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ABSTRACT

IMAGE ENHANCEMENT AND ITS APPLICATIONS

by

Damian Richard Tohl

Images and videos continue to play an important role in daily life, covering a

scope that ranges from preserving memories all the way to entertainment and with

the advent of technology are becoming more prevalent than ever. Coupled with this,

is the desire for better quality, for which image enhancement is a useful tool that

can be used to manipulate images and video in order to improve their perceived

quality. Likewise, for processes that rely on an image or video source, such as

analysis and identification, a good quality input cannot always be guaranteed and

so enhancement is used as an important pre-processing step to improve the quality

of an input image or video.

Enhancement techniques can improve the perceived quality of images, but many

of them introduce other problems which can adversely affect the quality of images.

These problems manifest in the form of over- and under-enhancement, a loss of

details, halo effects, reduced signal to noise ratio and flickering in video enhancement.

The aims of this thesis are to develop enhancement techniques that significantly

improve the quality of images and video whilst avoiding the common problems often

associated with other enhancement techniques.

One of the techniques we present is a multi-level histogram shape segmentation

method that can avoid over and under enhancement by segmenting the histogram in

such a way that regions with a similar frequency of occurrence are grouped together

and independently equalised.

To achieve brightness preservation for any image independent of the degree of

enhancement, we propose a novel method to find a unique S-shaped curve transfer



function for each image using successive approximation. As the S-shaped curve

reduces intensities below a certain point and increases intensities above this same

point, then for each image there exists a unique location of this point that will

maintain the brightness of the image. We also propose a modified gamma curve

which approximates the S-shaped curve, but has a wider control over the degree of

enhancement and greater computational efficiency.

By making use of recently developed image quality measures, which have im-

proved the correlation between human visual perception and the value they produce,

a novel optimisation method is proposed that extends the successive approximation

approach to maximise any chosen image quality measure value. Not only does

this optimise enhancement, but can be used to assess which features of the image

a particular image quality measure targets and how well it correlates with visual

perception.

A novel adaptive method for detail enhancement is also proposed in this the-

sis that can suppress noise in homogeneous regions and avoid halo effects while

providing detail enhancement to improve the signal to noise ratio.

Results show that the enhancement techniques presented in this thesis provide

a desirable degree of enhancement while outperforming other benchmarking algo-

rithms both quantitatively and visually. These novel image enhancement techniques

can also be applied practically in order to improve other processes, such as image

expansion, whereby the modified gamma curve is used with an adaptive gamma

value based on the difference between two different interpolation methods to regain

the sharpness of edges in the expanded image. Another process that can benefit

from the use of these image enhancement techniques is enhancement prior to colour

filter array demosaicking, which can give better results than the current methods

which apply enhancement after demosaicking.
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Chapter 1

Introduction

For many people, images and videos play an important role in daily life, from docu-

menting moments and preserving memories, all the way to entertainment. As tech-

nology and social media advances, images and videos are becoming more prevalent

then ever. With this comes a demand for better quality, which is why enhancement

methods are commonly used to improve the perceived quality of images and videos.

The same is true for processes that rely on an image or video source, such as anal-

ysis and identification, where enhancement is used as an important pre-processing

step [3] to ensure a good quality input image or video. Inconsistent quality of input

images and video can effect the robustness and accuracy of results, especially when

working with images and video captured in trying conditions [4, 5, 6, 7]. Image en-

hancement performed in the pre-processing stage of these applications will improve

the quality of input images and video which in turn, may improve the robustness

and accuracy of results.

Image enhancement is a technique that transforms the intensity values of an input

image for improving the visual perception of the image [8, 9], but often enhancement

produces unwanted effects that can degrade the quality of an image. These unwanted

effects are problems such as over- and under-enhancement, halo effects, reduced

signal to noise ratio and flickering in video enhancement. In this thesis, the aim
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is to develop new enhancement techniques that will avoid those unwanted effects

whilst improving the quality of images and video.

When over-enhancement occurs, the result is an unnatural appearance with a

loss of details [10], while under-enhancement is the result of not enough improve-

ment to the output image. Over-enhancement is generally introduced by histogram

equalisation [11] and while some techniques have reduced this problem by seg-

menting the histogram and perform equalisation independently on each segment

[12, 13, 14, 15, 16, 17], the choice of segmentation locations means that this problem

cannot be completely avoided. Furthermore, the inclusion of too many segments

may result in under-enhancement. Due to this, a novel method of segmentation

is proposed which uses the shape of the histogram to determine the segmentation

locations, so that areas of the histogram with a similar frequency of occurrence are

grouped together. As over-enhancement typically occurs when peaks in the his-

togram are redistributed over a wider area, grouping together these regions means

peaks can be equalised over a smaller area and over-enhancement can be avoided.

In contrast to this, areas with a lower frequency of occurrence can be equalised over

a larger area so that a loss of contrast will not occur and under-enhancement can

also be avoided.

When applying enhancement techniques to video, if the brightness of each frame

is not preserved, then it can cause flickering from frame to frame [16, 18]. Existing

enhancement techniques which claim to preserve brightness often do so by introduc-

ing limitations on the degree of enhancement or by clipping the dynamic range of

the image which can lead to under enhancement. The recently developed S-shaped
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sigmoid transfer function (SSTF) [18, 9, 19, 20] is one method where clipping of the

intensity values can occur, resulting in a loss of details and contrast. However, as

the SSTF reduces intensities below a certain point that intersects with the y = x

line and increases intensities above this intersection point, then for each image there

exists a unique location of this intersection point that will maintain the brightness

of the image. In order to achieve brightness preservation for any image independent

of the degree of enhancement, a novel method is proposed to find a unique SSTF for

each image by successive approximation. Due to four control parameters in SSTF

which must be optimised by minimising an objective function [18], the method is

computationally inefficient. Therefore, a number of new equations are proposed to

reduce the number of control parameters from four to two to improve computational

efficiency. SSTF also has limited control over enhancement when the crossover point

is closer to either end of the intensity range, so in order to obtain more control of

the degree of enhancement and further improve computational efficiency, a modified

gamma curve (MGC) is proposed to produce a curve similar to the shape of SSTF

for contrast enhancement.

Recent image quality measures (IQMs) [19, 20, 8, 3, 21, 22, 23, 24, 25, 26, 27] have

improved on the correlation between human visual perception and the value which

they produce. It follows, that by maximising a chosen IQM in the enhancement

process, an optimally enhanced image will be produced according to that IQM.

Some recent enhancement methods [9, 19, 20] attempt to optimise enhancement

based on a particular IQM. However, the optimisation process in each method is

limited, either by some constraints on the control parameters, or by the optimisation
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technique itself. This means the output images they produce may not necessarily

reflect the maximum IQM value. A novel method is proposed in this thesis that

extends the successive approximation approach to optimise image enhancement by

maximising any chosen IQM value. Not only does this optimise enhancement, but

can be used to assess which features of the image a particular IQM targets and how

well it correlates with visual perception.

To prevent a loss of details from occurring in the enhanced output image, detail

enhancement can be incorporated into enhancement process. When applying de-

tail enhancement, most techniques are unable to discern between details and noise

and will often enhance noise as well as details producing noisy enhanced images

and reducing the signal to noise ratio. Furthermore, edges that are included within

detail enhancement can sometimes be over enhanced and may produce halo effects

giving the image an unnatural appearance. One recent method of detail enhance-

ment [3, 24] increases the weightings to the high frequency components in the fre-

quency domain after global contrast enhancement has been performed. However,

this method of detail enhancement will have minimal effect if the details are already

lost in the initial global contrast enhancement. Moreover, as both details and noise

contain high frequency components, the noise level will also be raised and halo ef-

fects may be produced, resulting in output images with worse signal-to-noise ratio

and halo effects at edges. A novel median of absolute deviation from the median

(MAD) [28] adaptive method for detail enhancement is proposed in this thesis which

can suppress noise in homogeneous regions while providing detail enhancement to

improve the signal to noise ratio. Halo effects at edges are also avoided by separating
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image details from the background and edges so that only the details are enhanced

by the proposed method.

The novel image enhancement techniques proposed in this thesis can be applied

practically in order to improve other processes which include image enhancement

as a step within their execution. Two of those process which are explored include

image expansion and enhancement prior to colour filter array demosaicking. The

proposed MGC presented in this thesis can be applied to image expansion where it

is used with an adaptive gamma value, based on the difference between two different

interpolation methods, to regain the sharpness of edges in the expanded image. The

image enhancement techniques presented in this thesis can be applied prior to colour

filter array demosaicking which can help reduce interpolation errors.

The results in each chapter show that the enhancement techniques presented

in this thesis provide a desirable degree of enhancement while outperforming other

benchmarking algorithms both quantitatively and visually.

1.1 Thesis Organisation

This thesis is organised as follows:

• Chapter 2: The multi-level histogram shape segmentation method is described

in this chapter.

• Chapter 3: Image and video enhancement with brightness preservation by

successive approximation with the S-shaped sigmoid transfer function and the

modified gamma curve are given in this chapter.
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• Chapter 4: This chapter describes how images can be optimised by using a

binary search in conjunction with the modified gamma curve to maximise an

image quality assessment method.

• Chapter 5: A novel adaptive detail enhancement method is proposed in this

chapter.

• Chapter 6: In this chapter, two novel applications for the proposed enhance-

ment methods are presented.

• Chapter 7: A brief summary of the thesis contents and its contributions are

given in the this chapter.

• Chapter 8: Future extensions to the proposed enhancement methods are out-

lined in the final chapter.
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Chapter 2

Multi-Level Histogram Shape Segmentation

2.1 Introduction

Histograms give an overview of image grey level distribution and density, average

luminance, contrast and other characteristics of images [29]. Histogram equalisation

(HE) flattens and stretches the dynamic range of a histogram for image contrast

enhancement [16] to improve visual perception [30, 11, 31]. However, there are

two main problems associated with standard histogram equalisation, namely, over-

enhancement and a loss of details in different regions of an image. Over-enhancement

results in an unnatural appearance and is often associated with a loss of details [10].

Fig. 2.1(b) shows an example of the HE output where the peak in the far left side of

the histogram has been shifted right, resulting in the back regions in the foreground

of the image to appear grey. The smaller peaks in the histogram have been spread

out as well, resulting in over-enhancement with a loss of details in the sky and water.

To overcome these problems, one approach [16, 32, 15, 14, 12, 13] is by seg-

mentation of the histogram based on its mean or median value to form sub-images

and performing histogram equalisation on each sub-image independently. Other ap-

proaches [17, 33, 34] include the application of a different weight to each sub-image,

as an approach to reduce over- and under-enhancement. However, none of those

methods can completely avoid over-enhancement because histograms are segmented
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in a manner such that they may include intensity values with a wide range of fre-

quency of occurrence. Furthermore, introducing too many segments may also cause

the undesirable effect of under-enhancement where the image retains its initial poor

contrast.

Weighted thresholded histogram equalisation (WTHE) [10] applies a weight to

the probability density function before histogram equalisation. A smaller weight is

given to intensity values with a high frequency of occurrence and a larger weight

is given to intensity values with a low frequency of occurrence. However, adjusting

the weights will not totally eliminate over- and under-enhancement and this method

still inherits similar problems to histogram equalisation. Fig. 2.1(h) shows that the

smaller peaks in the histogram of the WTHE output are still spread out, resulting

in a loss of details in the sky and water. To preserve brightness, WTHE adds the

difference between the mean brightness of the original and equalised image to the

final image output, but this may cause clipping of the intensity values and reduce

the dynamic range of the image. This is obvious in the histogram of the WTHE

output, shown in Fig. 2.1(h), by the large peak in centre of the histogram and the

reduced range of intensity values.

For the methods which only segment the histogram into two sub-histograms,

namely, brightness preserving bi-histogram equalisation (BBHE) [12], dualistic sub-

image histogram equalisation (DSIHE) [13], bi-weighted histogram equalisation (BWHE)

[34], and minimum mean brightness error bi-histogram equalisation (MMBEBHE)

[14], they may perform well for images with a well-defined bimodal distribution of

the intensity values. However, most images will not have the characteristics of such a
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histogram and these methods will not generally produce favourable outcomes. Fig.

2.1(c) - Fig. 2.1(e) shows the output of BBHE, DSIHE and MMBEBHE respec-

tively, the red dotted line gives the location of the single segmentation point which

was inappropriately located and unable to stop the shift of the large peak associated

with the black region of the image or the spreading out of the smaller peaks, result-

ing in over-enhancement and a loss of details in the sky. Additional segmentation

thresholds are needed to segment the histogram to reduce the over-enhancement

problem.

For methods using multiple sub-histograms, namely, local region stretching adap-

tive contrast enhancement (LRSACE) [35], recursive mean-separate histogram equal-

isation (RMSHE) [16], recursive sub-image histogram equalisation (RSIHE) [15],

and recursively separated and weighted histogram equalisation (RSWHE) [17], over-

enhancement still cannot be avoided completely as the histograms are not always

segmented at appropriate thresholds. In the LRSACE method, the segmentation

points are fixed and therefore not adaptable to various types of images. The recur-

sive methods provide multi-level segmentation, but histograms may be segmented

at points that will still cause over-enhancement. Moreover, recursive methods are

known to be computationally inefficient. Fig. 2.1(f) - Fig. 2.1(g) shows the outputs

for RMSHE and RSIHE respectively, the segmentation points, shown by the red

dotted lines, are at inappropriate locations and still result in over-enhancement of

the sky.

Recursively separated and weighted histogram equalisation (RSWHE) [17] com-

bines recursive mean segmentation with adaptive weights to avoid over enhancement.
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The weightings are applied in this method with the intention of preserving bright-

ness and as such, constrain the overall enhancement, resulting in output images with

minimal inadequate enhancement for inputs with poor contrast.

The problem with existing histogram segmentation equalisation techniques is

that some segments may include intensity values with a wide range of frequency of

occurrence, resulting in over-enhancement and a loss of details. This motivates the

proposal of the multi-level histogram shape segmentation (MLHSS) method which

can avoid these problems by segmenting the histogram in such a way that regions

with a similar frequency of occurrence are grouped together. Equalisation is then

performed independently on each segment and over-enhancement can be avoided as

intensity values can only be remapped within the same segment.

2.2 Method

Applying enhancement to the luminance component of an image with a limited

colour dynamic range will produce an output with good contrast, but dull colour

due to no improvement of the colour dynamic range. Therefore, contrast expansion

is applied to the input image as an initial step of the proposed enhancement method

to achieve more vivid colour enhancement [36, 37, 38]. In order to avoid any clipping

of pixel values, each colour pixel is initially scaled based on the global maximum

and minimum intensity values among all the colours. Let X be an original image

in RGB colour space with an intensity range of [0,255] where X = {R,G,B},

r(i, j) ∈ R, g(i, j) ∈ G, b(i, j) ∈ B and i, j are the location indices of each pixel

and xc(i, j) = {rc(i, j), gc(i, j), bc(i, j)} be a colour pixel of the contrast expanded
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(a) Input (b) HE (c) BBHE (d) DSIHE

(e) MMBEBHE (f) RMSHE (g) RSIHE (h) WTHE

Figure 2.1 : An example of existing histogram equalisation techniques. (a) The family in-

put image. Enhancement by (b) HE, (c) BBHE, (d) DSIHE (e) MMBEBHE, (f) RMSHE,

(g) RSIHE and (h) WTHE. The red dotted lines in the histogram indicate segmentation

locations.
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Figure 2.2 : Flowchart for the overall image enhancement method featuring the proposed

multi-level histogram shape segmentation.

image, Xc. The global maximum and minimum intensities of X among all colours

are determined first as follows:

Imax = max{max{R},max{G},max{B}}, (2.1)

Imin = min{min{R},min{G},min{B}}. (2.2)

Each pixel in the RGB colour space is then scaled by the following equations:

rc(i, j) = 255

(
r(i, j)− Imin
Imax − Imin

)
, (2.3)

gc(i, j) = 255

(
g(i, j)− Imin
Imax − Imin

)
, (2.4)

bc(i, j) = 255

(
b(i, j)− Imin
Imax − Imin

)
. (2.5)

As global maximum and minimum intensity values among all the colours, Imax and

Imin, are used to scale the three colours, the ratio between them will be maintained

and there is no chance of altering the original balance of colour. If any one of the

three colours already uses the full dynamic range, then this step will have no effect

on the overall enhancement of the image. Alternatively, if the input dynamic range

of all three colours is limited, this step will ensure that the full dynamic range is

utilised and the output will have full vivid colour.
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In the proposed method, a novel multi-level histogram shape segmentation method

is developed for enhancement of the contrast expanded image, Xc. In order to avoid

over-enhancement, regions of intensity values with a similar frequency of occurrence

have to be separated for individual equalisation. This can be detected by observing

a sudden change in the magnitude of neighbouring values in the histogram of the

luminance component, Ic, of the contrast expanded image.

Throughout this thesis, the luminance of the image is obtained by transforming

the RGB colour space to the device independent CIELAB colour space as defined

by the International Commission of Illumination [39]. The “lightness” values from

the CIELAB colour space are then taken as the luminance of the image.

To prevent small fluctuations and to remove outliers in the histogram from pro-

ducing an excessive number of segmentation points which will reduce the degree

of enhancement, the histogram, H, is smoothed by an alpha-trimmed mean filter

[40] which is known to be able to effectively remove outliers while smoothing the

input to produce the output, Hs. The alpha-trimmed mean filter output is obtained

by ranking a set of samples in order, removing (trimming) a fixed fraction, alpha

(0 ≤ α ≤ 0.5), from the high and low ends of the sorted set of samples and com-

puting the mean of the remaining samples. When α = 0, the range of summation

is over the entire set of samples and the filter output is the sample mean. When

α = 0.5 the filter output is the sample median.

For the detection of abrupt changes at position, q, of the smoothed histogram,

Hs, a window on each side of q of width N is formed and the sum of the histogram

values inside each window is evaluated, where Kq
l and Kq

r are the sum of the
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histogram values inside the windows to the left and right hand side of q respectively

as follows:

Kq
l =

N∑
k=1

Hs(q − k), (2.6)

Kq
r =

N∑
k=1

Hs(q + k). (2.7)

This process is repeated for the full range of the histogram to produce a ratio

curve, c, which is based on the ratio of the maximum and minimum of Kq
l and Kq

r

as given as follows:

c(q) =


Kmax
Kmin

(Kmin > 0)&(Kmax > d|I c|)

1 otherwise

, (2.8)

where Kmin = min
{
Kq

l, Kq
r
}

, Kmax = max
{
Kq

l, Kq
r
}

, |I c| is the total number of

pixels of the contrast expanded image luminance, I c, d is a percentage of |I c| and

‘&’ is a logical ‘and’ operator.

When Kmin = 0, the ratio of Kmax to Kmin is undefined at that point and it

will be replaced by unity, assuming that it is a flat region in the histogram (i.e.

Kmax = Kmin) at which no abrupt change has occurred. When the number of pixels

within the window is too small, i.e. when the number is smaller than a percentage,

d, of the size of the image, they are the minority and its ratio should also be ignored

and set to unity. The peaks of the ratio curve give the location at which abrupt

changes of the histogram have occurred and therefore are the locations at which the

histogram should be segmented to produce the sub-images. In other words, peaks in

the ratio curve are located at turning points in the histogram where the frequency

of occurrence is changing from small to large, or from large to small. The window
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width, N , can be used to control the number of peaks in the ratio curve. Increasing

N will reduce the number of peaks detected and in turn reduce the number of

segmentation thresholds and vice versa. Therefore, the degree of enhancement can

be controlled by adjusting the value of N .

To detect the location of the peaks, the first derivative, c′, of the ratio curve

is evaluated and the zero-crossings of this derivative give all the peak and trough

locations. As only the peak locations are required, only zero-crossings where the

sign changes from positive to negative are taken as segmentation thresholds. Let

S be the set of the segmentation thresholds located at the peaks of the ratio curve

where n = 1, 2, . . . , |S| and |S| is the cardinal number of S as follows:

S = {q : (c′(q) > 0)&(c′(q + 1) ≤ 0)&(c(q) > C)} , (2.9)

where C is a threshold for the slope of the histogram and N ≤ q < L − N . The

range for q is equal to [N,L−N) so that both (2.6) and (2.7) are valid.

The ratio curve, c(q) at location q must be greater than the threshold C for

an abrupt change of the histogram to have had occurred. In a flat region of the

histogram, c(q) = 1 (as Kmax and Kmin in (2.8) are equal), hence, C must be

greater than unity to detect any abrupt changes.

In order to cover the full range of intensity values for an intensity range of

[0, L− 1], the lower and upper bounds of the intensity range should be included to be

the lower and upper segmentation boundaries. Therefore, S(1) = 0, S(|S|) = L are

added to the set S and all the q values in (2.9) are re-assigned to [S(2), . . . , S(|S|−1)]

in the ranked-order of magnitude of q. The interval for each sub-image is given by
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[S(n), S(n+ 1)− 1] where n = 1, 2, . . . , (|S| − 1).

Let Vn be the nth sub-image with intensity values within the intensity interval

of [S(n), S(n+ 1)− 1] from the contrast expanded luminance, Ic as follows:

Vn = {Ic(i, j) ∈ Ic : S(n) ≤ Ic(i, j) ≤ S(n+ 1)− 1}, (2.10)

where n = 1, 2, . . . , (|S| − 1).

Let Fn be the nth equalised sub-image output of Vn using standard histogram

equalisation [11]. Each Fn is an equalised sub-image over a section of the full

intensity range and the concatenation of all Fn will give an overall equalised image,

Y, with the full intensity range as follows:

Y =

|S|−1∑
n=1

Fn, (2.11)

where

Fn = {Y (i, j) ∈ Y : S(n) ≤ Y (i, j) ≤ S(n+ 1)− 1}. (2.12)

Fig. 2.2 gives the block diagram for the overall image enhancement process and

Fig. 2.3 gives the detailed block diagram for our proposed multi-level histogram

shape segmentation method. Fig. 2.4 shows the outputs at each step of the proposed

multi-level histogram shape segmentation method for the cactus image. The solid

red line indicates the alpha-trimmed mean filter output, which removes outliers to

give a smoothed histogram which still preserves the underlying structure of the

original histogram. The ratio curve is represented by the solid blue line and the

ratio curve threshold, C, is represented by the dotted blue line. Peaks in the ratio

curve which exceed the ratio curve threshold are used to determine the segmentation
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Figure 2.3 : Flowchart for image enhancement by the proposed multi-level histogram

shape segmentation method.
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Figure 2.4 : Diagram to show the outputs at each step of the proposed multi-level

histogram shape segmentation method for the cactus image.
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locations, which are indicated by the dotted red lines. Equalisation is then performed

independently on each segment to give the enhanced image output.

2.3 Control Parameters

There are five different variables that can be used to control the performance

of the proposed multi-level histogram shape segmentation method and they are all

related to the definition of the ratio curve. Three of the variables, namely, the

ratio curve window width, N , the percentage of total image pixels, d, and the ratio

curve threshold, C, directly control the formation of the ratio curve and in turn

the number of segments included in the histogram equalisation process. The other

two, namely, the window width, M , and the alpha value, α, control the smoothing

properties of the alpha-trimmed mean filter, which is applied to the histogram of the

image so that local variances in the histogram do not produce an excessive number

of segments. These variables give great control over the enhancement of an image,

but they are also highly interactive with each other such that changing a single

variable in isolation may not necessarily lead to the expected change in the output

image.

2.3.1 Ratio Curve Window Width

The ratio curve window width, N , is used to control the sensitivity of the ratio

curve to the image histogram. A smaller window width will be more sensitive to

local variations in the histogram and as a result will lead to more segmentations.

This will give less overall enhancement to image as histogram equalisation is being

applied over a larger number of smaller segments. A larger window width will be



20

less sensitive to local variations in the histogram so that the ratio curve will reflect

the overall shape of the histogram resulting in fewer segmentations and also stronger

enhancement.

All of the images used for testing are 8-bit, i.e. they have 28 or 256 intensity

values and as such, the histograms produced by these images will have 256 bins.

Therefore, although the ratio curve window can be any width, values which are

powers of two have been used in this thesis so that the effect changing the window

size has on the ratio curve is clear to see. Ratio curve window widths which are

powers of two also have a symbiotic relationship with the histogram in that for

N = 32, the ratio curve is evaluated over a quarter of the histogram, for N = 16,

the ratio curve is evaluated over an eighth of the histogram, for N = 8, the ratio

curve is evaluated over a sixteenth of the histogram and so on. Fig. 2.5 shows the

ratio curves and corresponding segmentation points for an image histogram for the

window widths N = 4, 8, 16 and 32. The ratio curve has been normalised to the

same scale as the histogram so they can be displayed together in a legible manner

and the relationship between the two can be observed. A small window width (i.e.

N = 4), is more sensitive to the jaggedness of the histogram and a lot of ratio

curve peaks will be produced as a result, as shown in Fig. 2.5(b). As the window

width increases it becomes less sensitive to the jaggedness of the histogram and less

ratio curve peaks will be produced as a result. For very large window widths (i.e.

N = 32), only a few ratio curve peaks will be produced, as shown in Fig. 2.5(e).
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(a)

(b) (c)

(d) (e)

Figure 2.5 : The histogram for (a) the building image with the ratio curve and segmen-

tation points for (b) N = 4, (c) N = 8, (d) N = 16 and (e) N = 32.



22

2.3.2 Percentage of Total Image Pixels

The percentage, d, of the total number of pixels in the luminance image, Ic,

is used reduce the number of segmentations in areas of the histogram with a low

frequency of occurrence. A smaller percentage will allow the evaluation of the ratio

curve over areas of the histogram with a low frequency of occurrence, leading to

more segmentations in those areas. This will result in less enhancement in those

areas, possibly leading to the under-enhancement of the image. A larger percentage

will stop the evaluation of the ratio curve in those areas of the histogram with a

low frequency of occurrence, eliminating segmentations in those areas and giving

stronger enhancement. If very large percentages are used, then the evaluation of

the ratio curve will be stopped in areas of the histogram with a higher frequency of

occurrence, potentially leading to over-enhancement.

As the window width, N , for defining the ratio curve is variable, larger window

widths will include more bins of the histogram and hence more pixels and smaller

window widths will include less. Therefore the percentage of total pixels, d, should

vary with the window width, N , for a consistent result. As an example, for an image

with an even distribution of intensities, 100% of the image pixels would be located

across the entire histogram, 50% of the image pixels would be located across half

of the histogram, 25% of the image pixels would be located across a quarter of the

histogram and so on. Considering the above and the fact we want to ignore areas

of the histogram where the number of pixels are in the minority when defining the

ratio curve, we can assume that when the percentage of total pixels is less than half

that of the expected percentage for an image with an even distribution over the
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window width, N , then it should be ignored. Therefore the ratio curve, d, is defined

as follows:

d =

(
1

2

)(
N × 100

256

)
. (2.13)

Fig. 2.6 shows the ratio curves and the corresponding segmentation points for

the water image for the window widths N = 8 and N = 16 with and without the

percentage of total pixels, d, applied. The histogram has a large area, from intensity

value 0 to 128, with a low frequency of occurrence. Without the percentage of

total pixels, d, applied in Fig. 2.6(b) and Fig. 2.6(c), there are a large number

of segmentations which will reduce the amount of enhancement produced in this

region.

2.3.3 Ratio Curve Threshold

The ratio curve threshold, C, is used to determine which peaks in the ratio curve

will form segmentation points for the histogram equalisation process. Only when

the height of a peak exceeds the ratio curve threshold, C, will it be used to form a

segmentation point. For larger values of the ratio curve threshold, a smaller number

of segments will be included and when the ratio curve threshold becomes very large,

no segments will be included at all and standard histogram equalisation will be

performed.

The height of peaks in the ratio curve varies significantly depending on the

histogram and the width of the ratio curve window, N . Often, the height of the

peaks correspond to the ratio curve window width, as shown in Fig. 2.7(a). There

are also images for which the peak heights will not necessarily correspond to the
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(a)

(b) (c)

(d) (e)

Figure 2.6 : The histogram for (a) the water image with the ratio curve and segmentation

points for (b) N = 8 and d = 0, (c) N = 16 and d = 0, (d) N = 8 and d = 1.563% and

(e) N = 16 and d = 3.125%.
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ratio curve window width, as shown in Fig. 2.7(b) where the largest ratio curve

window width produces some of the smallest peaks. Therefore, the best ratio curve

threshold value depends on the image and the user is able to adjust the value to

suit each image. However, for comparison with the other benchmarking algorithms

a ratio curve threshold of C = 2 is set for every test image. This reason this value

is chosen for testing will be discussed in the quantitative results section 2.4.1.

(a) (b)

Figure 2.7 : The original image and the corresponding histogram and ratio curves for

(a) the forest image and (b) the country image.
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2.3.4 Alpha-Trimmed Mean Filter

Image histograms can often have both empty bins and spikes which can affect the

evaluation of the ratio curve, producing unwanted peaks which do not necessarily

reflect the general shape of the histogram. By applying an alpha-trimmed mean

filter, the histogram can be smoothed before evaluating the ratio curve so that it

better reflects the shape of the histogram.

The window width of the alpha-trimmed mean filter, M , should be the equivalent

to the total width of the ratio curve window so that the position of peaks in the

ratio curve is not shifted due to miss-matched window widths. As the ratio curve is

evaluated on the left and right side of a centre position, its total span of the window

is 2N + 1, therefore M is defined as follows:

M = 2N + 1. (2.14)

The alpha value, α, should be set to remove the smallest and largest values as

follows:

α =
M − 2

M
. (2.15)

A smoothed histogram can also be estimated from the image using the kernel

method [41]. The smoothness of the estimated histogram can be controlled by ad-

justing the bandwidth parameter. However, the bandwidth parameter has a strong

influence on the histogram and can over-smooth it, distorting the underlying struc-

ture. As the proposed multi-level histogram shape segmentation method is based

on the shape of the histogram, distorting the underlying structure of the histogram

will affect the performance of the proposed method. Therefore, the alpha-trimmed
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mean filter is preferred as it will effectively remove outliers without distorting the

underlying structure of the histogram

2.4 Results

A range of different images are used for testing throughout this thesis, they

consist of a large variety of both natural images and images which have had their

contrast reduced. The test images used for quantitative evaluations and visual as-

sessment are comprised of the RGBNIR [2], CSIQ [1] and TID2013 [42] datasets. The

RGBNIR dataset [2] consists of 477 RGB natural and near-infra-red (NIR) images.

The CSIQ dataset [1] has 30 reference images to which the contrast is incrementally

reduced where “level 1” is the smallest amount of contrast reduction and “level 5”

is the largest amount of contrast reduction. The TID2013 dataset [42] consists of

25 reference images for which the contrast is increased and reduced to 5 different

levels: “level 1” corresponds to a small contrast reduction; “level 2” corresponds

to a small contrast increase; “level 3” corresponds to a larger contrast reduction;

“level 4” corresponds to a larger contrast increase; and “level 5” corresponds to the

largest contrast reduction. All the images from the three datasets, excluding those

NIR images in the RGBNIR dataset, were used for quantitative assessment, giving

a total of 807 test images and a selection of these images are used throughout the

thesis for visual assessment.

The proposed method is compared with eight other histogram equalisation based

benchmarking algorithms, namely, HE [11], BBHE, [12], DSIHE [13], MMBEBHE

[14], RMSHE [16], RSIHE [15], RSWHE [17] and WTHE [10]. Default parameter
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settings for all algorithms are used.

2.4.1 Quantitative Results

Recently a number of image quality measures (IQMs) have been developed

[19, 20, 8, 3, 21, 22, 23, 24, 25, 26, 27], to measure the quality of enhancement.

One of the main objectives of the IQMs is to provide better correlation between

the measured value and visual quality of enhancement. Therefore, several of these

recently developed IQMs are used to quantitatively assess the performance of the

proposed method when compared with the other benchmarking algorithms. The

expected measure of enhancement by gradient (EMEG) [3], the quality-aware rela-

tive contrast measure (QRCM) [8] and the blind image quality measure of enhanced

images (BIQME) [19] were used for our quantitative comparison. EMEG is based

on the gradient to assess the strength of enhancement in the output image, QRCM

is a combination of the relative contrast enhancement between the input and out-

put image, and any distortions that result from enhancement and BIQME combines

contrast, sharpness, brightness, colourfulness and naturalness into one quality score

using a regression module.

Statistical analysis is used throughout the thesis to determine quantitatively

which method provides the best enhancement. To do this, p-values [3] are employed

which represent the proportion of output images by an enhancement method that

have a higher IQM value when compared with the output images of another en-

hancement method. In Table 2.1-2.3, the p-values [3] for each of the benchmarking

algorithms, namely, HE (i.e. M1), BBHE (i.e. M2), DSIHE (i.e. M3), MMBEBHE



29

(i.e. M4), RMSHE (i.e. M5), RSIHE (i.e. M6), RSWHE (i.e. M7), WTHE (i.e.

M8) and the proposed MLHSS method where N = 8 (i.e. M9) and N = 16 (i.e.

M10) were found for all 807 test images to statistically determine which algorithm

provided the best enhancement. Table 2.1-2.3 should be read by row, whereby each

entry in a row is the proportion of one methods output images, with a higher IQM

value, with respect to every other method represented by each column. The p-values

[3] based on EMEG in Table 2.1, represent the proportion of enhanced test images

when {EMEGA > EMEGB} where EMEGA and EMEGB are values produced

by algorithms A and B, for a test image respectively. Table 2.2 and 2.3 contains the

p-values which are based on QRCM and BIQME respectively. In Table 2.1-2.3, the

rows correspond to algorithm A and the columns correspond to algorithm B.

In Table 2.1 based on EMEG, the proposed method, MLHSS (N = 8), produced

p-values higher than 0.57 for all of the 807 test images when compared with the

majority of the benchmarking algorithms. The proposed method was unable to

outscore the HE, BBHE and DSIHE methods, this is due the fact that the proposed

method includes more segments which reduces the overall strength of enhancement,

but improves the quality of the output images. As the height of peaks in the ratio

curve generally corresponds to the width of the ratio curve window, N and because

the ratio curve threshold was fixed at C = 2, more segments were included when

N = 16. This has resulted in slightly less overall enhancement for the proposed

method when N = 16 as opposed to N = 8 which is reflected in the slightly lower

p-values in Table 2.1-2.3.

In Table 2.2 based on QRCM, the proposed method, MLHSS (N = 8), gave a
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Table 2.1 : The p-values for EMEGA > EMEGB where M1:HE, M2:BBHE, M3:DSIHE,

M4:MMBEBHE, M5:RMSHE, M6:RSIHE, M7:RSWHE, M8:WTHE, M9:MLHSS (N = 8)

and M10:MLHSS (N = 16).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.747 0.672 0.922 0.918 0.890 0.959 0.885 0.793 0.865

M2 0.252 - 0.155 0.605 0.844 0.848 0.865 0.623 0.564 0.658

M3 0.326 0.789 - 0.691 0.881 0.876 0.884 0.675 0.620 0.700

M4 0.078 0.390 0.301 - 0.730 0.618 0.851 0.439 0.424 0.548

M5 0.082 0.156 0.118 0.268 - 0.254 0.773 0.234 0.278 0.421

M6 0.110 0.151 0.124 0.382 0.739 - 0.814 0.379 0.356 0.483

M7 0.041 0.135 0.116 0.146 0.224 0.185 - 0.037 0.097 0.129

M8 0.115 0.377 0.323 0.561 0.763 0.620 0.963 - 0.426 0.621

M9 0.172 0.434 0.378 0.575 0.722 0.644 0.903 0.572 - 0.623

M10 0.107 0.342 0.300 0.452 0.579 0.517 0.871 0.379 0.323 -

similar result as in Table 2.1, outscoring five of the eight benchmarking algorithms

for all of the 807 test images.

In Table 2.3 based on BIQME, the proposed method, MLHSS (N = 8) performed

better then in Table 2.1 and 2.2, outperforming all of the other benchmarking algo-

rithms with p-values higher than 0.50 for all of the 807 test images when compared

with all the other benchmarking algorithms except HE and DSIHE.

Currently, no IQMs perfectly correlate with visual assessment and active research

is still ongoing in the area of image quality assessment to produce a stronger corre-

lation between quantitative and qualitative measurements. For this reason, visual

assessment is included along with the quantitative results, so that methods can be

assessed both on the quantitative values they produce as well as the visual quality

of their outputs. Although the proposed method does not outperform a few bench-
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Table 2.2 : The p-values for QRCMA > QRCMB where M1:HE, M2:BBHE, M3:DSIHE,

M4:MMBEBHE, M5:RMSHE, M6:RSIHE, M7:RSWHE, M8:WTHE, M9:MLHSS (N = 8)

and M10:MLHSS (N = 16).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.595 0.540 0.724 0.784 0.756 0.841 0.658 0.594 0.721

M2 0.405 - 0.300 0.612 0.786 0.792 0.784 0.568 0.520 0.603

M3 0.460 0.643 - 0.674 0.827 0.812 0.799 0.617 0.561 0.625

M4 0.276 0.385 0.317 - 0.680 0.579 0.778 0.367 0.424 0.528

M5 0.216 0.212 0.173 0.320 - 0.266 0.710 0.201 0.321 0.446

M6 0.243 0.208 0.186 0.421 0.729 - 0.730 0.322 0.394 0.502

M7 0.159 0.216 0.201 0.222 0.290 0.270 - 0.102 0.191 0.230

M8 0.342 0.432 0.382 0.633 0.799 0.675 0.898 - 0.508 0.647

M9 0.404 0.480 0.439 0.575 0.678 0.605 0.809 0.492 - 0.570

M10 0.278 0.397 0.375 0.472 0.551 0.498 0.768 0.353 0.378 -

marking algorithms, as given in Table 2.1-2.3, the visual assessment results in the

next section 2.4.2, show that the proposed method produces better image quality en-

hancement than those other benchmarking algorithms, free from over-enhancement

and clipping.

Table 2.4 gives the average processing time in seconds for enhancing an image in

one of the three datasets for the benchmarking and proposed methods. All process-

ing was done in MATLAB using an 8th generation Intel® Core™ i7 Q840 processor

at 1.87GHz. The MATLAB code for all of the benchmarking algorithms in this

chapter were implemented by the author of this thesis. The table shows that the

proposed MLHSS method has a comparable average processing time when compared

with the other methods, especially for the CSIQ and TID2013 datasets.

Fig. 2.8 shows the ratio curve threshold value verses the average p-value for
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Table 2.3 : The p-values for BIQMEA > BIQMEB where M1:HE, M2:BBHE,

M3:DSIHE, M4:MMBEBHE, M5:RMSHE, M6:RSIHE, M7:RSWHE, M8:WTHE,

M9:MLHSS (N = 8) and M10:MLHSS (N = 16).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.897 0.864 0.955 0.950 0.943 0.962 0.908 0.753 0.838

M2 0.103 - 0.254 0.647 0.870 0.841 0.815 0.582 0.494 0.596

M3 0.134 0.683 - 0.740 0.895 0.876 0.849 0.660 0.543 0.646

M4 0.045 0.349 0.252 - 0.715 0.612 0.810 0.373 0.411 0.486

M5 0.048 0.130 0.105 0.284 - 0.258 0.710 0.161 0.255 0.354

M6 0.057 0.159 0.124 0.387 0.732 - 0.748 0.283 0.318 0.440

M7 0.037 0.185 0.151 0.187 0.287 0.252 - 0.055 0.152 0.150

M8 0.092 0.416 0.338 0.623 0.839 0.717 0.945 - 0.455 0.618

M9 0.216 0.503 0.456 0.589 0.745 0.680 0.848 0.545 - 0.553

M10 0.136 0.404 0.354 0.512 0.644 0.559 0.848 0.380 0.393 -

Table 2.4 : The average processing time in seconds for an image in each of the three

datasets for the proposed multi-level histogram shape segmentation method and the other

benchmarking algorithms.

Method
Average Processing Time (s)

RGBNIR CSIQ TID2013

HE 0.79 0.34 0.31

BBHE 0.81 0.34 0.27

DSIHE 0.82 0.34 0.26

MMBEBHE 0.79 0.33 0.26

RMSHE 1.89 0.77 0.58

RSIHE 0.78 0.34 0.31

WTHE 0.89 0.40 0.37

MLHSS (N = 8) 1.20 0.40 0.31

MLHSS (N = 16) 1.19 0.40 0.31
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different datasets. In this case, the p-values were only found for the proposed method

for N = 8 and N = 16 with different ratio curve threshold values for QRCM and

BIQME to determine which ratio curve threshold value gave the best enhancement.

It follows, that the maximum degree of enhancement will be obtained when there

are no segments and standard histogram equalisation is performed, but to avoid the

problem of over-enhancement, segments must be included. In every case, the CSIQ

dataset showed a spike in the average p-value for the ratio curve threshold value,

C = 2 and in some cases the TID2013 dataset also showed a spike for the same

value. Therefore, the ratio curve threshold, C = 2, was used for all experimental

results.

2.4.2 Visual Assessment

For visual assessment, to compare our proposed method with eight other bench-

marking algorithms, a range of different types of images, namely, Fig. 2.9(b) the

cactus image, Fig. 2.10(b) the painted face image and Fig. 2.11(a) the mountain

image from the three datasets, were used.

The contrast reduced cactus image, shown in Fig. 2.9(b), was selected as the sky

background is challenging for many equalisation algorithms. The image produced

by HE, shown in Fig. 2.9(c), was over-enhanced and exhibited an unnatural appear-

ance as a result of the peak in the histogram being spread out too far. The images

produced by BBHE, DSIHE and MMBEBHE, shown in Fig. 2.9(d) - Fig. 2.9(f)

respectively, were also over-enhanced, as the single segmentation was inadequate to

prevent the peak in the histogram from being spread out. The RMSHE, RSIHE and
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(a) (b)

(c) (d)

Figure 2.8 : The ratio curve threshold, C vs the average p-value for the proposed method

with (a) QRCM and N = 8, (b) BIQME and N = 8, (c) QRCM and N = 16 and (d)

BIQME and N = 16.
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RSWHE output images, shown in Fig. 2.9(g) - Fig. 2.9(i) respectively, were under-

enhanced with contrast that remained poor like the input image. This was due to

an extra un-required segmentations which reduce the overall strength of enhance-

ment. The image produced by WTHE, shown in Fig. 2.9(j), was over-enhanced,

while not as severe as HE, the sky still has an unnatural grainy appearance. The

proposed MLHSS method, with N = 8 and N = 16, each produced similarly visu-

ally pleasing outputs, shown in Fig. 2.9(k) and Fig. 2.9(l) respectively, with vivid

colour and appropriate enhancement over the entire image. The histogram was

segmented appropriately, so that the peak was not spread out too wide avoiding

over-enhancement.

The contrast reduced painted face image, shown in Fig. 2.10(b), was chosen as

it is difficult for enhancement algorithms to produce natural enhancement in the

human face. Like the previous example, the image produced by HE, shown in Fig.

2.10(c), was over-enhanced with a loss of details in the girl’s right cheek. The im-

ages produced by BBHE, DSIHE and MMBEBHE, shown in Fig. 2.10(d) - Fig.

2.10(f) respectively, had various degrees of over-enhancement with a loss of details

in the girl’s right cheek and a unnatural appearance in the light background behind

the girl. This was because these methods having only a single inappropriately lo-

cated segment in the histogram. The RMSHE and RSIHE output images, shown

in Fig. 2.10(g) and Fig. 2.10(h) respectively, were also over-enhanced in the light

background behind the girl due to inappropriately located segments. The RSWHE

output, shown in Fig 2.10(i), was dull with poor contrast like the input. The image

produced by WTHE, shown in Fig. 2.10(j), was clipped, with a reduced dynamic
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(a) Original (b) Input (c) HE (d) BBHE

(e) DSIHE (f) MMBEBHE (g) RMSHE (h) RSIHE

(i) RSWHE (j) WTHE (k) MLHSS (N = 8) (l) MLHSS (N = 16)

Figure 2.9 : The enhancement results for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms using the cactus image

from the CSIQ dataset. (a) The original image. (b) The contrast reduced input image.

The enhanced output by (c) HE, (d) BBHE, (e) DSIHE (f) MMBEBHE, (g) RMSHE, (h)

RSIHE, (i) RSWHE, (j) WTHE and the proposed (k) MLHSS (N = 8) and (l) MLHSS

(N = 16). The red dotted lines in the histogram indicate segmentation locations.
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range seen in the histogram. The output produced by the proposed method with

N = 8, shown in Fig. 2.10(k), was also over-enhanced, as the ratio curve threshold

of C = 2 was too high in this case. However, the image produced by the proposed

MLHSS method, with N = 16, displayed adequate and naturally appearing en-

hancement, as shown in Fig. 2.10(l), due to the appropriately segmented histogram.

The mountain image, shown in Fig. 2.11(a), was used to see how the enhance-

ment algorithms performed on natural scenery. The image produced by HE, shown

in Fig. 2.11(b) was over-enhanced with a loss of details in the mountain peak

and an unnatural appearance in the sky. The images produced by BBHE, DSIHE,

MMBEBHE, RMSHE, RSIHE and RSWHE, shown in Fig. 2.11(c) - Fig. 2.11(h) re-

spectively, all exhibited of loss of details in the mountain peak due to inappropriate

segmentation locations. The WTHE output, shown in Fig. 2.11(i), also produced an

image with a loss of details, not only in the mountain peak, but in the clouds above

the mountain as well. The proposed MLHSS method, with both N = 8 and N = 16,

produced visually pleasing images without any loss of details in the mountain ranges

or clouds, as shown in Fig. 2.11(j) and Fig. 2.11(k) respectively.

Idividual EMEG values for the figures included in visual assessment.

For many images, the trade off for improving the quality of enhancement by

increasing the number of segmentations is a reduced strength in the degree of en-

hancement using the proposed method. Table 2.5-2.7 give the individual EMEG,

QRCM and BIQME values respectively for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms for Fig. 2.9, Fig. 2.10

and Fig. 2.11, values highlighted in bold indicate the highest scores. Each table
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(a) Original (b) Input (c) HE (d) BBHE

(e) DSIHE (f) MMBEBHE (g) RMSHE (h) RSIHE

(i) RSWHE (j) WTHE (k) MLHSS (N = 8) (l) MLHSS (N = 16)

Figure 2.10 : The enhancement results for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms using the painted face image

from the TID2013 dataset. (a) The original image. (b) The contrast reduced input image.

The enhanced output by (c) HE, (d) BBHE, (e) DSIHE (f) MMBEBHE, (g) RMSHE, (h)

RSIHE, (i) RSWHE, (j) WTHE and the proposed (k) MLHSS (N = 8) and (l) MLHSS

(N = 16). The red dotted lines in the histogram indicate segmentation locations.
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(a) Input (b) HE (c) BBHE

(d) DSIHE (e) MMBEBHE (f) RMSHE (g) RSIHE

(h) RSWHE (i) WTHE (j) MLHSS (N = 8) (k) MLHSS (N = 16)

Figure 2.11 : The enhancement results for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms using the mountain image

from the RGBNIR dataset. (a) The input image. The enhanced output by (b) HE, (c)

BBHE, (d) DSIHE (e) MMBEBHE, (f) RMSHE, (g) RSIHE, (h) RSWHE, (i) WTHE and

the proposed (j) MLHSS (N = 8) and (k) MLHSS (N = 16). The red dotted lines in the

histogram indicate segmentation locations.
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Table 2.5 : The individual EMEG values for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms for the cactus, painted face

and mountain images shown for visual assessment in Fig. 2.9, Fig. 2.10 and Fig. 2.11

respectively.

Method cactus painted face mountain

HE 0.581 0.330 0.170

BBHE 0.385 0.299 0.140

DSIHE 0.397 0.325 0.146

MMBEBHE 0.447 0.224 0.120

RMSHE 0.245 0.239 0.147

RSIHE 0.268 0.241 0.149

RSWHE 0.260 0.252 0.112

WTHE 0.431 0.299 0.142

MLHSS (N = 8) 0.388 0.343 0.129

MLHSS (N = 16) 0.378 0.304 0.131

Table 2.6 : The individual QRCM values for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms for the cactus, painted face

and mountain images shown for visual assessment in Fig. 2.9, Fig. 2.10 and Fig. 2.11

respectively.

Method cactus painted face mountain

HE 0.310 0.124 0.083

BBHE 0.157 0.061 0.130

DSIHE 0.157 0.096 0.149

MMBEBHE 0.214 -0.008 0.068

RMSHE 0.087 0.006 0.139

RSIHE 0.115 0.009 0.148

RSWHE 0.106 0.034 0.076

WTHE 0.280 0.090 0.097

MLHSS (N = 8) 0.278 0.139 0.100

MLHSS (N = 16) 0.271 0.085 0.113
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Table 2.7 : The individual BIQME values for the proposed multi-level histogram shape

segmentation method and the other benchmarking algorithms for the cactus, painted face

and mountain images shown for visual assessment in Fig. 2.9, Fig. 2.10 and Fig. 2.11

respectively.

Method cactus painted face mountain

HE 0.674 0.662 0.637

BBHE 0.572 0.617 0.511

DSIHE 0.595 0.638 0.499

MMBEBHE 0.603 0.595 0.473

RMSHE 0.518 0.603 0.509

RSIHE 0.532 0.606 0.506

RSWHE 0.530 0.613 0.472

WTHE 0.646 0.623 0.534

MLHSS (N = 8) 0.623 0.669 0.552

MLHSS (N = 16) 0.626 0.617 0.566

shows that the respective IQM value for the proposed method is greater then, or

comparable to many of the other benchmarking algorithms. However, as the IQM

values are based on a combination of both the degree and quality of enhancement, the

reduced strength of enhancement of the proposed method restricts it from achieving

the highest scores for all of the images. For this reason, the enhancement methods

presented in the following chapters are design to improve the quality of enhancement

while still maintaining an adequate degree of enhancement.

2.5 Conclusion

It has been shown that the proposed multi-level histogram shape segmentation

method is able to enhance an image without over-enhancement by appropriately

segmenting the image histogram. By detecting abrupt changes in the histogram,
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intensity values with a similar frequency of occurrence are grouped together for

independent equalisation. Furthermore, the proposed initial contrast expansion step

produces more vivid colour enhancement of an image, without altering the original

balance of colour. The proposed method outperformed the other benchmarking

algorithms visually, without the usual adverse problems of over-enhancement and a

loss of details that other enhancement methods posses.

The proposed method is highly adaptable to different types of images, allowing

a user to adjust both the ratio curve window width and the ratio curve threshold to

control the number of segmentation points and hence, the quality of enhancement.

However, including more segments to improve the quality of enhancement will in turn

reduce the overall strength of enhancement. Therefore, in the following chapters,

alternative enhancement methods are explored which allow a user more control over

the degree of enhancement without sacrificing the output image quality.
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Chapter 3

Image and Video Enhancement with Brightness

Preservation by Successive Approximation

3.1 Introduction

Brightness preservation is not essential when enhancing a single image, but it

is an important aspect when enhancing video, as changes in the brightness transi-

tion from frame to frame can cause flickering [18, 17, 10]. Histogram equalisation

enhances an image by equalising the number of pixels per intensity, this results in

the mean brightness of an output image always being shifted to the middle intensity

value [16]. The methods discussed in the previous chapter, namely, BBHE [12],

DSIHE [13], MMBEBHE [14], RMSHE [16], RSIHE [15] and RSWHE [17], attempt

to preserve image brightness by segmenting the histogram and performing equali-

sation on each segment independently. Intensity values with a large frequency of

occurrence can only be re-distributed within the same segment, they cannot be re-

distributed to other segments, so the brightness is maintained to a certain extent,

but it will not be preserved. By introducing more segments the brightness of an

image can be better maintained, to the point where if there are 255 segments for an

8-bit image the brightness will be perfectly maintained. However, enhancement is

limited within each segment, so including more segments will reduce the overall en-

hancement of the output image, resulting in under-enhancement. Other brightness
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preserving methods, such as WTHE [10], reduce the dynamic range of the output

to maintain the same brightness of the input, but this causes clipping and can also

result in under-enhancement. In other words, these methods attempt to preserve

brightness by limiting the degree of enhancement, but in each case brightness can

only be preserved when the enhancement is limited to such a degree that it is no

longer visible.

There are a group of methods [3, 24, 8], which instead of using the histogram

to perform enhancement, use the spatial locations of intensity values of an image.

The spatial entropy-based contrast enhancement (SECE) method was the first to

perform enhancement by mapping input intensities to output intensities using the

spatial entropy of intensity values. However, the output produced by this method

is usually a simple linear mapping. Furthermore, this method has no control over

the degree of enhancement. The spatial mutual information and PageRank-based

contrast enhancement (SMIRANK) [8] and residual spatial entropy-based contrast

enhancement (RSECE) [24] methods improved on SECE by including the spatial

relationships of intensities as well as their distribution and including control over

the degree of enhancement. The RSECE method also further extends on SECE

by attempting to preserve image brightness. However, brightness preservation is

performed in the discrete cosine transform (DCT) domain which means the entire

dynamic range may not be used, resulting in under-enhancement of the output

image.

Another group of recently developed methods are based on S-shaped curves

[18, 9, 43] and can improve image contrast to give a better correlation with the
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human visual system. To preserve the median brightness of each image, a median

brightness subtraction and addition method was developed for the S-shaped sigmoid

transfer function (SSTF) and is known as the SSTF based brightness preserving

(STBP) [18] method. STBP shifts the intensity range of the image such that the

image median is at 127.5 for an intensity range of [0,255]. However, the range of

the SSTF is limited to the same range of [0,255] and any values above or below

this range after intensity shifting will be clipped, resulting in a loss of details and

contrast. The automatic robust image contrast enhancement (RICE) [9] method

with saliency preservation combines the original image with the histogram equalised

output and the STBP output to produce an enhanced image. Saliency preservation

is used to optimise the parameters of this method to give optimum outputs, however

due to the constraint of saliency preservation, the output images RICE produces are

often under enhanced.

As as S-shaped curve will increase and decrease intensities above and below an

intersection point respectively, we propose to preserve either the mean or median

image brightness by shifting the intersection point along the y = x line by using

the corresponding mean or median value in the feedback loop at each iteration

of successive approximation [38]. In this way, an intersection point is found that

allows for an increase in the dynamic range of intensities of an output image, while

retaining the same mean or median brightness as the input image. This ability

to simultaneously increase contrast while preserving brightness makes the proposed

method ideal for video enhancement.

Furthermore, the brightness of an image can be adjusted by adding a signed
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offset to the mean or median within the process of successive approximation. This

allows a user to change the brightness of an image or video, without causing any

clipping of the intensity range. Moreover, when enhancing video, the brightness can

be increased or decreased while preserving the transition from frame to frame to

avoid flickering. Alternatively, the proposed method can be used to preserve the

brightness of a video by pre-setting the designated brightness and then all of the

processed images will have their brightness shifted to match that same value.

Gamma correction is another method that has good correlation with the human

visual system [44] One recent method to make use of gamma correction is the adap-

tive gamma correction with weighting distribution (AGCWD) [33] algorithm which

uses gamma correction to enhance an image with an adaptive gamma value based

on the histogram weightings proposed in WTHE. However, the output images are

often over-enhanced resulting in a loss of details in the bright regions of an image.

Furthermore, to preserve the brightness of images, this method limits the dynamic

range of the output so that it is the same as the input, giving limited contrast

enhancement in the output image.

By modifying gamma correction, an S-shaped curve can be produced that ap-

proximates the SSTF, but with greater computational efficiency and a wider range

of control over the degree of enhancement [45]. In this chapter, the proposed method

for brightness preservation using successive approximation with both the SSTF and

modified gamma curve (MGC) will be described and their quantitative and visual

results will be compared.
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3.2 Method

The contrast expansion method [38, 36, 37] detailed in Chapter 2 is applied to

the image in the RGB colour space as an initial step of this proposed enhancement

method to improve the dynamic range of colours and achieve more vivid colour

enhancement.

3.2.1 The S-Shaped Sigmoid Transfer Function

(a) (b)

Figure 3.1 : The SSTF with different intersection points, P , for (a) α = 9 and (b) α =

5.

The SSTF is given by the following equation [9]:

y =
π1 − π2

1 + e
−x−π3

π4

+ π2, (3.1)

with the constraints that the above curve must intersect with the line y = x at both

end points, (x1, y1) = (0, 0) and (x2, y2) = (255, 255) and the intersection point,
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(x3, y3) = (P , P ). The fourth point (x4, y4) is defined as follows:

(x4, y4) =


(25, α), P ≥ 127.5

(230, 255− α), P < 127.5

, (3.2)

where α is a parameter to set the degree of contrast enhancement by altering the

degree of curvature of the SSTF curve and 0 < α < 25.

The enhancement control point, (x4, y4), is defined at equal but opposite dis-

tances from both ends of the curve, depending on whether the intersection point

is above or below the centre point. This will maximise the interval between the

intersection and enhancement control points to obtain the optimum solution when

optimising the SSTF curve. When α is small, the degree of enhancement is large

and vice versa.

The optimal control parameters π = {π1, π2, π3, π4} are obtained by minimising

the following objective function [18]:

πopt = argmin
4∑
i=1

∣∣∣∣∣yi −
(

π1 − π2
1 + e

−xi−π3
π4

+ π2

)∣∣∣∣∣ . (3.3)

To improve computational efficiency, we propose to reduce the number of optimum

control parameters from four to two by partly solving the equations. By substituting

the end point (x1, y1) = (0, 0) into (3.1), we have:

π3
π4

= log

(
−π1
π2

)
. (3.4)

By the substitution of both end points, (x1, y1) = (0, 0) and (x2, y2) = (255, 255),

into (3.1), we have:

π4 =
−255

log

(
255
π1
−1

255
π2
−1

) = f(π1, π2). (3.5)
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By substituting π4 in (3.5) into (3.4), we have:

π3 =
−255

log

(
255
π1
−1

255
π2
−1

) log(−π1
π2

)
= g(π1, π2). (3.6)

Since π3 and π4 are now a function of π1 and π2, (3.5) and (3.6) can be substituted

into (3.1) so that the SSTF curve is a function of π1 and π2 only. The remaining

optimum control parameters are π = {π1, π2} and can be obtained by minimising

the following objective function.

πopt = argmin

4∑
i=3

∣∣∣∣∣yi −
(

π1 − π2
1 + e

−xi−g(π1,π2)
f(π1,π2)

+ π2

)∣∣∣∣∣ . (3.7)

Let X be an image in RGB colour space with an intensity range of [0, L-1] where

L is 256 for an 8-bit image. Let X c be the output processed by the contrast expan-

sion method in Chapter 2 and I c be the luminance component of X c. Enhancement

by the SSTF using the optimised parameters, πopt, is given by the following:

Y (i, j) =
π1 − π2

1 + e
− Ic(i,j)−π3

π4

+ π2, (3.8)

where Y (i, j) is the luminance component of the enhanced image.

Refer to Fig. 3.1 for an example of the SSTF curve with various intersection

points and α values.

3.2.2 The Modified Gamma Curve

Although the efficiency of the SSTF curve can be greatly increased by halving

the number of control parameters, there still remains two control parameters that

need to be optimised during each iteration of successive approximation to preserve

brightness. Furthermore, the control over the degree of enhancement is limited
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between 0 < α < 25. For computation efficiency, with a wider control of the degree

of enhancement, a novel modified gamma curve (MGC) [45], approximating the

shape of the SSTF is proposed.

Standard gamma correction for image enhancement, is given by the following

[11]:

Y (i, j) = (L− 1)

(
Ic(i, j)

L− 1

)γ
, (3.9)

where Y (i, j) is the luminance component of the enhanced image and γ is the control

parameter for the degree of contrast enhancement which can be any value greater

than unity for enhancement. Let (P , P ) be an intersection point on the modified

gamma curve (MGC) at which the input and output image intensities both equal P .

This intersection point is the point on the MGC at which the MGC changes from

reducing to increasing intensity values. The proposed MGC consists of the standard

gamma curve from the minimum intensity value, 0, to the intersection point and an

inverse reflection of the gamma curve from the intersection point to the maximum

intensity value, L− 1, producing a curve with the required shape as follows:

Y (i, j) =



Ic(i,j)γ

P γ−1 , Ic(i, j) < P

(L− 1)− ((L−1)−Ic(i,j))γ

((L−1)−P )(γ−1) , Ic(i, j) > P

Ic(i, j), otherwise

. (3.10)

To show that the MGC is continuous about the intersection point, Ic(i, j) = P

is substituted into Y (i, j) = Ic(i,j)γ

P γ−1 as follows:

Y (i, j) = P γ

P γ−1 ,

∴ Y (i, j) = P γ−(γ−1),

∴ Y (i, j) = P.

(3.11)
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Ic(i, j) = P is also substituted into Y (i, j) = (L− 1)− ((L−1)−Ic(i,j))γ
((L−1)−P )γ−1 as follows:

Y (i, j) = (L− 1)− ((L−1)−P )γ

((L−1)−P )γ−1 ,

∴ Y (i, j) = (L− 1)− ((L− 1)− P )γ−(γ−1),

∴ Y (i, j) = (L− 1)− (L− 1) + P,

∴ Y (i, j) = P.

(3.12)

As both equations resolve to Y (i, j) = P , the MGC is continuous about the inter-

section point, P .

Fig. 3.2(a) and Fig. 3.2(b) give the shape of our proposed MGC with different

γ values at different locations of the intersection point. When equivalent degrees of

(a) (b)

Figure 3.2 : The MGC with different P for (a) γ = 1.8 and (b) γ = 2.4.

enhancement are set for both the SSTF and the MGC, Fig. 3.3 shows that at differ-

ent intersection points, P , the curves produced by the different methods maintain

approximately the same shape. The MGC provides slightly stronger enhancement

for the very small and very large intensity values.
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(a) (b)

Figure 3.3 : The SSTF vs the MGC for equivalent degrees of enhancement at (a) P = 96

and (c) P = 160.

3.2.3 Brightness Preservation by Successive Approximation

Enhancement is applied to the luminance of the contrast expanded image, Ic,

while preserving the mean or median of the luminance of the original image, I.

Let P be represented by an N -bit binary number initialised to zero. At the

start of successive approximation, the most significant bit (MSB) of P is set to ‘1’.

Suppose the mean brightness is to be preserved, i.e. I ′ = Ī and switch S1 is at

position A. At the end of each iteration, the mean, Ȳ , of the enhanced image is

re-calculated, and Y ′ = Ȳ . If I ′ ≤ Y ′, the ‘1’ value of that bit is kept, it is reset

to ‘0’ otherwise. This process is repeated until all the N -bits are determined. It

is computationally efficient as only N iterations are required. When α ≥ 25 for

enhancement using the SSTF and when γ ≤ 1 for enhancement using the MGC, no

further contrast enhancement is possible and the process will terminate. To preserve
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median brightness, the only difference is to switch S1 to position B. Refer to Fig.

3.4 for our proposed contrast enhancement algorithm by successive approximation.

Figure 3.4 : Flowchart for image enhancement with brightness preservation by successive

approximation.

3.3 Results

A total of 807 test images from the NIRRGB [2], CSIQ [1] and TID2013 [42]

datasets were used for quantitative evaluations and some were selected for visual

assessment. The outputs of the proposed method, namely STSA and MGCSA, which

are the SSTF and MGC based enhancement methods with brightness preservation
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by successive approximation respectively, were compared with eight benchmarking

algorithms, namely, RSWHE [17], WTHE [10], AGCWD [33], STBP [18], RICE

[9], SECE [3], RSECE [24] and SMIRANK [8]. Default parameter settings for all

benchmarking algorithms were used. The equivalent α and γ values of 6 and 2.2 were

set as the default values for the proposed STSA and MGCSA methods respectively,

for all the quantitative and visual assessment results. To preserve mean brightness,

S1 is set at A as the default for all the quantitative and visual assessment results of

the proposed method, except for Table 3.4 where S1 is set at B to preserve median

brightness.

3.3.1 Quantitative Results

Table 3.1 gives the average processing time in seconds for enhancing an image in

one of the three datasets using the proposed STSA method with the original number

of four optimum control parameters, the STSA method with the reduced number of

two optimum control parameters and the MGCSA method. The objective function

in (3.3) was solved by the numeric solver function, “vpasolve”, in MATLAB using an

8th generation Intel® Core™ i7 Q840 processor at 1.87GHz. The MATLAB code for

RSWHE, WTHE, AGCWD and STBP was implemented by the author of this thesis

and the MATLAB code for RICE, SECE, RSECE and SMIRANK was provided

by the respective authors of those algorithms. It shows that the newly derived

equations to reduce the number of optimum control parameters greatly improved

computational efficiency using the SSTF. However, the MGC is significantly more

computationally efficient than the SSTF and as shown in Table 3.2 is comparable
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and in some cases more efficient than the other benchmarking algorithms.

Table 3.1 : The average processing time in seconds for an image in each of the three

datasets for the proposed STSA method with four control parameters, the proposed STSA

method with two control parameters and the proposed MGCSA method.

Dataset
STSA STSA

MGCSA
(4 Control Parameters) (2 Control Parameters)

RGBNIR 66.66 26.77 1.81

CSIQ 94.63 13.56 0.53

TID2013 91.72 12.58 0.40

Table 3.2 : The average processing time in seconds for an image in each of the three

datasets for the proposed image enhancement with brightness preservation method and

the other benchmarking algorithms.

Method
Average Processing Time (s)

RGBNIR CSIQ TID2013

RSWHE 0.78 0.34 0.31

WTHE 0.89 0.40 0.37

AGCWD 0.88 0.38 0.34

STBP 2.89 2.51 3.13

RICE 0.95 0.43 0.40

SECE 2.69 0.93 0.76

RSECE 1.69 0.61 0.57

SMIRANK 2.07 0.79 1.05

STSA 26.77 13.56 12.58

MGCSA 1.81 0.53 0.40

For brightness preservation assessment, the absolute mean brightness error (AMBE)

[17, 33], the absolute median brightness error (ADBE) and the contrast and mean

brightness measure (CMBM) [24] were used. AMBE measures the absolute dif-

ference in mean brightness between the input and output images, likewise ADBE
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measures the absolute difference in median brightness between the input and output

images and CMBM is a measure that combines mean brightness preservation with

relative contrast enhancement. Table 3.3 gives the AMBE average, maximum and

standard deviation values of the 807 test image by the respective algorithms. Table

3.3 shows that the proposed STSA and MGCSA methods both gave excellent mean

brightness preservation with a standard deviation less than unity and an average

AMBE value of 0, the smallest values amongst all of the tested methods. Further-

more, the proposed MGCSA method was also able to preserve brightness to within

±2 for all of the 807 test images.

Table 3.3 : The AMBE average, maximum and standard deviation values for the pro-

posed image enhancement with brightness preservation method and the other benchmark-

ing algorithms.

Method Average AMBE Maximum Standard Deviation

RSWHE 2 6 1.04

WTHE 1 7 1.89

AGCWD 35 56 10.39

STBP 2 28 2.97

RICE 3 6 1.70

SECE 6 25 8.27

RSECE 1 4 1.22

SMIRANK 8 26 10.19

STSA (S1 at A) 0 7 0.36

MGCSA (S1 at A) 0 2 0.28

Table 3.4 gives the ADBE average, maximum and standard deviation values of

the 807 test image by the respective algorithms. The proposed STSA and MGCSA

methods were set to preserve median brightness (i.e. S1 is at B) and Table 3.4 shows

that both methods had an average ADBE value of 0, better than all of the other
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benchmarking algorithms. Moreover, the proposed MGCSA method once more had

a standard deviation less than unity and preserved brightness to within ±2 for

all of the 807 test images. The proposed MGCSA method gives better brightness

preservation when compared to the proposed STSA method, due to it having slightly

stronger enhancement when the intersection point is further away from the centre

value, as shown in Fig. 3.3. A greater number of algorithms focus on preserving

the mean brightness of an image, as the median is only a robust estimation of the

image brightness. Therefore, even though the proposed method can preserve either

the mean or median image brightness, only the mean is preserved for the rest of the

experimental results (i.e. S1 is set at A).

Table 3.4 : The ADBE average, maximum and standard deviation values for the proposed

image enhancement with brightness preservation method and the other benchmarking

algorithms.

Method Average ADBE Maximum Standard Deviation

RSWHE 3 16 1.42

WTHE 7 151 12.37

AGCWD 44 73 12.47

STBP 1 2 0.06

RICE 4 11 2.26

SECE 10 57 9.06

RSECE 3 16 1.42

SMIRANK 17 66 12.48

STSA (S1 at B) 0 30 1.47

MGCSA (S1 at B) 0 2 0.24

In Table 3.5, the p-values [8] for each of the benchmarking algorithms were found

for all 807 test images to statistically determine which algorithm provided the best

combination of enhancement and brightness preservation as measured by CMBM.
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The p-values [8] based on CMBM in Table 3.5, represent the proportion of en-

hanced test images when {CMBMA > CMBMB} where CMBMA and CMBMB

are values produced by algorithms A and B, for a test image respectively. In Table

3.5, both of the proposed methods, STSA and MGCSA (i.e. Row M9 and row M10

respectively), gave a p-value greater than 0.52 when compared with the other bench-

marking algorithms for all 807 test images. In other words, both of the proposed

methods outperformed all the other benchmarking algorithms based on the CMBM

image quality measure.

Table 3.5 : The p-values for CMBMA > CMBMB where M1:RSWHE, M2:WTHE,

M3:AGCWD, M4:STBP, M5:RICE, M6:SECE, M7:RSECE, M8:SMIRANK, M9:STSA

and M10:MGCSA.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.077 0.239 0.193 0.326 0.030 0.014 0.003 0.020 0.010

M2 0.921 - 0.530 0.685 0.812 0.693 0.410 0.093 0.198 0.118

M3 0.761 0.468 - 0.539 0.736 0.581 0.466 0.181 0.269 0.162

M4 0.804 0.314 0.461 - 0.737 0.473 0.264 0.093 0.060 0.021

M5 0.672 0.186 0.262 0.262 - 0.259 0.136 0.027 0.043 0.016

M6 0.970 0.306 0.419 0.527 0.740 - 0.126 0.019 0.064 0.035

M7 0.985 0.589 0.533 0.732 0.864 0.874 - 0.006 0.187 0.074

M8 0.998 0.907 0.819 0.905 0.973 0.981 0.994 - 0.473 0.310

M9 0.980 0.802 0.731 0.941 0.957 0.936 0.810 0.525 - 0.016

M10 0.990 0.882 0.838 0.979 0.984 0.965 0.926 0.690 0.984 -

To measure the quality of enhancement, both the quality-aware relative con-

trast measure (QRCM) [8] and the blind image quality measure of enhanced images

(BIQME) [19] were used. QRCM is a reference based measure combining the relative

contrast enhancement between the input and output image and penalises any dis-

tortions that result from enhancement and BIQME is a no-reference based measure
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that combines contrast, sharpness, brightness, colourfulness and naturalness into

one quality score using a regression module. In Table 3.6 based on QRCM, both the

proposed methods, STSA and MGCSA (i.e. Row M9 and row M10 respectively),

produced p-values higher than 0.66 for all of the 807 test images when compared

with all the other benchmarking algorithms except SMIRANK, however, SMIRANK

is unable to preserve the brightness of images with an average AMBE of 8 ± 26 as

shown in Table 3.3. In Table 3.7 based on BIQME, both of the proposed methods

(i.e. Row M9 and row M10), outperformed all of the other benchmarking algorithms

with p-values higher than 0.54 for all of the 807 test images. In both Table 3.6 and

3.7, the proposed MGCSA method outperformed the proposed STSA method be-

cause the MGC produces slightly stronger enhancement when the intersection point

is further away from the centre value, as shown in Fig. 3.3.

Table 3.6 : The p-values for QRCMA > QRCMB where M1:RSWHE, M2:WTHE,

M3:AGCWD, M4:STBP, M5:RICE, M6:SECE, M7:RSECE, M8:SMIRANK, M9:STSA

and M10:MGCSA.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.102 0.302 0.193 0.380 0.047 0.016 0.001 0.063 0.060

M2 0.898 - 0.606 0.788 0.855 0.695 0.496 0.029 0.312 0.201

M3 0.698 0.394 - 0.520 0.682 0.517 0.372 0.083 0.337 0.260

M4 0.807 0.211 0.480 - 0.756 0.468 0.195 0.031 0.105 0.047

M5 0.617 0.145 0.319 0.243 - 0.240 0.091 0.010 0.087 0.068

M6 0.953 0.302 0.482 0.532 0.760 - 0.183 0.019 0.197 0.160

M7 0.984 0.503 0.628 0.806 0.908 0.817 - 0.004 0.330 0.202

M8 0.999 0.970 0.916 0.969 0.990 0.981 0.996 - 0.782 0.663

M9 0.937 0.688 0.663 0.893 0.913 0.802 0.669 0.218 - 0.152

M10 0.941 0.799 0.739 0.953 0.932 0.840 0.798 0.335 0.843 -
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Table 3.7 : The p-values for BIQMEA > BIQMEB where M1:RSWHE, M2:WTHE,

M3:AGCWD, M4:STBP, M5:RICE, M6:SECE, M7:RSECE, M8:SMIRANK, M9:STSA

and M10:MGCSA.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.055 0.602 0.348 0.336 0.311 0.278 0.120 0.174 0.130

M2 0.946 - 0.749 0.906 0.915 0.835 0.913 0.543 0.504 0.379

M3 0.397 0.250 - 0.376 0.361 0.377 0.348 0.268 0.275 0.259

M4 0.652 0.091 0.623 - 0.591 0.481 0.413 0.196 0.063 0.036

M5 0.663 0.083 0.639 0.406 - 0.447 0.374 0.192 0.161 0.126

M6 0.687 0.165 0.623 0.517 0.553 - 0.378 0.064 0.191 0.145

M7 0.721 0.087 0.652 0.585 0.626 0.615 - 0.099 0.177 0.114

M8 0.879 0.454 0.731 0.804 0.808 0.936 0.898 - 0.454 0.368

M9 0.825 0.492 0.724 0.936 0.836 0.809 0.822 0.542 - 0.115

M10 0.870 0.618 0.741 0.963 0.874 0.855 0.885 0.631 0.882 -

3.3.2 Visual Assessment

Fig. 3.5 shows the results when the brightness was increased by an offset of 60

so that both the conventional method and the proposed methods have the same

increased mean brightness. The conventional method of adding a constant offset to

the image caused intensity clipping in the bright cloud area resulting in a loss of

details, this can also be seen by the large spike in the far right of the histogram

shown in Fig. 3.5(b). Both of the proposed STSA and MGCSA methods, shown

in Fig. 3.5(c) and Fig. 3.5(d) respectively, were able to better preserve the details

in the cloud without any clipping, this can also be seen in the corresponding his-

tograms where there are no large spikes. Moreover, the proposed MGCSA method

was the only method which increased the brightness by the exact offset of 60, the

conventional method increased the brightness by 57 and the proposed STSA method
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increased the brightness by 52, as given by the mean values in the corresponding

histograms in Fig. 3.5.

The results for enhancement on a video are shown in Fig. 3.6 for the methods

which claim to be brightness preserving and their corresponding AMBE values are

given in Table 3.8. The output images of the RSWHE method, shown in Fig. 3.6(b)

are very similar to the inputs giving virtually no enhancement. The WTHE method

over enhanced the last few images in the sequence, as shown in Fig. 3.6(c), resulting

in an unnatural appearance and also failing to preserve brightness with the largest

AMBE values given in Table 3.8. Similarly, the RICE method over enhanced the

4th image in the sequence, as shown in Fig. 3.6(e). The outputs of the STBP

method, shown in Fig. 3.6(d), display an intensity range clipping problem as the

sun in all the images appears greyer with reduced contrast. The RSECE method

was unable to preserve the brightness of the images, as shown in Fig. 3.6(f), with

a constant increase in the AMBE values of the last 3 images in the sequence, as

given in Table 3.8. The proposed STSA and MGCSA methods, as shown in Fig.

3.6(g) and Fig. 3.6(h) respectively, produced adequately enhanced images without

over-enhancement or intensity clipping and no flickering as the brightness was well

preserved with a maximum AMBE value of 1, as given by Table 3.8.

The “Level 5” foxy image from the CSIQ dataset [1], shown in Fig. 3.7(b),

was used for visual assessment. None of the benchmarking methods, shown in Fig.

3.7(c) - Fig. 3.7(j) were able to recover the vivid colour of the original foxy image.

The proposed STSA and MGCSA methods, shown in Fig. 3.7(k) and Fig. 3.7(l)

respectively, were able to enhance the contrast while recovering the original vivid
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(a) Input (b) Standard Increase

(c) STSA (d) MGCSA

Figure 3.5 : The results of increasing the brightness of (a) the original cloud image from

the TID2013 dataset by (b) adding a constant of 60, (c) the proposed STSA method (S1

at A), α = 6, R = 60 and (d) the proposed MGCSA method (S1 at A), γ = 2.2, R = 60.
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(a) Input

(b) RSWHE

(c) WTHE

(d) STBP

(e) RICE

(f) RSECE

(g) STSA

(h) MGCSA

Figure 3.6 : The enhancement results for the proposed image enhancement with bright-

ness preservation method and the other benchmarking algorithms using the sunset image

sequence. (a) The input image sequence. The enhanced output by (b) RSWHE (c) WTHE,

(d) STBP, (e) RICE, (f) RSECE and the proposed (g) STSA and (h) MGCSA.
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Table 3.8 : The AMBE values for each image in the sunset sequence as shown in Fig.

3.6.

Method
Sunset Sequence Image

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

RSWHE 4 4 4 3 3

WTHE 3 8 18 25 29

STBP 5 6 7 4 1

RICE 3 0 0 2 2

RSECE 0 0 3 6 7

STSA 1 1 0 0 0

MGCSA 0 0 1 0 0

colour of the fox and preserving image brightness.

The plane image from the TID2013 dataset [42], shown in Fig. 3.8(b), was

also used for visual assessment. The RSWHE, AGCWD, STBP and RICE outputs,

shown in Fig. 3.8(c), and Fig. 3.8(e) - Fig. 3.8(g) respectively, were all under

enhanced, with little difference from the input image. The WTHE output, shown

in Fig. 3.8(d), was over enhanced as seen in the unnatural appearance of the sky

behind the plane. The WTHE output also showed signs of clipping, with a loss

of details in the plane itself. The SECE, RSECE and SMIRANK outputs, shown

in Fig. 3.8(h) - Fig. 3.8(j) respectively, were unable to recover the vivid colour of

the original. The outputs of the proposed STSA and MGCSA methods, shown in

Fig. 3.8(k) and Fig. 3.8(l) respectively, displayed an adequate degree of contrast

enhancement without signs of over-enhancement or clipping. It should also be noted

that in all of the visual assessment results, the amount of enhancement between the

proposed STSA and MGCSA methods were very similar. This supports the fact that
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(a) Original (b) Input (c) RSWHE (d) WTHE

(e) AGCWD (f) STBP (g) RICE (h) SECE

(i) RSECE (j) SMIRANK (k) STSA (l) MGCSA

Figure 3.7 : The enhancement results for the proposed image enhancement with bright-

ness preservation method and the other benchmarking algorithms using the foxy image

from the CSIQ dataset. (a) The original image. (b) The contrast reduced input. The en-

hanced output by (c) RSWHE, (d) WTHE, (e) AGCWD, (f) STBP, (g) RICE, (h) SECE,

(i) RSECE, (j) SMIRANK and the proposed (k) STSA (S1 at A, α = 6) and (l) MGCSA

(S1 at A, γ = 2.2).



66

the MGC is a good approximation of the SSTF whilst providing better brightness

preservation and greater computational efficiency.

(a) Original (b) Input (c) RSWHE (d) WTHE

(e) AGCWD (f) STBP (g) RICE (h) SECE

(i) RSECE (j) SMIRANK (k) STSA (l) MGCSA

Figure 3.8 : The enhancement results for the proposed image enhancement with bright-

ness preservation method and the other benchmarking algorithms using the plane image

from the TID2013 dataset. (a) The original image. (b) The contrast reduced input image.

The enhanced output by (c) RSWHE, (d) WTHE, (e) AGCWD, (f) STBP, (g) RICE, (h)

SECE, (i) RSECE, (j) SMIRANK and the proposed (k) STSA (S1 at A, α = 6) and (l)

MGCSA (S1 at A, γ = 2.2).
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3.4 Conclusion

By applying successive approximation to both the SSTF and the MGC in the

proposed method, the brightness of an image can be preserved whilst providing vari-

ous degrees of contrast enhancement with no over-enhancement or intensity clipping.

The two newly derived equations to reduce the number of optimum control param-

eters from four to two for solving the SSTF significantly increased the speed of the

method. However, the computational efficiency of the MGC makes the speed of the

proposed method comparable and in some cases faster than the other benchmarking

algorithms. The MGC also provides the best and most consistent brightness preser-

vation among all of the methods tested and gave the strongest quantitative results

for image enhancement. Furthermore, the proposed method allows a user to change

the brightness of an image without clipping at either ends of the intensity range.

This makes the proposed method perfect for video enhancement as it can enhance

a video while preserving or changing its brightness without causing any intensity

clipping or flickering.
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Chapter 4

Optimised Image Enhancement

4.1 Introduction

In order to assess the quality of enhanced images, a number of image quality

measures (IQMs) have been developed [19, 20, 8, 3, 21, 22, 23, 24, 25, 26, 27]. The

purpose of these IQMs is to provide a value that not only correlates to the strength

of enhancement, but also its visual quality. It is therefore desirable to optimise the

visual quality of image enhancement by maximising the value produced by a chosen

IQM.

One method that optimises enhancement based on an IQM is robust image con-

trast enhancement (RICE) [9]. In this method, an objective function is defined that

combines three histograms, namely, the input histogram, the HE output histogram

and the SSTF output histogram. The function is then minimised based on an IQM

that measures saliency preservation. By combining the three histograms, the RICE

method aims to produce enhancement while retaining a histogram close to that of

the input, but this requirement constrains enhancement for input images with poor

contrast, resulting in under-enhancement.

The BIQME-optimised image enhancement method (BOIEM) [19] builds on

RICE by cascading it with the adaptive gamma correction with weighting distri-

bution (AGCWD) method [33], so that stronger enhancement can be produced for
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input images with poor contrast. This method optimises enhancement by maximis-

ing the BIQME value with parameters chosen from a fixed set of values. However,

the choice of parameter values is limited and may not be adequate to optimise

enhancement for a wide variety of images.

There is another enhancement optimising method similar to BOIEM, which max-

imises the reduced-reference image quality metric for contrast change (RIQMC) [20]

and is known as RIQMC based optimal histogram mapping (ROHIM) [20]. ROHIM

applies a mean shift to the image and then obtains the four optimum control param-

eters for enhancement by the SSTF that will maximise the RIQME value. To make

the optimisation process practical, only two parameters are optimised, the one that

controls the degree of enhancement of the SSTF and the one that controls the mean

shift. However, as the mean shift is cascaded with the SSTF, it can result in clipping

of the intensity values before the SSTF is applied, leading to over-enhancement and

a loss of details in the output images.

None of these enhancement methods truly produce the most optimally enhanced

image according to their chosen IQM because either the optimisation process, or the

enhancement method is limited in the described ways. Therefore, to overcome the

limitations of other methods, we propose to optimise image enhancement by using

the successive approximation approach to maximising any chosen IQM.

If brightness preservation is not a requirement for enhancement, then instead of

locating the intersection point of the MGC at a position that will preserve brightness,

an optimum intersection point can be found that will maximise any IQM so that

enhancement is optimised according to that IQM. To enhance the contrast of an
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image, intensities above and below an intersection point, at which the input and

output intensities are equal, must be stretched monotonically. As a result, regions

of the image with intensities above the intersection point will be brighter and the

other regions will be darker. Analogously, if an IQM increases with image gradient,

then increasing the strength of edges in an image will increase the image gradient and

hence, the value of the IQM. As a result, the location of the optimum intersection

point will be the intensity value which intersects with the maximum number of

edges. In this way, the maximum number of edges will be stretched and therefore

enhanced, producing a maximum value for that particular IQM. In this chapter,

we apply a binary search algorithm in conjunction with the MGC proposed in the

Chapter 3, to locate an optimum intersection point such that the output of an IQM

is maximised.

4.2 Method

Figure 4.1 : Flowchart for the overall image enhancement method featuring the proposed

optimisation technique.
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The contrast expansion method [38, 36, 37] described in Chapter 2 is again

applied initially to the image in the RGB colour space to improve the dynamic

range of colours and achieve more vivid colour enhancement.

4.2.1 The Optimum Intersection Point

EMEG [3], QRCM [8], BIQME [19] and RIQMC [20], were chosen to showcase

our method because they are some of the more recently developed IQMs for the

evaluation of image enhancement and are known to correlate well with visual as-

sessment. In particular, results will show that the proposed method can produce

higher BIQME and RIQMC values than the other benchmarking algroithms, namely,

BOIEM and ROHIM, which optimise these two IQMs respectively.

Fig. 4.2(a) - 4.2(d) give the 3D plots of 55 reference images from the CSIQ

[1] and TID2013 [42] datasets for the EMEG, QRCM, BQIME and RIQMC values

versus every location of the intersection point respectively. Each bell-shaped curve

represents a single image and this shows that every image of the datasets has a

unique global maximum value for each IQM. Therefore, by using the IQM value

as the feedback in a binary search, an intersection point can be found which will

maximise the IQM value for the output image, thus optimising the output according

to that particular IQM.

4.2.2 The Optimisation Algorithm

The optimal intersection point, Popt, is located by a binary search algorithm and

its flow chart is shown in Fig. 4.3. Consider an N -bit luminance component where

the minimum and maximum intensity values are 0 and 2N − 1 respectively. The
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(a) (b)

(c) (d)

Figure 4.2 : The IQM value Vs the intersection point, P , location for (a) EMEG, (b)

QRCM, (c) BIQME and (d) RIQMC.
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Figure 4.3 : Flowchart for the proposed binary search algorithm to find the optimum

intersection point for image enhancement.
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intersection point, P , is initialised at the mid intensity value of 2N−1. A step size,

s, which is equal to 2N−2 is evaluated. Two IQM values, namely, q1 and q2 of the

enhanced images at two intermediate intersection points of (P − s) and (P + s),

are then determined respectively. If q1 is greater than q2, P will be replaced by

(P − s), otherwise P will be replaced by (P + s). The step size, s, is then halved

and the process is repeated until it is reduced to unity. Finally, Popt, is set to one

of the three intersection points, namely, (P − 1), P or (P + 1), whichever produces

an enhanced image with the largest IQM value. The number of searches is equal

to (N − 1). As each search requires two IQM calculations, plus the final step

of three IQM calculations, minus one result already calculated from the previous

step, the total number of IQM values that need to be re-calculated is equal to

(2(N − 1) + 3 − 1) = 2N . The overall complexity depends on the IQM, but it is

generally computationally efficient due to the small number of searches.

It should be noted, that in the case of a smaller IQM value being better, then

instead of searching for the largest IQM value we can search for the smallest IQM

value by checking whether or not q1 is smaller than q2.

4.3 Results

A total of 807 test images from the NIRRGB [2], CSIQ [1] and TID2013 [42]

datasets were used for quantitative evaluations and some were selected for visual

assessment. The outputs of the proposed method, namely MGC-EMEG, MGC-

QRCM, MGC-BIQME and MGC-RIQMC, which were optimised by EMEG [3],

QRCM [8], BIQME [19] and RIQMC [20] respectively, were compared with six
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benchmarking algorithms, namely, SECE [3], RSECE [24], SMIRANK [8], RICE

[9], ROHIM [20] and BOIEM [19]. Default parameter settings for all benchmarking

algorithms were used and a γ value of 2.2 was set as the default value for all the

quantitative and visual assessment results of the proposed method.

4.3.1 Quantitative Results

Four IQMs, namely, the expected measure of enhancement by gradient (EMEG)

[3], the quality-aware relative contrast measure (QRCM) [8], the blind image quality

measure of enhanced images (BIQME) [19] and the reduced-reference image quality

metric for contrast change (RIQMC) [20] were used for the quantitative comparison.

EMEG is based on the gradient to assess the strength of enhancement in the output

image, QRCM is a combination of the relative contrast enhancement between the

input and output image, and any distortions that result from enhancement, BIQME

combines contrast, sharpness, brightness, colourfulness and naturalness into one

quality score using a regression module and RIQMC combines phase congruency

and statistics information of the image histogram into a single metric to measure

image quality.

In Table 4.1-4.4, the p-values [8] for each of the benchmarking algorithms, namely,

SECE (i.e. M1), RSECE (i.e. M2), SMIRANK (i.e. M3), RICE (i.e. M4), BOIEM

(i.e. M5) and ROHIM (i.e. M6) and the proposed methods MGC-EMEG (i.e.

M7), MGC-QRCM (i.e. M8), MGC-BIQME (i.e. M9) and MGC-RIQMC (i.e.

M10) were found for all 807 test images to statistically determine which algorithm

provided the best enhancement. Table 4.1-4.4 give the p-values [8] derived from
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the results of different IQMs. In Table 4.1, the p-values [8] are based on EMEG

and represent the proportion of enhanced test images when {EMEGA > EMEGB}

where EMEGA and EMEGB are values produced by algorithms A and B, for a

test image respectively. Table 4.2, 4.3 and 4.4 contains the p-values which are based

on QRCM, BIQME and RIQMC respectively.

In Table 4.1, when the proposed method, MGC-EMEG (i.e. Row M7), was

optimised by EMEG, p-values higher than 0.62 were obtained for all of the 807 test

images when compared with the other benchmarking algorithms. In particular, the

proposed method outperformed the RICE and BOIEM methods with a perfect score

of unity for the p-values. Moreover, when the proposed method was optimised by

other IQMs, namely, QRCM, BIQME and RIQMC, p-values higher than 0.50 were

obtained for all of the 807 test images when compared with the other benchmarking

algorithms.

Table 4.1 : The p-values for EMEGA > EMEGB where M1:SECE, M2:RSECE,

M3:SMIRANK, M4:RICE, M5:BOIEM, M6:ROHIM, M7:MGC-EMEG, M8:MGC-QRCM,

M9:MGC-BIQME and M10:MGC-RIQMC.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.113 0.035 0.608 0.455 0.181 0.001 0.012 0.012 0.016

M2 0.887 - 0.009 0.776 0.680 0.242 0.004 0.011 0.025 0.048

M3 0.964 0.991 - 0.898 0.838 0.340 0.124 0.195 0.201 0.248

M4 0.390 0.223 0.102 - 0.029 0.143 0.000 0.010 0.026 0.032

M5 0.545 0.318 0.161 0.971 - 0.165 0.000 0.014 0.030 0.038

M6 0.819 0.758 0.658 0.857 0.835 - 0.379 0.445 0.463 0.491

M7 0.999 0.996 0.875 1.000 1.000 0.621 - 0.968 0.965 0.990

M8 0.988 0.989 0.805 0.990 0.986 0.555 0.016 - 0.563 0.822

M9 0.988 0.974 0.798 0.974 0.969 0.535 0.011 0.418 - 0.673

M10 0.984 0.952 0.751 0.968 0.962 0.508 0.006 0.155 0.307 -
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When the proposed method, MGC-QRCM (i.e. Row M8), was optimised by

QRCM as shown in Table 4.2, it produced p-values higher than 0.62 for all of the

807 test images when compared with the other benchmarking algorithms. In other

words, it outperformed all the other benchmarking algorithms.

Table 4.2 : The p-values for QRCMA > QRCMB where M1:SECE, M2:RSECE,

M3:SMIRANK, M4:RICE, M5:BOIEM, M6:ROHIM, M7:MGC-EMEG, M8:MGC-QRCM,

M9:MGC-BIQME and M10:MGC-RIQMC.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.183 0.019 0.760 0.642 0.373 0.152 0.033 0.136 0.100

M2 0.817 - 0.004 0.908 0.822 0.485 0.258 0.050 0.204 0.141

M3 0.981 0.996 - 0.990 0.967 0.813 0.663 0.372 0.605 0.579

M4 0.240 0.090 0.010 - 0.051 0.229 0.084 0.012 0.064 0.063

M5 0.357 0.177 0.033 0.949 - 0.285 0.110 0.025 0.087 0.078

M6 0.626 0.515 0.186 0.771 0.715 - 0.346 0.162 0.279 0.266

M7 0.848 0.742 0.336 0.916 0.890 0.654 - 0.009 0.384 0.366

M8 0.967 0.950 0.627 0.988 0.975 0.836 0.971 - 0.963 0.967

M9 0.864 0.796 0.395 0.936 0.913 0.719 0.601 0.007 - 0.475

M10 0.900 0.859 0.420 0.937 0.922 0.732 0.631 0.005 0.503 -

In Table 4.3, the proposed method, MGC-BIQME (i.e. Row M9), which was op-

timised by BIQME, produced p-values higher than 0.72 for all of the 807 test images

when compared with the other benchmarking algorithms. This shows the proposed

MGC-BIQME method outperformed all the other benchmarking algorithms. Fur-

thermore, when the proposed method was compared with BOIEM (i.e. Column M5),

a method that is also optimised by BIQME, a p-value of 0.957 was produced, show-

ing that the proposed method was better at optimising enhancement by maximising

the BIQME value than the BOIEM method.
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Table 4.3 : The p-values for BIQMEA > BIQMEB where M1:SECE, M2:RSECE,

M3:SMIRANK, M4:RICE, M5:BOIEM, M6:ROHIM, M7:MGC-EMEG, M8:MGC-QRCM,

M9:MGC-BIQME and M10:MGC-RIQMC.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.378 0.064 0.553 0.477 0.209 0.208 0.095 0.038 0.154

M2 0.615 - 0.099 0.626 0.535 0.218 0.222 0.112 0.036 0.176

M3 0.936 0.898 - 0.808 0.753 0.369 0.409 0.259 0.104 0.335

M4 0.447 0.374 0.192 - 0.203 0.202 0.230 0.093 0.030 0.157

M5 0.523 0.463 0.244 0.794 - 0.243 0.261 0.124 0.043 0.190

M6 0.791 0.781 0.631 0.792 0.755 - 0.519 0.437 0.275 0.514

M7 0.791 0.778 0.591 0.768 0.739 0.481 - 0.400 0.014 0.502

M8 0.905 0.887 0.741 0.906 0.875 0.563 0.586 - 0.022 0.600

M9 0.962 0.963 0.895 0.970 0.957 0.725 0.973 0.957 - 0.958

M10 0.846 0.824 0.665 0.843 0.810 0.483 0.491 0.378 0.015 -

When the proposed method, MGC-RIQMC (i.e. Row M10), was optimised by

RIQMC as shown in Table 4.4, it produced p-values higher than 0.57 for all of the

807 test images when compared with the other benchmarking algorithms. Moreover,

when the proposed method is compared with ROHIM (i.e. Column M6) optimised

by RIQMC, a p-value of 0.686 was produced. This indicates that the proposed

method was better at optimising enhancement by maximising the RIQMC value

than ROHIM.

Among the four IQMs, namely, EMEG, QRCM, BIQME and RIQMC, used in

the proposed method, the quantitative results produced by the proposed method

optimised by one IQM still performed very well when measured by the other three

IQMs as shown by the p-values in Tables 4.1-4.4.

Table 4.5 gives the average processing time per test image in seconds for the
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Table 4.4 : The p-values for RIQMCA > RIQMCB where M1:SECE, M2:RSECE,

M3:SMIRANK, M4:RICE, M5:BOIEM, M6:ROHIM, M7:MGC-EMEG, M8:MGC-QRCM,

M9:MGC-BIQME and M10:MGC-RIQMC.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.307 0.012 0.778 0.642 0.413 0.302 0.149 0.204 0.107

M2 0.693 - 0.021 0.865 0.804 0.440 0.352 0.162 0.234 0.107

M3 0.988 0.979 - 0.988 0.965 0.649 0.772 0.564 0.631 0.425

M4 0.222 0.135 0.012 - 0.197 0.258 0.197 0.092 0.113 0.041

M5 0.358 0.196 0.035 0.803 - 0.287 0.224 0.092 0.130 0.056

M6 0.587 0.560 0.351 0.742 0.713 - 0.519 0.374 0.431 0.314

M7 0.698 0.648 0.228 0.803 0.776 0.481 - 0.160 0.295 0.005

M8 0.851 0.838 0.436 0.908 0.908 0.626 0.830 - 0.592 0.033

M9 0.796 0.766 0.369 0.887 0.870 0.569 0.691 0.393 - 0.022

M10 0.893 0.893 0.575 0.959 0.944 0.686 0.993 0.944 0.959 -

benchmarking algorithms and the proposed method when optimised by the four dif-

ferent IQM’s, namely, EMEG, QRCM, BIQME and RIQMC. All experiments were

performed in MATLAB using an 8th generation Intel® Core™ i7 Q840 processor

at 1.87GHz. The MATLAB code for the benchmarking algorithms in this chapter

were provided by their respective authors. It shows that the processing time of the

proposed methods depends on the complexity of an IQM and when optimisation is

based on EMEG and QRCM, it performs better then the benchmarking BOIEM

and ROHIM optimisation methods.

4.3.2 Visual Assessment

For visual assessment, to compare our proposed method with the six other bench-

marking algorithms, a vast range of different types of images, namely, Fig. 4.4(b)

the family image, Fig. 4.5(b) the girl in red image, Fig. 4.6(b) the painted face
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Table 4.5 : The average processing time in seconds for an image in each of the three

datasets for the proposed optimised enhancement method and the other benchmarking

algorithms.

Method
Average Processing Time (s)

RGBNIR CSIQ TID2013

SECE 2.69 0.93 0.76

RSECE 1.69 0.61 0.57

SMIRANK 2.07 0.79 1.05

RICE 0.95 0.43 0.40

BOIEM 4.23 2.77 2.88

ROHIM 24.36 9.37 7.09

MGC-EMEG 3.23 1.47 1.36

MGC-QRCM 3.74 1.50 1.27

MGC-BIQME 29.44 17.27 17.03

MGC-RIQMC 36.49 22.00 16.80

image and Fig. 4.7(a) the pyramid image from the three datasets, were used.

The contrast reduced family image, from the CSIQ [1] dataset, was selected

as the sunset with the large dark foreground of the tree is challenging for many

enhancement algorithms. The images produced by RICE and BOIEM, shown in Fig.

4.4(f) and Fig. 4.4(g) respectively, exhibited similar problems with poor contrast.

The image produced by ROHIM, shown in Fig. 4.4(h), had increased brightness,

but contrast remained poor. The SECE, RSECE and SMIRANK output images,

shown in Fig. 4.4(c) - Fig. 4.4(e) respectively, had colour that remained dull and

lifeless. The proposed method optimised by EMEG, QRCM, BIQME and RIQMC,

each produced similarly visually pleasing outputs, shown in Fig. 4.4(i) - Fig. 4.4(l)

respectively, with vivid colour and appropriate enhancement over the entire image

and image quality better than the original, as shown in Fig. 4.4(a).
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(a) Original (b) Input (c) SECE (d) RSECE

(e) SMIRANK (f) RICE (g) BOIEM (h) ROHIM

(i) MGC-EMEG (j) MGC-QRCM (k) MGC-BIQME (l) MGC-RIQMC

Figure 4.4 : The enhancement results for the proposed optimised enhancement method

and the other benchmarking algorithms using the family image from the CSIQ dataset.

(a) The original image. (b) The contrast reduced input image. The enhanced output

by (c) SECE, (d) RSECE, (e) SMIRANK, (f) RICE, (g) BOIEM, (h) ROHIM and the

proposed (i) MGC-EMEG, (j) MGC-QRCM, (k) MGC-BIQME and (l) MGC-RIQMC.
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The contrast reduced girl in red and painted face images, from the TID2013 [42]

dataset, were chosen as it is difficult for enhancement algorithms to produce natural

enhancement in the human face. Like in the previous example, the images produced

by RICE and BOIEM, shown in Fig. 4.5(f) - Fig. 4.5(g) and Fig. 4.6(f) - Fig. 4.6(g)

respectively, exhibited under-enhancement with overall poor contrast. The images

produced by ROHIM, shown in Fig. 4.5(h) and Fig. 4.6(h), had over-saturated

colour, resulting in outputs with unnatural appearance. The SECE, RSECE and

SMIRANK output images, shown in Fig. 4.5(c) - Fig. 4.5(e) respectively, were

over-enhanced with the girl’s eyes being too dark in the girl in red image. For the

painted face outputs of these methods, shown in Fig 4.6(c) - Fig. 4.6(e) respectively,

the colour appears washed out and dull. The outputs produced by the proposed

method optimised by EMEG, QRCM, BIQME and RIQMC, shown in Fig. 4.5(i)

- Fig. 4.5(l) and Fig. 4.6(i) - Fig. 4.6(l) respectively, all displayed adequate and

naturally appearing enhancement.

The pyramid image, from the RGBNIR [2] dataset, was used to see how the

enhancement algorithms performed on natural scenery. The images produced by

RICE and BOIEM, in Fig. 4.7(e) - Fig. 4.7(f) respectively, failed to provide ade-

quate enhancement. SECE and SMIRANK produced outputs, shown in Fig. 4.7(b)

and Fig. 4.7(d) respectively, that were over-enhanced, which can be seen by the

extremes of dark and light in the sky. RSECE, shown in Fig. 4.7(c), also produced

an output that was over-enhanced, but this is more noticeable in the sand and the

pyramid itself where there are a loss of details. The ROHIM output image, shown in

Fig. 4.7(g), was over-saturated, resulting in unnatural colour. The proposed method
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(a) Original (b) Input (c) SECE (d) RSECE

(e) SMIRANK (f) RICE (g) BOIEM (h) ROHIM

(i) MGC-EMEG (j) MGC-QRCM (k) MGC-BIQME (l) MGC-RIQMC

Figure 4.5 : The enhancement results for the proposed optimised enhancement method

and the other benchmarking algorithms using the girl in red image from the TID2013

dataset. (a) The original image. (b) The contrast reduced input image. The enhanced

output by (c) SECE, (d) RSECE, (e) SMIRANK, (f) RICE, (g) BOIEM, (h) ROHIM and

the proposed (i) MGC-EMEG, (j) MGC-QRCM, (k) MGC-BIQME and (l) MGC-RIQMC.
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(a) Original (b) Input (c) SECE (d) RSECE

(e) SMIRANK (f) RICE (g) BOIEM (h) ROHIM

(i) MGC-EMEG (j) MGC-QRCM (k) MGC-BIQME (l) MGC-RIQMC

Figure 4.6 : The enhancement results for the proposed optimised enhancement method

and the other benchmarking algorithms using the painted face image from the TID2013

dataset. (a) The original image. (b) The contrast reduced input image. The enhanced

output by (c) SECE, (d) RSECE, (e) SMIRANK, (f) RICE, (g) BOIEM, (h) ROHIM and

the proposed (i) MGC-EMEG, (j) MGC-QRCM, (k) MGC-BIQME and (l) MGC-RIQMC.
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optimised by EMEG, QRCM, BIQME, and RIQMC, produced visually pleasing im-

ages with vivid colour that reveals more details in the pyramid itself, shown in Fig.

4.7(h) - Fig. 4.7(k) respectively.

4.4 Conclusion

By applying a binary search in conjunction with the proposed MGC to find the

optimum intersection point in order to maximise an IQM, an image with superior

enhancement to other benchmarking algorithms can be obtained. Moreover, by

adjusting the γ value in conjunction with the optimisation based on an IQM, a

wide range of the degree of enhancement can be set by a user in order to achieve a

desirable outcome.

As the proposed method is optimised by maximising an IQM, its output reflects

what attributes of image quality were targeted by that particular IQM. Hence, the

proposed method can also be used to assess how well an IQM correlates with visual

perception.

From the experimental results, it has been confirmed that EMEG, QRCM,

BIQME and RIQMC all correlated well with visual perception and outperformed

all the other benchmarking algorithms quantitatively. Furthermore, the proposed

method, when optimising BIQME and RIQMC, outperformed the BOIEM and RO-

HIM which also optimise enhancement based on BIQME and RIQMC respectively.

In other words, the proposed optimisation method was better at maximising those

IQMs then the other benchmarking optimisation methods. Moreover, when a new

IQM which gives more accurate assessment on image quality is developed, our pro-
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(a) Input (b) SECE (c) RSECE

(d) SMIRANK (e) RICE (f) BOIEM (g) ROHIM

(h) MGC-EMEG (i) MGC-QRCM (j) MGC-BIQME (k) MGC-RIQMC

Figure 4.7 : The enhancement results for the proposed optimised enhancement method

and the other benchmarking algorithms using the pyramid image from the RGBNIR

dataset. (a) The input image. The enhanced output by (b) SECE, (c) RSECE, (d)

SMIRANK, (e) RICE, (f) BOIEM, (g) ROHIM and the proposed (h) MGC-EMEG, (i)

MGC-QRCM, (j) MGC-BIQME and (k) MGC-RIQMC.
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posed method will also be improved by optimising this new IQM for better image

enhancement.
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Chapter 5

Adaptive Detail Enhancement with Optimised

Background Enhancement

5.1 Introduction

When enhancing the contrast of an image, it is often the case that details are lost

in bright or dark regions of an image, due to the re-mapping of intensity values. To

retain those details, some enhancement methods also apply detail enhancement in

conjunction with global contrast enhancement to improve an output image. How-

ever, as both details and noise contain high frequency components, many detail

enhancement methods are unable to differentiate between the two and will often

enhance the noise along with details.

Halo effects are another common problem often associated with detail enhance-

ment. They are caused by the high-pass filtering of input images and result in either

overshooting or a ringing effect at edges. This manifests in an output image as a

contrasting light or dark boundary produced alongside an edge.

Both the spatial entropy-based contrast enhancement (SECE) [3] and the resid-

ual spatial entropy-based contrast enhancement (RSECE) [24] methods apply detail

enhancement by increasing the weight to the high frequency components in the

frequency domain using the discrete cosine transform (DCT), after which they are

referred to as SECEDCT and RSECEDCT respectively. In both algorithms, detail
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enhancement is applied after global contrast enhancement and if the details are al-

ready lost in the initial global contrast enhancement, then detail enhancement will

have minimal effect. Furthermore, the noise level will be raised and halo effects

may be produced when the weights to the high frequency components are increased,

resulting in output images with worse signal-to-noise ratio and halo effects at edges.

In this chapter, an adaptive detail enhancement method is proposed that reduces

enhancement adaptively in homogeneous regions where there are no details to be

enhanced. By reducing enhancement in those homogeneous regions with minimal

details, the enhancement of noise can be avoided and the signal-to-noise ratio can

be improved in the output image. Moreover, by separating the edges from the

details prior to performing enhancement using an edge-preserving filter, the proposed

method will enhance only the details and not the edges, so that halo effects at edges

can be avoided.

5.2 Method

5.2.1 Background and Detail Separation

To extract the background of an image, the conventional method is by filtering

the original image by a Gaussian low-pass filter to remove high frequency com-

ponents and therefore the details. The details are then extracted by taking the

difference between the original image and the extracted background [46]. However,

the Gaussian low-pass filter is unable to preserve edges, which means this conven-

tional method for detail separation will include edges in the extracted details and

subsequent detail enhancement will cause some degree of halo effects at edges. It
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Figure 5.1 : Flowchart for background and detail separation using a guided image filter.

is therefore necessary to exclude edges in the extracted details for enhancement to

avoid halo effects. The bilateral filter [47] is known to smooth out details while

preserving sharp edges of an image, which makes it a popular choice for separating

image background and details [48]. However, bilateral filters may suffer from “gra-

dient reversal” artifacts [49, 48]. Therefore, a number of different filters have been

proposed to separate the image background and details.

An edge-preserving smoothing operator, based on the weighted least squares op-

timisation framework, was proposed in [50] for multi-scale detail and background

separation. A Gaussian image pyramid filter was proposed in [51] to separate de-

tails level-by-level from coarse to fine from the image background. A global filter

computed from image affinities was proposed in [52] to perform multi-scale detail

and background separation and by defining details as oscillations between local min-

ima and maxima, the filter proposed in [53] can smooth high contrast details while

preserving salient edges. One common problem with all of these methods, is that a

precise setting of parameters is required for each image in order to avoid artifacts.
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Hence, the guided image filter (GIF) [49], which has similar properties to the

bilateral filter, but does not suffer from the “gradient reversal” problem, is applied

in the proposed method so that the difference between its output and the original

image will extract the details without any edges to avoid halo effects, as shown in

Fig. 5.1.

Let X be an original image in RGB colour space with an intensity range of

[0, L − 1] where L is 256 for an 8-bit image and Xc be the output processed by

the contrast expansion method described in Chapter 2. Let Ic be the luminance

component of Xc and Ib be the image background, which is the GIF output with

Ic as the input. Hence, the image details, Id, without containing any edges, can be

extracted by the following:

Id = Ic − Ib. (5.1)

The background is then enhanced separately from the details by the optimised

image enhancement method presented in the previous chapter to give the enhanced

background, �Ib.

5.2.2 MAD Based Adaptive Detail Enhancement

A novel median of absolute deviation from the median (MAD) [28] based adaptive

method [36] is proposed to enhance only the details to a desirable degree which can

be set by a user. As details and noise both contain high frequency components, it is

difficult to differentiate between the two in the frequency domain. However, details

are always associated with edges while noise is not. In this application, the MAD
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operator is used to determine the existence of edges. In homogeneous regions, there

are no edges and therefore high frequency components are considered as noise. In all

other regions they are considered as details. As there are no details for enhancement

in homogeneous regions of an image, hence, in order to suppress the enhancement of

noise to improve the signal-to-noise ratio, no enhancement should be applied in those

regions. An adaptive weight to control the degree of enhancement is proposed so

that a desirable degree of enhancement will be applied to regions with details while

maintaining minimal enhancement in homogeneous regions. The adaptive weight

applied to Id is as follows:

�Id(i, j) = w(i, j)Id(i, j), (5.2)

where �Id is the enhanced details and w(i, j) is the adaptive weight for detail en-

hancement at the location (i, j) given as follows:

w(i, j) =


ws + (1−ws)

1+(R×MAD(i,j))2
S1 = A

ws S1 = B

, (5.3)

where S1 = A when the adaptive algorithm is “ON” and at S1 = B when it is

“OFF”, ws is the user set weight for detail enhancement, MAD(i, j) is the MAD

[28] within a 3x3 filter window centred at (i, j) in the image background, Ib, with

an intensity range of [0, L− 1] and R is a normalised scaler for the MAD given by

the following:

R =
256

L
. (5.4)

For 8-bit luminance component, L = 256 and R = 1.

The MAD is used as a robust estimator for the standard deviation. In ho-

mogeneous regions of the image background, Ib, the MAD value will tend to zero
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Figure 5.2 : The adaptive weight, w, verses (RxMAD) for various user set weights, ws.

Figure 5.3 : Flowchart for the proposed detail enhancement method, S1 is at A when

the adaptive algorithm is “ON” and S1 is at B when it is “OFF”.
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and therefore the adaptive weight, w(i, j), will tend to unity. In this case, no en-

hancement will be applied regardless of the value of ws and hence, there will be

no enhancement of noise in those regions for the improvement of the signal-to-noise

ratio. In other non-homogeneous regions, the MAD value will be large and the adap-

tive weight will be approaching the user set weight, ws. Increasing ws above unity

will increase the degree of detail enhancement in non-homogeneous regions and vice

versa. Fig. 5.2 gives the curves for the adaptive weight, w(i, j) versus (R×MAD)

for different user set weights, ws by (5.3). The solid red line, which shows the adap-

tive weight curve when S1 at A (i.e. the adaptive algorithm is “ON”) and ws = 6, is

the default value used for all the 807 test images in our experimental results. When

(R ×MAD) tends to zero in homogeneous regions, w(i, j) tends to unity which is

the weight for no enhancement. When (R×MAD) gets larger in non-homogeneous

regions, w(i, j) approaches the user set weight quickly, to produce uniform enhance-

ment in all non-homogeneous regions. Fig. 5.3 gives the block diagram for our

proposed MAD based adaptive detail enhancement method. The default position

for switch, S1, is A, at which adaptive detail enhancement is turned on. However,

if the user wishes to enhance weak details in homogeneous regions at the expense

of poorer signal-to-noise ratio, the adaptive equation for detail enhancement can be

turned off by switching S1 to B and the detail enhancement weight, w(i, j), will be

a constant value equal to the user set weight, ws for all regions of the image.

The final enhanced image, Y, is obtained by combining the enhanced back-

ground, �Ib, with the enhanced details, �Id, as follows:
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Y = �Ib + �Id. (5.5)

After combining the enhanced background, �Ib, with the enhanced details, �Id,

some intensity values may be outside the range [0,L-1]. As scaling the details back

to the range of [0,L-1] would reduce the strength of those details already within that

range, clipping is therefore applied for values outside the range in order to preserve

the strength of detail enhancement as follows:

Y (i, j) =


0 Y (i, j) < 0

(L− 1) Y (i, j) > (L− 1)

Y (i, j) otherwise

, (5.6)

Refer to Fig. 5.4 for our proposed overall enhancement method.

Figure 5.4 : Flowchart for the overall image enhancement method with the proposed

adaptive detail enhancement.
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5.3 Results

A total of 807 test images from the NIRRGB [2], CSIQ [1] and TID2013 [42]

datasets were used for quantitative evaluations and some were selected for visual

assessment.

The proposed method is compared with four benchmarking algorithms, namely,

BOIEM [19], ROHIM [20], SECEDCT [3] and RSECEDCT [24]. To assess the effect

adaptive detail enhancement has on improving the optimised enhancement method

from the previous chapter, it is also compared with the proposed MGC-QRCM and

MGC-BIQME enhancement methods (i.e. MGC enhancement optimised by QRCM

and BIQME respectively). These are the methods used to enhance the background

of the proposed adaptive detail enhancement method. Default parameter settings

for all algorithms are used. In the proposed method, the user set weight for detail

enhancement, ws = 6, was used for all the experimental results except Fig. 5.5

which shows the effect of enhancement with various values of ws. For background

enhancement, γ = 2.2, was used for all of the experimental results except Fig. 5.5,

Fig. 5.6 and Fig. 5.7, where only the effect of detail enhancement was explored.

The proposed enhancement methods are labelled as ADE-QRCM and ADE-BIQME

to represent adaptive detail enhancement with background enhancement optimised

by QRCM and BIQME respectively.

5.3.1 Quantitative Results

Three IQMs, namely, the quality-aware relative contrast measure (QRCM) [8],

the blind image quality measure of enhanced images (BIQME) [19] and the no-
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reference image quality metric for contrast distortion (NIQMC) [54] were used for

the quantitative comparison. QRCM is a combination of the relative contrast en-

hancement between the input and output image, and any distortions that result

from enhancement, BIQME combines contrast, sharpness, brightness, colourfulness

and naturalness into one quality score using a regression module. As the pro-

posed method optimises the background enhancement based on QRCM and BIQME,

NIQMC which combines both local and global information together to produce a

score based on the concept of information maximisation, was used as an impartial

IQM.

In Table 5.1-5.3, the p-values [8] for each of the benchmarking algorithms, namely,

BOIEM (i.e. M1), ROHIM (i.e. M2), SECEDCT (i.e. M3), RSECEDCT (i.e. M4),

MGC-QRCM (i.e. M5) and MGC-BIQME (i.e. M6) were found for all 807 test

images to statistically determine which algorithm provided the best enhancement.

The p-values [8] based on QRCM in Table 5.1, represent the proportion of enhanced

test images when {QRCMA > QRCMB} where QRCMA and QRCMB are values

produced by algorithms A and B, for a test image respectively. Table 5.2 and 5.3

contains the p-values which are based on BIQME and NIQMC respectively.

In Table 5.1, the proposed methods, ADE-QRCM (i.e. Row M7) and ADE-

BIQME (i.e. Row M9), when the adaptive algorithm was “ON” (i.e. S1 at A)

obtained p-values higher than 0.82 for all of the 807 test images when compared

with the other benchmarking algorithms. When the adaptive algorithm was “OFF”

(i.e. S1 at B), the proposed methods, ADE-QRCM (i.e. Row M8) and ADE-

BIQME (i.e. Row M10) obtained p-values higher than 0.94 for all of the 807 test
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images when compared with the other benchmarking algorithms. In other words,

the proposed algorithm statistically outscored all the ten benchmarking algorithms

for all the 807 test images in the three datasets quantitatively regardless of the

position of switch, S1. The better score for the proposed method when S1 at A

(i.e. the adaptive algorithm is “OFF”), is because QRCM is based on the image

gradient and a higher degree of enhancement in the homogeneous regions will give

a higher score as a result. On the other hand, the output image when S1 at B (i.e.

the adaptive algorithm is “ON”) gives a cleaner image in homogeneous regions, as

shown in the visual assessment results in the following section 5.3.2.

Table 5.1 : The p-values for QRCMA > QRCMB where M1:BOIEM, M2:ROHIM,

M3:SECEDCT, M4:RSECEDCT, M5:MGC-QRCM, M6:MGC-BIQME, M7:ADE-QRCM

(S1 at A), M8:ADE-QRCM (S1 at B), M9:ADE-BIQME (S1 at A) and M10:ADE-BIQME

(S1 at B).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.285 0.004 0.002 0.025 0.087 0.000 0.000 0.007 0.005

M2 0.715 - 0.048 0.033 0.162 0.279 0.014 0.005 0.032 0.020

M3 0.996 0.952 - 0.169 0.958 0.985 0.033 0.000 0.177 0.057

M4 0.998 0.967 0.831 - 0.929 0.958 0.139 0.007 0.346 0.079

M5 0.975 0.836 0.042 0.071 - 0.963 0.007 0.007 0.052 0.031

M6 0.913 0.719 0.015 0.042 0.007 - 0.000 0.000 0.009 0.007

M7 1.000 0.986 0.967 0.860 0.993 1.000 - 0.010 0.861 0.196

M8 1.000 0.995 1.000 0.993 0.993 1.000 0.990 - 1.000 0.848

M9 0.993 0.968 0.823 0.653 0.948 0.991 0.102 0.000 - 0.002

M10 0.995 0.980 0.943 0.921 0.969 0.993 0.804 0.112 0.995 -

For the comparison of our proposed method with the other six benchmarking

algorithms using BIQME, the p-values in Table 5.2 show that the proposed method

at either position of the switch (i.e. Row M7 - M10) outperformed all of the other
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benchmarking algorithms with p-values over 0.65.

Table 5.2 : The p-values for BIQMEA > BIQMEB where M1:BOIEM, M2:ROHIM,

M3:SECEDCT, M4:RSECEDCT, M5:MGC-QRCM, M6:MGC-BIQME, M7:ADE-QRCM

(S1 at A), M8:ADE-QRCM (S1 at B), M9:ADE-BIQME (S1 at A) and M10:ADE-BIQME

(S1 at B).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.243 0.384 0.321 0.124 0.043 0.093 0.147 0.043 0.081

M2 0.755 - 0.719 0.690 0.437 0.275 0.304 0.342 0.156 0.198

M3 0.613 0.279 - 0.392 0.173 0.051 0.093 0.145 0.029 0.073

M4 0.677 0.310 0.603 - 0.222 0.084 0.108 0.149 0.040 0.073

M5 0.875 0.563 0.827 0.778 - 0.022 0.129 0.323 0.062 0.161

M6 0.957 0.725 0.948 0.914 0.957 - 0.457 0.568 0.121 0.310

M7 0.907 0.694 0.907 0.892 0.869 0.539 - 0.627 0.136 0.347

M8 0.853 0.658 0.854 0.850 0.673 0.432 0.368 - 0.166 0.164

M9 0.955 0.843 0.970 0.960 0.938 0.876 0.833 0.830 - 0.670

M10 0.918 0.802 0.926 0.927 0.839 0.689 0.649 0.808 0.323 -

For the comparison using NIQMC, as shown in Table 5.3, the proposed method

again outperformed the other benchmarking algorithms with p-values over 0.59.

Table 5.4 gives the average processing time per test image in seconds in MAT-

LAB using an 8th generation Intel® Core™ i7 Q840 processor at 1.87GHz for the

benchmarking algorithms and the proposed method with the adaptive algorithm

both “ON” and “OFF” (i.e. S1 at A and S1 at B). The MATLAB code for the

benchmarking algorithms in this chapter were provided by their respective authors.

Table 5.4 shows that the difference in processing times of the proposed method

with the adaptive algorithm “ON” or ‘OFF” is insignificant. For SECEDCT and

RESECDCT, performing detail enhancement using the DCT is more computation-

ally efficient than the proposed method, however, the visual assessment results in
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Table 5.3 : The p-values for NIQMCA > NIQMCB where M1:BOIEM, M2:ROHIM,

M3:SECEDCT, M4:RSECEDCT, M5:MGC-QRCM, M6:MGC-BIQME, M7:ADE-QRCM

(S1 at A), M8:ADE-QRCM (S1 at B), M9:ADE-BIQME (S1 at A) and M10:ADE-BIQME

(S1 at B).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - 0.295 0.088 0.089 0.154 0.145 0.138 0.110 0.131 0.113

M2 0.705 - 0.456 0.442 0.428 0.418 0.359 0.291 0.340 0.283

M3 0.912 0.544 - 0.362 0.446 0.455 0.322 0.261 0.333 0.259

M4 0.911 0.558 0.638 - 0.533 0.525 0.408 0.322 0.399 0.292

M5 0.846 0.572 0.554 0.467 - 0.504 0.221 0.138 0.289 0.186

M6 0.855 0.582 0.545 0.475 0.481 - 0.332 0.263 0.196 0.129

M7 0.862 0.641 0.678 0.592 0.778 0.668 - 0.089 0.477 0.295

M8 0.890 0.709 0.739 0.678 0.862 0.737 0.911 - 0.649 0.470

M9 0.869 0.660 0.667 0.601 0.710 0.804 0.499 0.351 - 0.098

M10 0.887 0.717 0.741 0.708 0.814 0.871 0.704 0.507 0.901 -

the following section 5.3.2, show that the quality of detail enhancement is much

better in the proposed method. In the proposed ADE-QRCM and ADE-BIQME

methods, background enhancement was performed by the MGC-QRCM and MGC-

BIQME methods proposed in the previous chapter respectively. The difference in

processing time between these proposed methods, as given in Table 5.4, is due to

the background and detail separation and the adaptive detail enhancement.

5.3.2 Visual Assessment

To assess how various values of the user set weight change the degree of detail,

ws was set to the values of 1, 6 and 12, as shown in Fig. 5.5(b) - Fig. 5.5(d),

respectively. The γ value was set to 1 so that no enhancement was applied to

the background and only the effect of detail enhancement can be observed. This
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Table 5.4 : The average processing time in seconds for an image in each of the three

datasets for the proposed adaptive detail enhancement method and the other benchmark-

ing algorithms.

Method
Average Processing Time (s)

RGBNIR CSIQ TID2013

BOIEM 4.23 2.77 2.88

ROHIM 24.26 9.37 7.09

SECEDCT 3.13 1.06 0.84

RSECEDCT 1.69 0.61 0.57

MGC-QRCM 3.74 1.50 1.27

MGC-BIQME 29.44 17.27 17.03

ADE-QRCM (S1 at A) 8.48 3.18 2.38

ADE-QRCM (S1 at B) 8.51 3.17 2.39

ADE-BIQME (S1 at A) 34.89 18.41 15.61

ADE-BIQME (S1 at B) 34.94 18.39 15.57

shows that the proposed method allows the user to have control over a wide range

of the degree of detail enhancement while most enhancement methods have no or

limited control over the degree of detail enhancement. In general, ws = 6, provides

a good degree of detail enhancement and hence, it was set as the default value in

our experimental results for comparison with other benchmarking algorithms.

To examine the effects of background and detail separation using different win-

dow sizes of the GIF, window sizes of 3x3, 5x5 and 7x7 were applied and the output

images are shown in Fig. 5.6(b) - Fig. 5.6(d), respectively. The γ value was again

set to 1 to produce the images in Fig. 5.6, so that there was no enhancement to the

background and only the effect of detail enhancement can be observed. A window

size of 3x3 will include only finer details which can often make the output image

appear noisy, while window sizes larger than 7x7 will include more coarse details
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(a) (b)

(c) (d)

Figure 5.5 : Results of the proposed method using a different user set weight, ws, on (a)

the lake image from the CSIQ dataset [1] for (b) ws = 1, (c) ws = 6, (d) ws = 12. γ = 1

so no enhancement was applied to the background.
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which can have an unnatural appearance. Therefore a window size of 5x5 was set

as the default value to produce balanced outputs for all of the experimental results.

To examine the effect the GIF smoothing parameter has on detail enhancement,

the building image, which has a combination of sharp edges at various angles and

small details, as shown in Fig. 5.7(a), from the RGBNIR dataset [2], was used as

the input. A smoothing parameter value of (L-1)/8, (L-1)/2 and (L-1)/0.5 was

applied and the output images are shown in Fig. 5.7(b) - Fig. 5.7(d) respectively.

The γ value was set to 1 in each case so that only the effect the GIF has on detail

enhancement can be observed. When larger values are used for the GIF smoothing

parameter, such as (L-1)/0.5, more edges are blurred in the GIF output which means

they are included as details, this in turn produces more coarse detail enhancement

and strong halo effects in the output image, as shown in Fig. 5.7(d). When small

values are used for the GIF smoothing parameter then fewer edges are blurred in the

GIF output and finer detail without halo effects is produced in the output image,

as shown in Fig. 5.7(b). As a result, a smoothing parameter of (L-1)/2 was used

as the default value for all of the experimental results, as it gives adequate detail

enhancement without halo effects, as shown in Fig. 5.7(c).

To examine the difference of the halo effects after detail enhancement between

the conventional method using a Gaussian lowpass filter and a GIF for background

and detail separation, the test pattern image with sharp edges at various angles, as

shown in Fig. 5.8(a), from the TID2013 dataset [42], was used as the input. The

enhanced output produced by the conventional Gaussian lowpass filter, as shown

in Fig. 5.8(b), displayed strong halo effects at the proximity of the sharp edges



104

(a) (b)

(c) (d)

Figure 5.6 : Results of the proposed method using different guided image filter window

sizes on (a) the country image from the RGBNIR dataset [2] with (b) [3x3] window size,

(c) [5x5] window size, (d) [7x7] window size. γ = 1 so no enhancement was applied to the

background.
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(a) (b)

(c) (d)

Figure 5.7 : Results of the proposed method using different values for guided image filter

smoothing parameter on (a) the building image from the RGBNIR dataset [2] with (b) a

smoothing parameter value of (L-1)/8, (c) a smoothing parameter value of (L-1)/2, (d)

a smoothing parameter value of (L-1)/0.5. γ = 1 so no enhancement was applied to the

background.
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particularly along the rims of the circles and all the characters, while the enhanced

output using a GIF, as shown in Fig. 5.8(c), showed no sign of halo effects at all.

(a) (b) (c)

Figure 5.8 : Results of the proposed method using different filter types for background

and detail separation on (a) the contrast reduced input image test pattern from the

TID2013 dataset with (b) a Gaussian low pass filter and (c) a GIF.

To examine the proposed adaptive detail enhancement algorithm in the suppres-

sion of noise in homogeneous regions, the switch S1 was set at position A and B

to produce the outputs shown in Fig. 5.9(d) and Fig. 5.9(c), respectively. When

comparing the outputs with the original image, as shown in Fig. 5.9(b), which is

a cropped region of Fig. 5.9(a), the noise level in the homogeneous region of Fig.

5.9(c) when the adaptive detail enhancement was turned off (i.e. when S1 at B) was

much higher than that in Fig. 5.9(d) when the adaptive detail enhancement was

turned on (i.e. S1 at A). On the other hand, the enhancement in non-homogeneous

regions was similar in both Fig. 5.9(c) and Fig. 5.9(d).

The contrast reduced foxy image from the CSIQ [1] datase, was selected as

the fox and surrounding foliage contain lots of details to be enhanced. The image

produced by BOIEM, shown in Fig. 5.10(c) was under-enhanced with poor contrast
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while the image produced by ROHIM, shown in Fig. 5.10(d) was brighter, but

still had poor contrast. The SECEDCT and RSECEDCT output images, shown

in Fig. 5.10(e) and Fig. 5.10(f) respectively, both have dull colour. The proposed

MGC-QRCM and MGC-BIQME methods from the previous chapter, shown in Fig.

5.10(g) and Fig. 5.10(h) respectively, give good enhancement with vivid colour. The

outputs produced by the proposed method, shown in Fig. 5.10(i) and Fig. 5.10(j)

respectively, both give the same level of global enhancement as the MGC-QRCM

and MGC-BIQME methods because they are applied for background enhancement,

but they reveal more details in the image, particularly in the fox’s fur.

The contrast reduced girl in red and painted face images from the TID2013 [42]

dataset, were again used to assess the quality of detail enhancement in the human

face. The images produced by BOIEM, shown in Fig. 5.11(c) and Fig. 5.12(c)

respectively, exhibited under-enhancement with overall poor contrast. The images

produced by ROHIM, shown in Fig. 5.11(d) and Fig. 5.12(d), over-saturated the

colour resulting in outputs with unnatural appearance and also a loss of details

in the brighter areas of both girls faces. The SECEDCT and RSECEDCT output

images, shown in Fig. 5.11(e) - Fig. 5.11(f) respectively, are both dull in colour and

over-enhanced around the girl’s eyes. For the outputs of these methods, shown in Fig

5.12(f) - Fig. 5.12(f) respectively, they are both over-enhanced where the left side of

the girls cheek is too dark. The outputs produced by the proposed method, shown

in Fig. 5.11(i) - Fig. 5.11(j) and Fig. 5.12(i) - Fig. 5.12(j) respectively, both give

the same adequate enhancement as the proposed MGC-QRCM and MGC-BIQME

methods from the previous chapter, shown in Fig. 5.11(g) - Fig. 5.11(h) and Fig.
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5.12(g) - Fig. 5.12(h) respectively, but with stronger details in the girl in reds eyes

and hair and around the paint in the painted face image.

The pyramid image from the RGBNIR [2] dataset, was used again as it has the

homogeneous region of the sky as well as the details of the pyramid and city which

are difficult for detail enhancement algorithms to produce natural enhancement. A

section of the original image was used to clearly show the enhancement results. The

image produced by BOIEM, in Fig. 5.13(c), has overall poor contrast like the input.

The image given by ROHIM, shown in Fig. 5.13(d), was over-saturated resulting

in unnatural colour and also has noise in the sky. SECEDCT and RSECEDCT

produced outputs, shown in Fig. 5.13(e) and Fig. 5.13(f) respectively, that were

very noisy in the sky. The proposed method enhanced the details in the pyramid

and the city while also suppressing the noise in the homogeneous region of the sky

to give more natural detail enhancement as shown in Fig. 5.13(i) and Fig. 5.13(j)

respectively.

The bike image from the RGBNIR [2] dataset, was used because it has edges

which may cause halo effects for some detail enhancement algorithms. A section of

the original image was used to clearly show edges at which halo effects may occur.

The image produced by BOIEM, in Fig. 5.14(c), has only minor enhancement. The

image given by ROHIM, shown in Fig. 5.14(d), was over-enhanced with a loss of de-

tails in the brighter regions. SECEDCT and RSECEDCT produced outputs, shown

in Fig. 5.14(e) and Fig. 5.14(f) respectively, that had halo effects at edges, as seen

by the dark outlines around the orange area. The proposed method enhanced the

details without any halo effect as shown in Fig. 5.14(i) and Fig. 5.14(j) respectively.
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5.4 Conclusion

A novel image enhancement method, by enhancing the background and details

using individual novel enhancement techniques has been proposed in this chapter.

By excluding edges in detail enhancement through a guided image filter (GIF),

halo effects at edges have been avoided. The proposed adaptive detail enhancement

method was also proven to be able to maintain low noise level in homogeneous

regions by suppressing the enhancement of noise in those regions. It has been shown

that the proposed method outperformed the other benchmarking algorithms both

quantitatively and visually without the usual adverse problems of other enhancement

methods in terms of over-enhancement and noise in different regions and halo effects

at edges.
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(a) (b)

(c) (d)

Figure 5.9 : Results of the proposed method using different detail enhancement on (a)

the pyramid image from the RGBNIR dataset. (b) The zoomed-in area of the input, (c)

the proposed method with a constant enhancement weight, ws = 6 (S1 at B (i.e. the

adaptive algorithm is “OFF”)) and (c) the proposed method with adaptive enhancement,

ws = 6 (S1 at A (i.e. the adaptive algorithm is “ON”)).
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(a) Original (b) Input (c) BOIEM (d) ROHIM (e) SECEDCT

(f) RSECEDCT (g) MGC-QRCM(h) MGC-

BIQME

(i) ADE-QRCM (j) ADE-BIQME

Figure 5.10 : The enhancement results for the proposed adaptive detail enhancement

method and the other benchmarking algorithms using the foxy image from the CSIQ

dataset. (a) The original image. (b) The contrast reduced input image. The enhanced

output by (c) BOIEM, (d) ROHIM, (e) SECEDCT, (f) RSECEDCT, (g) MGC-QRCM,

(h) MGC-BIQME and the proposed (i) ADE-QRCM and (j) ADE-BIQME.
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(a) Original (b) Input (c) BOIEM (d) ROHIM (e) SECEDCT

(f) RSECEDCT (g) MGC-QRCM(h) MGC-

BIQME

(i) ADE-QRCM (j) ADE-BIQME

Figure 5.11 : The enhancement results for the proposed adaptive detail enhancement

method and the other benchmarking algorithms using the girl in red image from the

TID2013 dataset. (a) The original image. (b) The contrast reduced input image. The

enhanced output by (c) BOIEM, (d) ROHIM, (e) SECEDCT, (f) RSECEDCT, (g) MGC-

QRCM, (h) MGC-BIQME and the proposed (i) ADE-QRCM and (j) ADE-BIQME.
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(a) Original (b) Input (c) BOIEM (d) ROHIM (e) SECEDCT

(f) RSECEDCT (g) MGC-QRCM(h) MGC-

BIQME

(i) ADE-QRCM (j) ADE-BIQME

Figure 5.12 : The enhancement results for the proposed adaptive detail enhancement

method and the other benchmarking algorithms using the painted face image from the

TID2013 dataset. (a) The original image. (b) The contrast reduced input image. The

enhanced output by (c) BOIEM, (d) ROHIM, (e) SECEDCT, (f) RSECEDCT, (g) MGC-

QRCM, (h) MGC-BIQME and the proposed (i) ADE-QRCM and (j) ADE-BIQME.



114

(a) Original (b) Section (c) BOIEM (d) ROHIM (e) SECEDCT

(f) RSECEDCT (g) MGC-QRCM(h) MGC-

BIQME

(i) ADE-QRCM (j) ADE-BIQME

Figure 5.13 : The enhancement results for the proposed adaptive detail enhancement

method and the other benchmarking algorithms using the pyramid image from the RGB-

NIR dataset. (a) The input image. (b) The zoomed-in area of the input. The enhanced

output by (c) BOIEM, (d) ROHIM, (e) SECEDCT, (f) RSECEDCT, (g) MGC-QRCM,

(h) MGC-BIQME and the proposed (i) ADE-QRCM and (j) ADE-BIQME.
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(a) Original (b) Section (c) BOIEM (d) ROHIM (e) SECEDCT

(f) RSECEDCT (g) MGC-QRCM(h) MGC-

BIQME

(i) ADE-QRCM (j) ADE-BIQME

Figure 5.14 : The enhancement results for the proposed adaptive detail enhancement

method and the other benchmarking algorithms using the bike image from the RGBNIR

dataset. (a) The input image. (b) The zoomed-in area of the input. The enhanced

output by (c) BOIEM, (d) ROHIM, (e) SECEDCT, (f) RSECEDCT, (g) MGC-QRCM,

(h) MGC-BIQME and the proposed (i) ADE-QRCM and (j) ADE-BIQME.
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Chapter 6

Applications

6.1 Introduction

The image enhancement methods presented in this thesis can be used in many

different applications that range from being applied directly for image and video

enhancement, to being applied as a pre-processing step to improve an input for

further processing. Two different applications are explored in this chapter, the first

is image expansion and the second is enhancement prior to colour filter array (CFA)

demosaicking.

Current image expansion methods are often unable to preserve sharp edges and

may produce jagged edges and halo effects. A method is presented in this chapter,

that uses the proposed MGC applied adaptively to an expanded image, so that the

sharpness of edges can be recovered.

Enhancement is usually performed after CFA demosaicking as image enhance-

ment algorithms are typically developed for full colour images. However, enhancing

an image prior to demosaicking, particularly for images with a narrow intensity

range, may reduce interpolation errors by increasing the intensity range before in-

terpolation. Therefore, a method is presented to apply the proposed image enhance-

ment techniques prior to CFA demosaicking.
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6.2 Improved Image Expansion

Image expansion methods can be separated into two groups, learning based meth-

ods and interpolation based methods. Learning based methods are known as super-

resolution methods [55, 56, 57] as they require extra details in the output image.

These methods demand external information in the form of training sets with pairs

of high and low resolution images. However, once trained these methods may not

adapt well to different classes of images [56]. Furthermore, the complexity of these

methods can limit their practical performance [57] for real-time processing.

Interpolation based methods can expand an image using only a single image

input and require no extra information. They expand an image by estimating miss-

ing pixels using the values of known neighbours. Traditional interpolation methods

used to expand an image, such as the bilinear and bicubic [58] methods are un-

able to preserve sharp edges. Many other interpolation-based methods including

new edge directed interpolation (NEDI) [59] its variants, modified edge directed

interpolation (MEDI) [60], improved new edge directed interpolation (INEDI) [61],

edge-guided image interpolation (EGII) [62] and real-time artifact free image upscal-

ing (RTIU) [63], directional cubic convolution interpolation (DCCI) [64], adaptive

distance-based edge preserving interpolation (ADEPI) [65] and trilateral filter re-

gression interpolation (TRFI) [66] are only able to expand an image by powers of

two, which limits their practical application. Furthermore, these methods are often

unable to preserve sharp edges. To resolve this problem, some interpolation-based

methods, namely, improved Canny edge based image expansion (Zhang) [67] and
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adaptive interpolation based on local gradient features (Hwang) [68], attempt to

use the image gradient, or an edge detection method, to adaptively alter the sharp-

ness of a blurred edge in the expanded image. However, these methods may produce

halo effects with jagged edges.

The MGC [45] described in Chapter 3 can be applied to image expansion to

preserve the sharpness of edges. By taking the absolute difference between the

nearest neighbour interpolation method and another interpolation algorithm and

using this to adaptively adjust the γ value of the MGC the sharpness of the original

edge can be regained.

6.2.1 Improved Image Expansion Method

Refer to Fig. 6.1 for the flowchart of the overall proposed image expansion al-

gorithm. In order to retain the sharpness of an edge and prevent jagged edges, the

absolute difference between the original image expanded by the nearest neighbour

method and another interpolation algorithm with a different degree of edge preser-

vation capability is used to produce an edge residual image. The edge residual image

will have a larger magnitude corresponding to the degree of sharpness of an edge

and is then used to adaptively regain the sharpness of the edges in the expanded

image.

As there is no requirement for preserving sharp edges by the other interpolation

algorithm, its smoothing capabilities are of higher priority. In this application,

bicubic [58] interpolation is chosen due to its good performance in expanding smooth

regions and its computational efficiency.
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Figure 6.1 : Flowchart for the proposed image expansion method.

Figure 6.2 : A cross section of the expanded zebra image output in Fig. 6.4.
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Let In(i, j) and Ib(i, j) be the luminance outputs expanded by the nearest neigh-

bour and bicubic interpolation methods respectively where (i, j) are the pixel lo-

cations, and Id(i, j) be the edge residual image which is the absolute difference of

these two interpolations as follows:

Id(i, j) = |Ib(i, j)− In(i, j)| . (6.1)

For smooth regions, Id(i, j) will be small and no further processing will be re-

quired for the expanded image. For regions with sharp edges, Id(i, j) will be large

and a corresponding larger gamma adjustment will then be applied to regain the

sharpness of the edges.

Due to the jagged edges produced by the nearest neighbour interpolation method,

the edge residual image has to be smoothed to remove jaggedness in the residual

image. A moving average filter with a window of size NxN is used to produce a

smoothed residual image, Is(i, j), without jaggedness where N = (2bme − 1), bme

is the nearest integer function of m and m is the scaling factor, where m is any

positive real number and not necessarily an integer.

In order to regain the sharpness of an edge, the MGC can be used as it both

increases and decreases intensities above and below an intersection point which is

the mid-point of an edge. The intersection point for each pixel location, P (i, j),

should be set to the mid-intensity level of any possible edge centred at that pixel

location and this mid-intensity value is defined as the mean intensity value of all the

pixels within a window of size NxN centred at (i, j) in the bicubic expanded image,
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Ib.

A γ value of unity corresponds to no enhancement and the degree of enhancement

increases with γ. Therefore, the smoothed edge residual image, Is, must then be

mapped accordingly so that a value of 0 in it will map to a γ(i, j) value of unity,

where γ(i, j) is the input parameter to our proposed MGC algorithm. One mapping

function that will meet this requirement is the exponential function. As the γ

value produced by the mapping function must also be large to adequately regain

the original sharpness of the edge, the exponential function has been found to be

suitable for our application as follows:

γ(i, j) = e
Is(i,j)
k , (6.2)

where k is a scaling factor that controls the strength of enhancement and k = 10 is

adequate for reproducing strong edges without over-enhancing weak edges.

The enhanced expanded image output, �Ib, is the result of applying the MGC to

the bicubic interpolation output, Ib, as follows:

�Ib(i, j) =



Ib(i,j)
γ(i,j)

P (i,j)γ(i,j)−1 , Ib(i, j) < P (i, j)

255− (255−Ib(i,j))γ(i,j)
(255−P (i,j))γ(i,j)−1 , Ib(i, j) > P (i, j)

Ib(i, j), otherwise

. (6.3)

In order to avoid halo effects resulting from over-enhancement of strong edges,

the maximum intensity value, Imax(r, s), and minimum intensity value, Imin(r, s),

of pixels inside the window of size 3x3 centred at (r, s) in the original image is

determined and any enhanced pixel value, �Ib(i, j), outside this range will be clipped
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to produce Y (i, j) as follows:

Y (i, j) =


Imin(r, s), �Ib(i, j) < Imin(r, s)

Imax(r, s), �Ib(i, j) > Imax(r, s)

�Ib(i, j), otherwise

, (6.4)

where r = b i
m
e and s = b j

m
e. Refer to Fig. 6.2 as an example at the location

of a sharp edge of the cross section of a real image without any overshooting. As

overshooting will manifest itself as halo effects in the expanded image, this shows

that the proposed method is able to regain the sharpness of an edge in the expanded

image without halo effects.

6.2.2 Improved Image Expansion Results

Five standard image datasets, namely, Set5 [69], Set14 [70], BSD100 [71], Ur-

ban100 [72] and Sun-Hays80 [73], were used to produce the experimental results. To

assess the proposed method quantitatively, three image quality measures (IQMs),

namely, structural similarity (SSIM) [25], feature similarity (FSIM) [74] and ex-

pected measure of enhancement by gradient (EMEG) [3], were used. SSIM will

show how close the expanded images resemble the input images. FSIM uses phase

congruency to show how the features in the input images are enlarged faithfully in

the expanded images and EMEG is based on the gradient of the expanded image to

assess how well the edges are preserved in the expanded images. For comparison,

four computationally efficient benchmarking algorithms, namely, bilinear, bicubic

[58], Hwang [68] and Zhang [67], were used.

For quantitative assessment as shown in Table 6.1, 6.2 and 6.3 using SSIM, FSIM
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and EMEG respectively with various scaling factors, m and the best results for each

image set were shown in bold. In general, the performance of the benchmarking

algorithms reduces with the scaling factor, m, but the proposed method was still

able to outperform them in most cases. For SSIM and FSIM, as shown in Table

6.1 and Table 6.2, the proposed method outperformed the other benchmarking al-

gorithms for most of the test image sets, especially for large scaling factors, m. For

EMEG, as shown in Table 6.3 respectively, the proposed method outperforms all

the benchmarking algorithms for the all five test images datasets and various scaling

factors.

Table 6.1 : The average SSIM values for each image expansion method applied to each

dataset with different scaling factors, m.

Dataset m Bilinear Bicubic Hwang Zhang Proposed

Set5

2 0.901 0.921 0.911 0.894 0.917

3 0.837 0.856 0.853 0.839 0.861

4 0.769 0.794 0.786 0.772 0.807

Set14

2 0.903 0.929 0.904 0.897 0.933

3 0.820 0.840 0.827 0.823 0.851

4 0.744 0.772 0.753 0.750 0.785

BSD100

2 0.803 0.838 0.805 0.791 0.855

3 0.706 0.728 0.712 0.699 0.748

4 0.629 0.652 0.635 0.621 0.671

Urban100
2 0.853 0.890 0.856 0.853 0.901

4 0.870 0.897 0.873 0.876 0.913

Sun-Hays80 8 0.755 0.782 0.760 0.757 0.800

Average - 0.799 0.825 0.806 0.798 0.837

For visual assessment, four test images, namely, lena of size 256x256, zebra of size

195x130, butterfly of size 64x64 and hillside of size 120x80, were used as the inputs

as shown in Fig. 6.3(a), Fig. 6.4(a), Fig. 6.5(a) and Fig. 6.6(a) respectively. To



124

Table 6.2 : The average FSIM values for each image expansion method applied to each

dataset with different scaling factors, m.

Dataset m Bilinear Bicubic Hwang Zhang Proposed

Set5

2 0.928 0.943 0.941 0.927 0.940

3 0.879 0.891 0.895 0.882 0.897

4 0.831 0.847 0.847 0.834 0.858

Set14

2 0.938 0.956 0.943 0.935 0.953

3 0.886 0.901 0.897 0.889 0.908

4 0.829 0.850 0.842 0.835 0.860

BSD100

2 0.873 0.901 0.876 0.880 0.908

3 0.804 0.824 0.811 0.815 0.829

4 0.741 0.765 0.747 0.755 0.771

Urban100
2 0.888 0.914 0.900 0.890 0.917

4 0.919 0.940 0.929 0.924 0.946

Sun-Hays80 8 0.835 0.857 0.842 0.839 0.861

Average - 0.862 0.882 0.872 0.867 0.887

Table 6.3 : The average EMEG values for each image expansion method applied to each

dataset with different scaling factors, m.

Dataset m Bilinear Bicubic Hwang Zhang Proposed

Set5

2 0.136 0.160 0.189 0.201 0.295

3 0.118 0.129 0.155 0.174 0.296

4 0.088 0.104 0.124 0.137 0.270

Set14

2 0.147 0.175 0.198 0.207 0.304

3 0.122 0.134 0.159 0.175 0.285

4 0.089 0.105 0.124 0.136 0.253

BSD100

2 0.125 0.151 0.161 0.174 0.238

3 0.103 0.112 0.129 0.146 0.217

4 0.072 0.086 0.094 0.112 0.188

Urban100
2 0.175 0.214 0.229 0.230 0.385

4 0.111 0.134 0.158 0.158 0.348

Sun-Hays80 8 0.038 0.047 0.064 0.058 0.146

Average - 0.110 0.129 0.149 0.159 0.269
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reveal clearly the problems due to different scaling factors, m = 2, 3, 4, 4.5 for each

dimension was used to expand Fig. 6.3(a), Fig. 6.4(a), Fig. 6.5(a) and Fig. 6.6(a)

respectively. In particular, a scaling factor of 4.5 was used to expand Fig. 6.6(a)

to show that the proposed method can perform effectively using non-integer scaling

factors. The corresponding expanded images produced by the five benchmarking

algorithms and the proposed method were shown in Fig. 6.3(c)-(h), Fig. 6.4(c)-(h),

Fig. 6.5(c)-(h) and Fig. 6.6(c)-(h) respectively.

For the nearest neighbour method, pixelization and jagged edges were obvious in

the output image, even though it can preserve vertical and horizontal edges very well.

For the bilinear and bicubic methods, both perform well in the smooth regions, but

smear sharp edges. For Hwang’s method, it produces jagged edges and for Zhang’s

method, it cannot preserve sharp edges very well and the edges in its output looks

slightly blurred. For the output images produced by the proposed method, as shown

in Fig. 6.3(h), Fig. 6.4(h), Fig. 6.5(h) and Fig. 6.6(h), it is obvious that the

proposed method was able to regain the sharpness of the edges without jaggedness.

6.2.3 Improved Image Expansion Conclusion

In the proposed method, the MGC is used with an adaptive γ value, based on

the absolute differences of two interpolation methods with different degrees of edge

preservation, to regain the sharpness of the edges as well as reducing jaggedness

and prevent blurring of edges in the expanded images. The proposed mapping func-

tion was able to regain the sharpness of the edges by mapping the whole smoothed

edge residual image to the γ values of the modified gamma curve for every pixel in
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(a) Input (b) Reference

(c) Nearest (d) Bilinear

(e) Bicubic (f) Hwang

(g) Zang (h) Proposed

Figure 6.3 : The image expansion results for the proposed method and the other bench-

marking algorithms using the lena image from the Set14 dataset. (a) The input image.

(b) The original image of the same size as the outputs. The outputs were expanded by a

scaling factor of m = 2 using (c) Nearest Neighbour, (d) Bilinear, (e) Bicubic, (f) Hwang,

(g) Zhang and (h) the proposed method.
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(a) Input (b) Reference

(c) Nearest (d) Bilinear

(e) Bicubic (f) Hwang

(g) Zang (h) Proposed

Figure 6.4 : The image expansion results for the proposed method and the other bench-

marking algorithms using the zebra image from the Set14 dataset. (a) The input image.

(b) The original image of the same size as the outputs. The outputs were expanded by a

scaling factor of m = 3 using (c) Nearest Neighbour, (d) Bilinear, (e) Bicubic, (f) Hwang,

(g) Zhang and (h) the proposed method.
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(a) Input (b) Reference

(c) Nearest (d) Bilinear

(e) Bicubic (f) Hwang

(g) Zang (h) Proposed

Figure 6.5 : The image expansion results for the proposed method and the other bench-

marking algorithms using the butterfly image from the Set5 dataset. (a) The input image.

(b) The original image of the same size as the outputs. The outputs were expanded by a

scaling factor of m = 4 using (c) Nearest Neighbour, (d) Bilinear, (e) Bicubic, (f) Hwang,

(g) Zhang and (h) the proposed method.
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(a) Input (b) Reference

(c) Nearest (d) Bilinear

(e) Bicubic (f) Hwang

(g) Zang (h) Proposed

Figure 6.6 : The image expansion results for the proposed method and the other bench-

marking algorithms using the hillside image from the BSD100 dataset. (a) The input

image. (b) The original image of the same size as the outputs. The outputs were ex-

panded by a scaling factor of m = 4.5 using (c) Nearest Neighbour, (d) Bilinear, (e)

Bicubic, (f) Hwang, (g) Zhang and (h) the proposed method.
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the expanded image. The sharpness of the edge was correctly recovered by setting

the intersection point of the modified gamma curve to the mid-intensity value of

the corresponding edge. Halo effects, due to the over-enhancement of strong edges,

were also suppressed by limiting the intensity value of a pixel to a value within the

intensity range inside a filter window centred at the corresponding location in the

original image. Quantitative and visual results show that the proposed method out-

performed other benchmarking techniques producing sharp expanded output images

without edge jaggedness nor halo effects for a wide range of test input images.

6.3 Image Enhancement Prior to Colour Filter Array De-

mosaicking

For colour images captured by single-image sensors, enhancement is usually per-

formed after CFA demosaicking because most image enhancement algorithms are

developed for full colour images. As enhancement prior to demosaicking will pro-

duce a different result from enhancement after demosaicking, it will be more desirable

to enhance an image prior to demosaicking particularly for images with a narrow

intensity range. One reason is that demosaicking is the interpolation of missing

colours, and interpolation within a narrow intensity range with only a few discrete

intensity levels may lead to large interpolation errors. On the other hand, if en-

hancement is performed prior to demosaicking to widen the range of intensity, the

above-mentioned interpolation errors could be reduced. The image enhancement

algorithm [38] proposed in this thesis can be adapted so that they can be applied

to CFA images prior to demosaicking. Results indicate that enhancement prior to
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demosaicking can produce more visually pleasing images than those performed after

demosaicking.

6.3.1 Enhancement Prior to CFA Demosaicking Method

Figure 6.7 : Flowchart for the proposed enhancement prior to demosaicking method

As existing enhancement methods were developed for enhancing full-colour im-

ages, the image enhancement with brightness preservation by successive approxima-

tion method [38] described in Chapter 3 is proposed for enhancing CFA images prior

to demosaicking. This is because it is desirable to preserve the mean brightness of an

image in some applications, particularly for video enhancement to avoid flickering,

or if the input is too bright or too dark, the brightness of the image can be adjusted

whilst avoiding clipping of the intensity values. In order to recover the vivid colour

from a poor contrast image, the contrast expansion method [38, 36, 37] described in

Chapter 2, is first applied to the CFA input images.

In general, contrast enhancement is applied to the luminance component of the

image. If enhancement is applied to the individual RGB colour planes of the image

instead, the resultant full colour of the image may deviate from the original colour.



132

In the CFA domain, the luminance component of a full image is not available. In

order to avoid colour deviation when enhancing the CFA image, enhancement is

applied to the CFA image, Xc(m,n), using the ratio of the luminance component

before and after enhancement at location (m,n) to enhance the corresponding colour

pixels in order to maintain the original colour as follows:

Xp(m,n) =
�Ic(m,n)

Ic(m,n)
Xc(m,n), (6.5)

where Xc(m,n) and Xp(m,n) are the respective input and enhanced pixel values of

the corresponding colour, i.e. R, G or B, at location (m,n) in the CFA image and

Ic(m,n) and �Ic(m,n) are the luminance components before and after enhancement.

This requires the luminance component Ic to be estimated from the CFA image

first. In the proposed method, as shown in Fig. 6.7, the luminance component

Li is estimated using a computationally efficient Bilinear interpolation method af-

ter contrast expansion. As the ratio of the luminance of a smeared edge before

enhancement to the luminance of a smeared edge after enhancement will have a

similar ratio as the luminance of a sharp edge before enhancement to the luminance

of a sharp edge after enhancement, the edge preserving property of this estimated

luminance is not crucial. It has been shown in the experimental results that using

Bilinear interpolation to estimate the luminance component has no adverse effects

on preserving the edges of the output image.

The luminance of the interpolated output Ic is then enhanced by the proposed

STSA method described in Chapter 3 to produce the enhanced luminance compo-
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nent �Ic(m,n) at pixel location (m,n).

Figure 6.8 : Flowchart for standard enhancement after demosaicking

Figure 6.9 : The 2x2 Bayer pattern

For comparison of the mean brightness, Ī, of the original image with the mean

brightness of the enhanced image in successive approximation for each iteration, Ī

must be estimated from the original CFA image. To do this, a luminance value Il

is first estimated from each 2x2 Bayer pattern group of the CFA image as shown in

Fig.6.9, using [11]:

Il = 0.2989R + 0.5870

(
G1 +G2

2

)
+ 0.1140B (6.6)

The mean brightness Ī is then the average of all the luminance values Il of the whole

CFA image.
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6.3.2 Enhancement Prior to CFA Demosaicking Results

For performance evaluation of the proposed method, the complete set of the

CSIQ [1] test image dataset was used. As recently developed algorithms were all

designed for enhancing full-colour images, they are not directly applicable for CFA

images. No algorithms for enhancement of CFA images prior to demosaicking were

therefore included for benchmarking. In the experimental results, benchmarking

algorithms for enhancement after demosaicking, including RSWHE [17], RICE [9],

AGCWD [33], SECE [3] and RSECE [24], were used for the comparison with the

proposed enhancement method prior to demosaicking. Refer to Fig. 6.8 for the

procedure of the benchmarking algorithms in producing the enhanced full-colour

image output.

Table 6.4 gives the average IQM values, namely, BIQME [19], EMEG [3] and

NIQMC [54], of the output enhanced images produced by the benchmarking and the

proposed methods and the best values for each IQM are highlighted in bold. The

proposed method produced the highest average score for each IQM, outperforming

the other benchmarking algorithms for all the three IQMs.

In order to confirm that the interpolation algorithm for the estimation of the

luminance component, Ic(m,n), does not have a strong effect on the performance

of the proposed method in its edge-preserving capability, a number of different in-

terpolation methods, namely, nearest neighbour, bilinear, bicubic and high-order

interpolation (HOI) [75], were evaluated as shown in Table 6.5. HOI [75] is an edge-

preserving interpolation technique while bilinear and bicubic will blur sharp edges.
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However, the values as shown in Table 6.5 have minimal variations within the same

IQM. From the results in Table 6.5, Bilinear interpolation gave the best balance

between performance and computational efficiency.

Table 6.4 : The average values for different IQMs for the CSIQ dataset.

Image Quality Measure (IQM)

Enhancement Methods BIQME EMEG NIQMC

RSWHE 0.499 0.233 4.254

RICE 0.499 0.240 4.236

AGCWD 0.485 0.257 4.222

SECE 0.568 0.320 5.139

RSECE 0.572 0.347 5.204

Proposed Method 0.602 0.358 5.339

Table 6.5 : The average values for different IQMs using different interpolation methods

for the CSIQ dataset.

Interpolation Methods

IQM Nearest Neighbour Bilinear Bicubic HOI

BIQME 0.598 0.602 0.600 0.602

EMEG 0.340 0.358 0.340 0.381

NIQMC 5.338 5.339 5.343 5.342

For visual assessment, four images of different types from the CSIQ [1] test image

dataset, namely, the child swimming in Fig. 6.10, the butter flower in Fig. 6.11,

the turtle in Fig. 6.12 and the trolley in Fig. 6.13, were used for the comparison

of the proposed method with the other benchmarking algorithms. In these figures,

(a) gives the original image as a reference, (b) is the CFA input to the proposed

method, (c) is a demosaicked image of (b) and is the input to the benchmarking

algorithms for enhancement after demosaicking. The outputs of the benchmarking
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algorithms, namely RSWHE, RICE, AGCWD, SECE and RSECE, were shown in

(d), (e), (f), (g) and (h) respectively and (i) is the output of the proposed method.

As shown in Fig. 6.10 - Fig. 6.13 (d) - (f), the RSWHE, RICE and AGCWD

methods all produced under-enhanced image outputs with poor contrast. For the

SECE and RSECE methods, as shown in Fig. 6.10 - Fig. 6.13 (g) - (h), the contrast

of the outputs was improved, but the colour still remains dull and washed out. The

proposed method, which performs enhancement prior to demosaicking, as shown in

Fig. 6.10 - Fig. 6.13(i), produced output images with much better contrast and

vivid colour.

6.3.3 Enhancement Prior to CFA Demosaicking Conclusion

The enhancement methods presented in this thesis can be applied for enhancing

images in the CFA domain. It has been shown quantitatively and visually that

enhancing prior to demosaicking produces more desirable results, and the proposed

method is particularly beneficial for enhancing images with a narrow intensity range.

Using an estimated luminance component for enhancement as a reference, the output

colour in the enhanced images can be faithfully reproduced with little deviation from

the original colour. As the proposed method can preserve the mean brightness of

enhanced images, it is also suitable for video enhancement without causing any

flickering.

6.4 Conclusion

In this chapter, two different applications have been explored which utilise some

of the image enhancement methods presented in this thesis. To recover the sharp-
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(a) Original (b) CFA Input (c) Demosaicked CFA

(d) RSWHE (e) RICE (f) AGCWD

(g) SECE (h) RSECE (i) Proposed

Figure 6.10 : The enhancement results for the proposed enhancement prior to demo-

saicking method and the other benchmarking algorithms using the child swimming image

from the CSIQ dataset. (a) The original image. (b) The CFA input. (c) The demosaicked

CFA of (b). The enhanced output by (d) RSWHE, (e) RICE, (f) AGCWD, (g) SECE,

(h) RSECE and (i) the proposed method (enhancement prior to demosaicking).
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(a) Original (b) CFA Input (c) Demosaicked CFA

(d) RSWHE (e) RICE (f) AGCWD

(g) SECE (h) RSECE (i) Proposed

Figure 6.11 : The enhancement results for the proposed enhancement prior to demo-

saicking method and the other benchmarking algorithms using the butter flower image

from the CSIQ dataset. (a) The original image. (b) The CFA input. (c) The demosaicked

CFA of (b). The enhanced output by (d) RSWHE, (e) RICE, (f) AGCWD, (g) SECE,

(h) RSECE and (i) the proposed method (enhancement prior to demosaicking).
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(a) Original (b) CFA Input (c) Demosaicked CFA

(d) RSWHE (e) RICE (f) AGCWD

(g) SECE (h) RSECE (i) Proposed

Figure 6.12 : The enhancement results for the proposed enhancement prior to demo-

saicking method and the other benchmarking algorithms using the turtle image from the

CSIQ dataset. (a) The original image. (b) The CFA input. (c) The demosaicked CFA of

(b). The enhanced output by (d) RSWHE, (e) RICE, (f) AGCWD, (g) SECE, (h) RSECE

and (i) the proposed method (enhancement prior to demosaicking).
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(a) Original (b) CFA Input (c) Demosaicked CFA

(d) RSWHE (e) RICE (f) AGCWD

(g) SECE (h) RSECE (i) Proposed

Figure 6.13 : The enhancement results for the proposed enhancement prior to demo-

saicking method and the other benchmarking algorithms using the trolley image from the

CSIQ dataset. (a) The original image. (b) The CFA input. (c) The demosaicked CFA of

(b). The enhanced output by (d) RSWHE, (e) RICE, (f) AGCWD, (g) SECE, (h) RSECE

and (i) the proposed method (enhancement prior to demosaicking).
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ness of edges in an expanded image, the proposed MGC described in Chapter 3 is

applied with an adaptive γ value, based on the difference between two interpolation

algorithms. Results show that the proposed method of image expansion with the

MGC outperforms other benchmarking algorithms both quantitatively and visually,

with outputs that have clearly sharper edges free from jaggedness and halo effects.

When applying the ratio equation given by 6.5, the proposed image enhancement

methods presented in this thesis can also be applied to CFA images prior to demo-

saicking. This can reduce interpolation errors for input images with poor contrast,

as the intensity range is expanded prior to demosaicking. When using the proposed

STSA method described in Chapter 3 to enhance images prior to demosaicking,

the results show that better output images can be produced then when applying

enhancement after demosaicking.

Aside from the two examples given in this chapter, there are many other appli-

cations for which the proposed image enhancement methods may be incorporated

into to improve the outcomes. These include applications on devices such as mobile

phones, digital cameras including security and surveillance cameras, digital TVs,

DVD and Bluray players, and many other audio-visual devices.
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Chapter 7

Conclusion

A number of novel image enhancement methods have been presented in this thesis.

They have been shown to outperform the benchmarking techniques, without suffer-

ing from the existing problems that many contemporary techniques do. These new

methods make several specific contributions to the area of image enhancement and

its applications.

To avoid the over-enhancement problems that plague many histogram equal-

isation based enhancement methods, a multi-level histogram shape segmentation

method which groups together regions of intensities with a similar frequency of oc-

currence was proposed in this thesis. By detecting abrupt changes in the slope of

a histogram, the proposed method can appropriately segment the histogram. Then

when equalisation is applied, intensity values can only by re-mapped within the

same segment, preventing over-enhancement from occurring. Results based on the

807 test images show that the proposed method outperformed the other benchmark-

ing equalisation based techniques, especially in terms of the visual quality of output

images.

The proposed image enhancement method with brightness preservation can pro-

vide any degree of enhancement whilst simultaneously preserving the brightness of

an image. This is achieved by using successive approximation to locate the position
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of the intersection point of an S-shaped curve, such that the brightness of the input

image is maintained. The results showed that both proposed methods, namely STSA

and MGCSA, had an average mean or median brightness error of 0. Furthermore,

the proposed MGCSA method was able to preserve the mean or median brightness

with an error of ±2 for all of the 807 test images, none of the other benchmarking

algorithms were able to preserve the brightness with the same accuracy. Moreover,

the proposed method’s ability to independently adjust the degree of enhancement

whilst still preserving brightness is a feature no other benchmarking algorithm can

boast. This method can also be used to adjust the brightness of an image, without

causing clipping of the intensity values, so that details of the image are not lost. It is

especially suitable for video enhancement, with the ability to adjust the brightness

of a video while maintaining the brightness transition from frame to frame, so that

flickering will not occur.

Image enhancement can be optimised by taking advantage of recently developed

IQMs which have a better correlation with visual perception. It has been shown

that for each tested IQM, there exists a global maximum which will produce an

optimally enhanced output image according to that IQM. The IQM value is used as

the feedback in a binary search to locate the intersection point of an S-shaped curve

such that the IQM value is maximised. When compared with other optimisation

methods, it was shown that the proposed method consistently produced higher IQM

values for the 807 test images. Furthermore, as this method optimises enhancement

based on an IQM, it can also be used to assess how well IQMs correlate with visual

perception. As future IQMs improve the correlation with visual perception, they
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can also be used with this method to give even better quality outputs. Moreover, a

different feedback can be used within the binary search, depending on the applica-

tion, so that enhancement can be optimised for that specific application to improve

its outcomes.

To apply extra enhancement to image details that may otherwise be lost in con-

trast enhancement, an adaptive MAD based detail enhancement method was pro-

posed. By separating the background and details of an image, the proposed method

can improve image quality whilst avoiding halo effects and suppressing noise in ho-

mogeneous regions. Results show that the proposed adaptive detail enhancement,

applied in conjunction with background enhancement, had a superior performance

to the proposed optimised enhancement methods. Furthermore, the adaptive MAD

based method was shown to outperform the benchmarking algorithms visually with

less noise in homogeneous regions and without halo effects at edges.

The image enhancement methods presented in this thesis have also been shown

to have many other applications. The proposed MGC was shown to be able to

regain the sharpness of edges for improving image expansion when applied with

an adaptive γ value. When the proposed enhancement methods are applied prior

to CFA demosaicking, it was shown that they can reduce interpolation errors for

images with poor contrast, giving better quality enhancement then benchmarking

algorithms applied after demosaicking. Apart from the two applications presented

in this thesis, the research findings have many other applications, including mobile

phones, digital cameras including security and surveillance cameras, digital TVs,

DVD and Bluray players, and many other audio-visual devices.
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Chapter 8

Future Extensions

The image enhancement methods presented in this thesis have been shown to outper-

form other benchmarking algorithms when implemented in software. In particular,

the proposed image enhancement method with brightness preservation by succes-

sive approximation is especially suitable for video enhancement. However, for video

enhancement, it would be desirable to apply the enhancement method in real-time.

Future extension of the enhancement methods presented in this thesis is the imple-

mentation of the proposed algorithms on field-programmable gate arrays (FPGAs),

for real time processing. This will increase the impact these methods can have in

hardware such as mobile phones, digital cameras, including security and surveillance

cameras, digital TVs and more.

Another method that would benefit from the real time implementation on FPGAs

is the proposed image expansion method. This could be applied in devices with a

camera, such as mobile phones and security and surveillance cameras, to improve

the quality of digital zooming.

The proposed optimised enhancement method has been shown to be able to

optimise an image based on a particular IQM, giving better results than other

benchmarking optimised enhancement methods. However, as already stated in the

conclusion, different feedback can be used in place of the IQM value in the binary



146

search to optimise the image based on certain criteria.
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