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Abstract 

 

 

 

The population dynamics and reproductive ecology of direct-developing marine 

invertebrates are poorly understood. The absence of an ecologically decoupling 

dispersive larval stage between adults and offspring in these species was thought 

to increase population stability relative to species with complex life-histories, but 

recent evidence suggests that they are less stable because population fluctuations 

are not dampened over time by recruitment of larvae from other populations. 

Recent studies have also shown that some marine invertebrates adaptively alter 

offspring phenotype (size) in response to environmental conditions experienced 

by the adults. Offspring size has profound implications for all life-history stages 

of marine invertebrates, as well as their population dynamics. The capacity to 

adaptively alter offspring phenotype should be greater among direct developers 

than species with dispersive larvae because their offspring are more likely to 

experience similar conditions to adults, and there are no conflicting selective 

pressures acting on life-history stages that occupy different ecological niches. I 

examined the population dynamics and brood characteristics of two Australian 

intertidal asterinids that reproduce via direct development—Parvulastra 

parvivipara (3 temperate populations, South Australia) and Cryptasterina hystera 

(4 tropical populations, Queensland). High structural complexity of tide pools 

predicted the likely presence and high abundances of both species; however, while 

population sizes of P. parvivipara and C. hystera were stable over 3 and 2-years, 

respectively, their distributions were highly dynamic. Both species disappeared 

from large proportions of tide pools that offered ideal conditions and recolonised 

these pools with no apparent periodicity. I suggest that metapopulation dynamics 

operating among tide pools stabilise population abundances in circumstances 

where unpredictable changes in tide pool conditions can lead to 100 % mortality. 

Small proportions of P. parvivipara gave birth during autumn and winter, but 

most individuals gave birth in late spring to summer. Offspring size was greatest 

and brood sizes smallest during summer. Experiments showed that larger 
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offspring had greater fitness (survivorship) than smaller offspring during this 

period. I suggest that P. parvivipara adaptively alters brood characteristics during 

summer to maximise offspring fitness during this period. Intragonadal 

cannibalism among siblings may facilitate these changes in brood characteristics. 

I also suggest that P. parvivipara exhibits plasticity in the timing of births; that is, 

mean offspring fitness is maximised by matching the characteristics of an 

individual’s brood and timing of births to prevailing environmental conditions. 

The coefficients of variation in offspring sizes of both species were high, but 

based on this sampling P. parvivipara was more variable than C. hystera. The 

higher variability exhibited by P. parvivipara may be a bet-hedging strategy that 

maximises mean offspring fitness in a temperate habitat that is more variable than 

the tropical habitat of C. hystera. The CV in offspring size of P. parvivipara did 

not differ among intertidal zones as would be expected if a greater offspring size 

was used as a bet-hedging strategy in the more variable upper areas of its 

intertidal zone. I suggest that intertidal habitats are inherently variable and the 

high CV in their brood characteristics may increase mean offspring fitness via bet-

hedging.      
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