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Abstract.
This research focuses on computing the exact reachable set which can be formulated in

terms of a Hamilton-Jacobi partial differential equation (PDE). Hamilton-Jacobi (HJ) reacha-
bility is a procedure which can provide an accurate analysis of the safety state of the dynamical
systems. This procedure is very effective in low-dimensional dynamical systems like aircrafts
and quadrotors. It guarantees the safety where there is a potential dangerous scenario. One can
get the safety guarantee by computing the reachable set, particularly the backward reachable
set (BRS). The system might violate the safety properties in spite of the effort from the system
to stay safe. The Hamilton-Jacobi reachability cannot be used for high dimensional systems
because the computation of the backward reachable sets is complex and the number of state
dimensions scales exponentially. In spite of the fact that; there are many techniques which can
be used for approximation and these techniques have the ability to give conservative estimates
for the backward reachable set. However, they do not provide an accurate solution and they
usually demand limiting assumptions about the system dynamics. Therefore, this project will
use a general method to analyze dynamical systems. When the results of subsystems are con-
nected, the high-dimensionality of backward reachable sets can be easily and quickly computed
which were previously considered to be intractable or take a long time to do. Also, it gives an
exact computation in lower-dimensional subspaces. The method which will be applied in this
project, will project the full dimensional of the reachable sets into lower dimensional subsys-
tems. This method is from a decomposition of the true BRS. The theoretical results will be
explained through the example of aircraft collision avoidance, 3D Dubins car and a linear sys-
tem example. The Hamiltonian formulation of mechanics is a stronger formulation than others
such as Lagrangian formulation and Newtonian formulation. In the Hamiltonian formulation,
we can use coordinates which are much wider class. It expresses the relationship between the
conservation and symmetries laws.
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1 Introduction.

Defining models for complex systems is difficult (I. M. Mitchell, Bayen, & Tomlin, 2005). Re-
cently, the use of autonomous system has increased rapidly among self-driving cars, aircraft
and unmanned aerial vehicles (UAV) (Hoffmann, Huang, Waslander, & Tomlin, 2007) (Kong,
Pfeiffer, Schildbach, & Borrelli, 2015). These applications generate challenging questions. How
can a car choose a safe path while driving? Which spacecrafts will lead to a collision if there is
a target set such as an obstacle? These questions are common in the fields of optimal control
and differential games which all center in the concept of reachability (Allen, Clark, Starek, &
Pavone, 2014). The reachability is a procedure which can provide an accurate analysis of the
safety state of the dynamical systems. So, complex models must be verified and validated and
these tasks often draw the main attention in many settings and have been studied extensively
in the past (C. J. Tomlin, Lygeros, & Sastry, 2000). Simulation is a very simple way to compute
the validation, but the main problem with this method is that it checks only one trajectory of
the system at a specific time. Therefore, for systems which contain many inputs signals and
various of state values, it will be difficult to check the safety for every possible trajectory of
the system by simulation only. Researchers have developed a way to catch the behavior of all
possible trajectories at one time by computing reachable sets (I. M. Mitchell et al., 2005). This
means that safety verification is very fundamental to define the set of states. If the system
of states has pushed into unsafe region or configuration, the safety of the system can be veri-
fied to make sure that it stays outside the set. For instance, there are automatic control laws
which have been proposed to ensure separation between aircrafts. The unsafe configuration or
region in this case is that the distance between any couple of vehicles is less than the required
minimum. Thus, we need to make sure and guarantee that the loss of separation never occurs
(C. Tomlin, Mitchell, & Ghosh, 2001), (I. M. Mitchell & Tomlin, 2003). As a result, reachable
set analysis is a suitable tool for this model. There are two types of reachable sets which depend
on two conditions: the initial condition and the final condition. The initial condition specifies
for the forward reachable set. Also, it seeks to define the set of all states which can be reached
along the trajectories which start in the set. Whereas, the final condition or target set of states
specifies the backward reachable set. It defines the set of states from which trajectories start
can reach that given target set.

Figure 1: The difference between backwards and forwards reachability
(I. M. Mitchell & Tomlin, 2003).

Primarily, this project will focus on backwards reachable sets of a continuous system (I. M. Mitchell
& Tomlin, 2003). For a given target set which contains known unsafe states, then the backwards
reachable set possibly contains states which are unsafe and need to be avoided. As an example,
consider how to avoid a collision between two aircrafts or vehicles. The target set consists of
all states which are in a collision situation where the states are within the five mile separation

5



distance (A. Bayen, Santhanam, Mitchell, & Tomlin, 2003). The backwards reachable set con-
sists of those states which will result in a collision. In this situation, the backwards reachable
set is going to expand or propagate many miles ahead of the aircraft. Much more details of
this example will be in the numerical example section. This thesis will show that the viscosity
solution v(x, t) (see equation 5 for the definition) of a specific time-dependent Hamilton-Jacobi
Isaacs partial differential equation will give an implicit surface representation of the continuous
backward reachable set (I. M. Mitchell et al., 2005). Also, a method to deal with the curse
of dimensionality is also provided. For example, applying the method of projection via de-
composition to compute the true reachable set of BRS into lower dimensional subspaces. This
can address the trade off between computation complexity, reduction of small dimensionality
and optimality. Also, this method can save a significant quant of time in computations (Chen,
Herbert, & Tomlin, 2016a). In previous papers, researchers have studied the problem only in
cylindrical coordinates. Thus, the aim of this project is to study a simple example of backward
reachable sets in rectangular coordinates, and see how the decomposition method works on lin-
ear system. Also, we start computing BRS in a spherical parameterisation with three variants
of the 3D Dubins models and see how far we go with this idea.

2 How to compute the reachable set.

2.1 The reachable set.

2.1.1 Defining the reachable set.

This part is going to determine the backwards reachable set of the system. Also, it is going to
discuss some properties of the reachable set and determine a terminal value of the Hamilton-
Jacobi Isaacs partial differential equation and its viscosity solution illustrates that reachable
set (I. M. Mitchell et al., 2005). In one set, there are usually two kinds of parameters or inputs.
These parameters which depend on time, describe the control input a(.) and the disturbance
input b(.). Usually in the practical systems, the control inputs can be manipulated to force the
system to achieve a goal and satisfy a property, whereas the disturbance inputs or environmental
disturbances are unknown actions (I. M. Mitchell & Tomlin, 2003).

Figure 2 explains the set that this project is trying to compute. It shows many trajectories
ζi which are starting at the same time t, but different states x. These trajectories are subjected
to different input signals a(.) and b(.). These input signals drive the trajectories to two different
outcomes. The input signal a(.) is to drive them away from the target set. However, the input
signal b(.) is to drive the trajectories toward the target set.

Note.

In our problem, the trajectory begins at initial time t < 0. We want to know if the tra-
jectory has passed into the target set by time zero. Also, sometimes we need to check or look
at the length of time for the trajectory to evolve, the differential game notation τ = −t and
the free variables s and r refer to the time in the domain [t, 0] (I. M. Mitchell et al., 2005) and
(Bokanowski & Zidani, 2011).
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Figure 2: Target set and backwards reachable set.
Adapted from (I. M. Mitchell et al., 2005).

2.1.2 Definition of the full system dynamics.

Let x be our state variable of the system, a(.) is the control input and b(.) is the disturbance
input. The state of our system satisfies the ordinary differential equation; therefore, our model
can be formulated as

dx

dt
= ẋ = f(x, a, b), t ∈ [t, 0]. (1)

In our discussion, assume that x ∈ Rn. Generally, the method which is presented can be imple-
mented to periodic state dimensions such as angles. We consider that A ⊂ Rna and B ⊂ Rnb

are compact and t ∈ [−T, 0]. Thus, the following sets can draw the inputs signals as

a(.) ∈ A(t) , {φ : [t, 0]→ A | φ(.) is measurable}.

b(.) ∈ B(t) , {φ : [t, 0]→ B | φ(.) is measurable}.

The system dynamics or flow field f : Rn ×A×B → Rn is assumed to be bounded, uniformly
continuous and Lipschitz continuous in x for fixed points a and b. Therefore, for that given
fixed control input a(.) ∈ A(t) and disturbance input b(.) ∈ B(t) with initial point, there exists
a trajectory which is considered to be unique and a solution of ODE 1 (Evans & Souganidis,
1983) and (Coddington & Levinson, 1955). Thus, denote the solutions or the trajectories of
the system 1 by

ζi(s;x, t, a(.), b(.)) : s ∈ [ t, 0],

with the initial condition

ζi(t;x, t, a(.), b(.)) = x.
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Therefore, the trajectory of the system satisfies that initial condition and the differential equa-
tion

d

ds
ζi(s;x, t, a(.), b(.)) = f(ζi(s;x, t, a(.), b(.)), a(s), b(s)).

Note.

The use of a semi-colon is to distinguish between the parameters of the trajectory x, t, a(.)
and b(.) and the argument s of ζi (I. M. Mitchell et al., 2005). For the reachability problem,
denote the target set as T ⊂ Rn. The target set is closed, and it can be formulated as the zero
sub-level set of the continuous and bounded Lipschitz function g : Rn → R

T = {x ∈ Rn | g(x) 6 0}. (2)

Supposing that the control input a(.) is going to lead the system far away from the target
set. However, the disturbance input b(.) is going to push the system towards the target set.
For our specification, let’s determine a plan first for the disturbance function b(.) as a map
γ : A(t) → B(t). This map defines the signal of the disturbance’s input as a function. This
function is drawn from the nonanticipative strategies because it is easy to turn it to a HJ PDE
(Bardi, 1997); so,

γ ∈ Γ(t) , {ϑ : A(t)→ B(t) | a(r) = â(r),∀r ∈ [t, s]⇒ ϑ[a](r) = ϑ[â](r), ∀r ∈ [t, s]}.

The meaning of this restriction is that if the disturbance input is not able to distinguish be-
tween the input signals a(.) and â(.) for the control input until time s, then the disturbance
input is not going to respond in a different way to that signals input until after time s (Chen,
Herbert, & Tomlin, 2016b).

2.1.3 The backwards reachable set (BRS).

This part is going to consider a general definition for the backwards reachable set (BRS) which
guarantees the safety. It is going to determine the backwards reachable set, provide an expla-
nation about how it can be used as a solution of the Hamilton-Jacobi Isaacs partial differential
equation and the techniques of the computation of their approximation. This method can be
used for linear and nonlinear systems. Also, the system dynamics can be modelled by ODE
and it depends on control and disturbance parameters. For all the types of practical systems,
the control parameters can be used as a manipulation to impose the system to reach a goal or a
property. However, the disturbance parameters act as uncertainties in the system. Therefore,
differential games and optimal control are employed in this project (I. M. Mitchell & Tomlin,
2003). In order to resolve the backwards reachability problem, we define the Maximal BRS
and Minimal BRS respectively R(τ), A(τ). The BRS comprises the set of states x ∈ Rn from
which the system can be lead into the target set T at the end of a time horizon where T ⊆ Rn.
In the definition of the Maximal BRS, the system tries to enter the target set or the set of
goal states. This definition comprises the set of states where the system is guaranteed to reach
T . In the second definition, the BRS represents the set of states which there exits disturbance
inputs or strategies for the disturbance inputs for all possible control inputs. This definition
comprises the set of states which violates the safety requirements. The mathematical form of

8



these definitions are as follows:

Definition 1: Maximal BRS.

R(τ) = {x : ∃a(.),∀b(.),∃s ∈ [t, 0], ζ(0;x, t, a(.), b(.)) ∈ T }. (3)

Definition 2: Minimal BRS.

A(τ) = {x : ∀a(.),∃b(.), ∃s ∈ [t, 0], ζ(0;x, t, a(.), b(.)) ∈ T }.
= {x : ∀a(.),∃γ ∈ Γ(t),∃s ∈ [t, 0], ζ(0;x, t, a(.), γ[a](.)) ∈ T }.

(4)

where b(.) = γ[a](.). The BRS refers to the system where it can be lead into the target set at
the end of a time horizon (Chen, Herbert, Vashishtha, Bansal, & Tomlin, n.d.). These terms
of maximal and minimal refer to the role of optimal control (I. M. Mitchell, 2007).

2.1.4 A time-dependent Hamilton-Jacobi-Isaacs equation for the reachable set.

This section is going to demonstrate one of the key theoretical results of this project, namely
that the viscosity solution of a time dependent Hamilton-Jacobi-Isaacs equation can determine
the backwards reachable set (Crandall, Evans, & Lions, 1984), (Margellos & Lygeros, 2011)
and (I. M. Mitchell et al., 2005).

Theorem 1: Reachability Theorem.

The viscosity solution is defined as v : Rn × [−T, 0]→ R of the terminal value HJ PDE

Dtv(x, t) + min[0,H(x,Dxv(x, t))] = 0, v(x, 0) = g(x). (5)

where the Hamiltonian is

H(x, p) = max
a∈A

min
b∈B

pTf(x, a, b). (6)

Here Dxv(x, t) is the spatial derivative and Dtv(x, t) is the time derivative (I. Mitchell, 2004)
and p is a vector which is called co-state of the system (A. M. Bayen, Mitchell, Oishi, & Tomlin,
2007) and (Lygeros, Tomlin, & Sastry, 1999). Therefore, we define the zero sub-level set of v
which describes the backwards reachable set A(τ) is defined as follows

A(τ) = {x ∈ Rn | v(x, t) 6 0}. (7)

The BRS A(τ) will be always used in the following explanations for a reason which will be
known later through theorem 2.

The proof of the theorem is given in full in chapter 3.
Discussion of the proof.

The aim of the proof of this theorem is to show an equivalence between the reachability and
a terminal cost differential game. The main problem with this game is that it can only define
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the trajectory if it is in the target set at only specific time zero. If this game is employed on
the original system, then the control input can avoid the target set by leading the trajectory
into the target set, then the trajectory is going to be out from the other side before time zero.
To avoid this case, let’s provide a definition of a new system which is called augment system
and it consists of some information and set of inputs of the disturbance input. In this system,
the disturbance is going to freeze or stop the developments of the trajectories that the control
input tries to drive them out of the target set. The trajectories of the augmented system are
going to be equal to the trajectories of the original system. Also, the results of the HJI PDE
of the differential game are going to be equal to

Dtv(x, t) + min[0,H(x,Dxv(x, t))] = 0, v(x, 0) = g(x).

The importance of this theorem is that we can develop numerical schemes to calculate an exact
approximation of the viscosity solution. Then, taking advantage of the viscosity solution with
the method of projection via decomposition to get an exact approximation of the backwards
reachable set. It may take long steps to reach the final proof of this theorem (I. Mitchell, Bayen,
& Tomlin, 2004). Using this formula is more efficient because it is restricted to the convexity
of the Hamiltonian and target set (I. Mitchell & Tomlin, 2000).

3 Proof of the time-dependent formulation.

As stated before the proof of reachability theorem depends on the viscosity solution and the
differential game which will follow in the coming sections.

3.1 Augmenting the dynamics.

This section is going to employ set of dynamics systems which are modified to augment the
inputs of the disturbance with the scalar function

b(.) ∈ B(t) , {φ : [t, 0]→ [0, 1] | φ(.) is measurable}.

The augmented input of the disturbance is

b̃ = [b b] ∈ B × [0, 1],

and in the same way B̃(t) and B̃(t). Applying the differential game with the following dynamics

f̃(x, a, b̃) , bf(x, a, b). (8)

and its trajectory shall be indicated by ζf̃ (s;x, t, a(.), b̃(.)). There are three options which might
be chosen by the disturbance to play the game. The three options are as follow; to select normal
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dynamics by putting b = 1, to pick out slowed dynamics by choosing b ∈]0, 1[, and the last
option is to choose freezing the dynamics totally by choosing b = 0. We will use the third
option because the disturbance input has the ability to stop the developments of the trajectory
of the augmented system. Therefore, it keeps the evolution of the trajectory from leaving the
target set when it enters. Obviously, it can be seen that there is a close relationship between
the trajectories of the augmented system (8) and the trajectories of the original system (1).
Thus, in one of the following lemmas will show the equivalence of trajectories. However, before
stating that lemma, we define the pseudo-time variable σ : [t, 0]→ [t, 0] to shape that relation-
ship which for any b ∈ B(t) is provided by

σ(s) , t+

∫ s

t

b(λ)dλ. (9)

b(.) is measurable by the definition of b(.). It is clear that σ is absolutely continuous from the
definition of σ in equation 9. However, σ is not necessarily differentiable. A simple step function
is an example of a measurable function b(.) for which the function σ defined in equation 9 is not
differentiable.There is no genuine inverse of σ because there is no restriction of its monotonic
increase. However, the proof is going to use a function σ+, which is nearly considered to be an
inverse of σ where σ(σ+(s)) = s makes sense.

The following lemma justifies the change of variables and determines σ+ as the limit of a
convergent sequence of functions

Lemma 1.

∫ σ(s)

t

f(ζf (p), a(σ+(p)), b(σ+(p)))dp

=

∫ s

t

f(ζf (σ(λ)), a(λ), b(λ))b(λ)dλ.

(10)

Proof. According to (I. M. Mitchell et al., 2005), there exits bk a sequence of smooth functions
for k = {1, 2, 3, ......}, such that bk(s) ∈ [ 1

k
, 1 + 1

k
] for all s and bk converges pointwise to b as

k →∞. The smooth functions are defined as follows

σk(s) , t+

∫ s

t

bk(λ)dλ.

When k →∞, then σk converges uniformly to σ. σk is going to be bounded and strictly mono-
tonically increasing and there exists a smooth σ−1

k because of the bounds on s and bk. Then by
Helly’s theorem (Ash, 2014), there exists a monotonically increasing right-continuous σ+ and a
subsequence σ−1

kn
such that σ+ = lim

kn→∞
σ−1
kn

. If there are smooth σ−1
kn

, σknand Lipschitz contin-

uous f , then the change of variables which is denoted by p = σkn(λ) will be justified for every kn:

∫ σkn (s)

t

f(ζf (p), a(σ−1
kn

(p)), b(σ−1
kn

(p)))dp

=

∫ s

t

f(ζf (σkn(λ)), a(λ), b(λ))bkn(λ)dλ.
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To prove number (10), we state the following theorem.

Dominated convergence theorem (Lebesgue dominated convergence theorem).

From (Chae & Kim, 2014), let consider that (X,A, µ) a measure space and fn : R → [0,∞]
are (Lebesgue) measurable functions on X, and let g be a [0,∞]-valued integrable function on
X. Suppose that f(x) = lim

n
fn(x). Supposing that there is an integrable | fn(x)| 6 g(x), n =

1, 2, ..... holds for every x ∈ X. Therefore; fn is integrable and∫
X
fdµ = lim

n

∫
X
fndµ.

Implies, ∫
X

lim
n
fn(x)dµ = lim

n

∫
X
fndµ.

holds.
Therefore, applying the dominated convergence theorem and take the limit as kn → ∞ to be
inside the integral to reach (10).

Equivalence of trajectories lemma 2.

For any a(.) ∈ A(t) and b̃(.) = [b(.) b(.)] ∈ B̃(t), where

σ(s) , t+

∫ s

t

b(λ)dλ

and σ+ as defined in lemma 1, there exists a trajectory of the augmented system

f̃(x, a, b̃) , bf(x, a, b)

for every trajectory of the original system

dx

dt
= ẋ = f(x, a, b).

Thus, these trajectories are connected through the pseudo-time variable σ

ζf (σ(s);x, t, a(σ+(.)), b(σ+(.))) = ζf̃ (s;x, t, a(.), b̃(.))

for any s ∈ [t, 0].

Proof. In (Boyce & DiPrima, 1986), we adopt the proof of this lemma from the definition of a
classical ordinary differential equation uniqueness which is provided below.

Definition.

We consider that there is an ODE

y
′
(t) = f(y(t)).
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where t > 0, y(0) = a ∈ R
assuming that f : R→ R is smooth and is Lipschitz (with k = 1), meaning that

|f(t)− f(s)| 6 |t− s|.

Having 0 < T < ∞, then y(t) is a classical solution (differentiable as many times as needed)
of the ODE given y ∈ C[0,T]. Where C[0,T] means the set of continuous functions on the
interval [0,T] and

y(t) = a+

∫ t

0

f(y(τ))dτ, ∀t ∈ [0,T].

Now, introduce the shorthand

ζf (s) , ζf (s;x, t, a(σ+(.)), b(σ+(.))),

ζf̃ (s) , ζf̃ (s;x, t, a(.), b̃(.)).
(11)

Thus, these in (11) can be written as the classical of the ODE

ζf̃ (s) = ζf̃ (t) +

∫ s

t

dζf̃ (λ)

dλ
dλ.

= x+

∫ s

t

f(ζf̃ (λ), a(λ), b(λ))b(λ)dλ.

and

ζf (σ(s)) = ζf (t) +

∫ σ(s)

t

dζf (p)

dp
dp.

= x+

∫ σ(s)

t

f(ζf (p), a(σ+(p)), b(σ+(p)))dp.

= x+

∫ s

t

f(ζf (σ(λ)), a(λ), b(λ))b(λ)dλ.

(12)

since the change of variables p = σ(λ) is already justified in lemma 1. Therefore, from the fact
that b(λ) ∈ [0, 1] and the last two equations, then∥∥ζf (σ(s))− ζf̃ (s)

∥∥
6
∫ s

t

∥∥∥∥(f(ζf (σ(λ)), a(λ), b(λ))− f(ζf̃ (λ), a(λ), b(λ))

)
b(λ)

∥∥∥∥ d(λ).

6
∫ s

t

∥∥∥(f(ζf (σ(λ)), a(λ), b(λ)
)
− f

(
ζf̃ (λ), a(λ), b(λ)

)∥∥∥ d(λ).

6 K

∫ s

t

∥∥ζf (σ(λ))− ζf̃ (λ)
∥∥ d(λ).

(13)
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where K is the constant of the Lipschitz for the flow field f . Let

ψ(s) =

∫ s

t

∥∥ζf (σ(λ))− ζf̃ (λ)
∥∥ dλ,

It can be seen that ψ(t) = 0, 0 6 ψ(s) and ψ̇ =
∥∥ζf (σ(s)− ζf̃ (s)

∥∥
Rewriting (13) in terms of ψ to gain the following differential inequality

ψ̇(s)−Kψ(s) 6 0,

where its solution is only ψ(s) ≡ 0 (Boyce & DiPrima, 1986). Therefore,

ζf (σ(s)) = f(ζf̃ (s)).

Corollary 1.

From the definitions in (11), the trajectory ζf̃ (.) of the augmented system visits only a subset
of the states which is visited by the trajectory ζf (.) of the original system; in particular the
trajectory that visited in the time interval [t, σ(s)].

3.2 The differential game and its solution.

This section is going to deal with a finite horizon differential game over the horizon time [−T, 0].
The dynamics of the finite horizon differential game are dominated by the following flow field

f̃(x, a, b̃) , bf(x, a, b).

The trajectory of this game has a terminal estimate

C(x, t, a(.), b̃(.)) = g(ζf̃ (0;x, t, a(.), b̃(.))).

The aim of the control input is going to maximize that cost whereas the disturbance input
is going to try to minimize it. As a result, our differential game’s value is going to be

v(x, t) = inf
γ̃∈Γ̃(t)

sup
a(.)∈A(t)

C(x, t, a(.), γ̃[a](.)).

= inf
γ̃∈Γ̃(t)

sup
a(.)∈A(t)

g(ζf̃ (0;x, t, a(.), γ̃[a](.))).
(14)

Lemma 3.
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In our differential game, the value function v(x, t) is the viscosity solution of the Hamilton-
Jacobi-Isaacs terminal value PDE

Dtv(x, t) + H̃(x,Dxv(x, t)) = 0, v(x, 0) = g(x). (15)

where

H̃(x, p) = max
a∈A

min
b̃∈B̃

pTf̃(x, a, b̃). (16)

Proof. The proof is just a special case of the Theorem 4.1 which can be found in (Evans &
Souganidis, 1983).

Lemma 4.

For t ∈ [−T, 0], the value function which is given in (14) characterises the reachable set A(τ)
according to (7).

Proof. Let’s show that

x ∈ A(τ)⇒ v(x, t) 6 0 (17)

v(x, t) 6 0⇒ x ∈ A(τ) (18)

Case one:

We consider that x ∈ A(τ) and v(x, t) > 0, and derive a contradiction. Consider the im-
plications of (14).

v(x, t) = inf
γ̃∈Γ̃(t)

sup
a(.)∈A(t)

C(x, t, a(.), γ̃[a](.)) > 0,

⇒ ∃ε > 0,∀γ̃ ∈ Γ̃(t),

sup
a(.)∈A(t)

C(x, t, a(.), γ̃[a](.)) > 2ε > 0,

⇒ ∃ε > 0,∀γ̃ ∈ Γ̃(t),∃â(.) ∈ A(t),

C(x, t, â(.), γ̃[â](.)) > ε > 0.

(19)

Consider the implication of x ∈ A(τ). From the backward reachable set in (4), we have
γ ∈ Γ(t). Thus, there exists s ∈ [t, 0] such that ζf (s;x, t, â(.), b(.)) ∈ T for the â(.) from (19)
and b(.) = γ[â](.). Also, from (2), g(ζf (s;x, t, â(.), b(.))) 6 0. We select the freezing input
signal

b(r) =


1, for r ∈ [t, s[;

0, for r ∈ [s, 0[.
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Combining the previous b(.) with the b(.) that is already chosen to get b̃(.). This input is
going to generate a trajectory

ζf̃ (r;x, t, â(.), b̃(.)) =


ζf (r;x, t, â(.), b(.)), for r ∈ [t, s];

ζf (s;x, t, â(.), b(.)), for r ∈ [s, 0].

Particularly,

ζf̃ (0;x, t, â(.), b̃(.)) = ζf (s;x, t, â(.), b(.))

⇒ g(ζf̃ (0;x, t, â(.), b̃(.))) = C(x, t, â(.), b̃(.)) 6 0.

It is already known that b(.) = γ[â](.) is nonanticipative, thus; let’s design a nonanticipa-
tive strategy for b(.) with extra constraints on s. Therefore, b̃(.) is nonanticipative which is a
contradiction of (19). As a result, equation (17) is proved.

Case two:

Suppose that v(x, t) 6 0 and x /∈ A(τ) and prove a contradiction. Consider the implica-
tions of x /∈ A(τ), and suppose that (4) is rejected

∀γ ∈ Γ(t),∃â(.) ∈ A(t),∀s ∈ [t, 0], ζf (s;x, t, a(.), γ[a](.)) /∈ T . (20)

Now, if any strategy γ̃ ∈ Γ̃(t) in the augmented system of the disturbance input is considered
then it can be found that the response γ ∈ Γ(t) of the disturbance input in the original system
is by deleting the final elements of its output (components of Γ̃(t) and Γ(t) accept the same
input function which is derived from A(t). By selecting â which corresponds to γ in (20), and
using corollary 1 to find out that the set of states which is visited by the augmented trajectory
is a subset of the states which is visited by the original trajectory. Therefore, in combination
with (20)

ζf (s;x, t, â(.), γ[â](.)) /∈ T ∀s ∈ [t, 0]⇒ ζf̃ (s;x, t, â(.), γ̃[â](.)) /∈ T ∀s ∈ [t, 0]. (21)

The structure of g with ζf̃ is a continuous function from the close interval [t, 0] to R, thus, it
reaches its extrema. To conclude by (2) and (21), there exists δ > 0 such that

g(ζf̃ (s;x, t, â(.), γ̃[â](.))) > δ ∀s ∈ [t, 0]

⇒ C(x, t, â(.), γ̃[â](.)) = g(ζf̃ (0;x, t, â(.), γ̃[â](.))) > δ
(22)

Now, going back to (14)
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v(x, t) = inf
γ̃∈Γ̃(t)

sup
a(.)∈A(t)

C(x, t, a(.), γ̃[a](.)) 6 0,

⇒ ∀ε > 0,∃γ̃ ∈ Γ̃(t), sup
a(.)∈A(t)

C(x, t, a(.), γ̃[a](.)) 6 ε,

⇒ ∀ε > 0,∃γ̃ ∈ Γ̃(t),∀a(.) ∈ A(t),C(x, t, a(.), γ̃[a](.)) 6 ε,

Selecting ε = δ
2

to infer a contradiction of (22), then proves (18).

Right now, we prove directly theorem 1.
Proof of theorem 1.

Proof. It is known that from lemma 3 the value function v is the viscosity solution to the HJI
PDE (15) of the differential game (14). Also, from lemma 4 it is known that the reachable set
is described by (7). Therefore, beginning with H̃ from (16) and H from (6), then

H̃(x, p) = max
a∈A

min
b̃∈B̃

pTf̃(x, a, b̃)

,

= max
a∈A

min
b∈B

min
b∈[0,1]

pT(bf(x, a, b)),

= min
b∈[0,1]

b

(
max
a∈A

min
b∈B

pTf(x, a, b)

)
,

= min[0,H(x, p)].

Hence, the solutions to the two HJI PDEs (5) and (15) are equal. Then v is the solution of (5).
Therefore, it is shown that the reachability is equivalent to a terminal cost differential game
(I. M. Mitchell et al., 2005).

4 Numerical example.

4.1 Aircraft collision avoidance example.

This part is going to describe the method in solving (5) computationally, then employ that to
a classical collision avoidance differential game. For a high air traffic control, the results of this
game employed to a collision alert system due to the simplicity of the dynamics of that game.
For instance, this example will use the form f(x, a, b) = f1(x) + f2(x)a+ f3(x)b which is taken
in (23) below. The aim of this example is to define the reachability for two adversarial vehicles
(the evader and the pursuer) of a three dimensional kinematic model. In this game, the pursuer
tries to get to the evader within a certain distance r, and the reachable set corresponds to the
set where the second player can capture the first player. In recent publications, this game or
problem is called the three dimensional aircraft collision avoidance example (C. J. Tomlin et
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al., 2000) and (I. Mitchell, Bayen, & Tomlin, 2001). Let’s model every vehicle as a simple
kinematic system with a fixed linear velocity, controllable angular velocity and heading. A
collision occurs, which is often called a loss of separation, if the vehicles come of one another
within the defined distance. The model for each vehicle is represented as:

d

dt

 x1

x2

x3

 =

 ẋ1

ẋ2

ẋ3

 =

 v cosx3

v sinx3

w


Where [x1 x2]T ∈ R2 is the location of the vehicles in the plane, v > 0 is the constant linear
velocity, x3 ∈ [0, 2π] is its heading and w is the angular velocity of the vehicles. In (Crandall
& Lions, 1984), Lax-Friedrichs (LF) approximation is used in the Hamiltonian to assure the
stability. For any, not necessarily continuous function p the form of LF approximation can be
defined as follows

H(x, p+, p−) = H

(
x,
p− + p+

2

)
− 1

2
αT(p+ − p−),

where p− and p+ refer to the left and right approximation of p. Also, the elements of the vector
α ∈ Rn depend on the partial derivatives of H with respect to its second argument where

αi = max

∣∣∣∣∂H

∂pi

∣∣∣∣.
This game allows the players to choose their angular velocity. Therefore, instead of using
w, let a ∈ A = [−α,+α] to be the angular velocity input for the evader player whereas
b ∈ B = [−α,+α] is to be the angular velocity for the pursuer player, v = 5 is the linear
velocity and r = 5 is the collision distance (Mitchell. I and Tomlin.C, 2003). Now, our aim is
to define the set of states from which the second player could cause a collision to occur. Let’s
work on the relative coordinates x ∈ R2 × [0, 2π[ because the system is simplified down into
three dimensions and T relies on the relative positions of the vehicles. As shown in figure 3

Figure 3: Relative coordinate system for collision example
(I. M. Mitchell et al., 2005).

locating the first player at the origin and facing it along the positive x1 axis. Then, the relative
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location and heading of the second player are characterized by the flow field as follow

ẋ =
d

dt

 x1

x2

x3

 =

 −va + vb cosx3 + ax2

vb sinx3 − ax1

b− a

 = f(x, a, b) (23)

where va and vb are the linear velocity.
In (I. M. Mitchell et al., 2005), the resulting Hamiltonian is

H(x, p) = max
a∈A

min
b∈B

[pTf(x, a, b)]

=

(
− p1va + p1vb cosx3 + p2vb sinx3 + α|p1x2 − p2x1 − p3| − β|p3|

)
.

(24)

Because the collision can happen at any relative heading, then the target set T relies only on
x1 and x2, with any state within distance r of the the planar origin

T = {x ∈ R3 | x2
1 + x2

2 6 r2}.

This can be converted into signed distance function for our HJI PDEs terminal conditions as
follows

g(x) =
√
x2

1 + x2
2 − r. (25)

If
√
x2

1 + x2
2 6 r, then the collision occurs for any value x3 ∈ R3. The set for which this

holds is a cylinder of radius r centered on the x3 axis. To solve this pursuit evasion game,
we need to define the set of initial states where the second player can cause a collision even
though the best efforts which can be done by the first player. Thus, the backwards reachable
set needs to be defined in the limit as τ → ∞ by computing (5) backwards from t = 0 until
finding H(x,Dxv) ≈ 0. If the parameters r = 5, va = vb = 5 and A = B = [−1,+1] are
considered, then the determination of the backwards reachable set occurs at t = −2.6 which is
the convergence time. When the vehicles are identical va = vb and A = B, then it is possible
to define the optimal inputs for both players by using the differential game theory.
Figure 4 shows the target set which is the solid cylinder and backwards reachable set (which

is transparent) for the collision avoidance in 3D. However, figure 5 shows the accuracy on the
top half backwards reachable set which is a solid and it analytically defines M = 2612 points
on the boundary of the reachable set or its surface (dots). In figure 6, the target set T or the
collision cylinder shows on the far left. However, the rest of the images shows the growth of the
reachable set as τ increases from zero. Therefore, for the previous parameters the reachable
set converges to a fixed point for τ = −2.6. Figure 7 represents several views of that fixed
point. There will be a collision if the second vehicle starts from within the reachable set. The
second vehicle would choose a suitable input b no matter what input a which might be chosen
by the first vehicle. On the other hand, if the pursuer begins from outside the reachable set,
then there exists an input a which might be chosen by the evader leads to avoid the collision
no matter what input b might be chosen by the second player. Figure 8 shows an annotated
frame from an animation of the collision system. Also, figure 9 shows the series of frames from
that animation. The first player begins from the left and it is surrounding by a solid collision
set whereas the second player begins on the right side. The dotted shape which surrounds the
evader represents the slice of the reachable set. For instance, the vehicles in the leftmost figure
have relative heading x3 ≈ π. Choosing a suitable input leads the first player to not allow
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Figure 4: Target set (solid cylinder) and BRS (transparent)
(I. M. Mitchell et al., 2005).

the second player from entering the reachable set. Therefore, it keeps the pursuer away from
causing a collision. Figure 10 shows the sequence from where the pursuer begins within the
reachable set and causes a collision.
Note that the aircraft collision avoidance example is computed in full state space of the system.
The system contains the control and disturbance inputs while other systems can be used with
only the control input. The following explanation will involve the control and disturbance
input. However, in the example of Dubins car will only use the control input. Thus, one goal
of this thesis is to extend the Dubins car example to spherical coordinates and check what
results will be obtained. However, before that example, we will work in the example of linear
systems of ODEs. Now, after the determination of the reachability problem and its solution,
the next section is going to characterize the reachability technique based on a projection via
decomposition. It simply depends on the previous augment system where v(x, t) is the viscosity
solution of HJ PDE 5. Different methods can be joined together to achieve better results and
reduce the problem with dimensionality (Chen et al., n.d.).

5 Reachability computation via decomposition.

The Hamilton-Jacobi-Isaacs formulation provides a method for defining the set of reachable
states of a continuous dynamic game. In principle, it is known the major problem with that
computation is the expense in computing the full reachable set. There is a method which
reduces the cost of computation and computes the full reachable set. Thus, this method can be
employed in lower dimensional subsystems. The main goal of this development is to compute
exactly the true reachable set of the lower dimensional subsystems. Thus, avoiding the need of
computing an expensive full dimensional BRS (I. M. Mitchell & Tomlin, 2003). Then, defining
the HJ based in SCSs formulation to compute the BRS by the following algorithm:
1) Define the value function or the implicit surface function which represents the subsystem
target sets T1 and T2.
2) For the self contained subsystems and for i = 1, 2, compute the BRS by solving (5) over the
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Figure 5: BRS (solid) and the determined points on the reachable set’s boundary
(I. M. Mitchell et al., 2005).

Figure 6: Growth of the reachable set
(I. M. Mitchell & Tomlin, 2003).

space Zi.
3) Construct the full dimensional BRS which by theorem 2 gives results that the full dimensional
BRS is precisely constructed (Chen et al., n.d.). The computation of the full formulation is
given by the following algorithm:
4) Determine the implicit surface representation or the value function g(x).
5) Solve the HJ PDE with the Hamiltonian to get the implicit surface V (t, x) which represents
the BRS.

5.1 Problem formulation.

This part tries to obtain the backwards reachable set by using the computations in lower di-
mensional subspaces. Supposing that the full system dynamics in (1) can be decomposed into
self-contained subsystems (SCSs). Now, we describe some important definitions which are re-
quired to state the major results in an accurate way.
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Figure 7: Other views of the reachable set
(I. M. Mitchell & Tomlin, 2003).

Figure 8: Annotated frame from collision avoidance example animation
(I. M. Mitchell & Tomlin, 2003).

5.2 Subsystem dynamics.

The full system x ∈ Rn is partitioned as follows

x = (x1, x2, x3),

x1 ∈ Rn1 , x2 ∈ Rn2 , x3 ∈ Rn3 ,

n1, n2 > 0, n3 > 0

(26)

Where x1 = px, x2 = py and x3 = θ. Note that n3 can be zero and n1 + n2 + n3 = n. The
variables xi are called the state partitions of the full system, x1 is the state which belongs to
the subsystem one, x2 is the state which belongs to the subsystem two and x3 is the state which
belongs to both subsystems. Therefore, the system dynamic in (1) becomes

ẋ1 = f1(x1, x2, x3, a, b).

ẋ2 = f2(x1, x2, x3, a, b).

ẋ3 = f3(x1, x2, x3, a, b).

(27)
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Figure 9: Evader keeps pursuer from entering reachable set, and hence avoids collision
(I. M. Mitchell & Tomlin, 2003).

Figure 10: Pursuer starts within the reachable set, and thus can cause a collision despite the
best efforts of the evader

(I. M. Mitchell & Tomlin, 2003).

5.3 Definition of self-contained subsystem.

Determine the SCSs states by grouping the previous states z1 ∈ Z1 = Rn1+n3 , z2 ∈ Z2 = Rn2+n3

as follows:

z1 = (x1, x3).

z2 = (x2, x3).

Note that z1 and z2 have a common overlapping partition which is x3. This thesis will only
consider two subsystems but this method applies to a finite number of subsystems. The states
zi are called a self-contained subsystem where the states develop according to

dz1

dt
= ż1 = f1(z1, a, b) = f1(x1, x3, a, b),

dz2

dt
= ż2 = f2(z2, a, b) = f1(x2, x3, a, b),

dz3

dt
= ż3 = f3(z3, a, b) = f3(x3, a, b), t ∈ [t, 0],

(28)

where a ∈ A, b ∈ B
The dynamics of the two subsystems; one and two respectively are

ż1 = f1(x1, x3, a, b),

ż3 = f3(x3, a, b),
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ż2 = f2(x2, x3, a, b),

ż3 = f3(x3, a, b),

The two subsystems are coupled via the partition x3, the control a and the disturbance b.

5.4 Projection operators.

The projection of our state x = (x1, x2, x3) into a subsystem state space Rni+n3 is going

proji(x) = zi = (xi, x3), i = 1, 2. (29)

A point in the full dimensional state space is projected onto a point in the subsystem space.
Also, the back-projection operator is needed because our goal is to link the backwards reachable
sets of the subsystems to the backwards reachable sets of the full system as follows

proj−1(zi) = {x ∈ X : proji(x) = zi = (xi, x3)} (30)

Also, applying the back-projection operator on subsystem sets Si ⊆ Zi. Therefore, overloading
the projection operator as follow:

proj−1(Si) = {x ∈ X : ∃zi ∈ Si, proji(x) = zi = (xi, x3)} (31)

Figure 11 describes the back-projection operator of sets S1 and S2 in the x1 − x3 and x2 − x3

Figure 11: Back projection of sets in the x2− x3 plane and the x1− x3 plane into the 3D space
(Chen et al., 2016a).

respectively. This is going to form the intersection of these sets which is shown as the black
cube S.
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5.5 Subsystem trajectories.

It is already known that every subsystem in (28) is self-contained. The trajectories of subsys-
tem will be denoted by ξi(s; zi, t, a(.), b(.)). The subsystems trajectories satisfy the following
subsystem dynamics and initial condition respectively.

d

dt
ξi(s; zi, t, a(.), b(.)) = gi(ξi(s; zi, t, a(s), b(s))

ξi(t; zi, t, a(.), b(.)) = zi,
(32)

where gi = (zi, a, b) = (fi(xi, x3, a, b), f3(x3, a, b)). The trajectories of the full system and sub-
system can be connected through the projection operator as follows

proji(ζ(s;x, t, a(.), b(.)) = ξi(s; zi, t, a(.), b(.)), (33)

where zi = proji(x).

5.6 Goal of doing projection.

Suppose that the target set or the unsafe set T of the full system could be written or expressed
as the subsystem unsafe sets T1 ⊆ Z1 and T2 ⊆ Z2 in one of the following ways:

T = proj−1(T1) ∩ proj−1(T2). (34)

This means that the intersection of the back-projections of the unsafe subsystem sets preform
the full unsafe set.

T = proj−1(T1) ∪ proj−1(T2). (35)

This means that the full unsafe set or the target set is the union of the back-projections of the
target sets’s subsystem.

Applying the intersection operator to S1 and S2 leads to black cube as shown in figure 11,
however; applying the union operator results cross-shaped set including both proj−1(S1) and
proj−1(S2).

Now, let’s state the subsystems BRS Ai in the same way as defined in (4), but with the
subsystems in (28) and the subsystem of the unsafe set Ti where i = 1, 2

Ai(τ) = {zi : ∀a(.),∃b(.), ξi(0; zi, t, a(.), b(.)) ∈ Ti}. (36)

Thus, the main aim for a provided system in the form of (28) and unsafe set which is presented
by (34) is as follow:

5.6.1 Decomposition of BRSs.

The first thing to be done is to compute the full-dimensional of BRS by doing the computations
in lower-dimensional subspaces. In particular, computing the BRS of the full system of A(τ)
by computing first the subsystem BRSs Ai(τ). This method can reduce the complexity of com-
putation and decompose the higher-dimensional of the full system into two lower-dimensional
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subsystems. Formally, previous study investigated which one of the following two cases is true:

(34)⇒ A(τ) = proj−1(A1(τ)) ∩ proj−1(A2(τ)).

(35)⇒ A(τ) = proj−1(A1(τ)) ∪ proj−1(A2(τ)).
(37)

As a result it is found that the first case of the BRSs is a suitable one. The reason why this
case is chosen will be explained in section 6.1.

6 Self-Contained subsystems.

It is already established background and definition of self-contained subsystem and now we
present the major result in our following theorem 2. This theorem connects the lower-dimensional
of BRSs to the full-dimensional of BRSs which will be computed. The outcome of this theorem
is that a conservative approximation of the full-dimensional BRS will be obtained for a system
of the form (28) by computing the lower-dimensional BRSs Ai(τ).
Now, let’s state intermediate results via lemma 5 which includes a property for the projection
operator before proving theorem 2.

Lemma 5.

For some subsystem i, let x̄ ∈ X , z̄i = proji(x̄),Si ⊆ Zi, then

z̄i ∈ Si ⇔ x̄ ∈ proj−1(Si) (38)

Proof. Forward direction.

Assume that z̄i ∈ Si, then ∃zi ∈ Si, proji(x̄) = zi (note that zi is equivalent to z̄i itself).
Also, from the definition of the back-projection which is stated in 31, then x̄ ∈ proj−1(Si).

Backward direction.

Assume that x̄ ∈ proj−1(Si), then from the back-projection’s definition in 31, ∃zi ∈ Si, proji(x̄) =
zi.
Let’s refer to zi ∈ Si by ẑi and assume that z̄i /∈ Si, then getting ẑi 6= z̄i which derives a
contradiction because z̄i = proji(x̄) = ẑi.

Corollary 2.
If S = proj−1(S1) ∩ proj−1(S2), then

x̄ ∈ S ⇔ z̄1 ∈ S1 ∧ z̄2 ∈ S2, (39)

where z̄i = proj−1
i (̄x)

6.1 Theorem 2: System decomposition for computing the BRS using
the intersection of the lower dimensional BRSs.

Assume that we can decompose the full system in (1) into the form of (28), then

T = proj−1(T1) ∩ proj−1(T2)⇒ A(τ) = proj−1(A1(τ)) ∩ proj−1(A2(τ)) (40)
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Proof. The proof of this theorem is based on the previous corollary 2 and lemma 5. First, we
prove the following equivalent statement;

x̄ /∈ A(τ)⇔ x̄ /∈ proj−1(A1(τ)) ∩ proj−1(A2(τ)) (41)

this statement is equivalent to

x̄ ∈ Ac(τ)⇔ x̄ ∈ [proj−1(A1(τ))]c ∪ [proj−1(A2(τ))]c (42)

Taking into consideration the relationship between the full and subsystem trajectories in (33)
and define

z̄i = proji(x̄)

and

ξi(0; z̄i, t, a(.), b(.)) = proji(ζ(0; x̄, t, a(.), b(.))).

Backward direction.

From the definition of Minimal BRS which is stated in (4), we have that x̄ ∈ Ac(τ) which
is equivalent to ∀a(.),∃b(.), ζ(0; x̄, t, a(.), b(.)) ∈ T c. Also,

x̄ ∈ [proj−1(A1(τ))]c ∪ [proj−1(A2(τ))]c

Where the latest is equivalent to z̄1 ∈ Ac1(τ)∨ z̄2 ∈ Ac2(τ). WLOG and referring to the subsys-
tem BRS definition in (36) with supposing that z̄1 ∈ Ac1(τ) which is equivalent to

∀a(.),∃b(.), ξ1(0; z̄1, t, a(.), b(.)) ∈ T c1 . (43)

Therefore, by lemma 5, x̄ ∈ [proj−1(A1(τ)]c which equivalently proves the backward direction.

Forward direction.

We refer to the definition in (4), and start with x̄ ∈ Ac(τ) which is equivalent to

∀a(.),∃b(.), ζ(0; x̄, t, a(.).b(.)) ∈ T c.

Then, from corollary 2, we have

∀a(.),∃b(.), ξ1(0, z̄1, t, a(.), b(.)) ∈ T c1 ∨ ξ2(0, z̄2, t, a(.), b(.)) ∈ T c2 . (44)

Therefore, we have:

A(τ) ⊆ proj−1(A1(τ)) ∩ proj−1(A2(τ)). (45)
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In this situation, the reconstruction of the subsystems of the BRS is a conservative approx-
imation of the full dimensional BRS in the right direction. Consequently, in the state x is
guaranteed to be able to avoid the target or unsafe set T of the reconstructed BRS.

Remark.

To sum up, the previous theorem 2 gives the following results:
In the case where T = proj−1(T1)∪proj−1(T2), the subsystem trajectory which reaches the cor-
responding subsystem unsafe set implies that the full system target set is going to be reached by
the trajectory of the full system. However, in the case where T = proj−1(T1)∩ proj−1(T2), the
trajectories of both subsystems must correspond the subsystem target sets at the same time.
Therefore, we are going to depend on theorem 2 to evolve the projections via decomposition in
our example because our goal is to avoid the target or unsafe set.

7 Numerical examples.

In this section we are going to present and explain our method. We are going to use an exam-
ple of two dimensional to illustrate HJ reachability and three dimensional Dubins car. Then
we will apply our decomposition method via projections onto two dimensional subsystems.
This method shows that we can reconstructed the exact full-dimensional BRS from the lower-
dimensional BRSs.

7.1 A simple 2D illustrating HJ reachability.

This 2D example is to explain and summarize the Hamilton Jacobi reachability. It shows the
relationship between the implicit surface function BRS, value function and target set corre-
sponding optimal control problem. Let’s consider the unsafe set T ⊂ R can be represented by
the implicit surface function g(x). Then, the unsafe set is the zero-sublevel set of the implicit
surface function: T = {x ∈ X : g(x) 6 0}. There exits such a function since we can select g(.)
to be the signed distance function from the target set. Thus, starting with set up unsafe state
and define the value function which is positive outside and negative inside the set. Therefore,
by Hamilton Jacobi reachability we can propagate this value function backwards in time over
a desired time horizon. We can see from this figure 12 that the boundary of the target set T
is shown as the solid black line whereas the boundary of the BRS A(τ) is shown as the dashed
black line. Also, the implicit surface function g(x) of the target set is represented as the green
surface at time zero whereas the light gray surface represents the value function v(t, x) of the
BRS at t < 0. We can infer from that the system stays safe outside of the BRS at time t < 0.
As a result, the system is guaranteed to not enter the target set at t = 0.

7.2 A 3D Dubins car example in polar coordinates.

We consider the Dubins car where the system can be decomposed into SCSs where the state is
x = (x1, x2, x3), the angular velocity is w and the partitions are x1, x2 and x3:
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Figure 12: A 2D illustration of HJ reachability
(Chen et al., 2016a).

 ẋ1

ẋ2

ẋ3

 =

 ṗx
ṗy
θ̇

 =

 v cosx3

v sinx3

w

 . (46)

The computation of this system is done in a 3D polar coordinate and the BRS is computed in
the full-dimensional space. Therefore, we can do comparison between the full formulation with
the SCS formulation. The subsystems xi and the subsystems control and disturbance a and b
are as follow:

ż1 =

[
ẋ1

ẋ3

]
=

[
ṗx
θ̇

]
=

[
v cosx3

w

]
,

ż2 =

[
ẋ2

ẋ3

]
=

[
ṗy
θ̇

]
=

[
v sinx3

w

]
,

(47)

where x3 is the overlapping state. As stated in the full system, the subsystem control and
disturbance function spaces A,B and the control and disturbance signal spaces A,B are deter-
mined suitably to the control and disturbance signal space A, B and the function space A and B
based on how they enter the dynamics of the subsystems. The evolution or development of the
subsystem does not rely explicitly on each other even though if there are common overlapping
states in z1 and z2. For example, if we disregard the subsystem z2, then the subsystem z1 can be
considered as a full system by its self. Thus, every system can be considered as self-contained.
In this example, the BRS is computed from the target set which represented as the set of
positions in x1 and x2 dimensions. Our target set T , which is an obstacle, is determined as
T = {(x1, x2, x3) : |x1|, |x2| 6 0.5}. Therefore, the vehicle must avoid that obstacle. The full
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formulation of the BRS is computed from the target set T which is shown as the red surface in
the figure below. When we need to compute the self-contained subsystem formulation of the

Figure 13: Computing the full formulation of the BRS when t = −0.5
(Chen et al., 2016a).

BRS, we need to partition the full target set T onto T1 and T2. Thus, we apply the theorem 2
where the system remains safe and avoid the unsafe set. Then we can write the target set as
T = proj−1(T1) ∩ proj−1(T2) with

T1 = {(x1, x3) : |x1| 6 0.5}.
T2 = {(x2, x3) : |x2| 6 0.5}.

(48)

Now, we can compute the lower-dimensional of the BRSs A1(τ) and A2(τ) from the previous
lower-dimensional target sets. Therefore, the full-dimensional of the BRS can be reconstructed
from lower-dimensional BRSs A1(τ) and A2(τ) by applying theorem 2: A(τ) = proj−1A1(τ)∩
proj−1A2(τ). To explain that we start to set up the unsafe set in 3D which represented as
an obstacle where x1 and x2 positions depend on x3. We already splitted the system into two
SCSs as in (47). Then, by using the splitted subsystems, we can define the unsafe set for
each subsystem. Then by back projecting these 2D subsystems into 3D. While evolving each
subsystem, we can see that the full system evolves as shown in figure 14. We can see from the
figure the black mesh which represents the BRS that is computed by the projection method.
When we overlain the BRS of the full formulation with the BRS of the SCS, it matches exactly.
The benefits of using the computation in SCS formulation that we can save time. Computing
the full formulation in 3D will consume time. For instance, the computation of the the full BRS
in the previous example takes 80 minutes whereas the computation in SCS via decomposition
takes about 30 seconds. This computations were timed on a desktop computer with an Intel
Core i7-2600K processor and 16GB of random-access memory. Also, the computation in lower-
dimensional subspaces can be done very quickly. Furthermore, this method provides an accurate
numerical solution.
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Figure 14: Set up the target set and the unsafe set for each subsystem
(Chen et al., 2016a).

8 Considering decomposition method in linear systems

of ODEs.

We consider a simple first order linear problem of three ODEs in full systems as follow ẋ1

ẋ2

ẋ3

 =

 ax1 + bx3

cx2 + dx3

ex3

 .
Where a, b, c, d and e are constants, x1, x2 and x3 are unknown functions x1(t), x2(t) and x3(t)
of a common variable t and x3 is a shared component. We decompose the full system into two
subsystems as follow [

ẋ1

ẋ3

]
=

[
ax1 + bx3

ex3

]
.
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and [
ẋ2

ẋ3

]
=

[
cx2 + dx3

ex3

]
.

In matrix notation,

Ẋ = AX.

where

X =

 x1

x2

x3

 , Ẋ =

 ẋ1

ẋ2

ẋ3

 , A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
The solutions which can solve this system look like

X = V eλt, V =

 v1

v2

v3

 .
The eigenvalues can be found by 0 = det(A−λI) and the corresponding eigenvectors are found
by (A − λI)V = 0 where I is the identity matrix. Then, rewrite the solution in terms of the
original variables x1(t), x2(t) and x3(t)

xi(t) = A1V1e
λt + A2V2e

λt + A3V3e
λt.

8.0.1 Example.

We consider the full system as  ẋ1

ẋ2

ẋ3

 =

 2x1 − 5x3

3x2 − 6x3

−3x3

 .
The decomposed subsystems are as follows[

ẋ1

ẋ3

]
=

[
2x1 − 5x3

−3x3

]
.

and [
ẋ2

ẋ3

]
=

[
3x2 − 6x3

−3x3

]
.

We start with the full system where

A =

 2 0 −5
0 3 −6
0 0 −3

 .
The eigenvalues are λ1 = 3, λ2 = 2 and λ3 = −3 and the corresponding eigenvectors for λ1, λ2

and λ3 are respectively

V1 =

 0
1
0

 , V2 =

 1
0
0

 , V3 =

 1
1
1

 .
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The solution is in the form

X(t) = AV1e
3t +BV2e

2t + CV3e
−3t.

Rewrite it in terms of the original variables x1(t), x2(t) and x3(t)

x1(t) = Be2t + Ce−3t.

x2(t) = Ae3t + Ce−3t.

x3(t) = Ce−3t.

To compute the BRS, we need to define the target set at t = 0, so suppose x1 ∈ [1, 2] and
x2 ∈ [q, 3]. The control has range C ∈ [0, p]. We introduce p and q to allow some flexibility in
their final choice. Now, we need to find the targets of A and B, so that the value of x1(t) ∈ [1, 2]
and x2(t) ∈ [q, 3] at t = 0. For the 3 dimensional system, the target set is the two dimensional
rectangle [1, 2]× [q, 3]. We start with x1(t) at t = 0, so x1(0) = Be2(0) + Ce−3(0) = B + C. To
fit the target set, B and C must satisfy 1 6 B + C 6 2. Since 0 6 C 6 p, the restriction on B
is 1 6 B 6 2− p. Thus, p must be chosen, so that p < 1 or there is no backward reachable set
for x1. This means that at t = −1,

x1(−1) = Be2(−1) + Ce−3(−1).

e−2 6 x1(−1) 6 (2− p)e−2 + pe3.

A similar calculation for x2(t) at t = 0 can be done so that x2(0) = Ae3(0) + Ce−3(0) = A+ C.
To fit the target set, A and C must satisfy q 6 A+C 6 3. Since 0 6 C 6 p, the restriction on
A is q 6 A 6 3− p. Thus, p must be chosen, so that 3− p > 2. This means that at t = −1,

x2(−1) = Ae3(−1) + Ce−3(−1).

qe−3 6 x2(−1) 6 (3− p)e−3 + pe3.

The value of q must be less than the right side, but this is not a big restriction. It seems that
q = 2 will be a good choice since 3− p > 2. Therefore, we can choose the values of p = 1

2
and

q = 2. We can infer that the backward reachable set for the 3 dimensional system (two system
functions x1(t) and x2(t) and one control x3(t)) is the rectangle

[e−2, (2− p)e−2 + pe3]× [qe−3, (3− p)e−3 + pe3].

Therefore, the projection of this set on the first component x1(t) is the interval [e−2, (2 −
p)e−2 + pe3] and the projection of this set on the second component x2(t) is the interval
[qe−3, (3 − p)e−3 + pe3]. Now, we consider the previous two subsystems for 2D, and let start
with the subsystem x1(t) and x3(t) where

A =

[
2 −5
0 −3

]
, X = X(t) =

[
x1(t)
x3(t)

]
.

The eigenvalues are λ1 = 2 and λ2 = −3 and the corresponding eigenvectors for λ1 and λ2 are
respectively as

V1 =

[
1
0

]
, V2 =

[
1
1

]
.

Writing the solution in terms of the original variables x1(t) and x3(t)

x1(t) = Ae2t +Be−3t.

33



x3(t) = Be−3t.

Therefore,

ẋ1 = 2x1 − 5x3.

ẋ3 = −3x3.

At t = 0, x1(0) = Ae2(0) + Be−3(0) = A + B. To fit the target set, A and B must sat-
isfy 1 6 A + B 6 2. Since 0 6 B 6 p is restricted by the control, the restriction on B is
1 6 A 6 2 − p. Thus, p must be chosen, so that p < 1 or there is no backward reachable set
for x1. This means that at t = −1,

x1(−1) = Ae2(−1) +Be−3(−1).

e−2 6 x1(−1) 6 (2− p)e−2 + pe3.

This means that this backwards reachable set of the subsystem agrees with the one that we
have previously in the 3D system. So, the projection of this component x1(t) is the interval
[e−2, (2 − p)e−2 + pe3]. The same procedure can be done for the second subsystem x2(t) and
x3(t) so that

A =

[
3 −6
0 −3

]
, X = X(t) =

[
x2(t)
x3(t)

]
.

The eigenvalues are λ1 = 3 and λ2 = −3 and the corresponding eigenvectors for λ1 and λ2 are
respectively as

V1 =

[
1
0

]
, V2 =

[
1
1

]
.

Writing the solution in terms of the original variables x1(t) and x3(t)

x2(t) = Ae3t +Be−3t.

x3(t) = Be−3t.

Therefore,

ẋ2 = 3x2 − 6x3.

ẋ3 = −3x3.

At t = 0, x2(0) = Ae3(0) + Be−3(0) = A + B. To fit the target set, A and B must sat-
isfy q 6 A + B 6 3. Since 0 6 B 6 p is restricted by the control, the restriction on A is
q 6 A 6 3− p. Thus, p must be chosen, so that 3− p > 2. This means that at t = −1,

x2(−1) = Ae3(−1) +Be−3(−1).

qe−3 6 x2(−1) 6 (3− p)e−3 + pe3.

This means that this backwards reachable set of this subsystem agrees with the one that we
have previously in the 3D system. So, the projection of this component x2(t) is the interval
[qe−3, (3 − p)e−3 + pe3]. As a result, computing the BRS in lower-dimensional subsystem and
then combining them lead to construct the full-dimensional BRS of the full system.
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9 A 3D Dubins car example in spherical coordinates.

This example will consider the following 3D variants of the Dubins model
ṗx
ṗy
ṗz
θ̇

 =


v sin θ cosφ
v sin θ sinφ
v cos θ
w

 . (49)

This is a three-dimensional generalization of the Dubins model in equation (46); with a spheri-
cal parametization which describes the motion in xyz directions and a constant control w. We
consider a two-dimensional Dubins car but with an additional independent bounded constraint
over the speed in the z-direction, then the model becomes as follows

ṗx
ṗy
ṗz
θ̇

 =


v cos θ
v sin θ
cv
w

 . (50)

Where c > 0. Also, let consider the unmanned aerial vehicle (UAV) in the Dubins Airplane
with the autopilot is well tuned and the airspeed, flight-path angle and bank angle state con-
verges with the desired response, then the kinematics is given by

ṗx
ṗy
ṗz
θ̇

 =


v cos θ cosφ
v sin θ cosφ
−v sinφ
g
v

tanψ

 . (51)

where g is acceleration due to gravity, ψ is the heading angle and φ is the bank angle.
Let’s decompose each of the above system into various subsystems (self-contained subsystems)
in such a way that each subsystem depends only on the subsystem states. Then, the SCSs are
given as follows

ż1 =

[
ṗx
θ̇

]
=

[
v sin θ cosφ

w

]
.

ż2 =

[
ṗy
θ̇

]
=

[
v sin θ sinφ

w

]
.

ż3 =

[
ṗz
θ̇

]
=

[
v cos θ
w

]
.

Where w = u. Also, the target set T can be decomposed as follow:

T1 = {(px, θ) : |px| 6 α}.

T2 = {(py, θ) : |py| 6 α}.

T3 = {(pz, θ) : |pz| 6 α}.

Where α is a scalar. Then

T = proj−1(T1) ∩ proj−1(T2) ∩ proj−1(T3).
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Therefore, the SCSs for this system for the Dubins’ plane is given as follow:

ż1 =

 ṗx
ṗz
θ̇

 =

 v cos θ
cv
w

 .
ż2 =

 ṗy
ṗz
θ̇

 =

 v sin θ
cv
w

 .
Thus, the target set T can be computed by

T1 = {(px, pz, θ) : |px|, |pz| < β}.

T2 = {(py, pz, θ) : |py|, |pz| < β}.

Such that

T = proj−1(T1) ∩ proj−1(T2).

Also, the SCSs for the Dubins’ Airplane can be written as

ż1 =

[
ṗx
θ̇

]
=

[
v cos θ cosφ

g
v

tanψ

]
.

ż2 =

[
ṗy
θ̇

]
=

[
v sin θ sinφ

g
v

tanψ

]
.

ż3 =

[
ṗz
θ̇

]
=

[
−v sinφ
g
v

tanψ

]
.

Now, the target set T is

T1 = {(px, θ) : |px| < γ}.

T2 = {(py, θ) : |py| < γ}.

T3 = {(pz, θ) : |pz| < γ}.

And

T = proj−1(T1) ∩ proj−1(T2) ∩ proj−1(T3).

Now, the aim is to compute the BRS for the Dubins car in 3D from the target set. It represents
the positions near the origin in the px, py and pz directions. We take the target set as

T = {px, py, pz, θ : |px| 6 0.5, |py| 6 0.5, |pz| 6 0.5}.

Using the decomposition method, we can write the target set as

T1 = {(px, θ) : |px| < 0.5}.

T2 = {(py, θ) : |py| < 0.5}.

T3 = {(pz, θ) : |pz| < 0.5}.

And

T = proj−1(T1) ∩ proj−1(T2) ∩ proj−1(T3).
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In the same way, we can compute the BRS for the Dubins’ plane by taking β = 1, then we have

T1 = {(px, pz, θ) : |px|, |pz| < 1}.

T2 = {(py, pz, θ) : |py|, |pz| < 1}.

Such that

T = proj−1(T1) ∩ proj−1(T2).

Also, for the Dubins’ airplane, we take γ = 1 such that we can compute the BRS by

T1 = {(px, θ) : |px| < 1}.

T2 = {(py, θ) : |py| < 1}.

T3 = {(pz, θ) : |pz| < 1}.

And

T = proj−1(T1) ∩ proj−1(T2) ∩ proj−1(T3).

For future work, we will continue working on this example and looking for some hypothesis to
help us prove that.

10 Conclusion and future work.

In this report, we have applied two methods to solve our problem. The first method is used to
compute the backwards reachable set with target set and it is based on formulating the reach-
ability problem in terms of the viscosity solution of a time-dependent Hamilton-Jacobi-Isaacs
partial differential equation. We have set a theorem which proves that the analytic solution
of this equation gives an accurate reachable set as it is determined in the previous definition.
The solution of time dependent HJ PDE is continuous and can be determined over the state
space. As a result, the computations are less expensive. Also, the implementation is done in a
three-dimensional pursuit evasion example. There is a primary weakness in the formulation of
the reachable sets when the dimension of the system increases, which is the exponential growth
and computational expansive. There is a way to reduce the costs of the computations which is
to project the reachable set from a higher dimensional system into a group of lower dimensional
subsystems. The second method is to do projections of the full system via decomposition and
SCSs and solve the problem with a collection of lower dimensional. This method is combining
the first method as well where combining different methods gives better results. The major goal
of doing the projection is to obtain the backwards reachable sets. The self-contained subsys-
tems formulation is used to compute that backwards reachable sets, and it reduces the burden
of the computations. This means that the previous computations which are considered to be
intractable would be possible to be done. Therefore, we can construct the full dimensional
backwards reachable set from the lower dimensional backwards reachable set as we have seen
in the example of linear systems. In this example that we have investigated we have shown the
backward reachable set of the subsystems are exactly the same as the backward reachable set
in the full system.
Most of this thesis has assimilated existing work on backwards reachability. The original con-
tribution is the detailed example in Chapter 9.
In future work, looking to continue working in the example of spherical coordinates and to
extend and apply the decomposition method in the backwards reachable trajectories BRTs.
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