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SUMMARY

Hyporheic exchange is a process in which water leaves a river through underlying or
adjacent sediments and then returns to the river. This is now widely recognised as a critical
process for nutrient cycling and river health but it remains a challenge to adequately
characterise the spatial and temporal scales at which hyporheic exchange occurs. The
method traditionally used to quantify hyporheic exchange is the applied tracer test. This
approach characterises the bulk exchange occurring within the river and riverbed
sediments between locations separated by tens to hundreds of metres longitudinally along a
river. Although a useful tool for assessing reach scale bulk processes, this approach does
not describe the spatial variability of hyporheic exchange within each reach which can be
important (e.g. characterising upwelling and downwelling zones). Additionally, the
flowpaths that occur over longer temporal scales than the sampling period are not captured
within the analysis. More broadly, it is not well understood how the scale and magnitude of
hyporheic exchange compares with other groundwater—surface water exchange processes.
These include groundwater discharge into rivers and river infiltration into aquifers which

are both important processes for water resource managers to be able to accurately quantify.

The key objectives of this thesis are to investigate and directly compare, the use of
naturally occurring environmental tracers (temperature and radon) for estimating hyporheic
exchange fluxes and residence times. The conceptual assumptions of these approaches are
examined with the intention of demonstrating their value for quantifying groundwater—
surface water exchange processes. To date, there have not been any studies that directly
compare the hyporheic exchange fluxes and residence times derived from detailed vertical
profiles of temperature and radon. The research also explores the relative scales and
magnitudes of hyporheic and river—aquifer exchange fluxes to demonstrate the importance
of conceptualising and quantifying hyporheic exchange within the context of water

resource management.



A field investigation on the Haughton River in northeastern Australia, explores the use
of naturally occurring environmental tracers to characterise the hyporheic exchange
processes occurring along a pool-riffle sequence. To interpret temperature data, a 1D
numerical approach is developed and validated by comparison with two synthetic 2D
flowfields before applying it to raw temperature data from the field. The validation of the
1D approach shows that the flux calculated between the surface and an observation depth
IS representative of the mean vertical component of flux along the flowpath the water has
travelled to that depth. Thus without describing the horizontal component of flow, this
vertical 1D approach inherently contains a “spatial footprint”. This is an important
improvement on the more commonly applied assumption of pure vertical flow between
sequential pairs of subsurface temperature data, which is currently in conflict with our

understanding of hyporheic flowfields.

Simple analysis of the temperature, radon and electrical conductivity data collected in
a series of vertical profiles, allows us to identify the depth of hyporheic circulation and
calculate residence times within the hyporheic zone. Residence times derived from
temperature and radon data were compared directly and although they showed general
agreement, there were large differences in many cases. When error bounds were taken into
account, radon-derived residence times in downwelling profiles were significantly greater
than temperature-derived residence times for 57% of samples. These results suggest that
small scale heterogeneity may have a different influence on each of these tracers and thus
cause the disparity in flux and residence time estimates. The temperature approach appears
to be more influenced by zones of high hydraulic conductivity than the radon approach.
The use of diel temperature variations can be used to estimate residence times from tens of
minutes up to a few days while the radon approach allows residence times from 0.1 to 15
days to be gquantified. The uncertainty of residence time values increases outside of these

ranges. This research demonstrates the value of using temperature and radon in

Vi



combination, as together they allow the quantification of hyporheic residence times from

tens of minutes to 15 days using relatively rapid field techniques.

A review of groundwater—surface water exchange flux estimates found in the literature
shows that hyporheic exchange fluxes are approximately one order of magnitude larger
than river—aquifer exchange fluxes. If methods are applied that cannot specifically
distinguish between sources of water (e.g. seepage meters and other point measurements)
there is the potential for large hyporheic exchange fluxes to be misinterpreted as river-
aquifer exchange fluxes. This would have clear implications for water resource
management where accurately quantifying groundwater—surface water interaction is
critical for decision making. This thesis also outlines the spatial and temporal scales at
which common field methods are applied. Then the importance of considering the scale of
measurement and the use of multiple methods to successfully differentiate between

exchange flux processes is presented.
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