its 

neural network structure, and it is applicable to non-square multivariable 

systems with high non-linear characteristics. The effectiveness of the proposed 

MANNCNS is validated via simulation studies for a well-known industrial 

application of distillation column known as a non-square MIMO system, of which 

the number of inputs is more than the number of outputs. In this example, the 

capability of the proposed controller has been tested on the systems with 

deadtime and also how it can be affected by unwanted disturbances. The results 

show the controller can adapt itself appropriately and the outputs follow their 

desired values in case of having unwanted disturbance. Similarly, MANNCNS 

has been tested for speed regulation of a DC motor which is identified as a 2-

input 3-output MIMO system (the number of outputs is more than the number of 

inputs) with non-linear characteristics. The controller’s responses have been 

compared with ones of the controller’s best counterpart which used a neuro-fuzzy 

algorithm and it is demonstrated that the armature current response is 

significantly improved by using MANNCNS.  

In this study, various applications in simulation studies are selected in order to 

cover an extensive range of significant problems in control theory. All in all, in 

several simulations in previous chapters, it is demonstrated that the proposed 

universal controller has the capacity to control a wide range of multi-input multi-

output systems. From the given simulation studies, it is evident that the 

controller can cope with various system’s properties such as time-variance and 
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time in-variance, non-linearity, continuous and discrete dynamics, hybrid 

systems, square and non-square systems.  

The following studies are proposed with regards to the future research related to 

this project: 

- Implementation of the introduced control methods on programmable logic 

controllers (PLCs) and distributed control systems (DCSs) by converting 

the programs form Matlab to industrial control software packages; the 

controller can be programmed as a function block diagram by the defined 

different features such as number of inputs and number of outputs, 

coupled or uncoupled inputs and outputs, square or non-square systems, 

learning rates, number of sample time, and number of iterations. Matlab 

recently introduced Simulink PLC Coder™ which produces hardware-

independent Ladder Diagrams (LD) and IEC 61131-3 Structured Text 

(ST) from Simulink models, Stateflow charts, and MATLAB Simulink 

functions. The ladder diagrams and structured text are produced in 

PLCopen XML and other file formats supported by Integrated 

Development Environments (IDEs) including 3S-Smart Software 

Solutions CODESYS, Rockwell Automation Studio 5000, Siemens TIA 

Portal, and Omron Sysmac Studio. As a result, it is possible to compile 

and deploy the designed controllers to numerous programmable logic 

controller (PLC) and programmable automation controller (PAC) devices. 

Additionally, Simulink PLC Coder generates test benches that can be 

used to verify the Structured Text and Ladder Diagrams using PLC and 

PAC IDEs and simulation tools. It can also provide code generation 

reports with static code metrics and bidirectional traceability between the 

model and code. Despite conversion of Matlab code to a PLC/DCS program 

and also its implementation on an industrial control system could be 

theoretically performed on different PLC/DCS platforms from various 

vendors, it should be noted that for this purpose, proper hardware 

considerations must be taken into account, e.g. utilised CPUs should be 

able to handle high volume of parallel computations in MIMO neural 

network structure of the controller.  
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- Increasing number of adjustable layers in the neural networks structure 

to observe whether it can improve the performances of the system by 

monitoring the control speed and setpoint tracking; in the current project 

it is found that two adjustable layers had a better control performance 

compared to only one adjustable layer especially for controlling systems 

with highly nonlinear characteristics. Therefore, it could be further 

investigated that whether having three layers or more in the neural 

networks can improve the performance further. However, it is known that 

increasing the number of layers would exponentially increase the number 

of weights in the neural network topology to be trained. As a drawback, 

the control action would last for a longer time that should be considered 

in future studies especially in applications that real-time control process 

is essential. In addition, adding more hidden layers to the neural network 

structure of the controllers would make the stability analysis more 

complicated. Checking the stability criteria during the control action in an 

online manner could be a significant obstacle that has to be resolved in 

this study. 

    

- Speeding up the adaptive training algorithms using recently developed 

techniques in machine learning; some techniques in neural networks can 

be tested such as “deep networks with stochastic depth”, “progressively 

freezing layers” and “omitting weights associated with the non-cross-

coupling inputs and outputs”. This could be useful for the applications 

where the time of control is more critical, and it is not possible to reduce 

the number of trainings, because the error has not reached to its desired 

value. In addition to this, using dynamic learning rates during running of 

the learning algorithm can be tested. In this approach, reasonably large 

learning rates can be chosen at the beginning to speed up the learning 

algorithm process and gradually decrease them to lower the risk of 

instability of the controlled system. 
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- Study on using different activation functions in the neural network 

structure and test the performance and compare between different 

applications; by considering the flexibility of neural networks in using 

various types of activation functions as well as defining new ones, it is 

recommended to try other activation functions in the neural network 

structure of the introduced controller. The proposed new activation 

functions can be achieved by defining new limitations for the current 

activation functions, double differentiation, and double integration.  

 

- Modify the proposed controllers to apply to different industrial 

applications; it must be pointed out that the controllers are designed as a 

general framework for neural network control of black-box systems, thus 

the controllers’ structures can be modified to control specific applications 

of square and non-square MIMO systems which are difficult to be 

controlled by the other advanced control methods.  
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