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THESIS ABSTRACT 

Precision medicine has emerged as a more refined iteration of clinical pharmacology and personalised 

medicine. The capacity for precision medicine to provide more nuanced and individualised estimates 

of drug exposure and effect has emerged due to advances in access to information and technologies. 

Several promising approaches have been invented to address the precision dosing, although some could 

not be practically usable in the real clinical setting. This thesis investigated into two distinct paradigms, 

including computational- and laboratory-based approach evaluating their essence in addressing the 

precision dosing of cancer medicines. In this thesis, sorafenib, an oral tyrosine kinase inhibitor, was 

selected as an exemplar drug to be extensively studied under the array of methods to address precision 

dosing. 

Clinical epidemiology and data analysis using a big data from the pharmaceutical companies were 

conducted in the first two Chapters of the thesis. Notably, the current dataset was considered a "high-

quality" data as it was originally derived from real patients enrolled in clinical trials. This section 

focussed on a current dosing guideline of sorafenib regarding dose adjustment during the therapeutic 

course. The prior assumption was made that dose adjustment of sorafenib due to AEs could lead to 

worse survival outcomes in the long term. However, the landmark analysis set at the end of the first 

cycle of treatment (28 days) to examine the effect of dose adjustment on the survival outcomes of 

sorafenib in advanced HCC patients observed no poorer outcomes. Moreover, patients experienced dose 

reduction due to the early AEs observed the association with an improved OS. It could be suggested 

that the long-term clinical benefits of sorafenib may be derived from high initial dose/plasma 

concentrations.   

Previous studies showed a negative impact of PPI use on the clinical benefits derived from several TKIs, 

which sorafenib is a member of this class, such as erlotinib. Hence, concerning the effectiveness of 

sorafenib in patients that PPI was mandatory, a brief investigation of the effects of concomitantly used 

of PPI with sorafenib on the clinical outcomes was conducted. It was concluded that concomitant use 

of PPI with sorafenib was not associated with inferior clinical benefits. Noticeably, the finding of no 

association between concomitant PPI use and sorafenib outcomes was demonstrated for both OS and 

PFS in both univariable and adjusted analysis. This finding promotes confidence in prescribing PPI 

together with sorafenib in advanced HCC patients requiring PPI, leading to improving patients' quality 

of life.     

Subsequent studies expanded on the outcomes of the clinical epidemiology analyses and involved the 

application of simulation and modelling-based analysis performed on Simcyp® platform to interrogate 

the capacity of concentration-guided sorafenib dose adjustment. The simulation was performed with 

and without model-informed initial dose selection (MIDS) to enhance the proportion of patients that 

achieve a sorafenib plasma concentration within a pre-defined optimal therapeutic. The results obtained 
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from the simulations revealed that covariates affecting sorafenib exposure were including hepatic 

CYP3A4 abundance, albumin concentration, BMI, BSA, sex and weight. By accounting for these 

covariates, it was possible to identified subjects at risk of failing to achieve a sorafenib Cmax ≥ 4.78 

μg/mL with 95.0 % specificity and 95.2 % sensitivity. Concentration-guided sorafenib dosing with 

MIDS facilitated a sorafenib Cmax within the range of 4.78 to 5.78 μg/mL for 38 of 52 patients who 

failed to achieve a Cmax ≥ 4.78 μg/mL with the standard dosing regimen. On the other hand, 

concentration-guided sorafenib dose adjustment without MIDS resulted in 33 of 52 patients who 

required dose adjustment achieving a Cmax ≥ 5.78 μg/mL. 

 The final section of this thesis was dedicated to laboratory-based biomarker discovery. The study aimed 

to verify the utility of extracellular vesicles (EVs) derived biomarkers, as part of the liquid biopsy, for 

the prediction of drug Absorption, Distribution, Metabolism and Excretion (ADMExosomes). Initially, 

a preliminary study to validate the availability of DME in EVs derived from human plasms was first 

conducted. Human plasma EVs was characterised before proceeding to other downstream experiments. 

The characterisation reported the particle size of 50-150 nm and a presentation of the small EV marker, 

Tsg101. EVs isolated from human plasma contained peptides and mRNAs originating from CYP (1A2, 

2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4 and 3A5), UGT (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10 

and 2B15), and NADPH-cytochrome P450 reductase. The number of unique peptides detected for each 

protein ranged between 2 and 19, with a mean of 9.65. In addition, 5 unique peptides originating from 

NADPH-cytochrome P450 reductase (the redox partner required for CYP activity) were also detected. 

While cytochrome b5 (34.5 kDa) was not detected in the current analysis as it was not contained within 

the window of protein bands analysed, the presence of this protein in human derived EVs has already 

been established. 

Additional analysis following the confirmation of the availability of DME in EVs was conducted, 

proposing to verify the functionality aspect. In vitro hepatocyte cells line was used as the sources to 

produce a large amount, controllable and robust EVs. Meanwhile, the parallel experiments were 

conducted on human serum EVs obtained from healthy volunteers. The abundance of CYP3A4 and its 

catalytic activity derived from EVs samples were broadly evaluated. Targeted proteomics revealed the 

availability of CYP3A4 peptides derived from EVs isolated from HepaRG and human serum. 

Subsequently, determination of CYP3A4 catalytic activity was conducted using metabolite formation 

assay. LC-MS analysis detected 1OH midazolam and sorafenib N-oxide formation after incubation of 

human serum EVs with midazolam or sorafenib, respectively. However, no metabolite formation was 

observed from incubation of probe substrates with HepaRG EVs. The factors contributing to the 

positive metabolite formation derived from human serum EVs may be related to the integrity and 

conformation of CYP3A4 enzymes. However, complete attestation has not yet been identified in this 

thesis. 
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Taken together, the data presented in this thesis demonstrated a multidimensional approach to address 

precision dosing of sorafenib. The strengths and limitations of each technique were thoroughly 

investigated to explore the most appropriate method for the real clinical setting. Noticeably, the finding 

of DME panels and functionality provided an excellent opportunity to develop this knowledge to the 

real clinical diagnosis and treatment. Ultimately, this novel biomarker could serve as a bridging 

mediator not only to support an immediate dose monitoring and adjustment but also as a source to 

support model-informed precision dosing.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 – A brief overview of the history of precision medicine 

The concept of individualising a patient dose is not new. Over 500 years ago Swiss alchemist and 

physician Paracelsus (1493-1541) recognised that dose could resolve a remedy from a poison. While 

this concept has been refined significantly over time, the modern interpretation of dose individualisation 

by techniques such as therapeutic drug monitoring still dates back nearly 50 years to the early 1970s. 

Here, early reports describe the measurement of anticonvulsant [1] and phenobarbital [2] concentrations 

in blood being used to individualise doses, particularly in children. Similarly, in terms of the actions of 

a drug, over 100 years ago German Jewish physician and scientist Paul Ehrlich reasoned that even for 

complex infections characteristics of the pathogen could be targeted to kill the infection while leaving 

the host unharmed. This theory, termed Ehrlich’s Magic Bullet, led to achievements including a cure 

for syphilis in 1909 and the precursor technique to bacterial Gram staining [3]. Ehrlich’s methods for 

tissue staining also allowed for the distinction of different types of blood cells, which facilitated the 

diagnose and treatment of numerous blood diseases including haematological malignancies targeted by 

today’s modern therapies.   

The term “Personalised medicine” was firstly introduced in 1999 in an article “New Era of Personalised 

Medicine: Targeting Drugs for Each Unique Genetic Profile”. The primary concept of personalised 

medicine was to provide a thorough treatment to each individual with an understanding of differences 

in genetic, epigenetic and clinical presentations. Personalised medicine utilises an individual data 

relating to medical history, family history, environmental factors and genetic factors to address the 

plausible disease prognosis. However, the term personalised medicine may somewhat imply that the 

treatment is individually designed for a person, which probably not entirely correct. Hence, the term 

“Precision medicine” was later introduced and can be defined as “an emerging approach for disease 

treatment and prevention that takes into account individual variability in genes, environment, and 

lifestyle for each person” according to the description provided by the US Precision Medicine Initiative 

program. Since the program was launched in 2015, the term “Precision Medicine” have become the 

preferred term in health community.  Nevertheless, both personalised medicine and precision medicine, 

and their various historical predecessors share a mutual goal, which to maximise the treatment outcomes 

to best suit the patients based on the relevant pivot information such as genomic information, clinical 

presentation, omics data and patients' lifestyle.  

A classic example of personalised medicine practice was the use of trastuzumab in patients who have 

the gene expression of the human epidermal growth factor receptor type 2 (HER2) positive. This 

example demonstrated the process of medical decision-making using apparent patient information as a 

critical consideration. Transtuzumab is a specially designed medicine to treat breast cancer patients who 
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have an overexpression of the HER2 gene. Patients with HER2 positive tended to receive more clinical 

benefit than patients who tested negative when treating with trastuzumab [4, 5]. Although there are still 

debates among researchers as to whether transtuzumab provides a clinical benefit in the treatment of 

tumours with both HER2 positive and negative expression [6], it cannot deny the fact that HER2 gene 

was used as a biomarker to guide/inform medical decision-making. For precision medicine, a classic 

example was depicted in a case of cystic fibrosis. The disease itself is described as a genetic disorder of 

cystic fibrosis transmembrane conductance regulator (CFTR) causing multiple organs damage. CTFR 

gene usually transcribes the protein for chloride ion channel; thus, the genetic aberrations of CTFR gene 

results in disruptive regulation of water and chloride ions [7]. Cystic fibrosis patients who have F508del 

(~ 88 % world-wide [8]) would gain the most benefit from combination therapy of ivacaftor and 

lumacaftor, showing an important of utilising the genomic data to guide the medical decision-making 

[9]. Thus, these are the results of the advancement in personalised/precision medicine which well-

portrayed the significance of these disciplines. At present, the concept of precision medicine has been 

vigorously implemented in the field of oncology. Oncology is at the forefront of precision medicine, 

advancing beyond the typical treatment strategy based on a large, unstratified patients cohort. Precision 

medicine encourages a revolution of oncology practices to recognise more in utilising the individual's 

molecular profile to optimise the treatment strategy. 

The prior examples illustrated the use of genomic information as a part to guide the optimal treatment 

plan. Both HER2 positive and F508del are categorised as biomarkers, one of the quintessential elements 

in modern precision medicine practice, especially cancers and other rare diseases. The traditional 

approach to identify the potential biomarkers may involve evaluating the pre-treatment characteristics, 

biochemical analysis and genetic testing. However, the methods to retrieve the data may take a more 

extended time to derive the necessary information to guide the precision dosing, which is practically 

not feasible to apply in a clinical setting. Analysing clinical trial data– a big data is a useful approach 

and very convincing as it deals with the data from the real patients. Nevertheless, the timeframe toward 

accessing the data can be unpredictable as some database require extensive and multiple regulatory 

approvals to access the database, which is impossible for an ongoing treatment scenario.  

Precision dosing, a subcategory of precision medicine, exemplifies the trend of evidence-based 

pharmacotherapy [10, 11]. It considers any relevant aspect both in drug characteristics and patient 

characteristics (both disease state and physiological factors) to provide the most appropriate dosing 

strategy for the individual– individual dosing  [12]. It is quintessential to acknowledge that drugs are, 

in numerous cases, the focal medium in overcoming the disease, either primary (directly treat the 

condition) or secondary (adjunctive treatment after medical interventions) contribution. The well-

defined strategy in drug dosing would, eventually, increase patients' quality of life and reduce the long-

term health-related cost to a nation. As thoroughly reviewed by Hopkins AH et al., precision dosing has 

its imminent role in optimising the dosing regimen, guiding/selecting the initial dose, and dose adaption 
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[13]. However, it could be a simple method to achieve the goal using only a laboratory-based approach 

or an intricate method using both laboratory- and computational-based approach in parallel to thrive for 

the precision dosing. Admittedly, identifying novel biomarkers could be a long-standing option as it 

could derive meaningful information supplies into any areas as mentioned earlier [14, 15].  

Thus, there is a necessity to pursue the novel biomarkers, which has to be a non-invasive, high versatility 

that can be integrated into various research setting and contain meaningful information in order to 

promote a precision dosing.  Recently, the blood-derived biomarker— extracellular vesicles (EV) have 

gained more attention as it contains genomic information and other proteins in its cargo. EV can be 

isolated from almost any biofluids such as plasma, serum, breast milk and urine. Thus, EV is a potential 

candidate for the precision dosing due to its versatility that can be incorporated into a part of liquid 

biopsy, which considered as a less invasive and relatively safe method. The array of methods and their 

importance in precision medicine such as using a computational simulation, data analysis and a 

scientific experiment is described in this chapter. The in-depth detail of factors affecting variability in 

drug exposure and pharmacokinetic profile is also provided. Finally, the literature review of EVs was 

introduced with a description of the previous reports of its promising role as a novel biomarker in 

precision medicine.   

1.2 – Pharmacokinetics 

Pharmacokinetics describes the passage of a drug through the body. For an orally administered drug 

this incorporates the processes of Absorption, Distribution, Metabolism and Excretion, and is often 

referred to as ADME. Human tend to come across various therapeutic compounds, chemicals and 

xenobiotics throughout the entire lifespan either or not as an intention. Sometimes, the xenobiotics can 

be a poisonous substance that causes detrimental to the body; thus, throughout the evolution, the human 

body has developed an effective mechanism for the disposition of drugs and xenobiotics in the body.  

1.3 – Drug metabolism 

Drug metabolism is an integral element of pharmacokinetics. The simplified way to describe the whole 

process of drug metabolism is the sequential order of transforming the compounds to the altered form 

that more apparent to be eliminated from the body. The enzymes that involved in the process of 

biotransformation are classified as drug-metabolising enzymes (DME). The metabolic capability of 

DME spans over xenobiotics substance as well. For a correction of literary, a recent textbook suggested 

the name "xenobiotic-metabolising enzymes" as the more appropriate definition [16].  

In order to be absorbed into the body, most drugs and other xenobiotics have a characteristic of high 

lipophilicity. They require a process of functionalisation where the reactive groups are attached to the 

compound, deriving more hydrophilic derivatives that efficiently enough to be eliminated. However, 

some drugs are reported to eliminate without any structure modification, an unchanged form. 
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Nevertheless, the majority of drugs are, relatively, needed to slightly undergo structure modification to 

facilitate the disposition.  

The liver is major site of metabolism in the body, both for endogenous and exogenous substances. In 

addition to the liver, the small intestine and kidney’s also serve as important sites of metabolism. In 

particular metabolism in the small intestine serves as a barrier to oral drug exposure, while conjugation 

in the kidneys dramatically enhances the water solubility of lipophilic compounds and enhances 

transporter utilisation. In addition to these organs, DME are also found at the other sites of the body. 

Several pieces of evidence reported the present of DME in diverse organs/tissues such as lung [17], 

brain [18] and, to a lesser extent, skin [19]. Hence, these organs/tissues are, to a limited degree, 

contribute to the biotransformation of drugs and other xenobiotics, which should be categorised as part 

of the drug metabolism process. 

Drug metabolism has traditionally been divided into two main reactions, phase I and phase II reactions, 

which were considered to occur in consecutive order [20]. However, the term phase I and phase II 

reactions may be outmoded. David et al. described the term to be misleading and inaccurate due to 

inconsistent in grouping and categorisation [21]. For example, the general idea regarding phase II 

metabolism is increasing the hydrophilicity of the compound for excretion purpose. In fact, some phase 

II mechanism leads to a reduction in hydrophilicity such as N-acetylation of aromatic amines. Thus, the 

alternative approach to group the drugs and xenobiotics metabolism into groups might be 

functionalisation (oxidation and reduction), conjugation and nucleophilic trapping reactions.  

The predominant enzymes responsible for functionalisation reactions are the Cytochrome P450 (CYP) 

superfamily. However, there are also groups of non-CYP oxidative enzymes involved in xenobiotics 

oxidations such as flavin-containing mono-oxygenases (FMOs), monoamine oxidase (MAO).  

1.4 – Cytochrome P450 

The CYP enzymes are the heme-containing proteins superfamily found in variety of living organisms 

such as in bacteria and human. This enzyme superfamily is mainly responsible for metabolising 

endogenous and exogenous substances. The CYP enzymes are membrane-bound enzyme which found 

inside the lipid bilayer of endoplasmic reticulum (ER) in hepatocyte (Figure 1). Apart from CYPs, the 

UDP-glucuronosyltransferase (UGT) enzyme superfamily and the other DMEs are also found in this 

lipid bilayer of ER within hepatocyte. 

As reviewed by Furge et al, the characterisation of CYP was performed using carbon monoxide binding 

spectra and found a strong absorption at 450 nm, which resulted in the ‘P450’ nomenclature to this type 

of enzymes [22, 23]. Also, because of the presence of cysteine residue which attach to the heme group, 

this difference makes the identity of CYP distinct to the other heme-containing protein such as 

haemoglobin which has histidine residue attaches to the heme instead. The CYP enzymes require a 
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supplement of electrons and other cofactors in order to fully activate the catalytic reactions. One of the 

important cofactors for CYP metabolism is nicotinamide adenine dinucleotide phosphate (NADPH), 

which is the source of O2 and H+ that will supply to CYP reaction cycle. Moreover, the reaction requires 

CYP-NADPH oxidoreductase enzyme which bound adjacent to the CYP enzyme. The mechanism of 

CYP metabolism begins when the substrate enters the hepatocyte and consequently embedded into the 

lipid bilayer of ER where it come into contact with CYP enzyme. The overview of metabolic 

consequence of drugs and other xenobiotics as shown in Figure 2. 

 

Figure 1 – Localisation of CYP450 in cells. The figure showed microscopic level of CYP450 

embedded in the lipid bilayer of ER. NADPH-CYP oxidoreductase is in adjunct to CYP and 

play a role to supplement electron to the CYP-related metabolic reaction. Figure created with 

BioRender.com. 

CYP enzymes are responsible for most of the functionalisation reactions of clinically used drugs [16]. 

Due to their extensive capability in terms of biotransformation, CYP enzymes are not limited to only 

one enzyme per one substrate. In fact, a single CYP isoform is able to metabolise the vast majority of 

substrates those share similarity in features such as the functional groups in the compound structure. 

Moreover, a single compound can also be metabolised by several CYP isoforms in different molecular 

catabolism. Thus, the overlapping of substrate specificity among CYP isoforms add a certain degree of 

complex into metabolism aspect. As aforementioned, the CYP enzymes have expansive role of 

exogenous metabolism but, on the other hand, also involves in controlling endogenous compound such 

as cholesterol synthesis and steroid hormone metabolism [24]. For example, the CYP19 family which 

is also known as aromatase is responsible for testosterone metabolism only. Thus, some of the CYPs 
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that majorly involve in endogenous compound tend to have a limited activity and substrate of catabolism 

compare to the CYPs that involve in exogenous metabolism.  

 

Figure 2 – Metabolism of sorafenib. CYP3A4 responsible for the oxidation of sorafenib to 

obtain sorafenib N-oxide. UGT1A9 together with UDP-GA as a cofactor conjugate sorafenib N-

oxide with glucuronic acid to increase the hydrophilicity.  

More than 50 CYP enzymes have been identified in humans, with twelve CYP identified to be involved 

in drug metabolism including CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 

3A5. These enzymes are highly abundant in the liver. In this review, only a few CYPs family and 

isoforms are selected according to its significant in metabolising clinically use drugs. The selected CYP 

in this review are including CYP1A subfamily (CYP1A1, CYP1A2), CYP2 family (CYP2C9, 

CYP2C19, CYP2D6) and CYP3 family (CYP3A4). The overview of CYP and its level of expression 

in human liver as shown in Figure 3 [25]. 

 

Figure 3 – The illustration shows the proportion of CYP expression in human liver. [Taken 

from Zanger et al. (2013)]. 
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Table 1. Example of major CYP isozymes and its substrates, inducers and inhibitors. 

CYP Substrate Inducers Inhibitors 

1A2 

Clozapine 

Caffeine 

Propranolol 

Theophylline 

Aminophylline 

Mirtazapine 

Carbamazepine 

Phenobarbital 

Tobacco 

Amiodarone 

Cimetidine 

Ciprofloxacin 

2C9 

Irbesartan 

Losartan 

Ibuprofen 

Celecoxib 

Phenytoin 

Diclofenac 

Naproxen 

Meloxicam 

Glipizide 

Glibenclamide 

Tolbutamide 

Warfarin 

Carbamazepine 

Griseofulvin 

Phenytoin 

Rifabutin 

Rifampin 

St. John’s wort 

 

 

Amiodarone 

Clopidogrel 

Efavirenz 

Fluconazole 

Valproic acid 

Sulfamethoxazole 

Fluorouracil 

Disulfiram 

Isoniazid 

2C19  

Clopidogrel 

Clozapine 

Diazepam 

Omeprazole 

Esomeprazole 

Lansoprazole 

Pantoprazole 

Rabeprazole 

Phenytoin 

Phenobarbital 

Fluoxetine 

Thalidomide 

Propranolol 

Artemisinin 

Barbiturates 

Carbamazepine 

Phenytoin 

Rifampin 

St. John’s wort 

 

 

Cimetidine 

Efavirenz 

Fluconazole 

Isoniazid 

Modafinil 

Omeprazole 

Oxcarbazepine 

Voriconazole 

2D6 

Amitriptyline 

Carvedilol 

Chlorpheniramine 

Chlorpromazine 

Codeine 

Dextromethorphan 

Pregnancy-related 

hormone 

 

Amiodarone 

Bupropion 

Diphenhydramine 

Haloperidol 

Thioridazine 

Quinidine 
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Diphenhydramine 

Haloperidol 

Imipramine 

Metoclopramide 

Metoprolol 

Risperidone 

Thioridazine 

Tramadol 

Venlafaxine 

Fluoxetine 

Imatinib 

3A4 

Atorvastatin 

Simvastatin 

Pioglitazone 

Clarithromycin 

Clonazepam 

Erythromycin 

Itraconazole 

Ketoconazole 

Alprazolam 

Triazolam 

Midazolam 

Bromocriptine 

Bupropion 

Ziprasidone 

Donepezil 

Amlodipine 

Felodipine 

Nifedipine 

Verapamil 

Rifampicin 

Carbamazepine 

Phenobarbital 

Oxcarbazepine 

Phenytoin 

Griseofulvin 

St. John's wort 

Modafinil 

Midazolam 

Grapefruit juice 

Ketoconazole 

Itraconazole 

Fluconazole 

Indinavir 

Ritonavir 

Isoniazid 

Atazanavir 

Amiodarone 

1.5 – CYP family 

1.5.1 – CYP1A subfamily 

CYP1A1 and CYP1A2 are the important enzymes in this subfamily. CYP1A1 expresses at a deficient 

level in liver but the high level in lung, intestine, lymphocytes and placenta instead (thus, categorised 

as the extrahepatic site). In contrast, CYP1A2, which shares 80 % similarity of amino acid identity to 

CYP1A1, expresses mainly in the liver. CYP1A1 also be called as aryl hydrocarbon hydroxylase which 

responsible for inactivation of procarcinogen. Both CYP1A1 and CYP1A2 are highly induced by 

polycyclic aromatic hydrocarbons (PAHs) generated from most cigarette smoke. CYP1A1 is 
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responsible for metabolising various of the commonly clinical used drugs including propranolol, 

amiodarone, flunarizine and R-warfarin.  

On the other hand, CYP1A2 is reported to metabolise numerous important clinically use drugs such as 

psychotropic agents (tacrine, clozapine, olanzapine), local anaesthetics (lidocaine and ropivacaine), 

acetaminophen and propranolol. The summary of drugs that are metabolised by CYP1A2, as shown in 

Table 1. The common inducers of CYP1A2 include cigarette smoking and omeprazole [26, 27]. 

Cigarette smoking also the most problematic cause that alters the basal activity of CYP1A2 due to the 

induction property toward the CYP1A2 enzyme. One study in a group of patient who had been 

prescribed clozapine and used around more than three months without withdrawing cigarette smoking 

reported a necessity of dosage titration of clozapine [28]. In addition, the clearance rate of non-smokers 

was found to be significantly lower compared to the active smokers. As a result, the average 

maintenance dose in smokers was 382 mg/day, which is significantly higher than non-smoker (197 

mg/day) at P < 0.01. 

Caffeine is the other substrate that perturbative the activity of CYP1A2. As such, smokers who also 

drink caffeine tend to develop caffeine tolerance faster than non-smoker [29]. The study showed that 

higher coffee-drinking behaviour was associated with the number of a smoking habit. In contrast, the 

consumption of tea and heavy smoking showed no change in the manner of consuming. The fact that 

tea contains less caffeine compared to coffee, thus less likely to be influenced by the cigarette-induced 

CYP1A2 activity.  

1.5.2 – CYP2 family 

CYP2C9 is predominantly expresses in the liver and accounts for 20 % of total hepatic CYP450 proteins 

based on the protein content in human liver microsomes [30]. In addition, CYP2C9 is responsible for 

approximately 15 % of metabolising clinically used drugs which is the third most contributing drug-

metabolising enzyme behind CYP3A4 and CYP2D6 [31]. Clinical drugs which are metabolised by 

CYP2C9 are including antidiabetic drugs (e.g. glipizide, glibenclamide), anticonvulsant drugs (e.g. 

phenytoin, phenobarbital), anticoagulants (warfarin), antihypertensive agents (e.g. irbesartan, losartan), 

diuretics and nonsteroidal anti-inflammatory drugs (NSAIDs) (e.g. celecoxib, naproxen, meloxicam)   

CYP2C19 is another important isoform in CYP2C subfamily. CYP2C19 was found to be highly genetic 

polymorphism such as CYP2C19*1, CYP2C19*2, CYP2C19*3, CYP2C19*4, CYP2C19*5 and 

CYP2C19*17. The genetic polymorphism of CYP2C19 showed a diversity effect on the rate of drug 

metabolism in the different individual. The CYP2C19*2, found 2-5 % in Caucasians and 18-23 % in 

Japanese, was known for a characteristic of poor metaboliser (PM) to its substrate. The patient who has 

CYP2C19*2 tend to experience less effective of clopidogrel treatment due to the undermining in the 

prodrug activation process resulting in a state of clopidogrel resistant [32]. CYP2C19*2 allelic variant 
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was reported to cause aberrant splicing, which results in the loss of enzyme activity. This led to a 

reduction in the efficacy of clopidogrel compared to the patients who have the wild type of CYP2C19 

(CYP2C19*1). In contrast, patients who have the variant CYP2C19*17 was found to associate with a 

massive increase in enzyme activity compared to the wild type [33]. The CYP2C19 enzyme was found 

responsible for metabolising proton pump inhibitors (omeprazole, lansoprazole, pantoprazole, 

rabeprazole), anticonvulsant (phenobarbital, phenytoin, mephenytoin), antidepressants (citalopram, 

escitalopram, desipramine, clomipramine) and antiplatelet agent (clopidogrel, R-warfarin).  

CYP2D6 is the other isoforms that have been extensively studied since 1977 [34]. The enzyme CYP2D6 

is responsible for metabolising around 25 % of prescribing medicine generally antipsychotics (e.g. 

risperidone, haloperidol, chlorpromazine) and antidepressants drugs (e.g. nortriptyline, amitriptyline). 

The genetic polymorphism of CYP2D6 was found among different ethnicities as approximately 6-10% 

of the Caucasian population found to express a PM, whereas only 1% was found among the Chinese, 

Koreans and Japanese. On the other hand, the ultra-rapid metaboliser (UM) was predominantly found 

in the Ethiopians, whereas this characteristic found only 1-2 % in the Caucasians.  

The clinical relevance regarding the variability of CYP2D6 variant is related to the metabolism of drugs 

used in the central nervous system, especially antipsychotic agents. The discrepancy in the rate of 

metabolism due to genetic polymorphism can lead to a serious neurological adverse event (AE) such as 

parkinsonism. Moreover, antipsychotic agents tend to be used for an extended period of therapeutic 

course partly due to the complexity of the disease itself. As such, it provokes numerous concerns 

regarding the potential serious AE, which consequently lead to alleviation in clinical outcomes of 

antipsychotics treatment, which are the primary challenge in the treatment of the psychiatric disorder. 

1.5.3 – CYP3A subfamily 

The CYP3A subfamily is the only member in the CYP3 family found in human. Generally, the primary 

CYP3A isoenzyme is CYP3A4 and CYP3A5 where CYP3A7 is one of the isoforms that only expressed 

during foetal development and can be found minimally in the liver and intestine in an adult human. 

[35]. CYP3A4 and CYP3A5 are the most well-characterised isoforms in this subfamily in which the 

CYP3A4 has a more prominent role in drug-metabolism. CYP3A4 exhibits the most extensive 

metabolising property and profoundly expressed in the liver. The CYP3A4 enzyme metabolises over 

30 % of clinically used drugs, which cover a wide range of drug class such as lipid-lowering agents 

(e.g. simvastatin, atorvastatin), macrolide antibiotics (e.g. erythromycin, clarithromycin), 

antituberculosis (e.g. rifampicin, rifabutin, isoniazid), psychotropic drugs (carbamazepine, alprazolam, 

midazolam). CYP3A4 enzyme is also known as highly inducible and modulation by numerous 

compounds which can consequently lead to a high probability of drug-drug interaction issues. CYP3A4 

enzyme is also known as highly inducible and modulation by numerous compounds which can 

consequently lead to a high probability of drug-drug interaction issues. The induction of CYP3A4 
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enzyme was reported to initiate at the molecular level involving the activation of nuclear receptors 

(NRs). The Pregnane X receptor (PXR), the constitutive androstane receptor (CAR) and glucocorticoid 

receptor (GR) were the NRs found to involve in the process CYP3A4 enzyme induction.  

1.6 – Induction of drug metabolising enzyme: case of CYP3A4 

The mechanism of enzyme induction initiates at the level of gene transcription. The primary induction 

mechanism arises from the ligand-receptor complex in which most of the receptors, in this case, are 

NRs. NR is a large group of receptors, which can be categorised into four main types (type I, II, III, IV) 

[36] and has a distinct mechanism of ligand-receptor interaction compare to the others. For example, 

type I nuclear receptors reside in the cytoplasm, which forms a partial attachment to the chaperone 

proteins such as heat shock protein (HSP). The ligands of type I nuclear receptors, such as estrogen, 

bind to the receptor once entering the cytoplasm and consequently dislodge the receptor from the 

chaperone. The ligand-receptor complex then undergoes homodimerisation then enter the nucleus 

(Figure 4) [37]. The ligand-receptor complex interacts with other coactivators then subsequently allow 

the target gene activation process. Induction of CYP3A4 initiates via one of the NR superfamilies, the 

PXR. Generally, PXR is responsible for drug metabolism, cholesterol metabolism, bile acid transport 

and inflammation. PXR expresses as an orphan NR type which requires partially binding of a ligand to 

the receptor before translocating the complex into the nucleus. 

 

 Figure 4 – A schematic of drug-metabolising enzyme induction via nuclear receptors. Figure 

created with BioRender.com.   
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Successful binding of the ligand-receptor complex then translocated to the nucleus of the cells where a 

subsequent binding to retinoid X receptors (RXR) at the promoter of the target genes occur. Activation 

of PXR increases the transcriptional rate of CYP3A4 enzyme as it is one of the target genes of PXR 

responsive elements [38]. Therefore, the activation of PXR results in an elevation of CYP3A4 

expression, which in turn lead to an increase in CYP3A4 enzyme activity—the induction state.  

1.7 – Drug-drug interaction 

Drug-drug interactions (DDI) may occur when two or more drugs are administered concurrently, the 

result of which is in an alteration in drug effects. Drug interaction may broadly divide into two main 

categories according to the mechanistic of interactions, either pharmacokinetic or pharmacodynamic 

interactions (Figure 5). Pharmacokinetic interactions are subdivided into four subcategories aligned to 

the process of pharmacokinetics. Pharmacokinetic interactions mostly occur during the process of drug 

metabolisms, in the form of enzyme induction/inhibition, such as in the case of phenobarbital and 

warfarin. Phenobarbital is a CYP2C9 inducer in which if it is administered at the overlapping with the 

other CYP2C9 substrate such as warfarin, the duration of warfarin action may decrease leading to 

treatment failure [39].  

PPIs are the other group of drugs that have been a significant concern in producing pharmacokinetically 

interactions. One of the primary concerns is in the area of the effects of cancer medicines. Recent reports 

found several significant effects of using PPI with cancer medicines, particularly tyrosine kinase 

inhibitors (TKIs) due to intragastric pH changes. This has been observed in the case of using PPI with 

erlotinib, one of the TKI drugs. Generally, the orally administered drugs, especially solid dosage form, 

are governed by many factors, such as surface area of absorption and dissolution profile [16]. Erlotinib 

is an orally administered TKI indicated for patients who suffer from non-small cell lung cancer 

(NSCLC). Previous literature found that NSCLC patients who received erlotinib concomitantly with 

PPI showed a lower plasma erlotinib concentration significantly than those without PPI administration. 

The investigator speculated that the reduction of erlotinib plasma concentration was due to the 

physicochemical property of erlotinib. As erlotinib has a characteristic of a weak acid, the solubility is 

predominantly affected by the increase of intragastric pH (less acidic) as a result of the co-administered 

PPI [40]. 
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Figure 5 – Diagram shows the mechanism of drug interactions and examples. 

Pharmacodynamic interactions are situations when co-administered drugs influence each other’s effect 

directly. For example, diazepam, an allosteric modulator of GABAA receptor, enhance the 

psychodepressant effects of alcohol when both of them are concurrently consumed. Mechanistically, 

diazepam binds to the benzodiazepine receptor on the GABAA receptor, which facilitates the binding 

of GABA to its receptor resulting in an increase of Cl- ion influx causing the membrane to be more 

hyperpolarisation. Alcohol also binds to the GABAA receptor but in a different site from diazepam but 

able to cause an increase in Cl- ion influx and hyperpolarisation (Figure 6) [41]. Thus, these two agents 

are able to cause an exorbitant influx of Cl- ion when administered at a similar period as a result of the 

synergistic effect. 

 

This image has been removed due to copyright restriction. Available online from 

[https://pharmrev.aspetjournals.org/content/62/1/97.long/ Uusi-Oukari M, Korpi ER. Regulation of 

GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev. 2010 

Mar;62(1):97-135. doi: 10.1124/pr.109.002063. Epub 2010 Feb 1. PMID: 20123953.] 

 

Figure 6 – A schematic shows different biding site of GABAA receptors between 

benzodiazepines and ethanol. [Taken from Uusi-Oukari, M. and E.R. Korpi (2010)]. 

The consequences follow drug interactions possibly appear in a variety of effect. The additive effect is 

the combined response of drug, which equal to the summation from each agent acting alone (1 + 1 = 2). 

Synergistic is similar to additive, but the total response is greater than the summation from each agent 

(1+1 ≥ 2). Also, the synergistic effect tends to originate from two different mechanisms of action, which 

are stimulated at the same time. The concurrent effects of each drug enhance the overall outcomes in 
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which exceeding the additive summation [16]. On the other hand, antagonism interaction constitutes 

the interference of drug action where one of the concurrently administered drugs compromise the effect 

of another drug.  

Drug interaction does not necessarily result in an undesired outcome. Instead, utilising the proper 

interaction may result in the better treatment outcomes. For example, ritonavir indirectly enhances the 

effect of protease inhibitor by prolonging the duration of action due to its capability as a CYP3A4 

inhibitor. Hence, the biotransformation of indinavir is delayed deriving an extended duration of action. 

Therefore, ritonavir/indinavir combination increased plasma indinavir concentrations significantly as 

observed in AUC (185 – 450 %) and Cmax (21 – 110 %) compared to indinavir alone [42]. Similar 

situation was observed in the case of clopidogrel and a medicinal plant St. John’s Wort. Clopidogrel, a 

platelet aggregation inhibitor, is a prodrug that required a two-step bioactivation by CYP enzymes to 

obtain an active metabolite which binds specifically to P2RY12 purinergic receptor (Figure 7) [43]. By 

co-administering clopidogrel with St. John’s Wort, the result is an enhancing of platelet inhibition effect 

of clopidogrel. St John’s Wort contains hyperforin which constitute a potent ligand for the PXR 

receptor, thus upregulating the genotypic expression of CYP2C19 and CYP3A4. The results of patients 

those received a 14-day treatment of St John’s Wort before administering clopidogrel showed an 

increase in the inhibitory activity of platelet aggregation (IPA) when measured at 2, 4 and 6 hours after 

exposing to clopidogrel [44].  

 

Figure 7 – Biotransformation of clopidogrel. 

In summary, drug interactions have a variety of possible outcomes. Some drugs may need an exact 

plasma level to exhibit the full therapeutic effects such as anticancer drugs and antibiotics. These groups 

of drugs are prone to affect by concomitant medicines, which may, in the worst-case scenario, lead to 

treatment failure. Thus, understanding/identifying the effect of DDIs, especially with the common 

concomitant drugs such as analgesic agents, acid lowering agent or other metabolic syndrome drugs 
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would be beneficial in clinical practices. Patients who strongly rely on the treatment efficacy such as 

cancer patients would also gain a profit from this knowledge. 

1.8 – Pharmacokinetic variability 

The variability in the pharmacokinetics of drug exposure is the phenomenon that is observed when the 

pharmacokinetic profiles varies between individuals receiving the same dose of the same drug. The 

source of variability may be the phenotype and/or genotype of each individual or may result from 

environmental sources. Difference in patient demographic such as age, sex, race and comorbidity 

(diabetes, hepatic/renal impairment) may contribute to the variation in drug exposure. Genetic 

polymorphism results in PM/UM characteristics is the typical epitome of genotype-related exposure 

variability. Warfarin, an antiplatelet agent, is an example of drug that has already identified to be 

affected by both phenotype and genotype factors. Warfarin is mainly metabolised by CYP2C9 whereas 

evidences found that patients who have the variants CYP2C9*2 and CYP2C9*3 required only 45 % of 

standard dose to achieve the treatment efficacy as these variants were identified as PM [45]. PM 

characteristic of warfarin leads to the risk of bleeding when using in the standard dose as the rate of 

metabolism is lower, thus requiring a dose reduction to prevent the AE. The other model example is in 

the case of CYP2C19 variants and PPI. Previous literature reported that CYP2C19 polymorphism, both 

UM and PM, was associated with the pharmacokinetic variability of PPI. While the CYP2C19*2 and 

*3 were reported to produce no function and decreased enzyme function (predicted phenotype as PM), 

the CYP2C19*17 was reported to produce an increase in enzyme function (predicted phenotype as UM) 

[46]. First-generation PPIs, including omeprazole, lansoprazole and pantoprazole, were affected by this 

genetic polymorphism due to 80% of them being metabolised by CYPC19. Therefore, an individual 

with a characteristic of CYP2C19 UM, which exhibit an extensive rate of metabolism, would require a 

dose-escalation of drugs to treat a particular condition such as H.pylori infection. 

Drug-interactions also play an important role in the heterogeneity of drug response. Patients with 

chronic diseases such as hypertension, diabetes mellitus and cancers are by default use more than one 

agent to control the disease at an extended of time. In the case of cancer patients, evidence reported that 

patients tend to have a notable record of concomitantly using proton-pump inhibitors (PPIs) and 

metabolic syndrome-related drugs with cancer medicines [47, 48]. PPIs are among the most concerning 

drug groups that could cause pharmacokinetically interactions on account of their intrinsic capability.  

PPI acts by inhibiting H+-K+ ATPase– proton pump in an irreversible manner, leading to an alteration 

in GI acidity (pH). As such, the altered acidity environment in the GI tract could, potentially, affect the 

absorption of pH-sensitive co-administered drugs [49]. For instance, the previous studies observed an 

increase in mortality rate in cancer patients who use PPIs concomitantly with a recently developed 

tyrosine kinase inhibitors (TKIs) such as erlotinib, imatinib and sunitinib indicating a negative effect of 

PPI on some TKIs efficacy [50]. Hence, this emphasizes the importance of identifying the source of 
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pharmacokinetic variability, which would ultimately lead to a better treatment strategy toward the 

precision dosing practice.  

The strategy to address the pharmacokinetic variability can be performed in many fashions. The 

computational pharmacologists may attempt to thrive this issue by using model-informed precision 

dosing either top-down (opulation pharmacokinetics; PopPK) or bottom-up (Physiologically based 

pharmacokinetic; PBPK) approach. On the other hand, the experimental pharmacologists may embark 

on the in vitro model using different cellular models to thoroughly characterise the pharmacokinetic 

profile of the investigated drug. 

1.9 – In vitro determination of pharmacokinetics 

The study of the pharmacokinetic profile of drugs can be easily initiated using in vitro platform. The in 

vitro platforms provide high flexibility in profiling multiple aspects of primary pharmacokinetics, such 

as determining the fate of the test compound, defining the proportion of plasma protein binding and 

identifying the permeability capacity [51]. Of all the aspects, determine the fate of the compound is one 

of the most crucial components in the in vitro pharmacokinetics study [52]. Generally, the rich source 

of protein that contains an appropriate level of DME is used to determine the enzyme responsible for 

metabolising the test compound. Human liver microsome (HLM) is among the most common protein 

source in the in vitro drug disposition study [51, 53]. However, the inconsistency of DME expression 

between batch and availability has been the primary concern in using HLM as the protein source [54, 

55]. Freshly isolated primary human hepatocyte (PHH) are the other preferred proteins source for 

studying preclinical drug metabolism. The primary role of PHH in the preclinical drug metabolism 

study is verifying the characteristic of enzyme induction/inhibition of the test compound. Nonetheless, 

PHH tends to lose the liver-specific gene expression over time compared to the initial stages of 

cultivation. Moreover, verifying the reliable source of obtaining PHH is the other significantly 

challenging issue to be considered. The recent development hepatocyte cell line, HepaRG, has become 

an adequate substitution for HLM and PHH due to its comparable expression profile and high 

consistency of expression between the batch. Thus, HepaRG has been considered to be a suitable test 

system to serve multi-purposes in vitro drug metabolism study. Such example as seen in the European 

Commission guideline for the in vitro method of assessing the CYP enzyme induction of the studied 

compounds using HepaRG [56].  

1.10 – HepaRG: a novel cell lines for studying drug-metabolising enzyme. 

HepaRG is a human hepatoma cell lines derived from patient who suffered from hepatocarcinoma and 

hepatitis C virus [57, 58]. HepaRG has a unique characteristic as a bipotent progenitor which able to 

differentiate into two types of the cell population, including hepatocyte-like and biliary-like 

morphology. Unlike the other in vitro hepatic cell lines such as HepG2, HepaRG express a high level 
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in a wide range of xenobiotic-metabolising enzymes, especially DMEs. Moreover, HepaRG also 

expresses various transporter genes and transcription factors (PXR, CAR, AhR, PPARα). Generally, 

primary human hepatocyte (PHH) is the long-time mainstay in the in vitro hepatocyte model because 

of its wide range of expression in DMEs. However, a lack of consistency of gene expression level 

between batch is one of the major drawbacks of PHH. In contrast, HepaRG showed a stable expression 

of DME genes between batch, which provide higher reliability across multiple experiments.  

1.10.1 – Culturing and basic features of HepaRG  

The initial morphology of undifferentiated HepaRG after seeding is epithelial-like morphology. When 

fully differentiated, HepaRG expresses two distinct morphology including hepatocyte-like and biliary-

like morphology. HepaRG can be obtained in two forms either fully differentiated or undifferentiated 

state. Generally, the fully differentiated usually can be purchased from the various certified biomedical 

vendors, although they are mostly available in one-time used. On the other hand, the undifferentiated 

HepaRG can be obtained mainly from a special agreement to the Rennes institute. Although the process 

to obtain the undifferentiated HepaRG may slightly complicated, it comes with multiple advantages. 

Undifferentiated HepaRG has an unlimited production size as long as the passage number is not 

exceeded passage 20. Cell bank can be made during culture production, which increases the availability 

of several experiments.   

The undifferentiated HepaRG maintains epithelial phenotype during the first few days of culturing 

(Figure 8A). The base media of HepaRG is mainly William's E media with additional of essential 

supplements [57, 59]. HepaRG undergoes proliferation state around day 3 to day 7 after start seeding 

then reach confluency around day 10. After day 10, cells morphology starts to differentiate into 

hepatocyte- and biliary-like cells (Figure 8B). At day 14, the base media with additional 2 % dimethyl 

sulfoxide (DMSO) is introduced to facilitate the differentiation program. Cells reach maximum 

differentiation after 14 days of exposure to DMSO-containing media. The fully differentiated HepaRG 

expressed a feature of mature hepatocytes with high expression in drug-metabolising enzymes genes, 

liver-specific markers and other transcription factors [57, 59, 60].  

1.10.2 – Seeding, confluency and trans-differentiation behaviour 

The hepatocyte-like cells of HepaRG are the primary source producing DME activity. The 

immunochemical analysis showed positive staining of CYP3A4 only in hepatocyte-like cells but not in 

biliary-like cells [61]. Cells damage caused by a high dose of acetaminophen (20 mM) observed the 

significant loss of hepatocyte-like cells, diminishing CYP2E1 and CYP3A4 activity [62]. The 

confluency of HepaRG during the culturing is the main factor promoting the expression of liver-specific 

functions of the cells. Generally, the level of confluency in HepaRG align in parallel with the progress 
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of culturing. Troadec et al. described the progress of HepaRG culturing into 4 stages including 1. 

Proliferation 2. Confluence 3. Superconfluence, and 4. Differentiation [63].  

HepaRG at proliferation state showed an exponential growth rate. The cells form a monolayer and 

spread to the entire area of culture support, hence gradually entering the confluence state. Notably, it 

was reported that cells at the proliferation state observed no liver-specific or related functions. Up to 

the superconfluence state, genes that regulate body fluids in response to stimuli and immunity become 

highly-regulated. Meanwhile, genes that regulate cell motility and signal transduction become repressed 

at the superconfluence state [61]. At differentiated state, genes that regulate the metabolism of lipids 

and organic acids become more active than in progenitor state, which results in the display of liver-

specific functions. HepaRG cells retain liver-specific functions for the additional 2 weeks when 

maintain in media supplemented with DMSO.  

1.10.3 – Stable expression of liver-specific function of HepaRG 

HepaRG is available to be utilised in the experiments as soon as the end of the differentiation process 

(30-32 days after seeding). It has been shown that the functional and expression of HepaRG are stable 

up to six weeks of culturing [60, 64]. Cells morphology showed a minimally change during 4 additional 

weeks of maintaining in DMSO-supplemented media. Moreover, the functional stability test was 

conducted using both RT-qPCR and enzyme activity assay. RT-PCR data showed that DME genes and 

transporter expression remained highly stable in any time period after differentiation [64]. Moreover, 

HepaRG exhibit stable enzyme activity and induction capability as well in the long-term culturing. Cells 

showed at least 2-fold induction of CYP3A4 and CYP1A2 enzyme activity following incubation with 

rifampicin or 3-Methylcholanthrene, respectively [65, 66].  

 

Figure 8 – Photomicrograph of HepaRG (A) undifferentiated HepaRG (B) differentiated 

HepaRG. 
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1.11 – In vitro - In vivo correlation 

The extrapolation of in vitro data to predict in vivo hepatic clearance has been extensively investigated 

[67-70]. This area of research has observed promising outcomes when applying to predict the CYP and 

UGT-catalysed functionalisation. As mentioned elsewhere in this thesis, each individual CYP and UGT 

isoform responsible for metabolising particular compounds; however, there is a certain degree of 

overlapping in compound selectivity. This could lead to the consequence in which DDI occurs due to 

differences in the level of enzyme expression and genetic polymorphisms among each individual. 

Understanding the enzyme responsible for the biotransformation of a drug and relevant information 

regarding the factors affecting enzyme activity would allow a concrete prediction of drug elimination 

in real patients [67-70].   

The most common approach to estimate in vivo CLH is to apply an in vitro - in vivo extrapolation 

(IVIVE). Utilising alternative enzyme sources such as human liver microsomes (HLM), human 

hepatocytes cell lines, or recombinant proteins as the source of enzymes is an alternative approach to 

characterise the in vitro CLint [71]. The important kinetics parameters (Km and Vmax) can be calculated 

based on product formation rate over a substrate concentration range (between 1/5 Km to 3 Km). The 

CLint is then calculated using Vmax/Km under an assumption of initial rate condition [67, 72-74]. From 

here, whole liver CLint can be transformed into the expression for a mathematical model of hepatic 

clearance, using the well-stirred model as the most commonly used approach, to estimate in vivo CLH 

and EH. This approach is illustrated in Figure 9. 

 

 

Figure 9 – Approach for calculating in vivo CLH from kinetic constants determined for 

metabolite formation in vitro using the well-stirred model of hepatic clearance. [Taken from 

Miners (2002)]. 
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Although a concept of IVIVE has been widely implemented, there are several concerns regarding the 

approach. It has been observed that using HLM as the enzyme source to conduct IVIVE during the 

initial drug development tend to result in under-predicted of in vivo CLint and CLH, especially in drugs 

eliminated by CYPs or UGTs [67, 75-77]. In addition, the variability of enzyme expression profile 

between a batch of HLM is another short-coming for this method. The alternative approach, such as 

using different enzyme source or computational modelling, have been proposed [78, 79]. Of all the 

available in vitro platforms, HepaRG tends to be the most reliable candidate due to its expression profile 

and robustness between batch. Further discussion regarding HepaRG as in the succeeding section. 

1.11.1 – Enzyme kinetics 

The key feature of enzyme kinetics is the saturability of the rate-limiting step of enzyme-catalysed 

reactions. Generally, most of the enzyme-catalysed reactions follow the characteristic of first-order 

kinetics (Figure 10). First-order kinetics is described as at low substrate concentration the rate of 

product formation is directly proportionate with the substrate concentration. Nevertheless, the rate of 

product formation gradually reaches the limit, and eventually zero, following the further increase in 

substrate concentration [80]. 

 

 

Figure 10 – Dependence of rate of product formation on substrate concentration for a typical 

enzyme catalysed reaction, showing substrate concentration ranges associated with first- and 

zero-order kinetics.  
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The explanation proposed by Michaelis and Menten described that there are two steps in respect to 

enzyme-mediated reactions [81, 82]. The first reaction revolves around the binding between substrates 

and enzymes. The enzyme-substrate complex is the intermediate complex obtained from the first 

reaction under the contingency of reversible binding between the two molecules. Subsequently, 

dissociation of the intermediate complex yields the end product of the reaction and the regenerated 

enzyme. Consequently, Briggs and Haldane proposed that although the binding between enzyme and 

substrate was in a reversible manner, it is not necessary to be in equilibrium [83]. Thus, the expanded 

enzyme-mediated reactions can be illustrated by the schematic shown in Figure 11: 

 

Figure 11 – Schematic representation of an enzyme mediated reaction where k1 is the rate of ES 

complex formation, - k-1 is the rate of ES dissociation reverse to enzyme and substrate, and k2 is 

the rate of ES dissociation resulting in product (P) formation. The overall rate of reaction is 

restricted by the amount of available free enzyme and by the degradation of the ES complex.  

Following the assumption of the first-order kinetics, enzyme concentration will be limited by the given 

amount of the substrate concentration. Thus, enzyme concentration reaches the saturation threshold as 

a result of a further increase in substrate concentration. At the saturation threshold, the enzyme 

concentration represents the total concentration of enzyme present, [E0]. As such, the total rate of the 

reaction will be correlated to the substrate concentration which is equal to k2[E0]. Therefore, the 

presented condition determines the maximal initial velocity (Vmax) that can occur for a given enzyme 

concentration (Equation 1): 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏.          𝑉𝑚𝑎𝑥  =  𝑘2  × [𝐸0] 

1.11.2 – Michaelis-Menten kinetics 

The original Michaelis and Menten with a subsequent application of the steady-state assumption, an 

enzyme kinetic model was developed. This expanded model is capable of quantifying the rate of an 

enzymatic-mediated reaction [80]. The model can be mathematically described in the Equation 2, 

which is commonly referred to as the Michaelis-Menten equation: 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐.          𝑅𝑎𝑡𝑒 (𝑣)  =  
𝑉𝑚𝑎𝑥  ×  [𝑆]

𝐾𝑚 +  [𝑆]
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1.12 – Physiologically-based pharmacokinetic modelling (PBPK) 

PBPK modelling and simulation is an extension of traditional IVIVE and part of the system 

pharmacology discipline. Generally, the system pharmacology aims to create a prediction platform to 

investigate the interaction of the interested compound to the whole-body system. PBPK considers the 

molecular interaction of compound to the physiological repositories, including absorption, organ 

distribution, metabolism pathway and excretion (Figure 12). Recently, PBPK has become an emerging 

tool in drug discovery and development. The US Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) incorporated the PBPK into the guideline for drug approval and regulatory 

submission. Hence, this emphasises the significant role of PBPK in the contemporary research era.  

PBPK focuses on the population variables in equal importance as the compound variables to build the 

predictive algorithm. As such PBPK is capable for the prediction of the pharmacokinetic profile, drug-

drug interaction and drug exposure during the disease state. Moreover, PBPK can be utilised to support 

designing clinical trials, as it is capable of guiding the most optimum dosing regimen for the study.   

 

 

Figure 12 – A schematic diagram of the steps and factors affecting oral drug absorption. 

Typically, PBPK models are constructed based on the physiological property of the target species. In 

human, the virtual physiological systems are built based on the established knowledge in organ 

functions. The primary focus of the physiological part revolves around the organs responsible for drug 

disposition and metabolism, such as GI tract (absorption) and the liver (metabolism). These organs are 
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assembled into compartments and assigned a specific parameter to represent the functional 

characteristics whereby interaction to the other compartment also considered, thus creating “system 

data”. On the other hand, virtual pharmacological compounds are constructed by considering 

physicochemical property (solubility, pKa, molecular weight) and physiological interaction (protein 

binding, metabolic pathway, permeability). Data from the previous literature that relevant to the 

interested compound have a significant contribution to the model development. Importantly, the more 

data can be gathered; the better-refined compound model can be constructed. Some parameters may be 

absent from the prior literature or unable to define; further calculation/estimation is the only option to 

obtain the data. Nevertheless, the estimated data is needed to validate before applying to the actual 

modelling and simulation.  

1.12.1 – The modelling approach of PBPK to predict oral drug absorption.  

1.12.1.1 – Dispersion model 

Dispersion model rationalises the concept of the intestine as a single uniform tube with constant 

dispersion profile, stable axial dispersion and continuous rate of absorption. It is considered the first 

model to simulate the time-dependent of GI absorption. The original dispersion model disregards the 

effect of first-pass metabolism, which derive a major drawback to the model. Therefore, the original 

dispersion model tended to overestimate the absorption of drugs that undergo pre-systemic metabolism. 

Furthermore, the original model neglects the mechanism of drug absorption as it assumes the absorption 

occurs only in passive diffusion manner [84]. Thus, the lack of the actual compound interaction with 

the other processes such as efflux transporters results in the overprediction of absorption.   

Subsequently, the dispersion model was integrated as part of PK-Sim®, which is a whole-body PBPK 

software [85]. PK-Sim® addresses the major drawback of the original dispersion model by taking into 

account the pre-systemic metabolism and the interaction of drugs to the transporters. As such, PK-Sim® 

has gradually become a standard tool to predict absorption of the oral dosage form during drugs 

development. Its flexibility to adjust the drug release profiles is the most useful function over the other 

platforms. 

1.12.1.2 – Compartmental Absorption and Transit (CAT) model. 

The CAT model is the further developed version of oral single-compartment absorption model. The 

CAT model integrates the features of a compartment and dispersion model to overcome the limitation 

in the complex of absorption kinetics [86]. The main focus of the model is the intestinal flow properties. 

Yu et al simplify the multiple segments of the small intestinal tract into multiple compartments which 

the finalised model is the seven-compartment transit model [86]. The model assigns the first 

compartment as the duodenum whereas the second and third compartments are assigned as the jejunum. 
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The remaining four compartments all represent the ileum (Figure 13). All compartments have different 

volumes and flow rates, yet, they all share the same transit rate constant. 

The CAT model was firstly employed to predict the absorption of drugs with an assumption of non-

degradable and highly water-soluble. Thus, poorly water-soluble drugs or rapidly degradation are not 

well-compatible to use this absorption model. Nonetheless, the limitations were later addressed lead to 

the successful application to predict several poorly water-soluble drugs such as digoxin and griseofulvin 

[87].  

 

 

Figure 13 – A schematic diagram of the Compartmental Absorption and Transit (CAT) model. 

1.12.1.3 – Advanced Compartmental Absorption and Transit (ACAT) model. 

ACAT model is the modified version of the CAT model with the additional front end and back end to 

the base model. The additional front end is pre-systemic metabolism whereas the back end is the process 

of colon absorption. Thus, the model consists of nine compartments; stomach (front end), seven main 

compartments and colon (back end) (Figure 14). ACAT model takes into account the property of drug 

including the physicochemical characteristics (solubility, permeability), chemical stability (degraded, 

undegraded), gut wall metabolism and the effect of drug formulation on the rate of pharmacokinetics. 

The GastroPlusTM software (Simulation plus Inc., USA) is an example of the implementation of ACAT 

PBPK model. Parameters customisation in the GastroPlusTM such as GI transit time, pH, permeability 

and drug formulations can be explicitly assigned to the designate compartment allowing versatility to 

adjust the model. 
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Figure 14 – A schematic diagram of the Advanced Compartmental Absorption and Transit 

(ACAT) model. 

1.12.1.4 – Advanced Dissolution, Absorption, and Metabolism (ADAM) model. 

The ADAM model was developed based on the CAT model with the additional consideration of 

fundamental GI tract physiology (Figure 15). Thus, gastric/small intestine emptying time and the 

capacity of the small intestine are also considered in the model. Furthermore, ADAM model also takes 

into account for the heterogeneity of GI tract, gut-wall permeability, enterocytic blood flow, gut-wall 

degradation and metabolism. Drug metabolism parameters are taken into consideration in the model as 

well.  The parameters are including the hepatic CYP abundance, UGT abundance and the transporter 

profile. The ADAM model is implemented in Simcyp® software (Certara, UK). The unique function of 

Simcyp® is it incorporates a priori which consider the factor of inter-individual variability (IIV) based 

on physiological characteristics.  



26 

 

 

Figure 15 – A schematic diagram of the ADAM model. 
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1.13 – Simcyp® PBPK  

Simcyp® PBPK simulator is one of the proprietary simulators capable of modelling and simulation the 

process of pharmacokinetics including oral absorption or IV injection, distribution and elimination 

(metabolism and renal excretion). In general, the platform generates the pharmacokinetic profiles based 

on the virtual population, which can be manually specified the demographic data such as age, gender 

and race, thus creating groups of distinct characteristics cohort (Table 2). Unlike other platforms, 

Simcyp® provides the built-in function for the concomitant administration with the other compounds, 

mainly the classical enzyme inducers/inhibitors. This function allows the opportunity to investigate the 

potential metabolically-related drug interactions of the compound of interested. Additionally, the results 

of modelling and simulation from Simcyp® are calculated across populations, not only the “average” 

individual, thus enabling further interrogation to individuals who have a particular characteristic.   

Simcyp® is considered as a “bottom-up” approach in pharmacokinetic modelling. The model is built by 

combining the data of drug characteristics with the knowledge of anatomical characteristics of the body 

(including organs and tissues) (Figure 16) (Table 3).  In contrast, the “top-down” method was well-

represented by PopPK in which the pharmacokinetic model was empirically constructed based on the 

observed data from the available clinical trial data. PopPK theoretically seemed more realistic as clinical 

trial data was categorised as a high-quality. However, this approach was unable to predict drug effects, 

either therapeutic or toxicity on some inaccessible tissues such as the brain. 

 

Figure 16 – Overview of the structure Simcyp® PBPK simulator. 
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Table 2. Example of data requirement for constructing a PBPK model in Simcyp® simulator. 

Parameter Unit Note 

Drug data 

Physicochemical property 

Molecular weight g/mol - 

LogPO:W - - 

Species Base, Acid, Neutral - 

pKa - - 

Protein binding - - 

Blood/Plasma partitioning fup - 

Permeability B:P - 

Dosage form 10-6 cm/s Immediate release, control 

release, etc. 

Vmax and Km pmol/min/mg, 

µmol/L 

- 

Enzyme contribution to the 

metabolism 

- Data from In vitro reaction 

phenotyping 

Hepatic transport (Passive transport, 

P-gp) 

- - 

System data 

Gender proportion - - 

Weight kilograms - 

Ethnicity - - 

Age years - 

Body surface area (BSA) m2 - 

Trial design 

Food consumption - Fast/Fed, high-fat content 

Sampling time - - 

Dosage regimen - once daily, twice daily, etc. 

Duration of study days, weeks, months - 

P-gp: P-glycoprotein, CYP: cytochrome P450, Vmax: maximum velocity, Km: Michaelis-Menten 

constant 
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Table 3. List of input data that can be used in Simcyp® simulator. 

Category Input data 

Drug formulations 
Immediate release, control or extended release, 

intravenous injection 

Absorption 

First order kinetics, compartmental model, CAT 

model, ADAM model. 

ADAM sub-model allows an adjustment in 

gastric emptying time, intestinal transit time, 

drug-specific solubility profile, dissolution and 

permeability 

Metabolism 

The metabolism profiles were able to generate 

based on 

Human liver microsomes 

Recombinant CYP and UGT enzymes 

Human hepatocytes 

Human kidney microsomes 

Human intestinal microsomes 

Population 

The available ethnicities are including 

Caucasian, Chinese, Japanese. 

Type of virtual population groups are including 

Healthy, patients with comorbidities such as 

obese, renal impairments, hepatic impairments 

Drug-drug interactions 
Built in a set of common enzyme inducers 

(rifampicin) and inhibitors (ketoconazole) 

Trial designs 

Able to specify the route of administration, 

single and multiple dosing regimen, number or 

participant per virtual trial 

Type of simulations Full-PBPK, partial-PBPK 

1.13.1 – Applications of Simcyp® PBPK 

In recent years, PBPK modelling and simulation have become an essential supporting data especially 

during the stage of drug discovery and development. Generally, the newly developed compound data 

tend to be limited and mostly derived from in vitro study and animal study. Simcyp® provides an 

opportunity to expand the available data to predict the following outcome due to particular clinical 

settings such as co-administered the investigated drug with enzyme inducers.  
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Over the past few years, Simcyp® has gained its recognition as a tool to provide a piece of supporting 

information in order to serve the requirement for regulatory review agencies. The major leading 

agencies that acknowledge the significant role of Simcyp® are including the US FDA and the EMA. 

The other application of Simcyp® PBPK such as: 

1.13.1.1 – Extrapolation and prediction of drug exposure in special populations.  

Simcyp® is regularly employed to extrapolate the pharmacokinetic profile from the virtual healthy 

volunteers to a particular case of patients. This includes patients who highly likely have minimal 

available data such as paediatric, renal/hepatic impairments patients. The success story was observed 

in the model-informed dosing regimen of imatinib in paediatrics using the extrapolation from virtual 

adult populations [88].  

1.13.1.2 – Study of drug-drug interaction.  

Simcyp® plays a significant role in predicting the potential of drug-drug interactions (DDI). In recent 

years, it has seen an ongoing improvement of the model-prediction performance for several compounds. 

The model refinement has continuously performed in order to increase the simulation reliability to the 

greatest extent.  An excellent example to demonstrate the utility of PBPK in this aspect was shown in 

the study of PBPK modelling of atorvastatin. The study investigated the interaction between atorvastatin 

and the enzyme inhibitor to determine the possibility of serious adverse events (AEs) [89]. In addition, 

this study had further incorporated the knowledge of liver uptake via organic anion-transporting 

polypeptide (OATP) 1B1 and 1B3 into the model as an extension to the similar previous study [90]. 

The result was the refined model of atorvastatin capable of investigating the DDI lead to 

rhabdomyolysis when co-administered with enzyme inhibitor of CYP3A4 (rifampicin, clarithromycin 

and itraconazole) and OATP (rifampicin and cyclosporine).  

1.13.1.3 – Guiding for adjusting dosage and regimen in renal impairment patients.  

Renal impairment such as chronic kidney disease (CKD) or other conditions that observed a 

compromised renal function was recognised as a state of awareness for drug administration. Renal 

impairment patients have a reduction in glomerular filtration and tubular secretion depends on the level 

of severity. This leads to a significant decrease in clearance for drugs that mainly eliminated via renal. 

Thus, having a tool to predict drug clearance in the different magnitude of renal functions would support 

the decision-making for dose adjustment in renal impairment patients. Such epitomes were observed in 

the case study of ceftazidime and digoxin where PBPK was chosen to test the prediction capability in a 

particular population. Ceftazidime is one of the third-generation cephalosporin serves as a broad 

spectrum β-lactamase-resistant agent. It was reported to be eliminated mainly via glomerular filtration 

without any interaction with transporters. Thus, the mentioned characteristics make ceftazidime a 

suitable compound to assess the competency of PBPK model to predict the pharmacokinetics in renal 
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impairment patients. The results from Li et al. observed a comparable pharmacokinetic profile between 

the data generated from Simcyp® simulator and the prior clinical study data [91]. Although the Simcyp® 

model could not precisely apply in the high severity of renal impairments, the prediction performance 

was still under 1.5-fold margin of error. Another example of the application of Simcyp® PBPK in renal 

impairments was the extensive development of the kidney PBPK model for digoxin. Digoxin, a cardiac 

glycoside, has long been recognised for its narrow therapeutic range in treating congestive heart failure. 

The effective therapeutic window between 0.5 – 0.8 ng/ml were associated with the desired treatment 

outcome. However, the greater the plasma digoxin over 1.2 ng/ml, the higher possibility to observe 

adverse events and mortality [92]. Simcyp® PBPK of the kidney model for the regional difference in 

tubular surface area was earlier established [93] and optimised later on for digoxin by incorporating 

OATP4C1 and P-gp [94]. Hence, the optimised digoxin Simcyp® PBPK model was successfully 

developed and able to predict the PK profile of digoxin in special populations such as elderly whereas 

a slight overestimation trend was observed in virtual renal impairment patients [94].   

1.13.1.4 – In vitro/in vivo extrapolation.  

One of the base function yet very important of Simcyp® PBPK simulator is its capability to predict in 

vivo drug clearance using in vitro metabolic data or so-called in vitro/in vivo extrapolation (IVIVE). 

Simcyp® simulator has the interface to input data from in vitro studies such as kinetics data from human 

liver microsome or even recombinant enzymes both CYP and UGT by default. Thus, this premise allows 

researchers to conduct a preliminary study using PBPK simulation to help to identify the variability in 

the virtual population before conducting of clinical trials. This aspect has been proved and developed 

so far, as shown in prior studies [95-97]. In practical, the extrapolation is performed by accounting the 

protein content in HLM or related microsomal proteins combined with the well-stirred liver model to 

calculate hepatic blood clearance. Fully applicable of IVIVE was observed as in the case of 

rosiglitazone. Rosiglitazone, an insulin sensitiser for treating diabetes mellitus, is primarily metabolised 

in the liver by CYP2C8 enzyme whereas CYP2C9 and 1A2 are the secondary. Previous literature 

reported variability in rosiglitazone exposure due to genetic polymorphism of CYP2C8, especially 

CYP2C8*3. Importantly, the metabolic activity of CYP2C8*3 to rosiglitazone was reported to be higher 

than the wild type. Thus, the following study conducted by Rowland K et al. employed Simcyp® 

modelling to further investigate the impact of CYP2C8 genotype on the degree of DDI. The study 

utilised the capability of trimethoprim as CYP2C8 inhibitor to demonstrate the magnitude of DDI with 

rosiglitazone between different genotypes. The results found an equivalent concentration-time profile 

of rosiglitazone and trimethoprim generated from Simcyp® with the in vivo data [98]. Thus, it 

emphasises the other significant role of Simcyp® to promote the precision dosing among patient with 

different genotypes. 
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1.14 – Sorafenib 

Sorafenib is an oral TKI which inhibit cancer-cell proliferation, angiogenesis and accelerate the 

apoptosis rate in vitro [99, 100]. Sorafenib has been widely used in the treatment of several types of 

cancers as US FDA approved sorafenib for advanced renal cell carcinoma (RCC) and advanced 

Hepatocellular carcinoma (HCC). Similarly, the European Medicines Agency also approved sorafenib 

for the diagnosis, as mentioned above.    

1.14.1 – Physicochemical properties 

Sorafenib is categorised as a very poor soluble drug. The solubility of sorafenib is 3.59x10-2 mg/L at 

25°C (US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of 

Mar 6, 2014: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm. The low solubility of sorafenib directly 

affects the absorption in the gastrointestinal tract resulting in the low value of bioavailability (38-49 %).  

  

Figure 17 – Chemical structure of sorafenib tosylate. 

Sorafenib tosylate (Figure 17) showed a better solubility at very high acidic pH (0.034 mg/100 mL at 

pH 1) whereas increased pH results in lower solubility (0.013 mg/100 ml at pH 4.5). As pH is one of 

the factors of sorafenib solubility, an acid-suppressing agent such as PPIs and histamine-2 receptor 

antagonist could theoretically interfere the solubility lead to reduced bioavailability of sorafenib. 

1.14.2 – Pharmacology 

1.14.2.1 – Mechanism of action 

Sorafenib acts as a potent inhibitor of VEGFR subtype 1,2 and 3, PDGFR-beta (PDGFRβ) and 

fibroblast growth factor receptor 1 (FGFR1). Furthermore, in vitro studies of sorafenib observed the 

inhibitory activity to several Raf-kinase isoforms involved in the process of angiogenesis and tumour 

growth (Figure 18) [101, 102]. 

 

 

http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm
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This image has been removed due to copyright restriction. Available online from 

[https://mct.aacrjournals.org/content/7/10/3129.long/ Scott M. Wilhelm, Lila Adnane, Philippa Newell, 

Augusto Villanueva, Josep M. Llovet and Mark Lynch. Mol Cancer Ther, October 1 2008 (7) (10) 3129-

3140; DOI: 10.1158/1535-7163.MCT-08-0013. 

 

Figure 18 – Mechanism of action of sorafenib. [Taken from Willhelm et al. (2008)]. 

1.14.2.2 – Absorption 

Sorafenib reaches peak plasma concentration approximately within 3 hours after oral administration. 

The second absorption was observed at 8-12 hours and 24 hours after the first administration suggesting 

an enterohepatic recirculation characteristic. High-fat diet (50 % fat; 900 calories) affect the absorption 

of sorafenib by reducing 29 % of the bioavailability compared to fasted and moderate-fat diet (30% fat; 

700 calories) [103]. Thus, sorafenib is recommended to administer without food.     

Dose escalation of sorafenib observed a fluctuation at the dose of 400 mg twice daily. The twice-daily 

regimen of 600 and 800 mg observed a slightly greater AUC than the 400 mg dose but not at the 

significant level. Sorafenib reaches the steady-state at day 7 after the first dosing. Preclinical study of 

sorafenib tosylate absorption was conducted in multiple animal species such as, female beagle dogs and 

male Wistar rats. The absorption of sorafenib following either oral or intravenous observed a higher 

absorption ratio in rodents (78.6 % in female CD-1 mice and 79.2 % in male Wistar rats) compared to 

in female beagle dogs (67.6 %).  

1.14.2.3 – Distribution  

Sorafenib exhibits a high protein binding to human plasma proteins (99.5 %). Albumin is the major 

binding proteins whereas alpha-globulins and low-density lipoprotein (LDL) are the subsequence.  The 

ratio of sorafenib distribution between red blood cell and plasma is reported as 1.33. 

Sorafenib is a high lipophilicity (LogP [partition octanol-water] = 3.8). Besides, sorafenib also has a 

high permeability based on in vitro model using Caco-2 cells. Transporting ratio of sorafenib from 

basolateral to apical side and from apical to the basolateral side of sorafenib in Caco-2 cells were 4.7 

(0.1 µM sorafenib) and 2.5 (1 µM sorafenib) respectively. pH directly affects protein binding of 

sorafenib as the reported fraction unbound at pH 6.78 was 1.8 % then decreased to 0.165 % at pH 7.99. 

1.14.2.4 – Metabolism 

Biotransformation of sorafenib mainly occurs in the liver using CYP3A4 enzyme follow by 

glucuronidation mediated by UGT1A9 enzyme (Table 4). Sorafenib parent compound was found 

mostly in plasma which accounts for 73 % of the identified metabolites in human at steady state. The 
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primary metabolite of sorafenib, sorafenib N-oxide (metabolite M2) obtains from N-oxidation at 

pyridine ring of parent compound. Hydroxylation of the N-methyl group of parent compound results in 

metabolite M3. Combining of metabolites M2 and M3 results in the formation of metabolite M1[104].  

Table 4. Metabolites of sorafenib 

Substance Reaction to obtain the metabolite Plasma Faeces Urine 

Sorafenib Parent compound 73 % 50.7 % Not detected 

Metabolite M1 Metabolite M2 + M3 Not detected Not detected Not detected 

Metabolite M2 N-oxidation 16.7 % Not detected Not detected 

Metabolite M3 N-methyl hydroxylation Trace amount 0.4 % Not detected 

Metabolite M4 Demethylation 1 % 1.2 % Not detected 

Metabolite M5 Oxidative metabolite Not detected Not detected Not detected 

Metabolite M6 Carboxylic acid Trace amount 19.1 % Not detected 

Metabolite M7 Glucoronide of sorafenib 0.5 % Not detected Not detected 

Metabolite M8 Glucoronide of metabolite M2 Not detected Not detected Not detected 

 

Enterohepatic recirculation of sorafenib was observed and described by two main mechanisms; 1) The 

metabolite M7 is glucuronidated follow by biliary excretion of the by-product to gut. In the gut, the 

glucuronic acid is cleaved to yield sorafenib then undergo reabsorption. 2) Oxidation of sorafenib 

results in metabolite M2 which undergo biliary excretion into the gut. Colonic bacteria reduce 

metabolite M2 to sorafenib then undergo reabsorption. The other metabolites and the biotransformation 

cascade as shown in Figure 19. 

 

Figure 19 – A schematic of sorafenib metabolism. 
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1.14.2.5 – Indication 

The US FDA approves sorafenib as the first-line treatment option for advanced/unresectable HCC with 

characteristics of Barcelona Clinic Liver Cancer (BCLC) stage B and a well-preserved liver function 

(Eastern Cooperative Oncology Group performance (ECOG PS) grade 0 – 2. Sorafenib is also approved 

to be used in renal cell carcinoma. The recommended dose of sorafenib is 800 mg (400 mg of a tablet 

twice daily). The AEs associated with sorafenib exposure tend to occur within the first cycle of 

treatment [105, 106]. Dose adjustment is allowed as recommended by the product manual. Dose 

adjustments are including either reducing dose of the daily intake or temporary withdraw sorafenib for 

a period of time [107].  

1.14.2.6 – Factor affecting sorafenib exposure 

Due to sorafenib available in oral dosage form, several cautions need to be exercised when using in 

patients. Sorafenib is reported to be negatively affected by a high-fat diet. As mentioned earlier, 

sorafenib is highly advised to be administered separately with a particular diet to avoid compromised 

drug absorption. Moreover, the absorption of sorafenib was reported to be influenced by the acidity 

environment as higher pH reduces the solubility of sorafenib; thus, lowering the absorption. Moreover, 

the solubility of sorafenib was to be affected by the intragastric pH. As a high acidic environment favour 

the solubility, whereas more basic environment lowers the solubility. Theoretically, drugs that could 

alter intragastric pH to be less acidic (pH > 5), such as PPIs, are highly likely to compromise sorafenib 

exposure. 

1.15 – Extracellular vesicles (EVs) as novel biomarkers in precision medicine. 

The research field of EVs, particularly small EVs – exosomes, has become one of a centre of attention 

which seen a dramatic increase in research output within the last decade. The earlier study of exosomes 

focused on the molecular consequence, such as its physiological activity role. [108]. Exosomes was 

thought to act as the carrier of cellular by-product for disposition purpose without any other significant 

functions. However, evidence has proved that exosomes are more than a garbage bag to dispose of 

cellular waste material. Instead, it contains intact molecular constituents encapsulated within well-

structured lipid bilayer similar to the cell membrane [109, 110]. The first report of the availability of 

genomic materials encapsulated inside EVs by Valadi et al. was in 2007, since then the field of study 

has expanded to a greater extent. 

As the field has progressed, the definition of each EV has been more refined to precisely describe the 

particular EV investigated in the study. Generally, EVs are small (50 to 1,000 nm) membranous vesicles 

that are secreted by all cells in the body and are found in various biological fluids (e.g. blood, urine, 

saliva, lymph, cerebrospinal fluid, breast milk). There are many different types of EVs, including 

exosomes, ectosomes, apoptotic bodies, microvesicles (MV) as shown in Figure 20 [111-113]. Each 
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EV has distinct characteristics regarding the biogenesis, secretion, morphology, abundance and 

composition of cargos. Exosomes is one of the smallest subpopulations of EV. They are 50-150 nm in 

diameter, contain proteins, small molecules and various forms of nucleic acid (miRNA, mRNA, tRNA 

and DNA) as shown in Figure 21. Current literature indicates that unlike many types of EVs, exosomes 

are explicitly packaged and enriched for particular cargo associated with their biological function [114, 

115]. With that being said, proteomic and genomic analysis of exosomes demonstrated a non-specific 

element to the packaging of exosome cargo, which appears to more broadly represent the cell/tissue of 

origin [116, 117]. Hence, the finding attracted researches from a distinct field of study to investigate in 

small EVs as it showed the feasibility in using EVs as a novel tool for their field of expertise such as 

drug delivery system, disease biomarker). In this thesis, the term small EVs is used interchangeably 

with exosomes as the current isolation methods are unable to purely captured a particular EV types. 

However, this thesis focused only the small EV population, thus; the subsequent experimental chapter 

(Chapter 5) were designed and optimised to only investigated the small EVs.  

 

Figure 20 – small EVs serve as a mediator of cell to cell communication. The figure shows the 

fate of small EVs from secretion by hosts cell and uptake by recipient cells via two mechanisms 

either (a) internalisation by plasma membrane or (b) taken directly by recipient cells. Figure 

created with BioRender.com. 
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Figure 21 – A schematic of the overall composition of small EVs, exosomes. The figure shows 

three main components including proteins (surface and internal), nucleic acids and lipid 

components. Figure created with BioRender.com. 

1.15.1 – Biogenesis of EVs 

As roughly narrated about the cellular cascade of small EVs secretion, this section will focus more on 

each step of the biogenesis pathway toward the secretion of MV and exosomes type. Exosomes 

biogenesis may roughly divide into two main pathways, including the endosomal sorting complexes 

required for transport (ESCRT) -dependent and ESCRT-independent.  
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Figure 22 – Schematic of biogenesis pathway of small EVs. The figure showed two main 

biogenesis mechanisms including ESCRT-dependent and ESCRT-independent. [Taken form 

Greening and Simpson (2018)]  

The ESCRT-dependent pathway begins during the early development of endosome before shifting to 

the late endosome. In this state, the intraluminal vesicles (ILV) start to accumulate and pack inside the 

multivesicular bodies (MVBs), ready for the ESCRT to facilitate the sorting process. Generally, ESCRT 

has four different main subtypes, including ESCRT-0, I, II, and III, which are all involved in protein 

sorting process (Figure 22). Several pieces of evidence showed that ESCRT complexes have a crucial 

role in exosomes secretion either promotion or demotion, as shown in Figure 23. Evidence also 

supported that interfering ESCRT-0 proteins, tumour susceptibility gene protein 101 (Tsg101), STAM 

and HRS reduce the secretion of exosomes in Hela cells. In contrast, silencing four of the ESCRT-III 

including CHMP4C, VPS4B, VTA1 and ALIX led to the increase in exosomes secretion instead [118]. 

ALIX was thought to facilitate the process of exosomes secretion; however, the above-mentioned 

results contradict the prior finding [119]. According to the EV database, ALIX and syntenin shared the 

most frequently identified markers in exosomes (ExoCarta). ALIX, syntenin and syndecan were found 

co-accumulated in EV isolated from the human breast cancer cell lines, MCF-7. Further investigation 

also found that the increased level of syntenin was associated with a proportionated increase in ALIX, 

syndecan and the other exosomal markers [119]. Thus, it is still unclear for the relationship between 

ALIX and exosomes secretion as evidence showed controversial findings. Notwithstanding, it could 
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make a logical assumption that different cell types require different cargo sorting complex leads to 

slightly diverse in cellular composition [118, 119].  

 

This image has been removed due to copyright restriction. Available online from 

[https://www.nature.com/articles/nrm.2017.125/ van Niel, G., D'Angelo, G. & Raposo, G. Shedding 

light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213–228 (2018). 

https://doi.org/10.1038/nrm.2017.125. 

 

Figure 23 – In-depth details of biogenesis cascade of small EVs. The figure depicted each sorting 

complex that involve to each other in order to form and secrete small EVs [Taken from van Niel 

et al. (2018)]. 

The other biogenesis mechanism of small EVs is ESCRT-independent pathway. Ceramide is the main 

component for this biogenesis pathway as reported by Trajkovic et al. [120]. The study reported that 

small EVs contain high amounts of sphingomyelin and cholesterol while containing less 

phosphatidylcholine compared to the total cellular membrane. Sphingomyelin could be derived from 

ceramide by hydrolysis of phosphocholine moiety using the enzyme sphingomyelinase (SMase). 

Although the biogenesis of small EVs is roughly divided into two main pathways, there is still unclear 

whether any molecular hybridisation between the pathways associate to the conglomeration of small 

EVs or not. [121]. As mentioned above, small EVs transcribed from different cells of origin possibly 

undergo a particular sorting mechanism suitable for each cell types. Thus, it is highly likely that there 

is a reciprocal mechanism promoting small EVs secretion in different scenarios. Further investigation 

to evaluate this hypothesis still needs to be conducted for more understanding of these phenomena [110, 

122, 123].  

1.15.2 – Proteins in small EVs 

Proteins derived from small EVs (particularly exosomal proteins) have been studied extensively. The 

level of focus provided to exosomal proteins is comparable to the level of focus provided to exosomal 

RNA. The advance in proteomics analysis reveals the two common proteins category found in most 

small EVs. The first category is the group of essential vesicular component, including protein found in 

the plasma membrane, endosomal proteins and proteins needed for cell adhesions. The example of 

proteins commonly found in small EVs are listed in Table 5.  
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Table 5. Common identified protein in small EVs. 

Protein category Example 

Cell adhesion Lactadherin, Integrins, Thromospondin-1, Claudin-1 

Cell structure and motility 

(including cytoskeleton) 
Actin, Myosin, Tubulins, Vimentin, Cofilin-1, Radixin, Erzin 

Tetraspanins CD9, CD63, CD81, CD82, CD53 

Heat shock proteins (HSP) HSP90, HSP70, HSP27, HSP60 

Membrane transport PG regulatory-like protein, CD13 

Trafficking and membrane 

fusion 

Annexins, Clathrin heavy chian-1, Dynamin, Syntaxin-3, Synaptosomal-

associated protein 

Multivesicular body 

biogenesis 
Alix, TSG101, Rab proteins, Vacuolar sorting protein 

Metabolic enzymes 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Pyruvate kinase 

isozymes M1/M2, Fatty acid synthase, ATP citrate lyase, ATPase, Aspartate 

aminotransferase, Aldehyde reductase 

Antigen presentation Human leukocyte antigen (HLA) class I and II/peptide complexes 

Transcription and protein 

synthesis 
Histones, Ribosomal proteins, Ubiquitin 

Iron transport Transferrin receptor 

Signaling proteins 
Syntenin-1, Guanine nucleotide-binding protein (G-proteins), GTPase HRas 

(HRAS), Ras-related protein Rap-1b/2b 

 

As mentioned earlier, the accessory proteins class that required for forming internal membrane budding 

during the sorting of MVBs is a group of ESCRT proteins. This group of proteins facilitates the ILV 

formation and later exosomes. Thus, ESCRT proteins such as ALIX or Tsg101 can be used as a marker 

to verify the classification of EV (Table 6). 

Apart from the general essential proteins found in small EVs, the other set of proteins are directly related 

to the cell of origin. Each cell has its own unique protein expression phenotype which able to transport 

to the EVs. For example, small EVs derived from cerebrospinal fluid were found abundant in amyloid-

beta protein, a by-product of amyloid protein precursor catabolism. The amyloid-beta protein was found 

to be one of the markers of Alzheimer’s disease (AD) as reported by many pieces of evidence [124-

126]. Evidence reported that accumulation of amyloid-beta in neuronal cells was the primary factor 

associated with synaptic dysfunction. Furthermore, the high accumulation density of amyloid-beta 

proteins leads to the formation of plaques– amyloid plaques, one of the pathological hallmarks of AD 

[127]. The earlier study from Takahashi et al. observed the high level of amyloid-beta proteins localised 

in MVBs in the brain of AD patients compared to non-AD patients [128]. Importantly, it was later 

confirmed that the amyloid-beta oligomers were the main adverse factor inducing neurotoxicity and 
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disease propagation. Sinha et al. found that small EVs isolated from AD brains contain a large number 

of amyloid-beta oligomers compared to non-AD. Evidence showed that small EVs derived from AD 

brains could transfer the pathological elements to the naive cell suggesting its potential role as a 

mediator in cell-to-cell communication [129]. The other disease propagation phenomenon via small 

EVs was observed in HBV transmission to the naive hepatocytes and energy transportation between 

cardiomyocytes during glucose deprivation state [130, 131]. 

Since small EVs contain a specific cargo depends on the cellular of origin; thus hypothetically, it can 

be used to reciprocate the status of its radical as well. Currently, there is still an inadequate 

understanding of EVs, including exosomes, and DME. As DMEs are proteins, it can be assumed that 

small EVs-derived from the liver where the DME is highly expressed should also carry the DME 

proteins in the cargo. The advance in proteomics analysis revealed DME and cofactors peptides in 

exosomes isolated from rat hepatocytes suggesting a strong support to the hypothesis [117]. Hence, 

considering that hepatic-derived small EVs represent a miniature illustration of the actual enzymatic 

status in the liver, proving this concordance would lead to an establishment of using small EVs as a 

novel non-invasive biomarker to determine the actual DME status in hepatocytes. 

Table 6. List of identified protein using LC-MS/MS from rat hepatocyte-derived small EVs. 

Adapt from Conde-Vancells et al. 2008.  

Protein category Name 

Xenobiotics and endogenous compounds 

metabolism 

Cytochrome P450: 2A1, 2B3, 2C11, 2D1 2D3, 2D10, 

2D18, 2D26 

UDP-glucuronosyltransferases: 2B2, 2B3 and 2B5 

NADPH-cytochrome P450 reductase 

Alcohol dehydrogenase 1 and Epoxide hydrolase 1 

Cytochrome b5 

Transmembrane 

CD63, CD81 and CD82 

Membrane-associated progesterone receptor 

Asialoglycoprotein receptor 

Cells adhesion 

Lactadherin 

Clathrin heavy chain 

Alix 

Annexins: A2, A4, A5, A6 

Signalling proteins 
Guanine nucleotide-binding protein sub beta 2-like 1 

Guanine nucleotide-binding G(s) α, and G(i) -α2 

Protein synthesis and post-transductional 
40S ribosomal protein SA, S3, S4(X), S6 

60S ribosomal protein L6 and L7 
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Lipid Metabolism 

Acyl-coenzyme A oxidase 2, peroxisomal 

Fatty aldehyde dehydrogenase 

Fatty acid synthase and ATP-citrate synthase 

Carbohydrate and Amino-acid 

Metabolism 

Alpha-enolase 

L-lactate dehydrogenase A chain 

Pyruvate carboxylase 

Fructose-1,6-bisphosphatase 1, aldolase A 

Miscellaneous 

Cytochrome b5 

Ferritin heavy chain 

Ferritin light chain 1 

ATP synthase subunits α and β 

1.15.3 – RNA in small EVs. 

Small EVs became a centre of attention as a potential biomarker for disease and diagnostic due to the 

ease of detecting mRNAs and miRNAs in exosomes by Valadi et al [132]. It leads to the subsequent 

interesting assumption that small EVs may play a crucial part in cell-to-cell communication as it can 

remotely transfer genomic information to the other cells. Exosomes have the feature of lipid bilayer 

membrane which capable of protecting the enclosed material from any digestive enzymes. This 

assertion was testified by the use of a couple of detergents including Triton-X100 and RNase A enzyme. 

RNase A enzyme is capable of RNA digestion, whereas Triton-X100 is capable of disrupting the lipid 

bilayer integrity. The isolated small EVs incubated with only RNase A enzymes showed an amplifiable 

of the polymerase chain reactions within the margin of error compared to non-treated small EVs. 

However, when firstly incubated small EVs with Triton-X100 follow by RNase A enzyme, the 

polymerase chain reaction (PCR) results were outside the margin of error [133].  

Similar to the study of exosomal proteins, exosomal RNA is the other approaches that has significantly 

been studied during the last decade. Several cutting-edge technologies such as Droplet Digital PCR 

(ddPCR), real-time quantitative PCR (RT-PCR) and Next generation sequencing (NGS) facilitate the 

identifying of the genetic material shuttled by small EVs [134]. Moreover, the study about exosomal 

RNA was reported to span almost the entire biofluids including urine [135], cerebrospinal fluids [136], 

breast milk [137], semen [138] and cell culture supernatant [132].  

To sum up, both mRNA, miRNA and other related trace element which potentially play a role in cell-

to-cell signalling/modulation can be found in small EVs [132, 139-141] which in turn support the 

significant role of small EVs as a novel method of cell signalling mechanism. By applying this 

knowledge to any other type of liquid biopsy tracking method, detecting of rare disease and/or alteration 

of homeostasis is unquestionably possible. 
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1.15.4 – Perspective in small EVs, exosomes, as a novel biomarker in precision 

medicine: current challenge. 

One of the main challenges in EV research field is the purification of EV. During the last decade, many 

researchers in EV field have come to realise that there is no such a way to solely isolated a particular 

population of EV from the source of origin. The currently available approaches tend to utilise the 

physicochemical properties of EV as a mechanism of isolation. Such an example is the isolation of EV 

using ultracentrifugation. Ultracentrifugation (UC) is the method of choice for many research group as 

it has less complexity both in the fundamental and the required equipment. The advantage of UC is the 

capability of scaling which suitable for working with a large volume of samples such as cell culture 

conditioned media. However, transition electron microscopy revealed that many EVs isolated from UC 

showed a substantial loss of integrity. The membranous collapse or fusing was often observed in EV 

isolated by UC [142]. The method itself requires multiple incremental steps of centrifugation both 

intermediate and the extended amount of time; thus, it is nearly impossible to apply this isolation method 

to a standard clinical diagnostic setting. Using kit isolations is the other option that considered to be 

more pragmatic. This option comes with many pros such as fewer isolation steps, highly reproducible, 

require less instrument needed to perform the isolation, and most of them are portable. One of the 

drawbacks in using kit isolation is the higher cost per sample. Although UC may give a low recovery 

rate and post some risks to the vesicles integrity, the cost per sample isolation is at least 10-times lower 

than any kit isolations. Therefore, choosing the optimum performance of isolation with the most cost-

effectiveness is an essential element in EVs researches, especially if aiming to integrate into clinical 

translation. 

On the other hand, if one intends to maximise the isolation purity to the greatest extent, the most 

convincing technology would befall into employing the immunocaptured-based isolation. The method 

would provide more insight into organ-specific EVs as immunocapture could apply the organ-specific 

marker to isolate a particular EVs population from biofluids specifically. On the other hand, the cost 

per isolation for this approach tend to exceed other proprietary kit isolation due to its versatility in 

modification, anyhow further development and optimisation still required. Thus, using conditioned 

media from mammalian cells should be the current method of choice to investigate the nature of the 

organ-specific EVs. The knowledge developed from the cell-based EVs would indeed become a ground 

understanding for the later in vivo study of organ-specific EVs.  

Apart from the downside regarding the challenging in EV isolation, its inherent properties have 

demonstrated their potential utility in various research fields. The majority of researchers aim to use 

EVs for a pre-emptive action to determine any abnormality occurring in the body. Gene expression 

assay and proteomics profiling have been extensively used to analyse its molecular cargo as they are 

the main approaches to elucidate the roles of EVs from a different source of origin. As EVs are generally 



44 

 

available in a very tiny amount, sacrificing any proportion of EVs sample has to be wisely spent. Thus, 

the better the sensitivity of the detection method, the better possibility to analyse the same sample in 

many paradigms. The advanced in proteomics also provide the workability of combining EVs in clinical 

translation as EVs could serve as a non-invasive source of biomarkers as an extension from a standard 

liquid biopsy [143, 144]. Hence, this has placed the position of EVs in high regard as a worthy 

biomarker to investigate its possible role in a modern precision dosing. 

 1.16 – Research aims 

The current challenge of precision medicine and precision dosing is translational from bench to bedside. 

There are limitations in each precision dosing approach, such as the analysis of clinical trial data and 

PBPK modelling need a decent amount of data as a base requirement of the entire process. This thesis 

aimed to demonstrate a broad view of the array of the current methods in precision medicine, including 

PBPK modelling, clinical epidemiology and biomarkers discovery which are the three major elements 

in precision medicine. Herein, sorafenib was used as the model drug in this thesis to implement the 

aforementioned precision dosing approaches. Sorafenib is the essential element to treat advanced HCC 

patients, although a degree of heterogeneity in drug exposure was frequently reported. Investigating 

into the potential source of variability and revalidating the factor affecting drug exposure would lead to 

patients’ greatest benefit. Moreover, this thesis sought to develop a novel approach in precision dosing 

using circulatory biomarkers – EVs to track the variability in DMEs. Ultimately, this approach will 

enable the biopsy-like information to be captured, allowing the changes in enzymatic status to be timely 

monitored. Thus, this would lead to better tailoring the treatment strategy to each patient; thereby, the 

benefits of drugs therapy are optimised.   

The hypothesis underpinning this thesis is that precision dosing strategies may provide complementary 

or unique insights to optimise the dosing of sorafenib. In order to address this hypothesis, the following 

specific aims were evaluated: 

• Aim 1.  

Evaluate the effect of early AEs resulting in sorafenib dose adjustments on survival outcomes of 

advanced HCC patients using individual patient level data from randomised clinical trials. 

• Aim 2.  

Evaluate the effect of PPIs on the survival outcomes in advanced HCC patients treated with sorafenib 

using individual patient level data from randomised clinical trials. 

• Aim 3 

Part A. Develop and validate a whole body PBPK model for sorafenib and apply this model to identify 

the physiological and molecular factors affecting variability in sorafenib exposure.  
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Part B. Utilise the model developed in Aim 3A to evaluate the performance of (i) fixed sorafenib dosing, 

(ii) concentration guided sorafenib dosing based on therapeutic drug monitoring alone and (iii) 

concentration guided sorafenib dosing based on therapeutic drug monitoring with model-informed 

initial dose selection (MIDS), with respect to achieving a therapeutic sorafenib plasma concentration. 

• Aim 4 

Part A. Establish the functionality of plasma EV derived biomarker to predict the exposure of CYP3A4 

substrates such as sorafenib. 

Part B. Develop am in vitro model based on the HepaRG cell line to study DMEs in hepatocyte-derived 

EVs. 
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CHAPTER 2: EFFECT OF EARLY ADVERSE EVENTS RESULTING 

IN SORAFENIB DOSE ADJUSTMENTS ON SURVIVAL OUTCOMES 

OF ADVANCED HEPATOCELLULAR CARCINOMA PATIENTS. 

2.1 – Function of Chapter 

This first results chapter establishes the potential importance of precision medicine in terms of 

maximising the efficacy and minimising toxicity within the context of anti-cancer medicines. In this 

chapter, the impact of the reduction in dose intensity, through dose reduction, interruption or 

discontinuation, on survival outcomes was evaluated. Historically, for systemic cytotoxic anti-cancer 

drugs any reduction in dose intensity has been associated poorer treatment outcomes and inferior 

survival. As such, reduction in dose intensity for newer anti-cancer medicines is also viewed negatively 

despite the marked differences in the pharmacodynamic principles underpinning the use of these drug 

classes. In this first chapter of the thesis, the relationship between reduction in dose intensity and 

survival is evaluated. This thesis chapter has been reviewed and published in full as:  

Ruanglertboon, W., Sorich, M.J., Rowland, A. et al. Effect of early adverse events resulting in sorafenib 

dose adjustments on survival outcomes of advanced hepatocellular carcinoma patients. Int J Clin Oncol 

25, 1672–1677 (2020).  

The chapter has been reproduced for this thesis with kind permission from International journal of 

clinical oncology (License ID 1141056-1) in Appendix 6. Formatting and minor changes in wording 

have been made to conform to the remainder of this thesis. 
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2.2 – Introduction 

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death [145]. 

Sorafenib, a tyrosine kinase inhibitor (TKI), is the recommended first line treatment option for 

advanced/metastatic HCC with demonstrated improvements in overall survival (OS) and progression-

free survival (PFS) compared to previous options [146, 147]. Nevertheless, there is still heterogeneity 

in survival outcomes and adverse outcomes between patients who receive sorafenib therapy [146, 148].  

Sorafenib is initiated at a dose of 400 mg twice daily for the treatment of advanced HCC [149]. Within 

clinical trials approximately 40 % of patients treated with sorafenib require a dose interruption and 30 

% require a dose reduction due to adverse events (AEs). Studies indicate that AEs most commonly 

occur within the first month of sorafenib therapy, with frequent AEs including hand-foot syndrome and 

diarrhoea [107, 146, 150, 151]. Studies have demonstrated that diarrhoea and hand-foot syndrome early 

after sorafenib initiation were associated with improved survival outcomes [152, 153]. However, studies 

have not investigated the associations between dose adjustments due to sorafenib induced AEs and 

survival outcomes. The primary aim of the study was to evaluate the impact of early AEs requiring 

sorafenib dose interruptions or dose reductions on survival outcomes in patients with advanced HCC. 

An exploratory analysis of the association between pre-treatment patient characteristic and early 

sorafenib dose adjustments induced by AEs was conducted. 

2.3 – Methods 

2.3.1 – Study Design and Patients 

The study was a secondary analysis of the sorafenib arm of phase III clinical trial NCT00699374 which 

included participants with locally advanced or metastatic HCC [154]. Participants were initiated on 

sorafenib at 400 mg twice daily on 4-week cycles. Dose reductions and treatment interruptions were 

permitted in response to AEs according to the registered product insert [154]. When necessary, doses 

were reduced to 400 mg once daily, and then 400 mg dose every other day.  

Individual participant data (IPD) was accesses in this study from www.projectdatasphere.org. 

Secondary analysis of anonymized IPD was deemed negligible risk research by the Southern Adelaide 

Local Health Network, Office for Research and Ethics and was exempt from review. 

2.3.2 – Predictors and outcome data 

The primary outcome was OS, with PFS assessed as a secondary. PFS was evaluated using according 

to the Response Evaluation Criteria in Solid Tumours (RECIST) version 1.0 [155]. 
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AEs were defined by grade according to the Common Terminology Criteria for Adverse Events version 

3.0 (CTCAE) [149]. AEs requiring sorafenib dose adjustments were categorised as ‘dose reduction’, 

‘dose interruption’ and ‘discontinuation’. AE within the first 28 days of sorafenib therapy leading to 

dose adjustment were the primary focus of this analysis. 

Supplementary analyses were undertaken for hand-foot syndrome AEs occurring in the first 28 days of 

sorafenib therapy and relative dose intensity (actual divided by planned cumulative dose [156, 157]) of 

sorafenib over the first 28 days of therapy. Sorafenib relative dose intensity was calculated and 

classified into two groups (<50 % vs ≥50 %) as previously described [156].  

Available pre-treatment characteristic data included sex, age, race, weight, Eastern Cooperative 

Oncology Group performance status (ECOG PS), estimated glomerular filtration rate, Barcelona Clinic 

Liver Cancer (BCLC) staging, history of hepatitis B or C infection, number of metastatic site, the 

presence of liver metastases, oesophageal varices, liver cirrhosis, non-alcoholic steatohepatitis and 

portal vein thrombosis.  

2.3.3 – Statistical analysis 

A landmark Cox proportional hazard analysis was used to evaluate the association between early AEs 

requiring sorafenib dose adjustments and OS/PFS. Associations were reported as hazard ratios (HR; 

event outcomes) with 95 % confidence intervals (95% CI) and P values. The landmark was set at 28 

days (end of 1st cycle) after sorafenib initiation, with individuals who progressed or died within the first 

28 days of therapy excluded from analysis. The landmark was derived according to a balance of being 

as early as possible (as early markers of response are more useful, and there is a loss of 

individuals/power as the landmark time increases due to the event occurring before the landmark) and 

ensuring enough AEs had occur before the landmark time (as only AEs before the landmark count in 

the analysis technique). Kaplan-Meier analysis was used to estimate and plot survival outcomes 

according to sorafenib dose adjustment categories.   

As an exploratory analysis, univariable Cox proportional hazard analysis was used to evaluate the 

association between pre-treatment characteristics and early AEs requiring sorafenib dose adjustments 

within the first 28 days of therapy. 

2.4 – Results 

2.4.1 – Patient Characteristics 

Data from 542 patients with advanced HCC who received sorafenib therapy were available. Table 7 

provides a summary of the patient characteristics. Prior to day 28th, 16 participants were excluded from 
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the analysis due to disease progression, including 10 participants who died. Median follow-up in the 

population was 22 [95% CI: 21-24] months. 
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Table 7. Summary of patient characteristics. 

Parameters 
Total 

No. 542 

Sex 

  Female 85 (16%) 

  Male 457 (84%) 

Age (years) 

  [18, 50] 128 (24%) 

  [50, 60] 148 (27%) 

  [60, 70] 149 (27%) 

  [70, 84] 115 (21%) 

  Missing 2 (0%) 

Race 

  Asian 417 (77%) 

  Non-Asian 125 (23%) 

Weight at baseline 64 (57 - 74) 

Baseline ECOG score 

  0 289 (53%) 

  1 250 (46%) 

  Missing 3 (1%) 

BCLC stage 

  B 89 (16%) 

  C 452 (83%) 

  Missing 1 (0%) 

Involved disease site - liver 495 (91%) 

Number of involved disease sites (including liver) 

  1 223 (41%) 

  2 214 (39%) 

  3 89 (16%) 

  4 16 (3%) 

Oesophageal varices 

  Yes 156 (29%) 

  No 376 (69%) 

  Missing 10 (2%) 

Hepatitis B 

  Yes 287 (53%) 

  No 245 (45%) 

  Missing 10 (2%) 

Hepatitis C 

  Yes 118 (22%) 

  No 414 (76%) 

  Missing 10 (2%) 

Liver cirrhosis 

  Yes 247 (46%) 

  No 285 (53%) 

  Missing 10 (2%) 

Estimated glomerular filtration rate (ml/min/1.73 m2) 

  [90, 257] 301 (56%) 

  [60, 90] 190 (35%) 

  [45, 60] 30 (6%) 

  [6, 45] 19 (4%) 

  Missing 2 (0%) 

Data are median (IQR) or number of patients (%) 
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2.4.2 – Dose adjustment and predictors 

Figure 24 presents the incidence of AEs requiring dose adjustments of sorafenib within each of the first 

10-cycles of therapy. Within the first 28 days, 128 (51.6 %) had a dose interruption, 97 (39.1 %) had a 

dose reduction and 23 (9.3 %) discontinued the treatment. 

 

Figure 24 – Proportion of the study cohort with an adverse event leading to adjustment of 

sorafenib dosing over the first 10 cycles of sorafenib treatment. 

Univariable Cox proportional analysis data identified older age, Asian race, lower weight, history of 

hepatitis C infection, and absence of liver metastases as associated with an increased risk of 

experiencing an AEs within the first 28 days of sorafenib therapy which requires a dose adjustment (P 

< 0.05; Table 8). 

Table 8. Univariate analysis in predictors of AE related to dose adjustment within first 28 days.  

 

No. patients 
Events/Patients 

(%) 
HR 95% CI P 

Sex 542    0.056 

   Female  47/85 (55%) 1.00   

   Male  201/457 (44%) 0.63 
0.40 to 

1.01 
 

Age (years) 540    0.021 

   [18, 50]  52/128 (41%) 1.00   

   [50, 60]  58/148 (39%) 0.94 
0.58 to 

1.53 
 

   [60, 70]  72/149 (48%) 1.37 
0.85 to 

2.20 
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   [70, 84]  65/115 (57%) 1.90 
1.14 to 

3.16 
 

Race 542    0.001 

   Asian  207/417 (50%) 1.00   

   Non-Asian  41/125 (33%) 0.50 
0.33 to 

0.75 
 

Weight at baseline 542  0.98 
0.96 to 

0.99 

<0.00

1 

Baseline ECOG score 539    0.922 

   0  133/289 (46%) 1.00   

   1  114/250 (46%) 0.98 
0.70 to 

1.38 
 

BCLC stage 541    0.780 

B  42/89 (47%) 1.00   

C  206/452 (46%) 0.94 
0.59 to 

1.48 
 

Involved disease site - liver 542     

   No  28/47 (60%)    

   Yes  220/495 (44%) 0.54 
0.30 to 

1.00 
0.049 

Number of involved disease sites 

(including liver) 
542  0.90 

0.73 to 

1.11 
0.322 

Oesophageal varices 532     

   No  172/376 (46%)    

   Yes  70/156 (45%) 0.97 
0.66 to 

1.40 
0.854 

Hepatitis B 532     

   No  115/245 (47%)    

   Yes  127/287 (44%) 0.90 
0.64 to 

1.26 
0.535 

Hepatitis C 532     

   No  173/414 (42%)    

   Yes  69/118 (58%) 1.96 
1.30 to 

2.97 
0.001 

Liver cirrhosis 532     

   No  140/285 (49%)    

   Yes  102/247 (41%) 0.73 
0.52 to 

1.03 
0.071 

Estimated glomerular filtration rate 

(ml/min/1.73 m2) 
540    0.974 

   [90, 257]  136/301 (45%) 1.00   

   [60, 90]  89/190 (47%) 1.07 
0.74 to 

1.54 
 

   [45, 60]  13/30 (43%) 0.93 
0.44 to 

1.98 
 

   [6, 45]  9/19 (47%) 1.09 
0.43 to 

2.76 
 

CI=confidence interval, OR=odds ratio 
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2.4.3 – Effect of early AEs related dose adjustment on survival outcomes 

At day 28, there was a significant relationship between early AEs requiring sorafenib dose adjustment 

within the first 28 days with OS (HR [95%CI]; dose interruption = 0.9 [0.7 - 1.2]; dose reduction = 0.6 

[0.5 - 0.9]; discontinuation = 1.7 [0.9 - 3.4]; P = 0.005) (Table 9). There was no significant relationship 

between early AEs requiring sorafenib dose adjustment with PFS (HR [95%CI]; dose interruption = 1.2 

[1 - 1.5]; dose reduction = 0.9 [0.7 - 1.1]; discontinuation = 1.1 [0.2 - 7.7]; P = 0.148) (Table 9). Figure 

25 presents Kaplan-Meier estimates of OS and PFS by AE induced dose adjustment category within the 

first 28 days of sorafenib therapy. Figure 26 presents a forest plot of OS by patient subgroups for AEs 

requiring dose reductions versus no action in the first 28 days of sorafenib treatment – indicative that 

the association between dose reduction due to AEs within the first 28 days of sorafenib and favourable 

OS was consistent across patient subgroups. Figure 27 presents a forest plot of PFS by patient 

subgroups for AEs requiring dose reductions versus no action in the first 28 days of sorafenib treatment. 

No association between dose reduction due to AEs within the first 28 days of sorafenib were observed 

across patient subgroups.
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Table 9. Summary of the association between dose adjustment following AEs within first 28 days of sorafenib treatment with OS and PFS. 

   OS   PFS  

Action N 
Median [95% CI]  

time to event (months) 
HR [95% CI] P 

Median [95% CI]  

time to event (months) 
HR [95% CI] P 

No action 292 10 [8 – 11] 1 0.005 4 [3 – 4] 1 0.148 

Dose interruption 125 9 [8– 15] 0.91[0.7 – 1.2]  3 [3 – 4] 1.2 [1 – 1.5]  

Dose reduction 95 15 [12 – 22] 0.6 [0.5 – 0.9]  4 [3 – 6] 0.9 [0.7 – 1.1]  

Discontinuation 14 3 [2 – NA] 1.7 [0.9 – 3.4]  NA 1.1 [0.2 – 7.7]  

N - sample size, CI - confidence interval, HR - hazard ratio, OS - overall survival, PFS - progression-free survival, NA - No data 
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Figure 25 – Kaplan-Meier estimates of OS (A) and PFS (B) by AE induced dose adjustment category within the first 28 days of sorafenib therapy. 
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Figure 26 – Forest plot summary (HR 95%CI) of OS by patient subgroups for dose reductions 

versus no action in the first 28 days of sorafenib treatment. 
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Figure 27 – Forest plot summary (HR 95%CI) of PFS by patient subgroups for dose reductions 

versus no action in the first 28 days of sorafenib treatment. 
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2.4.4 – Supplementary analyses 

Higher sorafenib dose intensity (≥50 % vs <50 %) over the first 28 days was associated with less 

favourable OS (HR [95% CI]; 1.4 [1.0 - 1.9], P = 0.035), however, there was no significant association 

with PFS (HR [95% CI]; 1.0 [0.8 - 1.4], P = 0.775) (Table 10). Hand-foot syndrome in the first 28 days 

of sorafenib therapy was associated with favourable OS (HR [95% CI]; 0.9 [0.8 - 0.9], P = 0.005) but 

not PFS (HR [95% CI]; 1.0 [0.9 - 1.1], P = 0.785). 

Table 10. Association between RDI in first 28 days of sorafenib treatment with OS and PFS. 

   OS   PFS  

RDI  

within first 28 days 

N Median 

time to event 

(days) 

HR [95% CI] P Median 

time to event 

(days) 

HR [95% 

CI] 

P 

< 50 % 79 465 1 0.035 88 1 0.775 

≥ 50 % 447 298 1.4 [1.0 – 1.9] 
 

105 1.0 [0.8 – 

1.4] 

 

N - sample size, CI - confidence interval, HR - hazard ratio, OS - overall survival, PFS - progression-free survival 

 

2.5 – Discussion 

To the best of the authors knowledge, this is the first study to report on the effects of dose adjustment 

of sorafenib due to AEs on survival outcomes of advanced HCC patients. Our analysis showed that dose 

adjustments were not associated with worse survival outcomes. In addition, patients who experienced 

dose reduction due to AEs within the first 28 days of therapy had more favourable OS compared to 

patients who required no dose adjustments.  

The precision dosing of cancer medicines requires evidence to inform the effect of dose changes on 

cancer patient outcomes. This information is currently lacking for sorafenib use in advanced HCC. 

Several studies have explored alternate dosing strategies for sorafenib [158, 159]. A retrospective study 

assessed initiating sorafenib at < 800 mg daily, identifying non-inferior outcomes compared to 800 mg 

daily [158]. Meanwhile, dose escalation above 800 mg daily has been observed to improve survival in 

a subset of patients [159]. The current recommended dosing strategy of sorafenib in HCC is 800 mg 

daily, with dose reduction in response to AEs. In this study, HCC patients initiated sorafenib at 800 mg 

daily and dose interruptions and reductions in response to toxicity were not observed to worsen survival 

outcomes, in fact, patients who required a dose reduction had favourable OS. Such evidence provides 

strong support for the current dosing guidelines of sorafenib in HCC. Thus, our study highlights a need 

for caution when investigating lower than recommended initial doses –there is the potential that high 

initial doses/plasma concentrations ultimately drive long term benefits.  In addition, this study supports 
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future investigations of dose escalation strategies in patients who have not experienced AEs, as a 

mechanism to improve survival in patient who have not required a dose adjustment. 

A finding that sorafenib dose adjustments due to AEs are not associated with worse survival outcomes 

is not surprising. Similar results have been shown for other targeted cancer medicines including 

vemurafenib, afatinib and ado-trastuzumab emtansine [160-162]. In part, this is due to AEs potentially 

reflecting a subgroup of patients with high plasma concentrations or patients more 

pharmacodynamically sensitive to the medicine – particularly where AE reflects an ‘on-target’ toxicity. 

Supporting the findings of this study, prior research has demonstrated a concentration-effect 

relationship for sorafenib and that the early occurrence of hand-foot syndrome and diarrhoea with 

sorafenib may be associated with improved survival outcomes [105, 163, 164]. A similar association 

between the occurrence of hand-foot syndrome in the first 28 days of sorafenib therapy with favourable 

OS was observed in this study on supplementary analysis. 

In this study it was identified that older age, Asian race, lower weight, history of hepatitis C infection, 

and absence of liver metastases were associated with increased dose adjustments of sorafenib due to 

AEs. Such evidence provides support for subgroups of patients who require increased monitoring to 

minimise the negative quality of life impacts of AEs which ultimately require dose adjustments.  

This study used large high-quality data, consistent with contemporary practice. A landmark approach 

was utilised to avoid potential time biases. Furthermore, the landmark time of 28 days is an early time 

to provide functional information for clinical decisions, while capturing a significant of portion of 

required dose adjustments. Another significant strength of the study was that the association between 

dose reductions and favourable OS was consistent with supplementary analysis of sorafenib dose 

intensity and findings across patient subgroups (Figure 26). Variability in associations of sorafenib 

dose adjustment with OS/PFS were identified, this may be due to PFS being an imperfect surrogate 

affected by variability in timing of assessments, investigators and measurement biases [165, 166]. 

Further OS associations may be confounded by subsequent therapies or crossover [165, 166]. 

Nonetheless dose adjustment of sorafenib due to AEs did not worsen PFS or OS. Thus, both endpoints 

are in concordance with supporting current dosing guidelines. 

In conclusion, dose adjustment of sorafenib due to AEs did not compromise the survival outcomes of 

advanced HCC patients, with dose reduction associated with improved OS. Further, older age, Asian 

race, lower weight, history of hepatitis C infection, and absence of liver metastases were associated 

with an increased risk of experiencing an AEs requiring a sorafenib dose adjustment. Such evidence 

provides support for the current dosing guidelines of sorafenib in advanced HCC, and an indication of 

subgroups who require increased monitoring to minimise the potential quality of life impacts of AEs. 
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 CHAPTER 3: THE EFFECT OF PROTON PUMP INHIBITORS ON 

SURVIVAL OUTCOMES IN ADVANCED HEPATOCELLULAR 

CARCINOMA TREATED WITH SORAFENIB.   

 

3.1 – Function of Chapter 

Chapter 2 demonstrated the significance of ‘on-target’ toxicity led to the adjustment of dose intensity 

of sorafenib in advanced HCC patients, which resulted in no poorer survival outcomes. Thus, it was an 

exceptional example of the crucial function of precision dosing in cancer medicine.  

The current chapter of this thesis centred around the aspect of the effect of concomitant medicines on 

the clinical outcomes derived from sorafenib. The concomitant medicine that was primarily investigated 

in the study was the class of proton pump inhibitors (PPIs). The previous literature suggested that 

concomitantly use PPIs with tyrosine kinase inhibitors (TKIs), a class of drug that sorafenib belong to, 

resulting in reduced clinical outcomes derived from TKIs. Herein, the effect of PPIs on the survival 

outcomes of sorafenib was explicitly analysed. This thesis chapter has been reviewed and published in 

full as: 

Ruanglertboon, W., Sorich, M.J., Logan, J.M. et al. The effect of proton pump inhibitors on survival 

outcomes in advanced hepatocellular carcinoma treated with sorafenib. J Cancer Res Clin Oncol 146, 

2693–2697 (2020).  

The chapter has been reproduced for this thesis with kind permission from Journal of Cancer Research 

and Clinical Oncology (License ID 5131100971819) in Appendix 6. Formatting and minor changes in 

wording have been made to conform to the remainder of this thesis. 
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3.2 – Introduction 

Sorafenib is an oral tyrosine kinase inhibitor (TKIs) and the current mainstay first-line treatment for 

advanced hepatocellular carcinoma (HCC) [167]. Sorafenib acts as a potent inhibitor of vascular 

endothelial growth factor (VEGFR) subtype 1, 2 and 3, platelet-derived growth factor-beta (PDGFRβ) 

and fibroblast growth factor receptor 1 (FGFR1) [101, 102].   

Recently, clinical studies reported a high degree of inter-individual variability in the pharmacokinetic 

profile of sorafenib [168]. It is suggested that sorafenib has a limited absorption capacity in the 

gastrointestinal (GI) tract due to its low solubility profile. In addition, sorafenib’s oral bioavailability 

may be limited by factors that increase intragastric pH, which resultantly decrease the solubility and 

potentially lower the fraction of sorafenib absorbed from the gastrointestinal tract (fa) [50]. 

In clinical practice, cancer patients often take both cancer and non-cancer medicines. Medicines for 

chronic diseases such as metabolic syndromes and acid-lowering agents being among the most 

reportedly used non-cancer medicines in cancer patients [47, 48]. A current hypothesis is that concurrent 

proton pump inhibitor (PPI) administration may reduce the bioavailability of oral TKIs, particularly 

those with dissolution profiles sensitive to pH changes [168-170]. Recent research indicates that PPIs 

may impact the survival of cancer patients treated with gefitinib [171] and erlotinib [40]. Further, 

Sharma et al. [50] indicated that PPIs may impact TKIs as a class, albeit the data was dominated by 

lung cancer patients treated with erlotinib. However, the efficacy and dissolution profile of all TKIs are 

not the same and to date there has been no large high-quality analysis to investigate the impact of PPI 

use on the survival outcomes of advanced HCC patients treated with sorafenib.   

Thus, using individual-participant data from the phase III clinical trial NCT00699374, this study aimed 

to evaluate the impact of PPI use on the survival outcomes of advanced HCC patients initiating 

sorafenib treatment.  

3.3 – Methods 

3.3.1 – Patient population 

The study was a secondary analysis of the phase III clinical trial NCT00699374 (sorafenib arm only) 

[154]. Participants were assigned to receive sorafenib at 400 mg twice daily on 4-week cycles for the 

treatment of locally advanced or metastatic HCC.  

Individual-participant data (IPD) were accessed in this study via www.projectdatasphere.org. 

Secondary analysis of anonymized IPD was deemed negligible risk research by the Southern Adelaide 

Local Health Network, Office for Research and Ethics and was exempt from review. 
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3.3.2 – Predictors and outcomes 

The primary assessed outcome was overall survival (OS), with progression-free survival (PFS) assessed 

as the secondary outcome. PFS was evaluated according to Response Evaluation Criteria in Solid 

Tumours (RECIST) version 1.0 [155].  PPI use at the time of sorafenib commencement (baseline) was 

assessed as the primary covariate. Baseline PPI use was the focus, as PPIs are commonly used for 

extended time periods. 

Available pre-treatment characteristic data included age, sex, weight, race, Eastern Cooperative 

Oncology Group performance status (ECOG PS), number of metastatic sites, alpha-fetoprotein (AFP), 

neutrophil to lymphocyte ratio, Barcelona clinic liver cancer stage (BCLC), sum of longest diameter of 

target lesions, history of hepatitis B or C infection, history of alcohol abuse, liver cirrhosis, oesophageal 

varices, portal vein thrombosis, non-alcoholic steatohepatitis, serum haemoglobin and gamma glutamyl 

transferase concentrations.  

3.4 – Statistical analysis 

Cox proportional hazard analysis was used to evaluate the association between baseline PPI use and 

OS/PFS. Associations were reported as hazard ratios (HR) with 95% confidence intervals (95% CI) and 

probability (P) values. Univariable and analyses adjusted for known prognostic factors were conducted. 

Complete case analyses were conducted. Kaplan-Meier analysis was used to estimate and plot survival 

outcomes. Statistical analyses were performed using R version 3.5. 

3.5 – Results 

3.5.1 – Patient characteristics 

There were 542 patients with advanced HCC who received sorafenib in the clinical trial, 122 patients 

were concomitantly using a PPI at baseline. A summary of patient characteristics is presented in Table 

11. Median follow-up in the population was 22 [95% CI: 21-24] months. 

Of the 122 using a PPI at baseline, 34 were using esomeprazole, 19 lansoprazole, 22 omeprazole, 28 

pantoprazole and 19 rabeprazole. The indications for PPI use were ulcers (n = 37), gastritis (n = 36), 

gastroesophageal reflux disease (n = 20) and others (n = 29). Of the 122 using a PPI at baseline, 81 used 

PPI therapy for the entire period of receiving sorafenib treatment. Of the 41 patients who had PPI free 

periods while on sorafenib, the median [inter-quartile range] number of days on PPI therapy within the 

first month was 30 [19-30] - an indication that even in these patients PPI use was frequent. 
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Table 11. Summary of patient characteristics. 

 Total 

(n = 542) 

PPI non-users 

(n = 420) 

PPI users 

(n = 122) 

Age (years) 

  < 55 192 (35%) 162 (39%) 30 (25%) 

  55 to 67 182 (34%) 138 (33%) 44 (36%) 

  ≥ 67 166 (31%) 118 (28%) 48 (39%) 

  Missing 2 (<1%) 2 (<1%) 0 (0%) 

Sex 

  Female 85 (16%) 65 (15%) 20 (16%) 

  Male 457 (84%) 355 (85%) 102 (84%) 

Weight at baseline 64 (57 - 74) 63 (57 - 73) 67 (58 - 77) 

Race 

  Asian 417 (77%) 338 (80%) 79 (65%) 

  Non-Asian 125 (23%) 82 (20%) 43 (35%) 

Baseline ECOG score 

  0 289 (53%) 217 (52%) 72 (59%) 

  1 250 (46%) 202 (48%) 48 (39%) 

  Missing 3 (1%) 1 (<1%) 2 (2%) 

Number of involved disease sites (including liver) 

  1 223 (41%) 168 (40%) 55 (45%) 

  2 214 (39%) 172 (41%) 42 (34%) 

  3 89 (16%) 70 (17%) 19 (16%) 

  4 16 (3%) 10 (2%) 6 (5%) 

Alpha Fetoprotein (mcg/L) 

  Median (IQR) 277 (13 - 4000) 328 (15 - 4458) 86 (8 - 2770) 

  Missing 22 (4%) 16 (4%) 6 (5%) 

Neutrophil to lymphocyte ratio at baseline (109/L) 

  Median (IQR) 2.6 (1.9 - 3.9) 2.5 (1.8 - 3.9) 3.0 (2.0 - 3.9) 

  Missing 14 (2.6%) 9 (2.1%) 5 (4.1%) 

BCLC stage 

  B 89 (16%) 64 (15%) 25 (20%) 

  C 452 (83%) 356 (85%) 96 (79%) 

  Missing 1 (<1%) 0 (0%) 1 (1%) 

Sum of longest diameter of target lesion at baseline 

  Median (IQR) 108 (56 - 170) 100 (51 - 160) 127 (76 - 192) 

  Missing 6 (1%) 3 (1%) 3 (2%) 

Hepatitis B 

  Yes 287 (53%) 241 (57%) 46 (38%) 

  No 245 (45%) 170 (40%) 75 (61%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Hepatitis C 

  Yes 118 (22%) 81 (19%) 37 (30%) 

  No 414 (76%) 330 (79%) 84 (69%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Alcohol abuse 

  Yes 81 (15%) 56 (13%) 25 (20%) 

  No 451 (83%) 355 (85%) 96 (79%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Liver cirrhosis 

  Yes 247 (46%) 188 (45%) 59 (48%) 

  No 285 (53%) 223 (53%) 62 (51%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Portal vein thrombosis 

  Yes 161 (30%) 122 (29%) 39 (32%) 

  No 371 (68%) 289 (69%) 82 (67%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Oesophageal varices 

  Yes 156 (29%) 114 (27%) 42 (34%) 
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  No 376 (69%) 297 (71%) 79 (65%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Non-alcoholic steatohepatitis 

  Yes 16 (3%) 11 (3%) 5 (4%) 

  No 516 (95%) 400 (95%) 116 (95%) 

  Missing 10 (2%) 9 (2%) 1 (1%) 

Haemoglobin (g/L) 133 (122 - 146) 134 (123 - 147) 131 (118 - 141) 

Gamma Glutamyl Transferase (U/L) 

  Median (IQR) 130 (62 - 250) 124 (60 - 250) 148 (72 - 252) 

  Missing 7 (1%) 7 (2%) 0 (0%) 

3.5.2 – The effect of concomitant use of sorafenib and PPI on survival outcomes 

On univariable analysis, there were no associations between baseline PPI use and OS (HR [95%CI]; 

1.01 [0.80 - 1.28], P = 0.93) nor PFS (0.96 [0.76 - 1.21], P = 0.73) in advanced HCC initiated on 

sorafenib (Table 12, Figure 28). Further on adjusted analysis, no significant association with OS (1.10 

[0.82-1.41], P = 0.62) nor PFS (1.11 [0.86 – 1.44], P = 0.41) was identified (Table 12). 

Table 12. Summary of association between baseline PPI use status and survival outcomes. 

  Univariable  Adjusted*  

 PPI n HR (95% CI) P n HR (95% CI) P 

OS No 420 1.00 0.93 377 1.00 0.62 

 Yes 122 1.01 (0.80 - 1.28)  105 1.10 (0.82 - 1.41)  

PFS No 420 1.00 0.73 377 1.00 0.41 

 Yes 122 0.96 (0.76 - 1.21)  105 1.11 (0.86 – 1.44)  

CI = confidence interval, HR = hazard ratio, n = number of subjects 

*Analysis adjusted for age, sex, weight, race, baseline ECOG, number of metastatic site, baseline AFP, 

neutrophil to lymphocyte ratio, baseline BCLC, sum of longest diameter of target lesion at baseline, history of 

hepatitis B or C infection, history of alcohol abuse, liver cirrhosis, oesophageal varices, portal vein thrombosis, 

non-alcoholic steatohepatitis, baseline haemoglobin, baseline gamma glutamyl transferase 
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Figure 28 – Kaplan-Meier estimates of OS (A) and PFS (B) by PPI status. 
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3.6 – Discussion 

Orally administered cancer medicines can be affected pharmacokinetically or pharmacodynamically by 

other co-administered drugs. For example, rifampicin which is a potent CYP3A4 inducer, reduces the 

area under the curve (AUC) and Cmax of sunitinib exposure by 23 and 46 %, respectively [40, 172]. 

Similarly, it is mechanistically rationalised that PPIs irreversibly bind to the H+/K+-ATPase pumps 

altering intragastric pH from being highly acidic (pH = 1 - 4) to less acidic (pH > 6), thus potentially 

reducing gastrointestinal dissolution and absorption of oral TKIs [40]. It is further hypothesised that 

this effect may be unfavourable to the survival outcomes achieved with TKIs, which require an acidic 

environment for intestinal absorption. However, the potential impact of PPIs on outcomes of advanced 

HCC patients treated with sorafenib has been minimally explored. Here, we highlighted that 

concomitant PPI use with sorafenib in advanced HCC patients was not associated with altered survival 

outcomes. 

To date, there has been preliminary research on the effect of PPIs on the therapeutic outcomes associated 

with TKIs. For example, Sharma et al. [50] conducted a pooled analysis of Surveillance, Epidemiology, 

and End Results (SEER)‐Medicare database indicating that concomitant PPI use with a TKI was 

associated with an increased risk of death. However, the dissolution and pharmacodynamic profiles of 

all TKIs are not the same. Thus, while Sharma et al. [50] indicated PPI use was associated with negative 

outcomes for TKIs and specifically erlotinib (the majority of the population) – no effects on imatinib 

or sunitinib were identified and the associations for sorafenib were not presented. Thus, to the best of 

our knowledge the present study is the largest analysis of the association between concomitant PPI use 

and survival outcomes of advanced HCC patients treated with sorafenib – of which no association with 

altered survival outcomes were identified. These results are similar to the Lalani et al. [173] study which 

found no association between PPI use and survival outcomes in a pooled cohort of renal cell carcinoma 

(RCC) patients, treated with sorafenib, sunitinib or axitinib.  

While a post-hoc analysis, the data used in this study was large high-quality data collected within 

clinical trial and the dosing strategy assessed is consistent with contemporary practice. Another strength 

of this study is the result of no association between concomitant PPI use and sorafenib outcomes was 

demonstrated for both OS and PFS (on univariable and adjusted analysis). It is acknowledged that 

Child-Pugh class A, ECOG PS of 0 or 1 and adequate organ function were inclusion criteria, and the 

presence of clinically relevant ascites was an exclusion criteria of NCT00699374 [154]. A notable 

limitation was an inability to assess the type, dose or compliance to the documented PPI use. 

Nonetheless, at least 80 % of those using a PPI at baseline did so for a condition requiring long term 

treatment. Future research will aim to confirm if the results are consistent between specific PPIs and if 

the non-association extends to other acid lowering agents such as H2 receptor antagonists. A limitation 



67 

 

of this study is the restricted range of settings evaluated. Future research should include the evaluation 

of sorafenib used for advanced RCC and its use in other lines of therapy. 

3.7 – Conclusions 

The concomitant use of a PPI with sorafenib in advanced HCC patients was not associated with altered 

survival outcomes. Our analysis further shows the importance of assessing the impact of PPIs on TKIs 

on a per medicine basis as the dissolution and pharmacokinetic profile of all TKIs are not the same. 
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CHAPTER 4: MECHANISTIC MODELLING IDENFIFIES AND 

ADDRESSES THE RISKS OF EMPIRIC CONCENTRATION GUIDED 

SORAFENIB DOSING 

4.1 – Function of Chapter 

Chapter 2 and 3 utilised the secondary analysis of “Big data” to demonstrate the importance of 

precision medicine. Big data analysis is one of the contemporary research in the modern era, which 

could potentially support decision-making in real-world practices. On the other hand, computational 

modelling and simulation have seen increases in applications, including pharmacological research. 

In terms of precision medicine, computational simulation has already been implied to support decision 

making in clinical practice, especially for the drugs or conditions that require meticulous consideration 

such as sorafenib [174-177]. Currently, the knowledge of the optimal therapeutic index of sorafenib 

plasma concentration is minimal. The evidence regarding the minimum effective concentration and 

minimum toxicity concentration were taken from only small cohorts. As such, this chapter aimed to 

apply computer simulation to evaluate the capability of concentration-guided sorafenib dose 

adjustment, with and without model-informed drug dosing, to increase the proportion of patients that 

achieve the designated plasma concentration. This thesis chapter has been reviewed and published in 

full as: 

Ruanglertboon, W.; Sorich, J M.; Hopkins M A.; Rowland A., Mechanistic modelling identifies and 

addresses the risks of empiric concentration guided sorafenib dosing. Pharmaceuticals 2021, 14(5), 

389; https://doi.org/10.3390/ph14050389. 

Formatting and minor changes in wording have been made to conform to the remainder of this thesis. 
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4.2 – Introduction 

Sorafenib is an orally administered small molecule kinase inhibitor (KI) used in the treatment of 

advanced hepatocellular (HCC) and renal cell (RCC) carcinomas. Sorafenib is a potent inhibitor of 

multiple kinase receptors including the vascular endothelial growth factor receptor (VEGFR), 

endothelial growth factor (subtype 1, 2 and 3), platelet-derived growth factor-beta (PDGFRβ) and 

fibroblast growth factor receptor 1 (FGFR1). Variability in sorafenib exposure between individuals and 

within an individual over time has been identified as a potential source of heterogeneity in treatment 

efficacy and tolerability [178, 179]. The area under the plasma concentration curve (AUC) and maximal 

concentration (Cmax) for sorafenib following has been reported to vary more than 50 % with standard 

400 mg dosing [180-182]. Variability in gastrointestinal absorption due to limited and pH dependent 

solubility has been proposed as a major source of variability in exposure [183], however concomitant 

proton pump inhibitor (PPI) use, which is reported to reduce KI absorption [50], has been demonstrated 

to have no impact on survival outcomes in HCC [184] and RCC [173, 185] patients treated with 

sorafenib.  

A sorafenib Cmax ≥ 4.78 μg/mL has been associated with superior overall survival in RCC and HCC 

patients, albeit with a higher incidence of hypertension, while a sorafenib Cmax ≥ 5.78 μg/mL has been 

associated with an increased incidence of grade II toxicity, the most common of which is hand foot skin 

reactions [186, 187]. While the evidence for these thresholds is derived from a single observational 

study in 52 individuals, these values have been cited as target concentrations in multiple reviews 

addressing individualised sorafenib dosing [188, 189]. The dose escalation protocol that has been 

proposed for sorafenib to increase from 400 mg to 600 mg twice daily [190]. This approach is based on 

a sub-analysis of a phase II trial demonstrating a clinical benefit in patients who increased from 400 mg 

to 600 mg sorafenib twice daily following disease progression at the 400 mg dose [191]. Notably the 

association of this dose escalation with sorafenib plasma concentration has not been evaluated. 

The potential benefits of individualised KI dosing has gained interest in recent years [11, 192, 193] and 

a number of strategies available to both inform initial dose selection and facilitate dose adaption [13]. 

Therapeutic drug monitoring (TDM) is an established method to facilitate concentration-guided dose 

adaption but requires significant clinical and analytical resources to quantify the drug of interest and 

establish a robust evidence base. To date, few cancer medicines have met the level of evidence required 

to implement TDM in a clinical setting [194-196].  

Model-informed initial dose selection (MIDS), often underpinned by a population pharmacokinetic 

(Pop-PK) or physiologically-based pharmacokinetic (PBPK) model, has emerged as a strategy to assist 

initial dose selection either to complement or replace TDM [197-200]. PBPK modelling and simulation 

is an established tool in drug discovery and development, where it is used to predict factors affecting 

PK and support the design of clinical trials [201, 202]. PBPK is a “bottom-up” approach whereby the 



70 

 

concentration-time profile of a drug is simulated based on physiochemical and in vitro data [203, 204]. 

Novel clinical applications for PBPK have been proposed involving the prediction of clinical drug-drug 

interactions, identification of physiological covariates impacting drug exposure and informing initial 

dose selection [198, 204-206].  

The primary objective of this study was evaluated the capacity of concentration-guided sorafenib dose 

adjustment, with and without MIDS, to increase the proportion of patients that achieve a sorafenib Cmax 

within a concentration range of 4.78 to 5.78 μg/mL. A full body PBPK model for sorafenib was first 

developed and validated, then used to identify physiological and molecular covariates associated with 

between subject variability in sorafenib exposure. 

4.2 – Methods 

4.2.1 – Development and Verification of the sorafenib PBPK model structural model 

Sorafenib absorption was simulated using the advanced dissolution, absorption, and metabolism 

(ADAM) sub-model which incorporates membrane permeability, intestinal metabolism and transporter-

mediated uptake and efflux. The ADAM sub-model was used in conjunction with a full-body PBPK 

model, containing compartments and drug distribution characteristics for all organs. All simulations 

were performed using Simcyp® (version 19.1, Certara, UK). The differential equations underpinning 

the model have been described previously [207].  

4.2.2 – Development of the sorafenib compound model 

The physicochemical, blood binding, absorption, distribution, elimination parameters utilised to 

construct the sorafenib compound model were summarised in Table 13. Physicochemical properties 

were based on published literature and documents [103, 208]. Metabolism and elimination parameters 

were incorporated based on reported intersystem extrapolation factor (ISEF) adjusted in vitro CYP and 

UDP-glucuronosyltransferase (UGT) data (Figure 29). 

Table 13. Model inputs used to build the sorafenib compound model. 

Parameter Value Source 

Physicochemical properties 

Molecular weight 

Log Po:w 

Hydrogen bond donor 

Species 

 

464.82 g/mol 

4.54 

3 

Base 

 

[103] 

 

[103] 

Protein binding 

B/P 

fup 

 

0.55 

0.0048 

 

[103] 

[103] 
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Absorption (ADAM model) 

fa 

ka (L/hr) 

 

0.99 

1.75 

 

Predicted 

Predicted 

Permeability 

Peff, man (10-4 cm/s) 

Caco-2 (10-6 cm/s) 

 

4.01 

24.1 

 

Predicted 

 

Formulation 

Solid formulation 

 

Immediate 

release 

 

[103] 

In vivo pharmacokinetic properties (full PBPK model) 

Prediction model 

Kp scalar 

 

1 

0.7 

 

 

Predicted 

CYP metabolism: ISEF adjusted recombinant enzyme kinetics (CLint; 

μL/min/pmol 

CYP3A4 

 

2.6 

 

[209] 

UGT metabolism: ISEF adjusted recombinant enzyme kinetics (CLint; μL/min/mg) 

UGT1A9 

 

20.1 

 

[209] 

 

 

 

Figure 29 – The pie chart demonstrated the relative contribution of CYP3A4 and UGT1A9 to 

simulated sorafenib elimination based on the predicted model. 
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4.2.3 – Population model 

As no clinical trials evaluating sorafenib exposure have been performed in healthy volunteers, 

verification of the sorafenib compound model was performed using Sim-Cancer population cohort. 

Simulations performed to assess the physiological and molecular characteristics driving between-

subject variability in sorafenib exposure at steady state also utilised the Sim-Cancer population cohort. 

The physiological and pathological characteristics of the Sim-cancer population have been determined 

based on a meta-analysis of cancer patients enrolled in clinical trials [210].  

4.2.4 – Simulated trial designs 

During the model development stage, simulations included 10 trials with 10 subjects per trial (100 

subjects total). During the verification stage, simulations were performed in 10 trials matched for 

sample size, dose, age range and sex distribution in the protocol described for the observed trial. Unless 

specified otherwise, parameters defining sorafenib exposure were assessed over 24 hours following a 

single dose at 9:00 AM on day 1.  

4.2.5 – Validation of the sorafenib compound model 

The sorafenib compound model was validated by comparing simulated AUC and Cmax values to reported 

observed values from matched clinical trials undertaken in cancer patients. A mean simulated parameter 

estimated within 2-fold of the mean observed parameter and contained within the 90 % confidence 

interval for the observed parameter was applied as the criteria to accept the model accuracy. The model 

goodness-of-fit was further verified by visual inspection of the overlay of mean simulated and observed 

sorafenib concentration-time profiles from individual clinical trials. Simulated Cmax values were 

normalised to account for the mean fold error (MFE) between simulated and observed values 

determined from multiple dose validation studies when evaluating simulations against the observed 

target concentration range (4.78 to 5.78 µg/mL). 

4.2.6 – Physiological and molecular characteristics driving variability in sorafenib 

exposure 

The validated sorafenib compound model was used to evaluate associations between physiological and 

molecular covariates and steady-state sorafenib AUC and Cmax [197]. A trial comprising 1,000 subjects 

from the Sim-Cancer population was simulated over 15 days with 400 mg of sorafenib administered 

orally in a fasted-state every 12 hour for 14 days starting at 9:00 am on Day 1. The steady state sorafenib 

AUC was determined over 12 hours following the final dose of sorafenib at 9:00 pm on Day 14. The 
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steady state sorafenib Cmax was determined as the maximum concentration following the final dose at 

9:00 PM on Day 14. 

Associations between physiological and molecular characteristics and sorafenib log transformed AUC 

and Cmax were evaluated by univariate and multivariate linear regression. Continuous variables were 

checked for normality and non-linearity of association, sex was coded as a binary variable. A 

multivariable linear regression model to predict the log transformed sorafenib Cmax was developed by 

stepwise forward inclusion of individually significant characteristics identified in the univariable 

regression analysis based on a probability of F to enter ≤ 0.05. The multivariable model (MIDS) 

predicted Cmax was determined by back transformation of the model predicted log transformed Cmax. 

The capacity of MIDS to identify subjects with a sub-therapeutic simulated sorafenib Cmax determined 

by scaling the reported threshold for simulation accuracy was evaluated using classification matrix 

analysis and is summarised as model sensitivity and specificity. The predictive performance of MIDS 

was assessed by receiver operating characteristic curve (ROC) analysis. Statistical analysis was 

conducted using R version 4.0.2 and IBM SPSS Statistics for Windows version 23 (Release 2015, IBM, 

Armonk, NY). 

4.2.7 – Impact of dose individualisation 

A simulation was conducted to evaluate the capacity of concentration-guided sorafenib dose adjustment 

to achieve a steady state sorafenib Cmax within the range 4.78 to 5.78 μg/mL. Sorafenib exposure was 

simulated in a cohort of 500 subjects from the Sim-Cancer population (20 to 50 years old, 50 % female) 

over 14 days with 400 mg sorafenib administered orally in a fasted-state every 12 hour starting at 9:00 

am on Day 1. Sorafenib Cmax was determined following the final dose at 9:00 pm on Day 14. Sorafenib 

exposure in subjects who failed to achieve a Day 14 normalised simulated Cmax ≥ 4.78 µg/mL was 

simulated over an additional 14 days with sorafenib administered at a dose of 600 mg every 12 hour 

starting at 9:00 am on Day 15. The post dose adjustment sorafenib Cmax was determined following the 

final dose at 9:00 pm on Day 28. 

A simulation was conducted in the same cohort to evaluate the benefit of MIDS at baseline in 

conjunction with concentration-guided sorafenib dose adjustment. Demographic characteristics for the 

Sim-Cancer cohort were used to predict the normalised simulated Day 14 sorafenib Cmax based on the 

multivariable model described previously. Based on MIDS subjects with a predicted sorafenib Cmax ≥ 

4.78 µg/mL received 400 mg sorafenib twice daily, while subjects with predicted sorafenib Cmax < 4.78 

µg/mL received 500 mg sorafenib twice daily. Sorafenib exposure was simulated over 28 days as 

described for concentration-guided sorafenib dose adjustment without MIDS, with Cmax evaluated at 

Day 14 and Day 28 and a dose increase to 600 mg between Day 15 and Day 28 for individuals who 

failed to achieve a Day 14 Cmax ≥ 4.78 µg/mL. 
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4.3 – Results 

4.3.1 – Verification of the sorafenib PBPK compound model 

The accuracy of the sorafenib compound model was assessed in nineteen age and sex matched cohorts 

from single or multiple ascending dose (100 to 800 mg) trials. Mean simulated and observed AUC and 

Cmax values and the corresponding simulated/observed ratios are presented in Table 14 along with a 

summary of the verification trial characteristics (i.e. age range, sex, sample size and dose). The mean 

(± standard deviation; SD) simulated/observed AUC and Cmax ratios for the single-dose cohorts (n = 37) 

were 1.92 (± 1.11) and 1.50 (± 1.7), respectively. The mean (± SD) simulated/observed AUC and Cmax 

ratios for the multiple-dose (typically 14 days) cohorts (n = 14) were 1.50 (± 0.72) and 1.17 (± 0.63), 

respectively. Variability in model performance, indicated by large SD for parameter ratios, was driven 

by heterogeneity in observed parameters between trials. A representative sorafenib concentration-time 

profile depicting overlayed with the mean concentration-time profile and 90 % confidence interval (CI) 

for the observed data was shown in Figure 30. The accuracy of the sorafenib compound model was 

considered acceptable on the basis that mean simulated parameters were within 2-fold of the respective 

mean observed parameter and contained within the 90 % CI for the observed parameter. Simulated Day 

14 and Day 28 sorafenib Cmax values were divided by 1.17 to account for simulation to observed MFE 

in multiple dose studies when evaluating simulated parameters against the observed target Cmax range. 

Results of sensitivity analyses performed to evaluate the impact of input parameters with measurement 

uncertainty (CLint for CYP3A4 and UGT1A9 pathways, fraction unbound, B/P ratio and LogP) on 

sorafenib kinetic parameters are shown in Figure 31.    
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Table 14. Verification of the impact of drug interactions on sorafenib exposure.  

Trials 
Age (median 

[range]) 
Female (%) Dosing regimen Trial 

Cmax 

(mg/L) 

AUC 

(mg/L.hr) 

Strumberg D, Clark 

JW, Awada A et al. 

[180] 

60 [18 - 75] 36 % 

Single dose 100 mg 

(n = 3) 

Observe 2.69 83.80 

Simulated 0.55 6.93 

Ratio 4.89 12.09 

Single dose 400 mg 

(n = 3) 

Observe 3.42 107.00 

Simulated 2.21 27.72 

Ratio 1.55 3.86 

Multiple dose 100 

mg 

(n = 3) 

Observe 2.31 23.80 

Simulated 1.42 14.60 

Ratio 1.63 1.63 

Multiple dose 200 

mg 

(n = 3) 

Observe 2.84 16.10 

Simulated 2.84 29.20 

Ratio 1.00 0.55 

Multiple dose 400 

mg 

(n = 5) 

Observe 9.35 71.70 

Simulated 5.68 58.39 

Ratio 1.65 1.23 

Multiple dose 600 

mg 

(n = 8) 

Observe 9.81 79.00 

Simulated 8.53 87.59 

Ratio 1.15 0.90 

 

Minami H, Kawada 

K, Ebi H et al. [211] 

 

63 [32 - 73] 32 % 
Single dose 100 mg 

(n = 3) 

Observe 0.43 9.40 

Simulated 0.53 6.40 

Ratio 0.81 1.47 
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Single dose 200 mg 

(n = 15) 

Observe 0.74 24.30 

Simulated 1.12 13.42 

Ratio 0.66 1.81 

Single dose 400 mg 

(n = 6) 

Observe 1.21 35.4 

Simulated 2.11 25.51 

Ratio 0.57 1.39 

Single dose 600 mg 

(n = 7) 

Observe 1.41 40.50 

Simulated 3.13 37.21 

Ratio 0.45 1.09 

Awada A, Hendlisz 

A, Gil T et al. [181] 

 

58 [42 - 79] 43 % 

200 mg BID mg 

(n = 3) 

Day 1 

Observe 3.63 24.90 

Simulated 1.57 8.80 

Ratio 2.31 2.83 

400 mg BID mg 

(n = 9) 

Day 1 

Observe 3.04 24 

Simulated 3.18 28.17 

Ratio 0.96 0.85 

600 mg BID mg 

(n = 12) 

Day 1 

Observe 4.56 30.40 

Simulated 4.81 42.65 

Ratio 0.95 0.71 

200 mg BID mg 

(n = 3) 

Day 7 

Observe 9.01 83.40 

Simulated 3.48 36.20 

Ratio 2.59 2.30 

400 mg BID mg 

(n = 9) 

Day 7 

Observe 9.90 82.70 

Simulated 6.61 68.79 

Ratio 1.50 1.20 
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600 mg BID mg 

(n = 12) 

Day 7 

Observe 11.50 94.80 

Simulated 10.10 109.72 

Ratio 1.14 0.86 

200 mg BID mg 

(n = 3) 

Day 21 

Observe 6.33 50.50 

Simulated 4.05 45.57 

Ratio 1.56 1.11 

400 mg BID 

(n = 5) 

Day 21 

Observe 10 76.50 

Simulated 7.8 87.33 

Ratio 1.28 0.88 

600 mg BID 

(n = 12) 

Day 21 

Observe 9.24 77 

Simulated 11.36 125.74 

Ratio 0.81 0.61 
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Figure 30 – Representative overlay of simulated and observed (range) plasma concentration 

time curve of sorafenib (0 - 96 hours) following 400 mg twice a day dosing. Solid blue line 

represented the mean model predicted exposure, dashed green line represented the mean 

observed exposure and dashed orange represented minimal and maximal 90% confidence 

intervals for the observed data. 
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Figure 31 – Sensitivity analysis to evaluate the impact of the compound model input parameter on the simulation outcome (both pharmacokinetic 

and pharmacodynamic parameters). The relationship between examined parameters and input parameters was provided as a series of subanalyses
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Figure 31 (cont.) – Sensitivity analysis to evaluate the impact of the compound model input parameter on the simulation outcome (both 

pharmacokinetic and pharmacodynamic parameters). The relationship between examined parameters and input parameters was provided as a series 

of subanalyses
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4.3.2 – Sorafenib exposure in cancer patient 

The summary of the mean, SD and range of steady-state sorafenib AUC and Cmax parameters defining 

exposure in 1,000 virtual cancer patients is presented in Table 15. Consistent with reported clinical trial 

data [181, 182, 211], the simulation revealed variability of greater than an order of magnitude in 

sorafenib exposure; the steady state AUC ranged from 22.7 to 270 mg/L.hr (mean 99.2 mg/L.hr), while 

Cmax ranged from 2.3 to 23.2 µg/mL (mean 8.9 µg/mL).  

Table 15. Summary of physiological and molecular characteristic considered in regression 

analyses. 

Parameter Mean 
Standard 

Deviation 

Range 

5th centile 95th centile 

Sorafenib Exposure 

Steady state Cmax (mg/L) 8.92 3.35 4.58 15.3 

Steady state AUC (mg/L.hr) 99.2 39.6 48.7 176 

Physiological Characteristics 

Female (%) 50 

Age (years) 40.4 9.05 22.6 49.6 

Weight (kg) 74.6 14.8 53.0 102 

Height (cm) 170 9.38 155 184 

BMI (kg/m2) 25.9 4.28 19.8 33.4 

Cardiac output (L/hr) 312 38.0 254 381 

Haematocrit (%) 38.0 4.86 30.7 46.5 

Albumin (g/L) 39.5 7.26 28.9 53.0 

GFR (mL/min/1.73m2) 109 24.2 53.3 217 

Liver CYP abundance (pmol P450) 

CYP3A4 8523459 4988135 1378085 44856000 

Liver UGT abundance (pmol protein) 

UGT1A9 1773543 873240 4051 5530162 

Intestinal CYP abundance (pmol P450) 

CYP3A4 64549 38872 9653 322094 

Intestinal UGT abundance (pmol protein) 

UGT1A9 16689 11925 1621 63907 

Abbreviations: BMI = body mass index, GFR = glomerular filtration rate, CYP = cytochrome P450, UGT = Uridine 5'-diphospho-

glucuronosyltransferase. 
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4.3.3 – Physiological and molecular characteristics driving variability in sorafenib 

exposure 

Univariate logistic regression analysis evaluated correlations between physiological and molecular 

characteristics and sorafenib steady state Cmax threshold at > 4.78 mg/L (Table 16) in a cohort of 1,000 

Sim-Cancer subjects. Statistical analysis of multivariable linear regression with stepwise inclusion of 

parameters revealed the primary covariates driving variability in sorafenib AUC were hepatic CYP3A4 

abundance, albumin concentration, body mass index (BMI), body surface area (BSA), sex and weight 

(Figure 32).  
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Table 16. Logistic regression analysis of therapeutic Cmax threshold of > 5.5926 mg/L. 

Parameter OR 95% CI Regression 

p value 

C-statistic 

Physiological Characteristics 

Sex (Male/Female) 1.06 0.71 to 1.58 0.792 0.51 

Age# (years) 1.23 1.00 to 1.52 0.050 0.56 

Weight# (kg) 0.53 0.46 to 0.61 <0.001 0.76 

Height# (cm) 0.65 0.53 to 0.81 <0.001 0.61 

Body Surface Area (m2) 0.02 0.01 to 0.04 <0.001 0.74 

BMI (kg/m2) 0.82 0.79 to 0.86 <0.001 0.73 

Albumin (g/L) 1.07 1.04 to 1.10 <0.001 0.62 

Creatinine (µmol/L) 1.00 0.99 to 1.02 0.636 0.53 

GFR# (mL/min/1.73m²) 0.13 0.06 to 0.29 <0.001 0.66 

CYP3A4 abundance (µmol P450) 

Intestinal 0.16 0.00 to 22.4 0.469 0.5 

Hepatic 0.57 0.52 to 0.63 <0.001 0.96 

UGT1A9 abundance (µmol P450) 

Intestinal# 0.16 0.84 to 1.17 0.903 0.49 

Hepatic 0.49 0.40 to 0.61 <0.001 0.69 

# Age per ten years incremental, weight per 10 kg incremental, height per 10 cm incremental, GFR per 100 ml incremental, intestinal UGT1A9 per 10,000 pmol incremental 

OR = odd ratio, CI = confidence interval, BMI = Body Mass Index, GFR = Glomerular filtration rate. 
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Figure 32 – Correlation of model predicted steady-state sorafenib concentration predicted 

sorafenib AUC. Blue solid line represents the regression line (model-fitted line) for the model-

predicted steady state sorafenib concentration and predicted AUC. Red dash line represents a 

reference line. 

 

Table 17. Multivariable linear regression model performance characteristics. 

Model R2 
Std. Error of 

the Estimate 
R2 Change AUC ROC 

AUC ROC 

change 

a 0.631 0.24141 0.631 0.953 0.953 

b 0.781 0.18614 0.150 0.981 0.028 

c 0.868 0.14458 0.087 0.990 0.009 

d 0.873 0.14156 0.006 0.991 0.001 

e 0.883 0.13619 0.010 0.991 - 

f 0.883 0.13595 0.001 0.991 - 

 Model predictors (a) hepatic CYP3A4 abundance; (b) hepatic CYP3A4 abundance, albumin concentration; (c) hepatic CYP3A4 abundance, 

albumin concentration, BMI; (d) hepatic CYP3A4 abundance, albumin concentration, BMI, body surface area; (e) hepatic CYP3A4 
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abundance, albumin concentration, BMI, body surface area, sex; (f) hepatic CYP3A4 abundance, albumin concentration, BMI, body surface 

area, sex, weight; (g) hepatic CYP3A4 abundance, albumin concentration, BMI, body surface area, sex and weight.  

 

A summary of the performance characteristics for the multivariable linear regression model is shown 

in Table 17. The covariate most strongly associated with variability in sorafenib AUC was hepatic 

CYP3A4 abundance, inclusion of albumin concentration and BMI resulted in substantial improvement 

in multivariable model fit. Stepwise inclusion of additional the covariates BSA, sex and weight resulted 

in minor improvements in model performance (R2 change ≤ 0.010). No other covariate met the stepwise 

inclusion criteria (probability of F to enter ≤ 0.05). These parameters formed the basis of the MIDS. 

The AUC of the ROC for the MIDS predicted steady state AUC was 0.991 (Figure 34). Sixty- three 

subjects (6.3 %) from the Sim-Cancer cohort failed to achieve a Day 14 Cmax > 4.78 µg/mL. MIDS 

predicted individuals that failed to achieve a therapeutic sorafenib Cmax with. 95.2 % sensitivity (60 / 

63 sub-therapeutic individuals) and 95.0 % specificity (809 / 937 therapeutic individuals) (Table 18, 

Figure 34). Shown in Figure 33, differences in albumin concentration between participants were 

associated with changes in fu.  

 

Figure 33 – Correlation between unbound sorafenib and albumin concentration. 
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Table 18. Classification matrixes describing the capability of linear regression models to identify 

individuals with a sub-therapeutic sorafenib steady state Cmax.      

 Predicted Therapeutic Cmax Percentage 

correct Sub-therapeutic Therapeutic 

Observed 

Therapeutic 

Cmax 

Sub-therapeutic 
60  

(true negative) 

3  

(false negative) 
95.2 

Therapeutic 
47  

(false positive) 

890  

(true positive) 
95.0 

 

 

 

Figure 34 – Receiver operating characteristic (ROC) curve demonstrating the prediction 

performance of a predicted steady state sorafenib AUC. 

4.3.4 – Impact of dose individualisation 

The proportion of participants with a simulated sorafenib Cmax below, within and above the target 4.78 

to 5.78 µg/mL range at Day 14 and Day 28 based following flat 400 mg dosing, concentration-guided 
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dosing and concentration guided dosing with MIDS is reported in Table 19. Concentration guided 

sorafenib dosing without MIDS identified that 12.4 % of subject (62/500) failed to achieve a Day 14 

Cmax ≥ 4.78 µg/mL with 400 mg twice daily dosing. Increasing the sorafenib dose to 600 mg twice daily 

in individuals who failed to achieve a Day 14 sorafenib Cmax > 4.78 µg/mL, while retaining the 400 mg 

twice daily dose for those who did achieve a Day 14 sorafenib Cmax ≥ 4.78 µg/mL resulted in 99 % of 

subjects (495/500) achieving a Day 28 Cmax ≥ 4.78 µg/mL. Concentration guided sorafenib dosing 

without MIDS resulted in an additional 43 subjects achieving a Day 28 Cmax > 5.78 µg/mL compared 

to flat 400 mg dosing. 

Table 19. Number of participant below, within and above target concentration range with different 

sorafenib dosing protocols. 

Dosing Protocol 

Day 14 Day 28 

< 4.78 

µg/mL 

4.78 to 5.78 

µg/mL 

> 5.78 

µg/mL 

< 4.78 

µg/mL 

4.78 to 5.78 

µg/mL 

> 5.78 

µg/mL 

Flat dosing 62 116 322 62 116 322 

Concentration guided dosing 62 116 322 5 130 365 

Concentration guided dosing 

with MIDS 
34 135 331 5 164 331 

 

On the basis of MIDS, 52 subjects were allocated to receive an initial sorafenib dose of 500 mg and 448 

subjects were allocated to receive an initial sorafenib dose of 400 mg. Concentration guided sorafenib 

dosing with MIDS resulted in 6.8 % (34/500) subjects failing to achieve a Day 14 Cmax ≥ 4.78 µg/mL. 

Increasing the sorafenib dose to 600 mg twice daily in individuals who failed to achieve a Day 14 

sorafenib Cmax ≥ 4.78 µg/mL, while retaining the MIDS informed twice daily dose for those who did 

achieve a Day 14 sorafenib Cmax ≥ 4.78 µg/mL resulted in 99 % (495/500) of subjects achieving a Day 

28 Cmax ≥ 4.78 µg/mL. Concentration guided dosing with MIDS resulted in an additional 9 subjects 

achieving a Day 28 Cmax > 5.78 µg/mL compared to flat 400 mg dosing. Post-hoc analysis demonstrated 

that 3 of these subjects would have a Cmax < 4.78 µg/mL with 400 mg dosing, while the remaining 6 

subjects could have retained a Day 28 Cmax ≥ 4.78 µg/mL while avoiding a Day 28 Cmax > 5.78 µg/mL 

with a dose reduction from 500 mg to 400 mg following assessment of Cmax on Day 14, however dose 

reduction was not incorporated into the simulation protocol.  

4.4 – Discussion 

The present study demonstrated that concentration guided dosing with MIDS facilitates therapeutic 

sorafenib exposure in 99 % of subjects within 28 days while minimising the number of additional 

subjects at risk of supra-therapeutic dosing compared to concentration guided dosing alone. 

Multivariable linear regression modelling demonstrated that variability in simulated sorafenib AUC and 

Cmax is associated with hepatic CYP3A4 abundance, albumin concentration, BMI, sex, age and weight. 
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Logistic regression modelling of these covariates predicted individuals likely to fail to achieve sorafenib 

Cmax ≥ 4.78 mg/L with high sensitivity and specificity (95.2 % and 95 %, respectively). Incorporation 

of these parameters into an MIDS algorithm that allocated subjects to a 400 mg or 500 mg initial 

sorafenib dose resulted in a 50 % reduction in the number of subjects that failed to achieve a Day 14 

Cmax ≥ 4.78 mg/L. When used in conjunction with concentration guided dosing at Day 14, this protocol 

resulted in 99 % of subjects attaining a Day 28 Cmax ≥ 4.78 mg/L.  

The current study also highlights the potential danger of empiric concentration guided dosing in terms 

of placing patients at an increased risk of toxicity. In the absence of MIDS, 69 % of subjects (43/62) 

that underwent a dose escalation from 400 to 600 mg on Day 14 experienced a Cmax on Day 28 that is 

associated with increased risk of grade II toxicity. Compared to concentration guided dosing alone, the 

concentration guided dosing with MIDS protocol reduced the number of additional subjects at increased 

risk of grade II toxicity on Day 28 (Cmax ≥ 5.78 mg/L) from 43 to 9. 

PBPK modelling and simulation is an established tool to support drug discovery and development, and 

is a core element of the regulatory approval process in many jurisdictions [212]. Recent studies have 

further demonstrated the potential role of PBPK in predicting covariates affecting variability in drug 

exposure resulting from either patient characteristics or the drugs’ physicochemical properties [197, 

198], giving rise to the intriguing potential for this platform to support model informed precision dosing 

[199, 205]. Since the introduction of imatinib in 2001 there has been a growing evidence base 

supporting a role for concentration guided KI dosing, despite this implementation of KI dose 

individualisation has remained challenging. Many early studies focussed on a potential role for TDM 

guided KI dosing, however, sufficient evidence has yet to be generated to support widespread 

implementation for any KI. This has led to the exploration of novel approaches to facilitate precision 

KI dosing, which have included model informed precision dosing based on integrated 

simulation/prediction platforms such as PK-Sim®, GastroPlusTM, PhoenixTM, and Simcyp® [199, 213-

215]. 

The target concentration range and dose escalation protocol used in the current study were based on the 

best current evidence [186, 191]. The main limitation to this study remains the lack of independent 

verification of the 4.78 to 5.78 µg/mL target Cmax range. Further, when considering the clinical 

implementation, it is also important to note that the rate at which sorafenib is absorption from the GIT 

varies > 5-fold [183]. Variability in the rate of intestinal absorption results in marked variability in the 

time taken to reach Cmax for sorafenib (1 to 6 hours). As such, in the absence of full PK (AUC) sampling, 

which is not practical in a clinical setting, concentration guided sorafenib dosing based on a Cmax target 

is unlikely to be robust. 

Liver CYP3A4 abundance was identified as the dominant characteristic driving variability in sorafenib 

AUC and Cmax. By accounting for this characteristic alone, it was possible to identifying subjects with 
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a sub-therapeutic sorafenib Cmax with a specificity of 74.6 % and a sensitivity of 96.3 %. When hepatic 

CYP3A4 abundance was considered along with readily attained data regarding albumin concentration, 

BMI, BSA, sex and weight in combination with albumin concentration, these two parameters accounted 

for > 88 % of multivariable model performance in terms of R2, specificity and sensitivity (Table 17). 

These data suggest that consideration of liver CYP3A4 abundance may provide sufficient power to 

prospectively identify patients who are likely to require a higher sorafenib dose in order to achieve a 

therapeutic plasma concentration. Importantly, recent work in this [216] and other [217, 218] 

laboratories has demonstrated that quantification of extracellular vesicle (EV) derived CYP3A protein, 

mRNA and ex vivo activity robustly describes variability in CYP3A activity in humans.  

This study identified the major physiological and molecular characteristics associated with between 

subject variability in sorafenib exposure to be hepatic CYP3A4 abundance, albumin concentration, 

BMI, BSA, sex and weight. Initial dose selection informed by a model accounting for these covariates 

resulted a quicker and more effective concentration guided sorafenib dosing. 

  



90 

 

CHAPTER 5: EVALUATION OF THE VALUE OF EXTRACELLULER 

VESICLES AS NOVEL BIOMARKER IN DRUG METABOLISING 

ENZYMES: THE EXPLORATORY ANALYSES   

5.1 – Function of this Chapter 

Chapters 2 and 3 of this thesis demonstrated the substantial variability in sorafenib plasma 

concentration and the potential importance of this variability in terms of defining efficacy and 

tolerability for this drug. Additionally, Chapter 4 of this thesis defined the physiological and molecular 

characteristics that were most strongly associated with variability in sorafenib exposure. While several 

characteristics such as gender, body surface area, BMI and even albumin concentration can be readily 

evaluated using existing strategies, there is currently no endogenous marker to robustly characterise an 

individual CYP3A4 abundance and functions. For sorafenib, differences in CYP3A4 abundance 

between individuals was identified as the most important characteristic associated with variability in 

sorafenib exposure, accounting for around 60 % of the variability in the univariate linear regression 

analysis and as the top variable in the multiple linear regression analysis [219]. 

4-beta-hydroxycholesterol (4-β-HC) is an endogenous small molecule that has been proposed as a 

marker of CYP3A4 function [66, 220]. Changes in 4-β-HC concentration within an individual pre- and 

post- an intervention have been demonstrated to correlate well with induction of CYP3A4 expression 

[66]. However, marked variability between individuals in the activity of alternate biological pathways 

involved in cholesterol synthesis and metabolism limit the utility of 4-β-HC as a marker of between 

subject variability in CYP3A4 activity [221]. As such, the final chapter of this thesis primarily sought 

to explore extracellular vesicles as a novel source of biomarkers to define CYP3A4 abundance. 

Exploratory analyses were also performed to determine the breadth of drug metabolising enzymes 

(DME) that could be studied using EVs. 
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5.2 – Introduction 

One of the approaches in precision medicine is to identify novel biomarkers to serve as a tool to assist 

the decision-making in drug administration and dosing. Previous chapters have demonstrated two 

possible approaches to address precision medicine; nevertheless, they were unlikely feasible to be 

applied in a clinical setting. Thus, there is an urge to identify a novel biomarker which holds a versatility 

yet well-suited in any scale of clinical setting. Recently, liquid biopsy has drawn much attention as its 

notion as a minimally invasive diagnostic approach compared to more invasive approaches such as 

tissue biopsy [222-224]. More importantly, the traditional tissue biopsy may not be feasible in some 

patients, such as patients who have late-stage cancer, multiorgan metastasis or in a deplorable health 

condition. Whereas, liquid biopsy not only offers less invasive approach, but also allows the process to 

be readily repeated and more applicable, regardless of the location of the tumour [225-227]. 

Liquid biopsy utilises biofluid-derived materials as a source of the subsequent downstream experiments. 

Currently, there are three main areas of liquid biopsy which have been extensively studied, including 

circulating tumour cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs) [228-230]. 

The efficiency of cfDNA has long been observed as a robust preventive biomarker, especially in cancers 

[231-233]. A good example of the successful use of cfDNA can be observed such as in the case of 

COLVERA® test kit for surveillance of relapsed colorectal cancer after primary treatment [234]. 

Nonetheless, most of the application tends to focus on the detection of the mutated gene released from 

tumour cells. Using of cfDNA may be useful as a preventive minimal invasive diagnostic approach; 

however, it is unlikely to further develop into any meaningful quantitative interpretation. On the other 

hand, EVs, mainly the small-diameter subpopulation – small EVs, demonstrated the capability to 

preserve its cargo with lipid-bilayer property, thus prolonging its content from the degradation [235-

238]. This feature also facilitates cell-to-cell communication as the secreted small EVs were found to 

function as an intercellular messenger [239-243]. Thus, there is more opportunity of using small EVs 

for the further downstream experiment, unlike cfDNA that mostly restricted to qualitative-based 

evaluation [244, 245]. 

Drug metabolism is the principal part of drug disposition. The enzymes that involve in the process of 

drug metabolism are generally categorised as DMEs. Within DMEs, there are two prominent enzyme 

families; cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) account for the metabolic 

clearance of more than 70 % of drugs that are subject to metabolism [25, 246, 247]. DMEs are found to 

be highly expressed in the liver with a lesser degree in the small intestine [248-251]. Thus, supposedly, 

the cargo of liver-derived small EVs should contain liver-specific proteins, RNAs, and other genetic 

material related to its originate. Previously, proteomics analysis of small EVs isolated from rat 

hepatocyte could identify a large number of proteins related to DMEs along with general small EVs 

proteins [117]. Prior commencing this thesis, there was no evidence regarding the identification of 
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DMEs focusing on CYPs and UGTs in human plasma/serum small EVs. The research question 

underpinning this chapter was; could EV-derived CYP3A4, the predominant liver CYP isoform, 

proteins and mRNA are used as markers to predict the variability in exposure to medicine cleared by 

this enzyme? To achieve the research question, series of experimental plan were conducted including: 

• Evaluation of the isolation capability of EVs from human plasma/serum and cell culture 

supernatant.  

• Determination of the presence of CYP and UGT enzymes in EVs at protein and mRNAs 

level. 

• Demonstration of the functional activity of the EVs-derived proteins from human 

plasma/serum and cell culture supernatant using the validated high turn-over rate probe 

substrate (midazolam). 

• Demonstration of the capacity to metabolise sorafenib using the same ex vivo assay 

conditions. 

Experimental design for this Chapter is summarised in Figure 35. 

 

Figure 35 – Experimental design. 
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5.3 – Materials and Methods 

5.3.1 – In vitro cell culture 

5.3.1.1 – Cell Culture  

Undifferentiated HepaRG cells were donated by Biopredic international (Rennes, France) under MTA 

agreement. Cells were grown in William’s E media supplemented with 2 mM Glutamax, 10 % foetal 

bovine serum (FBS), 100 IU/mL penicillin, 100 µg/mL streptomycin, 5 µg/mL bovine insulin, and 50 

µM hydrocortisone hemisuccinate. Cells were maintained in growth media for 14 days to allow 

proliferation. At day 15, cells cell growth media was replaced with growth media containing 1 % DMSO 

for 3 days, before culturing in differentiation media containing 2 % DMSO for 18 days. Media was 

replaced every 2-3 days throughout the culturing process. HepaRG cell differentiation is shown in 

Appendix 3. 

To passage the cells, media were removed and cells were washed with sufficient amount of sterile PBS 

and detached from the flask by the addition of 2 mL (for T75) 0.05 % trypsin/0.53 mM EDTA in PBS 

solution and incubated at 37°C for less than 3 minutes.  

For induction study (Appendix 3), HepaRG cells were cultured in induction media (William’s E media 

supplemented with 2 mM Glutamax, 100 IU/ml penicillin, 100 µg/mL streptomycin, 4 µg/ml bovine 

insulin, and 50 µM hydrocortisone hemisuccinate). Rifampicin was dissolved in DMSO at 1,000-fold 

to the desired final concentration in order to minimise DMSO concentration to less than 0.1 % in the 

incubation. Cells were cultured in induction media with presence or absence of 10 µM rifampicin for 

48 hours with media and drug renewal every 24 hours. At 48 hours, cells were harvested by removing 

the media followed by wash briefly with sufficient sterile Dulbecco's phosphate-buffered saline (D-

PBS). Cells were scraped from the attachment using cells scrapper before transferring to the collection 

tubes.  

5.3.1.2 – Cell conditioned medium (CM) preparation   

The conditioned media were harvested by direct transfer to collection tubes using a pipette. A total of 

250 mL of media were collected (25 mL per flask, 10 flasks per experiment). Media were centrifuged 

at 2,500 g for 15 minutes at 4°C for two cycles before EVs isolation was subsequently performed. The 

number of cells was counted using Neubauer Haemocytometer Cell Counting Chamber (Adelab 

Scientific, Australia). The cells were suspended in PBS (1x) and further diluted to an appropriately 

working range between 250,000 cells and 2.5 million cells per mL. The volume of 20 µL of diluted 

samples was introduced into the Neubauer chamber by slowly placing the pipette tip at the edge of the 

chamber covered by coverglass. Release the suspension slowly to fill an entire chamber. 
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5.3.1.3 – Tangential flow filtration (TFF) 

Tangential flow filter (TFF, HansaBioMed) was used to concentrate CM, exactly as per manufacturer’s 

recommendation. Each 150 mL of CM was concentrated to 3 mL (i.e. concentrated by a factor of 50), 

prior to isolation using size exclusion chromatography (SEC) column.  

5.3.2 – EV isolation from cell CM 

5.3.2.1 – Size exclusion chromatography (SEC) 

Concentrated HepaRG CM EVs were isolated using qEV2 column (Izon Science). SEC columns were 

left to stand in an upright position at room temperature (RT) for 30 minutes, in order to achieve 

operational temperature range (18-24°C). EVs isolations was performed as per manufacturer’s 

recommendation. Briefly, filter reservoir was rinsed with 5 mL of 0.2 µm filtered PBS and attached to 

the column (avoiding trapped air bubbles between the reservoir and the column). Bottom cap of the 

column was removed allowing the buffer (filtered PBS) to run through the column. Column was washed 

with 60 mL of 0.2 µm filtered PBS before sample loading.    

Following column wash, 2 mL of CM was loaded into the filter reservoir. Void flow-through of 14 mL 

was discarded and subsequent 10 mL of flow-through containing EVs was collected in 10 mL collection 

tube (Corning). EVs containing flow-through was further concentrated using Amicon ultra-15 filter unit 

(Merck Milipore). Briefly, Amicon filters were washed by applying 4 mL of 0.2 µm filtered PBS and 

centrifuging at 4,000 g at 10°C in a swing-arm bucket centrifuge for 15 minutes. Flow-through was 

discarded and 10 mL of dilute qEV sample was added to the reservoir of washed Amicon filter unit. 

Sample was centrifuged for 30 minutes at 4,000 g at 10°C. Concentrated qEV sample (200 µL 

approximately) was transferred from Amicon filter unit reservoir into a Protein LoBind tube. Sufficient 

volume of 0.2 µm filtered PBS was added to concentrated qEV samples to obtain total sample volume 

of 200 µL (for normalisation purposes). The overview of the work flow is illustrated in Figure 36. 
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Figure 36 – Overview of small EVs isolation from HepaRG conditioned media.  

5.3.3 – EV isolation from human serum 

5.3.3.1 – Collection of blood/serum/plasma 

Eight millilitres of whole blood was collected into Z Serum Sep Clot Activator (serum collection) or 

EDTA tubes (plasma collection, Greiner Bio-One, Frickenhausen, Germany) or using a 21-gauge 

Vacuette Safety Blood Collection sealed vacuum device (Greiner Bio-One, Frickenhausen, Germany) 

from healthy participants that provided informed consent. To ensure sample quality the device was 

primed by collecting a 5 mL ‘discard’ tube immediately prior to sample collection. Serum was isolated 

from whole blood within 60 minutes of sample collection by two cycles of centrifugation at 2,500 g for 

15 minutes at 4°C. Plasma was isolated immediately after collection by two cycles of centrifugation at 

2,500 g for 15 minutes at 4 °C. 

5.3.3.2 – Size exclusion chromatography (SEC) 

Human serum EVs were isolated using the same method as described in 5.3.2.1, except 2 mL of human 

serum was loaded into filter reservoir instead of 2 mL of cell CM.  
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5.3.3.3 – Human plasma EV isolation by exoEasy kit: membrane affinity-based isolation 

ExoEasy Maxi kit is a membrane affinity-based isolation kit from Qiagen (Qiagen, Germany). The kit 

applies the membrane affinity with spin column mechanism to facilitate the purification of EVs. Human 

plasma samples were filtered using 0.2 μm syringe filters. Approximately 2 – 4 mL of the resulting 

filtrate was mixed with 1.25 volumes of binding buffer (Qiagen XBP) and the resulting mixture was 

added to the reservoir compartment of the spin columns. All centrifugation steps were performed at RT. 

Firstly, samples were centrifuged for 5 minutes at 500 g, flow-through discarded. Wash buffer (10 μL; 

Qiagen XWP) was added to the reservoir compartment and the columns were centrifuged for 5 minutes 

at 4,000 g, flow-through discarded. Subsequently, elution buffer (400 μL; Qiagen XE) was added to the 

reservoir compartment and the spin columns were transferred to fresh collection tubes. Sample columns 

were incubated at RT for 90 seconds followed by centrifugation for minutes at 500 g. The resulting 

flow-through was reapplied to the reservoir compartment and incubated at RT for further 90 seconds 

(Figure 37). Sample containing columns were centrifuged for 5 minutes at 4,000 g. Resulting the flow-

through containing EVs was stored at –80°C until needed for downstream analyses. 

 

Figure 37 – A schematic representation of exoEasy kit isolation workflow (Adapt from: Qiagen 

exoEasy Maxi kit Handbook) Figure created with BioRender.com. 

5.3.4 – Western blotting to determine TSG101 

Approximately 25-40 μg total protein of samples were diluted 1:4 in sample loading buffer (4x Sodium 

dodecyl sulphate (SDS)-PAGE buffer) and heated at 95°C for 5 minutes. Proteins were separated by 
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SDS-PAGE (4 % stacking gel, 10 % separation gel) at RT; at 80 V for 20 minutes and 150 V for 60-80 

minutes through stacking gel and separating gel, respectively using Biorad® Mini-Protean II Cell 

equipment. Proteins were transferred on to nitrocellulose membrane (BioRad®) in an ice-cooled Mini 

Trans-Blot Cell apparatus (BioRad®) at 20 V overnight at 4°C. Membrane was washed briefly once 

with Tris-buffered saline (TBST) with 0.2 % Tween-20 and blocked in 5 % (w/v) blocking buffer 

(TBST + 5 % non-fat dry milk) on shaker for 100 at RT. Rinse the membrane briefly with sufficient 

TBST then incubated the membrane with primary antibody (1:1000) and 1 % blocking buffer for 

overnight on the shaker at 4°C. Subsequently, relocated the membrane to RT followed by washing 3 

times using TBST (10 minutes per wash). The membrane was incubated with the anti-species-specific 

Horseradish peroxidase labelled IgG (1:2000), 1:10000 BioRad® Precision Plus Strep-Tactin HRP 

conjugates and 1 % blocking buffer for 1.5 hours. The membrane was washed in TBST for 3 more times 

(10 minutes per wash). Membrane‐bound peptides conjugated with horseradish peroxidase were 

detected by chemiluminescence (Roche Diagnostics, Mannheim, Germany) and subsequently exposed 

to Omat autoradiographic film (Eastman Kodak, Rochester, NY, USA). Autoradiographs were 

processed manually with AGFA developer, fixer and replenisher reagents. 

5.3.5 – Transmission electron microscopy (TEM) 

Samples were prepared adapting a previously published protocol with a slight modification [252]. 

Briefly, specialised carbon-coated grids (Ted-Pella B 300M; Ted-Pella, Redding, CA, USA) were 

cleaned and hydrophilized using plasma glow discharge for 15 seconds (Gatan SOLARUS Advanced 

Plasma Cleaning System, Gatan, Inc., Pleasanton, CA, USA) before using in the samples preparation 

process. Five-μL of sample in 0.2 μm filtered PBS was placed on carbon-coated grids for 5 minutes. 

Wash the carbon-coated grids briefly for 15 seconds at RT with 0.2 μm filtered PBS. Subsequently, the 

carbon-coated grids were contrasted with 2 % uranyl acetate for 3 minutes at RT washed once then 

examined by FEI TECNAI Spirit G2 TEM (Thermo Fisher Scientific, Waltham, MA, USA) operated 

at 100 kV. TEM images were acquired at 30,000x and 68,000x.  

5.3.6 – Nanoparticle tracking analysis (NTA)  

Nanoparticle tracking analysis (NTA) was performed to determine the abundance and size distribution 

of the isolated EVs isolated from human serum and HepaRG conditioned media. NTA was performed 

using the NanoSight NS300 (Malvern Panalytical, Malvern, United Kingdom, Software Version 3.4). 

Human serum EV samples and HepaRG EV samples were diluted between 1:1000 and 1:5000 using 

freshly 0.2 µm filtered PBS; five 60 seconds videos were captured and analysed under constant flow 

conditions (flow rate 50) using NTA 3.4 software. 
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5.3.7 – Extraction of total RNA from EVs using exoRNeasy kit 

EV isolations for downstream extraction of RNA is described in Section 5.3.3.3. Following washing 

XWP buffer, the column was transferred to the new collection tube and 700 µL of QIAzol lysis agent 

(Qiagen) was added directly to the membrane. Columns were centrifuged at 5,000 g for 5 minutes to 

collect the lysate. Chloroform (90 µL) was added to the lysate, and the mixture was incubated at RT for 

2-3 minutes and centrifuged at 12,000 g for 15 minutes at 4°C. Centrifugation separated the samples 

into 3 phases: the partition of RNA in the upper colourless aqueous phase, DNA partition in the 

interphase, and the organic phase. Aqueous phase (approximately 200 µL) was transferred to a new 1.5 

mL tube and two volumes of 100 % ethanol were added (approximately 400 µL). The total volume of 

mixture around 600 µL was transferred to RNeasy MinuteElute spin column (Qiagen. Column was 

topped up with the sample and centrifuged at ≥ 8,000 g for 15 seconds at RT until the remaining sample 

was loaded. Seven hundred µL washing buffer RWT was added to the column and columns was 

centrifuged at 8,000 g for 15 seconds. 500 µL of buffer RPE was added to the column, followed by 

8,000 g centrifugation for 15 seconds. The step was repeated using 500 µL RPE buffer and followed by 

centrifugation at 8,000 g for 2 minutes. Spin column was placed in a new 2 mL collection tube and 

centrifuged at 18,000 g for 5 minutes with the lid open, allowing the membrane to dry. Following 

centrifugation, column was transferred to a new 1.5 mL collection tube and 14 µL of RNase-free water 

was added directly to the centre of the membrane (The lid of the spin column was closed and the column 

was left to stand for 1 minute. The column was centrifuged at 18,000 g for 1 minute to elute the total 

RNA from the membrane.   

5.3.8 – Generation of cDNA using Superscript VILO cDNA synthesis kit. 

The RNA was reverse transcribed to cDNA using the SuperScript™ VILO™ cDNA Synthesis Kit 

according to the manufacturer’s protocol (Invitrogen). Master mix was prepared mixing 4 μL of 5x 

VILO reaction mix, 2 μL of 10x SuperScript Enzyme Mix (per reaction) and added to RNA sample 

(140 ng per reaction) then use DEPC-treated water bring to 20 μL. Mix the reaction tubes gently and 

incubate at 25°C for 10 minutes, follow by 42°C for 60 minutes, then terminate the reaction at 85°C at 

5 minutes. The cDNA can be kept at -80°C until use. 

5.3.9 – Detection of CYP and UGT mRNA in EVs isolated from plasma. 

Primer sets used are detailed in the Table 20. Assay setup used for PCR was: 20 μL reactions containing 

1x GoTaq qPCR Master Mix, 0.5 μM each primer and template cDNA equivalent to 20-40 ng input 

RNA. PCR conditions used for quantitative analysis were: 95°C for 15 minutes (activation); 40 of 15 

second cycles of 95°C; 15 seconds at 60°C (annealing) and 72°C for 20 seconds; and a ramped melting 
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curve analysis between 55 and 95°C with 4 seconds, 1°C steps. Data was acquired during the 72°C 

extension phase of each cycle. 

Table 20. Primer sequences used in gene expression assays.  

Genes Forward Primer sequence Backward Primer sequence 

CYP 

1A1 GGTCAAGGAGCACTACAAAACC TGGACATTGGCGTTCTCAT 

1A2 
CAGAAGCTTCAAGCACAGCGAGAAC

TAC 

CAAGGATCCGGGTCTTGTCGATGGCC

GA 

2C8 TGTAAAACGACGGCCAGT CAGGAAACAGCTATGACC 

2C9 TACAATACAATGAAAATACATG CTAACAACCAGACTCATAATG 

2C19 TGTAAAACGACGGCCAGT CAGGAAACAGCTATGACC 

2D6 GCAAGAAGTCGCTGGAGCAGTG CTCACGGCTTTGTCCAAGAGAC 

2E1 GCCATCAAGGATAGGCAAGA TCCAGAGTTGGCACTACGACT 

3A4 AGTATGGAAAAGTGTGGGGCT TGGAGACAGCAATGATCGTAA 

3A7 CTATGATACTGTGCTACAGT TCAGGCTCCACTTACGGTCT 

UGT 

1A1 ATGCTGTGGAGTCCCAGGGC CCATTGATCCCAAAGAGAAAACC 

1A6 CTTTTCACAGACCCAGCCTTAC TATCCACATCTCTCTTGAGGACAG 

1A9 GAGGAACATTTATTATGCCACCG CCATTGATCCCAAAGAGAAAACC 

2B4 
TCTACTCTTAAATTTGAAGTTTATCC

TGT 
TCAGCCCAGCAGCTCACCACAGGG 

2B10 TGACATCGTTTTGCAGATGCTTA CAGGTACATAGGAAGGAGGGAA 

2B17 
GTGTTGGGAATATTCTGACTATAATA

TA 
CAGGTACATAGGAAGGAGGGAA 

2B15 
ATCCCAATGACGCATTCACTCTTAAA

CTC 
CAGGTACATAGGAAGGAGGGAA 

 

5.3.10 – Proteomics screening to determine the abundance of DMET in EVs  

Proteomics in-gel digestion was performed to determine the abundance of DMET peptides in EVs 

isolated from plasma. Briefly, in-gel trypsin digestion was performed on 40 to 70 kDa bands excised 

from 1D-SDS PAGE gels. Gel fragments were destained and dehydrated at RT by adding 100 µL of 

acetonitrile. Protein bands were reduced using 10 μmol/L dithiothreitol (DTT) then alkylated using 50 

μmol/L iodoacetamide (IAA) by incubating gel fragments at 60°C for 30 minutes. Gels were dehydrated 

using 100 μL acetonitrile and digested with trypsin at an enzyme‐to‐protein ratio of 1:20 for 16 hours 

at 37°C. Peptides were extracted by adding acetonitrile at a final concentration of 50 %. Peptides were 
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separated by LC performed on a Waters XBridge BEH C18 column (150 mm × 0.3 mm, 3.5 μm) with 

a 45 minutes acetonitrile gradient using an AB Sciex Ekspert 400 nanoHPLC. Column elutant was 

monitored using an AB Sciex 5600+ triple time of flight MS operating in positive ion mode, with rolling 

collision energy and dynamic accumulation enabled. Three technical replicates were performed for each 

sample. De novo sequencing was performed on raw MS data using Peaks Studio v7.0 software. 

5.3.11 – Targeted proteomics for the quantification of DMET in EVs  

Targeted proteomics was performed using an in-solution digestion approach to quantify the abundance 

of the targeted DMET. CYP3A4 proteins were quantified. Briefly, samples were thawed slowly on ice. 

Protein samples (50 µL) were diluted in sufficient amount of 1xPBS to make 100 µL starting volume. 

Samples underwent a freeze-thawing process for three-cycle using dry-ice and water bath (set at 37ºC). 

50 mM ammonium bicarbonate (pH 8) was added, followed by 200 mM DTT to the sample. Samples 

were incubated at 60ºC for 90 minutes on a heat block. Samples were allowed to cool down to RT for 

15 minutes. For the alkylation step, 400 mM iodoacetamide was added to the samples, followed by 

incubation for 60 minutes in the dark. Upon alkylation, 2.5 µg of trypsin (Trypsin Gold, Promega) was 

spiked into the reduced and alkylated protein sample and digestion was carried out for 12 hours in the 

shaking water bath set to 37ºC. Digestion was quenched with formic acid (10 % v/v) and pelleting the 

excess debris by centrifugation at 16,000 g at 4°C for 10 minutes. 100 µL of clear supernatant was 

carefully removed and transferred to the LC-MS vial, 7 µL was injected for LC-MS/MS analysis. 

During the LC-MS/MS run, peptides were separated on an Agilent HPLC column (AdvanceBio peptide 

map, 2.1 x 100 mm, 2.7 µm). HPLC mobile phases consisted of 0.1 % formic acid in 100 % de-ionised 

water v/v (A) and 0.1 % formic acid in 100 % Acetonitrile v/v (B). After the 0 minutes, initial hold at 

90 % A and 10 % B, mobile phase composition began with 90 % A and 10% B for 3 minutes. The 

gradient then changed to 40 % A and 60 % B for 10 seconds. The flow rate was set at 0.3 mL/minute. 

Agilent triple quadrupole mass spectrometer optimized for selected SRM and quantification was 

performed using the Water MS Quantitative software. 

5.3.12 – Ex vivo CYP activity assay 

5.3.12.1 – Enzyme activity assay to determine the protein functionality from cell lysates. 

HepaRG cells were lysed by resuspending in Tris-EDTA buffer (pH 7.4) then performed four freeze-

thawing cycles using dry-ice and water bath set to 37ºC. Milli-Q water, 1 M potassium phosphate buffer 

and cell lysates were added to 1.5 mL Eppendorf Tubes. Cell lysates were replaced with an equal 

volume of Milli-Q water for no protein control. Samples (in duplicate) were pre-incubated in the 

absence of NADPH for 10 minutes in a shaking water bath at 37ºC. Following pre-incubation, NADPH 

was added to initiate reactions. The final incubation volume was 200 µL. Midazolam and NADPH were 
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replaced with an equal volume of Milli-Q water for no substrate and no cofactor controls, respectively. 

Samples were incubated in a shaking water bath at 37ºC for 60 minutes. Reactions were terminated with 

the addition of 400 µL of ice-cold 0.1 % (v/v) formic acids in methanol. Samples were centrifuged at 

16,000 g for 15 minutes at 4ºC. 300 µL of the clear supernatant was removed from each tube and 

transferred to 2 mL LC vials fitted with 400 µL pulled-point glass inserts. Vials were then capped and 

transferred to the LC-MS for analysis.  

5.3.12.2 – Enzyme activity assay to determine the protein functionality from EVs  

EVs were isolated from HepaRG conditioned media using the methods as described elsewhere. The 

activity assay was carried similar to cell lysates with a slight modification. Briefly, Milli-Q water, 1 M 

potassium phosphate buffer and cell lysates were added to 2 mL LoBind Eppendorf Tubes. EVs were 

replaced with an equal volume of 1xPBS for no protein control. Samples (in duplicate) were pre-

incubated in the absence of midazolam and NADPH for 24 hours in a shaking water bath at 37ºC. After 

24 hours, midazolam followed by NADPH was added to initiate the reactions. The final incubation 

volume was 100 µL. Midazolam and NADPH were replaced with an equal volume of Milli-Q water for 

no substrate and no cofactor controls, respectively. Samples were incubated in a shaking water bath at 

37ºC for 24 hours. Reactions were terminated with the addition of 100 µL of ice-cold 0.1 % (v/v) formic 

acids in methanol. Samples were centrifuged at 16,000 g for 15 minutes 37ºC. 100 µL of the clear 

supernatant was removed from each tube and transferred to 2 mL LC vials fitted with 250 µL pulled-

point glass inserts. Vials were then capped and transferred to the LC-MS for analysis. 

5.4 – Results 

5.4.1 – Western blotting 

Small EV presence was confirmed by Tsg101 protein expression in EVs lysates isolated from human 

plasma and from CM from HepaRG cells. As expected, significantly lower expression of Tsg101 in 

HepaRG cell lysates, compared to EVs (Figure 38).  
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Figure 38 – Immunoblot demonstrating Tsg101 (44 kDa) expression in human plasma and 

HepaRG EV isolated by exoEasy kit.  

5.4.2 – CYP and UGT mRNA expression in plasma EVs 

The presence of CYP 1A2, 2C8, 2C9, 2D6, 2E1 and 3A4, and UGT 1A1, 1A9, 2B4, 2B7 and 2B10 

mRNAs in EVs isolated from human plasma was confirmed by real-time PCR. The relative expression 

of individual CYP and UGT mRNAs in EVs were reported in Table 21. 

Table 21. Expression of CYP and UGT mRNA in plasma EVs. Data was partially generated by 

Wijayakumara D.  

Family Gene Cycle time (Ct) 

CYP 

1A2 31.72 

2C8 32.63 

2C9 33.29 

2E1 29.60 

3A4 32.35 

UGT 

1A1 34.34 

1A9 34.78 

2B4 29.49 

2B7 33.27 

2B10 32.18 

2B15 30.22 

5.4.3 – CYP and UGT proteins detected in EV isolated from plasma 

Mass spectrometry based proteomic profiling of EVs isolated from human plasma detected 188 unique 

peptides originating from CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2 J2, 3A4 and 3A5, and UGT 

1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10 and 2B15. The unique peptides attributed to each protein 

are summarized in Table 22. The number of unique peptides detected for each protein ranged between 

2 and 19, with a mean of 9.65. In addition, 5 unique peptides originating from NADPH‐cytochrome 

P450 reductase (the redox partner required for CYP activity) were also detected. The capacity to detect 

peptides originating from CYP and UGT proteins was confirmed in plasma from 3 individuals. It is 

worth further noting that while cytochrome b5 (34.5 kDa) was not detected in the current analysis as it 
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was not contained within the window of protein bands analysed (40 to 70 kDa), the presence of this 

protein in human‐derived small EVs has already been established.  

Table 22. Proteomics analysis of human plasma EVs at target gel band 40 to 70 kDa. 

Family Enzyme 
Number of 

Unique Peptides 
Peptide Sequences 

CYP 

1A2 16 

ASGNLIPQEK 

DTTLNGFYIPK 

ELDTVIGR 

FLTADGTAINKPLSEK 

FLWFLQK 

GRPDLYTSTLITDGQSLTFSTDSGPVWAAR 

HSSFLPFTIPHSTTR 

IGSTPVLVLSR 

LSDRPQLPYLEAFILETFR 

MMLFGMGK 

NPHLALSR 

NTHEFVETASSGNPLDFFPILR 

TVQEHYQDFDKNSVR 

VDLTPIYGLTMK 

YGDVLQIR 

YLPNPALQR 

2B6 8 

FHYQDQEFLK 

FSDLLPMGVPHIVTQHTSFR 

HRETLDPSAPK 

IAMVDPFFR 

KTEAFIPFSLGK 

YGDVFTVHLGPR 

YGFLLMLK 

YPHVAER 

2C8 14 

DQNFLTLMK 

EALIDNGEEFSGR 

EHQASLDVNNPR 

GLGIISSNGK 

LPPGPTPLPIIGNMLQIDVK 

MLQIDVK 

NLNTTAVTK 

RFDYKDQNFLTLMK 

RFNENFR 

SDYFMPFSAGK 
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SFTNFSK 

SHMPYTDAVVHEIQR 

VQEEIDHVIGR 

YGLLLLLK 

2C9 16 

EALIDLGEEFSGR 

FDYKDQQFLNLMEK 

FGLKPIVVLHGYEAVK 

FSLMTLR 

GFGIVFSNGK 

GIFPLAER 

GKLPPGPTPLPVIGNILQIGIK 

ILEKVK 

ILQIGIK 

LPPGPTPLPVIGNILQIGIK 

NVAFMK 

RFSLMTLR 

SHMPYTDAVVHEVQR 

VQEEIER 

YALLLLLK 

YFMPFSAGK 

2C19 5 

GHFPLAER 

GHMPYTDAVVHEVQR 

LNENIR 

MVVLHGYEVVK 

QNQQSEFTIENLVITAADLLGAGTETTSTTLR 

2D6 12 

AFLTQLDELLTEHR 

DIEVQGFR 

EALVTHGEDTADRPPVPITQILGFGPR 

EVLNAVPVLLHIPALAGK 

FGDIVPLGVTHMTSR 

FHPEHFLDAQGHFVKPEAFLPFSAGR 

FSVSTLR 

LLDLAQEGLKEESGFLR 

RFSVSTLR 

RPEMGDQAHMPYTTAVIHEVQR 

RVQQEIDDVIGQVR 

SQGVFLAR 

2E1 12 

EALLDYKDEFSGR 

FGPVFTLYVGSQR 

FITLVPSNLPHEATR 
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FSLTTLR 

HFDYNDEK 

LHEEIDR 

MVVMHGYK 

PAFHAHR 

VVMHGYK 

YGLLILMK 

YPEIEEK 

YSDYFKPFSTGK 

2J2 3 

FTFRPPNNEK 

LFVSHMIDK 

VIGQGQQPSTAAR 

3A4 18 

APPTYDTVLQMEYLDMVVNETLR 

DNIDPYIYTPFGSGPR 

DVEINGMFIPK 

EIDAVLPNK 

EMVPIIAQYGDVLVR 

ETQIPLK 

EVTNFLR 

FALMNMK 

GVVVMIPSYALHR 

HRVDFLQLMIDSQNSK 

KDVEINGMFIPK 

LGIPGPTPLPFLGNILSYHK 

LQEEIDAVLPNK 

LSLGGLLQPEKPVVLK 

NKDNIDPYIYTPFGSGPR 

RPFGPVGFMK 

SLLSPTFTSGK 

YWTEPEK 

3A5 7 

APPTYDAVVQMEYLDMVVNETLR 

DSIDPYIYTPFGTGPR 

DTINFLSK 

DVEINGVFIPK 

LDFLQLMIDSQNSK 

LDTQGLLQPEKPIVLK 

LGIPGPTPLPLLGNVLSYR 

NADPH-cytochrome P450 

reductase 
5 

DGALTQLNVAFSR 

FAVFGLGNK 

IQTLTSSVR 
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KKEEVPEFTK 

TALTYYLDITNPPR 

UGT 

1A1 6 

DGAFYTLK 

EDVKESFVSLGHNVFENDSFLQR 

ESFVSLGHNVFENDSFLQR 

EVTVQDLLSSASVWLFR 

GHEIVVLAPDASLYIR 

PLSSHSDHMTFLQR 

1A3 6 

GDFVMDYPR 

GHQAVVLTPEVNMHIK 

LLTTNSDHMTFMQR 

SMAMLNNMSLVYHR 

VLVVPIDGSHWLSMR 

YLSIPTVFFLR 

1A4 2 
GHQAVVLTPEVNMHIKEEK 

YLSIPAVFFWR 

1A6 19 

AMAIADALGK 

DIVEVLSDR 

DRPVEPLDLAVFWVEFVMR 

DTLNFFK 

DVDIITLYQK 

FSDHMTFSQR 

GAGVTLNVLEMTSEDLENALK 

GHEIVVVVPEVNLLLK 

IPQTVLWR 

IYPVPYDQEELK 

KAMAIADALGK 

NDLLGHPMTR 

SFLTAPQTEYR 

SPDPVSYIPR 

VLEMTSEDLENALK 

WLPQNDLLGHPMTR 

YDFVLEYPR 

YEELASAVLK 

YQSFGNNHFAER 

1A9 4 

AFAHAQWK 

ILLGFSDAMTFK 

TDFVLDYPK 

TYSTSYTLEDLDR 

2B4 9 FEVYPVSLTK 
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HSGGLLFPPSYVPVVMSELSDQMTFIER 

IHHDQPVKPLDR 

IPFVYSLR 

PTTLSETMAK 

TEFEDIIK 

TILDELVQR 

VLVWPTEFSHWMNIK 

WAELPK 

2B7 16 

ANVIASALAQIPQK 

DLLNALK 

FDGNKPDTLGLNTR 

IEIYPTSLTK 

IPQNDLLGHPK 

IQHDQPVKPLDR 

QHDQPVKPLDR 

SLSFSPGYTFEK 

TILDELIQR 

VDFNTMSSTDLLNALKR 

VGIPLFADQPDNIAHMK 

VINDPSYK 

VLVWAAEYSHWMNIK 

WDQFYSEVLGR 

WIPQNDLLGHPK 

WSDLPK 

2B10 7 

FDGNKPDALGLNTR 

HSGGFIFPPSYVPVVMSK 

LEVYPTSLTK 

LSDQMTFMER 

PSYKENIMK 

TEFENIIMQLVK 

TVINDPSYKENIMK 

2B15 8 

AEMWLIR 

FSVGYTFEK 

GAALSVDIR 

IHHDQPMKPLDR 

LPQNDLLGHPK 

NYLEDSLLK 

TILEELVQR 

WLPQNDLLGHPK 
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5.4.4 – TEM analysis 

High-resolution TEM was used to evaluate the EVs sample background/purity, sample composition, 

and EVs structure. Representative images from EVs sample isolated by qEV70 2 mL SEC column 

displayed clear background with limited non-EVs contamination. Moreover, most EVs were 50 - 150 

nm in size and surrounded by intact membrane (Figure 39). Similarly, EVs isolated by SEC from 

HepaRG CM, were round, undamaged and surrounded by intact membrane (Figure 40). Sample 

integrity and EVs morphology were similar between EVs from both sources.  

 

Figure 39 – Characterisation of human serum EVs using TEM. Direct mag: 30,000x, no 

sharpening, normal contrast. Scale bar = 200 nm. 

 

Figure 40 – Characterisation of HepaRG EV secreted EVs using TEM. Direct mag: 68,000x, no 

sharpening, normal contrast. Scale bar = 100 nm. 
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5.4.5 – Particles distribution 

Nanoparticle tracking analysis (NTA) of the particle size distribution of EVs isolated from human serum 

demonstrated a median [interquartile range; IQR] diameter of isolated nanovesicles was 138.2 [105.9 – 

171.9 nm; Figure 41]. The mean (± SD) yield of EVs isolated from human serum was 3.5 x 1011 ± 5.02 

× 1011 particles/mL of serum (equivalent to around 7 x 1010 particles/2 mL starting serum volume).  

HepaRG EVs demonstrated a median [IQR] diameter of isolated nanovesicles was 133.7 [124.5 – 139.7 

nm; Figure 41]. The mean (± SD) yield of EVs isolated from conditioned media was 8.3 x 1011 ± 6.6 × 

1011 particles/mL of conditioned media (derived from approximately 1,500 million cells; 150 million 

cells/flask, total of 10 flasks).  

 

Figure 41 – NTA analysis of human serum EVs and HepaRG EVs samples, where A: median 

particle size (nm) and B: particle concentration; particles/mL).  
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5.4.6 – Abundance of CYP3A4 peptide: targeted proteomics analysis 

  

Figure 42 – Abundance of CYPA4 peptides derived from HepaRG cells lysate, human serum 

EVs and HepaRG EVs. Error bars represent the mean ± SD generated from three independent 

experiments.  

CYP3A4 proteins were detected both in the human serum EVs and HepaRG EVs, whereas HepaRG 

lysates were used as a positive control to reassure the validity of the experiment. Interestingly, the 

presence of CYP3A4 peptides in human serum EVs and HepaRG EVs was similar in quantity, albeit 

the starting volume of each sample was different (2 mL of human serum vs 250 mL HepaRG 

conditioned media; Figure 42). For human serum EVs, samples were obtained from three different 

healthy volunteers. For HepaRG EVs, data were generated from three different biological replicates. 
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5.4.7 – Functional activity of CYP3A4 using midazolam as probe substrate 

  

Figure 43 – Conversion of 1OH-midazolam following ex vivo activity assay. Error bars 

represent the mean ± SD generated from three independent experiments. LLOD = lower limit of 

detection. 

The conversion of 1OH-midazolam was measured as a representative of CYP3A4 functionality. 

HepaRG lysates were used as positive control, whereas no protein input was served as a blank. Human 

serum EVs used in this analysis were the aliquoted samples from the proteomics analysis. The presence 

of 1OH-midazolam was observed following the incubation of midazolam with human serum EVs 

suggesting the functionally active of CYP3A4 enzyme (Figure 43). However, the inter-individual 

variability was observed as seen in the high magnitude of the standard deviation presented as error bar 

(response ± SD; 1862.41 ± 1886.83). On the other hand, the functionality of CYP3A4 was observed in 

HepaRG EV sample although the response was substantial lower compared to human serum EV 

(response ± SD; 224.73 ± 48.72). Noticeably, there was less variability in the functional activity of 

CYP3A4 enzyme derived from HepaRG EVs compared to human serum EV. 



112 

 

5.4.8 – Functional activity of CYP3A4 using sorafenib as probe substrate. 

  

Figure 44 – Conversion of sorafenib N-oxide following ex vivo activity assay. Data derived from 

cells lysate and HepaRG EVs were generated from biological triplicates. Data derived from 

human serum EVs was generated based on three different healthy volunteers. LLOD = lower 

limit of detection.  

The conversion of sorafenib N-oxide was barely observed in human serum EVs and HepaRG EVs 

(Figure 44). HepaRG lysates was used as a positive control for the experiments, which observed a 

formation of sorafenib N-oxide following ex vivo incubation assay. There was a detectable amount of 

sorafenib N-oxide conversion derived from the human serum EVs sample. On the other hand, there was 

no conversion of sorafenib N-oxide derived from HepaRG EVs.   

5.5 – Discussion 

The research field of EVs is a highly advancing area during the past decade. At the time this chapter 

commenced, there was still a lack of systematic approaches to properly researching this field of 

research. Moreover, as this research area is at the initial phase, several undiscovered elements are yet 

to be investigated. Unquestionably, the premise stemmed both limitations and opportunities in this 

research area. The finding of genomic material in small EVs by Valadi et al. [132]  was the breakthrough 

factor in enlightening the countless possibilities of using small EVs in various research objectives. 

Thenceforth, several studies revealed the significant role of small EVs in cell-to-cell communication, 

cell signalling, and a certain degree of tumorigenesis; thus, strengthening a wide range of its novel 

utilities [253-258].  
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Several recent evidence has displayed a convincing role of small EVs as liquid biopsy. The features of 

lipid-bilayer membrane of small EVs serve as a physical barrier protecting the cargo from any catalytic 

activity. Herein, the images of small EVs isolated from human serum were captured by TEM presenting 

a round-shaped vesicle with around 100 nm in diameter, which are the classical features of small EVs, 

exosomes. Moreover, further characterisation of the size distribution of the human serum sample and 

HepaRG CM using NTA analysis observed the median [IQR] was 138.2 [105.9 – 171.9] diameter of 

isolated nanovesicles, which coincide with the reported size of small EVs population [235, 259, 260]. 

Identification of the small EVs marker using Western blot analysis to target anti-Tsg101 observed a 

clear protein band between the reference band of 37 to 50 kDa, which is the reported molecular weight 

of Tsg101 (44 kDa) [261, 262]. 

This chapter verified the suitability of small EVs to be used as a novel marker for ADME pathways. 

Herein, the data were presented in both at mRNA level, and protein level acquiring from RT-PCR and 

proteomics analysis, respectively. RT-PCR and mass spectrometry-based proteomics are considered to 

be powerful tools in biomarker discovery both in sensitivity and specificity [263-266]. RT-PCR hold a 

core concept of traditional PCR in which the gene of interested would be able to amplify only if the 

targeted cDNA template presence in the sample [267-269]. Likewise, proteomics analysis utilised de 

novo sequencing to identify the available peptide fragments related to the original full protein sequence 

[270-272]. Hence, the positive results obtained from these two techniques rely absolutely upon the 

abundance of targeted proteins, RNA in the sample. In this, proteomic screening and RT-PCR analyses 

demonstrated the presence of multiple CYP and UGT proteins and mRNAs in small EVs isolated from 

plasma (Tables 21 and 22). These data are supported by prior untargeted profiling of small EVs isolated 

from human urine showing detectable levels of protein from all subcellular compartments including the 

endoplasmic reticulum, which explicitly identified CYP2D6 [273]. A recent study proposed the specific 

packaging and circulation of CYP2E1 in exosomes on the basis of mRNA expression [217]. Here, we 

similarly demonstrate that of the isoforms screened, CYP2E1 accounted for 63.5 % relative CYP mRNA 

expression in small EVs. Notably, CYP2E1 is also the predominant mRNA detected in human liver, 

accounting for 34.5 % of total hepatic CYP mRNA expression, and 67.9 % of relative expression for 

the isoforms screened. Kumar et al. [217] also demonstrated protein expression for multiple CYP in 

exosomes, although their conclusions in regard to protein quantification must be considered in the 

context that protein expression was quantified by immunoblot band intensity using isoform specific 

antibodies. As band intensity depends on the efficiency of antibody binding, the lack of external 

standardization precluded meaningful comparison of protein abundances. 

Targeted proteomics analysis revealed the abundance of CYP3A4 peptides both in human serum EVs 

and HepaRG cell-released EVs. The CYP3A4 enzyme was the focus in this chapter as it is the 

predominant CYP isoform in the human liver, responsible for metabolising around 30% of clinically 
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used drugs, including sorafenib [16]. Although, the amount of the quantified CYP3A4 peptides was 

comparable between different sample types, it needed to be recognised that their originality was 

different. Human serum EVs were derived from a 2 mL starting volume of serum, whereas HepaRG 

EVs derived from 250 mL cultured media with supplementary serial concentration procedures prior to 

EVs isolation (derived from approximately 120 - 150 million cells per flasks, 10 flasks). Nevertheless, 

targeted proteomics quantification was inadequate to determine the functionality of the investigated 

protein as the apparent peptides abundance may be derived from the inactive enzyme. Thus, the apparent 

number of peptides quantification was insufficient to conclude the research hypothesis of using EVs as 

a marker for DMEs. As such, subsequent analysis was conducted focusing on the functional activity of 

CYP3A4 derived from EVs. The functional assay was performed using ex vivo CYP activity assay. The 

activity of CYP3A4 enzyme was measured by the conversion of 1OH-midazolam and/or sorafenib N-

oxide as they are the main metabolite derived from CYP3A4 functionalisation. Herein, the functional 

activity of CYP3A4 was able to be detected from both human serum EVs and HepaRG EVs. 

Interestingly, whilst the amount of peptide abundance between samples was comparable as mentioned 

earlier, the functionality of the enzyme was different. Human serum EVs showed around 10-fold higher 

enzyme activity than HepaRG EVs, yet the observed enzyme activity derived from human serum EVs 

also noted a large degree of variability. The variability of CYP3A4 functionality observed from human 

serum EVs was not surprising. As human serum samples were taken from different healthy volunteers, 

the observed variabilities were representative of inter-individual variability [274]. On the other hand, 

the in vitro system of HepaRG is generally well-controlled and easily standardises the batch process. 

Such processes included the timeframe of media replenishing, collecting and harvesting. As a result, it 

has shown consistency in CYP3A4 functionality derived from HepaRG EVs.  

The higher CYP3A4 functional activity derived from human serum EV could be described in several 

speculations. Firstly, enzymes are specialised-type of proteins in which the protein conformation is one 

of the critical role affecting its functionality. Generally, structure perturbation of proteins could lead to 

protein malfunction due to changing in its reactivity, selectivity and affinity. However, the current 

understanding regarding the apparent conformation of EVs-derived CYP3A4 is still limited. In addition, 

the current analytical setting during the candidature was unable to resolve this contingency. However, 

it is worth exploring the presumption mentioned above as it may unveil the biological relevance of EVs, 

which could lead to improvement in the later step of this biomarker discovery attempt. The other 

speculation that could affect EVs-derived enzyme activity differences is the sample collection 

procedure.  Human serum samples were collected arbitrarily from healthy volunteers, whereas HepaRG 

media was harvested in a specific manner. Currently, there is limited information regarding the 

timeframe of the cargo-loading process, which reportedly a particular mechanism depends strongly on 

the cell of origin [275]. As such, it is possible that the lower the functional activity of EVs-derived 

CYP3A4 isolated from HepaRG conditioned media compared to human plasma EVs conceivably due 
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to the inadequate sorting mechanism of DME into the EVs. Such an example has been observed during 

the developmental process of EV characterisation and isolation in HepaRG CCM (Appendix 3). 

Furthermore, EV isolated from different timeframes and conditions expressed variability in the size 

distribution profile. This phenomenon strongly suggested a necessity to study further in the perspective 

of the molecular biology of EVs in both cell culture models and humans. 

Nevertheless, identifying this speculation was beyond the scope of this thesis. Further investigation 

focussing on the proteins composition in a different timeframe of sample collection, both human 

plasma/serum and in vitro EVs, would elucidate this speculation. Thus, there are still several paradigms 

need to be addressed prior implementing small EVs into the real-life clinical practice.  
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CHAPTER 6: CONCLUSIONS  

Thesis summary 

The strategy to address precision dosing as part of the big picture of ‘precision medicine’ can be 

performed in several approaches. The works presented in this thesis only recapitulated a small part of 

the currently applicable precision dosing and precision medicine methods. Two chapters of this thesis 

were dedicated to a post-hoc analysis from clinical trial data – a big data analysis. One of those two 

chapters was focused on verifying the effect of the early dose adjustment and survival outcomes in 

advanced HCC patients treated with sorafenib. The following study was simultaneously conducted 

using the same dataset focusing on the possible drug-drug interaction (DDI) affecting sorafenib clinical 

benefits. Subsequently, the following chapter was dedicated to computational simulation and modelling 

using Simcyp® PBPK platform as a model-informed drug dosing strategy supporting clinical practice. 

address the factors affecting variability in sorafenib exposure. Finally, the last part of the works was 

invoked around laboratory-based biomarker discovery. As biomarker discovery was part of the key 

research to fulfil the ethos of precision medicine, thus the presenting works were the exploratory 

research that endeavoured a novel biomarker to track variability in DMEs. In the chapter, EVs were 

extensively studied both ex vivo and in vitro models to validate its potential role as a tool to track the 

variability in DMEs. 

The study in Chapter 2 and 3 demonstrated an expanded horizon of computational-based approach to 

address the precision dosing of sorafenib. Big data analytics using R programming (https://www.r-

project.org) was the primary tool in investigating the designated dataset. A phase III clinical trial data 

obtained from data sharing source (https://www.projectdatasphere.org) was utilised to investigate two 

crucial research questions, which result in the reports in those two Chapters. Chapter 2 focussed on the 

impact of dose adjustment during the early treatment initiation period on the long-term survival 

outcomes in advanced HCC patients treated with sorafenib. On the other hand, Chapter 3 mainly 

interrogated the effect of DDI on the treatment benefit of sorafenib. The finding in Chapter 2 was the 

very first time to demonstrate the effect of the early dose adjustment of sorafenib due to AEs on the 

survival outcomes in advanced HCC patients. It appeared that there were no worsening survival 

outcomes in patients who underwent early dose adjustment, either dose reduction or dose interruption. 

In contrast, patients who took no action or withdrew sorafenib showed poorer survival outcomes, both 

OS and PFS. Furthermore, additional cautions for particular patient characteristics were also provided 

in the analysis. These subgroups of patients possibly required additional monitoring as the analysis 

suggested a higher susceptibility to develop AEs, which lead to sorafenib dose adjustments. Chapter 2 

emphasised the significance of the initial dose of sorafenib as it seemed that the optimal starting dose 

associated with better long-term clinical benefits. The circumstance when experiencing specific toxicity 

following the administration of cancer medicine can be implied as an "on-target" toxicity. Several 
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studied showed that patients who experienced particular toxicities after commencing a cancer medicine 

tend to obtain a better clinical outcome [160, 276, 277].  

Subsequently, Chapter 3 utilised the same dataset as in Chapter 2 but focussed on DDI paradigm 

during cancer treatments. Unquestionably, DDI as part of the polypharmacy issue is the underrated 

issue in long-term management in cancer therapy [278-281]. Using multiple medications were 

commonly observed among elderly patients in which the number of medications seems to be associated 

with age [282, 283]. Although some medications are mandatory for life-threatening chronic diseases, 

however, some are not admittedly necessary, such as herbal medicines. Among the frequently used non-

cancer medicines in cancer patients, PPIs were one of the most concerning groups to cause DDI with 

orally cancer medicines [284-286]. PPIs have a prolonged duration of action with primary mechanism 

to alter intragastric pH to be less acidic, which compromised the absorption of pH sensitive drugs such 

as erlotinb and capecitabine [40, 285]. Hence, it is a reasonable assumption to speculate that similar 

interaction is highly likely to occur in sorafenib. This had led to the primary analysis in Chapter 3 to 

evaluate the effect of concomitant use of PPIs and sorafenib on survival outcomes in advanced HCC 

patients. The results from Chapter 3 made clarity to the safety concern regarding the impact of PPIs 

on sorafenib efficacy, where no worsening survival outcomes were observed. The finding has given 

better confidence to advanced HCC patients regarding safety concern when PPI is required during 

sorafenib's treatment course. However, the analyses were conducted focussing only on PPIs, whereas, 

in reality, there are several classes of gastric acid suppressants on the market. Future research can be 

conducted in two possible directions to expand the understanding of this circumference. Firstly, the 

larger study population from any other completed clinical trials are required to evaluate the impact of 

each PPI on sorafenib and/ or other cancer medicines. The analysis in Chapter 3 only evaluates PPIs 

as a class, although each PPI has somewhat different characteristics. The population expansion would 

increase the analysis power, capable of extensive investigation on each different PPIs and other relevant 

research questions. The larger dataset also leads to the subsequent second direction in which the other 

available gastric acid suppressants could be further examined. As such, the analysis focuses on 

Histamine-2 receptor antagonist (H2RA), antacids, and alginate-based raft forming agents will be 

conducted as they were the secondarily frequently used acid suppressant to PPI [287, 288]. 

Chapter 2 and Chapter 3 demonstrated the capability of clinical epidemiology where post-hoc analysis 

of the clinical trial data – a large high-quality data was utilised to the greatest extent. Moreover, they 

have also illustrated the contemporary researches in which the available data sources were maximally 

utilised in order to promote better precision dosing [289-291]. However, the strength of this type of 

approach aligns with its unavoidable shortcoming. The most prominent limitation of clinical 

epidemiology is variation of time to complete a single investigation [292]. By default, the timeframe to 

obtain the desired dataset until thoroughly analyses may require exorbitant of time [293]. The 

complexity of research questions also contributes to the length of time to finish the analysis, to a certain 
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extent. Unquestionably, this is unlikely to comply with the on-demand real-time precision dosing 

scenario. Hence, clinical epidemiology tends to be an excellent candidate for a sustainable approach to 

address precision dosing in a non-time constraints fashion [294, 295]. Nevertheless, to reciprocate the 

instantaneous precision dosing in a clinical setting, a congruous optional approach is required. 

Using PBPK modelling and simulation to evaluate factors affecting the variability in sorafenib exposure 

signified a modern approach to guide precision dosing in cancer medicine (Chapter 4). PBPK is a 

versatile tool suitable for interrogating potential factors affecting the pharmacokinetics-

pharmacodynamics of newly-developed/launched drugs. The important role of PBPK has been 

observed not only in drug discovery and development but also as a reassuring tool to support the 

regulatory submission [296, 297]. Herein, PBPK was employed to investigate factors affecting 

variability in sorafenib exposure and further implemented to evaluate whether the composed MIDS 

could improve the exposure profile or not. Following the results derived from the simulation data, liver 

CYP3A4 abundance was the predominant factor driving the variability in sorafenib exposure. The other 

patients' characteristics, including albumin, BMI, BSA, gender and weight were also, to a lesser degree, 

contributed to the variability in sorafenib exposure. A multivariable linear regression modelling 

accounted for the covariates mentioned above is possible to predict individual failing to achieve 

therapeutic threshold of sorafenib with high sensitivity (95.2%) and specificity (95%). The ADAM 

absorption sub-model in Simcyp® simulator was chosen to characterise a full-PBPK profile of sorafenib 

as it was the most appropriate module for the present modelling. This sub-model considered a 

multidimensional paradigm for modelling such as multiple compartmental interactions and intrinsic 

physicochemical property, hence allow the robustness of exposure profile to be simulated [208, 298]. 

As a result, the observed and simulated profile of sorafenib exposure demonstrated a concurring 

absorption phase, as shown in the Cmax and Tmax value. Subsequently, PBPK simulation in conjunction 

with MIDS accounted for crucial parameters contributing to the variability of sorafenib exposure results 

in 99% of subjects achieving therapeutic threshold. 

Although the analysis was able to reveal the potential factors affecting the variability of sorafenib 

exposure, there are still several elements yet to improve. Evidence showed that sorafenib exhibit 

enterohepatic recirculation (EHC), as aforementioned elsewhere in this thesis, thus it poses a 

complexity during the construction of the compound model in Simcyp® platform. Simcyp® is the 

proprietary platform which somewhat limited the advanced configuration setting. As such, the 

developer restricts the ADAM sub-model in Simcyp® simulator not to enable EHC when the compound 

model is specified as oral dosage form. Hence, the simulation was conducted while recognising an 

impediment, to a certain extent, due to this factor. Similarly, several previous studies observed the 

challenges of building a compound model of sorafenib, such as in the case of Lokesh et al. Lokesh et 

al. described sorafenib absorption model as a one-compartment with additional four gastrointestinal 

transit compartments and semi-mechanistic EHC. Although the model was successfully developed to 
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portray the delayed absorption and the present of EHC, the residual error of plasma concentration was 

very high (50%) [183]. As such, this reflects the current challenges of model-informed precision dosing 

for the compounds manifesting an intricated physicochemical property. Essentially, further 

development for the more versatile or even cross-platform simulator would be necessary to enhance the 

prediction performance to a greater extent [299-301].  

At present, the new concept of virtual twins is perhaps the most explicit perspective in model-informed 

precision dosing area. [199, 205]. This concept is still based on the current Simcyp® PBPK modelling, 

but it takes into account more individual patient-oriented data such as organ size, local/systemic 

inflammatory status, DMEs profile (both genotype and phenotype) and haematological parameters 

[199, 205]. A successful application of virtual twins was first shown in the case of prediction of 

olanzapine exposure. In the study, the virtual twins were created for each individual by individualising 

the Simcyp® virtual healthy population with corresponding data from real patients recruited in the 

counterpart. Patient characteristics were specifically assigned the CYP2C8 genotype and CYP1A2 

phenotype based on additional laboratory finding performing in parallel during the study [205]. 

Although a thriving performance of virtual twins, it was also suggested that the superior prediction 

performance could be obtained only when the activities of DMEs in the major organs were sufficiently 

defined. Admittedly, it is almost impossible to verify DMEs activity in every patient as surgical tissue 

biopsies cause a painful and higher risk to patients. Thus, it has led to the significance in the finding of 

potential novel ADME biomarkers to estimate DMEs abundance, as shown in Chapter 5.  

The conclusion derived from the two chapters in clinical epidemiology and the proposed perspective in 

Chapter 4 led to the exploratory research focussing on biomarker discovery. Ultimately, the novel 

biomarkers should serve as a supporting interplay between computational and laboratory-based to 

succeed the precision dosing. A liquid biopsy was considered an appropriate source to explore in the 

novel biomarkers during this thesis was commencing. Liquid biopsy is a concept referring to any blood 

or other biofluid-derived material that can be used to provide a genetic landscape or track the cellular 

status of the organ of interested [302-305]. Unlike tissue biopsy, this approach offers a nearly pain-free 

sample collection, which allows more accessible to a wide range of patients. EVs were the centres of 

an extensive study in this thesis as the main objective of Chapter 5 was to evaluate its role as a tool to 

track variability in DME. Herein, a preliminary study hypothesising the abundance of DME genes and 

proteins expression in human plasma EVs was firstly conducted. This was to serve as a proof of concept 

as the ultimate goal of the study is to apply the knowledge in a real clinical setting. Thus, if there is no 

relevant information regarding the hypothesis, it would be futile in continuing the study. Human plasma 

EVs were successfully isolated with reporting the size range of 50-150 nm and the presence of EVs 

marker, Tsg101. Subsequently, RT-PCR analysis of the RNA extracted from the samples revealed the 

abundance of several CYPs and UGTs, suggesting the expression of DMT gene in human plasma EVs. 

On the other hand, proteomics analysis using in-gel digestion method aiming to the protein band at 40-
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70 kDa revealed the abundance of DME peptides derived from human plasma EVs. Noticeably, the 

peptides of accessory cofactors for drug metabolism were additionally found in the human plasma EVs. 

Thus, the finding provides a convincing indication for developing EV as a biomarker for drug 

metabolism pathway (ADMExosomes). 

The confirmation of DME expression derived from human plasma EVs has led to a subsequent work 

focusing on the functionality perspective. Here, the in vitro model of hepatocytes, HepaRG was 

introduced as the primary source to study ADMExosomes. Notably, in vitro model is a flexible medium 

suitable for the initial phase of research and development. It holds several important advantages such 

as high consistency and reproducibility, relatively low cost, ease of pharmacological manipulations 

[306]. Unlike ex vivo, in vitro model has more accessible in which the sample can be collected, almost, 

anytime in large portion amount with no ethical consideration involved [307]. HepaRG is a well-

established hepatocyte cell lines with highly expressed in a panel of DMEs. Upon obtaining from a 

different laboratory, HepaRG was briefly validated as it was the first time the cells were introduced into 

the new facility. Meanwhile, optimisation of EVs isolation from in vitro HepaRG model was conducted 

in parallel. During this optimisation period, it had seen a phenomenon of EVs secretion associated with 

different cells conditions. One of the validation processes was to verify the inducibility of HepaRG in 

response to typical enzyme-inducing agents. Such processes require removing FBS and DMSO from 

the maintenance media to recalibrate the basal enzyme activity. It was found that the EVs isolated from 

the cell during FBS and DMSO-deprived had a different profile compared to the normal condition. Such 

difference can be seen from the smaller size distribution and higher EVs concentration from the first 24 

hours after DMSO and FBS deprivation (Appendix 3). It could be assumed that removing the essential 

media components afflicts cellular environments, leading to change in EVs profile. Evidently, 

introducing moderate stress to the cells such as hypoxic incubation and acidic pH [308, 309] resulting 

in the promotion of EVs secretion. Moreover, perturbating energy production in the cells by inhibiting 

glycolysis and oxidative phosphorylation results in an increased number of EVs secretion [310]. 

Although the instigating mechanisms were different, they shared the similar concept of interfering the 

normal condition of cells culture and maintenance. Hence, the finalised culturing condition of HepaRG 

in the actual study was William's E media with essential additives as mentioned elsewhere in Appendix 

3. 

The abundance and functionality of ADMExosomes derived from HepaRG and human serum were 

subsequently evaluated as the primary focus of Chapter 5. Human serum samples were used mainly in 

the subsequent study due to the availability of samples. Prior work conducted in this laboratory 

demonstrated that plasma and serum are equivalent in terms of EVs derived CYP3A4 protein 

abundance. Herein, CYP3A4 enzyme was the major CYP isoforms extensively studied as it has a broad 

catalytic capability and most abundant among other enzymes in the liver. Proteomics analysis observed 

the presence of CYP3A4 peptides from both HepaRG and human serum EVs suggesting the relevant 
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of enzymes in the EVs. However, only human serum EVs produced catalytic activity of CYP3A4 but 

not HepaRG EVs. Formation of 1OH-midazolam or sorafenib N-oxide was observed after incubation 

human serum EVs with midazolam or sorafenib, respectively in the ex vivo assay. Although the volume 

of media harvested from HepaRG was considerably large (250 mL), there was no meaningful catalytic 

activity of CYP3A4 observed. This might be suggested that the abundance of CYP3A4 peptides derived 

from HepaRG EVs as found in the proteomic analysis may not be entirely functioning. Importantly, it 

has to be acknowledged that the method to verify the catalytic activity and abundance were in a different 

principle. The label-free, MS2 product ion scan method as part of proteomics analysis was employed 

to quantify the abundance of CYP3A4 in EVs samples. This method delivers high precision, sensitivity 

and reproducibility to quantify/ qualify the protein of interest from the biological samples [311-313]. 

Nevertheless, proteomics analyses investigate only a fraction of the entire protein sequence to determine 

the actual abundance in the investigated samples [314, 315]. However, it could not explicitly define the 

integrity or conformation of the proteins of interest. In contrast, functionality assessments, such as ex 

vivo assay, rely strongly on the integrity of the proteins. Admittedly, the catalytic activity of enzymes 

depends profoundly on the protein conformation, which is highly likely related to proteins' integrity 

[316-318]. Evidence supported that even small protein modification remotely from the active site could 

alter protein dynamic and overall enzyme mechanisms [319, 320]. In the case of CYP3A4, three major 

conformations have been confirmed based on computational analysis of crystal structures [321]. 

Nevertheless, it is beyond the scope of this thesis to determine the conformation-related enzyme 

activity. However, an in-depth analysis of this aspect needs to be addressed as it could potentially impact 

the catalytic functions. On the other hand, it is also unknown regarding the abundance of any other 

relevant accessory cofactors for xenobiotics metabolism such as cytochrome b5. Cytochrome b5 serves 

as one of the electron donors in the catalytic cycle of CYP450. Although its abundance was confirmed 

in EVs secreted from several cells, there is no information regarding its absolute abundance and 

functionality perspective [322, 323]. 

This thesis highlighted multidimensional approaches to address precision dosing, especially for the 

group of drugs that requires close attention, such as cancer medicines. Here, sorafenib was selected as 

an exemplar of drugs with a particular pharmacokinetic profile and one of the first-line option for cancer 

patients in the advanced stage. Although this thesis demonstrated several achievements either obtaining 

from computational-oriented or laboratory-oriented works, typical limitations could still be observed 

across those two paradigms. The laboratory-oriented work involving the exploratory of EVs research 

showed great potential as a new supporting player in the modern precision dosing as part of the precision 

medicine. Nevertheless, it requires further elucidation and elaboration to apply this cutting-edge 

knowledge to clinical reality.  
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APPENDIX 1: MATERIALS 

Appendix Table A. Chemicals and reagents  

Items Manufacturers/Suppliers 

0.5% Trypsin-EDTA (10x) (cat# 15400-054) Gibco by Life Technologies, Canada 

1 M HEPES (cat# 15630080) Thermo Fisher Scientific, Australia 

1,4-dithiothreitol (DTT-RO) Roche, Switzerland 

10 mM Tris-HCl; 1 mM EDTA buffer (BioUltra, 

for molecular biology, pH 7.4) 
Sigma-Aldrich, USA 

100x L-Glutamine (cat# 25030081) Thermo Fisher Scientific, Australia 

1-hydroxy Midazolam (cat# H948420) Toronto Research Chemicals, Canada 

30% Acrylamide/Bis solution (29:1) (cat# 

1610156 ) 
Biorad, USA 

Acetonitrile hypergrade for LC-MS 

(LiChrosolv® 2.5 Litre, cat# 1000292500) 
Sigma-Aldrich, USA 

Ammonium Bicarbonate (Reagent plus®, ≥ 99%, 

cat# A6141) 
Sigma-Aldrich, USA 

Amplification grade DNase I (cat# 18068015) Thermo Fisher Scientific, Australia 

Biorad Protein assay reagent (cat #5000006) Biorad, USA 

Bovine serum albumin (BSA), heat shock 

fraction, pH 7, ≥ 98% (cat# A9647) 
Sigma-Aldrich, USA 

Denatured absolute alcohol F3 (Ethyl Alcohol) 

(cat# 1502186968) 
Thermo Fisher Scientific, Australia 

Dimethyl Sulfoxide (cat# D8418-100ML) Sigma-Aldrich, USA 

di-Potassium hydrogen orthophosphate 

(K2HPO4) (cat# 2221-500G) 
Univar, USA 

di-Sodium hydrogen phosphate anhydrous 

(Na2HPO4) (cat# 4741) 
May & Baker Pty Ltd, Australia 

Dulbecco phosphate buffer saline (DPBS) (cat# 

D5652) 
Sigma-Aldrich, USA 

Exosome-depleted Foetal Bovine Serum (cat# 

A25904DG) 
Gibco by Life Technologies, USA 

Foetal Bovine Serum (cat# 61538) Scientifix Life, Australia 

Folin & Ciocalteu’s Phenol reagent (cat# 3264) BDH Laboratory Supplies, England 
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Formic acid 98-100% (Suprapur® 250 mL, cat# 

1.11670.0250) 
Merck Millipore, Australia 

GlutaMAXTM-I (100x) (cat# 35050061) Gibco by Life Technologies, Canada 

GoTaq® qPCR Master Mix (cat# A6001) Promega, USA 

Hydrocortisone sodium succinate (Solu-Cortef®) 

(cat# AUST R 12264) 
Pfizer Inc., USA 

Insulin solution from bovine pancreas (cat# 

I0516-5ML) 
Sigma-Aldrich, USA 

Iodoacetamide (BioUltra, cat# I1149) Sigma-Aldrich, USA 

Methanol hypergrade for LC-MS (LiChrosolv® 

2.5 Litre, cat# 1.06018.2500) 
Merck Millipore, Australia 

Micro BCA protein assay kit (cat# 23235) Thermo Fisher Scientific, Australia 

Midazolam (cat# M343000) Toronto Research Chemicals, Canada 

N, N, N’, N’- Tetramethly-1-2-diamiomethane 

(TEMED) (cat# T9281) 
Sigma-Aldrich, USA 

Nitrocellulose membrane, Roll, 0.2 µm, 30 cm x 

3.5 m (cat# 1620112) 
Biorad, USA 

Nuclease-free water (cat# P1193) Promega, USA 

NxGen® M-MuLV Reverse Transcriptase (cat# 

30222-1) 
Lucigen, Wisconsin, USA 

NxGen® RNase Inhibitor (cat# 30281-1) Lucigen, Wisconsin, USA 

Penicillin-Streptomycin (Solution stabilized, 

with 10,000 units penicillin and 10 mg 

streptomycin/mL, sterile-filtered, cat# P4333-

100 mL) 

Sigma-Aldrich, USA 

Piece MicroBCATM Assay kit (cat# 23235) Thermo Fisher Scientific, Australia 

Rifadin (rifampin 150 mg)  Sanofi Aventis, USA 

Sequencing Grade Modified Trypsin (cat# 

V511A) 
Promega, USA 

Serum-free Induction medium supplement for 

HepaRG (cat# HPRG650) 
Thermo Fisher Scientific, Australia 

SuperScript™ VILO™ cDNA Synthesis Kit 

(cat# 11754250) 
Thermo Fisher Scientific, Australia 

SuperSignal West Pico chemiluminescent (ECL) 

HRP substrate (cat# 34579) 
Thermo Fisher Scientific, Australia 
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Thaw, seed and general-purpose additive for 

HepaRG (cat# HPRG670) 
Thermo Fisher Scientific, Australia 

Tris (hydroxymethyl) aminomethane (TRIS) 

(cat# 2525C271) 
VWR Life Science AMRESCO®, Australia 

TRizol reagent (cat# 15596026) Thermo Fisher Scientific, Australia 

Trypan Blue stain (0.4%) (cat# 15250061) Thermo Fisher Scientific, Australia 

Trypsin Resuspension Buffer (cat# V542A) Promega, USA 

Tween-20 (cat# BIO0777-500ML) Astral Scientific, Australia 

William's E media with no phenol red (1x) (cat# 

A1217601) 
Thermo Fisher Scientific, Australia 

Williams’ Medium E with no glutamine(1x) (cat# 

12551032) 
Thermo Fisher Scientific, Australia 

β-Nicotinamide adenine dinucleotide 2′-

phosphate reduced tetrasodium salt hydrate (cat# 

N1630-250MG) 

Sigma-Aldrich, USA 

 

Appendix Table B. Commercial kits. 

Items Manufacturers/Suppliers 

Amicon® Ultra-4 Centrifugal Filter Units (cat# 

UFC803024) 
Merck Millipore, Billerica, MA, USA 

exoRNeasy Serum Plasma Kits (cat# 77044) Qiagen, Germany 

qEV 2/70 nm (Product Code: SP4) Izon Science 

qEV original/70 nm (Product Code: SP1) Izon Science 

QIAGEN exoEasy Serum/Plasma Maxi Kit (20) 

(cat# 160015170) 
Qiagen, Germany 

QIAGEN exoEasy Serum/Plasma Midi Kit (50) 

(cat# 157053808) 
Qiagen, Germany 

QIAzol Lysis Reagent (cat# 79306) Qiagen, Germany 

TFF-Easy -tangential flow filtration concentrator, 

20 nm cut-off filter (cat# HBM-TFF/1) 
Lonza, Australia 

 

Appendix Table C. General laboratory consumables 

Items Manufacturers/Suppliers 

10 mL Serological Pipette (cat# 86.1254.001) Sarstedt, Germany 
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100-1250 µL Pipette tips (cat# 651C6-651G) Edwards, USA 

2 mL Serological Pipette (cat# 160210) LP Italiana SPA, Italy 

200 µL Pipette tips (cat# 70.760.002) Sarstedt, Germany 

25 mL Serological Pipette (cat# 86.1685.001) Sarstedt, Germany 

5 mL Serological Pipette (cat# 86.1253.001) Sarstedt, Germany 

50 mL Tube 114 x 28 mm, PP (cat# 62.547.254) Sarstedt, Germany 

BD Syringe 10 mL (cat# 302146) Becton Dickinson, Singapore 

Disposable cuvettes for spectrophotometers 

(semi-micro) (cat# 634-0678) 
VWR International, USA 

Micro tube 1.5 mL (cat# 72.690.001) Sarstedt, Australia 

Minisart® Syringe Filter 0.2 µm (cat# 16534) Sartorius AG, Germany 

Minisart® Syringe Filter 0.45 µm (cat# 16592) Sartorius AG, Germany 

Protein LoBind tubes 2 mL (cat#0030108132) Eppendorf, Australia 

Protein LoBind tubes 5 mL (cat#0030108302) Eppendorf, Australia 

RotorGene 3000 Four-Channel Multiplexing 

System 
Corbette Research, Australia 

Thinwall Polypropylene Tube (cat#344367) Beckman Coulter, Australia 

Nunc™ MicroWell™ 96-Well, Nunclon Delta-

Treated, Flat-Bottom Microplate (cat# 167008) 
Thermo Fisher Scientific, Australia 

Ted-Pella B 300M carbon-coated grids Ted-Pella, Redding, CA, USA 

21-gauge Vacuette Safety BloodCollection 

sealed vacuum device 
Greiner Bio-One, Frickenhausen, Germany 

Z Serum Sep Clot Activatortubes  Greiner Bio-One, Frickenhausen, Germany 

 

Appendix Table D. Instruments  

Items Manufacturers/Suppliers 

1200 Series High Performance Liquid 

Chromatography 
Agilent Technologies, USA 

7-Litre Shaking Water Bath RATEK Instruments, Australia 

AdvanceBio Peptide Mapping, 2.7 µm, 2.1 x 

100 mm (Part no. 655750-902) 
Agilent Technologies, USA 

Agilent Triple Quadrupole LC/MS 6495B Agilent Technologies, USA 

Beckman Coulter optima XPN80 (Part no. 

A95765) 
Beckman Coulter, Australia 

Cary 300 Conc UV-Visible Spectrophotometer Varian, USA 

FEI TECNAITM Spirit G2 TEM FEI company, USA 
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JA-20 Fixed-Angle Aluminium Rotor, 8 x 50 

mL, 20,000 rpm, 48,400 x g (Part no. 334831) 
Beckman Coulter, Australia 

Mini Trans-Blot® Cell (cat# 1703930) Biorad, USA 

NanoDrop™ 2000/2000c Spectrophotometers Thermo Fisher Scientific, Australia 

NanoSight NS300 Malvern Panalytical, UK 

Olympus CKX53 Microscope Olympus, Australia 

PIPETMAN® Classic P1000 Pipette Gilson, Australia 

PIPETMAN® Classic P2 Pipette Gilson, Australia 

PIPETMAN® Classic P20 Pipette Gilson, Australia 

PIPETMAN® Classic P200 Pipette Gilson, Australia 

SpectraMax iD5 Multi-Mode Microplate reader Molecular Devices, USA 

SW 32.1 Ti Swinging-Bucket Rotor Package 

(Part no. 369694) include 369650 SW 32.1 Ti 

Rotor Assembly, 331186 Bucket Holder Rack, 

335456 Overspeed Disks) 

Beckman Coulter, Australia 

TSX Series ultra-low freezers (-80 °C) Thermo Fisher Scientific, Australia 

ZORBAX RRHD Eclipse Plus C18, 95Å, 2.1 x 

50 mm, 1.8 µm, 1200 bar pressure limit (Part 

no. 959757-902) 

Agilent Technologies, USA 

 

Working reagents 

The following buffer formulae were used to make up appropriate buffers throughout the duration of this 

work: 

CYP450 enzyme activity assay 

• Alamethicin (10 mg/mL, A.G. Scientific): Alamethicin was dissolved in methanol to a 

concentration of 10 mg/mL and stored at -20 ºC for up to 1 year. 

• Trypsin Gold (Promega) powder was resuspended in 100 L of supplied trypsin resuspension 

buffer (Promega) and stored at -20 ºC for up to 1 year. 

Mobile phase for Liquid chromatography 

• Mobile phase: 0.1% Formic acid in Acetonitrile:0.1% Formic acid in water (50:50 ratio) 

• Potassium-Phosphate buffer (1 M): 40 mL of 1 M KH2PO4 (136.09 g/mol) solution with 



146 

 

• of 160 mL of 1 M K2HPO4 (MW = 174.18 g/mol) solution. pH was adjusted to 7.4 by adding 

1 M KH2PO4. 

Mammalian tissue culture 

• 1 M Dulbecco’s Phosphate Buffered Saline (D-PBS): Weight 9.6 g of dry powder D-PBS 

(Sigma-Aldrich) per 1 litre of autoclaved distilled water. 

• 1 M Phosphate Buffered Saline: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM 

KH2PO4, pH 7.4.  

Proteomics: in-gel digestion 

All reagents were made fresh before use: 

• 50 mM ammonium bicarbonate (ABC, pH 7.8): 253 µL of Milli-Q water was added per 1 mg 

of ABC  

• 50 mM calcium chloride: 136.04 µL of 50 mM ABC was added per 1 mg of calcium chloride  

• 50 mM dithiothreitol (DTT): 129.5 µL of 50 mM ABC was added per 1 mg of DTT  

• 100 mM iodoacetamide (IAA): 54 µL of 50 mM ABC was added per 1 mg of IAA  

Proteomics: in-solution digestion 

All reagents were made fresh before use: 

• 50 mM ABC (pH 7.8): 253 µL of Milli-Q water was added per 1 mg of ABC 

• 200 mM DTT: dissolve 3.1 mg per 100 µL Milli-Q water. 

• IAA 400 mM: dissolve 7.4 mg per 100 µL Milli-Q water. 

• Formic acid 10% v/v in Milli-Q water. 

Immunoblotting  

• SDS-PAGE running buffer: 25 mM Tris pH 8.3, 192 mM glycine, 0.1% SDS. 

• SDS-PAGE transfer buffer: 25 mM Tris pH 8.3, 192 mM glycine, 20% methanol. 

• Tris-buffered saline (TBS): 50 mM Tris pH 7.4, 150 mM NaCl. 

• SDS loading buffer: 0.2 M Tris-HCl, 4.3 M Glycerol, 277 mM SDS, 6 mM Bromophenol blue, 

0.4 M DTT. 
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APPENDIX 2: GENERAL METHODS FOR DETERMINATION OF 

PROTEIN CONCENTRATION 

Lowry assay 

Protein concentration of cells lysates was determined using Lowry assay. Cells lysates were diluted 

1:10 in distilled water. 25 µL of diluted sample was mixed with 475 µL of distilled water and 

subsequently with 2 mL of Lowry reagent. The Folin-Ciocalteau reagent (250 µL) was added to initiate 

the colour forming reaction. A calibration curve was generated using Bovine Serum Albumin (BSA). 

The calibration curve was prepared over the concentration range 5 – 100 mg/L. Protein content in all 

samples and BSA standards was measured using the absorbance at 660 nm. The UV-spectrophotometry 

was zeroed using a distilled water instead of protein. All samples and standard were analysed in 

duplicate. Calibration curve was plotted between protein content and absorbance. Protein concentration 

of samples was determined using the following equation: 

  [𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡] = 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥 
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒 𝑠𝑙𝑜𝑝𝑒
 𝑥 

1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
 

microBCA protein assay 

A set of BSA protein standards was prepared as per manufacturer’s protocol. Briefly, serial dilution of 

BSA stock concentration (2 mg/mL) was performed to obtain protein standard range from 0 – 200 

µg/mL. The Micro BCA working solution was prepared by mixing 25 parts of Micro BCA reagent A 

and 24 parts Micro BCA reagent B with 1 part of Micro BCA reagent C (Ratio 25:24:1). 150 µL of 

BSA standard or samples was pipetted in duplicate into 96-well plate, followed by the addition of 150 

µL Micro BCA working solution. The 96-well plate was incubated at 37°C for 2 hours. Following 

incubation, the plate was left to stand at room temperature for 5 minutes and absorbance was measured 

using a SpectraMax iD5 Multi-Mode Microplate Readers (Molecular Devices, USA) set to 562 nm 

wavelength.  
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APPENDIX 3: CULTURING AND VALIDATION OF HEPARG 

Methods 

Cell culture 

Undifferentiated HepaRG cells (passage 13) were obtained from Biopredic international (Rennes, 

France) under MTA agreement. Upon arrival, cells were stored in liquid nitrogen tank immediately. 

Cell bank was set up according to the standard instruction protocol (Rennes, France). Cells were seeded 

at 2 million cells in T75 cell culture flask and were cultured in growth media; William’s E media 

supplemented with 2 mM Glutamax, 10% foetal bovine serum (FBS), 100 IU/mL penicillin, 100 µg/mL 

streptomycin, 5 µg/mL bovine insulin, and 50 µM hydrocortisone hemisuccinate. Cells were maintained 

in growth media for 14 days to allow cell proliferation. At day 15, cells cell growth media was replaced 

with media containing 1% DMSO for 3 days, before subsequently changing to cell differentiation media 

containing 2% DMSO and grown for another 14 days. Media was renewed every 2-3 days throughout 

the entire culturing process.  

To passage cells, media was removed from the flaks and cells were washed with sufficient amount of 

sterile D-PBS to completely remove any remaining media. Cells were detached from the flasks by 

adding 2 mL (for T75 flasks) 0.05% trypsin/0.53 mM EDTA in PBS solution and incubating at 37°C 

for 2 – 3 minutes. Trypsin was neautralised by adding complete growth media. To determine cell count, 

20 μL of cell suspension was mixed with an equal volume of 0.2% trypan blue, 10 μL of mixture was 

loaded onto a Neubauer Haemocytometer Cell Counting Chamber (Adelab Scientific, Australia), 

covered with coverglass and cells were counted using Olympus CK2 microscope.  

Induction study 

For induction study, HepaRG were cultured in induction media; William’s E media supplemented with 

2 mM Glutamax, 100 IU/ml penicillin, 100 µg/mL streptomycin, 4 µg/ml bovine insulin, and 50 µM 

hydrocortisone hemisuccinate. Induction media composition was similar to cell growth media, with a 

modification of depleting FBS and lowering the concentration of insulin. Induction media was used to 

lower the CYP3A4 and the other enzyme activity to basal level, as DMSO in differentiation maintained 

the activity of enzymes to the highest extent. Rifampicin was dissolved in DMSO at 1,000-fold to the 

desired final concentration in order to minimise DMSO concentration to less than 0.1% at the incubation 

step. Cells were cultured in induction media with the presence or the absence of 10 µM rifampicin for 

48 hours, with media and drug renewal every 24 hours. At 48 hours, cells were harvested by removing 

media, washing briefly with Dulbecco's phosphate-buffered saline (D-PBS) and collecting cells using 

a cell scrapper before transferring them to the collection tubes.  
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To generate stocks of cells for subsequent use, HepaRG cells were counted and 1.5 million cells per 

Nunc cryotube vial were frozen. Briefly, freezing media containing growth media supplemented with 

20% DMSO was used for freezing cells for the biobank storage. Cells were harvested and centrifuged 

at 500 g for 3 minutes at 4°C to obtain a cell pellet. Cell pellets were re-suspended in 250 µL of growth 

media and placed on ice immediately. Slowly, 250 µL of freezing media was added to the Cryovials, 

each containing 500 µL of final mixture (1.5 million of cells) and they were stored at -80°C for 24 hours 

before transferring to liquid nitrogen for long term storage. Upon removal from liquid nitrogen, cell 

stocks were thawed by dropping gently 1 mL growth media directly to the frozen cells and transferring 

the cell suspension to the T25 cell culture flask containing HepaRG cell growth media. The following 

day, media was replaced with fresh growth media to completely remove any traces of DMSO.  

EV isolations 

The process of EVs isolation was provided in Chapter 5 under methods section. 

Determination of CYP3A4 enzyme activity. 

The metabolite formation of 1OH-midazolam was used to determine CYP3A4 enzyme activity in 

HepaRG cells. Cell lysates (80 µg) were incubated with 5 µM midazolam in presence of 0.1 M 

phosphate buffer and 1 mM NADPH for 60 minutes in a shaking water bath at 37°C. Reactions were 

terminated with ice-cold acetonitrile containing 0.1% formic acid. Samples were centrifuged at 16,000 

g for 15 minutes at 4ºC. 300 µL of clear supernatant were transferred to LC-MS vials filled with 400 

µL pull-point glass inserts. Vials were then capped and transferred to the LC-MS for analysis. 

Extraction of total RNA from mammalian cells. 

RNA extraction was performed as per TRIzol manufacturer’s protocol. Briefly, HepaRG cells were 

washed in D-PBS and harvested in 1 mL of TRIzol (Life Technologies, Victoria, Australia) per 10-25 

cm2 of surface area of cells grown. Samples were transferred to a new 1.5 mL microcentrifuge tubes 

and 200 μL of chloroform was added per 1 mL of TRIzol and mixed vigorously. Samples were 

centrifuged at 12,000 g for 15 minutes at 4°C. Top aqueous layer containing the RNA was transferred 

to a fresh 1.5 mL microcentrifuge tube. RNA was precipitated by adding 500 μL of isopropanol per 1 

mL TRIzol starting volume. Samples were incubated at room temperature for 10 minutes, and then 

centrifuged at 12,000 g, 4°C for 10 minutes. Samples were washed with 1 mL of 75% ethanol per 1 mL 

of TRIzol. Supernatant was discarded, and samples were air-dried for 30 minutes. Samples were 

resuspended (a white pellet might be visible) in 20-30 μL of RNase-free water and heated to 60°C for 

10 minutes. Store the samples in -80°C until required for downstream analysis.   
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cDNA synthesis using Lucigen kit (Lucigen Corporation) 

RNA concentration was measured using NanoDrop™ 2000/2000c Spectrophotometers (Thermo Fisher 

Scientific, Australia). A 2 μg aliquot of total RNA was transferred to a new 1.5 mL microfuge tube and 

1 U of DNA I (1 U/1 μL) amplification grade DNase I in 20 mM Tris-HCl (pH 8.4), 2 mM MgCl2 and 

50 mM KCl and inculated at room temperature for 15 minutes. Inactivation of DNase I was done by 

adding EDTA to a final concentration of 2.5 mM, and samples were incubated at 65°C for 10 minutes. 

One microgram (8 μL) of DNase-treated RNA was added to a 20 μL reaction volume containing 1 μL 

10 mM dNTPs, 1 μL 53 ng/μL random hexamers (NEB) and 6 μL RNase-free water. Samples were 

incubated at 65°C for 5 minutes then cooled on ice for 2 minutes. 2 μL of M-MulV Reverse 

Transcriptase buffer (10x), 1 μL RNase inhibitor and 1 μL Reverse Transcriptase were added and the 

reaction volume was brought up to 20 μL. Reverse transcriptase reaction was performed at 42°C for 1 

hour, followed by an increase temperature to 90°C, and followed by a 10 minutes hold. cDNA was 

diluted 1:10 with sterile RNase-free water before using in PCR.  

Determination of CYP3A4 mRNA expression. 

Cells were seeded and cultured in 6-well plates following the standard process of growth, differentiation 

and induction as mentioned prior. After 48 hours, cells were washed with 1xPBS before harvesting 

using Trizol lysis reagent (1 mL per well). NanoDrop™ 2000/2000c spectrophotometer was used to 

determine the concentration and purity of all RNA samples. RNA was reverse transcribed to cDNA 

using the SuperScript™ VILO™ cDNA Synthesis Kit according to manufacturer’s protocol 

(Invitrogen, Cat no: 11754050). The 20 μL reaction mixture contained 5 μL cDNA product, 1 μL 

TaqMan Gene expression Assay (20x), 10 μL TaqMan® Gene Expression Master mix (2x). PCR 

reactions were run at 50°C for 2 minutes and then 95 °C for 10 minutes, followed by 40 cycles of 95°C 

for 15 seconds and 60°C for 1 minute. Expression level of mRNA was analysed using the Rotor-Gene 

6 software (Corbett Life Science). 18S and GAPDH were used as normalizing controls (TaqMan® Gene 

Expression Assay IDs Hs99999901_s1 and Hs02786624_g1 respectively).  

Appendix Table E. Real-time PCR: TaqMan® CYP3A4 gene expression assay. 

List Details 

Assay ID Hs00604506_m1 

Lot number P160610-006A03 

Vial type Matrix Tube 

Vial ID 213832522 

Assay Mix concentration 20x 

Forward Primer Name Hs00604506_m1_F 

Forward Primer Concentration 18 
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Reverse Primer Name Hs00604506_m1_R 

Reverse Primer 18 

Reporter 1 Name Hs00604506_m1_M 

Reporter 1 Dye FAM 

Reporter 1 Concentration 5 

Reporter 1 Quencher NFQ 

Results 

Cell morphology 

HepaRG demonstrated a morphology of elongated cells during the first 5 days after seeding (Appendix 

Figure A). Cells actively propagated until they reached confluency at around day 10 – 11. Upon 

reaching the confluency, cells underwent morphology change together with forming colonies of 

granular epithelial cells. Adding of DMSO at day 14 facilitated HepaRG cell differentiation. At day 35, 

HepaRG cells were at a differentiated stage with approximately 40-50% of the cells were hepatocyte-

like cell (Appendix Figure B). 

     

Appendix Figure A – Phase contrast photomicrograph of HepaRG cultured at day 10 in growth 

media. Cells were seeded at 2x106 cells per T75 flask. The morphology observed a diversity of 

shapes with nearly 100% confluency.  
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Appendix Figure B – Phase contrast photomicrograph of HepaRG cultured for 35 days. Cells 

were cultured in growth media in absence of DMSO for 14 days before transition to be cultured 

in the media containing 2 % DMSO. The morphology observed predominantly of hepatocyte-like 

cells with substantial present of bile canaliculus-like structure.   
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CYP3A4 enzyme activity following rifampicin induction. 

 

Appendix Figure C – Overall fold induction of rifampicin on HepaRG. Data were generated from 

four biological replicates. HepaRG treated with 10 μM rifampicin observed approximately 6.3-

fold change of CYP3A4 enzyme activity compared to the control group.  

 

Induction of P450 enzyme observed a dramatically pronounced after 48 hours exposure to enzyme 

inducer as reported in previous literatures [65]. In this validation study, rifampicin at 10 μM was served 

as CYP3A4 inducing agent [324]. Midazolam 5 μM was the specific CYP3A4 substrate used in the 

metabolite formation method to observe 1OH midazolam which is the metabolite generated from 

midazolam via CYP3A4.  

Four biological replicates were conducted to evaluate the inducibility of CYP3A4 in HepaRG cells. 

CYP3A4-catalysed 1OH-midazolam activity was induced by rifampicin with the average 6.3-fold 

induction (Appendix Figure C).  

Expression of CYP3A4 mRNA following rifampicin induction. 

HepaRG treated with rifampicin (10 μM) for 48 hours observed average CYP3A4 mRNA induction of 

10-fold compared to untreated HepaRG. Data was normalised to GAPDH mRNA levels (Appendix 

Figure D).  
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Size distribution of EVs isolated from HepaRG conditioned media. 

EVs isolated from conditioned media collected 24 hours after induction media was introduced showed 

a uniformity of the particle size in which range between 88 – 105 nm. The size distribution of EVs 

isolated from the conditioned media before the induction study showed a similar profile to the EVs 

isolated 48 hour after introducing induction media to HepaRG (Appendix Figure E). 

 

Appendix Figure D – Overall fold induction of rifampicin on CYP3A4 mRNA expression. Data 

were generated from three biological replicates. HepaRG treated with 10 μM rifampicin observed 

approximately 10-fold change of CYP3A4 mRNA expression compared to the control group.  

 

 

Appendix Figure E – Size distribution of EVs isolated from HepaRG in different state of 

culturing. Data were generated from three biological replicates. 
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APPENDIX 4: PEPTIDE SEQUENCES 

Appendix Table F. Peptide sequences for CYP3A4. 

List Details 

Protein name Cytochrome P450 3A4 

Gene CYP3A4 

Domain Transmembrane 

Peptides sequences         10         20         30         40         50         60  

MALIPDLAME TWLLLAVSLV 

LLYLYGTHSH GLFKKLGIPG PTPLPFLGNI 

LSYHKGFCMF  

 

        70         80         90        100        110        120  

DMECHKKYGK VWGFYDGQQP 

VLAITDPDMI KTVLVKECYS 

VFTNRRPFGP VGFMKSAISI  

 

       130        140        150        160        170        180  

AEDEEWKRLR SLLSPTFTSG KLKEMVPIIA 

QYGDVLVRNL RREAETGKPV 

TLKDVFGAYS  

 

       190        200        210        220        230        240  

MDVITSTSFG VNIDSLNNPQ 

DPFVENTKKL LRFDFLDPFF LSITVFPFLI 

PILEVLNICV  

 

       250        260        270        280        290        300  

FPREVTNFLR KSVKRMKESR 

LEDTQKHRVD FLQLMIDSQN 

SKETESHKAL SDLELVAQSI  

 

       310        320        330        340        350        360  

IFIFAGYETT SSVLSFIMYE LATHPDVQQK 

LQEEIDAVLP NKAPPTYDTV 

LQMEYLDMVV  
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       370        380        390        400        410        420  

NETLRLFPIA MRLERVCKKD 

VEINGMFIPK GVVVMIPSYA 

LHRDPKYWTE PEKFLPERFS  

 

       430        440        450        460        470        480  

KKNKDNIDPY IYTPFGSGPR 

NCIGMRFALM NMKLALIRVL 

QNFSFKPCKE TQIPLKLSLG  

 

       490        500  

GLLQPEKPVV LKVESRDGTV SGA  

 

UniProt ID P08684 

Amount 25 nmol 
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APPENDIX 5: METHOD DEVELOPMENT OF SORAFENIB 

METABOLISM USING HLM AS PROTEIN SOURCE 

Methods 

Sorafenib metabolism by CYP3A4 with HLM 

HLM samples (80 µg) were incubated with 0.1 M phosphate buffer, 1 mM NADPH, water and sorafenib 

(2.5 – 160 µM) in a total volume 200 µL. Incubations were performed over 60 minutes at 37°C in 

shaking water bath. Reactions were terminated with 400 µL ice-cold acetonitrile containing 0.1% 

formic acid and proceed to LC-MS analysis.  

Determination the metabolite of sorafenib by LC-MS 

The LC condition was Agilent; mobile phase A: 0.1 % (v/v) formic acid in water; mobile phase B: 0.1 

% (v/v) formic acid in Acetonitrile; gradient, 0 minutes to 4 minutes at 10 to 60 % B, 4 minutes to 6 

minutes at 60 to 90% B; flow rate, 0.3 mL/minute; column temperature, 26.57°C; and injection volume, 

5 µL. The MS/MS detector used was a quadrupole tandem mass spectrometer (Agilent, USA). Samples 

were analysed using electrospray ionization in the positive model. Data were collected and analysed by 

MassHunter Sorafenib N-oxide was monitored at m/z 481.09 > 286 (collision energy 30) and 481.09 > 

211 (collision energy 40 eV).  

Results 

Appendix Table G. Kinetic profile of sorafenib using HLM as protein source. 

Sorafenib concentration 

[S] 

Accounted for 

the non-specific binding 

Velocity 

[V] 
[V]/[S] 

2.5 0.5 404050.7 808101.5 

5 1 1044693 1044693 

7.5 1.5 2274328 1516219 

10 2 3148950 1574475 

15 3 4463584 1487861 

20 4 6111969 1527992 

80 16 14104466 881529.1 

105 21 14319596 681885.5 

110 22 14696111 668005 

120 24 14609008 608708.7 

130 26 13651062 525040.8 

160 32 13188422 412138.2 
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Appendix Figure F – Velocity versus substrate concentration plot for sorafenib metabolism by HLM. 
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LC-MS/MS Conditions  

Five-µL of sample supernatant was injected onto a ZORBAX Eclipse Plus C18 2.1 x 50 mm 1.8-µm 

HPLC column (Agilent Technologies). Mobile phase consisted of Milli-Q water with 0.1% (v/v) formic 

acid (A) and acetonitrile with 0.1% (v/v) formic acid (B) at a flow rate of 0.3 mL/minute (see Appendix 

Table H and I for gradient). Total run time was 5.5 minutes per sample.  

Appendix Table H. LC mobile phase gradient for 1OH-midazolam. 

Time (minute) A (%) B (%) 

0.00 90 10 

1.00 90 10 

3.00 40 60 

3.10 90 10 

 

 

Appendix Table I. LC mobile phase gradient for sorafenib N-oxide 

Time (minute) A (%) B (%) 

0.00 90 10 

4.00 40 60 

6.00 10 90 

6.10 90 10 

 

MS was operated in Electrospray Ionisation+ (ESI+) and Multiple Reaction Monitoring (MRM) was 

used to monitor transitions from the 1OH- midazolam precursor ion (m/z 342.01) to several product 

ions outlined in Appendix Table J. Sorafenib N-oxide precursor ion and its product ion as shown in 

Appendix Table K. Other relevant MS settings are outlined in Appendix Table L.  
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Appendix Table J. 1OH- midazolam product ions and relevant acquisition settings. 

Product ion (m/z) Dwell (ms) Collision energy (eV) Cell accelerator voltage 

342.1 (quantifier) 200 24 4 

289 (qualifier) 50 32 4 

203 (qualifier) 100 44 4 

176 (qualifier) 50 44 4 

168 (qualifier) 100 44 4 

 

Appendix Table K. Sorafenib N-oxide product ions and relevant acquisition settings. 

Product ion (m/z) Dwell (ms) Collision energy (eV) Cell accelerator voltage 

286 (quantifier) 200 30 4 

211 (qualifier) 200 40 4 

 

Appendix Table L. Additional relevant MS settings. 

Parameter Value 

Delta EMV (+) 200 

Capillary 3000 V 

Nozzle Voltage 0 V 

Nebuliser 20 psi 
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APPENDIX 6: PUBLICATIONS ARISING DIRECTLY FROM THIS 

THESIS 
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