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Abstract

Dengue fever has been a health problem for many decades especially in trop-
ical and sub-tropical countries. Laos is a one of the countries where a dengue
epidemic has been declared twice in the current decade; in 2010 and 2013.
This paper states the concerns whether the seasonal pattern influence the
disease transmission in this country. A mathematical dynamic methodol-
ogy is used in this paper to indicate how the spreading of dengue fever is
influenced by seasonal patterns. This thesis will be based on the model of
research study from (Ding et al., 2012) only is considered because as it has
similar focusing area as this paper aims to present. However, the study of
(Ding et al., 2012) considered multiple groups, no explicit formula for equi-
libria were given and the basic reproduction number was not computed. In
this thesis, only one group is considered, but explicit formulae for equilib-
ria are found as the basic reproduction number R0. Numerical simulations
demonstrate the seasonal influence
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Chapter 1

Introduction

1.1 Research Problem

Dengue fever is a well-established disease and found in many countries es-
pecially in tropical and subtropical regions. According to the World Health
Organisation (WHO, 2018b), there are 4 types of dengue fever (DEN1-4); all
types are transmitted to humans by a bite from the Aedes mosquitos (female
mosquitos). Over 40 percent of the worlds population or more than 2.5 bil-
lion people who are currently living in Africa, Central and South America,
the Caribbean, the Eastern Mediterranean, South and Southeast Asia, and
Oceania are at the highest risk of this vector-born-disease. It is estimated
that each year, there are 50 to 100 million cases worldwide of dengue infec-
tion. Over 500 thousand of these cases develop into the severe dengue type
known as haemorrhagic fever, resulting in up to 12,000 deaths annually world-
wide. Laos is one of the countries where dengue fever is a common public
health problem (Sayavong, 23, January 2018). As illustrated in Figure 1.1.,
the number of people infected with dengue in Laos capital city (Vientiane)
varies seasonally and between years, the latest epidemic outbreak occuring
in the year 2013 (Sayavong, 23, January 2018).

According to (WPRO, 2018), in 2010 there were 22,890 reported cases of
dengue fever in Laos and in 2013, there were 44,171 reported cases (approx-
imately 10,471 cases in Vientiane), showing a general increasing trend over
the years (Sayavong, 23, January 2018).This presents an alerting situation
for the Lao PDR representative, Dr Juliet Fleischl, who expresses concern of
another epidemic outbreak and advises there is crucial need for prevention
and monitoring methods (WHO, 2018a).
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Mathematical models are useful for short to medium length prediction

Figure 1.1: The number of patients from 2012 to 2017 in Vientiane

of the number of new infections. The model in this project is used to predict
how the seasonal pattern will influence the spreading of dengue fever and the
number of patients, focusing in Vientiane. This research will be useful for
planning strategies to manage and possibly reduce the severity of outbreaks.

1.2 Lao Context

Laos is located in South East Asia and is the only landlocked country in
this region. Bordering countries include Myanmar (Burma) and China to
the northwest, Vietnam to the east, Cambodia to the southwest, and Thai-
land to the west and southwest. Laos contains 17 provinces and one pre-
fecture (Vientiane, the capital city) and has a population of approximately
6,900,000 persons (UNFPA, 2018). The climate is tropical and influenced by
the monsoon pattern, and there are two seasons; a rainy season from May to
November and a dry season from December to April. Temperature depends
on altitude, and Laos encompasses a variety of colder climate mountainous
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and upland plateaux terrain, as well as flat plains (such as in Vientiane)
where temperatures are usually between 22 to 29 degrees Celsius through-
out the year. Mosquito larvae require rainfall to develop, with temperature
being a dependent variable, hence according to (Valdez et al., 2018), climate
influences mosquito population growth. We can imply that Vientiane is a
suitable location for mosquito survival as its temperature is not too cold and
not too hot with abundant rainfall throughout most of the year (Figure 1.2).

Figure 1.2: The amount of rainfall in mm from 2012 to 2017 in Vientiane
(Meteorology/Hydrology, March, 2018)

1.3 Research aim and question

The thesis aims to formulate the equilibria points, the basic reproduction
number R0) and also to investigate whether a mathematical model for sea-
sonal pattern can predict the spread of dengue in Vientiane, Laos. To achieve
these aims, one question is formulated: can the mathematical model for sea-
sonal pattern predict the spread of dengue in Vientiane? This research will
focus on Vientiane, where the number of cases of dengue fever is higher than
in the province. Emphasising the use of Vientiane is also necessary due to
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the lack of available data from other Laos provinces required to test the
feasibility of the mathematical model.

1.4 Literature review

There are many mathematicians or mathematics related authors who have
done research regarding vector-borne diseases (Abdelrazec et al., 2016), (Cai
et al., 2009), (Ding et al., 2012), (Esteva and Vargas, 1998). These diseases
are infections transmitted by the bite of infected arthropod species such as
mosquitoes as in the case of dengue fever. The analysis of a dengue dis-
ease transmission model involves finding the conditions that the number of
humans and vectors are stable. In relation to this, the basic reproduction
number (R0) can be considered, where the expected average number (not
rate) of secondary cases that result from a primary case in a fully susceptible
population is tested to generally characterise control of the disease (Rodrigues
et al., 2016). The study of (Esteva and Vargas, 1998) found that if the basic
reproduction number is less than one, the disease-free state is asymptotically
stable and if the basic production number is greater than one, the disease en-
demic state is globally asymptotically stable. Similarly, using a graph theory
method to demonstrate the dengue disease transmission, a study conducted
by (Ding et al., 2012) points out that the global stability of a multigroup
dengue disease transmission model also supports the result of the previous
study. However, it can only be applied to groups of populations. This means
that if the basic reproduction number is less than one, the disease dies out
in all groups and if the basic reproduction number is greater than one, the
same endemic state is reached in all groups.

Furthermore, the global dynamics of dengue epidemic mathematical model
also has similar investigation and set human and vectors to be constant. (Cai
et al., 2009) used an SIR model for dynamics of dengue disease with satura-
tion and bilinear incidence to determine the basic reproduction. In addition
to that, (Abdelrazec et al., 2016) set a model of the spreading and controlling
of dengue fever with limited public health resources where the main results
of the paper were to indicate the existence of multiple endemic equilibria and
show the phenomenon of backward bifurcation.

Another study from Thailand attempts to investigate how entomological and
biological variables influence dengue by setting mathematical models regard-
ing to seasonal varying parameters, predicting the prevalence of infection,
and then comparing it to observe the seasonal patterns of the disease.
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The papers listed above use different methods to investigate the basic re-
productive disease (R0) and an equilibria. This thesis will be based on
the research study from (Ding et al., 2012) and use mathematical dynamic
method to analyse the model for seasonal patterns of dengue fever in Laos
because the study of (Ding et al., 2012) considered multiple groups, no ex-
plicit formula for equilibria were given and the basic reproduction number
was not computed. In this thesis, only one group is considered, but explicit
formulae for equilibria are found as is the basic reproduction number R0 This
thesis mainly focuses on how the system in this model work and show the
disease-free equilibrium and the endemic equilibrium points then making a
comparation with data from Laos with the numerical result.

This research paper is divided into four chapters. In Chapter 1, the intro-
duction part provides some background of the research problem regarding to
Dengue fever, brief discussing Lao context, and then the problem interests re-
garding to this researchs concerns and literature reviews. In chapter 2, intro-
ducing a mathematical model and providing the mathematical terminology
in terms of biological denotation such as state variables. In further section,
a mathematical model analysis using dynamic methodology to obtain the
result whether the system in the model has a disease-free equilibrium point
and an endemic equilibrium. In the chapter 3, the result discussion from the
model analysis in chapter 2 and compare with data from Laos to see whether
the model is adequate to the situation in Laos. The final chapter, chapter 4
provides some better approaches to Laos community, some limitations and
future research suggestions.
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Chapter 2

A new model for spreading
dengue fever

2.1 Methodology

The dynamic method will be used to model dengue fever in Laos and it will be
a sequence of autonomous models. This will allow us to compute equilibrium,
determine stability and determine the formula for the basic reproduction
number.

2.2 Setting the model

The model is a deterministic compartmental model and there are five state
variables:

S the number of susceptible humans per unit area.
I the number of infected humans per unit area.
R the number of recovered humans per unit area.
V the number of susceptible vectors per unit area.
G the number of infected vectors per unit area.

In this paper, the essential elements of a mathematical model for the trans-
mission of an infectious disease is represented as a SIRVG model. There are
two groups including humans and vectors. The human population is divided
into three compartments: Susceptible humans are recruited at a rate of P
persons per unit time (per unit area), where recruitment may involve birth
or immigration from other areas. The number of susceptible humans that be-
come infectious through contact with an infected vector per unit time is αSG
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and the number of natural deaths is δS. Infected humans are not modelled as
having an increased mortality rate. Although some people do die of dengue,
this is a small number and denoted as (δ + β)I. The number of recovered
humans is βI and to the number of deaths of recovered humans is denoted
as δR. Further, the vector group is set into two compartments: susceptible
vectors are recruited at a rate of Q vectors per unit time (per unit area). The
number of susceptible vectors that become infectious through contact with
an infected persons per unit time is αV I and the number of natural deaths
is θV . θG is represented as the mortality of infected vectors. This leads to
the following system of differential equations.
The system of differential equations:

S ′ = P − αSG− δS (2.1)

I ′ = αSG− (δ + β)I (2.2)

R′ = βI − δR (2.3)

V ′ = Q− γV I − θV (2.4)

G′ = γV I − θG (2.5)

Where, P is referred to the recruitment rate of humans, the mortality rate
for humans denoted as δ, β is the recovery rate for humans, the infection
rate of human from vectors denoted as α, γ is the infection rate of vectors
from humans, θ is denoted as the mortality rate of vectors, Q is referred to
the recruitment rate of vector. Hence, P , Q , δ and θ are bigger than 0 and
the rests of all values are supposed to be nonnegative.

2.3 Equilibria

From Equations 2.1 - 2.5, points of equilibrium must satisfy the following
equations.

0 = P − αSG− δS (2.6)

0 = αSG− (δ + β)I (2.7)

0 = βI − δR (2.8)

0 = Q− γV I − θV (2.9)

0 = γV I − θG (2.10)
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2.3.1 The disease-free equilibrium

A system is said to have a disease-free equilibrium if there is a point of
equilibrium in the state space with no infected individuals, other words, with
I = 0. Therefore, by Equations (2.6) and (2.9), neither S nor V can be zero
since P and Q are fixed positive constants.

If I = 0, then by (2.8), R = 0 and by (2.10), G = 0. Then by (2.6),
S = P/δ and by (2.9), V = Q/θ.

Thus there is a disease free equilibrium at(
P

δ
, 0, 0,

Q

θ
, 0

)
. (2.11)

If G = 0, then since V 6= 0, Equation (2.10) gives that I = 0 and so the
disease free equilibrium in (2.11) results.

If R = 0, then by (2.8), I = 0 and so the disease free equilibrium is found
again.

Thus the only equilibria other than the disease free equilibrium in (2.11)
must have all postive values for the state variables.

2.3.2 The disease endemic equilibrium

A system is said to have a disease endemic equilibrium if there is a point of
equilibrium in the state space, where all state variables have positive values.
Therefore, in order to obtain all positive state variables, from equations (2.8)
and (2.10) give that

I =
δ

β
R and G =

γ

θ
IV =

γδ

θβ
RV. (2.12)

The three remaining equations (2.6, 2.7 and 2.9) become

0 = P − αγδ

θβ
SRV − δS (2.13)

0 =
αγδ

θβ
SRV − (δ + β)δ

β
R (2.14)

0 = Q− γδ

β
RV − θV (2.15)

Solving Equation (2.15) for R gives

R =
β

γδ

(
Q

V
− θ
)
. (2.16)
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With this, formula for R, Equation (2.13)becomes

0 = P − αS

θ
(Q− θV )− δS. (2.17)

Equation (2.14) may be rewritten as

V =
θ(δ + β)

αγS
. (2.18)

Substituting (2.18) into (2.17) gives

0 = P − α

θ
S

(
Q− θ2(δ + β)

αγS

)
− δS

and so

0 = P − α

θ
SQ+

θ(δ + β)

γ
− δS.

Solving this last expression for S gives

S =
θ

γ

(
Pγ + θ(δ + β)

αQ+ δθ

)
.

Now using (2.18), (2.16) and the formulas in (2.12), formulas for all the
state variables may be found. The disease endemic equilibrium is at

S =
θ

γ

(
Pγ + θ(δ + β)

αQ+ δθ

)
(2.19)

V =
(δ + β)

α

(
αQ+ δθ

Pγ + θ(δ + β)

)
(2.20)

R =
β

γδ

(
Qα(Pγ + θ(δ + β)

(δ + β)(αQ+ δθ)
− θ
)

(2.21)

I =
1

γ

(
Qα(Pγ + θ(δ + β)

(δ + β)(αQ+ δθ)
− θ
)

(2.22)

G =
1

θ

(
Qα(Pγ + θ(δ + β)

(δ + β)(αQ+ δθ)
− θ
)

(2.23)
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2.4 The Jacobian and the characteristic poly-

nomial

Equilibria are defined as points in the state space where Equations 2.1 - 2.5
are zero. The stability of the equilibria are determined by the signs of the
eigenvalues (λ) of the matrix J − λId, where J is the Jacobian matrix and
Id is the identity matrix.
The general n dimensional Jacobian is

J(x1, x2, . . . , xn) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 .

For the model from equations 2.1 to 2.5, the Jacobian is

J(S, I, R, V,G) =


∂f1
∂S

∂f1
∂I

∂f1
∂R

∂f1
∂V

∂f1
∂G

∂f2
∂S

∂f2
∂I

∂f2
∂R

∂f2
∂V

∂f2
∂G

∂f3
∂S

∂f3
∂I

∂f3
∂R

∂f3
∂V

∂f3
∂G

∂f4
∂S

∂f4
∂I

∂f4
∂R

∂f4
∂V

∂f4
∂G

∂f5
∂S

∂f5
∂I

∂f5
∂R

∂f5
∂V

∂f5
∂G

 .

Hence,

J−λId =


−(αG+ δ)− λ 0 0 0 −αS

αG −(δ + β)− λ 0 0 αS
0 β −δ − λ 0 0
0 −γV 0 −(γI + θ)− λ 0
0 γV 0 γI −θ − λ

 .

(2.24)

2.4.1 Stability of the disease free equilibrium

At a disease free equilibrium (2.11)and setting I = 0, R = 0 and G = 0 and
plug into equation (2.24) gives

J − λId =


−δ − λ 0 0 0 −αS

0 −(δ + β)− λ 0 0 αS
0 β −δ − λ 0 0
0 −γV 0 −θ − λ 0
0 γV 0 0 −θ − λ

 . (2.25)
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In this case,

det(J − λId) = (−δ − λ)det


−(δ + β)− λ 0 0 αS

β −δ − λ 0 0
−γV 0 −θ − λ 0
γV 0 0 −θ − λ

 .

= (−δ − λ)

(−(δ + β)− λ)det

 −δ − λ 0 0
0 −θ − λ 0
0 0 −θ − λ


−αS det

 β −δ − λ 0
−γV 0 −θ − λ
γV 0 0


= (−δ − λ) [(−δ − β − λ)(−δ − λ)(−θ − λ)(−θ − λ)

−αS(γV (−θ − λ)(−δ − λ)] .

= (−δ − λ)2(−θ − λ) [(−δ − β − λ)(−θ − λ)− αγSV ]

= (−δ − λ)2(−θ − λ)

(
λ2 + (δ + β + θ)λ+ θ(δ + β)− αγPQ

δθ

)
Thus λ1 = −δ, λ2 = −δ, λ3 = −θ and λ4 and λ5 are given by

1

2

[
−(δ + β + θ)±

√
(δ + β + θ)2 − 4

(
θ(δ + β)− αγPQ

δθ

)]
. (2.26)

Thus all the eigenvalues have negative real parts if and only if

θ(δ + β)− αγPQ

δθ
> 0.

Thus the disease free equilibrium is stable if and only if

αγPQ

δθ2(δ + β)
< 1.

This indicates that the basic reproduction number is

R0 =
αγPQ

δθ2(δ + β)
.

2.4.2 Stability of the disease endemic equilibrium

At the disease endemic equilibrium point, we get the result by using numer-
ical analysis as the steps below.

15



Define the following quantities.

A = αG+ δ, C = αS, D = αG, E = δ + β,

F = γV, H = γI + θ, K = γI.

Then

J − λId =


−A− λ 0 0 0 −C
D −E − λ 0 0 C
0 β −δ − λ 0 0
0 −F 0 −H − λ 0
0 F 0 K −θ − λ

 . (2.27)

The last column will be used to decompose the determinant of J − λId into
minors.

det(J − λId) = −Cdet


D −E − λ 0 0
0 β −δ − λ 0
0 −F 0 −H − λ
0 F 0 K



−Cdet


−A− λ 0 0 0

0 β −δ − λ 0
0 −F 0 −H − λ
0 F 0 K

 (2.28)

−(θ + λ)det


−A− λ 0 0 0
D −E − λ 0 0
0 β −δ − λ 0
0 −F 0 −H − λ


Expanding each of these 4× 4 determinants,

det(J − λId) = −CDdet

 β −δ − λ 0
−F 0 −H − λ
F 0 K


+C(A+ λ)det

 β −δ − λ 0
−F 0 −H − λ
F 0 K

 (2.29)

−(θ + λ)(A+ λ)(E + λ)(δ + λ)(H + λ).
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The two matrices in Equation (2.29) are identical and so

det(J − λId) = C(A−D + λ)det

 β −δ − λ 0
−F 0 −H − λ
F 0 K

(2.30)

−(θ + λ)(A+ λ)(E + λ)(δ + λ)(H + λ)

and so

det(J − λId) = C(A−D + λ) [F (H + λ)(δ + λ)− FK(δ + λ)]

−(θ + λ)(A+ λ)(E + λ)(δ + λ)(H + λ). (2.31)

Thus

det(J − λId) = CF (A−D + λ)(δ + λ)(H −K + λ)

−(θ + λ)(A+ λ)(E + λ)(δ + λ)(H + λ). (2.32)

This shows that det(J − λId) = (δ + λ)(W − Z), where W and Z are the
polynomials

W = CF (A−D + λ)(H −K + λ)

= CF
[
λ2 + (A−D +H −K)λ+ (AH − AK −DH +DK)

]
(2.33)

Z = (θ + λ)(A+ λ)(E + λ)(H + λ). (2.34)

The polynomial Z may be expanded as

Z = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0, (2.35)

where

a4 = 1 (2.36)

a3 = A+ E +H + θ

a2 = AE + AH + Aθ + EH + Eθ +Hθ

a1 = AEH + AEθ + AHθ + EHθ

a0 = AEHθ

With these formulas for W and Z it is possible to write det(J − λId) in
the form

det(J−λId) = (δ+λ)(W −Z) = b5λ
5 + b4λ

4 + b3λ
3 + b2λ

2 + b1λ+ bo. (2.37)
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Where, there are explicit formulas for bi

b5 = 1 (2.38)

b4 = A+ E +H + θ + δ

b3 = (AE + AH + Aθ + EH + Eθ +Hθ − CF ) + (A+ E +H + θ)δ

b2 = (AEH + AEθ + AHθ + EHθ − CFA+ CFD − CFK + CFH)

+(AE + AH + Aθ + EH + Eθ +Hθ − CF )δ

b1 = AEHθ + CFAK − CFAH − CFDK + CFDH + ((AEH + AEθ + AHθ

+EHθ − CFA+ CFD − CFK + CFH)δ

b0 = (AEHθ + CFAK − CFAH − CFDK + CFDH)δ

(2.39)

The advantage of this form of the characteristic polynomial is that Routh
Hurwitz method can be applied to find the number of eigenvalues with neg-
ative real parts.
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Chapter 3

Experiments

3.1 Numerical implementation

Numerical implementation requires knowledge of values of the parameters in
the model (equations 2.1 - 2.5). The ranges of the parameter values used
here appear in Table 3.1.

Table 3.1: A set of parameters

Parameter Description Value Reference

P recruitment rate for humans 0.0001 Assumed
Q recruitment rate for vectors 0.1–0.5 Assumed
δ mortality rate for humans 0.0001 (Abdelrazec et al., 2016)
β recovery rate for humans 0.01–0.10 (Abdelrazec et al., 2016)
α infection rate: humans from vectors 0.01–0.03 (Abdelrazec et al., 2016)
γ infection rate: vectors from humans 0.01–0.03 (Abdelrazec et al., 2016)
θ mortality rate for vectors 0.02–0.07 (Abdelrazec et al., 2016)

Matlab was used to compute 10,000 numerical solutions to the system in
equations 2.1 - 2.5 with parameter values selected randomly from the ranges
in table 3.1 The code appears in the appendix A. To analyse the model in
this paper, some parameters such as the recruitment rate for of humans, rate
of vectors are not well-known. Thus, ranges for those parameters are esti-
mated respectively with the values of 0.0001, 0.1-0.5 (assumed values). For
the parameters of recovery rate, mortality rate for humans, mortality rate
for vectors, infection rate of human from vectors, and infection rate of vec-
tors from humans are 0.01-0.10, 0.0001, 0.02-0.07, 0.01-0.03, and 0.01-0.03
respectively (Abdelrazec et al., 2016).
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A Matlab program called Equilibria.m was written to compute numerical
values for the disease free and the disease endemic equilibria using the formu-
las for these equilibria in Section 2.3. The characteristic polynomial for the
Jacobian of the system is then calculated using the formulas in Section2.4
The coefficients of the characteristic polynomial are then passed to a program
called RouthTable.m to decide if the disease endemic equilibrium is stable
or not. A program called ModelExperiment.m was written to input vari-
ous variations of the input parameters to see if the stability of the equilibria
is robust to the parameters or not.

3.2 Results

The thesis research formulates the basic reproduction R0 and also found the
formulae for the disease-free equilibrium as in the section 2.3.1 and the en-
demic equilibrium in the section 2.3.2 and this thesis also obtains the aim
that how the seasonal patterns influence the dengue. Therefore, numeri-
cal simulations as in the figure 3.1 and 3.2 are invented to see if the same
model could explain the dengue fever in Laos influenced by the seasonal pat-
terns. This can be demonstrated by setting some parameters values as in
table 3.2 and the recruitment rates of vectors (mosquitos), denoted Q. The
recruitment rate as Q = 0.1 and Q = 0.5 refers to dry and rainy seasons
respectively. The computation results correspond to the data collected from
Laos as in figure 1.1 and figure 1.2.

Table 3.2: A set of fixed parameters

Parameter Description Value

P recruitment rate for humans 0.0001
Q recruitment rate for vectors 0.1–0.5
δ mortality rate for humans 0.0001
β recovery rate for humans 0.05
α infection rate: humans from vectors 0.02
γ infection rate: vectors from humans 0.02
θ mortality rate for vectors 0.045

This thesis model can be just used as a guide model in order to obtain the
best fit for the influence of seasonal patterns to dengue fever. Therefore, with
the result of computation at figure 3.1, this is an example of how dengue fever
spreads over 200 days by using R program to compute to see the scenario as
in the appendix B, because some parameters rates must be current each year
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Figure 3.1: An example of state variables value over time, the result with
Q = 0.5 and the initial values of S0 = 100, 000, I0 = 10, R0 = 0, V0 =
1, 000, G0 = 100 for the state variables during high rainfall for 200 days.

and each particular area. Similarly, at figure 3.3, this might not accurately
predict how dengue fever spreads during each season over ten years by set-
ting the fixed parameters and using recruitment rates represented as Q = 0.1
for dry season and rainy season with Q = 0.5. Hence, the recruitment rate
is depended on the amount of rainfall and temperature conditions and each
year might need to use a particular the recruitment rate to compute to see
the equilibria as well as the basic reproduction number.
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Figure 3.2: Ten thousand random combinations of parameter values within
the ranges in Table 3.1 were used to compute points of equilibria. The top half
of the figure shows the number of stable and unstable disease-free equilibria
for these combinations of parameter values. The category ”failed trails” was
included in order to track errors were detected during the computations but
none were found. Statistics for the values of the state variables S and V for
stable disease-free equilibria are reported. The lower half of the figure shows
analogous results for the disease endemic equilibria.
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Figure 3.3: Proportions of infected humans, I, over ten-year periods with
values of parameters as in table 3.2 and with Q set to 0.1 and 0.5 for
alternating sequences of 180-day periods. The initial values were set at
S0 = 1.0, I0 = 0, R0 = 0, V0 = 0.5, G0 = 0.5.
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Chapter 4

Discussion

4.1 Limitation of the current thesis

Some parameters such as recruitment rate of both humans and vectors are
not necessarily accurate due to the various regions in terms of geographi-
cal condition such as rainfall and temperature where the previous studies
were taken. This paper discusses only general basic assumption regarding
to dengue and do not focus on any type of dengue fever (DEN1-4). Thus,
this finding cannot be generalized for all type of dengue fever. This research
only focuses on one specific area of Laos namely Vientiane where the largest
number of dengue infected patients occurs. Therefore, this research might
not be transferrable into another context. The study mainly discusses the
aspect of seasonal pattern as the factors causing dengue.

4.2 Further research and future to extend the

work

There are needs to consider other aspects such as environment conditions,
density of population when discussing the factors causing dengue. As a time
limitation for this thesis research, there are some further research that may
need to be done.

1. Further research might need to consider other contexts of Laos.

2. One may consider to put 4 types of dengue fever into the model because
finding ways to get rid of dengue fever is quite hard since each person
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can have 4 chances to infect with this disease. This is also emphasized
by (Rodrigues et al., 2016) that dengue fever has four different types
and one has a likelihood getting infection again from other types be-
cause after recovering from a particular type can only has an immunity
for a particular one.

3. On call optimise the fit between the data and the parameter value in
the ranges given in table 3.1 to find the best fit between the data and
the model.

4. One could introduce a continuous time varying value for Q such as
Q(t) = a+ b sin(s(t− d)).

5. One could model the link between Q and rainfall Q(t) = a+ bR(t− d),
where R(t) is the rainfall at time t.

4.3 Summary

This research formulates explicit formulae for equilibria found as is the basic
reproduction number R0. According to the result of this research, there
are still some aspects needed to be added into the dengue fever model to
analyse the best fit for finding the influences of the dengue fever for further
research. The Matlab codes as in the appendix A are invented to compute
the equilibria as in the figure 3.2 as well as using numerical simulations to
demonstrate the seasonal pattern influence the dengue fever over ten years as
in the figure 3.3 and using R program to compute the code as in the appendix
B, to see the scenario how dengue fever spreads over 200 days. This thesis did
not specifically discuss any particular type of dengue fever and also did not
consider the aspects with various regions’ conditions in terms of temperature
and rainfall.
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Appendix A

Source code: MATLAB

1 function OutVec = Equilibria(ParamVec)

2

3 % May 24 2018

4 %

5 % This program implements the model for the spread

of dengue fever in the

6 % thesis by PinkamThanavanh.

7 %

8 % The input variable ParamVec 1 x 7 is the vector of

parameter inputs:

9 % ParamVec = [P Q delta beta alpha gamma theta]

10 %

11 % The program computes the coordinates for the

disease free equilibrium and

12 % the disease endemic equilibrium. The program

RouthTable.m is used to

13 % decide if the equilibria are stable or not.

14 %

15 % The output variable is of size 1 x 9. The

components are as follows:

16 % 1. Zdf equilibria index for the disease free

equilibrium

17 % 2. Sdf S value for the disease free equilibrium

18 % 3. Vdf V value for the disease free equilibrium

19 % 4. Zend equilibria index for the disease endemic

equilibrium

20 % 5. Send S value for the disease endemic

equilibrium
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21 % 6. Iend I value for the disease endemic

equilibrium

22 % 7. Rend R value for the disease endemic

equilibrium

23 % 8. Vend V value for the disease endemic

equilibrium

24 % 9. Gend G value for the disease endemic

equilibrium

25 %

26 % The equilibriium index has three possible values

27 % Z = 0 stable

28 % Z = 1 unstable

29 % Z = 2 test failed (the program RouthTable.m does

not cover all possible

30 % scenarios.

31 %

32 % The notation and terminology follows the notes by

Pin.

33

34 % %%%%% Extract the parameters from the input data.

35 P = ParamVec (1);

36 Q = ParamVec (2);

37 d = ParamVec (3); % d = delta in the notes

38 b = ParamVec (4); % b = beta in the notes

39 a = ParamVec (5); % a = alpha in the notes

40 g = ParamVec (6); % g = gamma in the notes

41 t = ParamVec (7); % t = theta in the notes

42

43 % %%%%% Compute and display the disease free

equilibrium

44 S = P/d; % S is the S value for the disease free

equilibrium

45 I = 0; % I is the I value for the disease free

equilibrium

46 R = 0; % R is the R value for the disease free

equilibrium

47 V = Q/t; % V is the V value for the disease free

equilibrium

48 G = 0; % G is the G value for the disease free

equilibrium

49
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50 %disp(’ ’)

51 %disp([’The disease free equilibrium is at ’])

52 %disp([S I R V G])

53

54 % %%%%% Find the characteristic polynomial for the

disease free

55 % %%%%% quilibrium.

56

57 A = a*G+d;

58 C = a*S;

59 D = a*G;

60 E = d + b;

61 F = g*V;

62 H = g*I + t;

63 K = g*I;

64

65 W2 = C*F;

66 W1 = C*F*(A - D + K- H);

67 W0 = C*F*(A*H + D*K - A*K - D*H);

68

69 Z4 = 1;

70 Z3 = A + E + H + t;

71 Z2 = A*E + A*H + A*t + E*H + E*t + H*t;

72 Z1 = A*E*H + A*E*t + A*H*t + E*H *t;

73 Z0 = A*E*H*t;

74

75 Cvec = [Z4 Z3 (Z2-W2) (Z1 -W1) (Z0 -W0)];

76

77 Zdf = RouthTable(Cvec);

78 Sdf = S;

79 Vdf = V;

80

81

82

83 % %%%%% Compute and display the disease endemic

equilibrium

84 Stop = t*(P*g + t*(d + b));

85 Sbot = g*(a*Q + d*t);

86 S = Stop/Sbot; % S value for the disease endemic

equilibrium.

87
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88 Vtop = (d + b)*(a*Q + d*t);

89 Vbot = a*(P*g + t*(d + b));

90 V = Vtop/Vbot; % V value for the disease endemic

equilibrium.

91

92 Top = Q*a*(P*g + t*(d+b));

93 Bot = (d+b)*(Q*a + d*t);

94 X = (Top/Bot) - t;

95

96 R = b*X/(g*d); % R value for the disease endemic

equilibrium.

97 I = X/g; % I value for the disease endemic

equilibrium.

98 G = X/t; % G value for the disease endemic

equilibrium.

99

100

101 % %%%%% Find the characteristic polynomial for the

disease endemic

102 % %%%%% quilibrium.

103

104 A = a*G+d;

105 C = a*S;

106 D = a*G;

107 E = d + b;

108 F = g*V;

109 H = g*I + t;

110 K = g*I;

111

112 W2 = C*F;

113 W1 = C*F*(A - D + K- H);

114 W0 = C*F*(A*H + D*K - A*K - D*H);

115

116 Z4 = 1;

117 Z3 = A + E + H + t;

118 Z2 = A*E + A*H + A*t + E*H + E*t + H*t;

119 Z1 = A*E*H + A*E*t + A*H*t + E*H *t;

120 Z0 = A*E*H*t;

121

122 Cvec = [Z4 Z3 (Z2-W2) (Z1 -W1) (Z0 -W0)];

123
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124 Zend = RouthTable(Cvec);

125

126 OutVec = [Zdf Sdf Vdf Zend S I R V G];

1 function ModelExperiment

2

3 % May 27 2018

4 %

5 % This is a shell program for checking the stability

of equilibria for the

6 % dengue fever model using the program Equilibria.m.

The program

7 % Equilibria.m outputs a vector of length 9 the

components of which are as

8 % follows:

9 % 1. Zdf equilibria index for the disease free

equilibrium

10 % 2. Sdf S value for the disease free equilibrium

11 % 3. Vdf V value for the disease free equilibrium

12 % 4. Zend equilibria index for the disease endemic

equilibrium

13 % 5. Send S value for the disease endemic

equilibrium

14 % 6. Iend I value for the disease endemic

equilibrium

15 % 7. Rend R value for the disease endemic

equilibrium

16 % 8. Vend V value for the disease endemic

equilibrium

17 % 9. Gend G value for the disease endemic

equilibrium

18 %

19 % The equilibriium index has three possible values

20 % Z = 0 stable

21 % Z = 1 unstable

22 % Z = 2 test failed (the program RouthTable.m does

not cover all possible

23 % scenarios.

24

25

26 % Paramter ranges
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27 Pmin = 0.00008; % minimum recruitment rate for

humans

28 Pmax = 0.00012; % maximum recruitment rate for

humans

29 Qmin = 0.1; % minimum recruitment rate for

mosquitos

30 Qmax = 0.5; % maximum recruitment rate for

mosquitos

31 dmin = 0.00008; % minimum mortality rate for humans

(delta)

32 dmax = 0.00012; % maximum mortality rate for humans

(delta)

33 bmin = 0.01; % minimum recovery rate for humans

(beta)

34 bmax = 0.10; % maximum recovery rate for humans

(beta)

35 amin = 0.01; % minimum infection rate: humans

from mosquitos (alpha)

36 amax = 0.03; % maximum infection rate: humans

from mosquitos (alpha)

37 gmin = 0.01; % minimum infection rate: mosquitos

from humans (gamma)

38 gmax = 0.03; % maximum infection rate: mosquitos

from humans (gamma)

39 tmin = 0.02; % minimum mortality rate for

mosquitos (theta)

40 tmax = 0.07; % maximum mortality rate for

mosquitos (theta)

41

42 % Set the number of random combinations of parameter

values

43 N = 10000;

44

45 % Initialise the array for storing results for each

trial.

46 OutMat = zeros(N,9);

47

48 % Loop to computed equilibria and stability for each

trial.

49 for k = 1:N

50 % Randomly choose a value for each parameter
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according to a uniform

51 % over distribution over its range.

52 P = (Pmax -Pmin)*rand + Pmin;

53 Q = (Qmax -Qmin)*rand + Qmin;

54 d = (dmax -dmin)*rand + dmin;

55 b = (bmax -bmin)*rand + bmin;

56 a = (amax -amin)*rand + amin;

57 g = (gmax -gmin)*rand + gmin;

58 t = (tmax -tmin)*rand + tmin;

59 ParamVec = [P Q d b a g t];

60

61 % Call the program Equilibria.m to find the

disease free and the

62 % disease endemic equilibria and report the

stability for each.

63 OutVec = Equilibria(ParamVec);

64

65 % Record the output of the current trial in the

array OutMat.

66 OutMat(k,:) = OutVec;

67 end

68

69 % Extract the columns from the output array OutMat

70 ZdfVec = OutMat (:,1);

71 %SdfVec = OutMat (:,2);

72 %VdfVec = OutMat (:,3);

73 ZenVec = OutMat (:,4);

74 %SenVec = OutMat (:,5);

75 %IenVec = OutMat (:,6);

76 %RenVec = OutMat (:,7);

77 %VenVec = OutMat (:,8);

78 %GenVec = OutMat (:,9);

79

80 % Tabulate the stability results for the disease

free equilibrium

81 dfVec0 = find(ZdfVec == 0);

82 Ndf0 = length(dfVec0);

83 dfVec1 = find(ZdfVec == 1);

84 Ndf1 = length(dfVec1);

85 dfVec2 = find(ZdfVec == 2);

86 Ndf2 = length(dfVec2);

32



87

88 disp(’ ’)

89 disp(’Disease free equilibria:’)

90 disp(’ ’)

91 disp([’Number of stable equilibria = ’ int2str(

Ndf0)])

92 disp([’Number of unstable equilibria = ’ int2str(

Ndf1)])

93 disp([’Number failed trials = ’ int2str(

Ndf2)])

94

95 DFarray = [

96 min(OutMat (:,[2 3]));

97 max(OutMat (:,[2 3]));

98 mean(OutMat (:,[2 3]));

99 std(OutMat (:,[2 3]))];

100 TextArray = [

101 ’min ’;

102 ’max ’;

103 ’mean ’;

104 ’std ’];

105 DFtot = [TextArray num2str(DFarray)];

106 disp(’ ’)

107 disp([’ S V’])

108 disp(DFtot)

109

110 % Tabulate the stability results for the disease

endemic equilibrium

111 deVec0 = find(ZenVec == 0);

112 Nde0 = length(deVec0);

113 deVec1 = find(ZenVec == 1);

114 Nde1 = length(deVec1);

115 deVec2 = find(ZenVec == 2);

116 Nde2 = length(deVec2);

117

118 disp(’ ’)

119 disp(’Disease endemic equilibria:’)

120 disp(’ ’)

121 disp([’Number of stable equilibria = ’ int2str(

Nde0)])

122 disp([’Number of unstable equilibria = ’ int2str(
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Nde1)])

123 disp([’Number failed trials = ’ int2str(

Nde2)])

124

125 DEarray = [

126 min(OutMat (:,[5 6 7 8 9]));

127 max(OutMat (:,[5 6 7 8 9]));

128 mean(OutMat (:,[5 6 7 8 9]));

129 std(OutMat (:,[5 6 7 8 9]))];

130 TextArray = [

131 ’min ’;

132 ’max ’;

133 ’mean ’;

134 ’std ’];

135 DEtot = [TextArray num2str(DEarray)];

136 disp(’ ’)

137 disp([’ S I R

V G’])

138 disp(DEtot)

1 function Z = RouthTable(A)

2

3 % 24 May 2018

4 %

5 % Construct the Routh table for a polynomial. If all

the element are the

6 % same sign , and the polynomial is the

characteristic polynomial for the

7 % Jacobian of a system evaluated at a point of

equilibrium , then all the

8 % eigenvalues of the system have negative real parts

and so the equilibrium

9 % is stable.

10 %

11 % A is vetor of coefficients of a polynomial. Thus

if

12 %

13 % P(x) = a_nx^n + a_n -1x^n-1 + ... + a_2x^2 + a_1x +

a_0

14 %

15 % Then the vector A = [a_n a_n -1 ... a_2 a_1 a_0].
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16 %

17 % The output parameter Z has three possible values:

18 % Z = 0: stable

19 % Z = 1: unstable

20 % Z = 2; no result (either an entire row was

prematurely zero or a zero

21 % appeared in the first column

22 %

23 % The user has the option of displaying the Routh

array by setting the

24 % display flag dispflag = 1.

25

26 % The user can choose to display the Routh table by

setting the flag = 1.

27 dispflag = 0;

28

29 % Construct the first two rows of the table. The

30 n = length(A);

31 if rem(n,2) == 1

32 A = [A 0];

33 n = n+1;

34 end

35 n2 = n/2;

36 T12 = reshape(A,2,n2);

37

38 % Start constructiong the Routh Table. Pad by zeros

to allow computations

39 % of table entries involving coefficient outside the

initial range.

40 m = 2*n;

41 n21 = n2 + 1;

42 RT = zeros(m,n21);

43

44 % Insert the first two rows

45 RT(1:2 ,1:n2) = T12;

46

47 % Initialise the row counter for the main iteration.

48 RowNum = 2;

49

50 % If the second row is all zeros , set Z = 2 (test

failed) and terminate.
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51 curvec = RT(RowNum ,:);

52 posvec = find(abs(curvec) > 0);

53 L = length(posvec); % L is the number of non -zero

terms in the second row.

54 if L == 0

55 Z = 2; % Assign the output parameter Z

= 2 (test failed).

56 if dispflag == 1

57 disp(’ ’)

58 disp(RT(1:RowNum ,1:n2)) % Display the

Routh array (aborted).

59 disp(’ ’)

60 disp(’Test failed ’) % Display the

conclusion.

61 disp(’ ’)

62 end

63 return % Terminate the

computation.

64 end

65

66 while L > 0 % As long as rows are not all

zeros , iterate.

67 RowNum = RowNum + 1; % Update the

current row number.

68 a = RT(RowNum -1,1); % Extract a

69 if a == 0 % If a = 0,

the test fails.

70 Z = 2; % Assign Z =

2, test failed.

71 if dispflag == 1

72 disp(’ ’)

73 disp(RT(1:RowNum ,1:n2)) % Display

aborted Routh table.

74 disp(’ ’)

75 disp(’Test failed ’) % Display the

conclusion.

76 disp(’ ’)

77 end

78 return % Terminate

the compuation

79 end
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80 c = RT(RowNum -2,1); % Extract c

81 for k = 1:n2 % For every

column , extract b and d

82 b = RT(RowNum -1,k+1);

83 d = RT(RowNum -2,k+1);

84 RT(RowNum ,k) = (a*d - b*c)/a; % Compute the

current table entry

85 % as (ad-bc/a.

86 end

87 curvec = RT(RowNum ,:);

88 posvec = find(abs(curvec) > 0); % Find the

number of postive terms ,

89 L = length(posvec); % L, in the

new row.

90 end

91

92 C1 = RT(:,1); % Extract the

first column of the

93 % Routh table.

94 Cpos = find(C1 > 0);

95 Cneg = find(C1 < 0); % Lpos is the

number of positive

96 Lpos = length(Cpos); % terms and

Lneg is the number of

97 Lneg = length(Cneg); % negative

terms in the first column.

98 Lmin = min(Lpos ,Lneg); % If both are

postive , the system is

99 if Lmin > 0 % unstable. If

one is zero , the

100 Z = 1; % system is

stable.

101 else

102 Z = 0;

103 end

104

105 if dispflag == 1 % Display

output if dispflag = 1.

106 disp(’ ’)

107 disp(RT(1:RowNum ,1:n2)) % Display the

full Routh table
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108 disp(’ ’)

109 if Z == 0

110 disp(’The system is stable ’)

111 elseif Z == 1

112 disp(’The system is unstable ’)

113 elseif Z == 2

114 disp(’There is no conclusion ’)

115 end

116 disp(’ ’)

117 end

1 function Dengue

2

3 % October 2 2018

4 %

5 % Compute the model in Pin ’s thesis for different

values of Q

6

7 % Set the parameters other than Q

8 global P alpha beta delta gamma theta

9 P = 0.0001;

10 alpha = 0.02;

11 beta = 0.05;

12 delta = 0.0001;

13 gamma = 0.02;

14 theta = 0.045;

15

16 % Set the duration of the two seasons

17 t1 = 180; % time interval for dry season

18 t2 = 185; % time interval for wet season

19

20 % Set the vector recruitment values for the two

seasons.

21 Q1 = 0.1; % vector recruitment during the dry

season

22 Q2 = 0.5; % vector recruitment during the wet

season

23

24 % Compute R0 for the two values of Q

25 R01 = alpha*gamma*P*Q1/(delta*( theta ^2)*(delta+beta)

);
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26 R02 = alpha*gamma*P*Q2/(delta*( theta ^2)*(delta+beta)

);

27 disp([’With Q1 = ’ num2str(Q1) ’, R0 = ’ num2str(R01

)])

28 disp([’With Q2 = ’ num2str(Q2) ’, R0 = ’ num2str(R02

)])

29

30 % initial conditions at the start of the wet season

31 S0 = 1;

32 I0 = 0;

33 R0 = 0;

34 V0 = .5;

35 G0 = .5;

36

37 Tinit = 0;

38 TotIvec = [ ];

39 TotTvec = [ ];

40

41 Nyears = 10; % number of years

42 for k = 1: Nyears

43

44 % Compute the system for the wet season

45 u0 = [S0 I0 R0 V0 G0];

46 Tfinal = Tinit + t2;

47 tint = [Tinit Tfinal ];

48 Tinit = Tfinal;

49

50 [tvec u] = ode45(’DengueFun2 ’,tint ,u0);

51

52 Ivec = u(:,2);

53 TotIvec = [TotIvec ; Ivec];

54 TotTvec = [TotTvec ; tvec];

55

56 % Compute the system for the dry season

57 [a,b] = size(u);

58 %lengthtvec = length(tvec)

59 s0 = u(a,1);

60 I0 = u(a,2);

61 R0 = u(a,3);

62 V0 = u(a,4);

63 G0 = u(a,5);
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64 u0 = [S0 I0 R0 V0 G0];

65 Tfinal = Tinit + t1;

66 tint = [Tinit Tfinal ];

67 Tinit = Tfinal;

68

69 [tvec u] = ode45(’DengueFun1 ’,tint ,u0);

70

71 Ivec = u(:,2);

72 TotIvec = [TotIvec ; Ivec];

73 TotTvec = [TotTvec ; tvec];

74

75 [a,b] = size(u);

76 %lengthtvec = length(tvec)

77 s0 = u(a,1);

78 I0 = u(a,2);

79 R0 = u(a,3);

80 V0 = u(a,4);

81 G0 = u(a,5);

82

83

84 end

85

86 plot(TotTvec ,TotIvec ,’b’)

87 T = (t1+t2)*Nyears;

88 axis ([0 T 0 1.1* max(TotIvec)])

1 function f = DengueFun1(tvec ,u)

2

3 global P alpha beta delta gamma theta

4 S = u(1);

5 I = u(2);

6 R = u(3);

7 V = u(4);

8 G = u(5);

9

10 Q = 0.1;

11 fS = P - alpha*S*G - delta*S;

12 fI = alpha*S*G - (delta+beta)*I;

13 fR = beta*I - delta*R;

14 fV = Q - gamma*V*I - theta*V;

15 fG = gamma*V*I - theta*G;
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16

17 f = [fS ; fI ; fR ; fV ; fG];

1 function f = DengueFun2(tvec ,u)

2

3 global P alpha beta delta gamma theta

4 S = u(1);

5 I = u(2);

6 R = u(3);

7 V = u(4);

8 G = u(5);

9

10 Q = 0.5;

11 fS = P - alpha*S*G - delta*S;

12 fI = alpha*S*G - (delta+beta)*I;

13 fR = beta*I - delta*R;

14 fV = Q - gamma*V*I - theta*V;

15 fG = gamma*V*I - theta*G;

16

17 f = [fS ; fI ; fR ; fV ; fG];
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Appendix B

Source code: R program

1 library(deSolve)

2 library(scatterplot3d)

3

4 SIRVGmodel <-function(time ,state , parameters){

5 with(as.list(c(state , parameters)),{

6

7 dS <- P-alpha*S*G-delta*S

8 dI <- alpha*S*G-(delta+beta)*I

9 dR <- beta*I-delta*R

10 dV <- Q-gamma*V*I-theta*V

11 dG <- gamma*V*I-theta*G

12

13 return(list(c(dS ,dI,dR,dV , dG)))

14 })

15 }

16 SIRVGpars <-c(P=.0001 , Q=.1, delta =.005, beta =.01,

alpha =.03, gamma =.03, theta =.02)

17

18 init <- c(S=100000 , I=10, R=0, V=1000, G=100)

19 times <- seq (1 ,200.1)

20

21 out <- ode(y=init , times=times , func=SIRVGmodel ,

parms=SIRVGpars , method ="ode23 ")

22 out <- as.data.frame(out)

23

24 print(head(out))

25 plot(out$time , out$S , type=’l’, col="red", lwd=2,
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xlab="Day of epidemic", ylab="", main="SIRVG

model")

26 lines(out$time , out$I , lty=2, col="blue", lwd =2)

27 lines(out$time , out$R , lty=3, col="green", lwd=2)

28 lines(out$time , out$V , lty=4, col="cyan", lwd =2)

29 lines(out$time , out$G , lty=5, col=" magenta", lwd=2)

30 legend (" topright", legend=c(" Susceptible humans", "

Infected humans", "Recovered", "Susceptible

vectors", "Infected vectors "),

31 col=c("red", "blue", "green", "cyan", "magenta "),

lty=1:5, lwd=rep(3,5), cex =0.9)
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