
Explorations In Searching Compressed
Nucleic Acid And Protein Sequence

Databases And Their
Cooperatively-Compressed Indices

Paul Gardner-Stephen

Bachelor of Science,

Flinders University of South Australia

A Thesis Submitted for the Degree of Doctor of Philosophy

Flinders University

School of Informatics and Engineering

Adelaide, South Australia

2008

(Submitted 20 December 2007)

Acknowledgements

Before I acknowledge those who have helped me make it throughmy candidature, I wish

to thank the unbroken chain of people who have believed in me,encouraged me, nurtured

and supported me, and without whom I would not have made it to the starting line: Mrs

Jan Stephen, my mother, who first kindled my interest in science, and Mr. Keith Gardner,

my father; Mr. Peter Brune, a primary school teacher, who believed that I would be some-

one great one day (perhaps I will get there yet); Dr. Allen Hodson, a high school teacher

who taught me more lessons about life and statistics than I suspect he realises; Dr. Todd

Rockoff, a university lecturer who kindled my interest in hardware design; Mr. Michael

Renz of Germany, who taught me my first lessons about the commercial world; Mr. Mur-

ray Rogers, who took a scruffy young university student and made a respectable (but still

scruffy) Systems Administrator; and Prof. Greg Knowles, who had enough faith in me to

take me on as his student.

For their support throughout my candidature, I wish to thankagain: Mr. Murray Rogers

for graciously releasing my time so that I could study; and Prof. Greg Knowles for his

support and investment as my supervisor. In addition to these people I wish to thank: Prof.

Janet Verbyla as head of the School of Informatics & Engineering, and my colleagues

(academic staff, general staff and fellow candidates) for their support and friendship during

my candidature, and also my friends who have not abandoned me, even though “as busy as

a Gardner-Stephen” has become a proverb among them.

ii

A special mention must go to Ms. Fran Banytis of the Staff Development & Training Unit,

for the way she has invested much of her self into my candidature. Her encouragement and

support throughout my candidature has been as valuable as ithas been unexpected.

Finally I would like to thank Dr Dione Gardner-Stephen, my beautiful wife who not only

loved me enough to trade in her perfectly good maiden name forone that no-one can spell,

but believed in me and supported me through the thick and thinof candidature, not only

with the insight and understanding of another doctoral candidate, but in the way that only

a loving wife can. I love you much more than words can express.

Through the actions of all these people I see the guiding handof a God of love, and who

has been gracious enough, not merely to bring me to this place, but to invite me to know

Him personally. That God is Jesus Christ of Nazareth, and to Him I say “thank you” for

the contributions that each of you have made in my life.

iii

Abstract

Nucleic acid and protein databases such as GenBank are growing at a rate that perhaps

eclipses even Moore’s Law of increase in computational power1. This poses a problem for

the biological sciences, which have become increasingly dependant on searching and ma-

nipulating these databases. It was once reasonably practical to perform exhaustive searches

of these databases, for example using the algorithm described by Smith and Waterman,

however it has been many years since this was the case. This has led to the development of

a series of search algorithms, such as FASTA, BLAST and BLAT,that are each successively

faster, but at similarly successive costs in terms of thoroughness.

Attempts have been made to remedy this problem by devising search algorithms that are

both fast and thorough. An example is CAFE, which seeks to construct a search system

with a sub-linear relationship between search time and database size, and argues that this

property must be present for any search system to be successful in the long term.

This dissertation explores this notion by seeking to construct a search system that takes

advantage of the growing redundancy in databases such as GenBank in order to reduce

both the search time and the space required to store the databases and their indices, while

preserving or increasing the thoroughness of the search.

The result is the creation and implementation of new genomicsequence search and align-

ment, database compression, and index compression algorithms and systems that make

1More accurately, Moore’s Law predicts that the capacity fortransistors on an integrated circuit will
double approximately every two years. In practice, due to the efforts of computer architects this has translated
into a roughly corresponding increase in computation throughput.

iv

progress toward resolving the problem of reducing search speed and space requirements

while improving sensitivity. However, success is temperedby the need for databases with

adequate local redundancy, and the computational cost of these algorithms when servicing

un-batched queries.

v

"I Paul Gardner-Stephen, certify that this thesis does not incorporate

without acknowledgment any material previously submittedfor a degree or

diploma in any university; and that to the best of my knowledge and belief

it does not contain any material previously published or written by another

person except where due reference is made in the text."

Candidate:

Paul Gardner-Stephen

vi

CONTENTS CONTENTS

Contents

Acknowledgements ii

Abstract iv

I Introductory 1

1 Introduction 2

1.1 Motivation . 2

1.2 Statement And Scope Of Thesis .4

1.2.1 Introduction . 4

1.2.2 Revealing Recurrences Through Data Compression 5

1.2.3 Using Recurrences To Compress Indices 7

1.2.4 Using Recurrences To Improve Search Sensitivity 8

1.2.5 Opportunity And Research Questions 11

1.2.6 Summary And Statement Of Thesis 12

1.3 Assumptions . 13

1.4 Contributions . 14

1.5 Structure Of Thesis . 15

vii

CONTENTS CONTENTS

2 Background 18

2.1 Sequence Alignment . 18

2.1.1 Sequence Search And Alignment 18

2.1.1.1 Bioinformatics And Sequence Similarity Searching. . . 18

2.1.1.2 Exact Sub-String Alignment 20

2.1.1.3 Non-Exact Sub-String (Non-Gapped) Alignment 21

2.1.1.4 Non-Exact Gapped Alignment 23

2.1.1.5 Dynamic Programming 24

2.1.1.6 Proteomic Similarity . 30

2.1.1.7 Biological And Statistical Significance Of Alignments . . 31

2.1.2 Comparing The Performance Of Sequence Search And Alignment

Algorithms . 33

2.1.2.1 Human Judgement . 33

2.1.2.2 Benchmarks . 34

2.1.2.3 Sensitivity Metrics . 35

2.2 Accelerating Sequence Searching 36

2.2.1 Heuristic Algorithms . 37

2.2.1.1 A Brief Comparison Of Selected Heuristic Algorithms . . 37

2.2.1.2 FASTA . 37

2.2.1.3 BLAST . 38

2.2.1.4 BLAT . 40

2.2.1.5 FLASH . 41

viii

CONTENTS CONTENTS

2.2.1.6 CAFE . 41

2.2.1.7 Acceptance Of Heuristic Algorithms 43

2.2.1.8 Ignorance Of Users To Specific Heuristic Trade-Offs. . . 44

2.2.2 Clustering (Parallel Computing) 45

2.2.3 Indexing . 46

2.2.4 Summary . 47

2.3 Compression . 48

2.3.1 Introduction . 48

2.3.2 Entropy Coding Methods . 48

2.3.3 Dictionary Methods . 51

2.3.4 Statistical Modelling Methods 56

2.3.5 Performance Of Compression Algorithms 58

2.3.6 Burrows-Wheeler Transform . 61

2.3.7 Synchronisation . 64

2.3.8 DNA Compression . 65

2.4 Constructing Compact Indices .. . 66

2.4.1 Compressing Index Postings . 68

2.4.2 Efficient Index Construction .71

2.4.3 Document Reordering And Filtering 72

2.4.4 A Compelling Opportunity: Cooperative Compression 72

3 Materials And Methods 74

3.1 Selection Of Databases .75

ix

CONTENTS CONTENTS

3.1.1 Nucleic Acid . 75

3.1.2 Protein . 77

3.2 Query Selection . 77

3.3 Speed And Sensitivity .79

3.4 Peer Group Of Algorithms . 81

3.4.1 Smith-Waterman (SSEARCH 3.4t25) 81

3.4.2 BLAST (NCBI-BLAST 2.2.6) . 83

3.4.3 BLAT . 84

3.4.4 Academic Version Of PatternHunter 84

3.4.5 FASTA . 85

3.4.6 CAFE . 85

3.4.7 Algorithms Introduced In This Dissertation 86

3.5 Batching Environment . 86

3.5.1 Overview . 86

3.5.2 Directory Structure . 87

3.5.2.1 Top Level Directories 87

3.5.3 Generation Of Standard Queries89

3.5.4 Execution Of Batches . 90

3.5.4.1 Executing A Batch . 90

3.5.4.2 Summarisation Of Search Results 91

3.5.5 Comparison Of Batched Search Results 91

3.6 Benchmark Results . 96

x

CONTENTS CONTENTS

3.6.1 Database And Index Sizes . 96

3.6.2 Search Speed . 96

3.6.3 Search Sensitivity . 97

II Cooperative Compression Of Redundant Proteomic Databases 109

4 DASH: Search & Alignment For Cooperatively Compressed Databases And

Indices 110

4.1 The DASH Algorithm . 116

4.1.1 Stage 1: Searching For Non-Gapped Alignments 117

4.1.1.1 Addressing Selectivity 118

4.1.1.2 Stop Words . 123

4.1.1.3 Limiting Alignment Numbers In Flight 124

4.1.1.4 Suppression Of Repeated Discovery Of Long Alignments 125

4.1.1.5 Locally Adaptive Query Striding 125

4.1.1.6 Combined Effect Of Alignment Candidate Reduction

Measures . 127

4.1.2 Stage 2: Optimal Assembly Of HSPs 129

4.1.3 Stage 3: Alignment Finishing Using Adaptive Banded Dynamic

Programming . 132

4.1.4 On Search Time Complexity . 137

4.2 Search Parameters . 138

4.2.1 Tunable Parameters . 138

xi

CONTENTS CONTENTS

4.2.1.1 Tunable Alignment Properties 138

4.2.1.2 Tunable Query Striding Parameters 139

4.2.1.3 Tunable HSP Properties 139

4.2.1.4 Tunable DP And HSP Assembly Parameters 140

4.2.1.5 Canonical Parameter Sets 142

4.3 DASH Search Program (dash) . 144

4.3.1 Scoring, Statistics And Output Format 144

4.4 Results . 149

4.4.1 Illustrated Example Of Alignment Assembly 149

4.4.2 Example Of Superior Alignment Assembly 151

4.5 Summary . 153

5 FOLDDB: First Steps In Cooperatively Compressed Databases And Indices 154

5.1 FOLDDB Index Structure And Algorithm 156

5.1.1 FOLDDB Index Structure . 156

5.1.1.1 Text-Partitioned Structure 156

5.1.1.2 Partition Layout . 158

5.1.1.3 Compression Of Inverted Lists 158

5.1.2 Excluding Stopk-mers . 160

5.1.3 Record Folding As A Prototype Of Cooperatively Compressed In-

dexing . 162

5.1.4 Construction Of Folded Database Index 164

5.2 Searching Folded Databases With DASH 168

xii

CONTENTS CONTENTS

5.3 Method . 168

5.4 Results And Discussion .171

5.4.1 Effect Of Sequence Folding . 171

5.4.2 Effect Of Query Length On Search Time 175

5.5 Conclusions . 181

III Cooperative Compression Of Less Redundant Nucleic Acid

Databases 188

6 NP3: Compressing Sorted Nucleic Acid Databases 189

6.1 Design Considerations .192

6.1.1 Compression And Decompression Speed193

6.1.2 Opaque Block Compression Unsuitable 193

6.1.2.1 The Lack Of Explicit Recurrence Records 194

6.1.2.2 The Boundaries Of Clusters Of Similar Database

Records May Not Be Known 194

6.1.2.3 The Requirement For Random Access To Database

Records . 195

6.1.2.4 The Poor Performance Of General Purpose Compression

Algorithms On DNA 195

6.1.3 Existing DNA Compression Schemes Unsuitable 195

6.1.4 DNA Specific LZ77 Compression Suitable196

6.1.4.1 Explicit Recurrence Records 196

6.1.4.2 Boundaries Of Clusters Need Not Be Known 196

xiii

CONTENTS CONTENTS

6.1.4.3 Provision Of Fast Random Access To Database Records. 197

6.1.5 Encoding Recurrence Records. .197

6.2 The NP3 Algorithm . 199

6.2.1 Administrative Information .. 199

6.2.2 Compression Of Sequence Descriptions 201

6.2.3 Discovery Of Recurrences . 204

6.2.3.1 Recurrence Search Algorithms 204

6.2.3.2 Discovery Of Recurrences 205

6.2.4 Generation Of Possible Record Encodings 207

6.2.4.1 Ad Hoc Code Table . 207

6.2.4.2 Recently Referenced Address Table 210

6.2.4.3 Selection Of Codes During Compression 213

6.2.5 Computation Of Optimal Code Streams213

6.2.5.1 Tabulation Of Coding Options 215

6.2.5.2 Calculation Of Optimal Path 215

6.2.5.3 Effect Of Extension Code (Code J) 218

6.2.5.4 Effect Of RRAT . 218

6.2.5.5 Computational Cost . 219

6.2.5.6 Summary . 219

6.2.6 Segmentation Of Long Records 220

6.2.7 Database Partitioning . 221

6.2.7.1 Parallel Compression Of NP3 Files 221

xiv

CONTENTS CONTENTS

6.2.7.2 Ease Of Updating And Appending To NP3 Files 222

6.2.8 Decompression . 222

6.2.8.1 Sequential Record Access 222

6.2.8.2 Random Record Access 222

6.3 Results . 223

6.3.1 Compression Of The Human UniGene (Nucleic Acid) Database . . 223

6.3.2 Compression Speed . 225

6.3.3 Decompression Speed . 225

6.3.3.1 Global Random Decompression 226

6.3.3.2 Local Random Decompression 227

6.3.3.3 Sequential Decompression 227

6.3.4 Compression Of De Facto Corpus 228

6.4 Conclusions . 229

6.5 Future Directions . 230

7 NIX: Producing Compact Cooperatively Compressed IndicesOf Biological Se-

quence Databases 232

7.1 The NIX Indexing Algorithm .233

7.1.1 Omission Of Redundant Postings 233

7.1.2 Reconstruction Of Omitted Index Postings 237

7.1.3 Re-Use And Minimisation Of HSP Discovery Effort 238

7.2 NIX Index Format . 240

7.2.1 Why Pointers Tok-mer Indices Were Not Compressed 241

xv

CONTENTS CONTENTS

7.2.2 Compressing The Inverted Lists241

7.2.2.1 Creating A Fast Interpolative Coder 243

7.3 Modifications To NP3 . 246

7.3.1 Optimisation One: Preferring Inter-Record References 246

7.3.2 Optimisation Two: Per-Posting Rebate 247

7.3.3 Optimisation Three: Maximising Inter-Record Reference Target

Coverage . 247

7.4 Searching NP3/NIX Ensembles With DASH 248

7.5 Comparison of NP3 and GeNML . 248

7.6 Presentation Of Duplicated Results 249

7.7 Method . 251

7.8 Results . 252

7.8.1 Improved Search Sensitivity .252

7.8.2 Reduced Index Sizes . 262

7.8.3 Increased Search Time . 265

7.8.3.1 NP3 And NIX Decompression Costs 265

7.8.3.2 Time Spent Performing Dynamic Programming, Discov-

ering HSPs, And Translating HSPs 270

7.8.4 Cooperative Compression Of A Less Redundant Database. 272

7.8.5 Comparison Of GeNML And NP3 273

7.8.6 Compressed Database And Index Sizes273

7.8.7 Effect Of Query Length On Search Time 275

7.9 Discussion . 278

xvi

CONTENTS CONTENTS

7.9.1 Analysis Of Performance With Disk Based Index 278

7.9.1.1 Analysis Of DASH With FOLDDB And NP3/NIX 278

7.9.1.2 The Beneficial Effect Of Partitioned Data279

7.9.1.3 Comparison Of Batched DASH Versus NCBI-BLAST . . 280

7.10 Conclusions . 280

7.11 Future Directions .282

7.11.1 Sorting Databases . 282

7.11.2 Improving Search Efficiency .282

7.11.3 Avoiding NP3 Decompression Time282

7.11.4 Presenting Relationships Among Search Results 283

7.11.5 Improving Compression Performance By Using Dissimilar Regres-

sors . 283

IV Summary Of Results And Conclusions 298

8 Conclusions 299

8.1 Conclusions . 301

V Appendix 303

A Invocation Commands For Search Algorithms 304

xvii

LIST OF FIGURES LIST OF FIGURES

List of Figures

2.1 Example Of Dynamic Programming Evaluation. 26

2.2 Compression of “wooloomooloo” using SEQUITUR. 55

2.3 Example DMC Initial Model. .58

2.4 Example Cloning Of States In A DMC Model. 58

3.1 Calculation Of PatternHunter Variant Metric. 80

3.2 Example Of Incorrect Result From SeqAln. 82

3.3 Example Complete Batching Environment Directory Structure. 88

3.4 Example Batching Environment Description File. 89

3.5 Example Batching Environment Template File. 89

3.6 Use Ofpickquery Program To Obtain Standard Nucleic Acid Queries. . . . 90

3.7 Sample Use Ofrunbatch Program. 90

3.8 Example Of The Terse Alignment Format. 91

3.9 Example Invocation Ofrunbatch With Custom Filter. 91

3.10 Example Command Sequence To Execute And Summarise The Results Of

Several Batches. 92

3.11 Example Batching Environment Directory Structure After Running Batch. . . 93

xviii

LIST OF FIGURES LIST OF FIGURES

3.12 Example Batching Environment Data Directory. 94

3.13 Example Command Sequence To Selectively Compare Several Batches. . . . 96

3.14 PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Nucleic

Acid Queries (Against The Human UniGene (Nucleic Acid) Database). . . . 98

3.15 PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Nucleic

Acid Queries (Against The Human Genome database). 99

3.16 PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Protein

Queries (Against The GenPept (Protein) Database). 100

4.1 PatternHunter Variant Scores (See Section 3.3) Of Various Algorithms (Nu-

cleic Acid) (Against The Human UniGene (Nucleic Acid) Database). 112

4.2 PatternHunter Variant Scores (See Section 3.3) Of Various Algorithms (Pro-

tein) (Against The GenPept (Protein) Database). 113

4.3 The Three Stages Of The DASH Sequence Alignment Algorithm. 116

4.4 Table Look Up For Un-Gapped Alignment And Score. 121

4.5 Example Of Optimising Striding,Smax= 4. 127

4.6 Hypothetical Complex HSP Assembly Situation. 131

4.7 Hypothetical Complex HSP Assembly Situation. 132

4.8 Simple Example Of Adaptive Band Placement During Dynamic Programming.134

4.9 Example Of DASH Adaptive Banded Dynamic Programming. 135

4.10 Alignment Resulting From Figure 4.9 (final score = +11).. 136

4.11 Pseudo Code For The DASH Search Algorithm: Overview. 144

4.12 Pseudo Code For The DASH Search Algorithm: HSP discovery. 145

4.13 Pseudo Code For The DASH Search Algorithm: HSP Assembly. 146

xix

LIST OF FIGURES LIST OF FIGURES

4.14 Pseudo Code For The DASH Search Algorithm: Dynamic Programming

Ends Of Alignments. 147

4.15 Example DASH Output. 148

4.16 Example Of Alignment Between Two Very Similar Sequences. 150

4.17 DASH Alignment of S3317510 Versus S3290308. 151

4.18 BLAST Alignment of S3317510 Versus S3290308. 152

5.1 Fast Ad Hoc Index Posting Compression Algorithm. 160

5.2 Example Of Alignment Unfolding for a Folded Record. 163

5.3 Pseudo Code For Index Construction Process. 165

5.4 Pseudo Code For Index Construction Process. 167

5.5 Pseudo Code For Index Construction Process. 169

5.6 Pseudo Code For Index Construction Process. 170

5.7 PatternHunter Variant Scores (See Section 3.3) For Nucleic Acid Queries

(Using The Human UniGene (Nucleic Acid) Database). 172

5.8 PatternHunter Variant Scores (See Section 3.3) For Protein Queries (Using

The GenPept (Protein) Database). .. 173

5.9 Several Alignments From Search Results Due To Cooperative Compression. . 176

5.10 Search Time Versus Query Length For BLAST Searching TheUniGene Nu-

cleotide Database. 177

5.11 Search Time Versus Query Length For DASH (Mode 2) Searching The Uni-

Gene Nucleotide Database. 178

5.12 Search Time Versus Query Length For BLAST Searching TheUniGene Pro-

tein Database. 179

xx

LIST OF FIGURES LIST OF FIGURES

5.13 Search Time Versus Query Length For DASH (Mode 2) Searching The Uni-

Gene Protein Database. 180

6.1 NP3 Flow Chart. 200

6.2 Example Of Three Records Each Containing A Common, i.e.,Recurrent,

Region. 207

6.3 Recently Referenced Address Table (RRAT) Management. 210

6.4 Comparison Of Different RRAT Advancement Strategies. 212

6.5 Coding Options For Three Successive Offsets In An Example Sequence. . . . 214

7.1 Forward And Reverse Indexing Of Chains Of Recurrences. 236

7.2 HSP Translation Scenarios. 239

7.3 Example Interpolative Coding. 244

7.4 Pattern Hunter Variant Scores For Nucleic Acid Queries (Using The Human

UniGene (Nucleic Acid) Database). .. 263

7.5 How Finding Extra HSPs Can Reduce Dynamic Programming Time. 271

7.6 DASH+NP3/NIX Search Time Versus Query Length 277

xxi

LIST OF TABLES LIST OF TABLES

List of Tables

1.1 The Multiple Text Alignment Of Eight Translations Of Nehemiah 3:14a. . . 5

1.2 Repeated Phrases In The Eight translations of Nehemiah 3:14a. 6

1.3 Non-Redundant Index Of Nehemiah 3:14a. 9

1.4 Consensus Region Between NIV And Other Translations Of Nehemiah 3:14a. 11

2.1 IUPAC-IUB Codes (Joint Commission on Biochemical Nomenclature 1983)

And Their 4 bit Representations As Used In This Dissertation. 20

2.2 Non-Gapped Alignment OfCGACT And CGTGT. 23

2.3 Gapped Alignment OfCGACT And CGAAGCT. 24

2.4 Evaluated Dynamic Programming Space ForCGACT And CGAAGCT. 29

2.5 Example Of Local Sequence Alignment. 29

2.6 Example Of Global Sequence Alignment. 30

2.7 Example Of Proteomic Sequence Alignment Using A Substitution Matrix. . . 30

2.8 Inferred Relative Speed Of Various Heuristic Sequence Similarity Search

Algorithms. 44

2.9 Example Of LZ77 Coding For “banana”. 52

2.10 Example Of LZ78 Coding For “banana”. 52

2.11 Table Of Compression Ratio Results For The Canterbury Corpus. 59

xxii

LIST OF TABLES LIST OF TABLES

2.12 Relative Decompression Times For The Canterbury Corpus. 60

2.13 Burrows-Wheeler Transform Step 1 62

2.14 Burrows-Wheeler Transform Step 2 62

2.15 Burrows-Wheeler Transform Step 3 63

2.16 Burrows-Wheeler Transform Step 4 63

2.17 Compression Performance Of Various DNA Compression Algorithms. 67

3.1 Per Chromosome And Total Size Statistics Of The April 2003 Draft Of The

Human Genome. 76

3.2 List of Statistical Summary Files Produced By Batch Environment. 95

3.3 Human UniGene (Nucleotide) Database And Index Sizes ForSurveyed Al-

gorithms. 101

3.4 Human Genome Nucleotide Database And Index Sizes For Surveyed Algo-

rithms. 102

3.5 Protein Database And Index Sizes For Surveyed Algorithms. 102

3.6 Comparison Of Search Speed For Various Algorithms Against The Human

UniGene (Nucleic Acid) Database. .. 103

3.7 Comparison Of Search Speed For Various Algorithms Against The Human

Genome Database. 104

3.8 Comparison Of Protein Search Speed For Various Algorithms (Against The

GenPept (Protein) Database). .. 105

3.9 Nucleotide Sensitivity Of Various Algorithms (UniGeneNucleotide Database).106

3.10 Sensitivity Of Various Algorithms (Human Genome Nucleotide Database) . . 107

3.11 Sensitivity Of Various Algorithms (GenPept Protein Databases). 108

xxiii

LIST OF TABLES LIST OF TABLES

4.1 PatternHunter Variant Scores: 100% Required Versus 50%Required. 112

4.2 IUPAC-IUB Codes And Their 4-bit Representations. 122

4.3 Differential Scoring Against Wild Card Bases. 123

4.4 Effect Of Index Posting Evaluation Reduction Strategies. 128

4.5 DASH Canonical Parameter Sets For Nucleic Acid Searching: M2. 142

4.6 DASH Canonical Parameter Sets For Nucleic Acid Searching: M4. 142

4.7 DASH Canonical Parameter Sets For Protein Searching: M2. 143

4.8 DASH Canonical Parameter Sets For Protein Searching: M4. 143

5.1 Human UniGene (Nucleic Acid) Database And Index Sizes InMegabytes

(MB) And Bits Per Base (B/B). 182

5.2 GenPept Protein Database And Index Sizes In Megabytes (MB) And Bits

Per Acid (B/A). 183

5.3 Comparison Of Nucleotide Search Speed (Using The Human UniGene (Nu-

cleic Acid) Database). 184

5.4 Comparison Of Protein Search Speed (Using The GenPept (Protein) Database).185

5.5 Nucleotide Sensitivity Scores (PatternHunter Variant) Versus The Results

Of The Smith-Waterman Algorithm (Using The Human UniGene (Nucleic

Acid) Database). 186

5.6 Protein Sensitivity Scores (PatternHunter Variant) Versus The Results Of

The Smith-Waterman Algorithm (Using The GenPept (Protein)Database). . 187

6.1 NP3 Binary Encoding Scheme For Nucleotide Sequence Data. 209

6.2 Codes Corresponding To The Coding Costs In Table 6.3. 216

6.3 Matrix Of Coding Costs (In Bytes). 216

xxiv

LIST OF TABLES LIST OF TABLES

6.4 Matrix Of Cumulative Coding Costs. 217

6.5 The Optimum Code For The Record In Figure 6.5. 218

6.6 Example Of Sequence Segmentation Tags In Record Descriptions. 221

6.7 Comparison Of NP3 File Size With Other Formats For Human UniGene

(Nucleic Acid) Database. 224

6.8 NP3 Decompression Performance When Using Inter-RecordReferences

When Equally Cheap. 226

6.9 NP3 Decompression Performance When Using Inter-RecordReferences

Only If Cheaper. 226

6.10 Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And

The GeNML Implementation Of Chapter 7.228

7.1 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 2

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5× Random

Expectation. 253

7.2 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 2

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5× Random

Expectation. 254

7.3 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 2

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0× Random

Expectation. 255

7.4 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 2

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 10× Random

Expectation. 256

xxv

LIST OF TABLES LIST OF TABLES

7.5 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 4

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5× Random

Expectation. 257

7.6 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 4

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5× Random

Expectation. 258

7.7 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 4

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0× Random

Expectation. 259

7.8 Sensitivity Results For Each Of The Ten Configurations OfDASH Mode 4

+ NP3/NIX, And Posting Frequency Exclusion Threshold = 10× Random

Expectation. 260

7.9 Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per

Base (B/B) (NIX E-value = 1.5). 266

7.10 Nucleic Acid Database And Index Sizes In Megabytes (MB)And Bits Per

Base (B/B) (NIX E-value = 2.5). 267

7.11 Nucleic Acid Database And Index Sizes In Megabytes (MB)And Bits Per

Base (B/B) (NIX E-value = 5.0). 268

7.12 Nucleic Acid Database And Index Sizes In Megabytes (MB)And Bits Per

Base (B/B) (NIX E-value = 10.0). 269

7.13 Relative Size Of Most Compact Index Versus Negative Control. 270

7.14 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M2, E=1.5. 286

7.15 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M2, E=2.5. 287

xxvi

LIST OF TABLES LIST OF TABLES

7.16 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M2, E=5. 288

7.17 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M2, E=10. 289

7.18 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M4, E=1.5. 290

7.19 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M4, E=2.5. 291

7.20 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M4, E=5. 292

7.21 Comparison Of Nucleic Acid Search Speed (Using The Human UniGene

(Nucleic Acid) Database), DASH M4, E=10. 293

7.22 Break Down Of DASH+NP3/NIX Search Time. 294

7.23 Human Genome Nucleic Acid Database And Index Sizes For Surveyed Al-

gorithms. 295

7.24 Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And

The GeNML Implementation Of Chapter 7.296

7.25 Size of DNA Databases Compressed Using GeNML, NP3, NP3(GeNML)

And NIX. 297

A.1 SSEARCH 3.4t25 (Smith-Waterman) Configuration. 304

A.2 BLAT Configuration. 305

A.3 NCBI-BLAST 2.2.6 Default Configuration. 305

A.4 NCBI-BLAST 2.2.6 No Filtering Configuration. 305

A.5 NCBI-BLAST 2.2.6 Report Everything Configuration. 305

xxvii

LIST OF TABLES LIST OF TABLES

A.6 PatternHunter Configuration. 306

A.7 FASTA Configuration. 306

A.8 CAFE Configuration. 306

A.9 DASH+FOLDDB M2 Configuration. 306

A.10 DASH+FOLDDB M4 Configuration. .307

A.11 DASH + NP3/NIX Configuration 1: No Cooperative Compression (Negative

Control). 307

A.12 DASH + NP3/NIX Configuration 2: Forward Indexing. 307

A.13 DASH + NP3/NIX Configuration 3: Forward Indexing, Prefer Inter-Record

References. 308

A.14 DASH + NP3/NIX Configuration 4: Forward Indexing, Prefer Inter-Record

References, Rebate Estimated Savings Of Omitted Postings.. 308

A.15 DASH + NP3/NIX Configuration 5: Forward Indexing, Prefer Inter-Record

References, Rebate Estimated Savings Of Omitted Postings,Do Not Exclude

Stopk-mers. 308

A.16 DASH + NP3/NIX Configuration 6: Reverse Indexing. 308

A.17 DASH + NP3/NIX Configuration 7: Reverse Indexing, Prefer Inter-Record

References. 309

A.18 DASH + NP3/NIX Configuration 8: Reverse Indexing, Prefer Inter-Record

References, Rebate Estimated Savings Of Omitted Postings.. 309

A.19 DASH + NP3/NIX Configuration 9: Reverse Indexing, Prefer Inter-Record

References, Rebate Estimated Savings Of Omitted Postings,Maximise Dis-

tinct Source Material. 309

xxviii

LIST OF TABLES LIST OF TABLES

A.20 DASH + NP3/NIX Configuration 10: Reverse Indexing, Prefer Inter-Record

References, Rebate Estimated Savings Of Omitted Postings,Maximise Dis-

tinct Source Material, Do Not Exclude Stopk-mers. 310

xxix

Part I

Introductory

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This introductory chapter provides the context and the definition of the thesis of this disser-

tation. The following sections present: (1) the motivationfor this dissertation; (2) the aims

and hypotheses of this dissertation; (2) the specification of the scope and re-statement of

thesis; and, finally, (3) the structure of this dissertation. The chapter closes by identifying

the specific thesis that will be tested by this dissertation,as well as outlining how that thesis

is assessed in the remainder of this dissertation.

1.1 Motivation

Biologists and bioinformaticists are reliant on nucleic acid and protein sequence databases

as they push the boundaries of their science in the twenty first century. Collectively, these

databases are growing at an exponential rate1 that equals or surpasses Moore’s Law (Moore

1965) of increase in computational power2. Moreover, these databases are being searched

more often as biology becomes more information oriented. Asa result, the total time

expended on searching these databases is increasing over time. It is many years since

1http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html [On line; accessed 4 September
2006].

2Moore’s Law predicts that the capacity for transistors (and, by implication, computational performance)
on an integrated circuit will double approximately every two years — not every 18 months as is often quoted
(Moore 2005). The current doubling interval (2006) is slightly shorter than two years, but still longer than
the doubling interval for the GenBank nucleotide sequence database (18 months) (Benson et al. 2006).

2

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

it was computationally feasible to routinely search a majordatabase, such as GenBank

(Benson et al. 2006), using an exhaustive, i.e., completelysensitive, alignment algorithm

such as the one described by Smith and Waterman (1981).

Increased search times have created a significant motivation to make progressively faster

sequence search and alignment algorithms. This pressure has prompted the emergence

of a series of increasingly rapid algorithms, which have progressively sacrificed sensitiv-

ity in order to reduce search times. The first major instance of this phenomenon was the

rise of FASTA (Pearson 1990) at the expense of the Smith-Waterman algorithm. Use of

FASTA, in turn, has largely been replaced by the faster, but less sensitive, NCBI-BLAST

(Altschul et al. 1997). This process is continuing, with yetfaster algorithms gaining popu-

larity, such as BLAT (Kent 2002).

This constant sacrificing of sensitivity in order to maintain acceptable search times has not

gone completely unnoticed. Dwan (2002) has raised the issueof the cost of increased sen-

sitivity sacrifices, particularly as end users are rarely aware of the precise trade-offs that

have been made. Williams and Zobel have also noticed this problem, and taken a proac-

tive approach by constructing a fast search system, CAFE (Williams and Zobel 2002a,

Williams 1999, Williams and Zobel 1997b), which endeavoursto make no further compro-

mises against sensitivity. They argue that as computational power continues to lag behind

the growth of nucleic acid and protein databases, that for any algorithm to be successful in

the long term, it must exhibit a sub-linear relationship between the size of a database being

searched, and the time and space required to service the search — an opportunity that the

CAFE system partially explores. This goal is further explored in this dissertation by con-

sidering the increasing redundancy that is present in nucleic acid and protein databases as

they increase in size.

In summary, nucleic acid and protein sequence search and alignment is facing a looming

crisis as the annualised increase in computational capacity lags behind the combined ef-

3

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

fects of: (a) increasing database sizes, and; (b) increasing search demand by users. As long

as this remains true, the pursuit must continue for increasingly efficient, yet sensitive, gen-

erations of sequence search and alignment algorithms. Therefore, nucleic acid and protein

sequence searching and alignment is still an open topic (Dwan 2002).

1.2 Statement And Scope Of Thesis

1.2.1 Introduction

By crafting a compression algorithm such that recurrences are explicitly coded, it is possi-

ble to enhance the indexing and searching processes of an index driven biological sequence

search and alignment in the following ways:

1. By indexing only one occurrence of a repetition, the indexwill contain fewer post-

ings, and should, therefore, require lessspace.

2. The reduction in the number of indexed items also translates into a natural reduction

in searchtime.

3. Because the discovery of an alignment that intersects a recurrent region can have the

intersecting segment cloned onto each other recurrence, itcan be used to seed an

alignment that may not be discovered otherwise, thus increasing searchsensitivity.

In this way it is possible to simultaneously attack the threeway trade-off of space, time and

sensitivity in biological sequence search and alignment.

To illustrate this concept, consider the Biblical text of Nehemiah 3:14a (while, for clarity,

only English text is used here in this example, the argumentsare equally applicable to nu-

cleotide, protein and similar classes of character sequences). Table 1.1 presents the text as

it appears in a variety of translations (International Bible Society 1973 - 1984, Darby 1890,

4

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

Table 1.1: The Multiple Text Alignment Of Eight Translations Of Nehemiah 3:14a.

NIV: The Dung Gate was repaired by Malkijah son of Recab,

D-T: And the dung-gate repaired Malchijah the son of Rechab,

D-R: And the gate of the dunghill Melchias the son of Rechab

WEB: The dung gate repaired Malchijah the son of Rechab,

Web: But the dung-gate repaired Malchiah the son of Rechab,

YLT: And the dung-gate hath Malchijah son of Rechab,

NAS: Malchijah the son of Rechab,

T-M: The Dung Gate itself was rebuilt by Malkijah son of Recab,

NIV: ruler of the district of Beth Hakkerem.

D-T: the chief of the district of Beth-haccerem;

D-R: built, lord of the street of Bethacharam : he built it,

WEB: the ruler of the district of Beth Haccherem;

Web: the ruler of part of Beth-haccerem;

YLT: head of the district of Beth-Haccerem, strengthened;

NAS: the official of the district of Beth-haccherem repaired the Refuse Gate

T-M: the mayor of the district of Beth Hakkerem;

Challoner 1752, Johnson 2003, Webster 1833, Young 1898, Barker et al. 1960 - 1995,

Peterson 2002). The text has been aligned to assist the reader. The translations differ in

form by varying degrees, yet share similar function, somewhat analogously to homologous

nucleotide or protein sequences.

1.2.2 Revealing Recurrences Through Data Compression

That the set of translations can be gainfully compressed is apparent because of the many

shared strings and words among them. In the present context,we are primarily interested

in encoding each successive translation as a combination ofnew text andrecurrencesfrom

the preceding translations. In this context, recurrence refers to the repeated appearance of

a string of characters or words. Table 1.2 shows the coverageof the texts by recurrences,

if word level redundancies were the basis, and where the minimum length or length of

consensusis two words. Of the 143 words, 88 (62%) are identified as recurrent in this

way. If the criterion were reduced to recurrences of a singleword, 105 (73%) words are

identified as recurrent.

5

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

Table 1.2: Eight translations of Nehemiah 3:14a, marked with inter-translation repetitions
of two or more words (ignoring case and punctuation). Only recurrences are marked. A
marking of “NIV3” indicates the original instance of the text occurred in the NIV translation,
beginning at the third word.

Source Text of Nehemiah 3:14a

NIV The Dung Gate was repaired by Malkijah son of Recab,
ruler of the district of Beth Hakkerem.

D-T And [the dung-gate]NIV1 repaired Malchijah the [son
of]NIV8 Rechab, the chief [of the district of
Beth]NIV12-haccerem

D-R [And the]D−T1 gate [of the]NIV12 dunghill Melchias [the son
of Rechab]D−T6built, lord [of the]NIV12 street of
Bethacharam : he built it.

WEB [The dung gate repaired Malchijah the son of Rechab,
the]D−T1 [ruler of the district of Beth]NIV11 Haccerem;

Web But [the dung-gate repaired]D−T2 Malchiah [the son of
Rechab, the ruler of]WEB6 part [of Beth-haccerem;]D−T16

YLT [And the dung-gate]D−T1 hath Malchijah [son of
Rechab]D−T8, head [of the district of
Beth-Haccerem]D−T13, strengthened;

NAS [Malchijah the son of Rechab]D−T6, the official [of the
district of Beth-haccerem]D−T13 repaired the Refuse Gate.

T-M [The Dung Gate]D−T2 itself was rebuilt [by Malkijah son of
Recab]NIV7, the mayor [of the district of Beth
Hakkerem]NIV12;

While this is a relatively trivial example, it highlights the kind of redundancy that may be

present in a group of related texts — whether English prose, or nucleotide sequences. This

concept is not new, and is utilised in varying forms by most general purpose compression

algorithms, especially dictionary based algorithms such as those based on the Ziv-Lempel

family of algorithms.

The Ziv-Lempel dictionary based approaches have the property that the recurrence infor-

mation is clearly expressed in the encoded message. This contrasts with a statistical com-

pressor that represents this information implicitly in itsstatistical model. It is true that a

statistical compressor, such as Dynamic Markov Compression, may yield better compres-

sion. However, in that case the recurrence information mustbe represented separately,

6

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

probably negating any compression gains for an index of the compressed data. Further,

statistical compressors generally require a certain volume of data in order to achieve their

superior performance. This works well in general purpose compression, where the normal

use is serial compression or decompression of an entire corpus. However, for data com-

pression to be useful in biological sequence search and alignment, it must be possible to

rapidly retrieve single (often short) sequences from a large database.

Finally, statistical compressors generally use Arithmetic Coding, which severely limits de-

compression speed. While this all but rules out the use of adaptive statistical compressors,

it again plays to the strengths of dictionary based algorithms. This is because it is possi-

ble to allow a dictionary based compressor to reference recurrences only in neighbouring

records (sequences) in a database, without unduly sacrificing the performance of either

compression or the speed when retrieving random sequences.In this way it is possible to

create a compression algorithm that retains credible performance while makingrecurrence

records, that is the location and size of recurrences, readily available to other processes.

1.2.3 Using Recurrences To Compress Indices

An example of a potential user of recurrence records in a compressed database, is a process

that seeks to create an index of that data. It is possible to make a more compact index by

making use of the recurrence information, and knowing that any reader of the index can

do like wise. If this information were not available, it would be necessary to index every

occurrence of every word.

A simple application is to index only those instances of words that cannot be located in a

recurrence. The effect of this is illustrated in Table 1.3 where such an index is presented for

the text of Nehemiah 3:14a. The individual words not included in the index can be found

by taking the list of occurrences that are in the index, and then identifying the recurrences

that reference those particular words.

7

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

Taking the example of “ruler”, of its three actual occurrences, only one is recorded in the

index, the one corresponding to the eleventh word of the NIV text. However, by referring

back to Table 1.2 we find that the WEB text makes reference to this. The list of occurrences

is now NIV{11}, WEB{11}. The process is now repeated for the newly added instance.

This leads to the discovery that the word ruler also occurs atWeb{12}. As no subsequent

texts refer to this instance, the list of occurrences is now final at NIV{11}, WEB{11} and

Web{12}. Thus the index can efficiently look up all instancesof any word, even though it

contains direct references to only 38% of the text.

That excluding postings from the index should translate into a smaller compressed inverted

list is not certain. This is because this process may destroythe clusters of term occurrences

that the best inverted list coding schemes make use of. The clusters that aid inverted list

compression are clusters of thesameword or term occurring, with strong spacial local-

ity. The cooperative compression of the index and database excludes adjacent words in

common phrases from the index, requiring only one instance of each word in the repeating

phrase to be indexed. Therefore a cluster of any single term may be reduced to a single

instance. Therefore the compression benefit of the cluster may be inhibited. However, with

fewer pointers requiring encoding, this should still result in smaller size overall. (An ex-

ception to this would be if a term occurs with probabilityp > 0.5. In that case removing

pointers will actually result in the entropy of the list increasing as it is shortened. When

this occurs, it would be better not to thin the list out.)

1.2.4 Using Recurrences To Improve Search Sensitivity

The second useful property of a compression scheme that makes recurrence information

explicit is in the context of index driven sequence search and alignment. The reduction in

index size comes from following the chain of recurrences back to their origins. By fol-

lowing the chain of recurrences in the reverse order each time an alignment is identified,

8

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

Table 1.3: Index Of Instances Of Words In Nehemiah 3:14a, Excluding Those That Occur
In Identified Recurrences. Only 55 (38%) of the 143 occurrences are indexed in order to
cover the entire text.

Word Indexed Instances Word Indexed Instances

And D-T{1} Malchiah Web{6}
Beth NIV{16} Malchijah D-T{5}, YLT{6}

Bethacharam D-R{18} Malkijah NIV{7}
built D-R{12,20} mayor T-M{13}
but Web{1} Melchias D-T{7}
by NIV{6} of NIV{9,12,15},

D-R{17}
chief D-T{12} official NAS{7}

district NIV{14} part Web{14}
dung NIV{2} Recab NIV{10}

dunghill D-R{6} Rechab D-T{10}
gate NIV{3}, D-R{3},

NAS{17}
refuse NAS{16}

Haccerem D-
T{18},WEB{17}

rebuilt T-M{6}

Hakkerem NIV{17} repaired NIV{5}, D-T{5},
NAS{14}

hath YLT{5} ruler NIV{11}
he D-R{19} son NIV{8}

head YLT{11} street D-R{16}
it D-R{21} strengthened YLT{18}

itself T-M{4} the NIV{1,13},
D-T{7,11},
NAS{6,15},
T-M{12}

lord D-R{13} was NIV{4}, T-M{5}

9

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

it is possible to increase the sensitivity of the search to less conserved sequences. This

is because index based search algorithms ordinarily require there to be a consensus, with

some minimum length, between the query and a sequence. Once aconsensus is found,

it can be extended to its maximum length. During this extension phase, the alignment is

normally allowed to be approximate. When such an alignment segment spans a recurrence,

the recurrence information can be used to immediately identify all instances of the recur-

rence. Hence candidate alignments can be identified withoutrequiring them to contain the

minimum consensus length mandated by the index.

By way of illustration of how sensitivity can be gained in this way, consider searching for

the NIV version of the text of Nehemiah 3:14a in an index basedsearch system with a

minimum consensus length of five words. The only phrase of thetext that would be found

in any other translation would be “of the district of Beth”, as illustrated in Table 1.4. This

would be sufficient for a competent index based search algorithm to discover the complete

alignment of the NIV translation against the D-T, WEB, YLT, NAS and T-M translations.

However, no alignments would be discovered against the D-R or Web texts, because there

is no consensus of five or more words between them and the NIV text — despite their

functional (semantic) similarity with the NIV query text. This is a sensitivity blind spot of

traditional index based search algorithms.

By making use of the recurrence information from Table 1.2, it is possible to efficiently

detect the missing alignments: The D-R text makes referenceto the recurrence of “the son

of Rechab”, which first occurs in D-T. The consensus here doesnot need to be five words,

nor does it need to exactly match the query text, as the index is not involved in its discovery:

The recurrence records in the compressed database providesthe required information. The

alignment against the Web translation can be discovered in asimilar way, through either

“the dung-gate repaired” or “the son of Rechab”, both of which first occur in the D-T

translation. Hence additional alignments are discovered,while substantially preserving the

10

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

Table 1.4: Consensus Region Between NIV And Other Translations Of Nehemiah 3:14a,
Minimum Length Of Five Words. No consensus is identified with the D-R or Web transla-
tions.

Source Text of Nehemiah 3:14a

NIV The Dung Gate was repaired by Malkijah son of Recab,
rulerof thedistrict of BethHakkerem.

D-T And the dung-gate repaired Malchijah the son of Rechab,
the chiefof the district of Beth-haccerem

D-R And the gate of the dunghill Melchias the son of Rechab
built, lord of the street of Bethacharam : he built it.

WEB The dung gate repaired Malchijah the son of Rechab, the
rulerof the district of BethHaccerem;

Web But the dung-gate repaired Malchiah the son of Rechab, the
ruler of part of Beth-haccerem;

YLT And the dung-gate hath Malchijah son of Rechab, head
of the district of Beth-Haccerem, strengthened;

NAS Malchijah the son of Rechab, the official
of the district of Beth-haccerem repaired the Refuse Gate.

T-M The Dung Gate itself was rebuilt by Malkijah son of Recab,
the mayorof the district of BethHakkerem;

high speed of index driven searching: This is where a gain in sensitivity can be realised.

The computational cost of this additional sensitivity is totraverse through the recurrence

records in the compressed database, and to decompress each sequence that is identified as

containing an alignment candidate. A potential pitfall of this method is that because chains

of unknown length must be traversed to reconstruct the index, there is an unpredictable

contribution to search time. This is a significant issue, particularly if the data are to be

disk-resident, as each step in the chain will trigger a costly disk seek.

1.2.5 Opportunity And Research Questions

The potential compactness and sensitivity gains discussedabove are interesting because

they are precisely the short comings that have prevented index driven searching from be-

coming mainstream: BLAST retains its dominance, for protein searching in particular,

11

1.2. STATEMENT AND SCOPE OF THESIS CHAPTER 1. INTRODUCTION

because it has modest space requirements, and none of the well known faster algorithms

can match its sensitivity, as is shown later in this dissertation.

The challenge comes in that this opportunity has been shown in the context of a trivial ex-

ample only, where recurrence information is abundant. It may not be reasonable to expect

biological sequence databases to exhibit such positive characteristics. However, fortunately

there exists highly-redundant pre-sorted biological databases, such as the UniGene tran-

scriptome databases that can be used to test this approach. But even assuming that postings

can be thinned out from the inverted list, it is not clear whether the resultant lists will actu-

ally compress more compactly, as the natural clustering of terms may be destroyed by this

process.

From a practical perspective, additional challenges existrelated to time and space effi-

ciency. The indexing methods described here require traversal of the compressed data

stream in order to make effective use of the recurrence information. This may prove com-

putationally prohibitive, or result in too many costly random disk accesses. This may imply

that the database and index must be memory resident in order to obtain acceptable perfor-

mance, and there is the risk that the compressed database andindex may simply be too

large, and preclude the method from being competitive.

1.2.6 Summary And Statement Of Thesis

In the preceding text, it has been argued that it is possible,in theory, to compress data (and

nucleic acid and protein sequence data specifically) in sucha way that the recurrences that

occur within the data are made visible. This information canthen be employed to produce

more compact index structures, and to increase the sensitivity of searches that use them.

The result being an indexed search and alignment algorithm with better size and sensitivity

parameters than the current state of the art, while substantially preserving the desirable

speed characteristics present in existing index based methods.

12

1.3. ASSUMPTIONS CHAPTER 1. INTRODUCTION

However, this is not without challenges. It is not clear whether recurrences exist in real

databases in sufficient quality and quantity to be profitable, nor is it clear whether the final

product will exhibit sufficient speed, sensitivity and overall compactness in order to be an

attractive alternative to existing methodologies. This dissertation examines these issues by

considering the thesis that:

By crafting a compression algorithm such that recurrences are explicitly coded, it is pos-

sible to enhance the indexing and searching processes of an index driven nucleic acid and

protein sequence search and alignment in the following ways: (1) By indexing only one

occurrence of a repetition, the index will contain fewer postings, and should, therefore,

require lessspace; (2) The reduction in the number of indexed items also translates into

a natural reduction in searchtime, and; (3) Because the discovery of an alignment that

intersects a recurrent region can have the intersecting segment cloned onto each other re-

currence, it can be used to seed a full alignment that may not be discovered otherwise, thus

increasing searchsensitivity. In this way it is possible to simultaneously attack the three

way trade-off of space, time and sensitivity in biological sequence search and alignment.

1.3 Assumptions

The assumption is made in this dissertation that the algorithms and systems proposed will

be run on either a capable desktop type computer (with several GB of RAM), or a cluster

of such systems, and that the database and index size will be such that it can fit entirely

in the RAM of the computer or computers concerned. This assumption is made because

it is recognised that the reconstruction of omitted index postings requires random-access

retrieval of additional database records, which would mostlikely result in poor throughput.

It is accepted that this is atypical for this kind of algorithms, and that therefore the speed

comparison with the peer group of algorithms is potentiallyslanted in favour of the algo-

13

1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

rithms described in this dissertation. The application of the algorithms presented in this

dissertation to disk resident searching is discussed in principle in Section 7.9.

It is further assumed that the data volume is of a scale where sorting and clustering is

possible, which at the time the work was carried out meant databases of no more than sev-

eral giga-bases. This means that the approaches described in this dissertation would require

some adaption if they were intended to be used with a dynamic data set, as might be the case

in assembling shot-gun sequencing fragments. In that case the subsequentially developed

approach of Bernstein and Cameron (2006) would be appropriate. Indeed, this application

of assembly of shot-gun sequences, while now a popular use ofsequence search and align-

ment systems, has not been a consideration of this dissertation. This is also reflected in the

selection of queries in Chapter 3, where longer queries hundreds to thousands of bases are

used, rather than the dozens to low hundreds of bases in length that is more typical of shot-

gun sequencing. This narrowing of focus is reasonable giventhat specialised algorithms

used to perform shot-gun sequence assembly, e.g., (Batzoglou et al. 2002, Jaffe et al. 2003,

Chaisson and Pevzner 2008), differ substantially from general purpose sequence alignment

algorithms, in part because general purpose sequence alignment algorithms are too slow

for that application.

1.4 Contributions

This dissertation attempts to contribute to the state of theart in sequence search and align-

ment by devising and testing several new algorithms relatedto nucleic acid and protein

sequence search and alignment, with a particular focus on reducing search time and space

requirements without sacrificing search sensitivity.

The first algorithm, DASH, seeks to create a sequence search and alignment system that

can efficiently search both uncompressed databases and indices and those where redundant

14

1.5. STRUCTURE OF THESIS CHAPTER 1. INTRODUCTION

records and phrases within records share their storage to save space. This endeavour was

successful.

The second algorithm, FOLDDB, seeks to create a compact database and index structure for

use with DASH that when faced with redundant records shares their storage to save space.

This endeavour, described in Chapter 5 was successful when provided with a database with

sufficient redundant records.

The third and fourth algorithms, NP3 and NIX attempt to refineFOLDDB by devising a

database and index structure that shares the storage of redundant phrases or sub-records,

while also being suitable for high-speed sequence search and alignment. This endeavour

faced mixed results. A more compact database and index representation was obtained.

However, while that representation supported fast random record retrieval, it was not en-

tirely successful when applied to sequence search and alignment. This was due to the time

complexity involved in the exhaustive reconstruction and searching of index records, which

while improving sensitivity, resulted in poor search speedfor processing individual queries.

However, the partitioned characteristics of the NP3/NIX data formats means that this

computational cost can be amortised over batches of queriessuch that DASH+NP3/NIX

can search a disk-resident database several times faster than NCBI-BLAST can search a

memory-resident database.

1.5 Structure Of Thesis

Immediately following this chapter, Chapter 2 provides background information for this

dissertation, including an overview of the popular BLAST sequence alignment program.

Chapter 3 follows this by describing the materials and methods used in this dissertation,

covering: (a) the databases to be searched; (b) the test queries; (c) the assessment of test re-

sults, and; (d) the generation of benchmark results for comparing the algorithms introduced

15

1.5. STRUCTURE OF THESIS CHAPTER 1. INTRODUCTION

in this dissertation. Together with this chapter, these chapters constitute the introductory

matter of this dissertation.

Following the introductory matter, Parts II through III define the various components that

form the test of the thesis:

Part II applies cooperative database and index compressionto the relatively easy domain of

a highly redundant database.

Chapter 4 commences this part by defining the index driven Diagonal Assembling Search

Heuristic (DASH) sequence search and alignment algorithm.Two different index structures

are considered in: (1) Chapter 5, and; (2) the chapters of Part III.

First, in Chapter 5 an initial database format for DASH is devised, and a coarse grained

approach to cooperative compression of biological sequence databases, record folding, is

presented. This is used to show that the thesis of this dissertation is possible, provided that

sufficient redundancy exists in the database being processed.

Part III follows the initial success of Part II, and describes a fine grained cooperative com-

pression scheme, that is intended to be more generally applicable than the record folding

approach introduced in Chapter 5. Part III, consists of Chapters 6 and 7, which, respec-

tively, document the NP3 recurrence revealing nucleic aciddatabase compression algo-

rithm, and the NIX algorithm for producing compact companion indices from NP3 en-

coded databases. Chapter 7 also compares the performance ofthe NP3 compression al-

gorithm with GeNML in the context of cooperative compression. These chapters show

that substantial reductions in index size are possible, along with a modest increase in sen-

sitivity, supporting the thesis of this dissertation. Although it is shown that by batching

queries, DASH+NP3/NIX can search a disk-resident databaseseveral times faster than

NCBI-BLAST can search a memory-resident database, the fine grained approach turns out

to be rather computationally intensive, resulting in poor search speed when processing sin-

gle queries.

16

1.5. STRUCTURE OF THESIS CHAPTER 1. INTRODUCTION

The final part of this dissertation, Part IV, consists of a single chapter, Chapter 8, which

briefly summarises the results of the preceding parts, drawsconclusions, and closes the

dissertation with suggested avenues for future research.

17

CHAPTER 2. BACKGROUND

Chapter 2

Background

This chapter provides background information on the underlying technologies and method-

ologies that are relevant to this dissertation. This consists of: (1) an introduction into the

similar problems of the pair-wise alignment of nucleic acidsequences and the pair-wise

alignment of protein sequences; (2) a survey of existing methods used to accelerate the

pair-wise alignment of these sequences; (3) a survey of textcompression techniques rel-

evant to database and DNA sequence compression, and; (4) a brief introduction to index

construction, compression and maintenance.

2.1 Sequence Alignment

This section presents the context of the research problem bygiving an introduction to nu-

cleic acid and protein sequence search and alignment.

2.1.1 Sequence Search And Alignment

2.1.1.1 Bioinformatics And Sequence Similarity Searching

DNA sequences consist of the alphabetA, C, G and T, representing the nucleotides that

constitute a DNA strand. Such databases may also include additional symbols that repre-

18

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

sent ambiguity regarding the identity of a base: These symbols are thewild-cards. The

most common wild-card isN, signifying that the identity of the nucleotide is completely

unconstrained. See Table 2.1 for the complete list of wild-cards.

Searching biological sequence databases consists of finding similarities, often in the hope

of identifying homology, i.e., familial relationship, between a query and each sequence in

a database. Similarity is assessed by performing pair-wisealignments of the query against

the sequences in the database. This pair-wise alignment problem is closely related to the

general string similarity search methods of Levenshtein (1966) and Knuth et al. (1977),

such asweighted string edit distance.

The edit distance of two strings is the minimal number of operations require to transform

one string into another. For example “time” and “money” havean edit distance of 4, be-

cause “time” can be transformed into “money” in 4 steps:time → timey → mimey

→ momey → money. In this case substitutions and insertions were consideredas events

of equal cost. This can be generalised such that different costs are applied depending on

whether each event is a substitution, insertion or deletion, resulting in a weighted edit dis-

tance. If substitutions have a cost of 2 while insertions anddeletions have a cost of 1,

then converting time into money as previously described would have a weighted cost of

1+ 2+ 2+ 2 = 7, however by using the steps:time → timey → imey → mey →

mney → money would have a weighted cost of only 1+1+1+1+1 = 5. Provided that

the costs are formulated such that the comparison of two random strings results in an actual

cost, i.e.,cost> 0, then this method can be used to determine the relative similarity of two

strings. It is this property that is used in genomic pair-wise sequence alignment.

Three increasing strengths of sequence comparison used in pair-wise alignment are de-

scribed below: (a) exact sub-string alignment; (b) non-exact sub-string (non-gapped) align-

ment, and; (c) non-exact gapped alignment.

19

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Table 2.1: IUPAC-IUB Codes (Joint Commission on Biochemical Nomenclature 1983) And
Their 4 bit Representations As Used In This Dissertation.

IUPAC Code Description Base(s) Four Bit Coding

X No base - 0000
G Guanine G 0001
A Adenine A 0010
T Thymine T 0100
C Cytosine C 1000
R Purine A or G 0011
Y Pyrimidine C or T 1100
M Amino A or C 1010
K Ketone G or T 0101
S Strong interaction C or G 1001
W Weak Interaction A or T 0110
H Not-G A, C or T 1110
B Not-A C, G or T 1101
V Not-T A, C or G 1011
D Not-C A, G or T 0111
N Any A, C, G or T 1111

2.1.1.2 Exact Sub-String Alignment

Exact sub-string alignment consists of locating contiguous strings of corresponding sym-

bols in both a query and subject sequence. It isexact, in that no substitutions are allowed.

It is of sub-strings, in that an alignment may include only part of each sequence:The entire

sequence is not required to be aligned. Consider the following example:

query sequence:CGA CTG ATC TAG

subject sequence:CGT GTA GCT AGC AGT GTA GTC TAG CGT ACG TGC

The sub-stringCG (the 1st–2nd letters of the query sequence) can be aligned against the

1st–2nd, 25th–26th, and 29th–30th letters of the subject sequence, as shown below:

CGt gta gct agc agt gta gtc tagCGt aCG tgc

20

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Similarly, TCTAG (the 8th– 12th letters of the query sequence) can be aligned against the

20th–24th letters of the subject sequence:

cgt gta gct agc agt gta gTC TAG cgt acg tgc

2.1.1.3 Non-Exact Sub-String (Non-Gapped) Alignment

This is a generalisation of exact sub-string alignment where substitutions, or “mistakes”

are allowed in the alignments. It isnon-exact, in that these substitutions are allowed, i.e.,

any one symbol may be substituted for any other symbol. It isnon-gapped, in that any one

symbol must be replaced by precisely one symbol, neither more nor less, since that would

result in the introduction of one or moregaps. Consider again the example from exact

sub-string alignment, but now allow one or two substitutions in each alignment:

query sequence:CGA CTG ATC TAG

subject sequence:CGT GTA GCT AGC AGT GTA GTC TAG CGT ACG TGC

The stringCGACT (the 1st–5th letters of the query sequence) can now be aligned against the

1st–5th letters of the subject sequence (substitutions are shown initalics):

CGt g Ta gct agc agt gta gtc tag cgt acg tgc

Similarly, TCTAG (the 8th– 12th letters of the query sequence) can be aligned against the

3rd–7th, 15th–19th and 20th–24th letters of the subject sequence (substitutions are shown in

italics):

cgT g TA Gct agc agT g TA GTC TAG cgt acg tgc

In practice, various rules are applied to determine what level of similarity is required before

an alignment is considered significant. These typically involve areward score for corre-

sponding symbols in the sequences, and apenaltyscore for differing symbols. These are

21

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

combined with statistical theory to determine whether a given alignment is statistically sig-

nificant, or, conversely, if the alignment could be reasonably expected to occur by chance.

For instance, comparingCGACT with CGTGT using reward and penalty scores of 1 and -3

respectively would result in a score of -3 (Table 2.2).

This score can be translated into an expected value, and optionally ap-value. Although the

particular formula varies among sequence alignment tools,the translation is almost always

based on an Extreme Value Distribution (EVD), with a two stage process that first converts

a raw score,S, into a normalised score,S′, that takes into account the scoring system. Using

the equations indicated by Karlin and Altschul (1990),S is translated according to:

S′ =
λS− lnK

ln2

Whereλ is derived from the scoring system, such that∑n
i=1 ∑i

j=1 pi p jeλsi j = 1, wherepi

andp j are the probabilities of theithand jth symbols of the alphabet, andsi j is the log-odds

score of substituting the same symbols.K is a less significant factor that is also derived

from the scoring system and is used to correct for the non-random correlation of matching

residues in the alignment of similar sequences.

For the scoring system used in our example these compute toλ = 1.37 andK = 0.711. The

second stage takes into account the size of the search space to convert the normalisedS′ into

an expected value that indicates the number of alignments with raw score≥ S that would

be expected to occur by chance.E is computed according toE = mn
2S′ , wheremandn are the

lengths of the query and sequence being searched. Naturallythe larger the search space,

the largerE will be for a givenS′, as the increased search space allows more opportunities

for matches to occur. Finally, if required, an additional step can be applied to translate

the expected value into ap-value by computingp = 1−e−E. However this is not usually

necessary, if only becauseE ≈ p whenE < 1. In the case of our example alignment, the

full match of TCTAG in the 33 base sequence gives a raw score ofS= 5 (five matches×

22

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Table 2.2: Non-Gapped Alignment Of CGACT And CGTGT.

C G A C T

C G T G T

+1 +1 -3 -3 +1

reward score of +1), which normalises toS′ = 12.4, and yieldingE = p = 0.029. (Note

that for these statistics to be appropriate longer sequences are required than are used in this

example).

Non-exact sub-string alignment is the type of searching performed by BLAST version 1

(Altschul et al. 1990).

2.1.1.4 Non-Exact Gapped Alignment

Gapped matching introduces the concept ofgapscaused by insertions or deletions, i.e.,

substituting a single symbol with either: (a) more than one,or; (b) zero symbols. For

example, substituting theA in CGACT with AAG results in the stringCGAAGCT. The strings

are now of differing lengths, and in order to align the entirestrings, gaps must be inserted

into the shorter sequence so that the strings are again of equal length. Gaps are usually

indicated by a hyphen (“-”).

For gapped alignment,gap creationandgap extensionpenalties are introduced to supple-

ment the reward and penalty scores associated with non-gapped alignment. This system

of scoring gaps is referred to as affine, or sub-linear. Othergap scoring approaches are

also used, such as linear, piece-wise linear and logarithmic. Affine scoring is popular as it

provides a trade-off between the speed of computation afforded by linear, and the accuracy

of the logarithmic model preferred by many biologists.

As a simple example of affine gapping, consider the alignmentof CGACT andCGAAGCT,

accomplished by adding gaps into the query sequence (Table 2.3). Assuming a gap creation

23

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Table 2.3: Gapped Alignment Of CGACT And CGAAGCT.

C G A - - C T

C G A A G C T

+1 +1 +1 -5 -2 +1 +1

score of -5, a gap extension score of -2, a reward score of +1, and a penalty score of -3, the

example above would have a final score of -2.

Non-exact gapped alignment is the type of search performed by PatternHunter (Li et al.

2004), BLAST version 2 (Altschul et al. 1997), FASTA (Pearson 1990) and Smith-

Waterman (Smith and Waterman 1981), and most other sequencealignment algorithms.

2.1.1.5 Dynamic Programming

Dynamic programming is generally applied to the gapped sequence alignment problem as

it is considered the fastest complete algorithm available (Dwan 2002).

This approach consists of generating a dynamic programmingspace that has the query and

subject sequences as axes. Each discrete cell in the space isthen evaluated, relying on the

values of cells nearer the origin than itself. If the alignment is global then it is required to

include the entirety of both strings, where as for local alignment it is not. Thus CAT=CAT

would be a valid local alignment of SCATTER and BOBCAT, whereas it would not be

a valid global alignment of those strings, because it does not include the entirety of both

strings. Whether global or local alignment is being performed, the score of each cell is

calculated using a recurrence, such as:

L(i, j) = max

maxk≥1(L(i, j−k)−g(k))

L(i−1, j−1)+w(qi,sj)

maxk≥1(L(i−k, j)−g(k))

24

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

WhereL(i, j) is the score of the cell in theith row and jth column. The gap penalty function

is g(), and henceg(n) is the penalty forn consecutive gaps. The substitution matrix,w()

is used to compute the appropriate reward or penalty score for the pair of lettersqi andsi

which are theith letter of the query and subject sequence, respectively.

This recurrence then, selects the maximally scoring optionamong, respectively: (a) the cell

in the same row that maximises the sum of the score and the gap penalty from the current

cell; (b) the score of the cell corresponding to the previousposition in both the query and

subject sequence plus the reward or penalty score from the letter in the current position

of the query and subject sequences, which will either be identical (yielding a reward), or

different (possibly yielding a penalty); or (c) the cell in the same column that maximises

the sum of the score and the gap penalty from the current cell.If the alignment is required

rather than just the optimal score, then the option taken must be recorded for each cell. This

allows the discovery of the path that led to the optimal score, and thus the corresponding

alignment.

Note that options (a) and (c) require iterating through the corresponding row or column of

cells in order to find the maximum score. However, if the gap penalty function is strictly

increasing, i.e.,g(k+1) > g(k)∀k > 0, then this can be resolved to a single look up oper-

ation in exchange for remembering one value per row and column. Thus the evaluation of

each cell requires O(1) time, and thus discovery of the optimal alignment requires O(m×n)

time, wherem andn are the lengths of the query and subject sequences.

The dynamic programming process is illustrated in Figure 2.1, where the cell at(i, j),

marked in grey, is to be evaluated. Only the cells with solid borders need be evaluated,

i.e, the current row and column, and the cell corresponding to the immediately preceding

letters of the query and subject sequences, i.e., the cell at(i−1, j−1). If we assume that

g(n) = 3+2n, and thatw(qi,sj) = 1, then we can determine the optimal score for the cell

(i, j), and record the back trace information for that cell.

25

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

i

j

j−1

0

0 i−1i−21

1

10

−1

−5 −3 0 2 7 9

16

8

6

4

5

j−2

Figure 2.1: Example Of Dynamic Programming Evaluation.

The back trace information for each cell is just the coordinates of the cell that led to the

current cell, i.e., one of:

(i−k, j) where i > k≥ 1;

(i, j−k) where j > k≥ 1;

(i−1, j−1).

or

Taken as a whole, the back trace information for a dynamic programming space is sufficient

to determine an optimal path, i.e., least cost path, from theorigin to any cell in the space by

inspecting the back trace for the end cell, and then recursively consulting the back trace of

that cell, and so on until the start of the path is found. Theseprocesses are now explained

using the example of Figure 2.1.

26

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Considering first thejth row, the possibles scores are computed according toL(i, j) =

maxk≥1(L(i − k, j)− g(k)). The possible values fork are the integers 1. . . i − 1, which

results in possible scores of:

L(i−1, j)−g(1) = 9−5 = 4

L(i−2, j)−g(2) = 7−7 = 0

L(i−3, j)−g(3) = 2−9 = −7

L(i−4, j)−g(4) = 0−11 = −11

L(i−5, j)−g(5) = −3−13 = −15

L(i−6, j)−g(6) = −5−15 = −20

Thus, the optimal selection from theith column isL(i−1, j)−g(1) = 4.

The score from using the second equation of the recurrence can be calculated as:

L(i, j) = L(i−1, j−1)+w(qi,sj) = 8+1 = 9

Finally, the optimal selection from theith column by usingL(i, j) = maxk≥1(L(i, j−k)−

g(k)):

L(i, j−1)−g(1) = 5−5 = 0

L(i, j−2)−g(2) = 6−7 = −1

L(i, j−3)−g(3) = 10−9 = 1

L(i, j−4)−g(4) = 16−11 = 5

L(i, j−5)−g(5) = 4−13 = −9

L(i, j−6)−g(6) = −1−15 = −16

27

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

This determines that the optimal selection from theith column isL(i, j) = L(i, j − 4)−

g(4) = 5. The recurrence can now be evaluated as:

L(i, j) = max

4

9

5

As 9 is greater than either 4 or 5, the second line of the recurrence is used, and the cell

at (i, j) will be given the score 9, and the back trace information willindicate that the

alignment came from(i−1, j−1). This process is repeated for every cell in the dynamic

programming space. In this way, the path taken to reach any cell can be determined by

tracing backwards to reveal the optimal alignment of the twosequences. Such alignments

can be eitherglobal or local. A global alignmentis an alignment that must include the

entirety of each sequence. In contrast, alocal alignmentinvolves only a portion (sub-

string) of one or both sequences.

Consider also the example of Table 2.4 where the dynamic programming grid has been

evaluated for the sequencesCGACT andCGAAGCT. The fifth cell in the second row (value -7)

is evaluated by finding the maximum score that is possible by considering the cells imme-

diately left, above and above-left. Assuming the scoring system of the previous example,

this would be:

score = max

−5+gapextend = −5−2 = −7

−10+gapcreate = −10−5 = −15

−8+ reward = −8+1 = −7

=−7

If a global alignment is being performed, then the end of the alignment would be the bottom

right cell in the dynamic programming space, i.e., the cell corresponding to the last letter

28

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Table 2.4: Evaluated Dynamic Programming Space For CGACT And CGAAGCT. The origin
of the space is at the top left of the table. The back trace information is indicated by the
arrows in each cell that point to the next (previous) cell that is in the least cost path to the
cell. Super scripts indicate the distance to that cell when it is not 1. In some cases the
minimum cost can be achieved by multiple paths. In those cases arrows to each path are
shown.

C G A A G C T

C 1 ←-4 ←2-6 ←3-8 ←4-10 ←5-12 ←6-14
G ↑-4 տ2 ←-3 ←2-5 տ←3-7 ←4-9 ←5-11
A ↑2-6 ↑-3 տ3 տ←-2 ←2-4 ←3-6 ←4-8
C ↑3-8 ↑2-5 ↑-2 տ0 տ-5 տ-3 ←-8
T ↑4-10 ↑3-7 ↑2-4 տ-5 տ-3 տ-8 տ-2

Table 2.5: Example Of Local Sequence Alignment.

C G A
C G A
+1 +1 +1

in the query and subject sequences. However, if local alignment was being performed, then

the highest scoring cell in the dynamic programming space would be used as the starting

point. Also for local alignment, the calculation of cell scores would be adjusted so that no

cell may score below zero, thus ensuring the highest scoringalignment is not concealed

because it is preceded by a negatively scoring alignment.

For Table 2.4, a locally optimal path is obtained by finding the highest scoring cell, and

tracing the path from that cell to the lowest scoring cell on that path. This results in the

path from the cell scoring 3 of (A,A) → (G,G) → (C,C). This path is then reversed, and

the query and subject sequence fragments are collated, to obtain the alignment depicted in

Table 2.5. The globally optimal path can be obtained similarly by starting at the bottom

right cell and following the path to the origin. This yields the back trace path of (T,T)→

(C,C)→ (--,G)→ (A,A)→ (G,G)→ (C,C), yielding the global alignment of Table 2.6.

29

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Table 2.6: Example Of Global Sequence Alignment.

C G A - - C T
C G A A G C T
+1 +1 +1 -5 -2 +1 +1

Table 2.7: Example Of Proteomic Sequence Alignment Using A Substitution Matrix.

I F G M M R C

I S S M M Q C

+4 -2 0 +5 +5 +1 +9

2.1.1.6 Proteomic Similarity

The searching techniques above are also applied to proteomic databases. The four letter

nucleotide alphabet,A, C, G andT, is replaced by an alphabet of 22 amino acids1. The rel-

ative properties and frequencies of the amino acids are morecomplex than for nucleotides.

To accommodate this, the fixed reward and penalty scores are discarded in favour of a

substitution matrix that assigns differing scores for eachpairing of amino acids. Such

matrices take into account the biological relatedness of the different amino acids, e.g.,

hydrophilic versus hydrophobic. Two popular families of substitution matrices are BLO-

SUM (Henikoff and Henikoff 1992) and PAM (Dayhoff et al. 1978, Schwartz and Dayhoff

1978). Table 2.7 shows a simple alignment of two peptides using the BLOSUM62 substi-

tution matrix. It can be seen that while identical residues score most highly, conservative

substitutions, e.g.,R versusQ, can also produce positive scores. There necessarily remains

a substantial number of combinations that result in a negative score, e.g.,F versusS, which

scores -2.

Since each amino acid is encoded by acodoneach consisting of three nucleotides2 it is

possible to search for proteins in nucleotide sequences bytranslatingto and from the nu-

cleotide to amino acid domain. Because some amino acids are encoded by any of up to

1This includes the relatively recently discovered natural encoding of selenocysteine (Bock et al. 1991)
and pyrrolysine (Srinivasan et al. 2002) .

2Excluding the longer encoding factors introduced by selenocysteine.

30

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

six different codons, such searching introduces new complexities as multiple distinct nu-

cleotide sequences can encode the same protein. Translatedsearching is not given further

consideration in this dissertation.

2.1.1.7 Biological And Statistical Significance Of Alignments

Of equal importance as finding the alignment between a pair ofsequences, is giving the

alignment a score that correctly indicates its relative biological significance. The difficulty

is what is “biologically significant”? For any given query, NCBI & WU BLAST differ

in the alignment and scores they return, and these are different again compared with the

alignments and scores returned by the Smith-Waterman algorithm (Dwan 2002), or by

other alignment scoring metrics, such as POZ scores (Booth et al. 2004). These algorithms

uses statistical significance to estimate the biological significance. However, the precise

interpretation of biological significance depends heavilyon the context (Galisson 2000).

That statistical significance is a valid approximation of biological significance is argued by

Smith, Waterman & Burks (Altschul and Gish 1996b). Therefore, statistical significance

remains the dominant mechanical approximation for biological significance.

Work by Altschul et al. (1997) and Galisson (2000) provides some commentary on the

progress made in the statistical issues of biological sequence searching. Smith et al.

(1985) modelled the distribution of nucleic sequence similarities by applying the work by

Erdos and Renyi (1970), and Erdos and Revesz (1975) on findingthe longest run of heads

in a series of coin tosses by considering nucleotide matchesas “heads” and substitutions

as “tails”. Their theory is ideally applicable to non-gapped alignments with some applica-

bility to gapped alignments. A similar work that applied only to exact alignments was also

undertaken by Karlin et al. (1983). Altschul (1997) and Karlin and Altschul (1993) have

also shown that it is possible to use these results to estimate the combined significance of

multiple nearby alignments. More recently, Booth et al. (2004) introduced POZ-scores as

31

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

another scoring method that is more resistant to false positives, but may also increase the

false negative rate.

These theories provide an accurate statistical model for non-gapped alignments. Their

common purpose is to provide a mechanism to convert between dynamic programming

scores to normalised scores (Altschul and Gish 1996a). Suchnormalised scores are of-

ten measured in “bits” of information by rescaling to base 2 logarithms (Altschul 1993,

1991, Altschul et al. 1997). Normalised scores allow the calculation of the probability or

expected value for alignments of any given score, and hence objectively evaluate the statis-

tical significance of any given alignment.

Unfortunately, to date no corresponding theory for gapped alignments has been proved

(Galisson 2000, Altschul et al. 1997). However, the non-gapped theories are generally ac-

cepted as valid for gapped alignments, subject to certain caveats. These caveats usually

relate to the selection of appropriate gap penalty regimes.The practical validity of applying

the non-gapped theories to gapped alignments is assumed by both the FASTA and BLAST

2 algorithms (Altschul et al. 1997, Galisson 2000). Arguments in support have also been

made by various authors at various times, e.g., Altschul andGish (1996a,b), Collins et al.

(1988), Mott (1992), Waterman and Vingron (1994), Pearson (1998), Altschul et al. (1997)

and Booth et al. (2004).

However, due to the lack of a formal theoretical model, the values of various param-

eters must be estimated by simulation with either random data or unrelated sequences

(Altschul et al. 1997, Galisson 2000, Pearson 1998). A particular difficulty with these

statistical estimates for gapped alignments is if the composition of the sequences differs

substantially from that of the data used to calculate the parameters. In that case the accu-

racy of the estimations suffers (Galisson 2000).

As previously mentioned, the relatedness of these statistical models of significance to bi-

ology are considered by Altschul et al. (1994) and Pearson (1998), who, while conceding

32

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

that the two are not identical, argue that they are necessarily similar and related. The con-

tinued use of models of statistical significance as an estimation of biological significance is

testimony to their general suitability to their application in the absence of a better approach.

2.1.2 Comparing The Performance Of Sequence Search And Align-

ment Algorithms

Difficulties, however, arise when comparing different sequence search and alignment algo-

rithms. Since there is no objective computational method toassess biological significance,

approximations must be made. Two approximations are: (a) touse human judged results,

and; (b) to use mechanically judged results, i.e., refer to the results of a trusted algorithm —

a so called “benchmark” (which probably ultimately dependson statistical significance).

2.1.2.1 Human Judgement

The first approach is to use human judgements. This approach is popular in the information

retrieval community, e.g., the Text REtrieval Conference (TREC3) community. It has also

been applied to biological sequence searching by making useof classified sequences, such

as in some protein databases, for example by Williams and Zobel (2002a). However, there

are inherent difficulties with using human judgements.

The first difficulty is the presence of misjudgements that penalise correct judgements made

by computer programs. There is evidence to suggest that misclassifications in human sup-

plied judgements may occur in a worryingly high percentage of cases, perhaps 10 percent

or more (Bernstein and Zobel 2005). Having said this, the misclassification rate is not usu-

ally sufficient to invalidate comparisons of search and alignment systems, as the difference

in effectiveness of the systems will be much greater, as is demonstrated in this dissertation.

3http://trec.nist.gov [On line; accessed 17 February 2007]

33

http://trec.nist.gov

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

The second and greater difficulty is that the number of human supplied judgements is usu-

ally very small compared to the collection sizes. Moreover,there are no well distributed

human judged test collections for nucleotide sequence alignment.

2.1.2.2 Benchmarks

An alternative to using human judged results, is to compare each competitor to some bench-

mark. A good candidate for a benchmark in nucleic acid and protein sequence alignment

is the algorithm of Smith and Waterman (1981). This is because its search process is both

exhaustive, and well trusted. Nonetheless, there are two potential pitfalls that must be

addressed.

Firstly, the Smith-Waterman algorithm has no mechanism forfiltering results that are statis-

tically significant, but biologically insignificant. This will penalise any algorithm that does

filter such uninteresting results. This bias can be reduced by disabling any low-complexity

filters in other algorithms (most supply the option to do this).

Secondly, because the Smith-Waterman algorithm is designed to optimise recall, it will

implicitly penalise algorithms that are designed to optimise precision. This would cause

precision-oriented systems to score lower than they would if assessed by a human judged

framework.

Nonetheless, it seems that unless the residual electronic misjudgements and biases occur

more often than in the human judged case, the electronic judgement approach is superior,

because it can be applied to arbitrary collections without requiring the collection of human

judgements: Slow as the Smith-Waterman algorithm is, it is still much faster (and easier) to

obtain results for a large collection than to solicit a similar number of results from human

experts. Further, since most heuristic sequence alignmentalgorithms are derived from the

Smith-Waterman algorithm, there is a certain fairness and common sense in comparing the

heuristic algorithms to their ancestor.

34

2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

Nonetheless, the fundamental limitations and blind spots will apply that arise whenever

evaluation is at an engineering level, processing level andoutput levels only, such as not

extending to evaluate use or social issues such as fitness foruse or differences in produc-

tivity (Saracevic 1995). Such social, user and use evaluation is beyond the scope of this

dissertation.

2.1.2.3 Sensitivity Metrics

Irrespective of the origin of the benchmark against which competitors may be compared,

a metric must be selected in order to perform the comparison.A traditional measure in

information retrieval isRecall and Precision4. This double measure compares both the

sensitivity and selectivity of a query.Recallmeasures the extent to which the results of a

query contain the correct results. Conversely,precisionmeasures the proportion of returned

results that are correct. Therefore returning entirely relevant results will result in high recall

and precision. Omitting some relevant results will cause the recall to drop, but will not

affect the precision, where as including some irrelevant results will cause the precision to

fall, but leave the recall measure unchanged.

In sequence alignment applications, it is trivial to limit the number of results returned. In

that case, a reduction in precision does result in a corresponding drop in recall, as relevant

results are displaced by irrelevant ones. Therefore if the number of results each competitor

returns is fixed, then recall and precision are necessarily connected by a positive correlation.

Consequentially, a metric based on recall will capture muchof the value of measuring both

recall and precision if the number of results is limited.

Favouring recall over precision (and using the measures of recall and precision at all) also

has broader implications in terms of usability, partly because human assessed relevance is,

like many aspects of humanity, practically impossible to define or compute, partly because

4Recall and Precision are isomorphic with the alternative approach of considering false positive and false
negative rates that is perhaps more common in the field of biology.

35

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

its assessment is highly variable among subjects (Saracevic 1995). Thus, the variability

in opinion that leads to many of the misclassification by human judges also introduces a

similar type of error in that recall is but one opinion of relevance.

In nucleic acid and protein sequence alignment there is an added complication in that a

result can bepartially returned, e.g., if only part of an alignment between two sequences

is discovered (possibly as multiple fragments). One solution is to sum the fractional align-

ments. However, this assumes that the majority of an alignment is of less value than its

entirety, and therefore will underestimate the value of theresults. Alternatively, each align-

ment could be scored as though the entire alignment were reported — thus overestimating

the value of the results.

Li et al. (2004) employ the metric of counting all alignmentsthat score> x
n, wherex is

the score of the optimal alignment, andn typically being 2. This method of measuring

recall can be called thePatternHuntermetric, after the title of the algorithm presented

by Li et al. (2004). It is appealing because it is not only simple, but also intuitive, in

that it compromises between the under- and over- estimations previously described. A

variation on this metric is introduced later as the basis formeasuring search sensitivity in

this dissertation.

2.2 Accelerating Sequence Searching

This section provides a survey of selected work in several major areas of accelerating the

nucleic acid and protein sequence search processes. The survey includes: (a) heuristic

algorithms; (b) clustered (parallel) computing, and; (c) indexing techniques.

36

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

2.2.1 Heuristic Algorithms

The current heuristic algorithms typically claim two to three orders of magnitude

improvement in execution time compared to Smith-Waterman (Altschul et al. 1997,

Williams and Zobel 2002a, Kent 2002). However, as observed by Pearson (1990) and

Galisson (2000), this improvement is at the expense of accuracy. That is, heuristics offer

speed improvements by excluding much of the search space. Therefore, if any interesting

results lie in the excluded regions of the search space, theywill not be identified.

2.2.1.1 A Brief Comparison Of Selected Heuristic Algorithms

The algorithm by Smith and Waterman (1981) is exhaustive, i.e., does not exclude any re-

gions of the search space, and this makes it helpful as a base line by which to measure both

the performance and quality of heuristic algorithms (Dwan 2002). This is reinforced by the

fact that the majority of the heuristic algorithms are directly or indirectly derived from the

Smith-Waterman algorithm. Table 2.8 compares the performance of Smith-Waterman and

the algorithms discussed below.

2.2.1.2 FASTA

The FASTA (Pearson 1990) group of algorithms, developed during the 1980s, are generally

considered to be among the best quality heuristic algorithms. Despite being the among

the most sensitive heuristic algorithms, significant sensitivity compromises are still made

(Galisson 2000). The primary interest of FASTA in this dissertation is that it is the direct

ancestor of the widely used BLAST family of algorithms.

These algorithms function by finding allk-mers, that is strings of lengthk, that correspond

between the query and subject sequences. This list ofk-mers is then used to identify and

re-score the ten best scoring regions. A joining procedure is applied to these regions and

37

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

finally band limited dynamic programming is applied to optimise the final score. This

algorithm finds both gapped and non-gapped similarities, and offers 10 to 100 times speed

improvement compared to the Smith-Waterman algorithm.

2.2.1.3 BLAST

The first version of the BLAST algorithm (Altschul et al. 1990) searches for non-gapped

alignments only. This makes it somewhat faster and somewhatless sensitive than the

FASTA algorithm. The loss of sensitivity is partly offset when searching for protein se-

quences, because BLAST takes into account the similarity ofamino acids in the initial

phase of the search (Galisson 2000): rather than using only the k-mers of the query se-

quence, when searching for protein sequences BLAST also includes all neighbouringk-

mers, i.e.,k-mers that are similar to each queryk-mer. This expanded list ofk-mers is then

used to look up each exact occurrence in the subject sequenceto perform an un-gapped

alignment. The highest score for each extension is retained.

The BLAST algorithm was later refined to incorporate more advanced statistical methods,

e.g., Altschul (1993, 1991), Karlin and Altschul (1990), Dembo et al. (1994), including

using Poisson approximations and taking into account multiple nearby alignments when

calculating the expected value or probability of a match occurring in a random sequence.

The ability to perform gapped searches with BLAST family algorithms was later included

by both Altschul et al. (1997) and Gish resulting in NCBI-BLAST 2 and WU-BLAST 2

respectively.

NCBI-BLAST 2 claims to be> 100 times faster than Smith-Waterman (Altschul et al.

1997). This performance improvement is arguably at a notable sensitivity cost compared

to BLAST 1 (Williams and Zobel 2002a), although the authors of NCBI-BLAST 2 claim

that sensitivity is actually improved (Altschul et al. 1997).

38

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

The NCBI BLAST 2 nucleotide search algorithm differs in several substantial ways from

the NCBI BLAST 2 protein search algorithm. First, neighbouring k-mers are used during

protein searching to increase sensitivity, where as for nucleotide searching they are not. The

use of similar as well as identicalk-mers as baits contributes significantly to the sensitivity

of BLAST when searching protein databases. Second, the default k-mer size is three for

protein while it is at least seven and defaults to eleven for nucleotide searches. Third,

whereas in order to contain the time required to perform a search, two hits must occur in

close proximity to trigger the extension of a hit during protein searching, a single hit is

sufficient to trigger extension of a hit during a nucleotide search.

NCBI-BLAST 2 operates similarly to the original BLAST algorithm, first discovering all

correspondingk-mers (again using neighbouringk-mers for protein searches) between the

query and subject sequence(s), with each hit being extendedusing non-gapped alignment,

and the highest scoring alignments being extended using a variation of the Smith-Waterman

algorithm that allows gapped alignment.

NCBI-BLAST 2 takes time proportional to the product of the query and subject sequences

to scan the database, plus an additional factor proportional to the total length of hits due

to the dynamic programming extension performed for each hit. This can cause NCBI-

BLAST 2 to search slowly if the database contains many sequences similar to the query,

or if the query contains low complexity regions that are wellknown to occur with ex-

cessive frequency. This problem is addressed in part by masking the query against low

complexity regions using an algorithm such as XNU (Claverieand States 1993) or DUST

(Hancock and Armstrong 1994). However, the performance issue still remains for long

high-quality alignments, resulting in overall performance which is approximately propor-

tional to the total length of alignments returned, rather than the size of the query. Con-

sequentially, it is difficult to predict in advance the time required to complete a BLAST

search.

39

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

Moreover, because for BLAST builds an index of the query sequence, but not of the

database being searched5, searching is intrinsically slower than if the database were in-

dexed instead. The trade-off is that the size of a database prepared for searching by BLAST

will be very small compared with the algorithms that index the database.

The other variation of the BLAST algorithm, WU-BLAST 2, was released prior to NCBI-

BLAST and makes even greater claims of speed and sensitivityimprovement than does

NCBI-BLAST 2. WU-BLAST also offers NCBI-BLAST 1 & 2 compatibility modes. The

actual algorithm has, unfortunately, not been released. Refer to Galisson (2000) for a more

thorough explanation and comparison of the FASTA and the NCBI- and WU- variants of

the BLAST family of algorithms.

2.2.1.4 BLAT

BLAT (Kent 2002) is a more recent heuristic algorithm that uses a memory resident index of

the database to increase speed rather than sensitivity. This combination of RAM-resident

index and disk-resident database enables BLAT to be run at great speed on inexpensive

computers. It is approximately five times faster than NCBI-BLAST 2. Its sensitivity for

nucleic acid queries is somewhat less than that of NCBI-BLAST 2, while protein sensitivity

is substantially lower, being hampered by the use of a rigid index, as will be shown later in

this dissertation. However, for its original application of genome assembly and annotation

the sensitivity is more than acceptable, particularly given the speed increases obtained.

BLAT operates by creating an index of all non-overlappingk-mers in the database that for

many databases is small enough to fit in the RAM of a desktop computer. It is because the

index is constructed for only non-overlappingk-mers that sensitivity is sacrificed compared

with BLAST. On the positive size, BLAT stitches together un-gapped alignments to form

the gapped alignments, including exons that are separated by gaps. This effectively avoids

5According tohttp://blast.wustl.edu/blast/dbfmts.html, the NCBI BLAST database format
indexes the names of each sequence, but not their content [Online; Accessed 25 October 2008].

40

http://blast.wustl.edu/blast/dbfmts.html

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

much of BLAST’s problem of expending up to O(n2) effort to discover an alignment of

lengthn, resulting in a search time that is more readily predicted based on the product of

the length of the query and database.

2.2.1.5 FLASH

FLASH (Califano and Rigoutsos 1993) is an earlier example ofindexed sequence search-

ing, where the intention was to maintain or improve sensitivity as well as speed. FLASH

creates a probabilistic index that consists of a hash-tablethat contains not only thek-mers

present in the indexed databases, but also all similarly ordered permutations of eachk-mer.

This allows the index to look up all sequences that contain similar strings to the query,

instead of only looking up identical strings.

This greatly aids sensitivity, and results in a system that is more sensitive than BLAST.

In addition, FLASH is an order of magnitude faster than BLAST. Its success is, however,

hampered by the size of the indices it uses. The storing of multiple permutations of each

k-mer results in indices that are two orders of magnitude larger than the input sequence

collections (Williams and Zobel 2002a).

2.2.1.6 CAFE

CAFE (Williams and Zobel 2002b, Williams 1999, Williams andZobel 1997b,a, 1996) is

an example of a later indexed algorithm that utilises much smaller indices than FLASH,

and offers similar sensitivity to BLAST 1 or FASTA.

CAFE is intended to operate on disk-resident databases and indices, and utilises many

of the techniques used to search disk-resident collectionsof text. This includes a strong

emphasis on compressing index and data records to minimise their retrieval time.

41

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

The CAFE search algorithm consists of two stages, a first coarse search that involves only

the index, and a second fine search stage that involves the records, or relevant parts of

records where they are large, thus further reducing retrieval time.

The CAFE index stores not only which records contain a givenk-mer, but also the offset of

the occurrence(s) of thatk-mer in the record. It is this feature that allows CAFE to perform

the coarse search without the expense of retrieving compressed records from the database.

This is because thek-mer is known from the query sequence.

A number of scoring and ranking schemes can be applied to the collection of k-mers re-

vealed by the index to occur in any given record.

A naive scheme that works well is to simply count the number ofmatchingk-mers. The

authors call this FRAMECOUNT. Another scheme that works well is to consider the

coverage of the record by thek-mers. In that scheme, two adjacentk-mers would score less

than twok-mers that did not overlap. The authors call this COVERAGE. However, better

results are obtained by combining these two measures into a COMBINED score, according

to:

COMBINED = COVERAGE−k× (LENGTH−COVERAGE)

Wherek is an empirically determined constant, typically selectedsuch thatk≪ 1.

Initially, only hits are combined that occur in the same frame, i.e., a fixed difference be-

tween the query and subject sequence offsets. For example, (5,7) and (6,8) would be in

the same frame, because 5-7=-2 and 6-8=-2. However, (8,11) would not be in that frame

because 8−11=−3 6=−2.

Hits in plausible combinations of frames may correspond to alignments containing gaps.

The scores of such frames are combined according tod
√

S, whereS is the score of the

42

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

frame, andd is the distance of the frame that is being added to the frame that is receiving

the addition.

In the fine search stage, CAFE retrieves the top ranking records from the database, or

the relevant sections of them, if they are long. They are thensubjected to a FASTA like

assembly and extension procedure.

An attractive feature of the CAFE algorithm is the sub-linear increase in search time as the

database size increases. This occurs, in part because: (a) the coarse search does not need

to retrieve records from the database, thus decoupling search time from database size, and;

(b) unlike in NCBI-BLAST, the fine search occurs only once foreach hit, even if it contains

gaps.

The authors note that given the continuing upward trend of database sizes that this effect

will result in a shift over time towards indexed algorithms as the only practicable solu-

tion. It is also notable that CAFE search times are more reliably predicted by search space

size when compared to BLAST 2 (Williams and Zobel 2002a). This predictability of com-

putation expense is an attractive feature for operators of sequence search and alignment

services.

2.2.1.7 Acceptance Of Heuristic Algorithms

Perhaps the most famous and widely used of the heuristic algorithms is NCBI-BLAST 2

(Altschul et al. 1997). Galisson (2000) observes that the prevalent use of this algorithm is

evidence that the accuracy trade-off made by heuristic algorithms, and by BLAST specif-

ically, is a tolerable one. Suggested reasons for the acceptability of the trade-off are both

pragmatic, i.e., the NCBI BLAST web site is fast, reliable and easy for biologists to use,

and the habit is now firmly established; and intelligent, in that BLAST must in general find

results that are helpful — otherwise it would not be used. Thus, it seems reasonable to

suggest the heuristic algorithms are popular: (a) because they are cheap, i.e., they require

43

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

Table 2.8: Inferred Relative Speed Of Various Heuristic Sequence Similarity Search Algo-
rithms.

Algorithm Gaps Claimed Speedup vs S-W

Smith and Waterman (1981) Y 1.00
FASTA (Pearson 1990) Y 10 to 100 (Pearson 1990)

BLAST 1 (Altschul et al. 1990) N ~30-300 (Altschul et al. 1997)
NCBI-BLAST 2 (Altschul et al.

1997)
Y ~100-1000 (Williams and Zobel

2002a)
WU-BLAST 2* Y ~100-3000** Galisson (2000)

BLAT (Kent 2002) Y ~1000-10000 (Kent 2002)
FLASH(Califano and Rigoutsos

1993)
Y ~1000-10000 (Williams and Zobel

2002a)
CAFE(Williams and Zobel 2002a) Y ~800-8000 (Williams and Zobel

2002a)
* The unpublished algorithm for WU-BLAST 2 is discussed in Galisson (2000).

** Figures inferred from what information could be found regarding WU-BLAST

no special hardware; (b) because they are fast; (c) because they are reasonably reliable;

and, (d) because they are accessible.

2.2.1.8 Ignorance Of Users To Specific Heuristic Trade-Offs

However, a significant risk with heuristic algorithms lies in the fact that the users of them

are frequently not familiar with the precise concessions toaccuracy made by a particular

heuristic. Therefore many people apply heuristic algorithms to particular problems, with-

out understanding whether it is reasonable or appropriate.This issue of applicability has

been explored, e.g., by Galisson (2000) and Dwan (2002), however it is unlikely that most

regular users of BLAST or other heuristics are familiar withthese issues. This problem is

likely to escalate, as more aggressive heuristics are devised to combat the continuing differ-

ence between Moore’s Law and biological sequence database sizes: Slower and more accu-

rate heuristics such as FASTA are already being abandoned byusers (Williams and Zobel

2002a).

44

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

Perhaps relief from this problem will emerge from index based algorithms such as CAFE

that provide sub-linear search time with respect to database size, without significant addi-

tional sacrifice of accuracy. The inefficiencies introducedby the size of the indices will

become less significant as databases continue to grow to the point where they will not fit

into the main memory of even a large computer or cluster (Williams and Zobel 2002a).

2.2.2 Clustering (Parallel Computing)

Clustering, also known as Grid Computing, is a method of parallel computing where a work

load is divided into a number of parts that are processed in parallel on a number of com-

puters. Clustering is a popular method of improving the performance of search systems, as

evidenced by their proliferation, particularly in the caseof internet search engines. Perhaps

the most prominent cluster in popular use for sequence alignment is the NCBI BLAST on-

line search facility. Their attraction is in increasing search throughput by typically 1 – 3

orders of magnitude, without sacrificing flexibility in which algorithms can be utilised.

Within clusters there are two main divisions:homogeneousandheterogeneous, referring

to the level of similarity of the component nodes. Homogeneous clusters are still by far the

most common, due to ease of implementation and use, particularly for parallel applications

requiring low latency inter-communication. However, as desktop computer capabilities

have increased by several orders of magnitude over recent years there is a vast latent re-

source available in most organisations and departments. The challenge in harnessing this

resource is the often heterogeneous nature the computing resources. Thus specialised ap-

plications are required to use such computers as an efficientcluster. Also, the maintenance

of this type of cluster is typically more difficult as the nodes have more than one (poten-

tially conflicting) function. Despite these difficulties the heterogeneous cluster approach

has been successfully employed in such projects as SETI@Home (Anderson et al. 2002,

Werthimer et al. 2001).

45

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

While the implementation and running costs of clusters may be relatively high (many com-

puters must be configured, powered, and maintained), the design cost and associated risks

are relatively small. Homogeneous clusters, in particular, are well understood and can be

constructed relatively quickly and reliably. These characteristics of high running costs and

low design risk contrast with hardware acceleration techniques, which may be cheaper to

run, but involve more risk in the design phase.

2.2.3 Indexing

There are two principle and related issues to consider when designing a search system

that exhibits sub-linear search time with respect to database size: space and time. It is

often straight forward to reduce the effect of one, or the other: The difficulty comes in

reducing both simultaneously, a problem perhaps epitomised by the FLASH algorithm

(Califano and Rigoutsos 1993) which decreased search timesby two orders of magnitude,

but increased disk space requirements by two orders of magnitude. Generally, time is con-

trolled by the effective structuring of the data to be searched, typically by indexing, while

space is controlled via compression. However, structured data takes space, and decompres-

sion takes time, and so the use of both must be judicious. While these concerns apply to a

much broader range of problems, in the following discussionthe focus is on nucleic acid

and protein search systems.

The effect of indexing on search systems is intuitively easyto understand. Indices occur

in many day to day situations. For example, telephone directories are a list of telephone

numbers and addresses, indexed by the subscribers names. The value of such a indexing of

the data is profound. To illustrate this, consider a telephone directory that was not sorted at

all. The average consultation of the telephone directory would require reading half of the

entire directory. While this might be practical for small collections of telephone numbers,

such as a short list of the telephone numbers of friends and family, it is a less suitable

46

2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUND

approach to apply to the telephone directory of even a moderate sized town, and certainly

useless for a large city.

Indexing, therefore, is a technique that makes it possible to avoid the cost of an exhaustive

linear search, and can result in tremendous speed increases(Witten et al. 1999). How-

ever, to make indexing cost effective for large collections, the index structures must be

compressed (Witten et al. 1999), an approach that has been proved for biological sequence

search and alignment by Williams and Zobel (2002a) in their CAFE system. Construction

of compact indices is given further attention in Section 2.4.

2.2.4 Summary

The current state of the art can be described as heuristic software algorithms dominating

the market. NCBI-BLAST holds the predominant position in that sector. Algorithms have

been proposed, such as BLAT (Kent 2002) and FLASH (Califano and Rigoutsos 1993),

which provide significant speed up versus BLAST, but with non-trivial sensitivity or space

costs. However, with the relentless increase in data volumes continuing to outstrip Moore’s

Law, the only long term solution remains the construction ofsearch systems that exhibit

sub-linear time and space cost versus data volume. The best candidates to accomplish this

are those using compressed indexed databases, such as CAFE (Williams and Zobel 2002a,

Williams 1999, Williams and Zobel 1997b).

47

2.3. COMPRESSION CHAPTER 2. BACKGROUND

2.3 Compression

2.3.1 Introduction

Where as indexing is a technique that, when correctly applied, has the effect of substantially

reducing the time required to perform a search, data compression is the reduction of the

space required to store a given set of data.

Compression can speed up the searching of large databases byreducing the number of

accesses that are required to high latency storage devices,such as disks. Moreover, com-

pression may allow the entire database to be stored in a lowerlatency storage medium,

e.g., in RAM rather than on disk. Moving a database to a lower latency storage medium

can decrease search times by orders of magnitudes. This is why compression is of inter-

est to sequence search and alignment, and especially so for indexed sequence search and

alignment where the raw uncompressed structures may be too large to fit into RAM.

The remainder of this section provides an overview of text compression, giving considera-

tion to the issues that arise when compressing a random access database, and with a final

focus on DNA compression and index compression.

2.3.2 Entropy Coding Methods

The major ground work in information theory was laid by Shannon (1948),

Weaver and Shannon (1949) and Huffman (1952). A significant contribution of Shannon

was to establish the notion ofentropyin the field of data compression. The entropy of a

message,H, is calculated by summing the probability of each symbol in agiven alphabet

a of sizen, weighted by its probability:

H =−
n

∑
i=1

[p(ai) logp(ai)] .

48

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Hence a symbol,ak, with probabilityp(ak) = 1, contributes−p(ak) logp(ak) =−1log1=

0 to the entropy. This makes intuitive sense, because the occurrence of the symbol is

certain, it contributes zero information: There is no need to encode an event that must occur.

For an alphabet where all symbols are equally frequent, i.e., p(a0) = p(a1) = . . .= p(an−1),

each symbol contributes equally to the entropy. In fact, in this case the entropy of the

message isH = 1. This is the case for the overwhelming majority of possiblemessages.

This is significant because a message withH = 1 cannot be compressed using anyentropy

codingmethod.

An entropy coding method is one that seeks to allocate codewords to symbols based on

their observed frequency; more frequent symbols are allocated shorter codewords, while

less frequent symbols are allocated longer ones. Since the more frequent symbols are the

common case, a net saving in space results from their using shorter codes. The relatively

rarer symbols require longer codewords. The length of a given codeword is inversely pro-

portional to the probability of its occurrence in a message.

In practice, the symbol probabilities are estimated ratherthan known exactly. This leads

to a problem known as thezero frequency problem(Witten and Bell. 1991). In an opti-

mal encoding, a symbol with an expected frequency of zero will be assigned a codeword

of infinite length. If such a symbol does actually occur in a message, the compressed

message will be infinitely long. This is obviously not a desirable solution, since the ob-

jective is to reduce the message size. The practical solution is to insist on a minimum

probability for each possible symbol. Although the methodsand encodings used vary (e.g.,

Cleary and Witten (1984), Bunton (1997), Cleary and Teahan (1997), Teahan and Harper

(2001), Begleiter et al. (2004)), they are all similarly effective (Witten et al. 1999).

There are two major optimal entropy coding schemes used in text compression prac-

tice: Huffman Codes (Huffman 1952) and Arithmetic Codes (Rissanen and Langdon 1979,

Witten et al. 1987, Howard and Vitter 1992, 1994). Both are optimal, in that assuming a

49

2.3. COMPRESSION CHAPTER 2. BACKGROUND

source that is memory-less, and for which the symbol probabilities are known, no other

code operating with the same constraints will produce a smaller message. Thus, while

Huffman Coding is not optimal in terms of entropy, it is optimal for all whole-bit binary

codes. In the case of Arithmetic Coding, the fraction of the size of the encoded message

when compared to the original, will be almost exactly the entropy,H, of the message. This

near optimal coding efficiency is, however, achieved at somecost. Primarily, Arithmetic

Coding is slower when compared with Huffman Coding, and alsorequires additional care

when marking the end of a message.

In comparison to Arithmetic Coding, Huffman Coding is much faster and simpler to imple-

ment. The disadvantage of Huffman Coding is that it will produce larger output than Arith-

metic Coding, particularly if there are one or more symbols with high probabilities. This is

common when encoding alphabets of small size, such as the binary alphabet,A = {0,1}.

The redundancy of the Huffman Code has been shown to be bounded by p1+0.086, where

p1 is the probability of the most frequent symbol. This is theGallager Limit (Gallager

1978). This inefficiency can often be ameliorated, for example by the extension of the al-

phabet to include digrams and higher order structures to reduce the maximum frequency.

This makes Huffman Codes more generally applicable than it would first appear. However,

there are situations when the coding inefficiency of HuffmanCodes remains problematic.

A problem that is often coincident with the inefficiency of Huffman Codes, is the cost

of generating the Huffman Code tree. For static and semi-static compression, the Huff-

man Code tree need be calculated only once. However, in fullyadaptive compression

schemes, the tree may need to be regenerated frequently. Efficient algorithms exist for gen-

erating Huffman Code trees, e.g., Moffat and Turpin (1998).However, cost still increases

with alphabet size. As a result, the coding efficiency gains achieved by extending the al-

phabet to are in direct opposition to the computational efficiency of the tree construction

process. At some point there is a cross over, where Arithmetic Coding begins to offer

both better compression and computational efficiency. Typically this is in situations where

50

2.3. COMPRESSION CHAPTER 2. BACKGROUND

adaptive probabilistic models are employed (Bookstein et al. 1993). The border territories,

however, remain under dispute with ground shifting as advances are made on either side,

e.g., Fenwick (1996), Moffat et al. (1998), Moffat (1999) and Moffat and Turpin (1998),

Turpin and Moffat. (2000).

2.3.3 Dictionary Methods

The second major category of loss-less text compression algorithms are those based on

dictionary methods. The canonical algorithms in this classare LZ77 and LZ78 both of Ziv

and Lempel (1977, 1978). Both algorithms encode successiveportions of a message by

referencing previous parts of the message. The differentiation lies in how references are

encoded.

In the LZ77 algorithm, the longest matching string, plus thenext symbol is encoded. The

encoding takes the form of a triplet that specifies the distance from the current point, the

length of the common prefix, and the single character to be appended in order to produce the

new string. The current point is then advanced to just beyondthe last symbol that has been

encoded. To cater for the situation when no match can be foundagainst the preceding text,

the prefix string is set to the empty string, and only a single symbol is encoded. Consider

the example of coding the word “banana”. This would result inthe triplets as indicated

in Table 2.9. For the first three letters, there is no match earlier in the string. However,

upon reaching the fourth position, “an” has already been seen. In fact, because during

decompression the “an” can be extracted before the final “a” will be read, the last three

letters can be recursively encoded in a single triplet.

LZ78 is a refinement of LZ77 where, instead of referring to thedistance and length of a

string, each candidate string for matching is referenced bya unique index number. The

table of strings that can be matched against are formed by concatenating a string that is

51

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Table 2.9: Example Of LZ77 Coding For “banana”.

Distance Length Single Character Region Encoded

0 0 b Banana
0 0 a bAnana
0 0 n baNana
2 3 NULL banANA

Table 2.10: Example Of LZ78 Coding For “banana”.

String # Single Character Region Encoded New String New String #

0 b Banana b 1
0 a bAnana a 2
0 n baNana n 3
2 n banANa an 4
2 - bananA a- 5

already in the table, and the next symbol from the input stream. The candidate string table

begins with a single entry, zero, which is the empty string.

Table 2.10 shows how the LZ78 algorithm works for the exampletext “banana”. For

this example, LZ78 encoding requires one more code than LZ77. However, the encoded

message can be substantially smaller, because each code canbe much more compact.

LZ78 codes require⌈log2n⌉+ ⌈log2a⌉, wheren is the number of strings in the dictio-

nary a given point, anda is the size of the alphabet being encoded. This compares to

⌈log2w⌉+ ⌈log2l⌉+ ⌈log2a⌉ for LZ77, wherew is the window length where strings may

be referenced, andl is the maximum length of a reference. Efficient implementations of

either algorithm may use variable length encodings to improve compression performance.

However, this does little to modify the relative ratio of their code sizes.

The attraction of dictionary based algorithms over entropyencoding techniques is two fold,

compression performance and speed.

First, dictionaries of strings can provide a better zero-order model than does a method based

on dictionary of characters. Such high-order models can indeed achieve better compression

52

2.3. COMPRESSION CHAPTER 2. BACKGROUND

than a zero-order model, but a dictionary-based algorithm can still be a zero-order model

and cannot achieve better than zero-order entropy on a givendictionary.

The second attraction of these algorithms is their high speed, especially for decoding. The

speed of the LZ algorithms comes from their simple block copyoperations. These opera-

tions are very fast, and when dictionary methods are combined with byte-alignment, such

as in LZRW (Williams 1991) or LZO (Oberhumer 1997), they yield even greater speed, in

return for some sacrifice of compression. Indeed, the fastest variant of the LZ algorithms,

LZO, decompresses only four times slower than a simple memory-memory copy, while

still encoding below the zero-order entropy in many cases (Oberhumer 1997). Because of

this combination of speed and compression performance, derivatives of the LZ methods are

used in many popular compression algorithms, such as compress (Welch 1984) and gzip

(Gailly 1993).

However, in the context of this dissertation the principle value of the LZ methods is that

they explicitly encode redundant strings, thus making the redundancy information visible

to a sequence search and alignment system that was equipped to use it. The specification

and initial evaluation of such sequence search and alignment systems is a major focus of

this dissertation.

One challenge that must be overcome in this pursuit is that the LZ methods are adaptive

in that they build the dictionary of recurrent strings as they process the data. This means

that it is not possible to obtain efficient random access to individual records of an LZ

encoded data stream, thus rendering them unsuitable for usein information retrieval sys-

tems, such as sequence search and alignment systems. Fortunately algorithms have been

developed that substantially address this issue, by combining explicit description of redun-

dancies with an effective means of accessing random records. Two such algorithms are

SEQUITUR(Nevill-Manning and Witten 1997) and XRAY(Cannane and Williams 2002).

53

2.3. COMPRESSION CHAPTER 2. BACKGROUND

SEQUITUR operates by creating – in a single pass with linear time and space requirements

– a context free grammar from the input text that can be used toreproduce the input text. It

does this by searching for repeating digrams. Whenever a digram is detected as occurring

more than once, both occurrences are replaced by a non-terminal symbol that triggers a

rule that produces the digram.

The non-terminal symbols are treated exactly as symbols from the input text, in that if

a digram containing a non-terminal symbol occurs twice, then a compound rule will be

created that eventually triggers the first rule. In some situations creating a new rule may

cause an existing rule to now be used only once. In that situation the singly used rule is

deleted, and its occurrence replaced by its production. This process is illustrated in figure

2.2 with the compression of “wooloomooloo”6.

No digrams are detected until the 6th letter has been processed. Until that point, the gram-

mar is a single rule,S, that produces the output directly. Once the repetition of “oo” is

detected, it is replaced with another rule,A. RuleS is altered to call ruleA instead of using

the repeated string. The process continues uneventfully until the next occurrence of “oo”.

This time a rule (A) already exists for encoding the digram, so that is used. Whenthe sec-

ond “l” is processed the contraction “Al” now occurs twice, so it is replaced by a new rule,

B. And so the process continues until the last letter is processed. Now the construction

BA occurs twice, so a new rule,C, is produced to remove the redundancy. But this means

that the only place where ruleB occurs is in ruleC. In order to minimise the size of the

grammar (and thus maximise compression) ruleB is discarded, and its production inserted

directly into ruleC.

Redundancy is explicitly encoded using this method. However, synchronisation points,

and thus random access to records, is still problematic because the grammar hierarchy is

unlikely to coincide with all record boundaries without some special manipulation.

6Woolloomooloo has been purposely mis-spelt to amplify the example.

54

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Sheet1

Page 1

symbol the string so resulting remarks
number far grammar
1 w
2 wo
3 woo
4 wool
5 woolo
6 wooloo oo appears twice

enforce digram uniqueness
A oo�

7 wooloom
A oo�

8 wooloomo
A oo�

9 wooloomoo oo appears twice
A oo�

enforce digram uniqueness
A oo�

10 wooloomool Al appears twice
A oo�

enforce digram uniqueness
A oo�
B Al�

11 wooloomoolo
A oo�
B Al�

12 wooloomoolo enforce digram uniqueness
A oo�
B Al�

BA appears twice
A oo�
B Al�

enforce digram uniqueness
A oo�
B Al�
C BA� B is only used once

enforce rule utility
A oo�
C ABA�

S�w
S�wo
S�woo
S�wool
S�woolo
S�wooloo
S�wAlA

S�wAlAm

S�wAlAmo

S�wAlAmoo

S�wAlAmA

S�wAlAmAl

S�wBAmB

S�wBAmBo

S�wBAmBoo

S�wBAmBA

S�wCmC

S�wCmC

Figure 2.2: Compression of “wooloomooloo” using SEQUITUR.

55

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Whereas SEQUITUR lacks a mechanism for providing synchronisation points between

records, the XRAY algorithm is designed with random access specifically in mind.

XRAY compresses a document collection in three steps: (1) a small sub-set of the col-

lection is analysed to identify the recurrent phrases and soconstruct a hierarchical phrase

dictionary, that is in many ways similar to that of SEQUITUR;(2) the same sub-set of the

collection is compressed, record by record, using the modeldeveloped in step (1). This

is done to tune the model to take into account the difference between algorithms used to

discover the redundant phrases in step (1), and the left-to-right encoding performed in step

(3), and; (3) encode the entire collection, record by record, using the refined model that

was obtained in step (2).

Because XRAY encodes record by record using a fixed model, synchronisation points nat-

urally result. Further, because the model remains static for the collection, records can be

added, modified and deleted from the collection without altering the model and requiring

an expensive rebuild. Finally, because the model is small enough to be loaded entirely

into RAM, there is no impediment to using XRAY as the method for storing and retrieving

records in an information retrieval system.

It is only more recently as computational power and memory capacities have dramatically

increased, that a class of algorithms with potentially superior compression to dictionary

methods capability has begun to gain popularity, that classis the statistical modelling algo-

rithms.

2.3.4 Statistical Modelling Methods

Data compression algorithms implicitly use the property that symbol probabilities often

depend on the preceding symbols in the text. It is possible touse this property, to create

compression algorithms that model the statistical behaviour of the message, distinct from

its encoding (Rissanen and Langdon Jr. 1981). If the statistical model has a defined initial

56

2.3. COMPRESSION CHAPTER 2. BACKGROUND

state, and is updated using only the previously encoded symbols, it is possible for the

decoder to do the same. Thus encoder and decoder remain synchronised, without the need

to transmit the model explicitly, allowing the use of arbitrarily complex models that are,

hopefully, able to make good quality predictions for each successive symbol.

When such models are combined with an optimal entropy coder,such as Arithmetic Cod-

ing, it is possible to create powerful new algorithms with better performance than the LZ

family. As the predictions approachp = 1, the number of bits required to encode each

symbol approaches zero. A statistical model that is able to consistently make high con-

fidence predictions can, therefore, encode each symbol in only a fraction of a bit. Var-

ious approaches to modelling exist and are represented in a variety of algorithms, e.g.,

Prediction by Partial Match (PPM) and variants (Cleary and Witten 1984, Bunton 1997,

Cleary and Teahan 1997, Teahan and Harper 2001 etc), Context-Tree Weighting (CTW)

(Willems et al. 1995, Tjalkens and Willems 1997) and DynamicMarkov Compression

(DMC) (Cormack and Horspool 1987). Of these, DMC is conceptually the simplest, and is

described below as an example of a Statistically Modelling text compression algorithm.

The DMC model begins with some simple structure, as in Figure2.3. Note that any initial

structure is possible, and that judicious selection of an initial model can have a significant

impact on the compression performance. The model is a simplefinite state machine with

probabilities assigned to each transition.

The model begins in some state,s. As each bit of the message arrives, the predicted prob-

abilities of the bit being a one or a zero are consulted. Thesevalues are passed to an

Arithmetic Coder that encodes the event. The frequency counter for the actual value is then

updated, thus altering the model. The state transition indicated for the actual value is then

taken. Record is maintained of the number of times a state,sd, is reached from any given

state,sk,0≤ k≤ n, wheren is the number of states in the model.

57

2.3. COMPRESSION CHAPTER 2. BACKGROUND

1s

p=0.5p=0.5

0

Figure 2.3: Example DMC Initial Model.

1

sj

si

sq

sp si

sj

sd’

sd sq

sp

sd

0

0

1

1
0

Figure 2.4: Example Cloning Of States In A DMC Model.

Whensd is repeatedly selected by more than one state, e.g.,si andsj , it is cloned into two

copies each of which are arrived at from only one ofsi or sj . The frequency counts of the

old state are shared between its daughters. In this way, the order of the model increases,

and correlations between successive bits, i.e., contexts,can be discovered and modelled.

Figure 2.4 shows how this cloning could occur withsd being cloned to produces′d. This

process can occur indefinitely to build up an arbitrarily complex model of the source.

2.3.5 Performance Of Compression Algorithms

A common approach for comparing the performance of different algorithms is to bench-

mark them using a common corpus, such as the Canterbury Corpus (Arnold and Bell 1997).

Such a corpus contains a variety of files intended to reflect the types of files that are com-

pressed in the wild. Tables 2.11 and 2.12 contain the Canterbury Corpus compression ratio

and decompression speed rankings as of 18 May 2006.

58

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Table 2.11: Table of compression ratio results (sorted by increasing ratio) from the Canter-
bury Corpus (Arnold and Bell 1997) web site, 18 May 2006. Results are listed in bits per
byte, where 8.00 indicates no compression.

Weighted Average Standard
Method Bits/Byte Bits/Byte Deviation

ppmD5 1.52 2.11 0.64
ppmD7 1.56 2.15 0.65
bzip-6 1.49 2.15 0.72
bzip-9 1.50 2.15 0.71
szip-b 1.46 2.16 0.74
szip 1.48 2.18 0.74

ppmC-896 1.61 2.19 0.64
ppmD3 1.65 2.20 0.62
bzip2-6 1.54 2.23 0.75
bzip-1 1.59 2.23 0.74
bzip2-9 1.54 2.23 0.75
bzip2-1 1.64 2.31 0.77

ppmCnx-896 1.75 2.32 0.64
bred-r3 1.80 2.38 0.73

dmc-50M 1.74 2.39 0.75
dmc-16M 1.76 2.40 0.74
dmc-5M 1.81 2.43 0.74
gzip-b 2.08 2.53 0.74
gzip-d 2.09 2.54 0.73

ppmC-56 2.16 2.70 0.90
gzip-f 2.46 2.91 0.82

ppmCnx-56 2.41 2.93 0.95
yabba-d 2.59 3.14 0.81
srank-d 2.65 3.31 0.92

compress 2.55 3.31 0.95
lzrw1 3.58 4.18 1.07

huffword2 3.64 4.20 1.44
char 3.64 4.49 1.20
pack 3.74 4.53 1.07

yabba512 3.94 5.19 1.54
cat 8.00 8.00 0.00

59

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Table 2.12: Relative decompression times (sorted by increasing time) from the Canterbury
Corpus (Arnold and Bell 1997) web site, 18 May 2006.

Average Standard
Method Time (seconds) Deviation

cat 0.58 0.86
gzip-b 0.72 0.96
gzip-f 0.79 1.03
gzip-d 0.81 1.06
lzrw1 0.82 1.06

compress 0.92 1.13
pack 0.97 1.13

yabba512 0.98 1.18
huffword2 1.00 1.11

bzip2-6 1.31 1.01
bzip2-1 1.32 1.04
bzip2-9 1.37 0.97
yabba-d 1.42 1.25
bred-r3 1.93 1.13
srank-d 2.03 1.57

char 2.67 1.09
szip 2.86 1.47

ppmCnx-896 3.27 1.29
szip-b 3.29 1.67

ppmCnx-56 3.38 0.89
bzip-6 3.82 1.45
bzip-9 4.28 1.64
bzip-1 4.48 1.88

ppmC-896 4.71 2.09
ppmD3 4.86 2.31

ppmC-56 4.92 1.28
ppmD5 6.45 3.14
ppmD7 7.86 3.39
dmc-5M 11.09 3.40
dmc-16M 11.11 3.11
dmc-50M 11.48 3.21

60

2.3. COMPRESSION CHAPTER 2. BACKGROUND

The PPM derived algorithms dominate the top of the compression ratio chart, but are very

slow to decompress. This is to be expected, since a general rule of thumb is that the better

the compression: (a) the slower it will be; (b) the more memory it will require; or, (c) both

(Witten et al. 1999). Typically, there is a large penalty in execution time for algorithms that

use Arithmetic Coding, and the Prediction by Partial Match (PPM) based algorithms are

good examples of this.

There are, however, some programs, bzip27 (Seward et al. 2001) and szip (Schindler

1996), that compress almost as compactly as the PPM algorithms, but decompress much

faster. These are the algorithms representing block sorting algorithms, based on the

Burrows-Wheeler transform (Burrows and Wheeler 1994, Manzini 1999). The ability of

the Burrows-Wheeler transform to compress rapidly, and almost as compactly as the

much more complex statistical modelling compressors has caused a lot of interest, e.g.,

Balkenhol et al. (1999), Effros (1999), Deorowicz (2000), Wirth (2001), Seward et al.

(2001), Deorowicz (2002), Fenwick et al. (2003), Manzini (1999), and is briefly discussed

in the following text.

2.3.6 Burrows-Wheeler Transform

The Burrows-Wheeler transform (Burrows and Wheeler 1994, Manzini 1999) is not ac-

tually a compression algorithm. In fact, it slightly increases the size of the data to be

compressed. However, in the process it sorts the data in a given block making them more

readily compressible. For the Burrows-Wheeler transform to be of practical interest, it must

also be reversible. This is best illustrated with an example.

Consider compressing the string “CASABA” with the Burrows-Wheeler transform. The

first step is to construct a square matrix where each row consists of the successive rotation

7Note also bzip, which a previous version of bzip2 that differs only in that it uses Arithmetic Coding
instead of Huffman Coding. The difference in compression ratio and decompression speed offered by the
two is a practical example of the trade-off between time and compressive power represented by the Huffman
Codes (bzip2) and Arithmetic Codes (bzip).

61

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Table 2.13: Burrows-Wheeler Transform Step 1: Construct a square matrix consisting of
the successive rotation of the input text, “CASABA”.

C A S A B A
A C A S A B
B A C A S A
A B A C A S
S A B A C A
A S A B A C

Table 2.14: Burrows-Wheeler Transform Step 2: Sort the rows of the matrix.

A B A C A S
A C A S A B
A S A B A C
B A C A S A
C A S A B A
S A B A C A

of the input text, as depicted in Table2.13 for the string “CASABA”. Next, sort the matrix

by row, which in our example gives the result shown in Table 2.14. The output of the

Burrows-Wheeler transform is nothing more than the right-most column of the matrix and

the row at which the original text occurs, which for this example would be (SBCAAA,5).

Observe that the transform has produced a more compressiblestring, by causing the list to

be partially sorted.

The transform is reversed by reconstructing the matrix fromthe output. This transformation

can be reversed surprisingly efficiently (Witten et al. 1999). The reconstruction begins by

creating a partial re-construction of the matrix using the available information. Recall that

the first column of the matrix has been sorted alphabetically, and thus while we know only

the last column of the matrix, we can compute the first column by sorting the values in the

last column, which using the running example results in Table 2.15. We now have a list of

all two letter pairs that exist in the plain text, i.e., (SA, BA, CA, AB, AC, AS). Since we

know that the matrix is sorted alphabetically, we can sort that list of pairs to obtain (AB,

AC, AS, BA, CA, SA), which must be the first and second columns of the matrix. Filling in

62

2.3. COMPRESSION CHAPTER 2. BACKGROUND

Table 2.15: Burrows-Wheeler Transform Step 3: Reconstruct first and last columns.

A B A C A S
A C A S A B
A S A B A C
B A C A S A
C A S A B A
S A B A C A

Table 2.16: Burrows-Wheeler Transform Step 4: Reconstruct second column from first and
last columns by sorting all letter pairs. The sorted letter pairs correspond to the first two
columns of the matrix. This process then continues inductively by taking the letter triples
(SAB, BAC, CAS, ABA, ACA, ASA), and sorting them to obtain the first three columns
of the matrix. This process is repeated until the matrix is fully reconstructed. The index
number from the output is used to select the row with the original plain text.

A B A C A S
A C A S A B
A S A B A C
B A C A S A
C A S A B A
S A B A C A

the values of the second column, we obtain Table 2.16. Now we can repeat the process by

taking the letter triples revealed by the previous step, i.e., (SAB, BAC, CAS, ABA, ACA,

ASA), and sorting them to reveal the contents of the first through third columns, i.e., (ABA,

ACA, ASA, BAC, CAS, SAB). This process is repeated until the contents of the original

matrix have been fully restored. The original text is obtained by selecting the row number

provided in the output of the transform.

It turns out that the Burrows-Wheeler transform operates ona similar theoretical basis to

the Prediction by Partial Match (PPM) statistical modelling coders. However the modelling

is completely implicit in the process of the Burrows-Wheeler transform. This explains why

the Burrows-Wheeler transform is much faster than the explicit modelling methods, such as

PPM (Effros 1999) (because there is no modelling work required in the Burrows-Wheeler

transform), and also why it does not compress quite as well (because the modelling is

implicit, and cannot be tuned for optimal compression).

63

2.3. COMPRESSION CHAPTER 2. BACKGROUND

2.3.7 Synchronisation

Synchronisation points are points in a compressed data stream (in addition to the start of

the compressed data stream) from which decompression can becommenced. The value of

synchronisation points varies with the application, but infull text retrieval systems, random

access is desirable (Witten et al. 1999). However, the best compression algorithms do not

exhibit this property.

Arithmetic Coding is not well suited for synchronisation points, because Arithmetic Coding

does not introduce clear boundaries between encoded symbols. Moreover, adding such

boundaries is often enough to cause Arithmetic Coding to perform worse than Huffman

Coding (Bookstein et al. 1993, Witten et al. 1999). This problem is compounded for those

algorithms that also employ adaptive statistical models: Adecompressor working in such

an environment, and attempting to engage mid-stream, lacksthe required model context.

The various solutions to this problem generally act to worsen the compression performance.

For this reason static or semi-static models are preferablewhen synchronisation is desired.

Huffman Codes also have a extra attraction when synchronisation points are desired, in

that they are often self-synchronising. That is, if a decoder joins the stream at any given

point, in can rapidly return to the correct phase and decompress correctly after only a few

symbols. In fact, it turns out that it is extremely difficult to make a variable length code

that lacks this self synchronising property. However, because synchronisation is dependant

on the symbols in the message, it is difficult to tell exactly when a code will synchronise

(Gilbert and Moore 1959). This makes self-synchronisationproblematic in many situa-

tions.

Block sorting algorithms like the Burrows-Wheeler Transform (Burrows and Wheeler

1994) described previously, offer natural division pointsat the end of each block. This

can be used to create periodic synchronisation points. In reality, almost any compression

64

2.3. COMPRESSION CHAPTER 2. BACKGROUND

algorithm can be operated in such a way as to output discrete blocks. However, the general

rule remains that the smaller the block size, the worse the compression.

The trade-off of block size and compression ratios is of particular concern for nucleic acid

and protein sequence retrieval, because the median sequence length is likely to be much

shorter than the block size required to reach the compression plateau of most algorithms. It

is possible to trade-off random access speed against compression ratio by blocking multiple

records together (Witten et al. 1999). However, care must betaken to avoid the danger of

choosing block sizes that are large enough to offer decent compression, but prohibit fast

random access performance.

2.3.8 DNA Compression

As previously described, DNA consists of the four letter alphabet A, C, G, and T.

This suggests that it should be possible to store a DNA sequence using no more

than two bits per base. DNA sequences may also include wild-card characters

(Joint Commission on Biochemical Nomenclature 1983). However, these additional sym-

bols typically occur with very low frequencies. Williams and Zobel (1997b) have shown

that these extra symbols can be efficiently encoded and decoded, typically increasing the

average compressed message size to only around 2.01 bits perbase.

By considering the higher level structure of DNA, such as hairpins, approximate repeats,

and relative codon frequencies, it should be possible to improve the compression ratio of

individual DNA sequences. A number of algorithms have been proposed, such as those

by Korodi and Tabus (2005), Behzadi and Le Fessant (2005), Manzini and Rastero (2004),

Chen et al. (2002a, 2001), Li et al. (2001), typically achieving compression ratios of 1.6 –

1.8 bits per base on a small de facto corpus (Table 2.17).

These algorithms utilise similar entropy coding and dictionary based methods to the gen-

eral purpose compression algorithms discussed previously. In contrast to general purpose

65

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

compression algorithms, one distinctive trait that most DNA compression algorithms share

is the encoding of approximately repeated strings (rather than only exactly repeated string),

as in Chen et al. (2001, 2002a). Many DNA compression algorithms appear to be tailored

to using the compression to determine phylogenetic relationships, rather than producing

effective and compact storage formats, e.g., Li et al. (2001).

A common problem among DNA compression algorithms is excessive run time for

very long sequences. This is addressed in some of the newer algorithms which

show promising scalability to compress whole chromosomes (Korodi and Tabus 2005,

Behzadi and Le Fessant 2005, Manzini and Rastero 2004). However, there are no algo-

rithms that currently offer both effective compression, and rapid random access to individ-

ual sequences within a collection, as would be necessary forefficient combination with an

indexed search system.

2.4 Constructing Compact Indices

Indices typically consist ofinverted lists, that is a list of pointers to each document con-

taining some word, term or analogous structure, in some file.It is often useful to know

not only what documents a term appears in, but the position ofeach occurrence of the term

within the document. This means, for English text, that a pointer is required in the index

for every word in the text.

Collections of these pointers in an index are referred to aspostings lists. Assuming that the

text consists ofn bytes or documents, each posting will require at least⌈log2(n)⌉ bits. The

entire index will consumef ⌈log2(n)⌉, where f is the number of pointers required. Such a

document level index of an English text database will typically be 50 – 100% of the size of

the original text (Witten et al. 1999).

66

2.4.
C

O
N

S
T

R
U

C
T

IN
G

C
O

M
P

A
C

T
IN

D
IC

E
S

C
H

A
P

T
E

R
2.B

A
C

K
G

R
O

U
N

D

Table 2.17: Compression Performance Of Various DNA Compression Algorithms In Bits Per Base. Results summarised from
Behzadi and Le Fessant (2005), Korodi and Tabus (2005), Manzini and Rastero (2004).

Sequence chmpxx chntxx hehcm humdy humgh humhb humhd humhp mpom mtpa vaccg Mean

Algorithm / Size 121k 155k 229k 38k 66k 73k 58k 56k 186k 100k 191k 116k
gzip (Gailly 1993) 2.28 2.33 2.33 2.36 2.06 2.25 2.24 2.27 2.33 2.29 2.25 2.27

bzip (Seward et al. 2001) 2.12 2.18 2.17 2.18 1.73 2.15 2.07 2.09 2.17 2.12 2.09 2.10
Order-2 Arith. Coding 1.84 1.93 1.96 1.92 1.94 1.92 1.94 1.93 1.97 1.87 1.90 1.92
Order-3 Arith. Coding 1.84 1.94 1.96 1.94 1.94 1.93 1.95 1.94 1.97 1.88 1.91 1.93

gzip-4 (gzip of 4
base/byte packed file)

1.86 1.95 1.98 1.95 1.74 1.90 1.91 1.92 1.97 1.88 1.87 1.90

bzip-4 (bzip2 of 4
base/byte packed file)

1.97 2.01 2.01 2.07 1.87 2.00 1.99 2.00 2.01 1.98 1.95 1.99

dna2
(Manzini and Rastero

2004)

1.67 1.62 1.85 1.93 1.37 1.87 1.90 1.91 1.93 1.87 1.76 1.79

BioCompress2
(Grumbach and Tahi 1994)

1.68 1.62 1.85 1.93 1.31 1.88 1.88 1.91 1.94 1.88 1.76 1.78

GenCompress
(Chen et al. 2001, Li et al.

2001)

1.67 1.61 1.85 1.92 1.10 1.82 1.82 1.85 1.91 1.86 1.76 1.74

CTW+LZ
(Matsumoto et al. 2000)

1.67 1.61 1.84 1.92 1.10 1.81 1.82 1.84 1.90 1.86 1.76 1.74

DNACompress
(Chen et al. 2002a)

1.67 1.61 1.85 1.91 1.03 1.79 1.80 1.82 1.89 1.86 1.76 1.73

GeNML
(Korodi and Tabus 2005)

1.66 1.61 1.84 1.91 1.01 1.71 1.76 1.88 1.84 1.76 - 1.70

DNAPack
(Behzadi and Le Fessant

2005)

1.66 1.61 1.83 1.91 1.04 1.78 1.74 1.79 1.89 1.85 1.76 1.71

6
7

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

However, for nucleic acid and protein databases, the size ofan inverted index is patholog-

ical, because each and every overlappingk-mer in the database must be indexed in order

to obtain maximum sensitivity. Further, while the databases involved are very large, the

alphabet size is very small, which makes the ratio of postings to data size large. This

predicts an index size of(n− k)⌈log2(n)⌉ bits, wheren is the number of bases or amino

acids in the database, andk is the index width (typicallyk≤ 20). As an example, con-

sider theHomo sapiens(Human) UniGene (Pontius et al. 2003, Schuler 1997) build from

June 2002, consisting ofn = 2×109 nucleotides. Each nucleotide base,A, C, G or T, can

be encoded in two bits. However, each posting will require
⌈

log2(2×109)
⌉

= 31 bits.

There are a total of(n− k) postings to be recorded, and thus the final index will require

(n−k)×31≈ n×31= 6.2×1010 bits. The index will be fifteen times bigger than the data

it represents.

Fortunately, much work has been done in the area of index construction and com-

pression, with many practical implementations and implementation issues considered,

e.g., McDonell (1977), Buckley and Lewit (1985), Lucarella(1988), Harman and Candela

(1990), Fox et al. (1992), Zobel et al. (1993), Moffat and Zobel (1994, 1996). The specific

problem of biological sequence database indexing has also been successfully performed

by Williams and Zobel (2002a). Much of this work has focused on appropriate entropy

coding systems to facilitate the production of much more compact representations of index

postings lists, and efficient methods of constructing and maintaining indices of very large

collections (Zobel and Moffat 2006).

2.4.1 Compressing Index Postings

Besides the Huffman and Arithmetic Codes, there are other possible entropy coding

schemes that have utility in index compression. Two common situations are when the

frequency distribution of the symbols is unknown, or when the lexicon size is effectively

68

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

unbounded. These are the norm when compressing index postings lists corresponding to

words of English text.

There are a range of universal integer codes that can be employed to compress inverted

lists. Some, such as the unary, binary and Elias delta and gamma codes (Bentley and Yao

1976, Elias 1975) are fixed codings of all natural integers. That is, they cannot be adapted

to concur with an estimation of the expected distribution. The fixed models of these coding

schemes have both advantages and disadvantages. An advantage is that additional postings

can be added to the end of the compressed list without difficulty, because the model is fixed.

On the other hand, if the data differs significantly from the fixed model then compression

suffers.

Others, such as the Bernoulli (Golomb 1966, Gallager and Voorhis 1975), Observed Fre-

quency, Skewed Bernoulli (Witten et al. 1992, Bookstein et al. 1992), and Hyperbolic

(Schuegraf 1976) codes are parametric, in that they can be tuned to the expected distri-

bution. Many of these can be madelocal, by using the observed frequency and range

information associated with each inverted list, in order toselect a parametrisation that pro-

duces a coding scheme that more closely matches the observeddistribution. In either case,

the use of a parametric coding entails difficulties when adding new data as this act may

alter the parameter, thus requiring the entire list to be recoded.

In addition to the parametrically adaptive coding methods,there are two relatively recent

inverted list coding methods,Interpolative Coding; andSelector Codingthat are automat-

ically adaptive, and do not require prior parametrisation,each with differing strengths and

weaknesses.

Moffat and Stuiver (1996) devised the Interpolative Codingfor ordered lists as a method

that recursively divides the interval where the values reside, in order to minimise the num-

ber of bits required to precisely place each one. When applied to index postings lists, it

normally achieves compressive performance that matches orbests the other coding meth-

69

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

ods. The improved compression is mainly due to the adaptive nature of the coder. This

allows it to make effective use of non-uniform distributions of indexed terms, known as

clusters. The drawbacks of the Interpolative Coding method is the computational complex-

ity, being somewhat slower than Golomb Coding (Anh and Moffat 2005, Trotman 2003),

and that appending to a list requires recoding the entire list.

Selector Coding, is described by Anh and Moffat (2005). LikeInterpolative Coding, Se-

lector Coding is sensitive to clustering, but uses a relatively simple system of fixed width

binary selector codes. This allows the method to decode muchfaster than either Golomb

or Interpolative Coding, yet achieves compression factorsapproaching that of Interpolative

Coding. Because selector blocks are self contained, items can be appended to an existing

list without recoding the entire list. The discrete selector blocks also make it possible to

seek to a desired point in the inverted list without having todecompress it all.

In the case where a database is likely to be updated on a regular basis, Selector Coding

is probably the preferred coding method. However, if the database remains static, and

compression ratio is more important than decompression speed, then Interpolative Coding

may be the method of choice.

A common theme irrespective of which coding methods is employed is that relative rather

than absolute ordinal document numbers and word positions are recorded, i.e., the size

of the gap between successive instances. This converts a posting list that describes the

instances of some term inn documents from being evenly distributed over[0..n] into an

extreme distribution, which better lends itself to compression due to its skewed probability.

For a fuller discussion of all these coding methods, and their application to index compres-

sion, refer to Zobel and Moffat (2006).

70

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

2.4.2 Efficient Index Construction

There are a number of possibilities when it comes to constructing an inverted file from a

database (Zobel and Moffat 2006). The methods differ depending on the relative size of

the collection versus the amount of available RAM and disk space.

If the collection is substantially smaller than the available RAM, then the index can be

constructed in RAM in a single pass, and then written to disk.This process is calledIn-

Memory Inversion.

If the collection is larger than the available RAM, it is still possible to perform an In-

Memory Inversion by making two passes of the collection. During the first pass a skeleton

of the index is constructed on disk, and then constructing the actual index during the second

pass that successive portions of the collection are indexedin RAM, and then written out

sequentially into the skeleton that was produced during thefirst stage. This has the obvious

shortcoming of requiring two passes over the data, which is undesirable since the transfer

time of passing over the data is often the largest time cost during index construction. Also,

it requires that the lexicon or vocabulary of the collectionbe held in RAM.

An alternative method that avoids two passes over the data isto produce the list of postings

during the single pass. This list of postings will be orderedby document number. The

index is then produced by sorting the list of postings by term, thus this method is called a

Sort-Based Inversion. While this process can be made efficient, it still requires sufficient

RAM to hold the entire vocabulary, and in addition requires enough disk space to write the

list of postings. The end result is a process that takes roughly the same amount of time as

a partitioned In-Memory Inversion.

One method of avoiding the need to keep the entire vocabularyin RAM is to build a num-

ber of sub-indices (using either an In-Memory or and then merge them in aMerge-Based

Inversion(Heinz and Zobel 2003). If this is performed efficiently, it requires only a slight

overhead in disk space and is currently the most efficient method (Zobel and Moffat 2006).

71

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

2.4.3 Document Reordering And Filtering

The development of coding schemes, like Interpolative Coding and Selector Coding,

that can efficiently encode postings lists where the frequency of a given term varies

(forming clusters of occurrences, and inter-cluster spaces between them) has prompted

a number of authors to consider how such aberrations can be encouraged. This has

resulted in a series of studies exploring the possibility ofreordering the documents

within a database such that more clusters are produced (Blanco and Barreiro 2005,

Silvestri et al. 2004b, Blandford and Blelloch 2004, Blandford et al. 2003, Shieh et al.

2003, Blandford and Blelloch 2002), yielding space savingsof up to 30%. Significantly,

recent advances such as the SPEX algorithm (Bernstein and Cameron 2006) that can sort a

database in roughly linear time, making it possible to sort large genomic databases.

Bernstein and Zobel (2005) have explored excluding entire content-equivalent documents

from the index of a collection. This is similar to the way in which the UniGene databases

are made non-redundant by removing all identical database records. By excluding a per-

centage of documents from the index in this way, the index canbe shrunk. However, in

biological sequence searches it can be important to return all identical or nearly identi-

cal matches against a query, if only because each may correspond to a different organism,

and so the inclusion of the target organism, or more generally speaking, the title of each

redundant document in the results is important.

2.4.4 A Compelling Opportunity: Cooperative Compression

One area that does not appear to have been explored in index compression, is making

use of the redundancy exposed by dictionary based compression algorithms applied to the

database, and enhanced by document reordering methods. That is, to post only one copy of

each recurring string. Algorithms such as SEQUITUR and XRAYare able to expose such

redundancy in a readily usable format, but this author is notaware of any index system

72

2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

that uses the exposed redundancy to reduce the index size instead of only the compressed

document size.

This approach retains all documents, but should be able to achieve improvements

in inverted list compression over document reordering alone. This is because while

Witten, Moffat, and Bell (1999) are reluctant to condone theuse of stop lists to reduce

index size, it is safe to exclude postings that can be recovered during decompression from

the structure of the compressed data itself.

Statistical compression algorithms are ill suited to this task, because the redundancies they

encode are not readily extractable from the compressed datastream. However, in dictionary

based methods the redundancy may be more easily extractable. Of particular interest are

LZ77 (Ziv and Lempel 1977) and LZ78 (Ziv and Lempel 1978) and their derivatives. Such

algorithms achieve their compression by flagging often lengthy recurrences (i.e., repeated

instances of the same string) between nearby regions of a message. If a list of such encoded

recurrences was available during index construction and decompression, then only one

instance of the recurrent string need be posted in the index,as the others could be computed

during decompression.

This approach has the potential to achieve much of the same savings as a stop list or merg-

ing of content equivalent documents, but without sacrificing the ability to query on abun-

dant terms, or highly similar documents. In the context of sequence alignment, this benefit

could be further leveraged by reusing alignment effort expended on one posting, in the

context of the listed recurrences of the same string.

73

CHAPTER 3. MATERIALS AND METHODS

Chapter 3

Materials And Methods

Introduction

This chapter describes the experimental framework used throughout this dissertation. The

description begins with the selection of nucleic acid and protein databases, each suited to

the goals of cooperative compression. The selection of databases is followed by a discus-

sion regarding the selection of a set of test queries. Havingdefined the data context in

which the algorithms of this dissertation must work, a set ofexisting algorithms is listed.

These algorithms provide a peer-group and point of comparison for the algorithms intro-

duced in this dissertation. In addition, the algorithm of Smith and Waterman is selected as

a benchmark to which each of the peers is compared.

The remainder of the chapter addresses the comparison of these algorithms, defining (a)

the metrics each algorithm is measured against, and (b) the standardised and automated

system used to run and collect the results of each query. The chapter closes by presenting

a summary of the relative performance of each algorithm. These summary results are

presented in a standardised format that is reproduced in later chapters, with results added

for algorithms introduced in this dissertation.

74

3.1. SELECTION OF DATABASES CHAPTER 3. MATERIALS AND METHODS

3.1 Selection Of Databases

The thesis of this dissertation is that redundancy, when present in biological sequence

databases, can be harnessed to improve the time and space characteristics of sequence

search and alignment. This is accomplished by merging the storage and search effort of

multiple instances of identical sequence fragments. To make effective use of this redun-

dancy, the recurrences must occur near one other. That is, the database must besorted,

which in this context means that similar sequences are formed into clusters. Therefore, the

ideal database would be one that is already well sorted. However, an unsorted database

could be used, but it would require sorting during the indexing phase, thus incurring con-

siderable computational expense. Therefore pre-sorted and redundant databases are to be

preferred, although methods have subsequentially been published that allow the sorting of

a genomic database in approximately O(n) time (Bernstein and Cameron 2006).

3.1.1 Nucleic Acid

Two nucleic acid databases were selected for use in this dissertation. One was chosen as

being particularly suited to cooperative compression, while the other was chosen as being

more typical of genomic data.

The first nucleotide database that was selected is the June 2002 build of the Human Uni-

Gene database. This database was selected because the UniGene builds are large sorted

nucleic acid databases. Further, because the UniGene database is a transcriptome, it con-

tains substantial redundancy. In these regards, the UniGene databases satisfy the criteria

for effective cooperative compression: They contain redundancy, and are pre-sorted by se-

quence similarity. The FASTA formatted Human UniGene (nucleotide) database contains

approximately 1.96×109 bases in 3.5×106 sequences, and 470 MB of FASTA sequence

descriptions. The total size of this FASTA formatted Hs.seq.all database is 2,365 MB.

75

3.1. SELECTION OF DATABASES CHAPTER 3. MATERIALS AND METHODS

Table 3.1: Per Chromosome And Total Size Statistics Of The April 2003 Draft Of The
Human Genome.

Chromosome Number of Bases Percent Known Percent Wild-Card

1 245,203,898 89.2 10.8
2 243,315,028 97.4 2.6
3 199,411,731 97.1 2.9
4 191,610,523 97.4 2.6
5 180,967,295 98.1 1.9
6 170,740,541 97.7 2.3
7 158,431,299 97.5 2.5
8 145,908,738 97.1 2.9
9 134,505,819 85.6 14.4
10 135,480,874 96.5 13.5
11 134,978,784 96.8 13.2
12 133,464,434 96.9 3.1
13 114,151,656 83.7 16.3
14 105,311,216 82.8 17.2
15 100,114,055 81.0 19.0
16 89,995,999 88.8 11.2
17 81,691,216 94.8 4.2
18 77,753,510 95.9 4.1
19 63,790,860 87.4 12.6
20 63,644,868 93.4 6.6
21 46,976,537 72.2 27.8
22 49,476,972 69.4 30.6
X 152,634,166 96.8 3.2
Y 50,961,097 44.7 55.3

Total 3,070,521,116 92.2 7.8

The second nucleotide database that was selected is the 14thApril 2003 build of the Human

Genome. As a complete eukaryotic genome it can arguably be considered representative of

nucleic acid data. Moreover, this database has been used as the basis for evaluating exist-

ing DNA compression algorithms, e.g. GeNML (Korodi and Tabus 2005). Together, these

characteristics make it an appropriate and rigorous challenge for the cooperative compres-

sion techniques described in this dissertation. Table 3.1 lists the total number of bases, and

the proportion of wild-card bases in each chromosome, and for the genome as a whole.

76

3.2. QUERY SELECTION CHAPTER 3. MATERIALS AND METHODS

3.1.2 Protein

The protein database that was selected is a release of the GenPept transcript database. This

database was selected because of its substantial internal redundancy. As will be shown in

a later chapter, one quarter of its constituent sequences are duplicated in their entirety. The

GenPept (protein) database is not sorted, and contains approximately 5×108 letters (i.e.,

amino acids) in 1.6×106 sequences, and 142 MB of FASTA sequence descriptions. The

total size of this FASTA formatted GenPept (protein) database is approximately 620 MB.

3.2 Query Selection

Selecting suitable test queries is problematic. There are two main options in this area: (a)

queries with pre-judged results, often by human assessors;or (b) queries with no pre-judged

results.

The first category of test queries, i.e., those with pre-judged results, are routinely used in the

information retrieval community, e.g., by the TREC community; the assumption is made

that the human assessors are accurate and consistent. However, there is evidence to suggest

that this is not the case: It is possible that 10 percent or more of human supplied judgements

are incorrect or inconsistently applied (Bernstein and Zobel 2005). Notwithstanding this

difficulty, such queries have been used in assessing sequence search and alignment algo-

rithms. For example in work by Williams (1999), the CAFE algorithm was assessed using

the existing classification of protein sequences into families and super-families. The au-

thors of that paper note that using pre-judged queries, in the form of protein super-families,

causes the assessment to be approximate. This is because an algorithm that detects relation-

ships between sequences will be penalised if the human judges have imposed an artificial

or erroneous division between them.

77

3.2. QUERY SELECTION CHAPTER 3. MATERIALS AND METHODS

The second category of test queries, i.e., those with no pre-judged results, allows a differ-

ent treatment of this sensitivity assessment problem. Consistency in judgement follows if

the human judge is replaced by a trusted deterministic algorithm. Moreover, if the judge

algorithm is an optimal, or so calledbenchmarkversion of the class of algorithms being

compared, then accuracy can also be assumed. The algorithm of Smith and Waterman can

be used as the benchmark for each of the heuristic algorithmssurveyed in Chapter 2, as

well as those introduced in this dissertation. Of similar importance, using a fast mechan-

ical judge makes it possible to use practically any data set,rather than the few, and often

restrictive data sets that have been subjected to human classification.

While using a deterministic and mechanical judge solves what may be called the objec-

tivity problem, and allows assessment to be performed on unclassified data, it introduces

a subtle problem of its own: Each algorithm searches for statistically significant align-

ments, not biologically significant alignments. This is analogous to Magnetic North versus

Grid North on a map: While the link between the two concepts isstrong and sound, they

are not identical. One area of divergence between statistical and biological significance

is that of low complexity regions of sequences, i.e., highlyrepetitive or compositionally

biased sequences. Alignments against such regions may be statistically significant, but not

necessarily biologically significant. Ideally, to providea fair sensitivity comparison of all

algorithms against that of Smith and Waterman, any mechanisms in the algorithms being

compared that exclude low complexity regions should be disabled, so that all are search-

ing for statistical significance. This criterion excluded the use of POZ scores (Booth et al.

2004) on the basis that POZ-scores attempt to remove the biasinduced by low complexity

regions.

On balance, it was decided to use a mechanical deterministicjudge rather than human

judged queries, i.e., to use the algorithm of Smith-Waterman as a benchmark against which

all other algorithms will be measured. The standard test queries were generated by ran-

domly selecting two hundred sequences from each database, using the nucleotide sequences

78

3.3. SPEED AND SENSITIVITY CHAPTER 3. MATERIALS AND METHODS

to search the nucleotide database, and the protein queries to search the protein database.

Thus, in this dissertation, there are two hundred standard queries for each of the nucleotide

and protein databases. In all cases the queries were left in the database so that at least one

perfect match would be present. The nucleotide queries ranged from 134 to 3224 bases

(mean 625 bases), and the protein queries ranged from 5 to 1855 acids (mean 350 acids).

It is acknowledged that the selection of these queries and the aggregate presentation of

results corresponding to them suffers from two deficiencies: (1) More queries could have

been used to obtain better confidence in the results presented in this dissertation, and; (2)

The range of query lengths does not correspond to the short (several dozen) residue queries

often used in high-throughput sequencing.

3.3 Speed And Sensitivity Metrics

Metrics are required to interpret and compare the results ofeach algorithm. For comparing

execution speed, the following simple metrics will be used:the mean, median and total

elapsed processing time for the two hundred queries. The total elapsed processing time will

be normalised as a ratio of the run time of NCBI-BLAST, reflecting the fact that NCBI-

BLAST remains the de facto standard sequence search and alignment program. In all cases

searches are performed “warm”, i.e., with the relevant databases fully resident in RAM.

Turning now to sensitivity metrics, Chen (2004) has shown that despite the multitude of

sensitivity metrics that are currently used, they give consistent results. In light of this, and

following the discussion of this issue in Section 2.1.1.7, avariation of the PatternHunter

metric described there is employed in this dissertation.

The variation is to measurecoverageinstead of alignment score. Coverage here refers to the

number of residues included in the alignment that correspond with the true alignment, as

returned by the benchmark. Using coverage instead of score avoids comparison difficulties

79

3.3. SPEED AND SENSITIVITY CHAPTER 3. MATERIALS AND METHODS

90

(b)

(c)

(a)

(d)

70

50

Figure 3.1: Calculation Of PatternHunter Variant Metric. (a) is the perfect, or “golden”,
alignment against which the other results, (b), (c) and (d) are measured. The numbers on
the right hand side are the scores for each of (b), (c) and (d).

among algorithms that report scores differently, e.g., as raw dynamic programming scores

versus bits, nats of information, or scores that take into account other alignments. Measur-

ing coverage also makes it easier to resolve situations where multiple alignments occur, or

where alignments do not lie entirely within the alignment produced by the benchmark.

The calculation of this metric is demonstrated in Figure 3.1. Alignment (b) scores 70

because the two fragmentary alignments together cover 70% of the reference alignment.

Alignment (c) scores only 50, because although the alignment is greater than 50% of the

length of the reference alignment, it covers only 50% of the reference alignment. It is

apparent how measuring coverage avoids the difficulty of determining how much of the

score should be counted. Result (d) shows a further complication, where not only does

part of an alignment have to be discounted, but the overlapping parts of the alignment must

be counted only once. Again, determining the total score would be difficult if the final

score was calculated based on the scores of the alignments. However, it remains trivial to

determine the total coverage against the reference alignment.

80

3.4. PEER GROUP OF ALGORITHMS CHAPTER 3. MATERIALS AND METHODS

3.4 Peer Group Of Sequence Search And Alignment Al-

gorithms

A number of the algorithms surveyed in Chapter 2 were bench marked to provide a peer

group against which the algorithms introduced in this dissertation were compared. For

each algorithm, the benchmarking was performed using the standard queries and databases

introduced in the preceding text. Thus two hundred protein and two hundred nucleic acid

queries were performed for each algorithm. Appendix A liststhe commands and parame-

ters used to invoke of each of these algorithms where a consistent table format is used to

describe the set-up and search commands for each invocationof an algorithm. This same

format also used to describe the set-up and search commands used for the algorithms in-

troduced in this dissertation. Finally, as far as was practical, the results of each algorithm

were obtained in equivalent conditions, with any deviations being noted in the following

discussion.

3.4.1 Smith-Waterman (SSEARCH 3.4t25)

Two implementations of the Smith-Waterman algorithm were considered: SeqAln

(Hardy and Waterman 1997) and SSEARCH that comes with the FASTA (Pearson 1990)

software distribution available atHTTP://www.ciri.upc.es/cela_pblade/FASTA.htm.

SeqAln was initially used to produce the Smith-Waterman reference results in this disser-

tation. However, it later became apparent that SeqAln does not always return the optimal

(maximally scoring) alignment. Figure 3.2 shows an exampleof this problem. Therefore

SSEARCH was used instead, and all reference results that hadpreviously been produced

using SeqAln were reproduced using SSEARCH.

In terms of execution characteristics, the SSEARCH programreads FASTA files directly,

no index or other ancillary structures were involved. The processing and access time of the

81

HTTP://www.ciri.upc.es/cela_pblade/FASTA.htm

3.4. PEER GROUP OF ALGORITHMS CHAPTER 3. MATERIALS AND METHODS

Score: 1753 at (gnl|UG|Hs#S4031081 AGENCOURT_6431325 Homo sapiens cDNA,

5’ end /clone=IMAGE:5503216 /clone_end=5’ /gb=BM4

67009 /gi=18516051 /ug=Hs.284170 /len=1148)[203..1041]

: (gnl|UG|Hs#S3317510 602385242F1 Homo sapiens cDNA,

5’ end /clone

=IMAGE:4514242 /clone_end=5’ /gb=BG290161 /gi=13046677

/ug=Hs.284170 /len=787)[1..785]

203 CTTTTAGCTCACTCCACAAGTAAATGGATTTAATCAAAGGTCACCTATCTGCTTTTGATT 262

||| | |

1 CTTTTAGCTCACTCCACAAGTAAATGGATTTAATCAAAGGTCACCTATCTGCTTTATA-T 59

...

916 TGGCCCCTATTTAATTTCCTGAATTTCCAAATAAAATTTTCTCATAACCGGGGCCTCCAA 975

| | || |||| |||| ||| || |||||||| ||||| ||| | ||| |||

682 TAG-CCATATT--ATTT--TGACTT--CAAATAAA--TTTCT-ATA--CTGGGTAAACAA 729

976 TAACTACCCTTCATCTCTAACACTTGCCCTTATTCAACGTGGGGCCGGCCAGCTCCTAAA 1035

|| | | || | || | | | || | |||

730 GAAAAA------AAAAAAAAAAAATG----GAGAAATGGAGGAAAAAAAAAAAAAGAAAA 779

1036 AAATCA 1041

||| ||

780 AAAGCA 785

Figure 3.2: Example Of Incorrect Result From SeqAln. The scoring system is +1 for a
match, -3 for a substitution, -5 to open a gap, and -2 to extend a gap. SeqAln over extends
the alignment, as can be deduced from the inclusion of the last three bases: TCA vs GCA
scores -3 +1 +1 = -1. Thus, the alignment would score higher if it were truncated, and
therefore the alignment as shown cannot be the optimal (highest scoring) one.

82

3.4. PEER GROUP OF ALGORITHMS CHAPTER 3. MATERIALS AND METHODS

database were both insignificant compared with the long search times that characterise the

Smith-Waterman algorithm.

Finally, the nucleic acid scoring parameters used were match and substitution scores of +1

and -3, respectively, and gap open and extension penalties of -5 and -2, respectively. The

protein scoring parameters used were the BLOSUM62 substitution matrix, and gap open

and extension penalties of -11 and -1 respectively. All other algorithms were run using the

same scoring system.

3.4.2 BLAST (NCBI-BLAST 2.2.6)

Search results were obtained for the two hundred standard queries using pre-compiled

Linux binaries for NCBI-BLAST 2.2.6. These results were obtained on a Sun V20z dual

processor AMD Opteron server (1.8 GHz, 1 MB L2 cache, 8 GB RAM)running Red

Hat Enterprise Linux AS 3.0UP2 Linux (64bit 2.4.x kernel, and 32bit version of NCBI-

BLAST), counting only the user process time. BLAST was run insingle threaded mode

for ease of comparison of run time, since several of the otheralgorithms did not support

multi-threaded operation. The database was formatted using theformatdb program. Com-

puters with between 2 GB and 8 GB of main memory were used, ensuring that the databases

fit entirely into RAM, and I/O delays were avoided.

The queries were run using three different sets of parameters for BLAST (Tables A.3, A.4

and A.5). These correspond to, respectively: (a) The default parameters of BLAST; (b)

The default parameters of BLAST, but with query filtering disabled, and; (c) The default

parameters of BLAST, but reporting as many alignments as possible, instead of enforcing

the default limits on the both number and statistical significance of reported alignments.

83

3.4. PEER GROUP OF ALGORITHMS CHAPTER 3. MATERIALS AND METHODS

3.4.3 BLAT

Release 32 of BLAT was run on the same platform as BLAST. It wascompiled using the

default optimisation level selected by the installation scripts (“-O”). BLAT results were

produced for both the nucleotide and protein standard queries. Comparison of search time

between BLAT and other algorithms was complicated by BLATs use of a central server

to host the nucleotide index. This index server takes several minutes before it is ready

to respond to queries, but then requires only a few seconds toprocess the two hundred

standard queries. The CPU time required by the server to answer the queries was added

to the CPU time consumed by the search tool. But to provide a fair comparison, only the

CPU time consumed by the server after receiving the first query was counted.

BLAT protein searches do not use the in-memory index, so the run time reported for the

standard protein queries were not manipulated. However, a static overhead is introduced

because the entire protein database is read for each query. This overhead was not deduced,

as it is a real and unavoidable cost incurred in the search process, unlike the index prepara-

tion time for nucleic acid queries that can be paid before processing a query.

3.4.4 Academic Version Of PatternHunter

PatternHunter is designed for nucleotide searching only, so protein query results were not

obtained. The freely distributed version of PatternHunter, while written in Java, presents

as a Windows .EXE file. Therefore the PatternHunter results were produced on a different

hardware/software platform. PatternHunter was run on an AMD Athlon 2100+ 1.7 GHz

processor with 1 GB of RAM, 512 KB L2 cache running Microsoft Windows XP SP2.

The standard queries were generated with BLAST on this platform as a reference point,

establishing that the search speed of this processor was within three percent of the 1.8 GHz

Opteron processors used for all the other tests. As this discrepancy was small, no correcting

factor was applied to the speed of the PatternHunter runs.

84

3.4. PEER GROUP OF ALGORITHMS CHAPTER 3. MATERIALS AND METHODS

Of greater concern for the comparison of PatternHunter results, is that PatternHunter in-

dexes while it searches. This meant that the run times were hundreds of times greater

than those of BLAST or BLAT. Since PatternHunter is designedto align genome against

genome, not sequence against database, it could be argued that counting the indexing time

constitutes an unfair test. To exclude the constant indexing time, the fastest search time

of any standard query against the database was subtracted from the search time of all the

standard queries performed by PatternHunter.

3.4.5 FASTA

Version 3.4t25 of the FASTA source code was downloaded fromHTTP://www.ciri.

upc.es/cela_pblade/FASTA.htm. That version was not tailored to run on the

Linux/Opteron combination used as the standard test platform. Parameters specific to

Motorola PowerPC processors (-mcpu=970 and-tune=970) were removed from the file

src/Makefile.blade.gcc64scl. The source code then successfully compiled using the

command./compile.sh gcc 64 scalar.

The standard queries were performed using FASTA formatted databases, as per Table A.7.

Two different configurations were used for the protein queries. The configuration labelled

(a) in Table A.7, is more thorough than the faster alternative configuration labelled (b).

3.4.6 CAFE

CAFE (Williams 1999, Williams and Zobel 2002a) version 0.14was downloaded from

HTTP://www.bsg.rmit.edu.au/cafe/. This code was compiled after using the follow-

ing command:

./configure CFLAGS=-O2 --prefix=/home/paul/opt/cafe

85

HTTP://www.ciri.upc.es/cela_pblade/FASTA.htm
HTTP://www.ciri.upc.es/cela_pblade/FASTA.htm
HTTP://www.bsg.rmit.edu.au/cafe/

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

The program was built on the same Linux/Opteron test platform as used for the other algo-

rithms. CAFEs alignment display routine was enhanced to report alignments in a format

more like that of BLAST, BLAT and DASH to enable the use of a single program to parse

the results of all four algorithms. The search parameters for CAFE are tabulated in Table

A.8.

3.4.7 Algorithms Introduced In This Dissertation

The algorithms introduced in this dissertation were testedon the same platform as for the

other algorithms, i.e., Sun V20z systems with two 1.8 GHz AMDOpteron processors,

sufficient RAM to hold the database index in memory, and running Red Hat Enterprise

Linux AS 3.0UP2. The database formatting, index construction, and search configuration

data for each scenario is described in the appropriate places in Chapters 5 and 7.

3.5 Batching Environment

A batching environment was created to automate the execution, result gathering, and statis-

tical analysis of the standard queries for each algorithm/database combination. This section

describes the directory layout and programs that compose the batching environment.

3.5.1 Overview

The batching environment provides the directory structures, programs and semantics to

perform the automated execution, comparison and calculation of statistics for groups of

searches (batches) obtained from a variety of search algorithms. In this dissertation it

is used to compare the relative performance of various sequence search and alignment

algorithms.

86

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

3.5.2 Directory Structure

3.5.2.1 Top Level Directories

A given instantiation of the batch environment consists of the following directory trees:

bin/

R/

cases/

output/

data/

This is referred to as abase directory. Figure 3.3 presents an example of the directory

structure, which is explained in more detail in the following text. Thebin andR directories

contain programs and scripts used to automate the batch process. The standard query se-

quences are stored in thecases directory in separate FASTA format files. The summarised

output files from searches are collated beneath theoutput directory, and executive and sta-

tistical summaries of those results are computed and placedinto thedata directory, ready

for analysis using the R statistical computing package (R Development Core Team 2006).

Sub-directories exist within theoutput directory for each search program that is being

assessed. For example, theoutput directory may contain sub-directories calleddash,

blast andSeqAln. Below those sub-directories, a second level exists for each batch of

results for a given search program, and are referred to asbatch definition directories. For

some programs there may be only batch, while for others theremay be many. Each batch

definition directory will contain at least the following files:

description

pre

post

87

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

bin/

makemake comparejobs comparebatches pairwise2summary

seqaln2pairwise mktrace

R/

generatesummaries.R

cases/

query_1 query_2 query_3

output/

blast/

normal/

description template pre post

dash/

r7_normal/

description template pre post

r7_careful/

description template pre post

data/

Figure 3.3: Example Complete Batching Environment Directory Structure.

template

results/

The description file contains a human readable description of the mode of operation

employed, any special conditions, and any other comments appropriate to the set of re-

sults it contains. Figure 3.4 shows a description file for oneof the algorithms used in this

dissertation.

Thepre andpost files are executable scripts that are executed before and after perform-

ing a set of searches. They provide a convenient mechanism for setting and cleaning up

any special environment before and after searching, e.g., building and removing database

indices.

Thetemplate file contains a single line containing command text and shellvariables that

will be substituted by the batching environment, to producethe final command required to

perform a single specific search. Figure 3.5 illustrates an example template line for running

a search with one of the algorithms used in this dissertation.

88

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

dash -s mode4 , rev12 July 2006,

2x (but uses only 1) AMD Opteron 244 (1.8GHz) CPU,

8GB RAM, 1MB L2 cache.

using Hs.seq.all.r.{np3,nix}, seq limit=20k,

residue limit=10M.

np3 -n -r -9 Hs.seq.all.r

nix -v -r Hs.seq.all.r.np3

Figure 3.4: Example Batching Environment Description File. This file contains a human
readable description of the conditions of the batch.

/home/paul/bin/dash -s mode2 -b 1000 -p dashn \

-d $DASH_DB_FILE -i $QUERY -o $OUTFILE

Figure 3.5: Example Batching Environment Template File (In the real file, this must appear
as a single line). The environment variables QUERY and OUTFILE are initialised by the
batching environment. DASH_DB_FILE is a variable inherited from the user’s environment.

Theresults directory contains a sub-directory for every search case performed, each of

which will contain the run time information for that search,as well as a summarised version

of the search results. This is stored in a summarised format for later processing by search

comparison tools.

In addition to the mandatory files described above, an additional file,profile_template,

is also supported. This file is treated identically as thetemplate file, except that the

batching environment will run thegprof command when the search completes to gather

profiling statistics over the batch of searches. If aprofile_template file is used, the

template file must still exist, as the command it contains is still usedto obtain the run

time of each query, since an executable that supports profiling is typically much slower

than the equivalent optimised executable.

3.5.3 Generation Of Standard Queries

The individual search strings (that is,queriesor casesfor short) are selected by running the

pickquery program. This program randomly selects a single sequence from a FASTA for-

89

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

#!/bin/csh -f

set n=0

while ($n < 200)

bin/pickquery Hs.seq.all >cases/query_$n

@ n = $n + 1

end

Figure 3.6: Use Of pickquery Program To Obtain Standard Nucleic Acid Queries.

runbatch -b /home/paul/thesis_data/search_comparison_p \

-d genpept.fsa -j output/dash/r11_mode4 \

-w /home/paul/tmp -l 0 -h 199

Figure 3.7: Sample Use Of runbatch Program.

matted database, including the associated FASTA description line. It is used in conjunction

with a simple shell script, such as in Figure 3.6, to provide aset of query sequences.

The above procedure was used on the Human UniGene (nucleotide) and GenPept (protein)

databases to provide the two hundred standard query sequences from each. The queries

were placed insearch_comparison_n/cases andsearch_comparison_p/cases direc-

tories, respectively.

3.5.4 Execution Of Batches

3.5.4.1 Executing A Batch

Batches of searches are executed by using therunbatch program. This program takes as

arguments the necessary directory names to precisely identify the batch to perform. For

example, Figure 3.7 presents an invocation that was used to perform a batch of protein

searches using the DASH algorithm with the two hundred standard queries. The-b option

tells runbatch the base directory for the batch. That directory is assumed to contain the

bin, R, cases, output and data directories, as previously described. The-l and -h

options specify the inclusive range of the standard queriesto be executed.

90

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

> gnl|UG|Hs#S544556

(1-385) = (1-385), score = 383.000000

> gnl|UG|Hs#S3898566

(183-385) = (292-488), score = 179.000000

(11-185) = (15-188), score = 149.000000

(11-185) = (15-188), score = 148.000000

Figure 3.8: Example Of The Terse Alignment Format. Considerable space is saved by
excluding the alignment of the two sequences.

runbatch -p seqaln2pairwise -b batch_dir -d Hs.seq.all \

-j seqaln/normal -w /tmp -l 0 -h 199

Figure 3.9: Example Invocation Of runbatch With Custom Output Filter. The custom filter
is seqaln2pairwise.

3.5.4.2 Summarisation Of Search Results

Therunbatch program also fills the role of summarising the results of eachsearch in the

batch. This is accomplished by converting the output from the native format of each search

program to a terse and simple format, similar to that of Figure 3.8. This format contains

only the score, location and extent information of each alignment. This saves considerable

space when storing the results of many batches.

By default, the output of each search program is expected to be in the pairwise alignment

format used by BLAST, BLAT, and DASH. It is possible to use an external filter when run-

ning other search programs that use differing output formats, such as the SeqAln program.

This is performed by using the-p command line option torunbatch, e.g., as in Figure 3.9.

3.5.5 Comparison Of Batched Search Results

Comparison of individual search results is performed by thecomparejob program. Simi-

larly, thecomparebatches script compares the results of entire batches of searches. Both

of these programs are called automatically if a sequence of commands similar to that of

Figure 3.10 is employed.

91

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

cd (batch environment directory) # 1

bin/runbatch -j blast/ncbi2.2.6 ... # 2a

bin/runbatch -j dash/r11_mode2 ... # 2b

bin/runbatch -j dash/r11_mode4 ... # 2c

bin/makemake ‘pwd‘ # 3

cd data # 4a

make # 4b

cd .. # 4c

Figure 3.10: Example Command Sequence To Execute And Summarise The Results Of
Several Batches.

The first command of Figure 3.10 enters the batching directory. This is followed by com-

mands 2a-c that execute the batches (the command line arguments associated with these

commands are abbreviated for clarity). Once the batches arecomplete, themakemake com-

mand is used to create a make file in thedata directory. makemake explores theoutput

directory, identifying each valid batch. The commands required to compare each batch

against every other batch are written intodata/Makefile.

Finally, commands 4a-c enter thedata directory and use theMakefile to create the full

set of summary and statistical data. Thecomparejobs andcomparebatches commands

are invoked to perform the comparison of every pair of batches.

Following this process, and assuming the example directorystructure of Figure 3.3, results

in the files listed in Figures 3.11 and 3.12. The summarised results of each query is placed in

a file calledhits in the appropriate directory, and the run time is placed in thetimes1 file

in the same directory. The data directory is populated with theMakefile and comparison

data, both per batch, and summarised for all batches.

The files consisting of the names of a pair of algorithms, e.g.,

blast.ncbi2.2.6.dash.r11_mode2.csv, contain the query by query comparison

data that are used to produce the summary fileslph50s.csv, time.csv andratio.csv.

The files that are prefixed by “ph.”, e.g.,ph.blast.ncbi2.2.6.dash.r11_mode2.csv,

contain the PatternHunter variant scores for the pair of batches contained in the file name.

92

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

bin/

makemake comparejobs comparebatches pairwise2summary

seqaln2pairwise mktrace

R/

generatesummaries.R

cases/

query_1 query_2

output/

blast/

ncbi2.2.6/

description template pre post

results/

1/

hits times1

2/

hits times1

dash/

r11_mode2/

description template pre post

results/

1/

hits times1

2/

hits times1

r11_mode4/

description template pre post

results/

1/

hits times1

2/

hits times1

Figure 3.11: Example Batching Environment Directory Structure After Running Batch: Ex-
cludes data Directory.

93

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

data/

Makefile

lph50s.csv

ratio.csv

time.csv

blast.ncbi2.2.6.blast.ncbi2.2.6.csv

blast.ncbi2.2.6.dash.r11_mode2.csv

blast.ncbi2.2.6.dash.r11_mode4.csv

dash.r11_mode2.blast.2.2.6.csv

dash.r11_mode2.dash.r11_mode2.csv

dash.r11_mode2.dash.r11_mode4.csv

dash.r11_mode4.blast.2.2.6.csv

dash.r11_mode4.dash.r11_mode2.csv

dash.r11_mode4.dash.r11_mode4.csv

ph.blast.ncbi2.2.6.blast.ncbi2.2.6.csv

ph.blast.ncbi2.2.6.dash.r11_mode2.csv

ph.blast.ncbi2.2.6.dash.r11_mode4.csv

ph.dash.r11_mode2.blast.2.2.6.csv

ph.dash.r11_mode2.dash.r11_mode2.csv

ph.dash.r11_mode2.dash.r11_mode4.csv

ph.dash.r11_mode4.blast.2.2.6.csv

ph.dash.r11_mode4.dash.r11_mode2.csv

ph.dash.r11_mode4.dash.r11_mode4.csv

Figure 3.12: Example Batching Environment Directory Structure After Running Batch:
data Directory Only.

94

3.5. BATCHING ENVIRONMENT CHAPTER 3. MATERIALS AND METHODS

Table 3.2: List of Statistical Summary Files Produced By Batch Environment.

File Contents

lph50s.csv PatternHunter Metric Variant; 50% coverage threshold: A
sensitivity measure.

ratio.csv The mean ratio of query execution time (ratio calculated perquery,
then averaged): A speed measure.

time.csv The mean ratio of batch execution time (ratio of sum of run times):
A speed measure.

Scores are included per query, and for acceptance thresholds of 1% through 100% of

alignment coverage. These data are used to plot the PatternHunter Variant Metric Score

versus Coverage Threshold graphs.

The command sequence also generates summary statistics in comma separated value (CSV)

format, suitable for the R statistical language1. Table 3.2 lists the statistical summary files

produced by the commands, and describes the contents of each.

Where large numbers of batches are being performed, with theintention of comparing mul-

tiple algorithms against some benchmark, the exhaustive comparison becomes inefficient.

This is because of the inherent O(n2) time complexity: Comparingn batches againstn

batches requiresn2 operations. To address this, marker files are added to job directories.

Themakemake command can then be told to compare those batches that have a specified

marker file against only a single batch, or set of batches, that have another specified marker

file. For example, to compare the two DASH batches against theBLAST batch, but not

the other way around, create distinct marker files in each batch directory, and then invoke

makemake appropriately, as in Figure 3.13 on the next page.

This sequence of commands in Figure 3.13 on the following page compares all batches that

contain a file namedleft in their batch definition directory, against those that contain a

file namedright in their batch definition directory. This allows selective comparison, and

avoids the quadratic time complexity described earlier.

1For whatever reason, R requires the “Comma Separated Format” to use semi-colons as field delimiters,
rather than commas.

95

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

touch blast/ncbi2.2.6/right # 3a

touch dash/r11_mode2 left # 3b

touch dash/r11_mode4 left # 3c

makemake ‘pwd‘ left right # 3d

cd data # 4a

make # 4b

cd .. # 4c

Figure 3.13: Example Command Sequence To Selectively Compare Several Batches.

3.6 Results For Benchmark Algorithms

The following tables and figures present a summary of the performance of each of the

algorithms listed earlier in this chapter. In addition to the speed and sensitivity results, the

size of the database and index structures, if any, are also included. These tables and graphs

are reproduced in later chapters, with the addition of the results of algorithms introduced

in this dissertation.

3.6.1 Database And Index Sizes

Tables 3.3, 3.4 and 3.5 list the total database and index sizefor each algorithm. The totals

are broken down to show the space required for the sequence bodies, sequence descriptions

and index structures. All figures are listed in absolute terms (megabytes) and normalised

terms (bits per base or bits per acid, as appropriate).

3.6.2 Search Speed

Tables 3.6, 3.7 and 3.8 summarise the search speed of each algorithm. Mean, median and

total values are given, and the totals are compared against those of NCBI-BLAST 2.2.6.

96

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

3.6.3 Search Sensitivity

Tables 3.9, 3.7 and 3.11 presents the sensitivity of each algorithm measured using the Pat-

ternHunter variant. The maximum score possible is 100, withthe Smith-Waterman algo-

rithm acting as the benchmark. Figures 3.15 and 3.16 show thesame data graphically.

97

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

CAFE

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
FASTA

BLAT
PatternHunter

Figure 3.14: PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Nu-
cleic Acid Queries (Against The Human UniGene (Nucleic Acid) Database). The Smith-
Waterman algorithm is used as the benchmark.

98

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

CAFE

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
FASTA

BLAT
PatternHunter

Figure 3.15: PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Nucleic
Acid Queries (Against The Human Genome database). The Smith-Waterman algorithm is
used as the benchmark.

99

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

CAFE

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

FASTA (a)
FASTA (b)
BLAST 2.2.6
BLAST (no filter)

BLAST (report everything)
BLAT

Figure 3.16: PatternHunter Variant Scores (See Section 3.3) Of Algorithms For Protein
Queries (Against The GenPept (Protein) Database). The Smith-Waterman algorithm is
used as the benchmark.

100

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.3: Human UniGene (Nucleic Acid) Database And Index Sizes For Surveyed Algo-
rithms In megabytes (MB) And Bits Per Base (B/B)

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman**
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

BLAST
(formatdb)

489 2.09 660 2.83 40 0.17 1,189 5.09

BLAT*
(faToTwoBit)

630 2.70 - - 1,088 4.66 1,718 7.36

PatternHunter**
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

FASTA**
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

CAFE***
(CAFE Index)

496 2.12 102 0.44 6,961 29.79 7,634 32.67

* Indicates that program maintains an index in RAM, and that the database format contains both
sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical

difficulties (CAFE).

101

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.4: Human Genome Nucleic Acid Database And Index Sizes For Surveyed Algo-
rithms In Megabytes (MB) And Bits Per Base (B/B)

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman**
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

BLAST
(formatdb)

736 2.01 433 1.18 32 0.09 1,201 3.28

BLAT*
(faToTwoBit)

950 2.60 - - 1,867 5.10 2,817 7.70

PatternHunter**
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

FASTA**
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

CAFE***
(CAFE Index)

987 2.70 9 0.02 9,950 27.18 10,945 29.90

* Indicates that program maintains an index in RAM, and that the database format contains both
sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical

difficulties (CAFE).

Table 3.5: Protein Database And Index Sizes For Surveyed Algorithms In Megabytes (MB)
And Bits Per Acid (B/A) (Against The GenPept (Protein) Database).

Format Bodies Only Descriptions Index Total
MB B/A MB B/A MB B/A MB B/A

Smith-Waterman*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

BLAST
(formatdb)

473 8.05 194 3.31 231 3.94 899 15.31

BLAT*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

FASTA*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

CAFE**
(CAFE Index)

480 8.17 22 0.37 1,621 27.59 2,236 38.06

* Indicates that algorithm indexes during searching (FASTA), or does not use an index (Smith-
Waterman).

** Indicates that multiple small indices were used instead of one large index, due to technical

difficulties (CAFE).

102

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.6: Comparison Of Search Speed For Various Algorithms Against The Human Uni-
Gene (Nucleic Acid) Database.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

Smith-Waterman
16,260 14,070 3,251,827 1660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.93 11.33 9,985.01 5.10

BLAT*
2.10 2.07 471 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
530.05 534.69 106,010.29 54.13

CAFE***
32.75 30.76 6,693.46 3.42

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

103

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.7: Comparison Of Search Speed For Various Algorithms Against The Human
Genome Database.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

Smith-Waterman
25,040.00 21,620.00 5,008,305.00 2165.13

NCBI-BLAST 2.2.6
(Default)

11.57 10.95 2,313.17 1.00

NCBI-BLAST 2.2.6
(No Filter)

22.15 11.30 4,430.75 1.92

NCBI-BLAST 2.2.6
(Report Everything)

232.20 12.14 46,434.82 20.07

BLAT*
3.91 3.87 1082.22 0.47

PatternHunter**
164.80 15.30 32,957.64 14.25

FASTA
611 599.9 122,195 52.83

CAFE***
30.52 25.27 6,104.9 2.64

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

104

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.8: Comparison Of Protein Search Speed For Various Algorithms (Against The
GenPept (Protein) Database).

Format Search Time (seconds) Search Time
mean median total (×BLAST)

Smith-Waterman
1674.00 1397.00 334,794.20 66.32

NCBI-BLAST 2.2.6
(Default)

25.24 22.01 5,047.81 1.00

NCBI-BLAST 2.2.6
(No Filter)

35.33 26.48 7,066.00 1.40

NCBI-BLAST 2.2.6
(Report Everything)

71.00 24.55 14,200.32 2.81

BLAT*
85.45 80.40 17,004.37 3.39

FASTA
(a)

296.00 273.36 59,199.23 11.73

FASTA
(b)

83.36 84.38 16,672.14 3.30

CAFE***
11.88 10.25 2,375.71 0.47

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

105

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.9: Nucleotide Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The Human UniGene (Nu-
cleic Acid) Database).

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.2 17.32

106

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.10: Nucleotide Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The Human Genome
Database).

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

37.14 37.03 36.58 36.4 35.99

BLAST
(No Filter)

58.9 58.81 58.73 58.67 58.54

BLAST
(Report Everything)

69.33 68.82 68.44 68.28 67.92

FASTA
49.97 49.95 49.94 49.93 49.92

BLAT
4.29 4 3.62 3.37 2.9

PatternHunter
24.66 23.91 23.47 23.32 23.11

CAFE
48.77 48.74 48.73 48.71 48.69

107

3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

Table 3.11: Protein Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The GenPept (Protein)
Database).

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

Smith-Waterman
100 100 100 100 100

FASTA
(a)

92.12 92.12 92.12 92.12 92.12

FASTA
(b)

87.02 87.02 87.02 87.02 87.02

BLAST
(Default)

76.15 70.08 62.92 58.27 50.13

BLAST
(No Filter)

74.35 68.55 62.09 58.44 50.72

BLAST
(Report Everything)

79.56 72.69 64.98 59.93 51.5

BLAT
35.56 30.82 26.73 24.48 20.15

CAFE
42.02 40.96 39.26 38.38 35.77

108

Part II

Cooperative Compression Of Redundant

Proteomic Databases

109

CHAPTER 4. DASH

Chapter 4

DASH: Search & Alignment For
Cooperatively Compressed Databases
And Indices

Introduction

Cooperative compression of database and index ensembles relies on recurrent strings. Re-

current strings in the database are compressed by storing only one instance of each recurrent

string, and recording the other instances using a referenceto the stored instance. By always

storing the first instance of a recurrent string, and allowing references to earlier instances,

it is possible to create chains of references while avoidingthe introduction of cycles.

The benefits of chained references are that: (a) only one (thefirst) instance of the string

needs to be stored in the database, and; (b) only one (the last) instance requires posting in

the index, as the chain of references can be followed to recursively compute the address of

the other instances, regardless of the length of the reference chain. These benefits combine

to reduce the size of the compressed database and index ensemble.

There are two challenges that must be faced by any sequence search and alignment algo-

rithm that is paired with cooperatively compressed database and index ensembles: (a) the

effective and efficient discovery of recurrences, and; (b) the efficient use of recurrences.

110

CHAPTER 4. DASH

Effective And Efficient Discovery Of Recurrences

To use the recurrence records of a cooperatively compresseddatabase and index ensemble,

an algorithm must find alignments that intersect with at least one instance of any given

recurrence. Thus, it is advantageous for such an algorithm to find the maximum extent

of each alignment. However, as shown by Figures 4.1 and 4.2, heuristic sequence search

and alignment algorithms do not always find the full extent ofeach alignment. As mea-

sured by the PatternHunter variant metric, the level of recall drops off as the alignment

fraction threshold (i.e., the fraction of a given alignmentthat must be discovered for it to

be counted) is increased. Also, the faster algorithms typically obtain lower scores than the

more thorough algorithms, i.e., the faster and less sensitive BLAT and CAFE, versus the

slower and more sensitive BLAST and FASTA.

Protein searching stresses different aspects of a search algorithm, and this is reflected in the

results where the relative ranking of algorithms alters. For protein searching, FASTA is the

most sensitive. However, this thoroughness comes at a considerable speed penalty. CAFE

is much faster, and has the most sustained PatternHunter score for protein, suggesting that

it would be able to identify almost all recurrences. However, CAFE gains its speed by

constructing alignments against very few database records. Therefore, while CAFE has

both acceptable run time as well as the most sustained scores, its overall sensitivity is

relatively poor in this context. Therefore, because of their poor speed to sensitivity ratios,

neither FASTA nor CAFE are attractive as a basis for searching cooperatively compressed

database and index ensembles. PatternHunter is also rejected, for the same reason.

Efficient Use Of Recurrences

Assuming that an algorithm can discover recurrences, the second challenge is to be able

to make efficient use of them. Cloning of an alignment that intersects a recurrence into

its alternative locations should, ideally, make use of the alignment that has been obtained

111

CHAPTER 4. DASH

CAFE

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
FASTA

BLAT
PatternHunter

Figure 4.1: PatternHunter Variant Scores (See Section 3.3) Of Various Algorithms (Nu-
cleic Acid) (Against The Human UniGene (Nucleic Acid) Database). The Smith-Waterman
algorithm is used as the benchmark.

Table 4.1: Protein PatternHunter Scores 100% Required (PH(100%)), And As A Fraction Of
PatternHunter Score 50% Required (PH(50%)) (Against The GenPept (Protein) Database).

Algorithm PH(50%) PH(100%) PH(100%)/PH(50%)

FASTA 92.12 92.12 100%
CAFE 42.02 35.77 85.1%

BLAST 79.56 51.50 64.7%
BLAT 35.56 20.15 56.6%

112

CHAPTER 4. DASH

CAFE

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

FASTA (a)
FASTA (b)
BLAST 2.2.6
BLAST (no filter)

BLAST (report everything)
BLAT

Figure 4.2: PatternHunter Variant Scores (See Section 3.3) Of Various Algorithms (Protein)
(Against The GenPept (Protein) Database). The Smith-Waterman algorithm is used as the
benchmark.

113

CHAPTER 4. DASH

from the context where it was discovered. This information has been obtained at some

computational cost. In the interests of efficiency, such effort should be reused rather than

duplicated. It is straight forward to do this by translatingthe score and extents of the

alignment into each new context. This eschews the need to repeat the alignment process. A

suitable algorithm would make effective use of such partialalignments, also known asHigh

Scoring Pairs(HSPs), when constructing a complete alignment, rather than, for example,

performing dynamic programming extension from a central seed, as does BLAST.

This approach of reusing search effort has been explored in the literature, e.g., Kent (2002),

Brudno et al. (2003), Kurtz et al. (2004), Li et al. (2004), although usually with the inten-

tion of reducing run time. Of the surveyed algorithms, BLAT (Kent 2002) is typical of this

approach. While it makes efficient use of HSPs to minimise dynamic programming during

assembly, the resulting assembly process is not thorough. As a result, its ability to detect

the entirety of an alignment is noticeably compromised, especially when applied to protein

searching (Table 4.1).

More precisely, approaches similar to that of BLAT are very good at identifying the regions

of near-identity with respect to a given query sequence, butare less proficient at assembling

a unified alignment from such fragments. The intervening regions of lower, but perhaps still

significant similarity are of little concern to them, and so are neglected in order to obtain

fast run times. The emphasis algorithms like BLAT place on regions of near-identity is not

surprising, since the primary focus of such algorithms is typically aligning entire genomes,

not individual sequences: they are operating at a differentscale.

In the context of a cooperatively compressed index, however, insufficient assembly trans-

lates into short alignments, which in turn reduces the number of recurrences that will be

intersected, resulting in a cascading loss of sensitivity.Therefore the correct assembly

of regions of moderate similarity remains of importance in this application. Therefore,

because they cannot make effective reuse of search effort, neither BLAST or BLAT are

114

CHAPTER 4. DASH

attractive as a basis for searching cooperatively compressed database and index ensembles

in this dissertation.

Summary

To summarise, none of the surveyed algorithms combine reasonable speed with the ap-

propriate sensitivity characteristics that are desirablefor the construction and search-

ing of cooperatively compressed databases and indices: FASTA is too slow, Pattern-

Hunter and BLAT are too insensitive, CAFE considers too few database records, and

BLAST cannot make efficient reuse of alignments against HSPs. Therefore, a new algo-

rithm, DASH (Gardner-Stephen and Knowles 2003, Gardner-Stephen and Knowles 2004,

Knowles and Gardner-Stephen 2006, Australian ProvisionalPatent 2003907016, US Patent

Application US 60/637 630, and US Patent Application US 11/019 807) was created, with

the following design objectives:

• Identification of as many HSPs as possible in order to fully leverage recurrence

records, and thus identify additional alignments;

• Identification of the maximum extent of each HSP, also in order to fully leverage

recurrence records in order to identify additional alignments;

• The ability to make efficient re-use of partial alignments when they are identified, so

that execution time is contained when recurrences are cloned into new contexts; and

• Comparable time and sensitivity characteristics to the state of the art.

These objectives are addressed in this chapter by creating an effective alignment assembly

and extension scheme that aims to maximise alignment coverage, while minimising the

computational cost of excessive dynamic programming. Thisis done by making use of un-

gapped alignments, also calleddiagonals, and hence the name of theDiagonal Assembling

Search Heuristic(DASH).

115

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Stage 1: Discovery of HSPs Stage 2: Assembly of HSPs Stage 3: Banded DP at ends

Figure 4.3: The Three Stages Of The DASH Sequence Alignment Algorithm.
Un-gapped alignment occurs to first discover HSPs in Stage 1. The set of HSPs are then
optimally assembled in Stage 2. Finally, banded dynamic programming is performed at
each end to polish the alignment in Stage 3.

4.1 The DASH Algorithm

The DASH algorithm produces alignments via a three stage process as depicted in Figure

4.3. Un-gapped alignments (HSPs) are first identified using an index (Stage 1), then global

sequence alignment is performed for bounded regions between nearby HSPs to produce

gapped alignments, which are then assembled using a dynamicprogramming algorithm

(Stage 2). Finally, banded local dynamic programming is performed at both ends of each

alignment (Stage 3) to maximise the score and extent of the final product.

As mentioned, the general approach of minimising dynamic programming by chaining sub-

alignments is not new, e.g., Kent (2002), Brudno et al. (2003), Kurtz et al. (2004), Li et al.

(2004). However, reflecting the unique environment in whichit must function, DASH

includes a novel combination of mechanisms to reduce run time. This speed advantage is

then traded off in order to attain a suitable level of sensitivity by dedicating substantial effort

to the optimal assembly of HSPs into gapped alignments. Thisensures that the maximum

extent of each alignment is discovered in the majority of cases so that extensive use can be

made of recurrence records to discover new alignments.

116

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

4.1.1 Stage 1: Searching For Non-Gapped Alignments

DASH identifies all non-gapped aligning fragments between the query and all records in

a database by using an exhaustive index, in the form of an inverted file, which contains

postings for every occurrence of allk-mers that occur in the database, wherek is fixed

at index construction time. For nucleic acid databases,k = 8 was selected by empirical

process to balance search time and sensitivity. For proteindatabases,k = 3.

There are multiple ways of using an inverted file to identify alignments. One approach is

that used by CAFE (Williams and Zobel 2002a), where the FRAMES structure is used to

measure the number of index postings that point to a given database record, or region of a

database record. The gathered information is used to identify a set of database records that

are likely to contain significant alignments. This approachhas the advantage that it does

not require the database record bodies to be extracted during this initial process, making it

particularly attractive for combination with a compresseddatabase representation.

However, the advantages of the FRAMES method are negated if the database record bodies

are required in order to extract the inverted lists that drive the process. This is precisely the

situation in the case of cooperative compression, where portions of the index are computed

by consulting the recurrence records in the compressed database. Therefore DASH can-

not use the FRAMES structure, and instead attempts to generate an HSP for every index

posting, orseed, that is retrieved.

This indicates a preliminary computational complexity forthe seed discovery that is di-

rectly and positively proportional to the database size, and exponentially and negatively

proportional to the index width. The cost of extending each seed into an HSP will be pro-

portional to the length of the HSP. However, for long HSPs there will be many seeds that

identify it. Thus for searches involving many long HSPs the search time will contain a

quadratic component. This is undesirable, and to avoid it DASH filters out redundant seeds

117

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

that point to HSPs that have already been discovered. The mechanism for this is described

in Sub-Section 4.1.1.4.

If index postings are considered as independent alignment candidates, it is relatively in-

expensive to perform a BLAST 1 style, i.e., ungapped, extension of each. This allows the

discovery of non-exact alignments, also known as High Scoring Pairs (HSPs), which if they

span a recurrence, can be translated into other contexts. AnHSP is formed for each posting

by extending an alignment seed until the maximum score is attained. Extension is termi-

nated by a heuristic, rather than continuing exhaustively.DASH’s termination heuristic

for nucleotide extension is the presence of two consecutivesubstitutions, while for protein

alignment the heuristic is the presence of two consecutive non-conserving (i.e., negatively

scoring) substitutions.

The use of a heuristic sacrifices optimality for computational efficiency. In practice, the

sensitivity loss is likely to be negligible, as any sufficiently long alignment will be covered

by more than one posting, and hence is very unlikely to escapenotice, although it may be

discovered as two or more smaller fragments. In DASH, if thisoccurs, such fragments are

likely to be reassembled during the assembly stage.

4.1.1.1 Addressing Selectivity

Achieving acceptable selectivity is also possible when performing an alignment on each

candidate, as the same alignment scoring system that is later used to produce the final

alignment scores can be used. Refinements to this procedure are introduced that, to use

accounting parlance, “write down” the value (score) of certain low complexity alignments

relative to others, in preference to the use of query filters that may prevent the discovery of

the full extent of an alignment. Explanation of this procedure is followed by a description

of the techniques employed to reduce the number of index postings that require evaluation,

and so minimise computational complexity.

118

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

DASH does no pre-filtering of the query sequence before searching. While aiding sensi-

tivity, and the discovery of alignments spanning recurrence records, it has the potential to

result in poor selectivity (i.e., low precision), as low complexity regions in the query can

cause any number of irrelevant hits to be ranked ahead of relevant results.

An alternative approach to improving selectivity that is implemented in DASH is to filter

those alignments that do get discovered, and ranking those alignments that appear to be

low-complexity behind others. This can be implemented by reducing the overall alignment

score of alignments containing wild-cards. While not sensitive to all manifestations of

low-complexity sequence, it is particularly well suited toaddressing the problem of runs

of the letterN and other wild-cards that occur in many nucleic acid databases. (For protein

alignment the use of a scoring matrix obviates the need for any special treatment of wild-

cards.)

It is true that this could be realised by the use of a matrix fornucleotide comparisons,

instead of a simple reward and penalty scheme. However, the use of a matrix is relatively

expensive. Nucleotide sequences can be compared more rapidly by using a look up table,

e.g., as in FASTA.

The look up table can also be used to trigger the termination of extension by comparison

to the minimum score that can be obtained without triggeringthe termination condition. If

the look up table returns a score less than some trigger value, then extension terminates. If

the look up table uses a two bits per base representation, it is practical to simultaneously

compute the alignment of 8 bases using a 16 bit look up table. Such a table is fed the binary

XOR of the relevant query and database record sequence segment (To search thoroughly,

8 copies of the query sequence must be maintained, one for each phase, an issue that is

explained in more detail later). Ones in the XOR will correspond to substitutions in the

sequence, and so the alignment score can be computed. Such a look up table fits easily into

the cache of a modern processor.

119

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

However, the 2-bit look up table approach has difficulty in differentially scoring wild-cards.

It is possible to approximate such scoring by randomly casting each wild carded base to

exactly one of the possible bases, and then use that as the basis for comparison and scoring.

However, this leads to difficulties due to natural random variation, where alignments may

be terminated or continued incorrectly.

These difficulties can be solved by using a four bits per base representation where each of

the nucleotides is represented using a One Hot Coding (i.e.,a coding where only one bit

is set in each code, as also used by NCBI-BLAST). The IUPAC codes corresponding to

wild cards are logically represented as the union of the codes for each base permitted by

that code, as in Table 4.2. The query and subject sequences are now combined using binary

AND instead of XOR. Assuming the same 16 bit wide look up table, only four instead of

eight comparisons can be done in parallel. However, all possible combinations of wild card

base comparison are correctly resolved, as illustrated in the example of Figure 4.4.

Figure 4.4 shows the calculation of the dynamic programmingscore for the oligonu-

cleotidesATCG versusANGG. A versusA is a match, because the bit corresponding toA

in each is set.T vs N is also identified as a match, because the code forN has the bit for

T set, and so the AND results in a non-zero value, which the lookup table will treat as a

match. However, the codes forC versusG have no bits in common, so the result is zero,

which the look up table will treat as a substitution. Finally, G versusG is counted as a match

for the same reason asA versusA. Three matches score 3×1 = 3, and the one substitution

scores 1× (−4) =−4, giving a total score of 3−4 =−1.

However, scores that are generated using the above method will not differ for alignments

containing wild cards. This can be addressed by using a second look up table that is fed

the binary OR of the sequences, and so estimates the probability of a match. This is used

to write down (in the accounting sense) the score obtained from the first look up table. The

estimate is calculated by counting the number of set bits foreach base, and reducing the

120

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Subject:

0010
0010
0010

0001
0001
0001

0100
1111
0100

1000
0001
0000

Lookup Table

DP Score

0010010000000001

ATCGTAGCTGATCGTGCTG

TAGCTGATCGANGGTACTG

(a)

(b)

−1

(c)

Query:

Figure 4.4: Table Look Up For Un-Gapped Alignment And Score, Where Exact Matches
Are Scored As +1 And Substitutions As -4.
Each four base segment is compared by: a) ANDing the four bit One Hot Coding of each
base; b) Collating these values into a 16 bit value, and c) using that value to calculate the
Dynamic Programming Score, by way of a look up table.

121

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Table 4.2: IUPAC-IUB Codes And Their 4-bit Representations.

IUPAC Base Description 4-bit

G Guanine G 0001
A Adenine A 0010
T Thymine T 0100
C Cytosine C 1000
R Purine A or G 0011
Y Pyrimidine C or T 1100
M Amino A or C 1010
K Ketone G or T 0101
S Strong interaction C or G 1001
W Weak Interaction A or T 0110
H Not-G A, C or T 1110
B Not-A C, G or T 1101
V Not-T A, C or G 1011
D Not-C A, G or T 0111
N Any A, C, G or T 1111
X – – 0000

reward score by a corresponding fraction, according to Table 4.3: If only one bit is set the

full reward is conferred; only half the reward is granted if two bits are set, as a match is

twice as likely; if three bits are set, then only a third of thereward should be conferred, as

a match is three times as likely, finally, if all bits are set, then no reward is given since a

match is certain. Thus, the maximum score for any sequence aligned against a string ofNs

will be zero.

Alternatively, a single look up table can be used to return the inflated score, and the write

down process can be performed when computing the final score of each alignment after

assembly. The DASH algorithm uses the latter approach of writing down when computing

the final score of the alignment after assembly, because: (a)it is simpler to implement,

requiring only one look up table during alignment; and, (b) assuming that some alignments

are discarded during the assembly phase, it results in less work overall.

122

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Table 4.3: Differential Scoring Against Wild Card Bases.

Bits clear in base P(mismatch) % of Reward

3 (A, C, G, T) 3/4 100
2 (R, Y, M, K, S, W) 2/4 50

1 (H, B, V, D) 1/4 33.3
0 (N) 0/4 0

4.1.1.2 Stop Words

It is possible to filter out stop words, i.e., excessively frequent terms in the database, to

accomplish a similar role to that of a low complexity filter, like that of CAFEFILTER

(Williams 1999). This makes the assumption that low complexity regions contain motifs

that occur with excessive frequency. If an alignment consists entirely of such regions, then

no index postings that point to the alignment will be considered, and so the alignment will

be ignored. Conversely, if the alignment contains a mixtureof low and high complexity

regions, then the high complexity regions will be posted in the index; only one such posting

is required for the alignment will be discovered in its entirety.

This requirement for an alignment to contain a high complexity region (which in the current

context means a region that contains motifs that do not occurwith excessive frequency)

appears to exclude a significant fraction of meaningless alignments, without missing too

many relevant ones. The definition of excessive frequency has been visited only empirically

in this dissertation, with exclusion thresholds of 2.5×E for nucleic acids and 10×E for

proteins, whereE is the frequency expected by random, providing a reasonabletrade-off

of search sensitivity versus selectivity and index size.

It is acknowledged that the filtering of stop words makes the servicing of certain queries

inefficient or impossible (Witten et al. 1999). However, fora heuristic search algorithm this

would appear to be a reasonable trade-off, because: (a) the guarantee of exhaustive search

has already been lost; and, (b) the desire to exclude low complexity sequences from the

results implies that low complexity queries should also be ignored.

123

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

A significant benefit of this method versus the commonly used filters SEG

(Wootton and Federhen 1993, 1996), DUST (Hancock and Armstrong 1994) and XNU

(Claverie and States 1993), is that in no case is only part of an alignment returned, be-

cause the masking occurs against the index, and not the queryor database itself. This is of

particular concern for searching the cooperatively compressed databases and indices of this

dissertation, where discovery of the maximum extent of an alignment is of importance. It

also has the beneficial side effect of significantly reducingthe number of postings that must

be stored and evaluated, so reducing index size and execution time. Other opportunities for

reducing the number of index postings that must be processedare now considered.

4.1.1.3 Limiting Alignment Numbers In Flight

The number of expected alignments of some length,l , in a random database ofn words

and alphabet sizea, is n
al . For nucleic acid databasesn is typically very large, often≫ 109,

anda = 4. This means that ifl is allowed to be small, there will be a vast population of

alignments, adversely affecting both memory requirementsand search time. To ameliorate

this situation, two methods are employed in DASH.

The first measure is to text-partition the database into manageable sized units: 107 letters

or 105 database records, which ever occurs first. This limits the number of alignments

required in memory at any given point in time.

The second measure is to place a lower limit onl , such that a balance between resource

requirements and sensitivity is achieved. The range 10≤ l ≤ 14 was determined empiri-

cally to be reasonable for both nucleic acid and protein alignments, with the selection of a

specific value dictating the trade-off between sensitivityand execution speed.

By limiting the number of alignments that must be held in memory at one time in this way,

the foundation is being prepared for the creation of an algorithm that has at worst a linear

relationship between database size and search time.

124

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

4.1.1.4 Suppression Of Repeated Discovery Of Long Alignments

For long exact or near-exact alignments, there will be many (possibly hundreds or thou-

sands) of index postings pointing to the one alignment. If each of these postings were

allowed to trigger the calculation of what must be an identical alignment, computation

would become extremely inefficient. To prevent this, a list of previously discovered align-

ments is maintained. The list is consulted whenever an indexposting is considered: If the

candidate lies within the bounds of any alignment found in the list, it is suppressed, as it

would only rediscover the alignment that it lies within.

A naive implementation of the suppression list requiresO(n) time to consult the list for

each index posting considered, wheren is the number of alignments discovered. This

would be reduced toO(log2n) if a binary tree were used. However, by ordering the list of

alignments into the same order that the index postings will be considered, and proceeding

through the list in tandem with the inverted list for each term, the cost can be effectively

reduced toO(n) perterm(the list is traversed only once per term). The cost is thus reduced

to O(nitemsinlist
npostings per term

). If the number of postings per term is equal to or greater thanthe number

of items in the list, then nitemsinlist
npostings per term

< 1, and hence the cost per posting is at worstO(1).

This scheme is implemented in the DASH algorithm.

4.1.1.5 Locally Adaptive Query Striding

There is a cost associated with retrieving the inverted listfor each term (i.e.,k-mer) of the

query. Similarly, there is a real cost in evaluating the set of postings that each inverted

list contains. It is possible to reduce this cost by considering only some arbitrary fraction

of the query terms. This will be at the cost of sensitivity, because alignments will only

be detected if an exact correspondence exists ink consecutive residues of the query and

database records. Reducing the degree of overlap of each query term used diminishes the

ability to detect short alignments.

125

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Previous work described by Barton (1996) has shown that if too few query terms are

searched, sensitivity suffers substantially. None the less, it is reasonable to allow DASH to

optionally exclude some query terms, since moderate striding over query terms can realise

helpful increases in speed, without causing intolerable harm to sensitivity. This is termed

query striding.

The simplest form of query striding is to use a stride length,S, whereS− 1 terms are

excluded following each term that is retained. Therefore a stride length ofS= 2 would

exclude one term for every term that is retained, resulting in only 1
S = 1

2 of query terms

being evaluated.

The form of query striding that has just been described is thespecial case whereS= Smax,

for each and every stride, whereSmax is the maximum stride length. Query striding can be

generalised by allowingS to take any value in that satisfies 1≤ S≤ Smax. If this generali-

sation applies to each and every stride, then it is possible to optimise the stride selection in

order to minimise the total term frequencies, and hence the number of postings that must

be processed, and consequentially the work required.

This minimisation is possible because terms differ in frequency. This is a characteristic that

is enhanced by partitioning the database (thus preventing excessive averaging of frequen-

cies over an entire database). Thus, it is possible to selectthe terms that result in the lowest

total frequency, while still satisfying the constraint on the maximum distance between pairs

of successive selected terms.

Consider the example of Figure 4.5, consisting of seven consecutive overlapping query

terms. The query terms areABCD, BCDE, ..., GHIJ, and their frequencies are as listed, e.g.,

F(ABCD)=24.

If Smax= 4, the naive algorithm (S= Smax) would satisfy the constraint that at least every

4th term be considered, by selecting the 4th term (DEFG) as the first and only stride, yielding

a total frequency of 32. This corresponds to line (a) in the figure, where the chosen term is

126

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

ABCD BCDE CDEF DEFG EFGH FGHI GHIJ

24 17 9 32 15 29 34

3 4 5 6 721

Frequency:

ABCD BCDE CDEF EFGH FGHI GHIJ

24 17 9 32 15 29 34

ABCD BCDE CDEF DEFG EFGH FGHI GHIJ

24 17 9 32 15 29 34

ABCD BCDECDEF DEFG EFGH FGHI GHIJ

24 17 9 32 15 29 34

ABCD BCDECDEF DEFG EFGHFGHI GHIJ

24 17 9 32 15 29 34

a)

b)

c)

d)

= 32

= 32

= 24

= 36

DEFG

Term:

Figure 4.5: Example Of Optimising Striding, Smax= 4.

marked with a grey background. Alternatively, more than theminimum number of terms

can be selected, e.g., lines (b), (c) and (d) in the figure, which represent three such selec-

tions. In the example, line (c) results in a total frequency of 9 + 15 = 24. This is lower than

any other possibility, including option (a) where only a single term was selected.

The minimisation of the total term frequencies is a classic finite optimisation problem, and

can be solved using dynamic programming inO(lengthquery×Smax) time. Since the both

the query length andSmax are generally small, the cost of this process is negligible,so any

savings it can introduce are essentially free. Therefore this scheme, Dynamic Programming

Optimised Query Striding, is implemented in DASH.

4.1.1.6 Combined Effect Of Alignment Candidate Reduction Measures

Combining the methods described in this section, the numberof index postings, and hence

alignment candidates, that are actually evaluated can be substantially reduced. Table 4.4

shows a typical breakdown of the percentages of postings considered, and those rejected

by striding, frequency based exclusion (i.e., stop words),and suppressed by previously

127

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Table 4.4: Effect Of Index Posting Evaluation Reduction Strategies.
Results are the aggregates of two hundred protein queries of: candidates squelched by
a previous alignment (suppressed); skipped by query striding (avoided); stopped due to
excessive frequency (excluded); and finally, those actually considered (remaining).

Index Postings
max. stride Suppressed Avoided Excluded Remaining

1 0.57 % 0 % 5.47 % 93.97 %
2 0.21 % 52.28 % 1.73 % 45.78 %
5 0.07 % 84.53 % 0.09 % 15.31 %
10 0.03 % 94.15 % 0.01 % 5.81 %

discovered alignments. (These data were extracted from thequeries that were executed as

part of this dissertation).

Only limited improvement is possible whenSmax= 1, since this corresponds to evaluating

every term in the query. In that case only stop words and suppression of existing alignments

can be enforced, but query striding is of no use. However, formaximum stride lengths of

2, 5 and 10, a naive striding algorithm should, respectively, be able to avoid an average

of 1− 1
2 = 50%, 1− 1

5 = 80% and 1− 1
10 = 90%, of all index postings. The value of

the optimised query striding algorithm is demonstrated by its ability to consistently reject

more than the expected fraction of postings (52.28% versus 50%, 84.53% versus 80% and

94.15% versus 90%). For the tabulated range of maximum stride lengths, the avoidance

of highly frequent terms by the optimal striding algorithm causes the rapid decline in the

number postings that need to be excluded as stop words. This also gives further weight to

the reasonableness of excluding stop words in conjunction with the DASH algorithm, since

the probability of a stop word being consulted is substantially reduced.

In apparent contrast to the potency of query striding, Table4.4 reveals that relatively

few alignment candidates are suppressed by previously discovered alignments. At first

glance, this suggests that this suppression may not be worththe added complexity and

effort it requires. This would be true, if the suppressed candidates were randomly se-

lected, and so were very short on average (alignment lengthsfollow an extreme distribution

128

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

(Erdos and Renyi 1970)). However, this suppression works precisely on those candidates

that produce alignments of the greatest length.All needless repetition of alignment discov-

ery effort is therefore avoided, independent of the raw quantity or percentage of alignment

candidates suppressed, thus ensuring that HSP discovery isO(n) and not O(n2) with respect

to query length, even when many high quality alignments occur. This remains true, even

as the maximum stride length increases, thus reducing the overall number of alignment

candidates requiring suppression.

To summarise, by combining the effects of stop words, optimal query striding, and candi-

date suppression the total number of alignment candidates that DASH must process, and

hence the corresponding work required, can be reduced by an order of magnitude or more.

This is in return for the modest reduction in sensitivity expected due to query striding,

as detailed in a later chapter. Perhaps more importantly, these measures work to ensure

that the HSP discovery process is never worse than O(n) with respect to query length or

database size.

4.1.2 Stage 2: Optimal Assembly Of HSPs

As previously described, the first stage of the DASH algorithm discovers ungapped align-

ments between the query and the records in the database. Thismeans that there will be

zero or more ungapped alignments against each record in the database. Those records with

no alignments are simply ignored, while those with a single alignment are immediately

passed to the final stage to be extended using gapped alignment. However, additional work

is required when more than one alignment is found against a given record.

In general, there are two possibilities when multiple alignments exist. First, the alignments

may be independent, and should be treated as though each existed in isolation. On the other

hand, various combinations of the alignments may representfragments of larger overall

129

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

alignments. In that case, the fragments must be correctly assembled in order to realise the

overall alignments.

Several goals are possible during the assembly process. Onegoal is to maximise the total

score of all reported alignments, i.e.,∑si, 1≤ i ≤ n, wheresi is the score of thei th align-

ment, andn is the number of alignments. However, that goal need not prefer the inclusion

of all regions between the identified alignments, causing a blind spot toward recurrences oc-

curring in those regions when used in conjunction with cooperatively compressed database

and index ensembles. Moreover, a single alignment with score, e.g.,32s, has higher statisti-

cal significance than two alignments, each with scores, when multiple alignment statistics

are used1. Therefore, it is considered preferable to join two alignments with scoress1and

s2 to produce a joined alignment with scoresj , even ifsj < s1 +s2, provided thatsj > s1,

sj > s2. DASH performs such a process, with the aim of producing the final alignments

with the highest overall scores.

Consider the example of Figure 4.6, where seven HSPs (denoted by heavy black lines)

have been identified and scored. In addition, the regions between nearby HSPs have been

explored and global dynamic programming used to determine the maximum score for the

region between each plausible pairing of HSPs. These regions are shaded in grey to indi-

cate that they are subjected to dynamic programming. The assembly options are drawn as

double ended arrows, and are marked with their scores.

All assembly options for a given HSP are processed in a singledynamic programming

episode, by exploring the minimal rectangle that contains all relevant HSP termini. This

allows the reuse of dynamic programming effort when multiple possibilities exist. How-

ever, there are situations where this approach can be detrimental, because using the single

area may be of much larger area than the sum of the individual areas that would be required

1While it is possible to combine the significance of separate alignments (Altschul and Gish 1996a,
Collins et al. 1988, Mott 1992, Waterman and Vingron 1994), it makes sense to assemble alignments as fully
as possible. The opposite extreme, reporting each alignment as a collection of alignments, each one base
long, is not only absurd, but also hides the real significanceof the complete alignment. Therefore complete
assembly is preferable.

130

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Query Sequence Offset

S
ubject S

equence O
ffset

17

11

−7

32

+2

+2
−6

57

23

55

−25

54

Figure 4.6: Hypothetical Complex HSP Assembly Situation.

if each HSP were considered separately. The large dynamic programming region near the

top of the figure illustrates such an instance. Although the existing implementation of the

DASH algorithm does not do so, it would be possible to test when this situation arises, and

to cluster the candidates into sub-groups that require lessover all dynamic programming.

Once the set of HSP and inter-HSP scores are known, dynamic programming is used to

determine the maximum score that can be obtained from creating assemblies of the HSPs.

Figure 4.7 depicts the result of performing this step on the current example. Only those

transitions that produce a higher combined score are retained, hence the absence of a join

between the two alignments at the top of the figure. The score for each chain of HSPs is

implicitly calculated during this process. For example, the alignment scoring 81 receives

that score because of its own score of 17, plus the inter-HSP score of -6, plus the chained

score of 70 for the HSP it connects to. That score of 70 is in turn calculated from the sum

of 54−7+23. Each unique high scoring chain of HSPs is recorded as an alignment. In the

example, this results in alignments with scores of 57, 81, 83and 89, some of which re-use

certain HSPs.

131

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Query Sequence Offset

S
ubject S

equence O
ffset

23

55

89 = 32+2+55

70 = 54−7+23

81 = 17−6+70
83 = 11+2+70

57

Figure 4.7: Hypothetical Complex HSP Assembly Situation.

By formulating the HSP assembly problem as a dynamic programming exercise, and by

ordering the possible graph of HSPs, this problem is reducedto O(n2), wheren is the

number of HSPs discovered against a single sequence in the database (rather then against

the database as a whole). Empirically, it has been found thatgenerally there are very few

HSPs that can be plausibly assembled, resulting in a behaviour that is closer to O(n) than

O(n2) on average.

4.1.3 Stage 3: Alignment Finishing Using Adaptive Banded Dynamic

Programming

At the completion of the first two stages, the DASH algorithm has a list of gapped align-

ments and their scores. However, the regions beyond each endof the alignment have not

been examined to determine if the assembled alignments can be further extended. This is

the subject of the third and final stage of the DASH algorithm,where a dynamic program-

ming procedure is employed to discover whether further extension is possible. In order

132

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

to reduce execution time, a heuristic approach is used in place of a completely exhaustive

algorithm.

FASTA and NCBI-BLAST 2 implement successful heuristic algorithms that are relevant

to extending alignments in this way: FASTA limits the extension to a band around the

alignment region, while BLAST ceases extension if the maximum score on the dynamic

programming front drops more than some quantity below the best score seen in the exten-

sion. DASH combines these two approaches, and adds: (a) a recessed starting point; (b) a

slow start heuristic, and; (c) adaptive placement of the band.

The recessed starting point trims a short length from the endof an HSP in order to allow

the discovery of a more optimal alignment in the case that the(ungapped) HSP has been

over extended, and deviates from the optimal gapped alignment.

The slow start heuristic is used to make the band initially narrow, when it is much less

likely that the alignment will drift far from the main diagonal of the alignment. On average,

this results in approximately 35% less dynamic programmingeffort, and with practically

no reduction in sensitivity. Then throughout extension, the band is repeatedly recentred

around the highest scoring point on the dynamic programmingfront.

Adaptive band placement is best illustrated with an example. Figure 4.8 depicts the op-

eration of the adaptive band placement. Initially the uppermost row is explored, and its

highest scoring cell (indicated by the upper most dot) is identified. As this dot is near the

mid-point of the row, i.e., not too near either the left or right edge of the band, the next

band is placed exactly one cell to the right the current band.The dynamic programming

process is then executed, yielding the highest scoring cellin this second row, as indicated

by the second-upper-most dot. Again, it occurs near the mid-point, so the third band is

placed exactly one cell right of the current band. Repeatingthis process for the third row,

the highest scoring cell is now near the left edge of the row. This causes the dynamic band

placement algorithm to place the fourth row at the same horizontal position as the third.

133

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Figure 4.8: Simple Example Of Adaptive Band Placement During Dynamic Programming.
Each column represents a band. The solid black dots represent highest scoring cell in
each band.

This process repeats for the fifth row, before the highest scoring cell again occurs near the

mid-point. However, when the sixth row is evaluated the highest scoring cell is found to

occur near the right edge. This causes the dynamic band placement algorithm to place the

seventh row two cells to the right. This occurs again for the eighth row, after which the

adaptive band placement has recentred the band around the highest scoring cell.

Figure 4.9 presents the dynamic programming activity for analignment of a protein query

that was executed using DASH. This dynamic programming activity results in the align-

ment shown in Figure 4.10. The example demonstrates all aspects of the adaptive banded

dynamic programming algorithm, including the slow start heuristic. As the example is ex-

tracted from a real query, there are two artifacts that should be noted: (a) the alignment

occurs in the last 24 residues of the database record. This explains why the dynamic pro-

gramming figure appears truncated on the right hand-side. (b) The full evaluation of the

first row is an optimisation that improves dynamic programming efficiency, by avoiding the

need for a bounds check in the computation of each cell, therefore that row can be ignored

throughout the following discussion.

134

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

11 0 11 12 13 13 15 15 16

12 11 4 7 8 9 10 11 12 12

13 12 7 3 8 7 10 9 10 13 11

14 12 8 3 7 4 5 6 7 8 9 7

15 14 9 9 4 6 5 6 7 8 9 10 8

16 15 10 10 5 5 7 4 5 3 7 8 9 9

17 15 11 10 6 6 4 6 5 6 4 7 9 10 9

17 12 12 7 5 5 3 7 4 5 5 2 8 9 9 11

18 13 12 8 8 5 6 4 6 5 5 6 4 8 8 10 12

14 14 9 6 7 0 1 5 11 0 1 2 3 4 5 5 7 8

15 15 10 10 7 8 1 2 0 9 2 6 4 5 5 6 7 8 9

16 11 8 9 7 7 5 1 2 8 3 7 4 5 5 7 9 10 7 12

17 12 11 10 9 7 8 2 0 2 6 2 11 0 1 2 3 4 5 6 7

12 11 10 9 9 3 1 0 4 7 2 9 0 1 3 5 4 5 2

12 12 10 10 4 1 2 2 4 8 1 8 1 2 4 6 5 4

11 11 5 0 0 4 4 2 7 0 7 2 3 5 7 4

6 6 5 2 4 3 4 8 5 6 4 2 4 7

7 5 3 2 4 5 2 9 3 3 1 3 4

9 6 0 4 2 8 2 10 5 0 2 1

11 6 0 6 1 3 1 8 6 1 2

11 7 2 5 1 2 3 8 6 0

9 1 0 0 4 2 9 6

3 2 4 7 2 7

1 3 3 1

3 2

8 3

7

0

i

1

s

2

l

3

a

4

a

5

e

6

v

7

q

8

q

9

l

10

q

11

a

12

k

13

y

14

n

15

s

16

l

17

q

18

k

19

m

20

l

21

e

22

e

23

s

0 0 127 i 0

1 0 9 k 1

2 0 10 l 2

3 0 11 k 3

4 0 12 a 4

5 0 13 p 5

6 0 14 l 6

7 0 15 t 7

8 1 16 k 7

9 1 17 t 8

10 2 18 q 8

11 2 19 y 9

12 3 20 d 9

13 3 21 s 12

14 5 20 s 11

15 6 19 a 11

16 8 17 a 10

17 10 15 k 7

18 11 14 e 7

19 12 13 i 7

20 13 12 k 7

21 14 11 r 7

22 16 9 k 6

23 18 7 l 6

24 20 5 a 4

25 22 3 n 0

26 22 3 k 1

27 23 2 t 1

28 24 1 a 0

query offset = 24, subject offset = 17440363, direction = backward

Figure 4.9: Example Of DASH Adaptive Banded Dynamic Programming.
Scored using the BLOSUM62 matrix, with penalties of -11 to open and -1 to extend a gap.
The fields above each column are, from top to bottom: (a) the number of the column, and;
(b) the amino acid in that position of the query sequence.
The fields to the left of each row are, from left to right: (a) the row number; (b) the first
column of the dynamic programming band for that row; (c) the width of the dynamic pro-
gramming band for that row; (d) the amino acid in that position of the database record;
and, (e) the relative position of the highest scoring cell in the dynamic programming band
for that row.
Note the explored band preferentially widening on the side nearest the maximum score.
Purple and green coloured cells indicate negative and positive dynamic programming
scores, respectively. Orange boxes indicate the optimal alignment path. Small grey ticks
between cells indicate the back trace path from each cell toward the origin. The extension
terminates at the furthest point with the maximum score seen (+11).

135

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

ISLAAEVQQLQAKYNS

| | | + + | |+|

IKLKAPLTKTQ--YDS

Figure 4.10: Alignment Resulting From Figure 4.9 (final score = +11).

For the remaining rows of the figure, until the bands begin to be truncated by the limits

of the dynamic programming space (rows 1 – 14), the width of the successive dynamic

programming bands increases, i.e., the rows start narrow, and then progressively widen,

owing to the slow start heuristic. The widening preferentially occurs on the side nearest

the maximum value in each row in order to adapt to where the best alignment appears to

be. The band is also moved in absolute terms to help maintain this centre, and hence the

horizontal progression of each row.

As previously described, the progression of the band for each successive row is monotonic,

thus maintaining the centre around the same diagonal. The two exceptions to this are if

the highest scoring cell in a given row occurs in the left or right quarter of the band. In

those cases, the row either maintains position, effectively shifting the centre line one cell

to the left (as in after rows 8, 10, 12 and 25), or shifts two positions to the right, effectively

shifting the centre line one cell to the right (as in after rows 13, 15, 16, 21, 22, 23 and

24). In cases where there are two or more cells that each have the maximum score for a

given row, the algorithm naively chooses the right most one.More sophisticated regimes

are possible, such as trying to keep all maximally scoring cells in the band, but have not

been explored.

Overall the dynamic programming effort has an upper bound ofO(n2) with respect to query

length. However, in practice dynamic programming is only performed for relatively few

alignments, and the slow start heuristic combined with the termination heuristic ensure that

in most cases only a small constant amount of effort is expended, again resulting in an

typical aggregate cost that is much less than O(n2).

136

4.1. THE DASH ALGORITHM CHAPTER 4. DASH

4.1.4 On Search Time Complexity

It has previously been observed in this dissertation that predictable execution time and

sub-linear execution time are desirable characteristics for a sequence search and alignment

algorithm to possess. In pursuit of this goal, each stage of the DASH algorithm has been

designed to be no worse than linear in practice. Predictableexecution time is further en-

couraged in DASH in much the same way that it is in CAFE. That isby ensuring that

the fine searching (the HSP assembly and alignment finishing stages in DASH) occur only

once per hit. Meanwhile, sub-linear execution time is encouraged by allowing the use of

cooperatively compressed databases, an issue that is addressed in later chapters.

Another issue that requires addressing is that traversing recurrence chains of unknown

length may create an unpredictable contribution to search time. This is a significant is-

sue, particularly if the data are to be disk-resident, as each step in the chain will trigger a

costly disk seek.

This issue has been mitigated to some degree by partitioningthe database and requiring

that all links in a chain point backwards in the partition, thus ensuring that chains are

limited in length. It is further addressed by the propertiesof the search system that make

it possible to stream the compressed database and index fromdisk to RAM in a batched

search environment. These properties are discussed in detail in Chapter 7 where DASH is

combined with an appropriate data and index representation. Given the compactness of the

compressed structures that result this solves the problem,in principle at least.

137

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

4.2 Search Parameters

4.2.1 Tunable Parameters

The current implementation of the DASH algorithm contains anumber of tunable parame-

ters, described below grouped by their function. Empiricalexploration of these parameters

has led to the production of canonical parameter sets, referred to asmodesin the rest of

this dissertation. These are more fully defined following the general definition of each

individual parameter.

4.2.1.1 Tunable Alignment Properties

Maximum Expected Value of Alignments (MaxE).This specifies the expected value (by ran-

dom chance) that is used as the threshold for determining thelength and score of alignments

to report. Typical values are in the range 0.1 to 1000.

Does The Maximum Expected Value of Alignments Constitute a Limit or a Quota (MaxE-

Limit). If this boolean is true, then the maximum expected value of alignments constitutes

a limit. In practical terms, setting this flag reduces theminimum alignment lengthby one,

and so slightly increases sensitivity at the cost of speed.

Minimum Alignment Length (MinAlnLen).This specifies the minimum final length an

alignment must reach in order to be reported, and is not a manually tunable parameter.

It is overwritten at run time by the value derived from theMaximum Expected Value of

Alignmentsand the size of the database being searched. It forms part of the parameter

vector in order to keep all parameters located in one place. This reduces the number of

function arguments that must be passed to various functions, and boosts overall speed with

some compilers.

138

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

4.2.1.2 Tunable Query Striding Parameters

The Maximum Stride Length Allowed Between Investigated k-mers of The Query Sequence

(MaxStride).The maximum stride length (Smax) is calculated as the minimum of this pa-

rameter and the difference between the minimum HSP length and k. This parameter then

provides a mechanism for capping the maximum stride length,regardless of the minimum

HSP length. Typical values are between 1 (no query striding)and 50 (practically equivalent

to usingminimum HSP lengthminusk).

The Number of Neighbours to Consider for Each k-mer of the Query Sequence (Neigh-

bours). This specifies the number of neighbouringk-mers, in the style of BLAST 2, to

consult, at each stride through the stride path. A value of one indicates that only the exact

k-mer from the query sequence should be used. Allk-mers activated at each position of the

query sequence are taken into account when calculating the optimal stride path. Typically

this value is set to 1 to indicate that BLAST style neighbouringk-mer support is disabled.

4.2.1.3 Tunable HSP Properties

Minimum HSP Length (MinHSPLen).This prescribes the minimum length an HSP must

reach in order to be recorded and be a candidate for alignmentassembly. Smaller values

increase sensitivity, but not as quickly as they increase memory and computational burden.

Typical values are between 10 and 14 residues.

Maximum Continuous Incongruence Length Tolerated in HSPs (MaxSubst).This parameter

restricts the number of consecutive non-conservative substitutions that will be tolerated in

an HSP. Moderate values, e.g., one or two, result in fewer andlonger HSPs compared to

not tolerating any substitutions. Typically this value is set to one, which means that two

consecutive substitutions will terminate HSP extension.

139

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

4.2.1.4 Tunable DP And HSP Assembly Parameters

Perform DP at Ends (DPEnds).This is a boolean flag that indicates whether dynamic

programming will be attempted during the third stage of the search process. If it is false,

then gapped alignments will still be produced, however the full extent of many alignments

is unlikely to be determined, especially for protein searches. However, it does allow for

very rapid searching. Normally, however, this flag is set to true.

Measure Before or After Performing DP at Ends (MeasureFirst). If this is true, then align-

ments will be measured againstMinimum Alignment Lengthbefore performing dynamic

programming at each end. This contains the search time by reducing the number of dy-

namic programming extensions performed. The alternative is measuring after, and results

in greater sensitivity at the expense of the computational cost due to dramatically increased

dynamic programming activity. Typically this value is set to true to cause measurement to

occur before extension, preferring execution speed over sensitivity.

HSP Joining Cut Off Score (JoinAbort).This specifies the minimum score a global dynamic

programming alignment between two HSPs can achieve before abandoning the attempt to

join the HSPs. Large negative values result in higher sensitivity, but at the cost of increased

processing time. Typical values are in the range -10 to -20.

The Maximum Distance Between HSPs Before Joining Them Will Not Be Considered (Join-

Range). This distance places a limit on the distance between HSPs when joining is at-

tempted, therefore placing an upper bound on the work required in the second search phase

when HSPs are assembled. Typical values are in the range 50 to100 letters.

The Width of the Dynamic Programming Band Used for The GappedExtension of Align-

ments (DPWidth).This specifies the maximum width of the banded dynamic programming

front during extension at each end of a gapped alignment. Theband dynamically centres

itself around the optimal path discovered to date, reducingthe band width required for

adequate sensitivity. Therefore values between 20 and 64 are normally sufficient.

140

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

The Maximum Length of Dynamic Programming Used for The Gapped Extension of Align-

ments (DPMax).This sets the internal maximum length for a single episode ofdynamic

programming. Multiple episodes of dynamic programming will be used if longer dynamic

programming is warranted. This parameter has no effect on sensitivity, it only effects the

memory efficiency of the banded dynamic programming process. This value is normally

set to 512, so that all practically every dynamic programming request is handled in a single

episode.

The Length of Recession at the Ends of an Alignment Used During The Dynamic Program-

ming of Alignments (RLen).This parameter is used primarily for protein searches to allow

recovery from over extended HSPs at the end of alignments. Bystepping back several

residues into the alignment and starting the dynamic programming process from there, any

incorrect over extension can be replaced with the optimal path. Typical recession lengths

are between 5 and 10 letters.

The Cut-Off Score Used During the Gapped Extension of Alignments (Xg). This param-

eter performs the same function asXg in NCBI-BLAST 2. In both cases it provides the

termination criteria for gapped extension of alignments. In DASH it limits only the length

of dynamic programming, as the dynamic programming band remains constant width (dis-

counting the influence of the slow start heuristic).Xg is typically set to terminate extension

when the alignment score drops by between -10 and -25 compared to the previously ob-

served maximum.

Dynamic Programming Slow Start Bandwidth Divisor (SSDivisor). This value specifies

the ratio of the maximum to initial bandwidth. Larger valuescause dynamic programming

to commence with a narrower band, thus reducing the computation burden. Typically this

value is set to 8, where it makes almost no impact on sensitivity, but reduces dynamic

programming effort by approximately 35%.

141

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

Table 4.5: DASH Canonical Parameter Sets For Nucleic Acid Searching: M2.

Name M2 (Nucleic Acid)

Parameter Value Parameter Value

MaxE 1 MeasureFirst Yes
MaxELimit Yes JoinRange 100
MinAlnLen 18 JoinAbort -10
MaxStride 50 DPWidth 40
Neighbours 1 DPMax 512
MinHSPLen 18 RLen 5
MaxSubst 1 Xg 20
DPEnds Yes SSDivisor 8

Table 4.6: DASH Canonical Parameter Sets For Nucleic Acid Searching: M4.

Name M4 (Nucleic Acid)

Parameter Value Parameter Value

MaxE 10 MeasureFirst Yes
MaxELimit No JoinRange 100
MinAlnLen 10 JoinAbort -20
MaxStride 50 DPWidth 60
Neighbours 1 DPMax 512
MinHSPLen 10 RLen 5
MaxSubst 1 Xg 25
DPEnds Yes SSDivisor 8

4.2.1.5 Canonical Parameter Sets

The canonical parameter sets are defined for nucleotide and protein searching respectively,

and presented in Tables 4.5, 4.6, 4.7 and 4.8. The M2 modes areintended to run an order

of magnitude faster than NCBI-BLAST 2.2.6, while the M4 modes are intended to run

in comparable search time as NCBI-BLAST 2.2.6, with the bestsensitivity available. It

is likely that these are not the optimal parameter sets in pursuit of their respective goals.

However, for the purposes of this dissertation all that is required is a fixed reference point

that can be used to compare the effect of different database and index representations.

Therefore further optimisation of these parameter sets is left as a future exercise.

142

4.2. SEARCH PARAMETERS CHAPTER 4. DASH

Table 4.7: DASH Canonical Parameter Sets For Protein Searching: M2.

Name M2 (Protein)

Parameter Value Parameter Value

MaxE 1 MeasureFirst Yes
MaxELimit Yes JoinRange 100
MinAlnLen 14 JoinAbort -10
MaxStride 5 DPWidth 60
Neighbours 1 DPMax 512
MinHSPLen 14 RLen 5
MaxSubst 1 Xg 20
DPEnds Yes SSDivisor 8

Table 4.8: DASH Canonical Parameter Sets For Protein Searching: M4.

Name M4 (Protein)

Parameter Value Parameter Value

MaxE 1 MeasureFirst Yes
MaxELimit Yes JoinRange 100
MinAlnLen 14 JoinAbort -10
MaxStride 1 DPWidth 60
Neighbours 1 DPMax 512
MinHSPLen 14 RLen 5
MaxSubst 1 Xg 25
DPEnds Yes SSDivisor 8

143

4.3. DASH SEARCH PROGRAM (DASH) CHAPTER 4. DASH

-- Parse command line arguments

parse_command_line_arguments()

-- Retrieve the array of parameters based on the

-- setting selected

active_settings = settings_array[selected_setting]

-- Perform the search

foreach index_partition in the indexed database

-- 1. Search each index section

discover_hsps(index_partition,query)

-- 2. Assemble the HSPs into alignments

assemble_HSPs()

-- 3. Perform DP at each end of the assembled alignments

finish_alignments()

end foreach

-- Output search results

output_results_using_selected_format()

Figure 4.11: Pseudo Code For The DASH Search Algorithm: Overview.
Command line parameters are parsed to determine the database and query to search, and
to select the search parameters. Then the three stage alignment process is conducted for
each database partition. Finally, the search results are output in the selected format.

4.3 DASH Search Program (dash)

The DASH algorithm was implemented in C to produce thedash program. This program

parses command line arguments to select protein or nucleotide searching, the database and

query to search, and the search mode. It implements the threestages of the DASH algorithm

as previously described. A pseudo code overview of this is included in Figure 4.11. Pseudo

code for each of the three steps is presented in Figures 4.12,4.13 and 4.14, respectively.

4.3.1 Scoring, Statistics And Output Format

DASH scores alignments using either match and mismatch scores (nucleic acid) or a sub-

stitution matrix (protein). To this are added penalties foropening and extending gaps. In

addition, the scores of wild cards are written down in order to moderate the score of align-

ments that contain them. Apart from this last addition, thisscoring system is essentially

144

4.3. DASH SEARCH PROGRAM (DASH) CHAPTER 4. DASH

-- Find the optimal stride path

stride_path = optimal_stride_path(query,index,max_stride)

-- For each stride in the stride path ...

foreach q in stride_path

-- get the k bases at position q in the query sequence

qt = query_segment(q,k)

-- get and decompress postings list for this term

postings_list = index.nmer_addresses[qt]

uncompress(postings_list)

-- Iterate through postings for this stride

foreach m in postings_list

-- Try to non-gapped extend the tuple match at

-- position m:q

if try_ungapped_extension(m,q) == GOOD then

-- Work out which database record the HSP occurs in

r = which_dbrecord(m)

-- Write discovered HSP to the HSP tree for that record

write HSP(m,q) to HSP_tree[r]

end if

end foreach m

end foreach q

Figure 4.12: Pseudo Code For The DASH Search Algorithm: HSP discovery.
The optimal stride path is determined using the maximum stride length and k-mer fre-
quency distributions obtained from the index of the current database partition. The strides
in the path are then iterated to obtain the address of each index posting. These alignment
candidates are then tested. Those resulting in valid HSPs are recorded in the HSP tree for
the database record they occur in.

145

4.3. DASH SEARCH PROGRAM (DASH) CHAPTER 4. DASH

-- Foreach record in the database partition

for s = 1 to index_partition.record_count

-- consider the HSPs found in that record

foreach hsp in HSP_tree[s]

window = array of nearby diags to the ‘‘left’’ of diags

bestneighbour = element of window that combined with HSP

has the best dynamic programming score

if bestneighbour is not NULL then

-- record that HSP joins to bestneighbour on the left

hsp.join_left = bestneighbour

-- Record the dynamic programming path that joins them

bestneighbour.backtrace = dp_path(HSP,bestneighbour)

end if

end foreach

-- Join the diagonals to form gapped chains of HSPs

foreach HSP in HSP_tree[s], in descending query offset order

-- Check if this HSP has already been processed

if (HSP.processed != true) then

-- Render this HSP into an alignment

alignment = (empty alignment)

alignment.append(HSP)

-- Find the HSP joined to the left of this one

left_HSP = HSP.join_left

while left_HSP is not NULL

-- Render the DP backtrace between the two HSPs

alignment.append(left_HSP.backtrace)

-- Render the left HSP

alignment.append(left_HSP)

left_HSP.processed = true

-- See if left_HSP joins to another HSP on its left

left_HSP = left_HSP.join_left

wend

-- calculate score, and record alignment

alignment.calculate_score()

list.append(gapped_alignments,alignment)

end if

end foreach

next s

Figure 4.13: Pseudo Code For The DASH Search Algorithm: HSP Assembly.
HSPs are assembled by first identifying the candidates for joining to each HSP. These
candidates are screened to identify the best HSP, if any, that each can join to. The list
is traversed a second time to output the gapped alignments, marking the HSPs that are
output along the way. Since HSPs marked in this way already form part of a longer and
higher scoring alignment that has already been output, they are ignored during the list
traversal.

146

4.3. DASH SEARCH PROGRAM (DASH) CHAPTER 4. DASH

foreach a in gapped_alignments

if (measure_before_performing_DP) then

-- Measure alignment before DP extension.

-- Discard it if it has too low a score or is

-- too short.

if (a.length < minimum_alignment_length) then

-- discard and try next a

goto next_a

end if

if (a.score < minimum_alignment_score) then

goto next_a

end if

end if

-- Perform DP at each end

do_banded_dp(a,left)

do_banded_dp(a,right)

-- Recalculate alignment score and length

recalculate_score(a)

if NOT (measure_before_performing_DP) then

-- Measure alignment after DP extension.

-- Discard it if it has too low a score or is

-- too short.

if (a.length < minimum_alignment_length) then

goto next_a

end if

if (a.score < minimum_alignment_score) then

goto next_a

end if

end if

-- Record final alignment

list.insert(search_results,a)

next_a:

end foreach

Figure 4.14: Pseudo Code For The DASH Search Algorithm: Dynamic Programming Ends
Of Alignments.
If a gapped alignment meets minimum score and length requirements it receives a compre-
hensive banded dynamic programming treatment at each end. However, if the appropriate
settings are selected, then the dynamic programming extension is always performed, and
the length and score assessment is performed after. Either way, the dynamic program-
ming treatment begins recessed within the ends of the alignment to assist in the detection
of gaps around those regions. Any alignment that passes the length and score criteria is
recorded in the list of results.

147

4.3. DASH SEARCH PROGRAM (DASH) CHAPTER 4. DASH

DASHN 1.0.9 [Nov-2004]

Score E

Sequences producing significant alignments (dp) val.

...

gnl|UG|Hs#S1090875 Homo sapiens mRNA for JM23 protein, complete ... 330 4.75076e-188

gnl|UG|Hs#S2138821 Homo sapiens FtsJ homolog 1 (E. coli) (FTSJ1)... 330 4.75076e-188

gnl|UG|Hs#S3800695 602866556F1 Homo sapiens cDNA, 5’ end /clone=... 330 4.75076e-188

gnl|UG|Hs#S2155111 601116752F1 Homo sapiens cDNA, 5’ end /clone=... 330 4.75076e-188

gnl|UG|Hs#S3340458 602426736F1 Homo sapiens cDNA, 5’ end /clone=... 329 1.93307e-187

gnl|UG|Hs#S4277359 AGENCOURT_6632171 Homo sapiens cDNA, 5’ end /... 327 3.19776e-186

gnl|UG|Hs#S3842279 603081789F1 Homo sapiens cDNA, 5’ end /clone=... 326 1.30007e-185

gnl|UG|Hs#S3615612 602764031F1 Homo sapiens cDNA, 5’ end /clone=... 326 1.30007e-185

...

>gnl|UG|Hs#S2155111 601116752F1 Homo sapiens cDNA, 5’ end

/clone=IMAGE:3357348 /clone_end=5’ /gb=BE257786

/gi=9128265 /ug=Hs.23170 /len=632

Score = 330

Identities = 375/382 (98%)

Strand = Plus / Plus

Query: 1 ccggcccg-ccgaacctgggcgatccacgatgccgagtttgccacgctgcgacagccaat 59

|||||||| | || ||

Sbjct: 3 ccggcccgccggaacctgggcgatccacgatgccgagtttgccacgctgcgacagcccat 62

Query: 60 aggcttgc--ccccccggcattcgggtggactacgaacacaaactgaagccctaggactt 117

|||||||| ||||| ||

Sbjct: 63 aggcttgccccccccgggcattcgggtggactacgaacacaaactgaagccctaggactt 122

Query: 118 gtcgcccgtttgcgctctcgccgaggcacaggctgctcgcggaccacccntgcntccga 176

||| ||| ||||

Sbjct: 123 gtcgcccgtttgcgctctcgccgaggcacaggctgctcgcggaccaccc-tgc-tccg- 178

...

Figure 4.15: Example DASH Output.

identical to that of BLAST, FASTA and many other sequence alignment programs. Ex-

pected value statistics are calculated using the method of Altschul (1993), and the format

of the output is essentially the same as that of NCBI-BLAST 2.2.6, with an example excerpt

displayed in Figure 4.15.

148

4.4. RESULTS CHAPTER 4. DASH

4.4 Results

The DASH algorithm as described at this point does not include an index format, and since

the nature of the index format is a critical component of a complete sequence search and

alignment system, influencing both speed and sensitivity, it is not appropriate to present

general search results here. That is the subject of later chapters. However, it is possible to

examine some behaviours of the DASH algorithm that are independent of the index format.

4.4.1 Illustrated Example Of Alignment Assembly

The following example depicts a real assembly as emitted by the internal instrumentation in

thedash program during testing. Thick blue lines correspond to HSPs, while red and purple

regions correspond to those areas subjected to dynamic programming. The thin black lines

with bars at each end correspond to reported alignments. Thetextual annotations to the

right of the diagram indicate the end points and score of eachreported alignment.

Figure 4.16 shows the case of the alignment of two very similar sequences. The primary

alignment is the diagonal line that reaches from the bottom left to top right corner. Note that

the dynamic programming begins within the end of each HSP. This is the practical effect of

the recessed starting point. The smaller HSPs, symmetric about the main diagonal, reflect

the existence of repeat regions within the sequence.

The extension of the alignments that occurs for each of the shorter HSPs demonstrates the

slow start and adaptive features of the dynamic programmingalgorithm: The dynamic pro-

gramming bands begin quite narrow (red) and progressively broaden until the maximum

width is reached (purple), or truncated by the limits of the dynamic programming space,

thus saving substantial effort. The adaptive placement of each successive band is particu-

larly evident in the apparent wandering of the bands once they reach full width.

149

4.4. RESULTS CHAPTER 4. DASH

gi|28279202|gb|AAH45967.1| (BC045967) Similar to splicing factor 30, survival of motor neuron-related [Danio rerio]

238
0

178

59

119

118

60

178

0

237

Produced 3 Alignments.

[0-237]~[0-237] score 1222,
[175-217]~[71-113] score 19,
[71-113]~[175-217] score 19,

Query length = 237, Subject length = 238, Total DP Area = 13424 [23.80%].

Figure 4.16: Example Of Alignment Between Two Very Similar Sequences. HSPs are
marked blue. Dynamic programming regions are either red (slow start heuristic), or purple
(after slow start heuristic) . The effect of the slow start banded dynamic programming
heuristic is clearly visible in the widening bands (red).

150

4.4. RESULTS CHAPTER 4. DASH

>gnl|UG|Hs#S3290308 AL570239 Homo sapiens cDNA /clone=CS0DI004YD20

/gb=AL570239 /gi=12926354 /ug=Hs.284170 /len=867

Score = 277

Identities = 465/524 (88%)

Strand = Plus / Minus

Query: 1 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttt-ata 58

||| +

Sbjct: 660 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttttrat 600

Query: 59 tgtctaggtcacagtaatccctaggatttttcaccgcttattctttgttgtctttttga 117

|| |||||||||| |

Sbjct: 601 tgtctaggtcacagtaatccctaggatttttcaccgcttattcttt-ttgtctttttca 542

Query: 118 acaaacatattatccgaattttttttctgcaagccactgatagtctctgctaactagct 176

|| | | || |||||||||||||||||| ||||||| | ||||||||| || |||

Sbjct: 543 -catccttcttctccgaattttttttctgct-gccactgttcgtctctgctccctcgct 485

Query: 177 taattgacctttttacaaagtttgatccccaagcatcctcaagctaaatcattgaatac 235

| |||| ||||||| |||||||||||||||| || |||||| || |||||||||||||

Sbjct: 486 tcattgccctttttccaaagtttgatccccatgcttcctca-tcttaatcattgaatac 427

Query: 236 ttcaatcaggatattatctggctttactttacaaataaaaaccaaatc-tttgtcaaca 293

|||||||||||||||||||| ||||||||| |||||||| ||||||| ||||||||||

Sbjct: 428 ttcaatcaggatattatctg-ctttactttccaaataaac-ccaaatcttttgtcaaca 370

Query: 294 ggatgaaacccatcttaaaggaaagaaaaggaattggtgtgaagagagaagttagagaa 352

|| |||| ||||||||||||||| | || || ||||||||||||||+| |||| | | +

Sbjct: 371 ggttgaaccccatcttaaaggaacgcaacggtattggtgtgaagagwgcagtttgygtn 311

Query: 353 gggaaatgcaggtgaattactatctgtgtccatcaggaagtttgtcctgttaaccaaat 411

|||+||||||| ||||||||||||||||||| |||||||||||||||||||||||||||

Sbjct: 312 gggnaatgcag-tgaattactatctgtgtccttcaggaagtttgtcctgttaaccaaat 253

Query: 412 ggttactgcactacca-ggttactggtttattttccagggagctgataaagcaggagaa 469

||||||||||||+||| ||||||||||||||||||||||| |||| | ||||||||| |

Sbjct: 254 ggttactgcactmccagggttactggtttattttccagggtgctgtttaagcaggagca 194

Query: 470 ctgttgctgcatgttttctatttggactccgtcacaatatggtaggatatccctc 524

||||||||||||||||||| |||+| ||||+||||| | ||||||+ | ||||||

Sbjct: 195 ctgttgctgcatgttttctttttkg-ctccktcacattttggtagkttctccctc 142

Figure 4.17: DASH Alignment of S3317510 Versus S3290308.
Note that the alignment consists of two long high quality HSPs which DASH has correctly
stitched together into a single high scoring alignment.

4.4.2 Example Of Superior Alignment Assembly

Figures 4.17 and 4.18 depict the alignment of the same pair ofsequences as returned by

DASH and BLAST respectively. Note that DASH constructs a single full alignment, while

BLAST constructs only fragmentary alignments. This failing on the part of BLAST has the

significant effect that the lower scores of the fragments cause the alignment to be placed 44

positions further down the list of results.

151

4.4. RESULTS CHAPTER 4. DASH

>gnl|UG|Hs#S3290308 AL570239 Homo sapiens cDNA /clone=CS0DI004YD20

/gb=AL570239 /gi=12926354 /ug=Hs.284170 /len=867 Length = 867

Score = 335 bits (169), Expect = 1e-89

Identities = 322/367 (87%), Gaps = 7/367 (1%)

Strand = Plus / Minus

Query: 150 gccactgatagtctctgctaactagcttaattgacctttttacaaagtttgatccccaag 209

||||||| | ||||||||| || |||| |||| ||||||| |||||||||||||||| |

Sbjct: 513 gccactgttcgtctctgctccctcgcttcattgccctttttccaaagtttgatccccatg 454

Query: 210 catcctcaagctaaatcattgaatacttcaatcaggatattatctggctttactttacaa 269

| |||||| || ||||||||||||||||||||||||||||||||| ||||||||| |||

Sbjct: 453 cttcctcat-cttaatcattgaatacttcaatcaggatattatctg-ctttactttccaa 396

Query: 270 ataaaaaccaaatcttt-gtcaacaggatgaaacccatcttaaaggaaagaaaaggaatt 328

||||| |||||||||| ||||||||| |||| ||||||||||||||| | || || |||

Sbjct: 395 ataaac-ccaaatcttttgtcaacaggttgaaccccatcttaaaggaacgcaacggtatt 337

Query: 329 ggtgtgaagagagaagttagagaagggaaatgcaggtgaattactatctgtgtccatcag 388

||||||||||| | |||| | | ||| ||||||| ||||||||||||||||||| ||||

Sbjct: 336 ggtgtgaagagwgcagtttgygtngggnaatgcag-tgaattactatctgtgtccttcag 278

Query: 389 gaagtttgtcctgttaaccaaatggttactgcactacca-ggttactggtttattttcca 447

||||||||||||||||||||||||||||||||||| ||| ||||||||||||||||||||

Sbjct: 277 gaagtttgtcctgttaaccaaatggttactgcactmccagggttactggtttattttcca 218

Query: 448 gggagctgataaagcaggagaactgttgctgcatgttttctatttggactccgtcacaat 507

||| |||| | ||||||||| |||||||||||||||||||| ||| | |||| ||||| |

Sbjct: 217 gggtgctgtttaagcaggagcactgttgctgcatgttttctttttkg-ctccktcacatt 159

Query: 508 atggtag 514

||||||

Sbjct: 158 ttggtag 152

Score = 182 bits (92), Expect = 1e-43

Identities = 112/116 (96%), Gaps = 2/116 (1%)

Strand = Plus / Minus

Query: 1 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgctttata-t 59

||| | |

Sbjct: 660 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttttratt 601

Query: 60 gtctaggtcacagtaatccctaggatttttcaccgcttattctttgttgtcttttt 115

||| ||||||||||

Sbjct: 600 gtctaggtcacagtaatccctaggatttttcaccgcttattcttt-ttgtcttttt 546

Figure 4.18: BLAST Alignment of S3317510 Versus S3290308.
Note that while the alignment consists of two high quality HSPs, BLAST fails to assemble
them into a single high-scoring alignment. This failing causing such alignments to appear
further down the list of results than their significance warrants, possibly causing them to be
ignored.

152

4.5. SUMMARY CHAPTER 4. DASH

4.5 Summary

In summary, the DASH algorithm has been defined as a three stage process of: (1) HSP dis-

covery; (2) assembly, and; (3) finishing by adaptive banded dynamic programming. These

procedures have been described with a view to explain how they support the objectives

of this dissertation by constructing an algorithm that can make efficient use of a coopera-

tively compressed database and index ensemble, and offer the attractive characteristics of

predictable execution time, and the potential for sub-linear execution time with respect to

uncompressed database size. Therefore the current implementation is used as the vehicle

for testing the thesis of this dissertation in Chapters 5 and7.

153

CHAPTER 5. FOLDDB

Chapter 5

FOLDDB: First Steps In Cooperatively
Compressed Databases And Indices

Introduction

In an English text, each indexed word is discrete, i.e., words in English text do not overlap

one another. For example, to index the first two words of this sentence, “For” and “exam-

ple” would be indexed, but “or e” and “r ex” would not. Therefore, to create an exhaustive

index for all words in an English text requires only one pointer per word. The average word

length is in the range of five to six letters (Witten et al. 1999). Consequentially, the number

of pointers required in the index will be one-fifth to one-sixth the number of letters in the

text.

An English word can be represented using perhaps five bits perletter, and so requires of

the order of 30 bits per word. Using an appropriate coding scheme, the inverted list for

a given word can be compressed to around 6 bits per posting, oraround 12 – 18 bits per

posting, if the position of a word within a record is required(Witten et al. 1999). In either

case, the volume of the index (6 – 18 bits per word) will be somewhat smaller than the

uncompressed text (30 bits per word).

However, in the case of biological sequence databases, words overlap because there are no

natural word breaks: A word is instead a series ofk consecutive letters — often called a

154

CHAPTER 5. FOLDDB

k-mer. Assuming that the word length≪ n, wheren is the number of letters in the database,

there will be≈ n words: Thus the per-word index storage cost is incurred for practically

every letter in the database.

In the case of nucleotide or amino acid strings, respectively, a letter can be encoded in 2 or

5 bits. However, the size of the compressed inverted list is still 6 – 18 bits for each posting,

and, as previously mentioned, a posting is required for practically every letter. Therefore,

the compressed index of a biological sequence database willbe somewhat larger than the

uncompressed text. The excessive relative size of compressed biological sequence database

indices makes it attractive to discover more efficient representations.

Aims

An opportunity for improving biological sequence databaseindex compression exists when

redundancy in the database is sufficient that entire database records may besubsumedby a

superiordatabase record, i.e., if some database records are sub-sequences of others. This is

in some ways similar to the work of Bernstein and Zobel (2005)on the content equivalence

of documents. However, here the relation is generalised from equal-to(=) to greater-

than-or-equal-to(≥). For example, if a database contains the two records “capillary” and

“pill”, the latter can be subsumed by the former, since “capillary” contains the entire text

of the record “pill”: The record “pill” provides no content that is not already contained

in “capillary”, i.e., “capillary” ≥ “pill”. (Partial redundancy, as between “capillary” and

“laryngitis”, or between “capillary” and “filler”, is addressed in Chapter 6).

Subsumed sequences do not need to be indexed, since any HSP discovered in the superior

record can be translated into the subsumed record. Because the entire subsumed sequence

exists in the superior sequence, the entire alignment can betranslated — avoiding dupli-

cation of HSP discovery, assembly and finishing activities.Since these activities are no

155

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

longer duplicated, search time is reduced. This isrecord folding, and it is presented as a

first generation cooperative compression scheme.

The remainder of this chapter describes the implementationof an index format and con-

struction program, FOLDDB. This index format is integratedinto DASH, and results are

given for the standard queries used in this dissertation, both with and without record fold-

ing. The results show that simultaneous index space and search time savings are possible

when record folding is employed. Sensitivity is also slightly improved. It is, therefore, a

proof of the thesis of this dissertation, in that it excludesmaterial from the search with-

out reducing the thoroughness of the search, thus reducing reducing search space and time

requirements without compromising search sensitivity.

5.1 FOLDDB Index Structure And Algorithm

This section defines the FOLDDB indexing algorithm and indexstructure, that implements

record folding of biological sequence databases. The FOLDDB algorithm is optimised for

fast memory resident searching, rather than size. Therefore, aside from record folding, few

measures are used to contain the index size, and only to ensure that the index could fit into

the RAM of the computers used during development.

5.1.1 FOLDDB Index Structure

5.1.1.1 Text-Partitioned Structure

The final size of an inverted list is not the only difficulty when constructing the index of

a database. The memory requirements during index construction grow with increasing

lexicon size (i.e., number of unique “words” ork-mers in the database) and database size.

Because fixed-width words are used when indexing a biological sequence database, the

156

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

maximum size of the lexicon can be determined before indexing commences, easing the

construction problem somewhat. However, the database sizeremains unbounded.

One technique for dealing with the unbound database size is to divide the input text into

a number of fixed sized partitions, and to index each in turn (Witten et al. 1999). These

partitioned indices can be efficiently combined to form the final index.

However, there is no actual requirement to combine the indexpartitions: each is a valid in-

dex in its own right. The drawback of not combining the partitions is that some compression

leakage occurs. The degree of leakage reduces as the partition size increases, suggesting

that relatively large partitions should be acceptable. Moreover, certain advantages arise in

the current situation from maintaining the partitioned structure. These advantages pertain

to search efficiency and parallelism.

Search efficiency benefits include the enhancement of query striding, because of the greater

variation in word frequencies that results from averaging less data. Further, by considering

only a portion of a larger database at any one point less stateis required to be held in RAM.

While this can be resolved in software by using advanced datahandling arrangements, it is

more difficult to do the same in hardware. As the DASH algorithm was originally designed

to operate in hardware as well as software the decision was made in favour of simplicity

and hardware compatibility.

Parallelism is aided in that each partition can be simultaneously constructed or searched

without contention. While it is possible to efficiently create and maintain a single index

(Lester et al. 2005), there remain certain advantages to maintaining a partitioned index. A

partitioned index can be fully RAM resident on a cluster of computers in a much simpler

way than can be a single large index. This is particularly attractive when using a hetero-

geneous cluster to perform the searching. Again, when implementing a search system in

hardware (or a combination of hardware and software workers), it greatly simplifies the

157

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

process if each worker can operate on discrete units of data,ensuring that the search pro-

cess can be performed without synchronisation or consistency considerations.

5.1.1.2 Partition Layout

The FOLDDB index format divides the indexed database into a number of partitions. Each

partition contains up to 65,000 database records, including their lengths, FASTA format

descriptions, and a compressed inverted list for everyk-mer, for some fixedk.

The FASTA format descriptions are stored in plain ASCII text, as they are relatively small

when compared to the combined size of the inverted lists and the sequence bodies. The

nucleotide sequences are stored using four bits per base in order to allow encoding of all 15

IUPAC nucleotide codes, and rapid access by the DASH search engine that uses the same

internal representation during HSP construction. Proteinsequences are stored in ASCII

format, hence consuming eight bits per base.

None of these representations are particularly space efficient, reflecting that this index

structure is optimised for speed, not size. (A more space efficient representation is ad-

dressed in the NP3 database representation of Chapter 6 and the NIX index representation

of Chapter 7).

5.1.1.3 Compression Of Inverted Lists

The entries, i.e., postings, in the inverted lists are 32 bitvalues that encode the offset of the

first letter of thek-mer the posting relates to, relative to the start of the partition. The record

numbers, i.e., ordinal position of the record in the partition, are not explicitly recorded, as

they can be computed from a table of cumulative record lengths.

A number of coding schemes could be applied to the inverted lists, such as theδ - and

γ-Elias codes (Bentley and Yao 1976, Elias 1975), global Bernoulli (Gallager and Voorhis

158

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

1975, Golomb 1966), local Bernoulli (Witten et al. 1992, Bookstein et al. 1992), skewed

Bernoulli (Moffat and Zobel 1992, Teuhola 1978), Hyperbolic (Schuegraf 1976), batched

frequency (Moffat and Zobel 1992), Interpolative (Moffat and Stuiver 2000, 1996), or Se-

lector (Anh and Moffat 2005, 2004).

Instead, a fast ad hoc byte-aligned approach was devised, based on the prefix omission

method described by Choueka et al. (1988) which is normally used for compressing lexi-

cons: for each set of four successive pointers a control byteindicates the number of bytes

that must be replaced in the previous pointer in order to produce the new pointer. The

modified bytes then follow. Figure 5.1 demonstrates how thisscheme works in practice.

The eight non-zero eight-digit hexadecimal numbers on the left hand side of the figure are

the index postings that are being compressed. For each successive word, determine the

number of consecutive bytes that must be replaced in the previous index posting in order to

transform it into the new posting. Processing begins assuming that the hexadecimal value

00000000 has already been recorded. Thus for the posting 00038924 the bottom three

bytes must be replaced. Two control bits are then generated indicating the number of bytes

replaced minus one. This is repeated for each index posting.After every fourth index post-

ing the control bits are collected into a single control byte, which is written to the output

stream, followed by the data bytes it indicates.

Certain storage inefficiencies occur because there are onlytwo control bits. For example,

bytes are wasted if the lowest order byte(s) are identical, but higher order bytes differ, as

in the case of index postings 000581dc and 000ab0dc. While only the middle two bytes

differ, our scheme must write out three bytes. Nonetheless,this scheme has the compelling

advantage of being very fast, because it almost exclusivelyuses byte-aligned operations.

This ad hoc approach coded below the zero-order entropy of each byte of the 32 bit point-

ers when indexing the Human UniGene (nucleic acid) database. While it is certain that this

does not provide the best compression possible, it does allow for very rapid decompression

159

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

98 24 89 03 87 fe 02 81 05 a9 26 dc dc b0 0a 64 b5 72 89 0b

64 b5

dc

a9

02 81 05

87 fe

24 89 03

dc b0 0a

00100110 dc dc b0 0a 64 b5 72 89 0b

3

2

3

1

1

3
2
3

10

10
01
10

00

00

10

01

#

10011000 24 89 03 87 fe 02 81 05 a9

datacontrol

output

ctl data

72 89 0b

000ab0dc

00038924

0003fe87

00058102

000581a9

000581dc

000ab564

000b8972

00000000

Figure 5.1: Fast Ad Hoc Index Posting Compression Algorithm. Only the low order bytes
that have changed are recorded for each successive index posting (as indicated by the
shaded bytes in the index postings). A control byte is required for each four postings to
indicate the number of bytes recorded for each index posting.

of the inverted lists. Combined with the clear text representations of the sequence bodies

and descriptions, the net result is a database and index ensemble which, while hardly com-

pact, imposes little processing overhead during the searchprocess. This makes it a useful

baseline for observing the effect of using record folding tocooperative compress biological

sequence database and index ensembles.

5.1.2 Excluding Stopk-mers

In addition to the inverted list compression scheme described above, one other measure is

used to control the size of the index, stopk-mers. Stopk-mers are analogous to stop words

in English full text retrieval systems: They are terms that are excluded from the index on

the basis of their excessive frequency in the database.

Argument can be made against the exclusion of stop words froman index, on the basis that

it makes it impossible to efficiently search for the excludedquery terms (Witten et al. 1999).

However, these arguments need to be interpreted in the context of biological sequence

databases.

160

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

In order to raise the biological precision of database queries, the query itself is often

filtered to mask so-calledlow complexityregions, which generally correspond to over

frequent terms in the database, and hence stopk-mers. Among the most common low

complexity regions are contiguous runs of a single base or acid, e.g., AAAAA...AAA.

There are a number of algorithms commonly used to filter theseand similar structures

from queries, and included in that list of algorithms are SEG(Wootton and Federhen

1993, 1996), DUST (Hancock and Armstrong 1994), XNU (Claverie and States 1993) and

CAFEFILTER (Williams 1999). Therefore, it appears that stop k-mers play an impor-

tant and credible role in maintaining precision in biological sequence sequence search and

alignment.

Because of the correlation between stopk-mers and regions of low biological complexity

(such as long runs of consisting of only one or two of the nucleotides), it is much less

reasonable to search for a nucleic acid or protein query thatis composed exclusively of

stopk-mers, than it is to search for an English phrase that consists solely of stop words.

Moreover, because each overlappingk-mer is indexed, it is extremely difficult to construct

a query that is composed entirely of stopk-mers, without it being composed entirely of a

single base or amino acid.

Consider a sequence composed of a run of A’s followed by a run of T’s. The frequency of

the all A k-mer and the all Tk-mer may be such that both are stopk-mers. However, it is

unlikely that thek-mers consisting of one throughk−1 A’s, followed byk−1 through one

T’s, i.e., AA...AT, ..., AT...TT, would all occur with sufficient frequency that they would

also be stopk-mers; if only one of thek-mers is not a stopk-mer, that is sufficient for the

query to succeed. Therefore recall is unlikely to suffer.

While recognising that the use of any sort of query filter in biological sequence database

searching results in some loss of sensitivity (Williams 1999), FOLDDB employs stopk-

mers as an effective method of index size reduction without fear of excessive loss of sensi-

161

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

tivity. The observed frequency of stopk-mers is recorded however, so that DASH’s query

striding algorithm can function correctly.

The decision to exclude stopk-mers was made in order to restrain the size of the index,

and is a reflection of the primitive index compression used, rather than on the feasibility of

indexing stop words. Indeed, Bell et al. (1993) have shown that with an efficient compres-

sion scheme, stop words contribute only slightly to the total index size. Thus, while the

FOLDDB index structure does not index stop words, this deficit is addressed by its sequel,

NIX, in Chapter 7.

5.1.3 Record Folding As A Prototype Of Cooperatively Compressed

Indexing

The key feature of FOLDDB is that it implements a prototypical cooperative compression

scheme called record folding. This takes the form of mergingthe storage (and thus in-

dex postings) of records that are sub-sequences of others ina database. The containing

sequence is called thesuperiorsequence. Each of the folded records are recorded in an

appendix to the FASTA description of the relevant superior record.

Alignments that occur against a superior record are translated into the context of each

folded record, as illustrated in Figure 5.2. The inner square represents the folded record,

while the outer square represents the superior record. Alignment discovery proceeds for

the superior record according to the three stages of the DASHalgorithm. After this, the

intersecting portion of the alignment is translated into the context of the folded record.

The two advantages of this approach are: (a) its lack of impact on the search process, and

(b) its computational efficiency. The search process is not impacted, because the unfolding

of alignments can be performed as a post-processing step, asdescribed above. The compu-

tational efficiency arises for a similar reason; as the search process need only process the

162

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

2. Join Un−Gapped Alignments

Redundant Records.
3. Extend ends of Gapped Alignments

1. Find Un−Gapped Alignments

4. Unfold Alignments against

Figure 5.2: Example Of Alignment Unfolding for a Folded Record.

163

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

superior record, finding any alignment against a folded record re-uses the work previously

carried out against the superior record.

One disadvantage of this approach is that the initial discovery of the foldable records in

an unsorted database is time consuming. The heuristic algorithm used in this dissertation

is to take each sequence in the database and search forward inthe database for candidate

sequences. Forn sequences this requires(n−1)+(n−2)+ · · ·+(n− (n−1))+(n−n) =

∑n−1
1 n actions, and thus completes in approximatelyO(n2) time. However, this occurs

only during index construction, and so the cost is an acceptable one. However, once a

database has been constructed, additional sequences couldbe added in O(n) time, i.e., the

time required to search the index.

5.1.4 Construction Of Folded Database Index

A two phase process is used to build the index. Database partitioning, index compression

and stopk-mer exclusion are used in both phases; the database is sectioned into partitions

that extend until they just exceed either a record count or letter count quota. Within each

partition, the inverted lists are compressed using the ad hoc method previously described,

with stopk-mer exclusion discarding any very long lists. Pseudo-codefor this index con-

struction process is presented in Figure 5.3. Finally, the indices of each partition of the

database are concatenated to form a single index file for the database.

The first phase produces a temporary index that is used duringthe second phase to dis-

cover record folding opportunities. Construction of the temporary index is relatively fast,

requiring only a few minutes per giga-base on a 750 MHz SUN Ultra-SPARC III processor.

The second phase of the index construction process involveslooking for record folding op-

portunities using the index that was produced during the first phase. The DASH algorithm

performs this search by exhaustively searching for every record in the index against every

other record in the index. The pseudo code for this process ispresented in Figure 5.4.

164

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

k = index word width

for m = 1 to (database_section_length-k)

-- Check if this is the beginning of a new record

if (a record starts here) then

-- record sequence description

record_description[record_count] := sequence description

-- record starting location of the record

start_of_record[record_count] := m

-- increment number of records

increment record_count

end if

-- Obtain the k-mer at this position in the database

t = the k-mer beginning at position m in the database

-- Record location of this n-mer

addresses_of_occurrences[t][number_of_occurrences[t]] = m

-- Increment the number of occurrences of this k-mer

increment number_of_occurrences[t]

-- Write the residue to the index

write residue[m] to index

next m

-- Write list of sequence descriptions

write record_description[0 .. record_count] to index

-- Write list of record starting points

write start_of_record[0 .. record_count] to index

-- Write table of n-mer addresses for each n-mer with

-- a frequency lower than the low selectivity cut-off

for t in (the complete set of k-mers)

-- Write the number of occurrences of the n-mer to the index

write number_of_occurrences[t] to index

-- If the number of occurrences does not reach the cut-off,

-- write the complete list, otherwise write an empty list

if number_of_occurrences[t] < low_selectivity_cut_off then

-- Compress the list of addresses

compress addresses_of_occurrences[t]

-- Write the compressed list of addresses to the index

write addresses_of_occurrences[t][0 .. number_of_occurrences[t]]

else

-- Too many occurrences, write only an empty list

write (empty list) to index

end if

next t

Figure 5.3: Pseudo Code For Index Construction Process.
This fragment describes the process used to index a partition of the database (removal of
folded records occurs later). The partition is traversed, and the frequency of each k-mer
is calculated, and the address of each occurrence recorded. The starting location and
textual description of each record in the database partition is noted. Once the traversal is
complete, the list of descriptions is written out to the index. The frequency of each k-mer is
also written, along with the compressed list of addresses where it occurs. However, if the
k-mer is over abundant in this database partition, then only the frequency is written: The
addresses where it occurs are not written.

165

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

For this application, the DASH algorithm is re-tuned for rapid approximate searching; it

searches for only onek-mer per record, resulting in very few index postings requiring

investigation. Further, the minimum HSP length is set to thelength of the query sequence,

and the minimum score to the identity score of the query. In this way, only exact alignments

that span the entire query sequence are identified. This allows searching for more than

200 records per second in the≈ 2 giga-base Human UniGene (nucleic acid) database.

Nonetheless, this process required several hours for the Human UniGene (nucleic acid)

and GenPept (protein) databases.

This algorithm is fundamentally O(n2), and better algorithms exist, such as the SPEX vari-

ant developed for genomic databases (Bernstein and Cameron2006) that uses document

fingerprinting to perform the all-to-all comparison in roughly O(n) time. However, that

algorithm was not published when this work was undertaken. While the O(n2) algorithm of

this dissertation is not the most efficient possible, it was sufficient for testing the hypotheses

of this dissertation.

The second phase of index construction is concluded by taking the list of foldable record

pairs in the database, and rebuilding the index with those records folded. If more than one

superior record is identified for any given foldable record,the longest superior record is

chosen. In the case of a tie, the superior record that is nearest the end of the database wins.

This minimises the number of superior records required to contain all foldable records. If

superior records were chosen arbitrarily from the valid possibilities, then chains or cycles

of reference could result, complicating the process.

All superior records are tagged with the description of any folded record(s) they contain.

The pseudo code for writing the cooperatively compressed index and recording the record

folding information is presented in Figures 5.5 and 5.6 respectively. This index writing pro-

cess takes only a few minutes, and is performed using a user specified stopk-mer frequency

166

5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

-- Search for each record in the database

for s = 1 to index.record_count

-- Obtain the record from the database

query = index.record[s]

-- Search for it in the database. Look for only

-- exact full length alignments.

alignments = dash.search.exact(query,index)

-- Exclude the query sequence itself from the results

alignments = alignments - subset(alignments,query)

-- Keep only the longest alignment(s)

alignments = subset(alignments,longest)

-- Keep only the last alignment in the list

alignments = alignments[alignments.last]

-- Reject the alignment host if it is the same length as

-- the query, and occurs earlier in the database

if (alignment.host.length == query.length) then

if (alignment.host.number < query.number) then

-- Alignment host is a record that is identical to the

-- query in content and length, and occurs earlier in the

-- database. Therefore it is a record that we make

-- redundant, so don’t say that we are made redundant by

-- it!

alignment = (empty list)

end if

end if

-- If we still have an alignment, record it as the superior record

-- of this record. Also record its location in the superior record

if (alignment != (empty list) then

-- Mark this record as foldable

record_is_foldable[s] = true

-- Record which record contains it

record_superior[s] = alignment.superior

-- Record where it occurs in the superior record

record_offset[s] = alignment.subject_start

-- The foldable record is also recorded against the superior

-- record for during index reconstruction

list.append(made_foldable_by[alignment.superior], query)

end if

next s

Figure 5.4: Pseudo Code For Index Construction Process.
This fragment describes the process used to identify foldable records within a database.
The temporary index is queried to find the superior records, if any, of each record. Only
exact full-length alignments are used. The alignments are sifted to leave only the longest
and latest appearing superior record. If this superior record is the same length as the query
sequence, it is checked that it occurs later in the database to prevent cycles forming. If an
alignment passes these tests, it is a superior record, and the query sequence is marked
foldable.

167

5.2. SEARCHING FOLDED DATABASES WITH DASH CHAPTER 5. FOLDDB

threshold. The resulting record folded index will vary in size according to the degree of

redundancy it has identified and removed.

5.2 Searching Folded Databases With DASH

As previously described, the only change made to the search process to support the search-

ing of database and index ensembles cooperatively compressed using record folding is

the addition of an alignment unfolding post-processing step. Alignments are unfolded by

checking each to see if they occur in a superior record. If so,the list of folded records

the superior record contains is consulted. Where any of the folded records intersect with

the alignment, the intersecting portion of the alignment istranslated into the context of the

folded record. This contributes negligibly to the total search time, and has the advantage

that it has time complexity proportional to the number of alignments, and not the size of

the database. Thus we have the potential for sub-linear search time versus data-base size.

5.3 Method

To evaluate the effect of the record folding cooperative compression technique, control, i.e.,

non-record folding, indices of the Human UniGene (nucleic acid) and GenPept (protein)

databases were constructed. Stopk-mer frequency thresholds of 2.5×Erandom and 10×

Erandom were used, respectively. These thresholds were determinedempirically as being

small enough to enable the indices to fit into the main memory of the computers on hand,

and large enough to not significantly detract from search sensitivity. Folded versions of

these indices were then created, using the same stopk-mer frequency thresholds.

DASH and FOLDDB were compiled as single-threaded 32bit-applications, with optimisa-

tion flag -O2 passed to the C compiler. The configurations of Tables A.9 andA.10 were

168

5.3. METHOD CHAPTER 5. FOLDDB

k = index word width

skipping = false

for m = 1 to (database_section_length-k)

-- Check if this is the beginning of a new record

if (a record starts here) then

if (record_is_foldable[sequence description]) then

-- This record is marked as foldable, so don’t record it

skipping = true

else

-- record is not foldable, so record it normally

-- record sequence description

record_description[record_count] := sequence description

-- record starting location of the record

start_of_record[record_count] := m

-- increment number of records

increment record_count

end if

end if

-- Only write record data out if the record is not

-- redundant

if (skipping == false) then

-- Obtain the k-mer at this position in the database

t = the k-mer beginning at position m in the database

-- Record location of this k-mer

addresses_of_occurrences[t][number_of_occurrences[t]] = m

-- Increment the number of occurrences of this k-mer

increment number_of_occurrences[t]

-- Write the residue to the index

write residue[m] to index

end if

next m

Figure 5.5: Pseudo Code For Index Construction Process.
The index is rebuilt, using the information of which records can be folded. This is identical
to the first pass of index construction, except that folded records are not included in the
index.

169

5.3. METHOD CHAPTER 5. FOLDDB

-- Write list of record descriptions

write record_description[0 .. record_count] to index

-- For each non-folded record in the database ...

for s = 1 to record count

-- ... see if it is the superior of any other records

if (made_foldable_by[s] != (empty list) then

-- Yes: write the information for each record made

-- redundant by this record

for r = 1 to made_redundant_by[s].length

-- Write description of record

write made_foldable_by[s][r].description to index

-- Write offset of folded record in its host

write record_offset[made_foldable_by[s][r].record] to index

next r

end if

next s

-- Write list of record starting points

write start_of_record[0 .. record_count] to index

-- Write table of n-mer addresses for each n-mer with

-- a frequency lower than the low selectivity cut-off

for t in (the complete set of k-mers)

-- Write the number of occurrences of the n-mer to the index

write number_of_occurrences[t] to index

-- If the number of occurrences does not reach the cut-off,

-- write the complete list, otherwise write an empty list

if number_of_occurrences[t] < low_selectivity_cut_off then

-- Compress the list of addresses

compress addresses_of_occurrences[t]

-- Write the compressed list of addresses to the index

write addresses_of_occurrences[t][0 .. number_of_occurrences[t]]

else

-- Too many occurrences, write only an empty list

write (empty list) to index

end if

next t

Figure 5.6: Pseudo Code For Index Construction Process.
This fragment describes how the record descriptions and other information are written.
This is similar to the first pass, but with the addition of the information necessary to record
that each folded record is stored in its respective superior record.

170

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

used for the DASH M2 and DASH M4 variants, respectively. Protein queries were run

twice: (a) with an ordinary index, and; (b) with an index cooperatively compressed using

record folding. All queries were executed using the batching environment described in

Chapter 3.

Record folding had practically no effect on the Human UniGene (nucleic acid) database,

folding only 0.1% of the 3.6 million records. This is becausethere are multiple codons that

encode each protein, and therefore it is uncommon to see identical nucleotide sequences,

even when they encode exactly the same protein. Therefore, only the results for the ordi-

nary index of the Human UniGene (nucleic acid) database are presented. Finally, because

record folding targets large scale repetitions, this method was not attempted on the Human

Genome database, because that database contains little redundancy of this kind.

5.4 Results And Discussion

Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, and Figures 5.7 and 5.8present the database and

index size, search speed and sensitivity data for the negative-control indices built from the

Human UniGene (nucleic acid) and GenPept (protein) databases, and the record folded

index built for the GenPept (protein) database. As previously mentioned, record folding

had practically no effect on the Human UniGene (nucleic acid) database. Therefore no

results are reported for the Human UniGene (nucleic acid) database with a record folded

index.

5.4.1 Effect Of Sequence Folding

Considering the control indices first, Tables 5.3 and 5.5, and Figure 5.7 show that

DASH+FOLDDB is competitive with the surveyed algorithms for nucleotide searching.

DASH M2 posts the fastest search time among the group, while simultaneously delivering

171

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

DASH M4

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
FASTA
BLAT

PatternHunter
CAFE
DASH M2

Figure 5.7: PatternHunter Variant Scores (See Section 3.3) For Nucleic Acid Queries (Us-
ing The Human UniGene (Nucleic Acid) Database). The Smith-Waterman algorithm is
used as the benchmark.

172

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

DASH M4 (folded index)

0 20 40 60 80 100

0
20

40
60

80
10

0

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

FASTA (a)
FASTA (b)
BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
BLAT

CAFE
DASH M2 (ordinary index)
DASH M2 (folded index)
DASH M4 (ordinary index)

Figure 5.8: PatternHunter Variant Scores (See Section 3.3) For Protein Queries (Using The
GenPept (Protein) Database). The Smith-Waterman algorithm is used as the benchmark.

173

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

good sensitivity. The situation is similar for protein searching, with Tables 5.4 and 5.6, and

Figure 5.8 showing that DASH+FOLDDB is competitive with thesurveyed algorithms.

However, the FOLDDB indices are very large, second in size only to that of CAFE.

Turning to the GenPept index that was cooperatively compressed using record folding,

Table 5.4 shows that search times were reduced by about one seventh. This shows clear

evidence of sub-linear search time with respect to (uncompressed) database size.

Table 5.6 and Figure 5.7 show that this speed improvement does not involve a sensitivity

trade-off. Rather, sensitivity scores are slightly increased (Two-Sided Wilcoxon Signed

Ranks Test (Wilcoxon 1945), p-value = 0.00014).

The question arises: Is this gain in sensitivity due to the use of cooperative compression, or

due to some other cause? There is one potential cause that must be considered, that is the

potential for improved sensitivity caused by the normalisation of somek-mer frequencies

that results from folding similar records. Whenever a record is folded, the frequencies of

thek-mers it contains are slightly reduced. This effect can be sufficient to cause somek-

mers to drop below the stopk-mer threshold, allowing them to be included in the index. In

this way the search process becomes more thorough.

Fortunately, any gains that result from the inclusion of more material in the index can be

disambiguated from any gains that result from cooperative compression. This is because

only the use of cooperative compression can allow the discovery of alignments that do not

contain an exactly corresponding region at least as long as the index is wide.

In other words, we can be sure an alignment resulted from cooperative compression alone

if it is not possible for it to be discovered using anyk-wide index. If even a single alignment

can be produced that does not includek consecutive matching amino acids, then cooperative

compression must be responsible for its discovery. Refer toFigure 5.9 where several of the

1,102 examples are presented of this occurring with the DASHM4 queries against the

GenPept (protein) database.

174

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

Therefore, and as a result of cooperative compression, search sensitivity has been increased,

while search time and space requirements have been reduced,thus confirming the thesis

of this dissertation. Moreover, with a finer grained approach there is the hope of further

sensitivity gains, because in that case the entire population of discovered HSPs could be

cloned before being thinned out during the later stages of the DASH algorithm.

Finally, as Table 5.2 shows, the record folding process reduced the indexed database size

from 1,669 MB to 1,374 MB, thus demonstrating that it is possible to construct a search

system with sub-linear space requirements. Despite this one sixth reduction in size, the

FOLDDB indexed GenPept (protein) database is still substantially larger than that required

by all other algorithms, with the exception of CAFE.

5.4.2 Effect Of Query Length On Search Time

It has been previously stated that a desirable characteristic of a sequence search and align-

ment tool is that search time be predictable based on the search space. For a situation where

the database is constant, this translates to the search timebeing predictable based on the

query length. This response is plotted in Figures 5.11, 5.13, 5.10 and 5.12 for both DASH

and BLAST and for both the UniGene nucleotide database and UniGene protein database

to give an indication of the behaviour of the two algorithms.For both databases both al-

gorithms exhibits a more or less linear relationship between query length and search time.

However, DASH suffers from excessive search time for a few queries, and greater general

variability in search time than BLAST for protein queries.

As DASH+FOLDDB does not involve the traversal of recurrencechains (recall that se-

quence unfolding is done after alignments have been discovered), we must conclude that

the DASH algorithm itself, while generally faster than BLAST, is in fact has a search time

less readily predictable than does BLAST.

175

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

> gi|28279202|gb|AAH45967.1| (BC045967) Similar to splicing factor 30,

survival of motor neuron-related [Danio rerio]

vs gi|32488904|emb|CAE03655.1| (AL606691) OSJNBa0060N03.20

[Oryza sativa (japonica cultivar-group)]

: (130-191) = (577-641), score=96.

Query: 130 DEIDGKPKSKKELQAEQREYKKKKAQKKVQRMKELEQER---EDQKSKWQQFNNKAYSKN 186

||++ | +|+ | + | ++ |+++ +|+++|+|+ |+|| + | +|+| ++ ++|| +|+

Sbjct: 577 DELERKKRSQDEKRKELEKQKQEEERKELDRQKQREEERKAKELEKQKQREEERKALEKQ 636

Query: 187 KKGQ 190

|+|+

Sbjct: 637 KQGE 640

> gi|7228887|gb|AAF42677.1|AF226529_1 (AF226529) membrane protein GNA1220

[Neisseria meningitidis]

vs gi|25004946|emb|CAB03018.2| (Z81072) C. elegans STL-1 protein

(corresponding sequence F30A10.5) [Caenorhabditis elegans]

: (114-150) = (136-172), score=89.

Query: 114 RSVIGRMELDKTFEERDEINSTVVAALDEAAGAWGV 149

|| +|+++|| +|+||+ +|+++| |+++|++ ||+

Sbjct: 136 RSEVGKINLDTVFKERELLNENIVFAINKASAPWGI 171

> gi|28279202|gb|AAH45967.1| (BC045967) Similar to splicing factor 30,

survival of motor neuron-related [Danio rerio]

vs gi|28830036|gb|AAO52526.1| (AC116957) similar to Xenopus laevis

(African clawed frog). DNA ligase I (EC 6.5.1.1)

(Polydeoxyribonucleotide synthase [ATP]) [Dictyostelium discoideum]

: (33-189) = (347-497), score=77.

Query: 33 LQKDLQEVIELTKDLLTSQPAEGTTS--TKSSETVAPSHSWRVGDHCMATWSQDGQVYEA 90

| + +|+|+++ ||+ ||+ +| |++|++ + + +| || ++ + | ||

Sbjct: 347 LTSPKKETIDIS-DLFKRANAEAKSSVPTSTSKNSKTNKKQKVDHKPTATTKKPSPVLEA 405

Query: 91 EIEEIDNENGTAAITFAGYGNAEVMPLHMLKKVEEGRIRDEIDGKPKSKKELQAEQREYK 150

+ ++ |++ | + ++| ++ +++ ++ + ++ | +| |+ + ++| ++ |

Sbjct: 406 K------QSTTTTTTTTTTSTATTISSKSISSPSKKEEKEVITSK-KQVEATKVEVKKEK 458

Query: 151 KKKAQKKVQRMKELEQEREDQKSKWQQFNNKAYSKNKK 188

+|+ +|+ + +| |+|+||+ +| ++++++ |+++++

Sbjct: 459 EKEKEKEKEDDEEEEEEEEDDDEKLEDIDEEEYEEEEE 496

Figure 5.9: Several Alignments From Search Results Due To Cooperative Compression.
The index width was k = 3, but none of these alignments contain three consecutive match-
ing acids, confirming that they could not have resulted from direct index look ups, but must
instead be the result of cooperative compression.

176

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

S
ea

rc
h

T
im

e
(s

ec
on

ds
)

500 1000 1500 2000 2500 3000 3500

8
10

12
14

16
18

20

BLAST

Query Length (bases)

Figure 5.10: Search Time Versus Query Length For BLAST Searching The UniGene Nu-
cleotide Database.

177

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

S
ea

rc
h

T
im

e
(s

ec
on

ds
)

500 1000 1500 2000 2500 3000 3500

0
5

10
15

DASH

Query Length (bases)

Figure 5.11: Search Time Versus Query Length For DASH (Mode 2) Searching The Uni-
Gene Nucleotide Database.

178

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

S
ea

rc
h

T
im

e
(s

ec
on

ds
)

0 500 1000 1500 2000

0
20

40
60

80
10

0
12

0
14

0

BLAST

Query Length (bases)

Figure 5.12: Search Time Versus Query Length For BLAST Searching The UniGene Pro-
tein Database.

179

5.4. RESULTS AND DISCUSSION CHAPTER 5. FOLDDB

S
ea

rc
h

T
im

e
(s

ec
on

ds
)

0 500 1000 1500 2000

0
10

20
30

40

DASH

Query Length (bases)

Figure 5.13: Search Time Versus Query Length For DASH (Mode 2) Searching The Uni-
Gene Protein Database.

180

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

5.5 Conclusions

It has been shown that search time and index space savings canbe made by employing the

record folding method of database and index cooperative compression — provided abun-

dant redundancy of whole records exists. These time and space savings were accompanied

by slightly improved sensitivity. These results support the thesis of this dissertation, that

it is possible to reduce the time and space costs of the searchprocess, while increasing

the sensitivity of the search. In the present case, the search space and time requirements

were reduced, respectively, by 18% and between 6% and 13%. Atthe same time sensitivity

increased slightly, but consistently.

Importantly, these results simultaneously improving search time, space and sensitivity are

applicable to all adequately redundant nucleic acid databases. The rapidly growing EST

and shotgun genome sequencing databases of GenBank would meet these criteria. Thus

the findings of this chapter offer one solution to the continued management and search of

such data.

Together, these positive results suggest that it is worth exploring finer grained cooperative

compression techniques, so that: (a) similar gains can be made for databases that contain

common sequences, but where foldable records are rare or non-existent, such as in the

Human UniGene (nucleic acid) database or the Human Genome (nucleic acid) database,

and; (b) the sensitivity gains of the thesis of this dissertation can be tested in less redundant

databases.

Such a fine grained cooperative compression technique is developed in the following two

chapters, where, respectively, (a) a compact database representation, NP3, is developed

that makes available information about common sequences, and (b) a more compact index

structure, NIX, is devised that makes use of the common sequences encoded in an NP3

formatted file.

181

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.1: Human UniGene (Nucleic Acid) Database And Index Sizes In Megabytes (MB)
And Bits Per Base (B/B). Results are shown for the ordinary index only, as this database
did not differ noticeably when using the folded index.

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

DASH+FOLDDB
(ordinary index)

936 4.00 470 2.04 2,200 9.39 3,606 15.43

Smith-Waterman*
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

BLAST
(formatdb)

489 2.09 660 2.83 40 0.17 1,189 5.09

BLAT*
(faToTwoBit)

630 2.70 - - 1,088 4.66 1,718 7.36

PatternHunter**
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

FASTA**
(FASTA ASCII)

1,886 8.06 470 2.04 - - 2,356 10.10

CAFE***
(CAFE Index)

496 2.12 102 0.44 6,961 29.79 7,634 32.67

* Indicates that program maintains an index in RAM, and that the database format contains both
record bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical

difficulties (CAFE).

182

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.2: GenPept Protein Database And Index Sizes In Megabytes (MB) And Bits Per
Acid (B/A).

Format Bodies Only Descriptions Index Total
MB B/A MB B/A MB B/A MB B/A

DASH+FOLDDB
(ordinary index)

470 8.00 142 2.42 1,057 17.99 1,669 28.40

DASH+FOLDDB
(folded index)

392 6.67 142 2.42 840 14.30 1,374 23.39

Smith-Waterman*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

BLAST
(formatdb)

473 8.05 194 3.31 231 3.94 899 15.31

BLAT*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

FASTA*
(FASTA ASCII)

479 8.15 142 2.42 - - 621 10.57

CAFE**
(CAFE Index)

480 8.17 22 0.37 1,621 27.59 2,236 38.06

* Indicates that algorithm indexes during searching (FASTA), or does not use an index (Smith-
Waterman).

** Indicates that multiple small indices were used instead of one large index, due to technical

difficulties (CAFE).

183

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.3: Comparison Of Nucleotide Search Speed (Using The Human UniGene (Nucleic
Acid) Database). Results are shown for the ordinary index only, as this database did not
differ noticeably when using the folded index. DASH (M2, ordinary index) is the fastest
algorithm here.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH+FOLDDB
(M2, ordinary index)

1.582 1.345 316.46 0.16

DASH+FOLDDB
(M4, ordinary index)

22.20 19.45 4439.34 2.27

Smith-Waterman
16,260 14,070 3,251,827 1660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.4 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.93 11.33 9,985.01 5.10

BLAT*
2.10 2.07 471 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
530.05 534.69 106,010.29 54.13

CAFE***
32.75 30.76 6,693.46 3.42

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

184

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.4: Comparison Of Protein Search Speed (Using The GenPept (Protein) Database).
DASH (M2, folded index) is the fastest algorithm here.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH+FOLDDB
(M2, ordinary index)

6.76 4.51 1,352.41 0.27

DASH+FOLDDB
(M2, folded index)

5.68 3.99 1,136.36 0.23

DASH+FOLDDB
(M4, ordinary index)

34.68 21.90 6,935.75 1.37

DASH+FOLDDB
(M4, folded index)

29.08 19.99 5,815.57 1.15

Smith-Waterman
1674.00 1397.00 334,794.20 66.32

NCBI-BLAST 2.2.6
(Default)

25.24 22.01 5,047.81 1.00

NCBI-BLAST 2.2.6
(No Filter)

35.33 26.48 7,066.00 1.40

NCBI-BLAST 2.2.6
(Report Everything)

71.00 24.55 14,200.32 2.81

BLAT*
85.45 80.40 17,004.37 3.39

FASTA
(a)

296.00 273.36 59,199.23 11.73

FASTA
(b)

83.36 84.38 16,672.14 3.30

CAFE***
11.88 10.25 2,375.71 0.47

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

185

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.5: Nucleotide Sensitivity Scores (PatternHunter Variant) Versus The Results Of
The Smith-Waterman Algorithm (Using The Human UniGene (Nucleic Acid) Database).
Results are shown for the ordinary index only, as this database did not differ noticeably
when using the folded index. Apart from BLAST, DASH is the most sensitive algorithm
here, being much more sensitive than BLAT, which is the next fastest algorithm after DASH.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH
(M2, ordinary index)

69.11 69.10 68.85 68.61 65.19

DASH
(M4, ordinary index)

81.41 81.39 81.24 79.00 72.28

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.2 17.32

186

5.5. CONCLUSIONS CHAPTER 5. FOLDDB

Table 5.6: Protein Sensitivity Scores (PatternHunter Variant) Versus The Results Of The
Smith-Waterman Algorithm (Using The GenPept (Protein) Database). DASH is beaten in
sensitivity only by the FASTA algorithm, which is around 50×slower than DASH.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH+FOLDDB
(M2, ordinary index)

61.47 57.88 55.32 53.80 51.18

DASH+FOLDDB
(M2, folded index)

62.66 59.16 56.38 54.79 52.16

DASH+FOLDDB
(M4, ordinary index)

70.48 66.66 63.31 61.30 57.67

DASH+FOLDDB
(M4, folded index)

71.28 67.38 63.96 61.92 58.39

Smith-Waterman
100 100 100 100 100

FASTA
(a)

92.12 92.12 92.12 92.12 92.12

FASTA
(b)

87.02 87.02 87.02 87.02 87.02

BLAST
(Default)

76.15 70.08 62.92 58.27 50.13

BLAST
(No Filter)

74.35 68.55 62.09 58.44 50.72

BLAST
(Report Everything)

79.56 72.69 64.98 59.93 51.5

BLAT
35.56 30.82 26.73 24.48 20.15

CAFE
42.02 40.96 39.26 38.38 35.77

187

Part III

Cooperative Compression Of Less

Redundant Nucleic Acid Databases

188

CHAPTER 6. NP3

Chapter 6

NP3: Compressing Sorted Nucleic Acid
Databases

Introduction

Size And Entropy Of Biological Sequence Databases

There is little doubt that biological sequence databases are growing at a rate that exceeds

both that of hard disk storage capacities and Moore’s Law. However, while the volume

of sequenced data is increasing exponentially, the increase in entropy must be closer to

linear, perhaps even sub-linear. Four factors that strongly suggest that entropy grows more

slowly than database size are: (a) the similarities betweenspecies; (b) the homology among

individuals of a species; (c) the occurrence of similar sequences within an organism, and;

(d) the super-redundant shotgun sequencing method commonly used in high-throughput

sequencing. Taken to the logical conclusion, where every living thing on the planet is

sequenced, it would be absurd to expect the entropy of the resulting database to be the sum

of the entropy of each genome. Otherwise sequence alignmentwould not be a useful tool,

as there would be no similar sequences to align.

It is reasonable to expect then, that it should be possible toproduce compression algo-

rithms that take advantage of this shared entropy to producecompact representations.

189

CHAPTER 6. NP3

As the volume of sequencing grows, and the redundancy increases, it is not unreason-

able to envisage future compression algorithms achieving an order of magnitude better

than the 1.6 bits per base of current algorithms, such as the work of Korodi and Tabus

(2005), Behzadi and Le Fessant (2005), Manzini and Rastero (2004), Cheng et al. (2003)

and Chen et al. (2002a, 2001, 1999). Indeed, GenBank Release161 contains about 12×109

bases of data derived from the human genome1, even though the human genome is only

about 3×109 bases in length. The question is no longer whether such redundancy exists in

GenBank, but rather in how to make effective use of the redundancy.

Document Reordering (Reassignment Of Ordinal Document Numbers)

Reordering of documents in a database, or equivalently, thereassignment of ordinal docu-

ment numbers, has been demonstrated to increase the spatially local redundancy, i.e., clus-

tering, available when compressing inverted files (Blanco and Barreiro 2005, Silvestri et al.

2004a,b, Shieh et al. 2003, Blandford and Blelloch 2002). This approach has been shown

to yield reductions in compressed inverted list sizes of 20%– 30%, by promoting cluster-

ing of similar content (Blanco and Barreiro 2005, Silvestriet al. 2004b,a, Shieh et al. 2003,

Blandford and Blelloch 2002).

While individual DNA sequences are notoriously difficult tocompress, groups of similar

DNA sequences compress much better (Williams and Zobel 1997b). For example when

compressing a collection of genomes, compression should beimproved by collating se-

quences by similarity, rather than by organism. This is the application of document reorder-

ing to DNA compression. The challenge is the efficient reordering of the large databases

involved.

Recently, work has been done that demonstrates that document reordering of large

databases is possible in linear time and space (Silvestri etal. 2004b), suggesting that

1ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt, [On line; accessed 20 September, 2007]

190

CHAPTER 6. NP3

the approach may become more popular in the future. The feasibility of document re-

ordering of biological databases is demonstrated by the regular release of sorted Uni-

Gene databases (Pontius et al. 2003), such as the Human UniGene (nucleic acid) database,

and more recently by the publication of an O(n) algorithm for sorting genomic databases

(Bernstein and Cameron 2006).

For the purposes of the compression algorithm introduced inthis chapter, the assumption

is made that a database is already sorted, and exhibits a useful degree of local redundancy.

Improving the compression of sorted, partially-redundantdatabases, such as the Human

UniGene (nucleic acid) database, is particularly relevantto the problem of storing large

nucleic acid databases such as GenBank, since much of the data in GenBank is at least

partially redundant, e.g., the Expressed Sequence Tags (ESTs) and shotgun sequencing

data. In fact, by focusing on the transcriptome of only one organism, the redundancy of

the whole of the GenBank database is somewhat under-estimated, as complete duplication

of sequences, and inter-organism similarities are not considered. Indeed, as previously

mentioned, GenBank contains four times as many bases from the human genome as there

are bases in the human genome. Therefore a sorted version of the GenBank database should

compress much more effectively than the results of this chapter suggest. However, while

such a sorting exercise is now practical (Bernstein and Cameron 2006), it is beyond the

scope of this thesis.

Aims

The intention of this chapter is to produce a prototypical algorithm, NP3

(Gardner-Stephen and Knowles 2006, and US Patent Application 60/787,028), that can

harness the inter-sequence redundancy that is present now in databases that are already

sorted, such as the UniGene builds. The NP3 algorithm is a prototype in that it: (a) as-

191

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

sumes the database is already sorted, and; (b) the ad hoc coding methods it uses are neither

optimal nor general.

The two goals of the NP3 algorithm are: (a) to demonstrate superior compression of a

sorted database, and; (b) to create a compression algorithmthat meets the functional re-

quirements necessary to test the thesis of this dissertation. To accomplish the second goal,

a compression algorithm is required that can be used in the context of cooperative compres-

sion and searching of nucleic acid and protein databases andindices. Therefore it should

explicitly encoderecurrence records, i.e., references to recurrent strings to allow the index

of the database to take advantage of the recurrent strings discovered during compression,

and provide rapid random access to individual database records to make searching as fast

as possible.

The remainder of this chapter: (a) explores the design considerations in creating the NP3

compression scheme; (b) defines the NP3 nucleotide compression algorithm; (c) presents

the compression performance of NP3 with the sorted Human UniGene (nucleic acid)

database, and; (d) presents the compression performance ofNP3 with the de facto cor-

pus of nucleotide sequences traditionally used to compare DNA compression algorithms.

In Chapter 7, the NP3 algorithm is combined with the DASH algorithm and the NIX index

format introduced there, in order to test the thesis of this dissertation in a more challeng-

ing context than that of Chapter 5 where duplicate and redundant database records were

present.

6.1 Design Considerations

Assuming that a database contains sufficient redundancy to support effective compression,

a coding scheme must be selected. In view of the aims of this chapter, there are a number

of issues that must be addressed. These arise because the compressed data will be used in

a sequence search and alignment algorithm, and in the context of cooperative compression

192

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

of databases and indices. Three prominent issues are: (a) compression and decompression

speed; (b) explicit access to recurrence information, and;(c) random access to database

records. In this regard, NP3 is similar to the CINO system described by Williams and Zobel

(1997b), and attempts to make a compromise between what the authors describe asvertical

compression(compression of clusters of similar records or sequences),and the principle

that records be independently decodable.

6.1.1 Compression And Decompression Speed

NP3 is adistribution algorithm, in that NP3 compressed files are expected to be decom-

pressed many times, but compressed rarely. Because compression is performed only rarely,

it can be afforded the luxury of a large time budget. However,to support efficient searching,

decompression must be rapid. In this regard, what is desiredis an asymmetric compression

algorithm that maximises the compression factor, without sacrificing decompression speed.

Statistics from four hundred queries performed using the DASH algorithm of Chapter 4

indicate that, for any given search, it is common to access between 1% and 25% of the

records in the database. Therefore, for a DNA compression algorithm to be employed with-

out significant time overhead, it must be capable of extracting between tens of thousands

and millions of database records in the 1 – 10 seconds DASH requires to perform each

search. This precludes compression algorithms based on Arithmetic Coding and Statistical

Modelling, as they would decompress too slowly.

6.1.2 Opaque Block Compression Unsuitable

There are a number of fast compression algorithms that couldbe used to compress blocks

of database records, e.g., GZIP (Gailly 1993), or LZO (Oberhumer 1997). Using existing

algorithms has the attraction that it would be trivial to implement, due to the availability

193

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

of existing programming libraries. Using existing libraries would also make it simple to

compare different compression libraries, without modifying the NP3 program. However,

the approach of using an existing compression library has four difficulties: (a) the lack of

explicit recurrence records; (b) the boundaries of clusters of similar database records may

not be known; (c) the requirement for random access to database records, and; (d) the poor

performance of general purpose compression algorithms on DNA sequences.

6.1.2.1 The Lack Of Explicit Recurrence Records

Regardless of the particular compression library used, recurrence records would be not

encoded in a format that NP3 could quickly and easily parse. Either (a) additional time

must be spent parsing this information from the compressed data stream, if it is possible at

all; or (b) the recurrence information must be explicitly recorded along side the compressed

data. Both options are undesirable as they introduce additional time and/or space costs.

6.1.2.2 The Boundaries Of Clusters Of Similar Database Records May Not Be

Known

In order to obtain the best compression, each cluster of similar database records should

be compressed in a single block. That is, compression blocksshould be aligned to cluster

boundaries. However, there is a difficulty: a sorted database does not necessarily contain

information on cluster boundaries. Further, there may be gainful compression to be made

between clusters. This is especially true if clusters of similar records are in turn sorted to

form super-clusters. This makes it difficult to select the block size that maximises com-

pression performance, while maintaining acceptable random access speed.

194

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

6.1.2.3 The Requirement For Random Access To Database Records

Effective use of block compression is further complicated by the need for fast random ac-

cess. This suggests that synchronisation points should exist between each database record,

so that single records can be quickly extracted. This is in direct opposition to the max-

imisation of compression performance, as most compressionlibraries require blocks much

larger than the several hundred characters of a typical nucleic acid or protein sequence.

6.1.2.4 The Poor Performance Of General Purpose Compression Algorithms On

DNA

General purpose compression algorithms are generally unable to compress DNA data at or

below entropy, except where sequences are clustered.

6.1.3 Existing DNA Compression Schemes Unsuitable

At the time that this work was performed, no suitable DNA specific compression algo-

rithm was available. Generally, the algorithms: (a) used statistical prediction methods (and

thus lack explicit recurrence records), and; (b) were relatively slow to decompress. Since

then, a DNA compression algorithm has emerged that partly addresses these failings. That

algorithm is GeNML (Korodi and Tabus 2005), and its use in thecontext of cooperative

compression and sequence search and alignment is considered in Chapter 7.

Finally, it would have been possible to use an existing explicit recurrence encoding algo-

rithm that supports synchronisation points, such as XRAY (Cannane and Williams 2002),

however that algorithm was not known to this author when the work was carried out. Also,

XRAY requires a collection-wide memory-resident model. While this may not have posed

a problem for the collections tested in this dissertation, it is not unreasonable to expect

the model to have difficulties with very large collections, e.g., GenBank, due to either the

195

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

model growing too large to fit in memory, or not obtaining sufficient compression over

the whole collection due to local variations in composition. Also, while it is possible that

XRAY or another method could be hand tuned to offer equal or better compression than

NP3, the NP3 algorithm presented here offers faster decompression than XRAY (faster than

gzip, versus slower than gzip). This is significant, becauseas will be shown in Chapter 7,

the decompression of sequence bodies is the most time consuming component of the search

process described there.

6.1.4 DNA Specific LZ77 Compression Suitable

In contrast to block compression using a general purpose compression algorithm, a DNA

specific LZ77 (Ziv and Lempel 1977) derived algorithm has thepotential to answer the

demands of NP3, namely that: (a) the recurrence records be explicitly encoded; (b) the

boundaries of clusters need not be known, and; (c) random access to database records be

fast.

6.1.4.1 Explicit Recurrence Records

The LZ77 algorithm explicitly records the location and extent of references to recurrent

strings, i.e., recurrence records, making it easy to parse the recurrence records from the

compressed data stream.

6.1.4.2 Boundaries Of Clusters Need Not Be Known

The LZ77 algorithm searches for recurrent strings in a sliding window. This means that it

can discover any recurrence between the record being compressed and the records in the

window. Thus, there is no requirement for cluster information to be explicit in the database.

The tension between (1) fast random access and (2) improvingcompression by sourcing

recurrences from other database records is discussed later.

196

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

6.1.4.3 Provision Of Fast Random Access To Database Records

Rapid LZ77 implementations have been devised in the past, e.g., by Williams (1991) and

Oberhumer (1997). One technique that they use to acceleratethe already rapid decom-

pression of LZ77 algorithms is byte-aligned codes, which avoid the computational cost of

decoding variable bit-length tokens.

A byte-aligned implementation of the LZ77 algorithm also offers byte-aligned synchroni-

sation points. The only prerequisite is that every databaserecord boundary corresponds

with a fresh code. Therefore synchronisation points are obtained in return for little fur-

ther compression leakage. However, there is one remaining complication with providing

per-record synchronisation points; because recurrent strings may be sourced from another

record, access to other records may be required. Therefore the encoding of recurrence

records is now the subject of further discussion.

6.1.5 Encoding Recurrence Records.

In opposition to the need for random access, is the requirement to explicitly encode recur-

rences of identical strings, not only within, but also between records. Such inter-record

references complicate the decompression of randomly selected records, reducing decom-

pression speed. This is because one recurrence record may point to another recurrence

record. That recurrence record may point to yet another, andso on. In this wayrecurrence

chainsmay form. Long recurrence chains are a problem, because it isnecessary to extract

the records along the length of the chain in order to extract the record at the head of the

chain. Linear decompression is not affected, because the records in the chain will have

already been decompressed when each successive record is retrieved, however decompres-

sion of random records suffers.

197

6.1. DESIGN CONSIDERATIONS CHAPTER 6. NP3

Inefficient random-order decompression of records caused by recurrence chains can be par-

tially addressed by making use of: (a) the realisation that record access in sequence search

and alignment is not really random, and; (b) the division of the database into partitions.

Recurrence chains do not necessarily introduce any overhead when searching a sorted

database. This is because the so-called random access that is required for sequence search

and alignment is, in practice, the retrieval of records thatare similar to a given query.

Therefore, the ordering of the sorted database by record similarity increases the locality of

access. That is, if one record from a cluster of similar sequences is retrieved in response to

a query, then it is likely that the other records in that cluster will also be recalled. Therefore,

the decompression overhead of allowing nearby records to reference one another should be

relatively small, since if one is required, most of the others are likely to be required too.

However, if references occur between clusters, then unnecessary extractions may occur.

This behaviour should be self limiting, however, as the greater the similarity between two

records from neighbouring clusters, the greater the likelihood that both will be required to

service any query that requires either of them. Conversely,dissimilar records are unlikely

to reference one another.

Finally, partitioning the compressed database limits the maximum length of recurrence

chains to the number of records in each partition. Such cleaving of the database into

manageable sized portions has two other benefits: First, DASH assumes and requires that

databases are partitioned, and, second, it becomes feasible to cache all extracted records

from a given partition, thus avoiding the possibility of inefficiency due to repeated ex-

traction of records, and any recurrence chains that are involved. Caching decompressed

partitions in this way also allows the decompression time tobe amortised among queries

processed as a batch.

Thus, while the length of recurrence chains should be monitored to ensure satisfactory

random access performance, the methodology of encoding each successive record using a

198

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

byte oriented LZ77 variant has the potential to be both effective and reasonably efficient.

The NP3 algorithm is thus constructed as a byte oriented LZ77variant, as described below.

6.2 The NP3 Algorithm

The NP3 algorithm converts a nucleic acid database (in FASTAformat) into a number of

concatenated database partitions, each consisting of three main parts. These three parts are:

1. Administrative information;

2. Compressed record descriptions; and

3. A series of code streams describing how to assemble each record of the database

from new and previously seen strings, some of which may come from other records.

Figure 6.1 illustrates the general data flow of the NP3 algorithm. The solid and dashed lines

describe the compression and decompression data flows, respectively. The asymmetric time

relationship between compression and decompression is reflected in the relative complexity

of their data flows.

The compression data flow shows how the FASTA format databaseis initially parsed, and

separated into record description and record body streams that are handled separately. The

remaining processes are elucidated in the corresponding text below, that describes how the

compressed representations of the description and body data are generated, collated and

partitioned to produce an NP3 file.

6.2.1 Administrative Information

An NP3 file begins with a header that identifies the file as a valid NP3 file, and contains

summary information. This includes the total number of records and letters stored, and a

199

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Buffer and Code Table

Computation of
Optimal Code Streams

Bodies

Indexed Circular
Buffer of Recent

Section 6.2.3

Into Smaller Records

Record Record Encodings

Record Descriptions

Record Descriptions

Section 6.2.6

Section 6.2.4

Section 6.2.5Section 6.2.3

Section 6.2.2

Section 6.2.8

Sections 6.2.1, 6.2.7

Database

NP3 Compressed
Database

FASTA Formatted

Decompression

Combine Compressed

and Bodies

Parse Input File
(Separate Records

Descriptions
and Bodies)

Segmentation of
Long Records

Discover and Index
Recurrences in
Record Bodies

Generation of Possible

Using Indexed Circular

Group and Compress

Figure 6.1: NP3 Flow Chart.

200

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

pointer to the first database partition. Each partition is also prefixed with a header contain-

ing the summary information for that section, as well as pointers to the various parts of

that section, principally the code stream and record description look up tables that facilitate

random access to the compressed records.

While it would have been be possible to compress the tables ofaddresses for the per-record

synchronisation points, e.g., according to Bell et al. (1993), there was little motivation to

compress them, as they comprised only 2% of the size of the compressed database. There-

fore they were stored uncompressed.

Finally, all information in an NP3 file is stored in a consistent byte order to provide file

compatibility between CPU architectures.

6.2.2 Compression Of Sequence Descriptions

The major arguments against opaque block compression are not compelling when com-

pressing sequence descriptions, because: (1) recurrence records are not required, because

the sequence descriptions will not be indexed (and therefore will not be cooperatively com-

pressed); (2) sequence descriptions are retrieved for the limited number of results returned

by a search, rather than for the possibly millions of recordsaccessed during the processing

of the same search, and; (3) general purpose compression algorithms work well on FASTA

format sequence descriptions. Therefore, for NP3 an existing general purpose compression

library was used when compressing sequence descriptions.

The tension in selecting a compression algorithm and block size for the sequence descrip-

tion data lies in balancing reduction of message length against decompression speed. Com-

pression is performed only once for a database, so compression time is of lesser concern.

However, since a goal of NP3 is to develop the next generationdatabase and index format

for DASH, the decompression of the sequence descriptions must not weigh heavily on the

total run time.

201

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

As shown in Chapter 5, the DASH M2 algorithm typically takes around 1 second on a

modern computer to search the Human UniGene (nucleic acid) database. Typical search

parameters are to return alignments against 200 records. Ifwe are to assume that the

Human UniGene (nucleic acid) is a typical sized database, and if description retrieval is to

contribute≤ 50% of run time, then the sequence descriptions must be extracted in≤ 0.5

second. This allows 2.5 milli-seconds per sequence description.

The BZIP2 (Seward et al. 2001) algorithm was selected as it simultaneously offers among

the best combined compression performance and decompression speed (Witten et al. 1999).

Compressing the 470 MB of description data from the approximately 2 giga-base Human

UniGene (nucleic acid) database with BZIP2 reduced the sizeto 76 MB, i.e., a compression

factor of about 6. Decompression requires 50 CPU seconds on an AMD Opteron 244

(1.8 GHz) processor, equating to≃ 10MB/sec. Therefore 0.5sec×10MB/sec= 5MB of

descriptions can be decompressed in the 0.5 second time budget.

If 470MB of sequence description data per giga-base is representative of the typical vol-

ume of sequence description text in a biological sequence database, then no more than

5MB/470MB = 1.06% of all description data can be decompressed in the time budget.

This dictates a method of storing each sequence descriptioneither separately, or in rel-

atively small blocks. The former is difficult when using existing compression libraries,

while still aiming for optimal compression ratios, and therefore the blocking approach was

chosen.

Taking the block based approach, and assuming that the search results consists of the 200

best matching records, and further assuming that the description of each of these records

occurs in a different block, then 200 blocks must constituteno more than 1% of the total

number of blocks. This gives a minimum of about 200÷1% = 20,000 blocks, or a mean

uncompressed block size of 470MB÷20,000blocks= 23.5KB/block.

202

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

However, the selection of a compression block size influences not only the decompression

speed, but also the degree of compression that can be expected (Bell et al. 1993). Smaller

blocks will provide less opportunity for compression. Indeed, 32 KB blocks were observed

to yield compression factors of 4 to 5, versus the 6 observed for BZIP2’s maximum block

size of 900 KB.

It was observed that most sequence descriptions end with a/len=n tag. These tags added

to the entropy of the description data, as the sequence length was not predictable from

record to record. However, from a holistic perspective, thetags add almost zero entropy,

since practically every record included such a suffix tag, and the precise content of the tag

could be deterministically computed for each record. Therefore, the NP3 program trims

these tags from descriptions before blocking and compressing them. The tags are recreated

during decompression. Trimming these tags improved the compression factor of 32 KB

blocks from the 4 – 5 range, to 5 – 5.5, and consequentially this method was adopted.

After BZIP2, the next most attractive algorithm for compressing sequence descriptions was

GZIP, because it decompresses substantially faster than BZIP2, and with only moderately

worse compression performance. The faster decompression of GZIP would allow larger

block sizes, while remaining within the time budget, and so the overall margin of compres-

sion performance between GZIP and BZIP2 would be reduced, although not eliminated.

However, there is good reason to suggest that the time cost analysis for decompressing se-

quence descriptions using BZIP2 is pessimistic. The principal reason is that the database

being compressed is sorted. Therefore, as mentioned previously, records are likely to be

accessed in clusters. Thus, the total number of blocks required for extraction is likely to be

much less than the total number of sequences included in the search results, as similar se-

quences are likely to be near one another in the database, andconsequentially to have their

descriptions stored in the same block. Therefore, the effective time cost for decompres-

203

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

sion of sequence descriptions is likely to be substantiallyreduced, making the improved

compression of BZIP2 affordable in terms of time cost.

Finally, as will be shown later, even when compressed with BZIP2, the compressed se-

quence descriptions of the Human UniGene (nucleic acid) database were about one half

the size of the compressed record bodies. Thus, reducing thesize of the compressed se-

quence descriptions contributes significantly to the overall compactness of an NP3 com-

pressed database. Thus using BZIP2 to maximise the compression factor of the sequence

descriptions is worthwhile, despite any residual time costit introduces.

6.2.3 Discovery Of Recurrences

6.2.3.1 Recurrence Search Algorithms

The problem of discovering the longest recent occurrence ofthe next few symbols of a

string has been well explored. Bell and Kulp (1993) surveyeda number of approaches that

were known at the time. Their conclusion was that, especially for larger window sizes, the

list2 method was the fastest for English text. It is contraindicated only when the text being

compressed is highly skewed as, for example, in bi-level bitmap images. This presents no

problem for nucleotide sequences, which have approximately equal representation of each

base.

Thelist2 method uses a circular buffer to store the sliding window. A double linked list

is maintained for each of theq2 bi-grams, whereq is the alphabet size. That is, a list is

maintained of the address of each occurrence of each bi-gramthat occurs in the window.

Aside from the problems with skewed data, the only other reservation voiced by the authors

about thelist2 method was the excessive memory requirements of 2q2 + N pointers and

integers, whereN is the window size. However, memory has become relatively cheap and

plentiful, and for nucleotide strings whereq = 4, the memory cost of a window size of

204

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

N = 106, is inconsequential — requiring only 2× 42 + 106 ≃ 106 pointers and integers.

Advantage can be taken of the small nucleotide alphabet by using k-grams instead of bi-

grams, to produce a method that can be calledlistk. Choosingk = 10 reduces the length

of each list that must be searched by a factor ofqk

q2 = 410

42 = 65,536, while only modestly

increasing memory requirements to 2× qk + N = 2× 410 + 106 = 221 + 106 ≃ 3× 106

pointers and integers.

A different approach that has become increasingly attractive since Bell and Kulp’s 1993

survey, is the use of suffix structures, such as suffix-trees and suffix-arrays. This is both

because memory is more plentiful, and also because the previously difficult problem of

deletion of nodes in a suffix-tree has been solved by Larsson (1999), allowing suffix struc-

tures to be efficient in a sliding window context.

However, Sadakane and Imai (2000) discovered that, at leastin the case of suffix arrays,

suffix structures are unlikely to be faster than thelistk approach at the window sizes that

are envisaged for NP3, i.e., 105 – 106 letters. So, while there is increasing interest in using

suffix structures to search DNA data, e.g., Cheng et al. (2003), Hunt et al. (2002), thelistk

approach is unlikely to be far from the state of the art in terms of speed, and certainly fast

enough for the asymmetric compression required in the current application.

6.2.3.2 Discovery Of Recurrences

Recurrent strings are discovered by using thelistk method (withk = 10) to search for

matching regions in a window of sequence data spanning several hundred records or several

hundred kilo bases, which ever is the lesser.

Consider Figure 6.2, where three records share common strings, as indicated by the striped

regions. In this case, Record #2 contains a region that also occurs in Record #1, as indicated

by arrow (a). Similarly, Record #3 contains a portion of thatsame region, which occurs

in both Record #1 and Record #2 (arrows (b) and (c)). Where such multi-way recurrences

205

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

occur, they are linked to the nearest record. In this example, this means that the recurrence

of Record #3 gets recorded against Record #2, and that the recurrence of Record #2 against

Record #1, thus forming a short recurrence chain.

While minimising the distance of reference, this approach also maximises the number of

links in the chain required to eventually find the original instance of the recurrence. This

aids cooperative compression of the index by making the maximum number of recurrence

records available. Nearer references also imply shorter average reference distances to en-

code, aiding compression performance. However, because a strictly byte-aligned compres-

sion scheme is used in this chapter, only limited advantage can be made of the shorter codes

afforded by reducing the average reference distance.

However, maximising the number of links in recurrence chains works against decompres-

sion speed when extracting random records from the database. Fortunately, and as previ-

ously described, record access in a sorted database is not truly random, and many or all of

the records along a recurrence chain may be required to answer any query that requires any

one of the records in the chain. In that case, the overhead is at most marginal, regardless of

the length of the recurrence chains, and there is little to begained by minimising the chain

length.

It is also possible to reduce the average recurrence chain length by avoiding the use of inter-

record references when they offer no space advantage over alternative codes. However, this

reduces the number of recurrence records that are availablefor cooperative compression.

NP3 allows the user to specify whether to activate this heuristic.

This process of searching for recurrences takes time proportional to the amount of material

seen to date, up until the window is fully loaded, and a constant time cost to update the

memory structure for each base that is inserted into the window. Given that the window

size is of the same order of magnitude as the index partition size, this results in an effect

computational cost of O(n2) with respect to window or index partition size.

206

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Record #3

(a)

(b)

(c)

Record #1

Record #2

Figure 6.2: Example Of Three Records Each Containing A Common, i.e., Recurrent, Re-
gion. (The recurrent region is shaded).

6.2.4 Generation Of Possible Record Encodings

6.2.4.1 Ad Hoc Code Table

Selecting an optimal set of encoding methods for a broad class of inputs is not trivial.

It is in no way claimed that this has been achieved in the current NP3 code table. The

constraint of using byte-aligned tokens all but rules out the possibility of optimality, and by

focusing on a single database, Human UniGene (nucleic acid), it is extremely unlikely that

the resulting code will be robust in the face of varied input.Indeed, it gives the resulting

algorithm an advantage over any generalised compression scheme. However, what has

been created is an ad hoc code table that obtains effective compression on the Human

UniGene (nucleic acid) database, is extremely fast to decompress, and encodes recurrences

explicitly, thereby meeting the requirements imposed by cooperative compression, and thus

allowing the testing of the thesis of this dissertation. As the ad hoc scheme has the required

properties to allow the testing of the thesis of this dissertation, the construction of a more

general or optimal code is left as a future exercise.

The full coding scheme used by NP3 is presented in Table 6.1 with both the various codes

and the Recently Referenced Address Table (RRAT) being explained in the following para-

graphs. Bit positions in Table 6.1 are marked as containing either a constant 1 or a 0,

address (‘a’), relative address offset (‘r’), number of bases encoded (‘n’), extra bits for

207

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

number of bases encoded (‘x’), optional change of case (‘c’)where a 1 indicates toggling

upper/lower case, or a base represented in either 2 bit (‘bb’) or 4 bit (‘base’) format.

Codes B, D and E store one, two or three bases, respectively, in a single byte.

Code F is used to encode longer strings, storing four bases per byte, but has a 2 byte

overhead. This code is intended for coding long regions of non-compressible sequence, and

in that context is relatively efficient, as the 2 byte overhead is amortised over many bases.

To encourage rapid decompression, Code F can only be used at offsets within a record that

are a multiple of four. This allows direct byte copying for 2 bit format extraction, and the

efficient use of look up tables to extract in either four bit orASCII formats.

Codes H and I are used to encode repeating letters and bi-grams, e.g., AAAA or GCGCG.

These codes use the 4 bit IUPAC code to describe each repeating base, which allows them to

also encode wild cards, such as N or R. The encoding of wild cards in this way obviates the

need for a patch table as in the CINO method of Williams and Zobel (1997b), but otherwise

serves the same purpose.

In order for Codes H and I to fit in two bytes each, they include relatively few bits (marked

with ‘n’ in the table) to specify the number of bases encoded.To allow efficient encoding

of longer lengths to be accommodated, Code J is provided to allow the addition of three

extra address bits to the length field of these codes. Code J can also be used with Codes M

through Q, which are described later.

Codes K and L are similar to Codes H and I, but indicate change of case, and are used to

encode bases that appear in opposite case. These codes are only used if preservation of

case is requested when constructing an NP3 file.

Code M encodes a reference to a string in a recently processedrecord, i.e., it encodes a

recurrence record. The location of the string is encoded in a22 bit value, as described in

the table, allowing reference to the 512 most recently processed records.

208

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Table 6.1: NP3 Binary Encoding Scheme For Nucleotide Sequence Data.

Code Binary
Format

Bits Range Description

B 100000bb 8 1 A single 2 bit encoded base.
D 1001bbbb 8 2 Two 2 bit encoded bases.
E 11bbbbbb 8 3 Three 2 bit encoded bases.
F 010nnnnn

nnnnnnnn
bb×n

16+
2n

8192 A series of 2 bit encoded bases. This is how long
stretches ofnon-recurrent sequence are encoded with
an efficiency approaching that of direct coding.n must
be a multiple of 4.

H 011nnnnn
basebase

16 32 A run of identical base pairs, e.g. GCGCG. (4 bit en-
coding allows the use of all 16 IUPAC codes for nu-
cleotide bases).

I 10001001
basennnn

16 16 A run of up to 16 identical bases (4 bit encoding allows
the use of all 16 IUPAC codes for nucleotide bases).

J 10100xxx 8 ×8 The extend token is placed immediately after any other
token to add three extra bits to the length fields, e.g., a

maximum range of 255 becomes 2303.
K 1000101c

0000base
16 1 A single 4 bit encoded base with an implied case shift

before it, and an optional case shift after (4 bit encod-
ing allows the use of all 16 IUPAC codes for nucleotide
bases).

L 100011cc
basebase

16 2 Two 4 bit encoded bases with an implied case shift be-
fore the first, and optionally after each base.

M 00aaaaaa
aaaaaaaa
aaaaaaaa
nnnnnnnn

32 256 Recurrence with address encoded as a 22 bit value. The
lower 13 bits are the offset in a record, and the upper
bits encode the record number of that record relative to
the current record. Therefore it is possible to address up
to 512 recent records of length 8,192 bases each.

N 100001rr
nnnnnnnn

16 256 Recurrence with address encoded as a 2 bit value rela-
tive to the previously accessed address. Useful for en-
coding regions with short insertions and deletions (in-
dels).

O 1011rrrr
rrrrrrrr

nnnnnnnn

24 256 Recurrence with address encoded by the last sequence
address used (which might be in a different record), plus
12 bit offset.

P 101010aa
nnnnnnnn

16 256 Recurrence with address encoded by the specified one
of four entries from the recently referenced address ta-
ble (RRAT), which might point to a different record.

Q 101011aa
rrrrrrrr

nnnnnnnn

24 256 Recurrence with address encoded by the specified one
of four entries from the RRAT, which might point to a
different record, plus an 8 bit relative offset (rrrrrrrr).

209

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

(a)

789

123

222

456

789

456

123

222123

1012

456

789

222 456

(b) (c)

Figure 6.3: Recently Referenced Address Table (RRAT) Management.

6.2.4.2 Recently Referenced Address Table

Because of the clustering that is assumed to exist in the database, it is possible that when a

record references multiple recurrent strings, that the references will be to strings in records

that are near one another, and that multiple references may be made to a single record. To

take advantage of this, a table is maintained of the addresses of recently referenced strings,

the Recently Referenced Address Table(RRAT). This table contains the addresses of the

four most recently referenced strings. Each time a string isreferenced, the address of the

string is inserted in the first entry of the table, and all other entries are moved down one

position, causing the fourth entry to be discarded. However, if the address is already in the

table, then it is promoted to the first entry, and the intervening entries are moved down.

Management of RRAT entries is illustrated by example in Figure 6.3. At (a), the table

contains the four addresses 123, 456, 789 and 1012. Then the string at address 222 is ref-

erenced. Because it is not already in the table, the other entries are shuffled down, causing

address 1012 to be discarded; address 222 is then stored in the first entry, as depicted in (b).

Finally, in (c), address 456 is referenced. Because it is already in the table, only the entries

above it are shuffled down to make room; no address is discarded.

210

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Returning to Table 6.1, Codes N and O use the RRAT to encode references to recurrent

strings, i.e., recurrence records, using less than four bytes. They gain their brevity by

supplying only a relative address, which is combined with anaddress from the RRAT to

obtain the complete address. Code N, with its two byte format, provides the lowest cost

option for resuming recurrences that are interrupted by short indel events, i.e., insertion and

deletions, while Code O’s larger relative addressing rangeprovides increased utility, at the

cost of an additional byte. Codes N and O use only the first entry of the RRAT.

Codes P and Q are similar to Codes N and O, but can use any entry of the RRAT. The

trade-off is their reduced relative addressing range. Indeed, Code P has no relative address

component, and can therefore be used only when an RRAT entry contains the precise ad-

dress required. Therefore, the RRAT is managed in order to correctly predict the address of

future references as often as possible, and so allow more extensive use of the shorter Codes

N through Q. This is best explained with an example.

Consider encodingAAAAAAAACCCGGGTTTTTTTTTT. The strings ofA’s, C’s, G’s andT’s are

used for clarity here, but in practice could be any sequence,and of any length. Assume that

the address in the first entry of the RRAT points to a string of 14 consecutiveA’s followed by

11 consecutiveT’s, i.e.,A14T11. In that case, the first 8A’s of the example sequence could

be encoded in two bytes using either Code N or Code P. The six substitutions,CCCGGG

versusAAAAAA, might then be coded using two instances of Code E to encodeCCC andGGG,

respectively.

Considering the contents of the RRAT, if the address of recurrent strings, once entered in

the RRAT, are fixed, then after each code is output, the first RRAT entry will continue to

point to thebeginningof theA14T11 string, as depicted by arrow (a) in Figure 6.4. This is

a problem when seeking to efficiently encode the remaining string of T11: The distance be-

tween the beginning ofA14T11 and itsT11 tail, which could be used to encode the remaining

string as a recurrence, is 14 bases. Therefore, four bits arerequired to encode this relative

211

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

(d)

AAAAAAAACCCGGGTTTTTTTTTT

(a) (b) (c)

Figure 6.4: Comparison Of Different RRAT Advancement Strategies.

to the entry in the RRAT. This rules out the short Codes N and P,thereby necessitating the

extra byte entailed by Code O or Q.

However, if the RRAT entries are set to the address of the symbol following the referenced

string, it would point to the first C in the example sequence, indicated by arrow (b) in

Figure 6.4, and the distance would be only six bases. Unfortunately, this does not redeem

the current example, because the magnitude of the distance remains too large to be encoded

using either of the shortest codes, Code N or Code P.

The current example can be saved by advancing RRAT entries for everyresidue that is en-

coded. Assuming the use of Code N to encode the first eight bases, followed by Code E

×2 to encodeCCCGGG, the entry would begin pointing to the start of theA14T11 string, indi-

cated by arrow (a) in Figure 6.4, then be advanced by eight bases to the position indicated

by arrow (b), then by a further three bases to the position indicated by arrow (c) whenCCC

is encoded, and then by three more bases to the position indicated by arrow (d) whenGGG

is encoded, bringing it to the firstT of theT14 string: The address in the RRAT now points

to exactly the right address, and Code N or Code P could now be used to encodeT11 in two

bytes.

By introducing this rule of advancing the RRAT entries, the distance has been reduced to

zero — regardless of the length of the substitution — allowing the use of the shorter Codes

N and P. This creates a form of approximate repeat matching, similar to the techniques used

in other nucleotide compression algorithms. However, the efficiency is limited because the

codes are byte-aligned.

212

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

6.2.4.3 Selection Of Codes During Compression

There are often multiple codes that can be used to encode a particular string. In the previous

example, Code E was used to encodeCCC andGGG. However, Codes B, D, F, H or I could

have been used instead. The set of valid codes at each successive offset in the record is

determined using the code table and indexed circular bufferof recently processed records.

Figure 6.5 illustrates an example of the set of possible codes at several offsets in a sample

sequence. Assume for this example that the first entry in the RRAT contains the address of

the stringTTAAAAAAAAG.

At offset zero, it is possible to use either the long or short forms of direct coding, using

Codes B, D, or E, to encode, respectively,A, AC or ACA in one byte. Because the offset is a

multiple of four, Code F can be used to encode either four, eight, twelve or all sixteen bases

in 3, 4, 5 or 6 bytes, respectively. It is also possible to use Run Length Encoding (Codes H

and I).

At offset one, long direct encoding (Code F) is not possible because the offset is not aligned

to a multiple of four. However, Codes B, D, E, H and I remain valid.

At offset two, Codes B through E and Codes H and I continue to bevalid options. Moreover,

Codes M through Q are now possible, because the stringAAAAAAAAG can be encoded as a

recurrence of a previously encountered string. Because thefirst entry of the RRAT points

to the precise address of the recurrence (remember that addresses in the RRAT will have

been advanced two bases, skipping theTT prefix), the shorter codes are all possible.

6.2.5 Computation Of Optimal Code Streams

The optimisation process operates by processing the set of encoding possibilities at each

offset of a record, as described in the preceding text. The reach of these possibilities,

i.e., how many bases can be encoded at each offset using the available mechanisms, are

213

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

ACAAAAAAAAGT

 CAA

 C
 CA

 C
 CA

Offset Two

 AAA
 AAAAAAAA
 AAAAAAAA
 AAAAAAAAG

 A
 AA

A
ACA

 AAAAAAAAG
 AAAAAAAAG
 AAAAAAAAG
 AAAAAAAAG

Code O; 3 bytes
Code P; 2 bytes
Code Q; 3 bytes

Code N; 2 bytes
Code M; 4 bytes
Code I; 2 bytes
Code H; 2 bytes
Code E; 1 byte
Code D; 1 byte
Code B; 1 byte

Code I; 2 bytes
Code H; 2 bytes
Code E; 1 byte
Code D; 1 byte
Code B; 1 byte

Code I; 2 bytes
Code H; 2 bytes

ACAAAAAAAAGTCGTGInput Sequence

Offset Zero A
AC
ACA Code E; 1 byte

Code D; 1 byte
Code B; 1 byte

ACAAAAAAAAGTCGTG Code F; 6 bytes

Code F; 3 bytes
Code F; 4 bytes
Code F; 5 bytes

ACAA
ACAAAAAA

Offset One

Figure 6.5: Coding Options For Three Successive Offsets In An Example Sequence.

214

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

considered in conjunction with the byte cost of each. By way of example, consider the

sequenceACAAAAAAAAGTCGTG.

6.2.5.1 Tabulation Of Coding Options

Using the coding possibilities of Table 6.1, the valid pointto point transitions and their

costs are tabulated in Tables 6.2 and 6.3, respectively. They-axis represents the start offset

in the record, and the x-axis the end offset, where the end offset refers to the first base

immediately after the base(s) encoded by the Code indicatedin Table 6.2. The blank spaces

in the tables indicate record positions that cannot be reached with a single code from the

respective initial record position.

The diagonal band of cost 1 byte arises from the direct codingmethod that can record up to

three bases. Recall that the direct coding scheme for longerstrings can only be employed

between points that are aligned to four base boundaries, andso in most cases this is not an

option. Indeed, at most offsets there are relatively few possibilities. In all situations, the

shortest code that can make a given transition is always usedin preference to all others.

Thus Code E (1 byte) was recorded for the transition from offset 3 to offset 6, even though

Code H (2 bytes) or Code I (2 bytes) were also possible.

6.2.5.2 Calculation Of Optimal Path

Upon calculation of the cost of each possible code, the cumulative cost of coding from

the beginning to the end of the record can be computed, as in Table 6.4. Global dynamic

programming is used to choose the path with optimal (minimum) cost. For example, for the

route from position 0 to 4, and 4 to 5, with a cumulative cost of3+1 = 4 bytes, would be

set aside in favour of the lower cost route from 0 to 3, and 3 to 5, at a cost of only 1+1 = 2

bytes.

215

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Table 6.2: Codes Corresponding To The Coding Costs In Table 6.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 B D E F F F F
1 B D E
2 B D E I I I I I
3 B D E I I I I
4 B D E I I I F F
5 B D E I I
6 B D E I
7 B D E
8 B D E F F
9 B D E
10 B D E
11 B D E
12 B D E F
13 B D E
14 B D
15 B
16

Table 6.3: Matrix of Coding Costs (in bytes). The left hand column is the start offset,
and the top row the final offset. Each row represents the cost of reaching each possible
destination point using a single code from that offset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 3 4 5 6
1 1 1 1
2 1 1 1 2 2 2 2 2
3 1 1 1 2 2 2 2
4 1 1 1 2 2 2 4 5
5 1 1 1 2 2
6 1 1 1 2
7 1 1 1
8 1 1 1 3 4
9 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1 3
13 1 1 1
14 1 1
15 1
16 B D D D D D D D D D D D D D D D

216

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Table 6.4: Matrix of Cumulative Coding Costs (in bytes) from the beginning (offset=0) to
any final offset, using the cheapest string of available codes.
The left hand column is the start offset, and the top row the final offset. The cheapest
path from the start of the record to a given offset is found by determining which cell in the
column corresponding to that offset has the lowest score. The underlined cells represent
the cheapest encoding for the entire record, as determined by using this method from the
end of the record and working backwards.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 3 4 5 6
1 2 2 2
2 2 2 2
3 2 2 2 3 3 3 3
4 3 3 3 4 4 4 6 7
5 3 3 3 4 4
6 3 3 3 4
7 4 4 4
8 4 4 4 6 7
9 4 4 4
10 4 4 4
11 5 5 5
12 5 5 5 7
13 5 5 5
14 6 6
15 6
16 14 14 14 14 14 14 14

The dynamic programming procedure finds an optimal encodingby back-tracking from the

cheapest cost at the end of the record. In the case of this example, and referring to Table 6.4,

back-tracking from the end of the record (column 16) would begin with the entry in row 13

(cost 5 bytes). By consulting Table 6.2, it is found that CodeE was used. The starting point

of this transition (offset 13) is now used as the end point forthe next iteration: This process

is repeated recursively, visiting offsets 10 and 3, before reaching the start of the record.

This path is indicated by the underlined values in Table 6.4.This path is then reversed to

give the forward path, 0 to 3 to 10 to 13 to 16, which can then be translated to find the codes

used by the encoding scheme and the final representation of the record (Table 6.5).

217

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Table 6.5: The Optimum Code For The Record In Figure 6.5.

Transition 0→3 3→10 10→13 13→16

Cost (bytes) 1 2 1 1
Codes Used
(Tables 6.1, 6.2)

E I E E

Binary Codes 11000100 10101001
00000111

11101101 11101110

6.2.5.3 Effect Of Extension Code (Code J)

The use of the length extension code, Code J, that varies the effective length of a code,

depending on the number of bases being encoded, helps reducethe encoded record length.

However, this complicates the task of the optimiser, because it effectively creates multiple

versions of each of the original codes, with differing byte costs and maximum reaches.

For each code, the optimiser must know where the break pointsare, i.e., the lengths where

an extend coded is required. Each transition that spans any of these break points must be

considered as a series of independent coding options in the dynamic programming grid,

where each extend code creates another break point. For example, a run length encoding

code requires 2 bytes for up to 16 bases, or when combined withan extend code, a run of

between 17 and 127 bases can be encoded, but at the cost of an additional third byte. For

example, a run of 40 identical bases would produce two run length encoding possibilities:

one for 40 bases (with the extend code, and costing 3 bytes) and one for 16 bases (with no

extend code, and costing only 2 bytes).

6.2.5.4 Effect Of RRAT

There is one other difficulty faced by the optimiser, and thatis Codes N through Q that

make use of the RRAT and relative addressing. Because dynamic programming optimi-

sation works backwards from the end, the optimiser sees the addresses in reverse order.

218

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

While the magnitude of the distances between successive references are not modified by

this inversion, the contents of the RRAT can only be guessed.As a result, the optimiser can

make incorrect judgements as to which code is best in any given situation, and so the length

of the final bit stream may differ from the predicted length. This non-optimal behaviour

is reflected in the slightly different file sizes that result when the policy changes between

preferring inter-record references and avoiding inter-record references, even though the

situation should be cost neutral.

6.2.5.5 Computational Cost

Because the stream generation process utilises a dynamic programming optimisation pro-

cess that can be represented as a two dimensional dynamic programming space, the com-

putational cost is O(n2) with respect to the input record length. Partly because of this, the

input record length is limited to a few KB as described in Sub-Section 6.2.6, thus the cost

is effectively constrained, and is generally much smaller than the cost of the preceding

recurrence discovery step.

However, provided that the database is much larger than the partition size, the compression

time will be linear with respect to the database size due to the approximately constant cost

of compressing each fixed-sized partition.

6.2.5.6 Summary

The optimisation framework just described makes it relatively simple to employ a wide

variety of coding methods, and obtain the best results that it can afford. This is due to

the decoupling of the optimiser from the specific codes and bit patterns; the optimiser is

only aware of the cost of each option at a given point. This provides flexibility in later

improving the coding scheme, without requiring significantchange to the optimiser. The

219

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

ability to change the coding back end also makes the NP3 approach readily adaptable to

other types of data, e.g., protein or English text.

6.2.6 Segmentation Of Long Records

Long sequences are common in genomic databases. To simplifythe recurrence discovery,

database partition processes, and to ensure the speed of compression, long sequences are

cut into a number of shorter records of≤8,192 bases.

In anticipation of the use of NP3 files in the context of sequence search and alignment, a

short overlap is provided between each successive segment to simplify stitching of results

that span multiple segments. The overlap can be used to translate alignments between

neighbouring sequence segments. This overlap contributesonly negligibly to the total file

size, as it can always be encoded in 2 bytes using Code P, because the RRAT is initialised

for each Record such that the first entry contains the addressof the overlap.

When sequences are segmented, the description is appended with the byte 0x01, and stored

with the first record of the sequence. The/len=n tag cannot be removed from the description

in this situation, as during serial decompression the length of the reassembled sequence

cannot be determined before hand.

Subsequent record descriptions consist of a 0x01 byte, followed by the record number of the

first segment, and the offset of the current record within thesequence. The non-terminal

records also have a 0x01 byte appended to the end of their descriptions, to indicate that

more fragments follow. This system is used both within and between database partitions.

The complete procedure is illustrated in Table 6.6, where a list of record descriptions is

presented for a hypothetical sequence that is divided into 4records.

220

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

Table 6.6: Example Of Sequence Segmentation Tags In Record Descriptions.
The first record of a segmented sequence contains the true description of the sequence,
followed by a 0x01 character to indicate that the sequence has subsequent records. The
non-terminal records 2 and 3 also contain 0x01 characters at the end to indicate that the
sequence continues. The non-head blocks 2, 3 and 4 are prefixed with 0x01 to indicate
that they are fragments, and the description data identifies the head record and the offset
of each block in the head record.

Record # Stored Description

1 “> hypothetical protein foo”(0x01)
2 (0x01)”1:8160”(0x01)
3 (0x01)”1:16320”(0x01)
4 (0x01)“1:24672”

6.2.7 Database Partitioning

As indicated previously, an NP3 file is produced as a series ofpartitions. A new partition

is commenced whenever the size of the previous partition exceeds a threshold. While this

partitioning is a requirement for use with the DASH algorithm, it can also be leveraged

to provide two additional benefits: (a) Parallel Construction of NP3 files, and; (b) Ease of

appending and updating of NP3 files.

6.2.7.1 Parallel Compression Of NP3 Files

Because the partition boundaries can be rapidly determinedat the beginning of the index

process, it is possible to perform the compression process in parallel, as each partition is

identified and isolated. Very high efficiency is possible during this parallel index construc-

tion, because there is no cooperation required between the threads or processes compress-

ing each database partition. NP3 implements just such a parallel mode by using Sun Grid

Engine to spawn multiple NP3 processes on one or more computers.

221

6.2. THE NP3 ALGORITHM CHAPTER 6. NP3

6.2.7.2 Ease Of Updating And Appending To NP3 Files

Partitioning also makes it trivial and rapid to patch an existing database to include new or

updated records, since only a single partition need be modified. The current implementation

of NP3 contains an append mode to allow the convenient addition of new material to an

existing repository, although periodic rebuilding would still be required to sort the material.

6.2.8 Decompression

6.2.8.1 Sequential Record Access

To serially decompress an NP3 file, each database partition is considered in turn. Within

each partition, the code stream for each record is interpreted in turn, to reconstruct the

sequence. Any references to other records are implicitly met, as all preceding records have

already been extracted. This results in a decompression time that is linearly proportional to

the number of records decompressed.

6.2.8.2 Random Record Access

Random access decompression functions similarly: if the record makes no reference to

other records, then decompression can occur just as for the serial case. Otherwise, the

referenced records are decompressed recursively to obtainthe necessary referenced strings.

Thus the computational cost of random record retrieval is exponential with respect to the

number of records in the index partition and the average number of other records referenced

by each record.

However, if many records are to be retrieved by random accessthen the exponential com-

ponent will be reduced as the probability of each referencedrecord having already been

decompressed increases. Thus in the situation where all records are retrieved by random

222

6.3. RESULTS CHAPTER 6. NP3

access the computational cost of decompression will returnto being linearly proportional

to the number of records retrieved.

Moreover, it is suggested that random record retrieval in sequence search and alignment

is not truly random, in that the objective is to retrieve all records that are similar to some

query. Thus, since only records with similar content are referenced, it is reasonable to

suggest that a fraction of those records will require retrieval anyway. Thus the effective

cost is reduced. The question is whether this occurs to any meaningful extent.

6.3 Results

6.3.1 Compression Of The Human UniGene (Nucleic Acid) Database

To assess the performance of NP3 versus existing compressedformats, the sorted Human

UniGene (nucleic acid) database was compressed using NP3. The same database was also

compressed using a collection of existing compression methods. General purpose com-

pression algorithms were included in the comparison, because while they are ineffective on

typical (unsorted) nucleic acid databases, they can make use of the clustered recurrences in

a sorted database — and actually compressed the Human UniGene (nucleic acid) database

better than some dedicated DNA compression programs.

DNACompress (Chen et al. 2002b) is used as a representative of DNA compression algo-

rithms, due to its being the best performer that was available freely available. Had GeNML

(Korodi and Tabus 2005) and DNAPack (Behzadi and Le Fessant 2005) been freely avail-

able, they would have been included in the comparison. This issue has been partially

resolved by implementing a variation of GeNML as a codec for the NP3 framework that

is optimised for fast random-access sequence retrieval. See Chapter 7 for further details

of the GeNML codec for NP3. Finally, where possible, the space used by each program

to represent the sequence bodies only (as distinct from the one line sequence descriptions

223

6.3. RESULTS CHAPTER 6. NP3

Table 6.7: Comparison Of NP3 File Size With Other Formats For Human UniGene (Nucleic
Acid) Database (1.96×109 bases).
Files sizes are listed in mega-bytes (MB) and bits per base (bits). NP3 produces a smaller
file than any of the other methods, almost 10 times smaller than the original FASTA file ver-
sion of the database. The two NP3 variations, “prefer inter-record references” and “prefer
short chains” (i.e., avoid inter-record references) produce similar sized databases, with a
slight size advantage when preferring to include inter-record references.

Format Bodies Only Bodies and Descriptions Compress
MB bits MB bits % NP3 Time (m:s)

FASTA Format
(ASCII)

1,886 8.06 2,356 10.10 931% -

BLAST (formatdb)
(Altschul et al. 1997)

489 2.09 1,150 4.93 455% 6:09

DNACompress
(Chen et al. 2002b)

459 1.96 512 2.19 202% 30:00

gzip 300 1.28 438 1.87 173% 6:08
bzip2
(Seward et al. 2001)

285 1.21 369 1.58 146% 13:23

GeNML Variant
(Chapter 7)
(16 way parallel build)

170 0.73 256 1.10 102% 1605:00

NP3
(prefer inter-record refs.)

166 0.71 252 1.08 100% 630:40

NP3
(prefer short chains)

166 0.71 253 1.08 100% 630:40

NP3
(16 way parallel build)

166 0.71 253 1.08 100% 41:54

included in the FASTA format database) is presented. These results are presented in Table

6.7.

These results show that NP3 is able to compress slightly better than the GeNML imple-

mentation that is operating in the same framework as the NP3 algorithm, and significantly

better than the other algorithms surveyed, including the BZIP2 general purpose compres-

sion program (which is also able to make good use of the redundancy in this database),

primarily through being able to compress the sequence bodies using only 0.71 bits per

base. This compares exceptionally well with the 2.09 bits per base achieved by the BLAST

(Altschul et al. 1997)formatdb program, which is the only other format surveyed that

224

6.3. RESULTS CHAPTER 6. NP3

allows fast random access to stored sequences. DNACompressperformed substantially

worse than the general purpose compression algorithms, suggesting that it is not tuned to

take advantage of the many recurrences that exist between nearby records in this sorted

database.

6.3.2 Compression Speed

As Table 6.7 shows, NP3 compresses slower than any of the other algorithms (except the

GeNML Variant), requiring 630 minutes to compress 1.96×109 bases (≈ 190 mega-bases

per hour). The slow compression is mitigated by near-linearacceleration when the par-

allel build mode was activated to make use of 16 processors (≈ 2.8 giga-bases per hour;

15.2 times faster), which also validates the previous assertions regarding linear compres-

sion time with respect to database size. Considering that NP3 is intended as a distribution

algorithm, i.e., decompressed frequently, but compressedonly rarely, these figures are tol-

erable.

6.3.3 Decompression Speed

To assess the decompression speed of NP3, tests were run on a 1.8 GHz AMD Opteron

system running RedHat ES 3 (64bit), the results of which are presented in Tables 6.8 and

6.9.

As previously discussed, extracting sequence descriptions from the bzip2 compressed

blocks is an expensive process. In light of this, statisticswere generated for extracting

sequence bodies alone, or along with their descriptions. The tests were run for three differ-

ent contexts: (a) Global Random; (b) Local Random, and; (c) Sequential.

225

6.3. RESULTS CHAPTER 6. NP3

Table 6.8: NP3 Decompression Performance (UniGene Nucleic Acid Database). NP3 con-
figured to prefer inter-record references if the cost is the same as the cheapest option, i.e.,
code selection ties are broken in favour of inter-record references.

Without Descriptions With Descriptions

Records/sec Bases/sec Records/sec Bases/sec
Global Random 748 417,984 366 204,481
Local Random 71,160 44,642,536 644 409,617

Sequential 339,650 193,303,120 27,675 16,486,549

Table 6.9: NP3 Decompression Performance (UniGene Nucleic Acid Database). NP3 con-
figured to avoid inter-record references, by using them only if they are the single cheapest
option, i.e., code selection ties are broken in favour of not making inter-record references.

Without Descriptions With Descriptions

Records/sec Bases/sec Records/sec Bases/sec
Global Random 950 533,276 378 212,214
Local Random 79,644 49,872,516 627 395,811

Sequential 341,103 194,272,864 27,493 16,370,482

6.3.3.1 Global Random Decompression

Global Randomaccess refers to randomly selecting any one of the 3,480,838records in

the database and recalling it. The slight reduction in file size that the prefer-inter-record-

references-when-cost-neutral heuristic offers comes at asubstantial cost to decompression

speed for random sequence access, both in this context and inthe Local Random context.

It is not surprising that Global Random access is slow compared to the other contexts, as

there is no spatial locality to exploit, and so each request takes a degree of effort to service.

Notwithstanding this, it is still possible to randomly retrieve hundreds of sequences per

second in this way, a feat not previously possible with such acompact representation of the

data.

226

6.3. RESULTS CHAPTER 6. NP3

6.3.3.2 Local Random Decompression

Local Randomaccess refers to randomly selecting any one of the 6.5×105 records in a

given database partition. This is useful as an indication ofthe retrieval speed that can be

expected if NP3 were used in the DASH sequence search and alignment program, where

this is exactly the kind of activity that NP3 will be subjected to. This is because DASH

consults each partition in turn. Here, the spatial locality, and NP3’s caching of previ-

ously extracted records within a database partition provides several orders of magnitude

improvement, provided that sequence descriptions are not required. This was sufficient for

the decompression rate to reach well into the target range required for integration with the

DASH algorithm (tens of thousands to millions of records persecond).

Decompression is slightly faster when the NP3 file is constructed with fewer inter-record

references. This is in line with expectation since resolving inter-record references necessi-

tates decompressing extra records. Nonetheless, the difference in decompression speed is

relatively small.

Retrieval of descriptions could be improved by caching decompressed description blocks

similar to the way that extracted sequence bodies are cachednow. Indeed, for Sequential

decompression, retrieval of sequences with descriptions is over 100 times faster, because

the present caching of a single block of sequence descriptions is sufficient in that context.

6.3.3.3 Sequential Decompression

Finally, Sequentialaccess refers to asking for each successive record in the database. This

provides a good measure of the true decompression speed of NP3, as each record is de-

compressed exactly once. The entire database could be sequentially decompressed in 130

seconds on the test hardware. If sequence descriptions werenot required, then decom-

pression could be accomplished in just 10.6 seconds, equating to 185 million bases per

second, as summarised in Table 6.10. This is slightly fasterthan gzip, and much faster than

227

6.3. RESULTS CHAPTER 6. NP3

Table 6.10: Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And The
GeNML Implementation Of Chapter 7 For The De Facto DNA Corpus, And The DNA
Databases Used In This Dissertation.

Database Program Seconds Bases per Second

Human UniGene GZIP* 13.23 148,100,786
NP3 10.58 185,195,973

GeNML Variant** 91.95 21,309,137
* To make the comparison between GZIP and the NP3 and GeNML Variant algorithms,
GZIP was given an input file consisting only of the DNA letters, i.e., striped of all descrip-
tions and white space.
** These GeNML results were produced using the implementation of the GeNML de-
scribed in Chapter 7.

the GeNML Variant. The relative slowness of GeNML is not surprising, as it is the only

algorithm of the three to make heavy use of Arithmetic Coding. However, NP3 must be

much slower than CINO (Williams and Zobel 1997a), since thatalgorithm is claimed to be

several times faster than gzip — but CINO cannot compress DNAto below 2 bits per base.

6.3.4 Compression Of De Facto Corpus

However the performance of NP3 is less impressive where there is little or no opportu-

nity for exploiting the inter-record redundancy of a well sorted database, such as the small

de facto corpus (for an example, see Chen et al. (2002b)) usedto evaluate existing DNA

compression algorithms that focus on intra-record redundancy. In a complete inversion,

NP3 compresses those sequences at an average of 2.03 bits/base, versus 1.73 bits/base

using DNACompress, and 1.69 bits/base for GeNML (Korodi andTabus 2005). This re-

flects the fact that NP3 focuses on large scale inter-record redundancies rather than on the

intra-record redundancy and other DNA structures that DNACompress leverages: each is

operating on a different scale of structure. GeNML appears to combine the best of both

worlds, in that it obtains the best compression of the de facto corpus, and also performs

well on the Human UniGene (nucleic acid) database. However,as previously mentioned,

GeNML uses Arithmetic Coding, and hence decompresses much more slower than NP3.

228

6.4. CONCLUSIONS CHAPTER 6. NP3

6.4 Conclusions

The results demonstrate that, given a database that is well sorted, the NP3 algorithm is

capable of producing loss-less representations of nucleicacid databases that are at least as

small as the best known algorithm (GeNML), but unlike GeNML,preserving the desirable

feature of fast random access to sequences. NP3 offers decompression of random records

within a partition, and with sufficient speed to make it a potential database format for

sequence search and alignment algorithms. This makes NP3 uniquely suited to providing

a database representation for nucleic acid search and alignment applications that is several

times smaller than is current used. However, NP3 does not compress as well as GeNML

if the database does not contain much large scale redundancy. Thus NP3 and GeNML

represent a trade-off between compressed size and decompression speed. A similar trade-

off exists between NP3 and CINO, with CINO being even faster to decompress than NP3,

but with a lower ratio of compression.

It is true that other compression schemes such as SEQUITUR (Nevill-Manning and Witten

1997) could be expected to obtain similar or better compression than the NP3 byte-aligned

codec, but without the somewhat arbitrary coding decisionsused in that codec. However,

this does not detract from the utility of NP3 in supporting the hypotheses of this disserta-

tion. Nor does it detract from the NP3 framework, as it is essentially codec independent.

The consideration of an appropriate SEQUITUR variant as an NP3 codec with a particu-

lar emphasis on examining the speed and compression trade off would be a fruitful future

exercise.

As mentioned, in the traditional context of nucleic acid databases where there is little ex-

ploitable local redundancy, NP3 has inferior compression performance compared to the

existing algorithms. However, the recent advent of efficient database reordering algorithms

and the immense internal redundancy of collections such as GenBank (recall that Gen-

Bank includes about 12×109 bases that originate from the human genome, yet the human

229

6.5. FUTURE DIRECTIONS CHAPTER 6. NP3

genome consists of only about 3× 109 bases, indicating a four-fold redundancy for that

portion of the database), combined with the attractive compression of sorted databases

presented here, suggests that database reordering of nucleic acid databases is a powerful

approach. As database sizes continue to balloon, and the internal redundancy increases as

a natural result, this method has the potential to become increasingly potent as an effective

means of containing the storage, processing and transmission costs of these databases.

In short, NP3’s (1) effective compression; (2) database portability afforded by byte order

independence, and; (3) asymmetric computational cost favouring decompression, all con-

tribute to making it useful distribution and search format for large sorted DNA databases,

provided that the databases contain sufficient local redundancy. While sorted databases

may be uncommon today, it is almost inevitable that sorting techniques such as enabled

by algorithms such as SPEX (Bernstein and Cameron 2006) willbe applied to make the

collections more manageable.

6.5 Future Directions

In the current implementation, a completely byte-aligned code format is used to facilitate

high speed decompression in software. It is recognised thata bit aligned format would

be more space efficient, but at the cost of decompression speed. Determining the precise

cost of this decision would be constructive in objectively assessing this design decision.

More generally, compression gains are all but certain through further exploration of coding

method space. The complementary strengths of NP3 and DNACompress suggests that a

combination of their methods has the potential to yield an algorithm with superior com-

pression to both. This is considered in part in Chapter 7 by substituting the byte-aligned

codec of this chapter with a variant of the GeNML algorithm.

It is also worth noting that the compression ratio of the sequence description data, at best

7:1 in our experiments with BZIP2, often lags behind that which NP3 achieves on the se-

230

6.5. FUTURE DIRECTIONS CHAPTER 6. NP3

quence bodies, to the point where the compressed sequence description data constitutes

around 30% of the total NP3 compressed Human UniGene (nucleic acid) database. While

the current approach is considered a satisfactory startingpoint, further work in the area

of sequence description compression is warranted — particularly as databases and their

inherent redundancies grow; the entropy of the sequence description will become the dom-

inant factor in compressed file size. Given the specialised vocabulary common in bio-

logical sequence descriptions, compression priming techniques that take advantage of the

global properties of the data being compressed (Bell et al. 1993) are an obvious starting

point. The structure presented by the almost universal inclusion of accession numbers in

sequences descriptions is also a logical target for improved compression. This could be

attacked by utilising a dual-model compression scheme, with separate models for encoding

the accession numbers and the textual part of the descriptions, respectively.

Work is also warranted on the creation and dissemination of efficient and effective tools

for sorting and compressing the major biological sequence databases, and then searching

the compressed databases that result. The combination of DASH and NP3 in Chapter 7

explores this goal by searching NP3 compressed sorted nucleic acid databases.

231

CHAPTER 7. NIX

Chapter 7

NIX: Producing Compact Cooperatively
Compressed Indices Of Biological
Sequence Databases

Introduction

This chapter describes the NIX (short for NP3 Index) algorithm, which builds on the foun-

dation laid by the FOLDDB algorithm introduced in Chapter 5.The method of cooperative

compression presented in that chapter proved effective, provided that whole records were

redundant. In contrast, NIX uses a fine grained method of cooperative compression that is

effective, even when only parts of records are redundant. Inorder to reach this goal, this

chapter also presents modifications to the NP3 algorithm, and adds NIX/NP3 searching

capability to DASH.

The algorithms presented in this chapter are intended as a proof of concept, and thus they

are tuned for compact index size rather than speed. Making these algorithms computation-

ally efficient is left as a future avenue of research. Therefore, search speed is compared

between the unfolded and fine-grain folded versions of the software described in this chap-

ter, rather than being compared with other software, such asBLAST.

232

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

Results are presented showing that by performing cooperative compression using the al-

gorithms described in this chapter, it is possible to reducethe size of already compressed

indices by a further 40%. Moreover, it is shown that searching these compact indices yields

improved sensitivity, thus supporting the thesis of this dissertation. However, for this proof

of concept at least, these gains come at the cost of greatly inflated search times.

Finally, brief results are shown attempting to apply the finegrained cooperative compres-

sion algorithms of this chapter to a much less redundant nucleic acid database (the Human

Genome), which demonstrates that, as things currently stand, the algorithms have limited

applicability to unsorted databases.

7.1 The NIX Indexing Algorithm

The NIX indexing algorithm consists of constructing a conventional compressed inverted

list that excludes redundant postings can be recomputed during decompression with the

assistance of the recurrence records.

7.1.1 Omission Of Redundant Postings

Cooperative compression consists of posting in the index only one instance of each recur-

rent string. The question arises as to which instance shouldbe posted. This problem can be

simplified if we resolve sets of recurrent strings into pairs, thus reducing the question to:

Should we post the first or the last occurrence? This questionis answered by considering

the context (sequence search and alignment) in which the cooperatively compressed index

will be searched.

Sequence search and alignment involves extracting recordsfrom a database that are similar

to some query sequence. Extracting a record from an NP3 compressed database requires

the resolution of any recurrence chains that the record references. Therefore, when some

233

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

record,Rn, is extracted, the possibly empty set of recordsA(Rn), on which it depends,

must also be extracted. Therefore, it makes sense to post thelast instance of a recurrent

string, as the postings can be cloned into the context of eachrecord inA(Rn) as they are

extracted from the database (recall that recurrence chainsin NP3 files link toward the start

of a database). Specifically, no additional data structure is required to facilitate the efficient

reproduction of the omitted postings from the cooperatively compressed index. This is

Reverse Indexing.

However, if multiple sequences point to a common source, then only one instance (the one

that is in the common source) can be omitted from the cooperatively compressed index.

This can be mitigated to some extent by constructing the NP3 database so that common

sources are avoided whenever possible. However, this is at the cost of producing longer

recurrence chains.

In contrast to Reverse Indexing, it is possible to instead index only the first instance of each

pair of recurrent strings. This isForward Indexing. The advantage of forward indexing

is that when a recurrent string occurs many times, only one instance requires posting in

the index (the common source). Thus, this method requires, at most, an equal number

of postings to Reverse Indexing, but requires fewer postings than Reverse Indexing when

common sources exist. However, the disadvantage of forwardindexing is that because it

is the first and not last repetition of a string that is posted,the recurrence chains in the

NP3 file link forwards, which is the wrong direction to provide a path to locate the other

repetitions of the string; an additional data structure is required to provide this information.

Nonetheless, if this data structure is smaller than the space saved by omitting more postings

from the index, then the result will be more compact than can be achieved with Reverse

Indexing.

Figure 7.1, demonstrates the difference between Forward Indexing and Reverse Indexing

with a simple example consisting of four postings, Posting 1, Posting 2, Posting 3 and

234

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

Posting 4, each of which correspond to instances of a recurrent string. The set of four

postings are decomposed into pairs (indicated by arrows in the figure) where each posting is

linked to the next nearest posting towards the start of the database partition. In our example,

the recurrent string is not exactly repeated between Postings 3 and 4, thus requiring Posting

4 to point to Posting 2 rather than Posting 3.

With Reverse Indexing, considering each linked pair in turn, we need only store the last

instance. Therefore we cancel the storage of the first instance. Thus the pair (Posting 1,

Posting 2) allows the cancellation of storage of Posting 1. Similarly either pair (Posting 2,

Posting 3) or (Posting 2, Posting 4) allows us to cancel the storage of Posting 2. However,

no instances point to Postings 3 or 4, so they must be stored. Thus, with Reverse Indexing,

two postings must be stored.

With Forward Indexing, the process is similar, but we cancelthe storage of the latter post-

ing in each pair. Thus (Posting 1, Posting 2) allows the cancellation of storage of Posting

2; (Posting 2, Posting 3) the cancellation of storage of Posting 3, and; (Posting 2, Posting

4) the cancellation of storage of Posting 4. Forward indexing has the advantage that where

multiple postings point to the same source, as with (Posting2, Posting 3) and (Posting 2,

Posting 4), we need only store one posting, the common source, where as with Reverse In-

dexing we must store one posting per pair. Thus, with ForwardIndexing, only one posting

must be stored. However, as previously mentioned, with Forward Indexing, we must main-

tain a list of which database records contain references to which other database records,

thus reducing the space advantage.

What is common in both cases and forms the core of the NIX indexing algorithm is that

postings are excluded from the index where they can be shown to be redundant by virtue

of their residing within a recurrent string.

235

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

Posting 1

Partition
Start of Database

Partition
End of Database

Towards

Towards

Forward Indexing Reverse Indexing

Posting 4

Posting 3

Posting 2

Posting 1

Posting 4

Posting 3

Posting 2

Figure 7.1: Forward And Reverse Indexing Of Chains Of Recurrences. Here four postings
are depicted, each corresponding to an instance of a recurrent string. Shaded postings
indicate postings that must be stored. Forward Indexing stores the head of each recur-
rence chain, while Reverse Indexing stores the tail (or leaf node) of each recurrence chain.
Reverse Indexing may store more postings because, as in this example, branching may
occur, meaning that there may be multiple leaf nodes for a given recurrence chain.

236

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

7.1.2 Reconstruction Of Omitted Index Postings

The method of reconstruction of omitted index postings differs for Forward and Reverse

direction indices.

For Reverse Indexing, the method is straightforward and efficient: Whenever an HSP is

discovered: (a) check the recurrence records that correspond to that record (recall that these

are extracted implicitly when decompressing the NP3 file), and; (b) translate the relevant

portion of the HSP into each context indicated by the recurrence records. This process is

performed recursively until no new contexts are discovered.

For Forward Indexing, the situation is complicated by the fact that the recurrence records

cannot be used to determine the existence of instances of recurrent strings further forward

in the index (recall that the recurrence records in an NP3 filealways point to records earlier

in the database). Therefore an additional data structure must be consulted that indicates

for each record,R, the forward records,Rf , that have recurrence records that point to

R. This list is then traversed, and the HSP translated into each context identified by a

recurrence record in someRf that intersects with the HSP as discovered inR. This process

is performed recursively until no new contexts are discovered.

This process is not as efficient as the reverse indexing case,because the data structure may

indicate records that depend on the record under consideration, but are not similar in the

region of the HSP being translated. Therefore, unlike in reverse indexed searching, records

may be unnecessarily extracted and examined.

Note that a Forward direction index can be subjected to both the reverse and forward di-

rection searches, with the potential of increased sensitivity, but at the cost of computational

burden. The additional sensitivity arises because, while the forward search will exhaus-

tively discover all omitted postings (and so guarantee no loss of sensitivity compared to a

conventional index), by searching forwards and backwards for non-exact HSPs (recall that

237

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

HSPs are permitted to contain substitutions), it is possible to discover approximate matches

that would otherwise remain undetected.

An issue that is not seriously considered in this dissertation is whether this trade-off in

predictability of execution time is overly excessive, or ifit is sufficiently offset by improved

sensitivity. It would be a productive future exercise to explore this issue in more detail,

perhaps with the objective of discovering techniques that mitigate or manage this issue.

7.1.3 Re-Use And Minimisation Of HSP Discovery Effort

Compared with searching an ordinary index, searching a cooperatively compressed index

necessitates an additional and potentially costly translation step whenever an HSP is dis-

covered. This step involves taking some HSP,h, and determining if the record segment it

covers corresponds to any recurrent strings (as recorded inthe NP3 file). If it does, the

recurrent regions are translated into the context of each instance of the recurrent string, to

produce translated HSPs,h
′
1 ... h

′
n.

If the HSP being translated lies entirely within a recurrentstring, then the translated HSP

does not require extension, because the translated location has the same immediate context

as the original HSP. In other words, the details of the context that defined the end points

of the original HSP are the same in the context of the translated HSP. However, if the HSP

being translated includes the boundary of one or more recurrent strings, then the translated

HSP requires extension on the boundary that the HSP crosses,as that end of the translated

HSP has a different context to the original HSP. Figure 7.2 illustrates the process, showing:

how the translation occurs; how the previous HSP extension work is reused; and, how

additional HSP extension is minimised.

HSP 1 in fragment (a) lies completely within the recurrent string, and so its immediate

context does not change, i.e., it is still bounded byGTCAT on the left, andCGTTT on the

238

7.1. THE NIX INDEXING ALGORITHM CHAPTER 7. NIX

GGATACGTCGTACTGC

GTTGCAA

CCGTACGGTCATGAAGTGCGTACAGTCGTTT

GTCATGAAGTGCGTACAGTCGTTT

GTCATGAAGTGCGTACAGTCGTTT

(c)

(b)

1

2

3

(a)

ATATTAGAC

TAGTATCGC

Figure 7.2: HSP Translation Scenarios. Each record fragment (a), (b) and (c) contains a re-
current string, as represented by the dashed boxes. Three HSPs are found as represented
by the solid boxes, and identified by the corresponding super-scripts.

right. Therefore, when it is translated into fragments (b) and (c), it does not require further

extension.

In contrast, HSP 2 completely contains the recurrent string. In this case, only the portion

of the HSP that is shared with the recurrent string can be translated into fragments (a)

and (c). Further, because the immediate context of the translated portion of the HSP has

changed (GTACTGC for record (a), orCCGTACG for record (c), instead ofGTTGCAA on the

left, andGGATACGTC for record (a), orATATTAGAC for record (c), instead ofTAGTATCGC on

the right), this translated HSP must be extended at both ends.

Finally, HSP 3 presents a combination of the conditions of HSP 1 and HSP 2. Only the

portion of the HSP that intersects the recurrent string (GTCGTTT) can be translated into

fragments (a) and (b). Because the context on the left hand side does not change, the

translated HSPs do not require extension on that side. However, the context does change

on the right hand side, and so the translated HSPs must be extended on that side.

In each case, translating each of the three HSPs preserved the maximum extent of each

HSP when translated. Moreover, the translated HSPs do not always need to be extended

on both ends in order to ensure that they remain maximally extended. Together, these

factors reduce the computational burden compared to discovering each of the nine final

HSPs independently. The assumptions in this process are these: (1) that the list of all

239

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

instances of each recurrent string can be efficiently identified, and; (2) that HSP translation

can be performed more quickly than HSP discovery and extension.

A final consideration in this process is that by requiring theDASH algorithm to now fol-

low chains of recurrences during the early part of the searchprocess, rather than merely

cloning results at the end, detracts from the attractive time complexity properties of the

DASH algorithm. Specifically, while the NIX algorithm is linear with respect to the num-

ber of stored postings, it inherits NP3’s exponential upperbound when reconstructing and

exploring the cooperatively compressed parts of the index.While the NP3 decompression

cost can reduce to linear when all records are retrieved, thesame is not true of the HSP

translation cost when considering the cooperatively compressed postings. This is because

the recurrence records must be examined even if the databaserecord they correspond to has

already been retrieved.

7.2 NIX Index Format

The NIX index format is an inverted file, similar to the FOLDDBindex format. However,

there are two important distinctions between NIX and FOLDDB.

The first distinction is that, where as the FOLDDB index contains all the data structures

required to search the database it represents, including the sequence bodies, the NIX format

contains only the index structures; the storage of the sequence bodies is handled by the NP3

file format. Thus, while only a single file is required to search a FOLDDB indexed database,

two files, an NP3 file and a NIX file, are required to search a NIX indexed database.

The second distinction is that the representation of the inverted lists is made to be space

efficient rather than fast to decompress. Rather than using an ad hoc compression scheme,

recent advances in inverted list compression are used to minimise the space requirements.

240

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

7.2.1 Why Pointers Tok-mer Indices Were Not Compressed

The lexicon size of a fixed-width index can be calculated fromthe alphabet size and the

index width. Further, for typical index widths, this lexicon size is very small. Any useful

representation of an inverted file must store a pointer to theposting list of eachk-mer in

the lexicon. Therefore, while the pointers to the compressed inverted list corresponding

to eachk-mer could be compressed, for example according to the method of Bell et al.

(1993), because the lexicon is small compared to the size of the database, the savings

would be small (only a few percent for a typical NIX file). Therefore, these pointers were

stored uncompressed in a NIX file. This is the one exception tothe general rule that NIX

structures are optimised for compactness rather than access speed.

7.2.2 Compressing The Inverted Lists

In place of the fixed and ad hoc inverted list compression of the FOLDDB algorithm, and

similar to NP3, NIX uses a plug-in system so that it can support a variety of inverted

list compression coding and decoding schemes (codecs). This separates the cooperative

compression functions of NIX from the inverted list coding,and allows greater freedom in

the selection of the optimal codec for a given application, particularly as new inverted list

compression schemes are developed.

The selection of a suitable codec for inclusion in NIX required some thought into the effect

that cooperative compression would have on the distribution of values in an inverted list.

The greatest impact that cooperative compression has on this distribution is that it can thin

out any clusters in an inverted list. This occurs because cooperative compression merges

the index postings of nearby recurring strings. Therefore clusters of postings may become

sparser, and in the extreme, each cluster may be reduced to a single posting.

However, it is unlikely that clustering will be eradicated altogether, especially since similar,

but not identical, sequences are common. Since the sequences are not identical, the NP3 al-

241

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

gorithm cannot merge their storage, and because NIX uses therecurrence information from

the NP3 file, such clusters will not be affected. Therefore, the inverted list compression al-

gorithms that can make good use of clusters remain attractive. Two recent cluster-sensitive

inverted list coding schemes were considered: Interpolative Coding (Moffat and Stuiver

2000, 1996), and Selector Coding (Anh and Moffat 2005, 2004).

Interpolative Coding is slower to decompress than SelectorCoding (Trotman 2003), be-

cause Interpolative Coding involves recursion. However, compression is much faster, be-

cause there is no searching phase in the compression algorithm. In contrast to Interpolative

Coding, Selector Coding must search for the best selector atevery iteration. Even if this

is performed heuristically, empirical evidence suggests that compression is many times

slower than for Interpolative Coding, and more than an orderof magnitude slower if op-

timal compactness is to be achieved. Turning from speed to effectiveness, Interpolative

coding generally compresses inverted lists better than Selector Coding, and indeed better

than any of the other published inverted list compression schemes published at the time of

writing (Anh et al. 2001, Moffat and Stuiver 2000). In summary, Interpolative Coding is

faster to compress, and compresses better, while Selector Coding offers faster decompres-

sion.

Improved compression effectiveness, i.e., smaller representations, do not always translate

into greater query throughput. This is, first, because decompression always takes time,

and, second, because of fixed delays, such as disk seek and transfer times (Trotman 2003).

However, in the context of this dissertation it is assumed that an index will be resident in

RAM, and so the retrieval time will be negligible. Moreover,since the index must fit in to

RAM, compactness takes priority, even though this may carrya speed penalty: The penalty

of not fitting into RAM would be much greater.

242

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

In light of this need to minimise the compressed index size, Interpolative Coding was cho-

sen as the inverted list codec for NIX. To mitigate the decompression speed penalty, a fast

Interpolative Coding routine was written that is iterativerather than recursive.

7.2.2.1 Creating A Fast Interpolative Coder

Interpolative Coding compresses a list of ascending valuesby recursively dividing the in-

terval and using only the minimum number of bits to place eachvalue within its interval.

This is best illustrated with an example. The example from Moffat and Stuiver (2000) is

reproduced.

Consider the following inverted list〈7;3,8,9,11,12,13,17〉, i.e., an inverted list containing

the seven values 3, 8, 9, 11, 12, 13 and 17. Further, assume that the upper limit is known

to beN = 20. In encoding the first value, 3, assume that the second value is already known

to be 8. In that case, the first value must lie in the range 1..7:The first value can be thus be

encoded in three bits. Moving to the third value, 9, assume that in addition to knowing the

second value, that the fourth value, 11, is also known. Therefore, the third value must lie

in the range 9..10, and can be encoded in a single bit. For the fifth value, assume that the

forth and sixth values are known to be 11 and 13. In this case, the fifth value must be 12:

Therefore no code is required to place this value. Finally, to encode the seventh value, we

know that the upper limit,N, is 20. Therefore the value must lie in the range 14..20, and

can be encoded in three bits.

This is all very well, but it has been assumed that the second,fourth and sixth values were

already known. This can be dealt with if that list of values,〈3;8,11,13〉, is encoded first.

Following the same method as for the original list, assumingthat the second value, 11, is

known when encoding the first value, then the first value must lie in the range 1..10, and

can be encoded in four bits. However, we know that there is a value on either side of it.

Therefore, it cannot be 1, nor can it be 10. This allows the range to be narrowed to 2..9,

243

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.3: Example Interpolative Coding Intervals For The Inverted List, 〈7; 3, 8, 9, 11,
12, 13, 17〉, drawn from Moffat and Stuiver (2000).

and hence one bit can be shaved from the code. The third value,likewise, must lie in the

range 12..20, which using the same logic as before, can be narrowed to 13..19, also saving

a bit.

Finally, the second value of this list must be available before these two values can be en-

coded. Thus the list〈1;11〉 must be encoded. The single value, 11, must lie in the range

1..20. Now it is known that three values must lie on each side,so the range can be narrowed

to 4..17, and the value can be encoded in four bits. However, by using a centred minimal bi-

nary code (as described by Howard and Vitter (1992)), the 24− (17−4+1) = 16−14= 2

spare values in the four bit code can be traded away in favour of making two of the remain-

ing codes one bit shorter. If these are placed in the centre ofthe range, then in this case a

further bit can be saved.

Figure 7.3 depicts the recursive Interpolative Coding example described above. The shaded

regions indicate the interpolated range of each value, and each layer of recursion is depicted

on a separate number line. The number of layers of recursion is ⌈log2(n)⌉, wheren is the

length of the list.

In order to increase decoding speed, the fast interpolativecoder in NIX replaces recursion

with a blocked iterative strategy. This is possible, because, for a fixed length inverted list,

244

7.2. NIX INDEX FORMAT CHAPTER 7. NIX

the elements of that list are visited in a deterministic order, independent of the values of

the elements. By pre-computing tables for: (a) the order of visitation, and; (b) the nearest

elements on either side that are known. These tables can thenbe traversed, allowing In-

terpolative Coding to be performed without recursion, and without maintaining an explicit

stack.

This is all very well, provided the table matches the length of the inverted list being encoded

or decoded. However, it readily generalises to allow pseudo-iterative Interpolative Coding

of both shorter and longer lists.

The generalisation for shorter lists is to add monotonically increasing values to the end of

the inverted list until it is the same length as the table. Because the values are monotonic,

the Interpolative Coder does not require any bits to encode this perfect cluster of values.

Further refinement is possible: By maintaining additional pre-computed tables that indicate

the first and last positions in the table that require evaluation for a given length list, the

number of elements can be reduced to be approximately equal to the length of the list being

encoded or decoded.

The generalisation for longer lists is to use a hierarchicalmethod. This introduces a limited

amount of recursion, in return for raising the upper bound onthe length of the inverted

lists that can be processed. For NIX, the maximum required inverted list length is 224.

Using a table size of 28−1 = 255, only three levels of recursion are required, which can

be efficiently implemented as a nested loop. The table size is255, and not 256, because

every 256th value is placed by the middle of the three levels of recursion, and every 256th

of those values is placed by the top of the three levels of recursion. The block size of 255

also obeys the advice of Moffat and Stuiver (2000) in selecting trees to be of size 2k−1,

so that sub-trees will be of equal size. Also in obedience to Moffat and Stuiver (2000),

the centred minimal binary code is used for all but leaf nodes, where the shorter codes are

instead placed on the outside of the range.

245

7.3. MODIFICATIONS TO NP3 CHAPTER 7. NIX

The use of tables to accelerate Interpolative Coding is similar to the methods of Cheng et al.

(2004). However, the methods presented in this dissertation use only Interpolative Coding,

and unlike Cheng et al. (2004), do not introduce any compression leakage.

A further optimisation to Interpolative Coding that has notbeen implemented, is to use

knowledge of thek-mer that an inverted list corresponds to. Mostk-mers, cannot occur

at successive positions, because the overlapping(k−1) bases must be in agreement. For

example, consider the 8-merACGTAGTA. This 8-mer can only occur every seven bases, be-

cause only the A’s at each end will match. However,ACGTACGT could occur every four

bases. This minimum distance that ak-mer can follow itself can be easily computed, and

could be used when narrowing the interpolated range betweenthe previous and next known

entries in an inverted list. Given the frequency of repeats in most genomes and transcrip-

tomes, this may deliver substantial space savings.

7.3 Modifications To NP3 To Optimise For Forward And

Reverse Indexing

As it was described in Chapter 6, the NP3 algorithm was not optimised for either the For-

ward Indexing or Reverse Indexing forms of cooperative database and index compression.

This is addressed by the introduction of three optimisations: two general optimisations that

apply to both Forward Indexing and Reverse Indexing; and oneoptimisation specific to

Reverse Indexing.

7.3.1 Optimisation One: Preferring Inter-Record References

By default, the NP3 algorithm attempts to minimise the length of recurrence chains in

order to maximise decompression speed. Specifically, if there are two options to encode

a given record fragment which result in identical bit lengths, the one that does not require

246

7.3. MODIFICATIONS TO NP3 CHAPTER 7. NIX

an inter-record reference will be chosen in preference to the one that does require an inter-

record reference. The trade-off is that fewer postings are omitted from the cooperatively

compressed index.

The first optimisation, then, is to reverse this policy and prefer inter-record references,

using them whenever they require no more bits than the best alternative.

7.3.2 Optimisation Two: Per-Posting Rebate

The first optimisation can be taken further by estimating thereduction in index size that

results from any given inter-record reference. This cost estimate can then be taken into

account by the NP3 optimiser. Rather than minimising the NP3file alone, the optimiser

would then be optimising the combined NP3 and NIX file size.

While this method of minimising the combined file size is simple in principle, it is difficult

to accurately predict the reduction in index size that results from any given inter-record

reference. This is because the index is compressed; it is more difficult to correctly predict

the savings in compressed index size than it is to predict thesavings in uncompressed index

size. Nonetheless, a simple approximation of a fixed number of bits per posting was tried.

The second optimisation, then, is to offset the cost of each inter-record reference by a fixed

number of bits for each posting that it removes from the index.

7.3.3 Optimisation Three: Maximising Inter-Record Reference Tar-

get Coverage

The third modification is specific to Reverse Indexing. It is based on the fact that Reverse

Indexing posts in the index only the last instance of a recurrent string pair, i.e., it excludes

the posting for the first (source) instance of the string. Therefore, when using Reverse

Indexing, the more unique source material included in inter-record references, the more

247

7.4. SEARCHING NP3/NIX ENSEMBLES WITH DASH CHAPTER 7. NIX

postings that can be omitted, and the greater the savings. Tothis end, the NP3 algorithm

is supplemented with a coverage bitmap that indicates whether each residue in the current

window has been used as a source string or not. When choosing the best source material

for a recurrent string from among several options, only the number of previously unused

residues in the source are counted when assessing the savings. While this may result in a

larger NP3 file, it should result in a smaller combined NP3 andNIX file size.

The third optimisation, then, is to pair recurrent strings such that the pairs preferentially ref-

erence unique source material, thus maximising the number of postings that can be omitted

from the index using Reverse Indexing.

7.4 Searching NP3/NIX Ensembles With DASH

The DASH algorithm required relatively few modifications inorder to search NP3/NIX

ensembles. The most obvious change was adding the code to read from NP3 and NIX

files. Beyond that, the only other additions were: (a) the code required to reconstruct

the postings omitted from the index, and; (b) the code to takeadvantage of the presence

of recurrent strings in order to enhance the sensitivity of the HSP discovery stage of the

DASH algorithm.

7.5 Comparison of NP3 and GeNML

The NP3 byte-aligned compression algorithm introduced in Chapter 6 is effective for

databases containing many long repeated strings. However,NP3 is not effective when

applied to typical nucleic acid databases that do not contain as many long repeated strings,

such as genomes of single organisms. Indeed, NP3 is outperformed in these circumstances

by algorithms such as DNACompress (Chen et al. 2002a) and GeNML (Korodi and Tabus

248

7.6. PRESENTATION OF DUPLICATED RESULTS CHAPTER 7. NIX

2005). This is unfortunate, because NP3 does offer the attractive characteristics of: (a)

faster decompression, and; (b) the explicit coding of inter-record references, allowing the

construction of compact indices. This trade-off is explored by adding a GeNML codec to

NP3 to allow the comparison of the two algorithms in the context of a sequence search and

alignment system.

A new implementation of GeNML was created as the source code for GeNML is not freely

available. In order to fit within the framework of the DASH sequence search and alignment

system, this implementation differs in several ways from the canonical GeNML algorithm

published by Korodi and Tabus (2005). First, database partitioning reduces the average

window size. Secondly, synchronisation points are added for each database record, with

each record forming a single GeNML macro-block. Both of these modifications slightly de-

grade compression performance, but were unavoidable in adapting GeNML for use. More-

over, exactly the same concessions apply to the NP3 byte-aligned compression algorithm,

thus making the comparison fair. Finally, the GeNML implementation used here boasts a

hybrid arithmetic and direct coding scheme that uses arithmetic coding only when required,

thus accelerating decompression speed.

7.6 Presentation Of Duplicated Results

The explicit representation of recurrence records as described in this chapter make it possi-

ble to efficiently determine for a pair of alignments whetherthey are sourced from identical

or near identical material. When that is the case, it can be argued that such results should be

presented to the user in such a way that these relationships are clearly visible. Indeed, when

alignments are identical, only one of the alignments need bedisplayed, as the others can be

fully described by indicating only the source sequence of each. That is, because we have

“knowledge of content-equivalence relationships within acollection” (Bernstein and Zobel

2005), more effective user interfaces can be envisaged. Theattraction of such representa-

249

7.6. PRESENTATION OF DUPLICATED RESULTS CHAPTER 7. NIX

tions increases as the redundancy within biological sequence databases increases over time.

The attractiveness of merging results for easier reading isaffirmed by the fact that BLAST

has formatting options that partially achieve this goal. However, the implementation of

such a system is outside of the scope of this dissertation. Therefore, the presentation of

results in the current experiment remains unchanged from that used in previous chapters,

i.e., a BLAST-like report.

250

7.7. METHOD CHAPTER 7. NIX

7.7 Method

In order to assess the effectiveness of the NIX cooperatively compressed index format, NP3

and NIX ensembles were constructed of the Human UniGene (nucleic acid) database with

a variety of configurations. For each configuration, DASH wasrun using the two canonical

parameter sets described in Chapter 3, and the indices were constructed using frequentk-

mer (i.e., stopk-mer) exclusion thresholds of 1.5, 2.5, 5.0 and 10 times random expectation.

The list of configurations below describe the cooperative compression optimisations to NP3

that were enabled for each test. The section and table numbers refer, respectively, to the

corresponding text from the previous section, and the tables in Appendix A that contain the

command line parameters passed to NP3, NIX and DASH. The configurations used were:

1. Cooperative compression disabled, and stopk-mers excluded (as a negative control)

(Table A.11);

2. Forward Indexing, and stopk-mers excluded (Table A.12);

3. As for (2), but preferring inter-record references (Section 7.3.1) (Table A.13);

4. As for (3), but with per-posting rebates (Sections 7.3.1 and 7.3.2) (Table A.14);

5. As for (4), but with stopk-mers included (Sections 7.3.1 and 7.3.2) (Table A.15);

6. Reverse Indexing, and stopk-mers excluded (Table A.16);

7. As for (6), but preferring inter-record references (Sections 7.3.1) (Table A.17);

8. As for (7), but with per-posting rebates (Sections 7.3.1 and 7.3.2) (Table A.18);

9. As for (8), but maximising distinct source material (Sections 7.3.1, 7.3.2 and 7.3.3)

(Table A.19); and

10. As for (9), but with stopk-mers included (Sections 7.3.1, 7.3.2 and 7.3.3) (Table

A.20).

251

7.8. RESULTS CHAPTER 7. NIX

To assess the effectiveness of NP3/NIX compression on a database with a more typical

level of redundancy, the Human Genome (nucleic acid) database was also compressed and

indexed, using configurations 1 and 3.

Using the methods described in Chapter 3, the following measurements were made for each

of the experiments described above:

1. Increase in search sensitivity relative to operating without cooperative compression

(i.e., the negative control), and the peer group of algorithms;

2. Reduction in NP3 and NIX index sizes (and the time taken to construct them) relative

to operating without cooperative compression (i.e., the negative control); and

3. Reduction in search speed relative to operating without cooperative compression (i.e.,

the negative control), and also the results of Chapter 5.

7.8 Results

7.8.1 Improved Search Sensitivity

Tables 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 present the sensitivity information for DASH

Mode 2 and DASH Mode 4 for the four posting exclusion thresholds: 1.5× random expec-

tation, 2.5× random expectation, 5.0× random expectation, and 10× random expectation.

The sensitivity scores listed in these tables reflect two trends that were expected: (a) That

increasing the posting exclusion frequency threshold,E, results in increased sensitivity.

That is, the more comprehensive the index, the more sensitive the search. (b) That DASH

Mode 4 (M4) is much more sensitive than DASH Mode 2 (M2), whichwas first established

in Chapter 5. This is the single largest influence on search sensitivity.

252

7.8. RESULTS CHAPTER 7. NIX

Table 7.1: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M2
Config 1, E=1.5

70.06 70.04 69.86 69.83 69.72

DASH M2
Config 2, E=1.5

70.62 70.61 70.42 70.40 70.29

DASH M2
Config 3, E=1.5

70.90 70.89 70.70 70.68 70.57

DASH M2
Config 4, E=1.5

71.42 71.41 71.22 71.20 71.09

DASH M2
Config 5, E=∞ 83.83 83.82 83.62 83.56 83.47

DASH M2
Config 6, E=1.5

71.08 71.07 70.89 70.87 70.76

DASH M2
Config 7, E=1.5

71.25 71.23 71.05 71.03 70.92

DASH M2
Config 8, E=1.5

72.20 72.19 72.01 71.99 71.86

DASH M2
Config 9, E=1.5

72.20 72.19 72.01 71.99 71.86

DASH M2
Config 10, E=∞ 83.80 83.78 83.58 83.49 83.39

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

253

7.8. RESULTS CHAPTER 7. NIX

Table 7.2: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M2
Config 1, E=2.5

75.69 75.69 75.50 75.47 75.39

DASH M2
Config 2, E=2.5

75.69 75.69 75.50 75.47 75.39

DASH M2
Config 3, E=2.5

75.97 75.97 75.78 75.75 75.67

DASH M2
Config 4, E=2.5

76.53 76.53 76.34 76.31 76.22

DASH M2
Config 5, E=∞ 83.83 83.82 83.62 83.56 83.47

DASH M2
Config 6, E=2.5

75.77 75.75 75.56 75.53 75.43

DASH M2
Config 7, E=2.5

75.94 75.92 75.73 75.70 75.61

DASH M2
Config 8, E=2.5

76.83 76.82 76.62 76.60 76.50

DASH M2
Config 9, E=2.5

76.83 76.82 76.62 76.60 76.50

DASH M2
Config 10, E=∞ 83.80 83.78 83.58 83.49 83.39

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

254

7.8. RESULTS CHAPTER 7. NIX

Table 7.3: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M2
Config 1, E=5

79.51 79.50 79.30 79.22 79.14

DASH M2
Config 2, E=5

79.55 79.55 79.34 79.27 79.19

DASH M2
Config 3, E=5

79.6 79.59 79.39 79.32 79.24

DASH M2
Config 4, E=5

80.13 80.12 79.92 79.88 79.8

DASH M2
Config 5, E=∞ 83.83 83.82 83.62 83.56 83.47

DASH M2
Config 6, E=5

79.76 79.75 79.54 79.47 79.38

DASH M2
Config 7, E=5

79.95 79.94 79.73 79.67 79.57

DASH M2
Config 8, E=5

80.41 80.39 80.18 80.11 80.02

DASH M2
Config 9, E=5

80.41 80.39 80.18 80.11 80.02

DASH M2
Config 10, E=∞ 83.80 83.78 83.58 83.49 83.39

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

255

7.8. RESULTS CHAPTER 7. NIX

Table 7.4: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 10× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M2
Config 1, E=10

81.70 81.70 81.50 81.41 81.33

DASH M2
Config 2, E=10

81.69 81.69 81.49 81.40 81.32

DASH M2
Config 3, E=10

81.74 81.73 81.53 81.44 81.36

DASH M2
Config 4, E=10

82.02 82.01 81.81 81.75 81.67

DASH M2
Config 5, E=∞ 83.83 83.82 83.62 83.56 83.47

DASH M2
Config 6, E=10

82.12 82.11 81.91 81.82 81.72

DASH M2
Config 7, E=10

82.18 82.17 81.97 81.88 81.78

DASH M2
Config 8, E=10

82.39 82.38 82.17 82.08 81.99

DASH M2
Config 9, E=10

82.39 82.38 82.17 82.08 81.99

DASH M2
Config 10, E=∞ 83.80 83.78 83.58 83.49 83.39

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

256

7.8. RESULTS CHAPTER 7. NIX

Table 7.5: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M4
Config 1, E=1.5

78.35 78.27 77.88 77.78 77.57

DASH M4
Config 2, E=1.5

79.22 79.14 78.75 78.65 78.35

DASH M4
Config 3, E=1.5

79.39 79.31 78.92 78.82 78.50

DASH M4
Config 4, E=1.5

79.67 79.59 79.20 79.11 78.88

DASH M4
Config 5, E=∞ 91.94 91.88 91.53 91.38 90.91

DASH M4
Config 6, E=1.5

79.95 79.87 79.48 79.39 79.17

DASH M4
Config 7, E=1.5

80.12 80.03 79.64 79.55 79.34

DASH M4
Config 8, E=1.5

81.00 80.92 80.51 80.41 80.20

DASH M4
Config 9, E=1.5

81.00 80.92 80.51 80.41 80.20

DASH M4
Config 10, E=∞ 91.94 91.87 91.52 91.37 90.92

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

257

7.8. RESULTS CHAPTER 7. NIX

Table 7.6: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M4
Config 1, E=2.5

85.25 85.17 84.69 84.55 84.17

DASH M4
Config 2, E=2.5

84.65 84.58 84.21 84.08 83.75

DASH M4
Config 3, E=2.5

84.72 84.64 84.28 84.16 83.83

DASH M4
Config 4, E=2.5

85.12 85.05 84.69 84.56 84.23

DASH M4
Config 5, E=∞ 91.94 91.88 91.53 91.38 90.91

DASH M4
Config 6, E=2.5

86.61 86.53 86.06 85.92 85.53

DASH M4
Config 7, E=2.5

86.69 86.61 86.14 86.00 85.61

DASH M4
Config 8, E=2.5

87.12 87.05 86.56 86.42 86.04

DASH M4
Config 9, E=2.5

87.12 87.05 86.56 86.42 86.04

DASH M4
Config 10, E=∞ 91.94 91.87 91.52 91.37 90.92

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

258

7.8. RESULTS CHAPTER 7. NIX

Table 7.7: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M4
Config 1, E=5

88.94 88.86 88.51 88.38 88.00

DASH M4
Config 2, E=5

89.17 89.08 88.74 88.59 88.21

DASH M4
Config 3, E=5

89.20 89.13 88.79 88.64 88.27

DASH M4
Config 4, E=5

89.32 89.25 88.89 88.74 88.30

DASH M4
Config 5, E=∞ 91.94 91.88 91.53 91.38 90.91

DASH M4
Config 6, E=5

89.83 89.75 89.39 89.25 88.86

DASH M4
Config 7, E=5

89.87 89.79 89.44 89.30 88.91

DASH M4
Config 8, E=5

89.99 89.91 89.54 89.41 89.03

DASH M4
Config 9, E=5

89.99 89.91 89.54 89.41 89.03

DASH M4
Config 10, E=∞ 91.94 91.87 91.52 91.37 90.92

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

259

7.8. RESULTS CHAPTER 7. NIX

Table 7.8: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 10× Random Expectation.

Format PatternHunter Variant Score
at 50% at 75% at 90% at 95% at 100%

DASH M4
Config 1, E=10

90.89 90.82 90.47 90.33 89.86

DASH M4
Config 2, E=10

90.95 90.89 90.53 90.39 89.92

DASH M4
Config 3, E=10

90.97 90.91 90.56 90.42 89.96

DASH M4
Config 4, E=10

90.94 90.87 90.53 90.37 89.89

DASH M4
Config 5, E=∞ 91.94 91.88 91.53 91.38 90.91

DASH M4
Config 6, E=10

91.18 91.11 90.77 90.62 90.16

DASH M4
Config 7, E=10

91.19 91.13 90.79 90.65 90.19

DASH M4
Config 8, E=10

91.41 91.34 91.00 90.85 90.40

DASH M4
Config 9, E=10

91.41 91.34 91.00 90.85 90.40

DASH M4
Config 10, E=∞ 91.94 91.87 91.52 91.37 90.92

Smith-Waterman
100 100 100 100 100

BLAST
(Default)

82.04 81.64 78.69 74.97 66.58

BLAST
(No Filter)

88.43 88.38 87.96 87.73 86.86

BLAST
(Report Everything)

92.78 92.36 89.41 85.62 76.96

FASTA
66.41 65.59 65.36 65.28 65.25

BLAT
51.69 51.41 50.88 50.04 42.06

PatternHunter
46.22 45.58 44.59 43.67 40.05

CAFE
26.69 26.68 25.96 24.20 17.32

260

7.8. RESULTS CHAPTER 7. NIX

In addition to these expected trends, the search sensitivity scores improve as cooperative

compression is more aggressively applied (Wilcoxon sign test yieldsp≤ 0.0008 forE=1.5

index with DASH M2). For example, Configurations 2, 3 and 4 which employ forward

chained cooperative compression differ only in the increasing degree to which cooperative

compression was applied. However, the statistical confidence that sensitivity was increased

diminishes and eventually disappears as the indices becomemore thorough (i.e. asE in-

creases). This is not surprising, as the more thorough the search, the less results will be

missed, and therefore the smaller the potential sensitivity gain due to searching using a

cooperative compressed index. However, as will be explained below, because cooperative

compression results in a smaller index, it is possible to gain substantial sensitivity by using

a more thorough index, while still requiring a smaller indexthan would be necessary for a

less thorough search using an ordinary, i.e., non-cooperatively compressed, index.

Overall, reverse chained cooperative compression resultsin better sensitivity than forward

chained cooperative compression — except whenE=∞, where forward chained indexing

gains a slight edge. Regardless of the preference for eitherforward or reverse chained

cooperatively compressed indices, what is certain is that cooperative compression affords

a modest gain in sensitivity. What has not been attempted here, but would be possible, is to

use both forward and reverse chaining in the same search to obtain further sensitivity gains.

It will be noticed that the scores obtained with Configuration 1 (the negative control which

does not use cooperative compression) with an exclusion threshold ofE=1.5× random are

slightly better than the equivalent results presented in Chapter 5 (see Table 5.5). Moreover,

the comparison also shows that the results presented in thischapter have a much higher ratio

of sensitivity scores when the PatternHunter Variant Scorethreshold is to require 100% of

an alignment (right most column in the tables) versus when the threshold is to require

only 50% of an alignment (left most column of results in the tables). Both of these are

the result of minor changes made to the DASH algorithm between when the experiments

in these chapters were performed. Also substantial sensitivity gains are realised by using

261

7.8. RESULTS CHAPTER 7. NIX

more thorough indices (E={2.5, 5.0, 10.0}× random expectation) in the experiments in

this chapter in addition to the less thorough index (E=1.5×random expectation) which was

used in the experiments of Chapter 5.

Compared with the peer group of algorithms, DASH with NP3/NIX cooperative compres-

sion is now able to match or beat the sensitivity of every other algorithm when 90% or

more of an alignment is required, and only falls slightly short of this achievement when the

scoring threshold is relaxed to 50% of an alignment. This is reflected in Figure 7.4 where

a selection of the DASH+NP3/NIX results are compared with the results of the peer group

of algorithms.

7.8.2 Reduced Index Sizes

Tables 7.9, 7.10, 7.11 and 7.12 present the index sizes for the ten configurations, with each

table using a differentk-mer frequency threshold for posting exclusion in the index. Those

thresholds are 1.5× random (Table 7.9), 2.5× random (Table 7.10), 5.0× random (Table

7.11) and 10× random expectation (Table 7.12). The time required to construct each index

varied between 24 and 97 minutes using a RedHat Linux ES3 system with a 1.8 GHz AMD

Opteron and 8 GB of RAM.

Not surprisingly, the general rule governing index size is,the lower the threshold for posting

exclusion, the smaller the index. For the smallest index (Configuration 3, E=1.5), the index

is less than 20% larger than the only lightly indexed format used by BLAST (6.05 bits per

base for DASH+NP3/NIX versus 5.09 bits per base for BLAST). In all cases, the index is

smaller than the 3,606 MB (15.43 bits per base) required for the FOLDDB index presented

in Chapter 5. Thus, for a fixed index size budget, we see not only the direct sensitivity

gains of cooperative compression, but also the opportunityfor significant secondary gains

by using a more thorough index.

262

7.8. RESULTS CHAPTER 7. NIX

DASH M2 Config 1, E=1.5

0 20 40 60 80 100

50
60

70
80

90

PatternHunter Variant Scores for Various Algorithms

Scoring Threshold (Percent of Alignment)

S
co

re
 (

ve
rs

us
 S

m
ith

−
W

at
er

m
an

)

BLAST 2.2.6
BLAST (no filter)
BLAST (report everything)
FASTA
DASH M4 Config 5, E=Inf
DASH M4 Config 4, E=10
DASH M4 Config 4, E=5.0

DASH M2 Config 5, E=Inf
DASH M4 Config 4, E=1.5
DASH M4 Config 1, E=1.5
DASH M2 Config 4, E=1.5
DASH M2 Config 3, E=1.5

Figure 7.4: Pattern Hunter Variant Scores For Nucleic Acid Queries (Using The Human
UniGene (Nucleic Acid) Database). CAFE, BLAT and PatternHunter all score lower than
the results presented here, and are omitted from this graph for clarity. DASH obtains excel-
lent sensitivity compared with the other algorithms, especially when the scoring threshold
approaches 100% of the alignment.

263

7.8. RESULTS CHAPTER 7. NIX

Looking within each table now, we can observe the differencethat the ten configurations

make on index size. Recall that Configuration 1 is the negative control, where cooperative

compression is not performed; Configurations 2 through 5 useforward-indexed cooperative

compression and; Configurations 6 through 10 use reverse-indexed cooperative compres-

sion. Recall also, that Configurations 5 and 10 disable the cut-off threshold for posting

exclusion, i.e., do not exclude stop words from the index. Thus, the threshold value is not

used, and the indices generated for Configuration 5 and Configuration 10 do not differ with

the value ofE.

Table 7.13 shows the relative size of the smallest index sizeachieved for each value of

E, versus the size of the negative control index (produced using Configuration 1). For

all values ofE, Configuration 3 (forward indexing cooperative compression, plus prefer

inter-record references) produced the smallest index. That forward indexing performed

better than either the negative control or reverse indexingis in line with expectation; for-

ward indexing should always compress at least as well as reverse indexing. What comes

as a surprise, is that Configuration 4 produced a larger indexthan Configuration 3, since

Configuration 4 should have benefited from the larger number of inter-record references

in the NP3 files produced using that configuration. This anomaly probably indicates that

using a fixed sized per-posting rebate is not appropriate, especially when combined with

a posting compression algorithm that is sensitive to clusters. The same phenomenon also

occurs with Configurations 8, 9 and 10 (which use the fixed sizeper-posting rebate) versus

Configuration 7 (which produces the smallest index that usesreverse direction cooperative

compression).

The final observation is that the benefit of cooperative compression of the indices increased

with the posting exclusion threshold. This makes sense, since it seems reasonable that very

frequentk-mers should be more likely to form part of recurrent strings, precisely because

they are more frequent. In other words, a more thorough indexwill index more redundant

strings, and thus the resulting index should compress better. This may also explain why

264

7.8. RESULTS CHAPTER 7. NIX

the difference in compression between forward and reverse indexing widens as the posting

exclusion threshold increases.

7.8.3 Increased Search Time

Tables 7.14, 7.15, 7.16, 7.17, 7.18, 7.19, 7.20 and 7.21 showthe search times for DASH

using NP3/NIX files. The search times of the peer group of algorithms are included to

provide context and perspective.

Two issues are immediately apparent: (a) The search times are very slow compared with

the FOLDDB results; and (b) The search times become slower, not faster, as coopera-

tive compression is enabled. To shed light on these matters,Table 7.22 presents a break

down of the time DASH+NP3/NIX spent performing various tasks for several configuration

combinations. The time spent in each activity is unscaled, in order to show the absolute

difference in time spent between negative control and cooperative compression. However,

note that these times were necessarily obtained with DASH compiled to include profiling

instrumentation. Thus, the search times presented here differ by some (hopefully constant)

factor from the search speed results presented earlier, which were produced using a version

of DASH compiled with compiler optimisations enabled.

7.8.3.1 NP3 And NIX Decompression Costs

Table 7.22 reveals that NP3 decompression is the single largest contributor to search time.

Indeed, even if all other activities could somehow be avoided the NP3 decompression time

would cause DASH to search more slowly than BLAST — this is despite the effort invested

in making NP3 very fast to decompress. Note that the NP3 extraction time for Configura-

tion 4 is much worse than for Configurations 1 through 3. As theonly difference between

Configurations 3 and 4 is the more aggressive use of inter-record redundancy records in

the NP3 file, we must conclude that the assumption made in Chapter 6 that searches will

265

7.8.
R

E
S

U
LT

S
C

H
A

P
T

E
R

7.N
IX

Table 7.9: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 1.5).

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman* (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
BLAST (formatdb) 489 2.09 660 2.83 40 0.17 1,189 5.09
BLAT* (faToTwoBit) 630 2.70 - - 1,088 4.66 1,718 7.36
PatternHunter** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
FASTA** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
NP3+NIX per Table A.11 (negative control) 166 0.71 87 0.37 1,771 7.58 2,023 8.66
NP3+NIX per Table A.12 (forward indexed cooperative
compression)

166 0.71 87 0.37 1,181 5.06 1,434 6.14

NP3+NIX per Table A.13 (as above, but prefer inter-record
references when not more expensive)

165 0.71 87 0.37 1,162 4.98 1,414 6.05

NP3+NIX per Table A.14 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 1,322 5.66 1,763 7.55

NP3+NIX per Table A.15 (as above, but no stop-word filtering) 354 1.52 87 0.37 2,420 10.36 2,860 12.25
NP3+NIX per Table A.16 (reverse indexed cooperative
compression)

166 0.71 87 0.37 1,196 5.12 1,448 6.20

NP3+NIX per Table A.17 (as above, but prefer inter-record
references when not more expensive)

166 0.71 87 0.37 1,183 5.07 1,435 6.14

NP3+NIX per Table A.18 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 1,281 5.49 1,722 7.37

NP3+NIX per Table A.19 (as above, but maximise distinct source
material referenced by inter-record references)

354 1.52 87 0.37 1,281 5.49 1,722 7.37

NP3+NIX per Table A.20 (as above, but no stop-word filtering) 354 1.52 87 0.37 3,086 13.21 3,527 15.10
CAFE*** (CAFE Index) 496 2.12 102 0.44 6,961 29.79 7,634 32.67
* Indicates that program maintains an index in RAM, and that the database format contains both sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical difficulties (CAFE).

2
6

6

7.8.
R

E
S

U
LT

S
C

H
A

P
T

E
R

7.N
IX

Table 7.10: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 2.5).

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman* (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
BLAST (formatdb) 489 2.09 660 2.83 40 0.17 1,189 5.09
BLAT* (faToTwoBit) 630 2.70 - - 1,088 4.66 1,718 7.36
PatternHunter** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
FASTA** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
NP3+NIX per Table A.11 (negative control) 166 0.71 87 0.37 2,538 10.87 2,791 11.95
NP3+NIX per Table A.12 (forward indexed cooperative
compression)

166 0.71 87 0.37 1,602 6.86 1,855 7.94

NP3+NIX per Table A.13 (as above, but prefer inter-record
references when not more expensive)

165 0.71 87 0.37 1,572 6.73 1,824 7.81

NP3+NIX per Table A.14 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 1,828.7 7.83 2,270 9.72

NP3+NIX per Table A.15 (as above, but no stop-word filtering) 354 1.52 87 0.37 2,420 10.36 2,860 12.25
NP3+NIX per Table A.16 (reverse indexed cooperative
compression)

166 0.71 87 0.37 1,847 7.91 2,099 8.99

NP3+NIX per Table A.17 (as above, but prefer inter-record
references when not more expensive)

166 0.71 87 0.37 1,830 7.84 2,082 8.91

NP3+NIX per Table A.18 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 1,955 8.37 2,396 10.26

NP3+NIX per Table A.19 (as above, but maximise distinct source
material referenced by inter-record references)

354 1.52 87 0.37 1,955 8.37 2,396 10.26

NP3+NIX per Table A.20 (as above, but no stop-word filtering) 354 1.52 87 0.37 3,086 13.21 3,527 15.10
CAFE*** (CAFE Index) 496 2.12 102 0.44 6,961 29.79 7,634 32.67
* Indicates that program maintains an index in RAM, and that the database format contains both sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical difficulties (CAFE).

2
6

7

7.8.
R

E
S

U
LT

S
C

H
A

P
T

E
R

7.N
IX

Table 7.11: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 5.0).

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman* (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
BLAST (formatdb) 489 2.09 660 2.83 40 0.17 1,189 5.09
BLAT* (faToTwoBit) 630 2.70 - - 1,088 4.66 1,718 7.36
PatternHunter** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
FASTA** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
NP3+NIX per Table A.11 (negative control) 166 0.71 87 0.37 3,138 13.44 3,391 14.52
NP3+NIX per Table A.12 (forward indexed cooperative
compression)

166 0.71 87 0.37 1,898 8.13 2,151 9.21

NP3+NIX per Table A.13 (as above, but prefer inter-record
references when not more expensive)

165 0.71 87 0.37 1,860 7.96 2,111 9.04

NP3+NIX per Table A.14 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 2,210 9.50 2,650 11.35

NP3+NIX per Table A.15 (as above, but no stop-word filtering) 354 1.52 87 0.37 2,420 10.36 2,860 12.25
NP3+NIX per Table A.16 (reverse indexed cooperative
compression)

166 0.71 87 0.37 2,576 11.03 2,829 12.11

NP3+NIX per Table A.17 (as above, but prefer inter-record
references when not more expensive)

166 0.71 87 0.37 2,561 10.97 2,813 12.04

NP3+NIX per Table A.18 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 2,658 11.38 3,098 13.27

NP3+NIX per Table A.19 (as above, but maximise distinct source
material referenced by inter-record references)

354 1.52 87 0.37 2,658 11.38 3,098 13.27

NP3+NIX per Table A.20 (as above, but no stop-word filtering) 354 1.52 87 0.37 3,086 13.21 3,527 15.10
CAFE*** (CAFE Index) 496 2.12 102 0.44 6,961 29.79 7,634 32.67
* Indicates that program maintains an index in RAM, and that the database format contains both sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical difficulties (CAFE).

2
6

8

7.8.
R

E
S

U
LT

S
C

H
A

P
T

E
R

7.N
IX

Table 7.12: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 10.0).

Format Bodies Only Descriptions Index Total
MB B/B MB B/B MB B/B MB B/B

Smith-Waterman* (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
BLAST (formatdb) 489 2.09 660 2.83 40 0.17 1,189 5.09
BLAT* (faToTwoBit) 630 2.70 - - 1,088 4.66 1,718 7.36
PatternHunter** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
FASTA** (FASTA ASCII) 1,886 8.06 470 2.04 - - 2,356 10.10
NP3+NIX per Table A.11 (negative control) 166 0.71 87 0.37 3,349 14.34 3,602 15.42
NP3+NIX per Table A.12 (forward indexed cooperative
compression)

166 0.71 87 0.37 1,985 8.50 2,237 9.58

NP3+NIX per Table A.13 (as above, but prefer inter-record
references when not more expensive)

165 0.71 87 0.37 1,942 8.32 2,194 9.39

NP3+NIX per Table A.14 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 2,337 10.01 2,778 11.89

NP3+NIX per Table A.15 (as above, but no stop-word filtering) 354 1.52 87 0.37 2,420 10.36 2,860 12.25
NP3+NIX per Table A.16 (reverse indexed cooperative
compression)

166 0.71 87 0.37 2,875 12.31 3,127 13.39

NP3+NIX per Table A.17 (as above, but prefer inter-record
references when not more expensive)

166 0.71 87 0.37 2,862 12.25 3,114 13.33

NP3+NIX per Table A.18 (as above, but optimising combined
NP3+NIX size)

354 1.52 87 0.37 2,927 12.53 3,368 14.42

NP3+NIX per Table A.19 (as above, but maximise distinct source
material referenced by inter-record references)

354 1.52 87 0.37 2,927 12.53 3,368 14.42

NP3+NIX per Table A.20 (as above, but no stop-word filtering) 354 1.52 87 0.37 3,086 13.21 3,527 15.10
CAFE*** (CAFE Index) 496 2.12 102 0.44 6,961 29.79 7,634 32.67
* Indicates that program maintains an index in RAM, and that the database format contains both sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteadof one large index, due to technical difficulties (CAFE).

2
6

9

7.8. RESULTS CHAPTER 7. NIX

Table 7.13: Relative Size Of Most Compact Index Versus Negative Control.

Threshold Negative Control Size Smallest Size Configuration # Reduction

1.5× 1,771 MB 1,162 MB 3 34%
2.5× 2,539 MB 1,572 MB 3 38%
5.0× 3,138 MB 1,860 MB 3 41%
10× 3,349 MB 1,942 MB 3 42%

either involve all or none of a set of records that are chainedin an NP3 file is flawed, or

at least has limits. In comparison, the handling of NIX structures turns out to be relatively

computationally light, with the time cost being directly proportional to the number of post-

ings being handled, thus affirming the decision to use the Fast Interpolative Coder. The

best hope for reducing the NP3 decompression time would seemto be to amortise it over

multiple queries, by performing searches in batches of perhaps 10 to 100.

7.8.3.2 Time Spent Performing Dynamic Programming, Discovering HSPs, And

Translating HSPs

An unexpected result of using cooperative compression is that the time spent performing

dynamic programming actually decreased compared to the negative control (Configuration

2 versus Configuration 1). What was expected, was that since cooperative compression

resulted in the discovery of more HSPs, that more dynamic programming would be re-

quired to process them. Thus, even the modest reduction in dynamic programming effort

that was observed came as a complete surprise. The most likely explanation of this effect

is that many of extra HSPs that were discovered due to HSP translation were in regions

that would have otherwise been subjected to dynamic programming. By finding an HSP

in such a region, DASH’s alignment assembly algorithm wouldhave gained an additional

piece of information, and the dynamic programming region would be divided into two

smaller regions at each end of the extra HSP, as illustrated in Figure 7.5. Since dynamic

programming has quadratic time cost with respect to the length of the region, such a divi-

270

7.8. RESULTS CHAPTER 7. NIX

(b)

DP Area

(a)

DP Area

DP Area

Figure 7.5: How Finding Extra HSPs Can Reduce Dynamic Programming Time. In (a) the
DP region covers a large area, and so will require a long time to search. In (b) an extra
HSP is introduced that allows the DP area to be divided into two much smaller regions,
which together can be searched in much less time than the single large area.

sion would yield substantial time savings. Eventually, as cooperative compression is more

aggressively applied to discover more HSPs, this effect is swamped by the additional dy-

namic programming required to service those HSPs that do correspond to new alignments.

Turning to HSP discovery time (including the time spent translating HSPs in Configura-

tions 2 through 4 where cooperative compression is enabled), it is observed that coopera-

tive compression results in significantly increased HSP discovery times, in contrast to the

expectation that HSP discovery time would reduce. It must beconcluded that the time

overhead incurred in attempting to translate HSPs, on average, greatly out weighs the time

saved by not independently discovering each member of a set of identical HSPs. A con-

tributing factor is that whereas in the original DASH algorithm an O(1) algorithm could

be employed to prevent the repeated discovery of already located HSPs, no such algorithm

was found that could be applied to HSP translation. Thus a costly tree search was required

in order to prevent the repeated discovery of translated HSPs. Moreover, the tree search

could not be avoided, because to do so would result in the repeated discovery of HSPs —

271

7.8. RESULTS CHAPTER 7. NIX

which is exactly we were trying to avoid. Thus, it is this HSP translation overhead, together

with that of NP3 record decompression, that cause such slow searching.

One opportunity that has not been explored here is the re-useof dynamic programming

effort in the case where HSPs are translated. Provided that the overhead of determining

when such re-use can occur is not excessive, then it may be possible to reduce the total dy-

namic programming effort incurred. However, as the experience with attempting to re-use

HSP discovery effort has shown, it is by no means trivial to obtain the efficiency required

to reduce search times. None the less, the relatively high cost of performing dynamic

programming compared with HSP discovery suggests that it should be easier to reduce

dynamic programming time than to reduce HSP discovery time.

7.8.4 Cooperative Compression Of A Less Redundant Database

Finally, Table 7.23 shows the effect of cooperative compression on the database and index

of a database with less redundancy, the Human Genome. Results for both the unfolded

(Configuration 1) and folded (Configuration 3) are shown, using a posting frequency ex-

clusion threshold of 1.5× random expectation. In this case, the index size is reduced by

only 3%, much less than the 30% – 40% obtained when compressing the more redundant

Human UniGene (nucleic acid) database. This is due to the limited ability of NP3 to find

recurrent strings in unsorted databases and those with low redundancy. Thus, while NP3

already decompresses too slowly to facilitate competitivesearch times, it is worthwhile

to attempt cooperative compression of the Human Genome database using GeNML+NIX.

This is because it allows us to determine if the current best performing DNA compres-

sion algorithm can discover sufficient redundant strings tomake cooperative compression

feasible on an typical and unsorted genomic database, such as the Human Genome.

272

7.8. RESULTS CHAPTER 7. NIX

7.8.5 Comparison Of GeNML And NP3

Table 7.24 summarises the decompression speed results for the original NP3 byte-aligned

codec and the GeNML codec developed in this chapter. These are compared against the

general purpose compressor GZIP. Unsurprisingly, the byte-aligned codec is much faster

than the GeNML codec, reflecting the computational cost of the Arithmetic Coding re-

quired for the GeNML codec. The NP3 byte-aligned codec is also slightly faster than

GZIP. However, as discovered in Chapter 7, this is not fast enough to support fast search-

ing of nucleic acid databases, and therefore we must conclude that, given that the GeNML

codec is about ten times slower, that it is much too slow to support fast searching of nucleic

acid databases.

7.8.6 Compressed Database And Index Sizes

Turning to compression effectiveness, Table 7.25 presentsthe compressed database sizes of

the NP3 byte-aligned and GeNML codecs versus the canonical GeNML algorithm. For the

two NP3 codecs, results are presented first with cooperativecompression disabled (marked

“(a)”), and with cooperative compression enabled (marked “(b)”). For the NP3 codecs,

the size of the NIX index structures is also listed, and when cooperative compression is

enabled, the percentage of postings that were removed from the index by cooperative com-

pression are also listed. Performance of the canonical GeNML algorithm is listed only for

those databases where results were published by Korodi and Tabus (2005). Consequen-

tially, no canonical GeNML results are given for the Human UniGene database.

By comparing the performance of the NP3 GeNML codec to the canonical GeNML algo-

rithm, it is apparent that the NP3 GeNML codec does not perform as well as the canonical

GeNML algorithm. This is to be expected for the reasons detailed earlier in this chapter,

particularly the insertion of regular synchronisation points, and the reduction in effective

273

7.8. RESULTS CHAPTER 7. NIX

window size imposed by database partitioning. However, it is noteworthy that only a small

amount of compression is sacrificed.

For the de facto DNA Compression Corpus and the Human Genome databases, we observe

that the GeNML codec compresses the sequence bodies more compactly than does the

byte-aligned codec. This is in line with expectation — the trade off being greatly reduced

decompression speed. However, for the Human UniGene database we discover that the

NP3 byte-aligned codec performs slightly better than the NP3 GeNML codec. Two pos-

sible contributors come to mind. First, the NP3 byte-aligned codec was developed using

the Human UniGene Database as its test input. Therefore, it is not surprising to discover

that it performs particularly well when compressing that database. Thus, the byte-aligned

codec results may be better than can normally be expected. Second, the GeNML algorithm

was designed for optimal performance with “typical” DNA data. That is, the GeNML

algorithm contains few specific features aimed at efficiently compressing the many long

well preserved recurrent strings that occur in close proximity to one another in the Human

UniGene database. In particular, the way that GeNML encodesdata in relatively small

blocks, each of which contains some addressing overhead, isprobably sufficient to explain

the difference — thus explaining the observation that the relative performance of the NP3

GeNML codec for the Human UniGene is worse (compared to the NP3 byte-aligned codec)

than can be expected for “typical” DNA data.

Turning now to cooperative compression performance, we findthe same trends occurring as

for body compression: Because the GeNML algorithm is more able to efficiently compress

approximate matches than the NP3 byte-aligned compressionalgorithm, the NP3 GeNML

codec is able to remove several times more postings from the index than the NP3 byte-

aligned codec. This translates into substantially smallerindices, with overall savings of

about two bits per base for both the index of the de facto DNA Compression Corpus, and

the index of the Human Genome database, in both cases yielding a reduction in size of

about 15%. Note that this saving in index size (about two bitsper base) is as large as the

274

7.8. RESULTS CHAPTER 7. NIX

best savings that can ever be made through compressing the sequence bodies, since they

require only two bits per base to encode directly. Moreover,the 15% reduction in index size

using the NP3 GeNML codec compares favourably to the 3% obtained with the NP3 byte-

aligned codec. Thus, we find that cooperative compression can obtain useful reductions in

index size when dealing with a typical nucleic acid database, when coupled with the current

state of the art in DNA compression algorithms.

In the case of compressing the index of the Human UniGene database we discover that,

as was the case for sequence body compression of the Human UniGene database, the NP3

byte-aligned codec out performs the NP3 GeNML codec. Here, the issue seems to be

that the NP3 GeNML codec does not remove as many postings fromthe index (see the

right hand column in Table 7.25), and thus is condemned to produce a larger index. This is

because the NP3 GeNML codec seeks to optimise the size of the NP3 file, not the combined

NP3 and NIX file pair. Thus, whenever it will save some bits, the GeNML algorithm will

use Arithmetic Coding instead of referencing an approximate repeat to encode a block.

However, it is only by referencing repeats that cooperativecompression can reduce the

index size. Since the index is several times larger than the compressed database, using

Arithmetic Coding to obtain the greatest space savings for the database, may cause the

index to be much larger, and so the GeNML algorithm may end up costing space overall.

This could be addressed by implementing a similar scheme to that used in the NP3 byte-

aligned codec, where the combined size of the NP3 and NIX file pair is optimised, although

as discovered with the NP3 byte-aligned codec, this is not assimple as merely instituting a

fixed rebate based on the average cost of storing an index posting.

7.8.7 Effect Of Query Length On Search Time

In order to assess the impact of query length on search time inthe DASH+NP3/NIX envi-

ronment it is helpful to break down the search time into separate components for dynamic

275

7.8. RESULTS CHAPTER 7. NIX

programming extension of alignments, HSP discovery, NIX index reconstruction and NP3

decompression. Figure 7.6 shows that dynamic programming increases and NIX index re-

trieval times increase more slowly with increasing query length compared to the NIX and

NP3 retrieval activities. NP3 decompression is the most time consuming activity overall,

while NIX index retrieval experiences the largest proportional growth.

It is the time spent in the NIX and NP3 activities that are of particular interest. The linear

growth of NIX index retrieval time is in line with expectation, since the longer the query

the more index columns must be extracted. The relatively slow proportional growth of NP3

decompression time is also expected, as it is only the posting of additional sequences that

result in additional NP3 decompression time. Moreover, thetime that can be required for

NP3 decompression is bounded by the number of sequences in the database. Thus NP3

decompression time must eventually be logarithmic with respect to total query length as

the proportion of decompressed sequences approaches 100%.Figure 7.6 shows some hints

of this logarithmic behaviour in the way that the NP3 decompression time increases more

quickly at the shorter end of query lengths than it does at thelonger end.

Together, these factors indicate that the DASH search system could be used to service

batches to effectively amortise the NP3 decompression timeover many queries, with only

a linear increase in search time due to the NIX index retrieval and other activities. In this

way the space benefits of the NP3/NIX data structures can be realised without incurring a

penalty in the form of excessive search time. Critically, the median time for each activity

grows only linearly or logarithmically with respect to query length.

276

7.8. RESULTS CHAPTER 7. NIX

Median Search Time By Activity And Query Length

Query Sequence Length

T
im

e
E

xp
en

de
d

(in
 s

ec
on

ds
)

0
10

20
30

40

0 500 1000 1500 2000 2500 3000

NP3 Decompression
NIX Index Retrieval
HSP Discovery
Dynamic Programming

Figure 7.6: DASH+NP3/NIX Search Time Versus Query Length: Mode 2; Human UniGene
Database; Configuration 3 (Forward Indexing).
Each bar represents 13 of the 200 queries. Median times are used in all cases.

277

7.9. DISCUSSION CHAPTER 7. NIX

7.9 Discussion

7.9.1 Analysis Of Performance With Disk Based Index

The previous material has assumed that the search process occurs with the database and

index resident in RAM at all times. It is in that context that the excessive search time is

detrimental. Let us briefly consider the performance of an NP3/NIX compressed database

and index ensemble versus a FOLDDB uncompressed database and index ensemble. We

will assume that both are stored on a disk system that delivers a sustained data stream of

100 MB per second. The resulting characteristics are then compared with those of BLAST.

7.9.1.1 Analysis Of DASH With FOLDDB And NP3/NIX

We know from Chapter 5 that a FOLDDB index and database ensemble for the Human

UniGene nucleic acid database constructed usingE = 1.5× random expectation will be

3,606 MB (Table 5.1). Further, we know that the average search time of that database

using DASH M2 is 1.582 seconds. Thus, the total search time, with the FOLDDB index

and database ensemble stored on disk, will be 3,606 MB÷ 100 MB per second = 36.06

seconds. The mean search time of 1.582 seconds (Table 5.3) isless than the time taken to

read the data from disk, and so we can assume that the search occurs while the data stream

is being read.

Considering now the NP3/NIX ensemble for the Human UniGene nucleic acid database

constructed usingE = 1.5× random expectation and using Reverse Indexing, we know

from Table 7.9 the files will be 1,448 MB in size. We also know from Table 7.14 that

the mean search time is 13.86 seconds. Thus, the total searchtime, with the NP3/NIX

ensemble stored on disk, will be 1,448 MB÷ 100 MB per second = 14.5 seconds. Again,

the search time is less than the time taken to read the data from disk, and so we can assume

that the search occurs while the data stream is being read.

278

7.9. DISCUSSION CHAPTER 7. NIX

Thus we find that, even though searching an NP3/NIX compressed database and index en-

semble is much slower than searching a FOLDDB formatted database and index ensemble,

if the data must be stored on disk, then NP3/NIX is preferable, and that overall search time

can be better than halved. This is particularly advantageous in, for example, the scenario

where a workstation with relatively limited memory is used search a large collection, with

the secondary benefit that the reduced index size may make it possible to fit the NP3/NIX

compressed database into RAM.

7.9.1.2 The Beneficial Effect Of Partitioned Data

However, because the DASH, NP3 and NIX algorithms are designed around a partitioned

database, it is possible to obtain better query throughput.This is by searching for batches of

queries. Because the database and index are partitioned, with each partition small enough

to fit in the memory of even a modest computer, each partition need be read only once for a

whole batch of queries. This is a significant advantage over monolithic database structures,

because random disk access is completely replaced by sequential disk access, which is

much faster. Thus the disk delay can be divided by the number of queries in the batch.

Moreover, if each partition is extracted only once, the NP3 decompression time can be paid

only once per batch instead of once per query. As Table 7.22 shows, the NP3 decompres-

sion time accounts for between 79% and 86% for DASH M2. This also effectively deals

with the problem of unbound computational cost when evaluating recurrence chains, as

each partition can be fully resident in RAM when being searched. Finally, because the

database is formed into a number of approximately equal sized partitions that are searched

independently, search time will scale linearly with database size.

279

7.10. CONCLUSIONS CHAPTER 7. NIX

7.9.1.3 Comparison Of Batched DASH Versus NCBI-BLAST

Thus, assuming that a batch of 20 queries were processed instead of a single query, the

disk time would remain constant. The search time would increase by no more than the time

taken for the NIX, HSP, DP and X stage of the 19 additional queries. This would be no

more than 19× (100%− 79%)×meansearchtime= 19× 21%×13.86 seconds = 55.30

seconds. Thus the total search time for all 20 queries would be 13.86 seconds + 55.30

seconds = 69.16 seconds, or an amortised 3.46 seconds per query. This is almost 3 times

faster than NCBI-BLAST when using a memory resident database.

7.10 Conclusions

In conclusion, it has been shown that by using cooperative compression, it is possible

to reduce the compressed index of a sorted moderately redundant nucleic acid index by

34% – 42%, without requiring that the database contain wholly redundant records. This

compression result is accompanied by an increase in sensitivity.

These achievements of cooperative compression come at a significant computational cost,

primarily as a result of: (a) the time taken to decompress sequences from an NP3 com-

pressed database (which might be possible to amortise over multiple searches); and (b)

that in the current implementation it takes more time to discover an HSP via translation

using recurrence records, than it does to discover it normally. The GeNML algorithm, al-

though compressing slightly better in some cases, is aroundten times slower to decompress

than the NP3 byte-aligned coding scheme, precluding it frombeing useful in the context

of sequence search and alignment. Thus the decision to create the fast but slightly space

inefficient NP3 byte-aligned coding scheme has been vindicated.

Where the database must be stored on disk the NP3/NIX cooperatively compressed index

and database ensemble can reduce the data size to the point where the savings in data trans-

280

7.10. CONCLUSIONS CHAPTER 7. NIX

fer time more than compensate for the additional time spent decompressing and searching,

resulting in a faster search overall. Moreover, if batches of queries are processed, then the

NP3/NIX decompression time would be amortised to the point where DASH+NP3/NIX

operating on an on-disk database could search faster than NCBI-BLAST with a memory

resident database, with DASH requiring search time proportional to the product of the

database size and sum of the query lengths.

In summary, it has been shown that cooperative compression can work, and can simulta-

neously deliver improved search sensitivity, reduced datasizes and reduced overall search

times. Together, these results provide evidence for the thesis of this dissertation. This evi-

dence is in addition to that found in Chapter 5, where cooperative compression was shown

to be effective for databases where whole records were duplicated.

Nonetheless, there are significant efficiency hurdles that must be overcome for it to be use-

ful with unsorted databases that do not contain large numbers of wholly redundant records,

or when performing few queries on a memory based database. Indeed, whereas compressed

indices could be shrunk by around 34% – 42% for sorted moderately redundant nucleic acid

databases, reductions of only 3% – 15% were achieved on the unsorted Human Genome

database. Nonetheless, index space savings of at least two bits per base were possible

for each database considered, thus confirming that cooperative compression can save more

space than DNA compression, which can never save more than two bits per base. More-

over, this problem of poor performance when compressing unsorted databases has been

substantially addressed by the recent development of an algorithm that allows for sorting a

genomic database in O(n) time (Bernstein and Cameron 2006).

281

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

7.11 Future Directions

7.11.1 Sorting Databases

The recent publication of a variant of the SPEX algorithm that allows for sorting genomic

databases in approximately O(n) time presents a significant opportunity to generalise the

attractive compression performance that NIX can obtain with a sorted database to any

database with sufficient intrinsic internal redundancy, bymaking the sorting step practi-

cable for all collection sizes.

7.11.2 Improving Search Efficiency

The logical next course of action is to address the inefficiency of the HSP translation, so

that, on average, HSP translation is at least as efficient as HSP discovery. Specifically, there

is an opportunity to produce and implement an O(1) algorithmfor determining whether a

given translation would point to an already discovered HSP,and thus can be skipped. If

that can be achieved, then in order to further improve sensitivity, it may be worth exploring

attempting translation in both the forward and reverse directions when searching a for-

ward chained cooperatively compressed index. Also, attention should be given to reusing

dynamic programming effort expended for an HSP for any translations of that HSP.

7.11.3 Avoiding NP3 Decompression Time

It may also be possible to increase the value of search time byside-stepping the decompres-

sion of the NP3 compressed database by replacing the NP3 file with a direct 2-bit or simi-

lar representation (such as CINO (Williams and Zobel 1997a)), and storing the recurrence

records in a dedicated data structure. If this can be done such that the recurrence records

and the cooperatively compressed index are smaller than theequivalent non-cooperatively

282

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

compressed index, then it may be possible to complete with existing nucleic acid search

algorithms.

7.11.4 Presenting Relationships Among Search Results

It would be a valuable exercise to consider how to use the recurrence record information

made available by cooperative compression to accurately and succinctly communicate the

relationships and equivalences in the results of a given search. Of course, such techniques

could be applied to the results of any search algorithm, independent of whether it uses the

methods described here.

7.11.5 Improving Compression Performance By Using Dissimilar Re-

gressors

An opportunity exists for improving the compression of the canonical GeNML algorithm

by using dissimilar regressors. That is, to model one recordby comparing it against another

that shares no bases in common with it. This counter intuitive scheme works because if you

know for every base in some DNA sequence you are encoding, that the base cannot be one

particular one of the four nucleotides (since the string youare encoding and the regressor

are known to not coincide at any position, and you know the base at any given position

of the dissimilar regressor), then that base must be one of the remaining three nucleotides.

For example, if you are encodingC, and know that it is notA, then you need only encode a

choice betweenC, G andT. In other words, by knowing what the sequence you are encoding

is not, its entropy has been reduced by 25%. If the dissimilarregressor has only a few bases

in common with the sequence being encoded, i.e., are mostly dissimilar, then the entropy

may still be reduced, but by a lesser degree.

283

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

The challenges in implementing this scheme are several. First, it must be possible to effi-

ciently search for dissimilar DNA sequences, a subject which has been partially explored,

but only for the restricted domain of designing oligonucleotides that do not bind to a given

piece of DNA (Abbasi and Sengupta 1997). Second, given that the maximum compression

possible is 25%, if space is to be saved, then the address of the dissimilar block must be able

to be encoded in relatively few bits, an issue that is analysed in the following paragraphs.

For block lengthn, the probability of a completely dissimilar regressor block, that is one

in which none of the bases correspond (for now, we ignore the contribution of mostly

dissimilar regressors), is(3
4)n. Forn= 32, this equates top= 1.004524×10−4, for n= 56,

p= 1.008×10−7, while forn= 120 it isp= 1.017×10−15. Given that for a window length

of m, and provided thatm≫ n, there are approximatelyc = 2×m regressors (m forward

ones, andm palindromic ones). Thus the probability of finding at least one dissimilar

regressor in a window of lengthn is pd = 2np.

Thus for window sizes in the mega-base range, it is not unreasonable to expect to find

dissimilar regressors for modest block lengths. The difficulty is whether the address field to

reference the dissimilar regressor exceeds the saving in encoding length: The space saving

will be n×(− log2
1
4 + log2

1
3) = n×(2−1.585) = 0.415n bits. However, the address takes

⌈1+ log2m⌉ bits to encode the direction and position of the regressor. Thus, a net saving

requires 0.415n > ⌈1+ log2m⌉, and thusn > 2.41⌈1+ log2m⌉.

In short, the block length must be about 2.5 times longer thanthe address length necessi-

tated by the window size. Assuming a window size of 106≈ 220 bases, this would require

a block length of at least 2.41×21= 50.61 bases. Since block sizes must be a multiple

of eight, the minimum block size is 56 bases, which would givea net saving of 2.24 bits

for each block. The probability of finding a completely dissimilar regressor of this length

was previously found to bepd = p×2×n = 1.008×10−7×2×220 = 0.211. Thus, ap-

284

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

proximately one in five 56 bit blocks could be expected to be compressed in this way. The

overall affect would be to reduce the worst case compressionby 0.211×2.24= 0.473 bits.

This method has the advantage that it has the potential to compress those blocks that cannot

be profitably compressed in any other way. However, the substantial cost of finding the dis-

similar regressor blocks (the most similar algorithm in theliterature (Abbasi and Sengupta

1997) requires at least O(nlogn) time), combined with the marginal returns, suggests that

it would be of questionable value; Korodi and Tabus almost certainly made the correct de-

cision to focus their efforts on the simultaneously more efficient and effective Constrained

Normalisation. Nonetheless, the opportunity exists to slightly improve the compression of

the GeNML algorithm by using dissimilar regressors. However, this falls outside of the

scope of this dissertation.

285

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.14: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=1.5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M2
Config 1 (unfolded), E=1.5

13.52 13.13 2,703.27 1.38

DASH M2
Config 2, E=1.5

19.74 19.48 3,948.20 2.02

DASH M2
Config 3, E=1.5

21.40 21.10 4,280.86 2.19

DASH M2
Config 4, E=1.5

67.39 59.89 13,478.57 6.88

DASH M2
Config 5, E=1.5

71.81 62.82 14,362.75 7.33

DASH M2
Config 6, E=1.5

13.86 13.43 2,772.85 1.42

DASH M2
Config 7, E=1.5

14.94 14.41 2,988.20 1.53

DASH M2
Config 8, E=1.5

45.36 44.34 9,071.25 4.63

DASH M2
Config 9, E=1.5

45.35 44.44 9,069.62 4.63

DASH M2
Config 10, E=1.5

60.21 45.78 12,041.44 6.15

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

286

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.15: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=2.5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M2
Config 1 (unfolded), E=2.5

14.37 14.09 2,874.52 1.47

DASH M2
Config 2, E=2.5

19.63 19.27 3,925.80 2.00

DASH M2
Config 3, E=2.5

21.09 20.59 4,218.33 2.15

DASH M2
Config 4, E=2.5

68.40 60.64 13,679.90 6.99

DASH M2
Config 5, E=2.5

71.88 62.60 14,377.00 7.34

DASH M2
Config 6, E=2.5

14.94 14.59 2,973.14 1.52

DASH M2
Config 7, E=2.5

16.08 15.71 3,215.47 1.64

DASH M2
Config 8, E=2.5

46.30 45.41 9,213.32 4.70

DASH M2
Config 9, E=2.5

46.36 45.52 9,225.35 4.71

DASH M2
Config 10, E=2.5

60.24 45.75 12,048.93 6.15

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

287

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.16: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M2
Config 1 (unfolded), E=5

14.76 14.43 2,951.58 1.51

DASH M2
Config 2, E=5

21.26 20.94 4,251.74 2.17

DASH M2
Config 3, E=5

22.80 22.50 4,559.29 2.33

DASH M2
Config 4, E=5

70.30 61.89 14,060.70 7.18

DASH M2
Config 5, E=5

71.81 62.45 14,362.42 7.33

DASH M2
Config 6, E=5

15.38 15.10 3,060.80 1.56

DASH M2
Config 7, E=5

16.51 16.13 3,301.64 1.69

DASH M2
Config 8, E=5

59.11 45.66 11,821.70 6.04

DASH M2
Config 9, E=5

59.09 45.59 11,817.18 6.03

DASH M2
Config 10, E=5

60.27 45.83 12,054.41 6.16

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

288

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.17: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=10.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M2
Config 1 (unfolded), E=10

15.07 14.50 3,014.77 1.54

DASH M2
Config 2, E=10

21.60 20.99 4,319.24 2.21

DASH M2
Config 3, E=10

23.02 22.35 4,603.76 2.35

DASH M2
Config 4, E=10

70.93 62.46 14,186.79 7.24

DASH M2
Config 5, E=10

71.78 62.42 14,355.01 7.33

DASH M2
Config 6, E=10

15.77 15.20 3,154.32 1.61

DASH M2
Config 7, E=10

16.87 16.02 3,374.47 1.72

DASH M2
Config 8, E=10

59.61 45.58 11,922.71 6.09

DASH M2
Config 9, E=10

59.51 45.55 11,902.85 6.08

DASH M2
Config 10, E=10

60.22 45.74 12,044.17 6.15

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

289

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.18: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=1.5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M4
Config 1 (unfolded), E=1.5

45.96 42.08 9,191.08 4.69

DASH M4
Config 2, E=1.5

58.36 53.10 11,672.56 5.96

DASH M4
Config 3, E=1.5

60.43 54.53 12,086.86 6.17

DASH M4
Config 4, E=1.5

157.42 140.26 31,484.02 16.08

DASH M4
Config 5, E=1.5

228.19 202.94 45,637.93 23.31

DASH M4
Config 6, E=1.5

49.96 45.11 9,991.64 5.10

DASH M4
Config 7, E=1.5

51.06 45.81 10,212.24 5.21

DASH M4
Config 8, E=1.5

89.35 81.39 17,869.50 9.13

DASH M4
Config 9, E=1.5

89.34 81.88 17,867.26 9.12

DASH M4
Config 10, E=1.5

131.25 114.04 26,250.75 13.41

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

290

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.19: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=2.5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M4
Config 1 (unfolded), E=2.5

54.86 51.30 10,971.98 5.60

DASH M4
Config 2, E=2.5

66.56 60.50 13,312.95 6.80

DASH M4
Config 3, E=2.5

68.75 62.30 13,750.53 7.02

DASH M4
Config 4, E=2.5

175.42 158.83 35,084.76 17.92

DASH M4
Config 5, E=2.5

228.30 202.31 45,659.76 23.32

DASH M4
Config 6, E=2.5

60.71 56.38 12,141.75 6.20

DASH M4
Config 7, E=2.5

61.92 57.38 12,384.72 6.32

DASH M4
Config 8, E=2.5

101.40 93.67 20,279.94 10.36

DASH M4
Config 9, E=2.5

101.38 93.63 20,275.09 10.35

DASH M4
Config 10, E=2.5

131.33 113.87 26,266.05 13.41

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

291

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.20: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=5.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M4
Config 1 (unfolded), E=5

67.03 61.25 13,406.81 6.85

DASH M4
Config 2, E=5

82.62 75.76 16,523.68 8.44

DASH M4
Config 3, E=5

85.76 79.04 17,151.31 8.76

DASH M4
Config 4, E=5

207.93 187.86 41,585.04 21.24

DASH M4
Config 5, E=5

228.14 202.86 45,628.39 23.30

DASH M4
Config 6, E=5

75.06 68.69 15,012.03 7.67

DASH M4
Config 7, E=5

76.43 69.80 15,286.00 7.81

DASH M4
Config 8, E=5

118.83 107.69 23,766.83 12.14

DASH M4
Config 9, E=5

118.85 107.72 23,770.43 12.14

DASH M4
Config 10, E=5

131.34 113.58 26,268.15 13.41

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

292

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.21: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=10.

Format Search Time (seconds) Search Time
mean median total (×BLAST)

DASH M4
Config 1 (unfolded), E=10

73.28 65.48 14,656.82 7.48

DASH M4
Config 2, E=10

90.22 80.72 18,044.92 9.21

DASH M4
Config 3, E=10

92.92 83.09 18,584.88 9.49

DASH M4
Config 4, E=10

222.54 199.86 44,507.16 22.73

DASH M4
Config 5, E=10

228.04 202.27 45,608.33 23.29

DASH M4
Config 6, E=10

82.35 74.36 16,470.22 8.41

DASH M4
Config 7, E=10

83.73 74.41 16,746.83 8.55

DASH M4
Config 8, E=10

128.36 112.52 25,672.03 13.11

DASH M4
Config 9, E=10

128.38 112.41 25,676.75 13.11

DASH M4
Config 10, E=10

131.32 113.56 26,264.41 13.41

Smith-Waterman
16,259.14 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6
(Default)

9.79 9.40 1,958.27 1.00

NCBI-BLAST 2.2.6
(No Filter)

21.37 10.16 4,274.56 2.18

NCBI-BLAST 2.2.6
(Report Everything)

49.65 11.27 9,929.06 5.07

BLAT*
2.10 2.07 420.75 0.21

PatternHunter**
78.37 78.61 15,673.57 8.00

FASTA
500.24 506.14 100,048.54 51.09

CAFE***
1,673.37 1,537.97 334,673.07 170.90

* Search times include time spent by server shared among all queries (BLAT).
** Minimum search time subtracted from all other queries to exclude cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CAFE).

293

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.22: Break Down Of DASH+NP3/NIX Search Time: Total seconds expected on
various activities for the 200 standard queries for configurations (C) 1 – 4, and posting
exclusion thresholds (E) 1.5, 2.5, 5.0 and 10 times random expectation. Configuration 1 is
the control which does not employ cooperative compression.

DASH M2 DASH M4
Activity Activity

C E NP3 NIX HSP DP X NP3 NIX HSP DP X

1 1.5 4,664 225 181 264 82 7,852 1,329 2,173 5,570 501
2 1.5 5,639 575 468 237 82 8,576 1,354 3,687 4,804 443
3 1.5 6,004 624 497 238 82 9,452 1,476 3,978 6,185 518
4 1.5 18,674 1,227 2,376 296 91 22,189 2,164 15,939 7,078 585

1 2.5 4,928 241 197 314 88 8,922 1,627 1,943 8,139 640
2 2.5 5,885 578 510 276 85 9,385 1,441 3,829 6,620 547
3 2.5 6,340 619 529 277 86 9,613 1,473 3,948 6,514 541
4 2.5 18,732 1,234 2,471 323 94 22,259 2,191 16,168 7,469 605

1 5.0 4,992 247 206 373 95 9,510 1,950 2,313 11,402 796
2 5.0 5,945 579 526 326 89 9,872 1,560 4,495 8,947 664
3 5.0 6,382 628 552 322 92 10,082 1,579 4,613 8,772 656
4 5.0 18,710 1,240 2,552 381 99 22,785 2,375 18,964 10,289 753

1 10 5,013 248 210 458 104 9,638 2,054 2,515 13,106 894
2 10 5,954 581 537 393 99 9,958 1,592 4,740 10,210 736
3 10 6,394 628 559 389 99 10,169 1,607 4,837 10,003 724
4 10 18,692 1,244 2,581 462 107 22,968 2,428 19,778 19,778 841
NP3 counts time spent decompressing NP3 compressed data.
NIX counts time spent decompressing compressed postings lists from NIX files.
HSP counts time spent discovering and extending HSPs, including translating HSPs when this is done.
DP counts time spent performing dynamic programming.

X counts time spent doing all other activities, including output and house keeping.

294

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.23: Human Genome Nucleic Acid Database And Index Sizes For Surveyed Algo-
rithms In Megabytes (MB) And Bits Per Base (B/B).

Format Bodies Only Descriptions^ Index Total
MB B/B MB B/B MB B/B MB B/B

DASH+NP3/NIX
(No folding)

654 1.78 1 0.01 3,442 9.36 4,098 11.15

DASH+NP3/NIX
(With folding)

654 1.78 1 0.01 3,352 9.12 4,007 10.91

GeNML
(Korodi and Tabus
2005)

563 1.54 - - - - - -

Smith-Waterman*
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

BLAST
(formatdb)

736 2.01 433 1.18 32 0.09 1,201 3.28

BLAT*
(faToTwoBit)

950 2.60 - - 1,867 5.10 2,817 7.70

PatternHunter**
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

FASTA**
(FASTA ASCII)

3,004 8.21 289 0.79 - - 3,293 9.00

CAFE***
(CAFE Index)

987 2.70 9 0.02 9,950 27.18 10,945 29.90

* Indicates that program maintains an index in RAM, and that the database format contains both
sequence bodies and descriptions (BLAT).
** Indicates that algorithm indexes during searching (PatternHunter and FASTA), or does not use
an index (Smith-Waterman).
*** Indicates that multiple small indices were used insteadof one large index, due to technical
difficulties (CAFE).

^ The great variability in the size of the compressed descriptions arises because the descriptions

in this database are very compressible, but only CAFE and DASH make a serious attempt at

compressing them.

295

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.24: Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And The
GeNML Implementation Of Chapter 7 For The De Facto DNA Corpus, And The DNA
Databases Used In This Dissertation.

Database Program Seconds Bases per Second

De Facto Corpus* GZIP** 0.09 14,212,789
NP3 (byte-aligned) 0.06 21,319,183

NP3 (GeNML variant) 0.82 1,559,940

Human UniGene GZIP** 13.23 148,100,786
NP3 (byte-aligned) 11.93 164,239,178

NP3 (GeNML variant) 91.95 21,309,137

Human Genome GZIP** 25.52 120,790,046
NP3 (byte-aligned) 22.21 138,791,624

NP3 (GeNML variant) 215.68 13,294,078
* The small size of this corpus made it difficult to obtain accurate timing on the 1.8GHZ
Opteron systems running Linux with its 10ms granularity. A 400 MHz Ultra-SPARC-II
based system running Solaris 10 with micro-second granularity was used instead.
** To make the comparison between GZIP and the NP3 hosted algorithms, GZIP was given
an input file consisting only of the DNA letters, i.e., striped of all descriptions and white
space.

296

7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.25: For Each Of: The De Facto DNA Compression Corpus; The Human Uni-
Gene Database; And The Human Genome Database: Compressed Database And Index
Sizes, With Cooperative Compression Disabled (a), and Enabled (b), And Postings Omit-
ted Through Cooperative Compression.

Compressed Size (bits per base)Postings
Program Bodies Index Both Omitted

De Facto Corpus

GeNML* 1.73 - - -
NP3 (byte-aligned) (a) 1.93 20.44 22.37 -
NP3 (byte-aligned) (b) 1.93 19.82 21.75 4.31%

NP3 (GeNML variant) (a) 1.79 20.44 22.23 -
NP3 (GeNML variant) (b) 1.79 17.86 19.65 16.41%

Human UniGene
GeNML* - - - -

NP3 (byte-aligned) (a) 0.71 7.58 8.29 -
NP3 (byte-aligned) (b) 0.71 4.98 5.69 19.90%

NP3 (GeNML variant) (a) 0.73 7.59 8.32 -
NP3 (GeNML variant) (b) 0.73 5.43 6.16 16.13%

Human Genome
GeNML* 1.54 - - -

NP3 (byte-aligned) (a) 1.78 9.37 11.15 -
NP3 (byte-aligned) (b) 1.78 9.21 10.99 1.61%

NP3 (GeNML variant) (a) 1.67 8.29 9.96 -
NP3 (GeNML variant) (b) 1.67 7.11 8.78 7.24%

* GeNML results are those reported by Korodi and Tabus (2005). No results have been
reported by them for the Human UniGene database.

297

Part IV

Summary Of Results And Conclusions

298

CHAPTER 8. CONCLUSIONS

Chapter 8

Conclusions

In Part II it was demonstrated that, for a database where whole records are redundant, that

using cooperative compression could reduce sequence search and alignment time require-

ments by 6% – 13%, and space requirements by 18%, while obtaining a small increase in

sensitivity.

The results of Part II were generalised in Part III, where thecooperative compression tech-

niques were refined and applied to a sorted database containing less redundancy (the Hu-

man UniGene nucleotide database), and finally to an unsorteddatabase of “typical” com-

position and redundancy, namely the Human Genome Database.Substantial space savings

were again made, of 40% (for the Human UniGene database) and 15% (for the Human

Genome database), and were also accompanied by significantly increased sensitivity.

The partitioned data model allows DASH to processes batchesof queries from an on-disk

database several times faster than NCBI-BLAST could process them using a memory res-

ident database. This is in spite of increased search times for single queries due to the high

computational cost of decompressing database and index records.

It is this computational complexity that presents the greatest difficulty in making the meth-

ods of this dissertation generally successful. The need to decompress additional documents

in order to reconstruct the index postings omitted by the cooperative compression of the

postings list results in an unavoidable time cost.

299

CHAPTER 8. CONCLUSIONS

The partitioned index structure means each database partition and its index can be fully

decompressed into RAM, thus allowing much of the extra search time cost to be amortised

by processing queries in batches. However, this is not a perfect solution: single queries

are still slow and, critically, the time cost of translatingHSPs from one context to another

remains. Therefore the end result is a search process that while having the potential to be

faster by avoiding the repeated searching of identical material, often ended up being slower

due to higher constant overheads, as reflected in the fact that HSP translation turned out to

be slower than discovering HSPs in the ordinary way.

Work is warranted in exploring how to make the translation ofHSPs faster. This may be

possible by creating a more efficient test as to whether any given translation can be skipped.

The current test requires a cache unfriendly tree traversal, which results in the test being

slower than either the translation step, or the discovery ofthe alignment in the ordinary

way.

Nonetheless, it was shown that it is possible to explicitly re-use information about recurrent

strings obtained during the database compression phase in the compression of the index,

and also the searching of the database, which efficiency issues aside, was successful and

did result in a small gain in sensitivity. In this way the methods of this dissertation have

contributed a new approach to increasing the sensitivity ofan index based search. This

creates a significant new avenue of exploration in attempting to devise a new generation

of genomic search algorithms that combine the seemingly conflicting goals of improved

speed, sensitivity and space characteristics.

Overall, it was shown that the considerable space savings that cooperative compression

delivers can result in reduced search times overall, especially if the data are stored on

disk. Thus, the possibility of creating DNA compression, indexing, and search algorithms

that reduce the space and time requirements, while simultaneously increasing the search

sensitivity was again demonstrated in principle, if not in practice.

300

8.1. CONCLUSIONS CHAPTER 8. CONCLUSIONS

8.1 Conclusions

In conclusion then, I can say that evidence was found in support of the thesis of this dis-

sertation that was proposed in Chapter 1. However, this was only achieved when sufficient

redundancy existed within the database being considered, and that the redundancy was in

the form of whole repeated records, when searches were batched together, or when the

database was stored on disk.

When the redundancy consisted of smaller units, such as recurrent strings within records,

then space savings and sensitivity increases can be made, but at the cost of a dispropor-

tionate increase in search time. However, this increase in search time could be reversed by

batching queries, and would allow a DASH based system to process queries against a disk-

resident database several time faster (in aggregate) than NCBI-BLAST, even if BLAST

were able to operate from a memory-resident database.

The increased search time for individual queries was found to be primarily due to the fact

that: (a) Decompressing sequence bodies, even using the fast NP3 byte-aligned codec, was

slow if not amortised over multiple searches, and; (b) the fine grained approach of copying

or translating alignments discovered for each instance of arecurrent string into each other

instance of that string was more time consuming than simply discovering each alignment

independently. That HSP translation turned out to be slowerthan re-discovery was a sur-

prising result. Indeed, if this situation could be reversed, then the algorithms presented in

this dissertation have the potential to be significantly faster than existing genomic sequence

search and alignment algorithms. Indeed, the benefits may even flow on to other search and

comparison systems, such as internet search engines.

In order to obtain further space savings, a DNA compression algorithm such as GeNML

is required. However, this would further increase the decompression time, and therefore,

the search time. Although the variation of the GeNML algorithm presented in this disser-

tation already reduces the amount of Arithmetic Coding performed, it is still too slow. The

301

8.1. CONCLUSIONS CHAPTER 8. CONCLUSIONS

greatest hope for making it faster would seem to lie in using the latest advances in fast

Arithmetic Coding algorithms.

In summary, cooperative compression has been shown to obtain worthwhile time and space

savings, accompanied by minor sensitivity gains, thus supporting the thesis of this disser-

tation. However, the current state of the art limits its applicability to biological sequence

databases that contain sufficient redundancy. This is currently the exception rather than the

rule, but as the quantity and redundancy of sequenced data continues to grow, cooperative

compression will increase in relevance, particularly withthe recent advent of algorithms

that allow for the efficient sorting of large genomic databases.

302

Part V

Appendix

303

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Appendix A

Invocation Commands For Search
Algorithms

This appendix contains the invocation commands for: (a) each of the peer group of algo-

rithms; and (b) the various invocations of the DASH search algorithm introduced in this

thesis.

Table A.1: SSEARCH 3.4t25 (Smith-Waterman) Configuration.

Command Template

Nucleic Acid
Queries

ssearch34 -n -a -b 500 -d 500 -E 1000000 -r +1/-3 -f

-5 -g -2 -m 0 -Q $QUERY -O $OUTFILE ${database}

Protein
Queries

ssearch34 -p -a -b 500 -d 500 -E 1000000 -f -11 -g -1

-m 0 -Q $QUERY -O $OUTFILE ${database}

304

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.2: BLAT Configuration.

Command Template

Database/Index
Construction

grep -v ’^$|^#’ Hs.seq.all > hs.fa ; faToTwoBit hs.fa

hs.seq.all.2bit ; gfServer localhost 12345 -tileSize=8

-maxDnaHits=500 -repMatch=65536 hs.seq.all.2bit

Nucleic Acid
Queries

gfClient -out=blast localhost 12345 / $QUERY $OUTFILE

Protein
Queries

~/bin/i386/blat -out=blast ~/data/genpept.fsa $QUERY

-prot -tileSize=3 -ooc=3.ooc $OUTFILE

Table A.3: NCBI-BLAST 2.2.6 Default Configuration.

Command Template

Database/Index
Construction

formatdb -p F -i Hs.seq.all ; formatdb -p T -i

genpept.fsa

Nucleic Acid
Queries

blastall -p blastn -G 5 -E 2 -d $BLAST_DB_FILE -i

$QUERY -o $OUTFILE

Protein
Queries

blastall -p blastp -d $BLASTP_DB_FILE -i $QUERY -o

$OUTFILE

Table A.4: NCBI-BLAST 2.2.6 No Filtering Configuration.

Command Template

Database/Index
Construction

formatdb -p F -i Hs.seq.all ; formatdb -p T -i

genpept.fsa

Nucleic Acid
Queries

blastall -p blastn -G 5 -E 2 -F F -d $BLAST_DB_FILE -i

$QUERY -o $OUTFILE

Protein
Queries

blastpgp -s T -F F -d $BLASTP_DB_FILE -i $QUERY -o

$OUTFILE

Table A.5: NCBI-BLAST 2.2.6 Report Everything Configuration.

Command Template

Database/Index
Construction

formatdb -p F -i Hs.seq.all ; formatdb -p T -i

genpept.fsa

Nucleic Acid
Queries

blastall -p blastn -G 5 -E 2 -e 500 -v 100000 -b

100000 -d $BLAST_DB_FILE -i $QUERY -o $OUTFILE

Protein
Queries

blastall -p blastp -e 500 -v 100000 -b 100000 -d

$BLASTP_DB_FILE -i $QUERY -o $OUTFILE

305

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.6: PatternHunter Configuration.

Command Template

Nucleic Acid
Queries

phn -m 32 -db 3 -i $query -j $database -o $outputfile

Table A.7: FASTA Configuration.

Command Template

Nucleic Acid
Queries

fasta34 -n -a -b 500 -d 500 -E 1000000 -f 5 -g 2 -m 0

-Q $QUERY -O $OUTFILE Hs.seq.all 6

Protein
Queries (a)

fasta34 -p -a -b 500 -d 500 -E 1000000 -f 11 -g 1 -m 0

-Q $QUERY -O $OUTFILE genpept.fsa 1

Protein
Queries (b)

fasta34 -p -a -b 500 -d 500 -E 1000000 -f 11 -g 1 -m 0

-Q $QUERY -O $OUTFILE genpept.fsa 2

Table A.8: CAFE Configuration.

Command Template

Database/Index
Construction

cafe -g 9 -f -v Hs.seq.all; cafe -a -g 3 -f -v

genpept.fsa

Nucleic Acid
Queries

cafe -n 500 -G 5 -E 2 -I $database < $query

>$outputfile

Protein
Queries

cafe -a -n 500 -G 11 -E 1 -I $database < $query

>$outputfile

Table A.9: DASH+FOLDDB M2 Configuration.

Command Template

Database/Index
Construction

folddb -e 2.5 -r 50000000 -s 65000 -d Hs.seq.all -o

index.Hs.seq.all; folddb -e 10 -r 50000000 -s 65000 -d

genpept.fsa -o index.genpept.fsa; folddb -2 -e 10 -r

50000000 -s 65000 -d genpept.fsa -o

index.genpept.fsa.nofold

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d index.Hs.seq.all -i

$query -o $outputfile -G 5 -E 2

Protein
Queries
(folded)

dash -s mode2 -b 1000 -p dashp -d index.genpept.fsa -i

$query -o $outputfile

Protein
Queries
(normal)

dash -s mode2 -b 1000 -p dashp -d

index.genpept.fsa.nofold -i $query -o $outputfile

306

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.10: DASH+FOLDDB M4 Configuration.

Command Template

Database/Index
Construction

folddb -e 2.5 -r 50000000 -s 65000 -d Hs.seq.all -o

index.Hs.seq.all; folddb -e 10 -r 50000000 -s 65000 -d

genpept.fsa -o index.genpept.fsa ; folddb -2 -e 10 -r

50000000 -s 65000 -d genpept.fsa -o

index.genpept.fsa.nofold

Nucleic Acid
Queries

dash -s mode4 -b 1000 -p dashn -d index.Hs.seq.all -i

$query -o $outputfile -G 5 -E 2

Protein
Queries
(folded)

dash -s mode4 -b 1000 -p dashp -d index.genpept.fsa -i

$query -o $outputfile

Protein
Queries
(normal)

dash -s mode4 -b 1000 -p dashp -d

index.genpept.fsa.nofold -i $query -o $outputfile

Table A.11: DASH + NP3/NIX Configuration 1: No Cooperative Compression (Negative
Control).

Command Template

Database/Index
Construction

np3 -9 Hs.seq.all;

nix -v -r -k -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.12: DASH + NP3/NIX Configuration 2: Forward Indexing.

Command Template

Database/Index
Construction

np3 -9 Hs.seq.all;

nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

307

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.13: DASH + NP3/NIX Configuration 3: Forward Indexing, Prefer Inter-Record Ref-
erences.

Command Template

Database/Index
Construction

np3 -9 -n Hs.seq.all;

nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.14: DASH + NP3/NIX Configuration 4: Forward Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings.

Command Template

Database/Index
Construction

np3 -9 -n -R 13 Hs.seq.all;

nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.15: DASH + NP3/NIX Configuration 5: Forward Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings, Do Not Exclude Stop k-mers.

Command Template

Database/Index
Construction

np3 -9 -n -R 13 Hs.seq.all;

nix -v Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.16: DASH + NP3/NIX Configuration 6: Reverse Indexing.

Command Template

Database/Index
Construction

np3 -9 Hs.seq.all;

nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

308

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.17: DASH + NP3/NIX Configuration 7: Reverse Indexing, Prefer Inter-Record Ref-
erences.

Command Template

Database/Index
Construction

np3 -9 -n Hs.seq.all;

nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.18: DASH + NP3/NIX Configuration 8: Reverse Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings.

Command Template

Database/Index
Construction

np3 -9 -n -R 13 Hs.seq.all;

nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

Table A.19: DASH + NP3/NIX Configuration 9: Reverse Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings, Maximise Distinct Source Mate-
rial.

Command Template

Database/Index
Construction

np3 -9 -n -r -R 13 Hs.seq.all;

nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

309

CHAPTER A. INVOCATION COMMANDS FOR SEARCH ALGORITHMS

Table A.20: DASH + NP3/NIX Configuration 10: Reverse Indexing, Prefer Inter-Record
References, Rebate Estimated Savings Of Omitted Postings, Maximise Distinct Source
Material, Do Not Exclude Stop k-mers.

Command Template

Database/Index
Construction

np3 -9 -n -r -R 13 Hs.seq.all;

nix -v -r Hs.seq.all.np3

Nucleic Acid
Queries

dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i

$query -o $outputfile -G 5 -E 2;

310

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

Abbasi S. and Sengupta A. An O(nlogn) algorithm for finding dissimilar strings.Inf.

Process. Lett., 62(3):135–139, 1997.

Altschul S. Amino acid substitution matrices from an information theoretic perspective.

J.Mol. Biol., 219:555–565, 1991.

Altschul S. A protein alignment scoring system sensitive atall evolutionary distances.

J.Mol. Evol., 36:290–300, 1993.

Altschul S., Boguski M. S., Gish W., and Wootton J. C. Issues in searching molecular

sequence databases.Nature Genetics, 6:119–129, 1994.

Altschul S. and Gish W. Local alignment statistics.Methods Enzymol., 266:460–480,

1996a.

Altschul S., Gish W., Miller W., Myers E., and Lipman D. Basiclocal alignment search

tool. J. Mol. Biol., 215:403–410, 1990.

Altschul S. F. Evaluating the statistical significance of multiple distinct local alignments.

In Suhai S., editor,Theoretical and Computational Methods in Genome Research, pages

1–14. Plenum Press, New York, 1997.

Altschul S. F. and Gish W. Local alignment statistics.Methods Enzymol., 266:460–480,

1996b.

311

BIBLIOGRAPHY BIBLIOGRAPHY

Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., ZhangZ., Miller W., and Lipman

D. J. Gapped BLAST and PSI-BLAST: a new generation of proteindatabase search

programs.Nucleic Acids Research, 25:3389–3402, 1997.

Anderson D. P., Cobb J., Korpela E., Lebofsky M., and Werthimer D. Seti@home: an

experiment in public-resource computing.Commun. ACM, 45(11):56–61, 2002.

Anh V. N., de Kretser O., and Moffat A. Vector-space ranking with effective early termi-

nation. InSIGIR ’01: Proceedings of the 24th annual international ACMSIGIR con-

ference on Research and development in information retrieval, pages 35–42, New York,

NY, USA, 2001. ACM Press.

Anh V. N. and Moffat A. Index compression using fixed binary codewords. In Schewe

K. D. and Williams H., editors,Proc. 15th Australasian Database Conference, Dunedin,

New Zealand, January 2004.

Anh V. N. and Moffat A. Inverted index compression using word-aligned binary codes.Inf.

Retr., 8(1):151–166, 2005.

Arnold R. and Bell T. C. A corpus for the evaluation of lossless compression algorithms.

In Designs, Codes and Cryptography, pages 201–210, 1997.

Balkenhol B., Kurtz S., and Shtarkov Y. M. Modifications of the burrows and wheeler data

compression algorithm. InData Compression Conference, pages 188–197, 1999.

Barker K., Youngblood R. F., Burdick D. W., Barker K. L., and Wessel W. W., editors.New

American Standard Bible. The Lockman Foundation, La Habra, CA 90631, U.S.A.,

1960 - 1995.

Barton G. Protein Sequence Alignment and Database Scanning, chapter 2, pages 31–64.

IRL Press at Oxford University Press, 1996.

312

BIBLIOGRAPHY BIBLIOGRAPHY

Batzoglou S., Jaffe D. B., Stanley K., Butler J., Gnerre S., Mauceli E., Berger B., Mesirov

J. P., and Lander E. S. Arachne: A whole-genome shotgun assembler. Genome Res., 12

(1):177–189, January 2002. URLhttp://dx.doi.org/10.1101/gr.208902.

Begleiter R., El-Yaniv R., and Yona G. On prediction using variable order markov models.

Journal of Artificial Intelligence Research (JAIR), 22:385–421, May 2004.

Behzadi B. and Le Fessant F. Dna compression challenge revisited: A dynamic program-

ming approach. InCombinatorial Pattern Matching, volume 3537 ofLecture Notes in

Computer Science, pages 190–200. Springer, 2005.

Bell T. C. and Kulp D. Longest-match string searching for ziv-lempel compression.Soft-

ware - Practice and Experience, 23(7):757–771, 1993.

Bell T. C., Moffat A., Nevill-Manning C. G., Witten I. H., andZobel J. Data compression

in full-text retrieval systems.JASIS, 44(9):508–531, 1993.

Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., and Wheeler D. L. Genbank.

Nucleic Acids Research, 34(1):D16–D20, 2006.

Bentley J. L. and Yao A. C.-C. An almost optimal algorithm forunbounded searching.

Information Processing Letters, 5(3):82–87, 1976.

Bernstein Y. and Cameron M. Fast discovery of similar sequences in large genomic col-

lections. In Lalmas M., MacFarlane A., Rüger S. M., Tombros A., Tsikrika T., and

Yavlinsky A., editors,Advances in Information Retrieval, 28th European Conference on

IR Research, ECIR 2006, London, UK, April 10-12, 2006, Proceedings, volume 3936

of Lecture Notes in Computer Science, pages 432–443. Springer, 2006. ISBN 3-540-

33347-9.

313

http://dx.doi.org/10.1101/gr.208902

BIBLIOGRAPHY BIBLIOGRAPHY

Bernstein Y. and Zobel J. Redundant documents and search effectiveness. InCIKM ’05:

Proceedings of the 14th ACM international conference on Information and knowledge

management, pages 736–743, New York, NY, USA, 2005. ACM Press.

Blanco R. and Barreiro A. Characterization of a simple case of the reassignment of docu-

ment identifiers as a pattern sequencing problem. InSIGIR ’05: Proceedings of the 28th

annual international ACM SIGIR conference on Research and development in informa-

tion retrieval, pages 587–588, New York, NY, USA, 2005. ACM Press.

Blandford D. and Blelloch G. Index compression through document reordering. In Storer

J. A. and Cohn M., editors,Proc. 2002 IEEE Data Compression Conference, pages 342–

351, Los Alamitos, CA, U.S.A, April 2002. IEEE Computer Society Press.

Blandford D. K. and Blelloch G. E. Compact representations of ordered sets. InSODA

’04: Proceedings of the fifteenth annual ACM-SIAM symposiumon Discrete algorithms,

pages 11–19, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathe-

matics.

Blandford D. K., Blelloch G. E., and Kash I. A. Compact representations of separable

graphs. InSODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 679–688, Philadelphia, PA, USA, 2003. Society for Industrial

and Applied Mathematics.

Bock A., Forchhammer K., Heider J., and Baron C. Selenoprotein synthesis: an expansion

of the genetic code.Trends Biochem Sci, 16(12):463–467, Dec 1991.

Bookstein A., Klein S. T., and Raita T. Model based concordance compression. InPro-

ceedings of the Data Compression Conference DCC-92, pages 82–91, Washington, D.C.,

1992. IEEE Computer Society.

Bookstein A., Klein S. T., and Raita T. Is huffman coding dead? In Research and Devel-

opment in Information Retrieval, pages 80–87, 1993.

314

BIBLIOGRAPHY BIBLIOGRAPHY

Booth H. S., Maindonald J. H., Wilson S. R., and Gready J. E. Anefficient z-score al-

gorithm for assessing sequence alignments.Journal of Computational Biology, 11(4):

616–625, 2004.

Brudno M., Do C. B., Cooper G. M., Kim M. F., Davydov E., Green E. D., Sidow A., and

Batzoglou S. Lagan and multi-lagan: Efficient tools for large-scale multiple alignment

of genomic dna.Genome Research, pages 721–731, 2003.

Buckley C. and Lewit A. F. Optimization of inverted vector searches. InSIGIR ’85:

Proceedings of the 8th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 97–110, New York, NY, USA, 1985. ACM

Press.

Bunton S. Semantically motivated improvements for PPM variants.The Computer Journal,

40(2/3):76–93, 1997.

Burrows M. and Wheeler D. J. A block-sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, 1994.

Califano A. and Rigoutsos I. Flash: A fast look-up algorithmfor string homology. InIn

International Conference on Intelligent Systems for Molecular Biology, Bethesda, MD,

USA, pages 56–64, 1993.

Cannane A. and Williams H. E. A general-purpose compressionscheme for large collec-

tions. ACM Trans. Inf. Syst., 20(3):329–355, 2002. ISSN 1046-8188.

Chaisson M. J. and Pevzner P. A. Short read fragment assemblyof bacterial genomes.

Genome Res., 18(2):324–330, February 2008. URLhttp://dx.doi.org/10.1101/

gr.7088808.

315

http://dx.doi.org/10.1101/gr.7088808
http://dx.doi.org/10.1101/gr.7088808

BIBLIOGRAPHY BIBLIOGRAPHY

Challoner B. R.Holy Bible, Challoner Revision of Douay-Rheims Translation. Christian

Classics Ethereal Library, Grand Rapids, MI, U.S.A., christian classics ethereal library

edition, 1752. URLhttp://www.ccel.org/ccel/bible/douayr.html.

Chen X., Kwong S., and Li M. A compression algorithm for dna sequences and its ap-

plications in genome comparison.Genome Informatics (GIW’99), Tokyo, Japan, pages

51–61, 1999.

Chen X., Kwong S., and Li M. A compression algorithm for dna sequences.IEEE Engi-

neering in Medicine and Biology Magazine, 20:61,66, 2001.

Chen X., Li M., Ma B., and Tromp J. Dnacompress: fast and effective dna sequence

compression.Bioinformatics, 18(12):1696–1698, 2002a.

Chen X., Li M., Ma B., and Tromp J. Dnacompress: fast and effective dna sequence

compression.Bioinformatics Application Note, Oxford University Press, 18(12):1696–

1698, 2002b.

Chen X. L. A framework for comparing genomic search techniques. Master’s thesis, Royal

Melbourne Institute of Technology, July 2004.

Cheng C.-S., Shann J. J.-J., and Chung C.-P. A unique-order interpolative code for fast

querying and space-efficient indexing in information retrieval systems. InITCC ’04:

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC’04) Volume 2, page 229, Washington, DC, USA, 2004. IEEE Com-

puter Society.

Cheng L., Cheung D., and Yiu S. Approximate string matching in dna sequences. In

Proceeings of the Eighth International Conference on Database Systems for Advanced

Applications, pages 303–310, 2003.

316

http://www.ccel.org/ccel/bible/douayr.html

BIBLIOGRAPHY BIBLIOGRAPHY

Choueka Y., Fraenkel A. S., and Klein S. T. Compression of concordances in full-text

retrieval systems. InSIGIR ’88: Proceedings of the 11th annual international ACM

SIGIR conference on Research and development in information retrieval, pages 597–

612, New York, NY, USA, 1988. ACM Press.

Claverie J.-M. and States D. Information enhancement methods in large scale sequence

analysis.Computers in Chemistry, 17:191–201, 1993.

Cleary J. G. and Teahan W. J. Unbounded length contexts for PPM. The Computer Journal,

40(2/3):67–75, July 1997.

Cleary J. G. and Witten I. H. Data compression using adaptivecoding and partial string

matching.IEEE Transactions on Communications, COM-32(4):396–402, April 1984.

Collins J. F., Coulson A. F. W., and Lyall A. The significance of protein sequence similari-

ties. Computer Applications in the Biosciences, 4(1):67–71, 1988.

Cormack G. V. and Horspool R. N. S. Data compression using dynamic Markov modelling.

The Computer Journal, 30(6):541–550, 1987.

Darby J. N. Holy Bible, Darby Translation. Christian Classics Ethereal Library, Grand

Rapids, MI, U.S.A., christian classics ethereal library edition, 1890. URLhttp://www.

ccel.org/ccel/bible/darby.html.

Dayhoff M. O., Schwartz R. M., and Orcutt B. C. Matrices for detecting distant relation-

ships.Altas of Protein Sequence and Structure, Natl. Biomed. Res.Found., Washington,

D.C., 5(3):345–352, 1978.

Dembo A., Karlin S., and Zeitouni O. Limit distribution of maximal non-aligned two-

sequence segmental score.Ann. Prob., 22:2022–2039, 1994.

Deorowicz S. Improvements to Burrows-Wheeler compressionalgorithm.Software – Prac-

tice and Experience, 30(13):1465–1483, 2000.

317

http://www.ccel.org/ccel/bible/darby.html
http://www.ccel.org/ccel/bible/darby.html

BIBLIOGRAPHY BIBLIOGRAPHY

Deorowicz S. Second step algorithms in the Burrows-Wheelercompression algorithm.

Software – Practice and Experience, 32(2):99–111, 2002.

Dwan C. Speedup at what cost? InO’Reilly’s Bioinformatics Technology Conference,

Tucson , Arizona, Jan. 28-31 2002.

Effros M. Universal lossless source coding with the burrowswheeler transform. InData

Compression Conference, pages 178–187, 1999.

Elias P. Universal codeword sets and representations of theintegers.IEEE Transactions in

Information Theory, 21(2):194–203, March 1975.

Erdos P. and Renyi A. On a new law of large numbers.J. Analyse Math, 22:103–111, 1970.

Erdos P. and Revesz P. On the length of the longest head-run.Topics in Information Theory,

Math. Soc. J. Bolyai, 16:219–228, 1975.

Fenwick P., Titchener M., and Lorenz M. Burrows wheeler - alternatives to move to front.

In DCC ’03: Proceedings of the Conference on Data Compression, page 428, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

Fenwick P. M. A new data structure for cumulative probability tables: an improved

frequency-to-symbol.Softw. Pract. Exper., 26(4):489–490, 1996.

Fox E. A., Harman D. K., Baeza-Yates R., and Lee W. C.Inverted Files, chapter 3, pages

28–43. Frakes and Baeza-Yates, 1992.

Gailly J. L. Gzip program and documentation., 1993. URLftp://prep.ai.mit.edu/

pub/gnu/gzip-*.tar.

Galisson F. The fasta and blast programs. Technical Report

bioweb.pasteur.fr/seqanal/blast/blast_fasta-uk.ps, Pasteur Institute, 2000.

318

ftp://prep.ai.mit.edu/pub/gnu/gzip-*.tar
ftp://prep.ai.mit.edu/pub/gnu/gzip-*.tar

BIBLIOGRAPHY BIBLIOGRAPHY

Gallager R. and Voorhis D. V. Optimal source codes for geometrically distributed integer

alphabets.IEEE Transactions on Information Theory, IT-21:228–230, 1975.

Gallager R. G. Variations on a theme by huffman.IEEE Transactions on Information

Theory, IT-24(6):668–674, November 1978.

Gardner-Stephen P. and Knowles G. DASH: A new high speed genomic sequence search

and alignment tool. InProceedings of WSEAS MCBC-MCBE-ICAI-ICAMSL, Puerto De

La Cruz, Tenerife, Spain, pages 59–64, Dec. 19-21 2003.

Gardner-Stephen P. and Knowles G. DASH: Localising dynamicprogramming for or-

der of magnitude faster, accurate sequence alignment. InProceedings of the 3rd IEEE

Conference on Computational Systems Bioinformatics (CSB2004), Stanford, USA, pages

732–735, August 2004.

Gardner-Stephen P. and Knowles G. Np3: Cooperative compression of clustered dna

databases and their indexes.WSEAS Transactions on Biology and Biomedicine, 3(7):

565–, July 2006.

Gilbert E. N. and Moore E. F. Variable length binary encodings. Bell Systems Technical

Journal, pages 933–967, July 1959.

Golomb S. W. Run-length encodings.IEEE Transactions on Information Theory, IT-12

(3):399–401, 1966.

Grumbach S. and Tahi F. A new challenge for compression algorithms: genetic sequences.

J. Inform. Process. Management, 30:866–875, 1994.

Hancock J. M. and Armstrong J. S. Simple34: an improved and enhanced implementaiton

for vax and sun computers of the simple algorithm for analysis of clustered repetitive

motifs in nucleotide sequences.Comput. Appl. Biosci., 10:67–70, 1994.

319

BIBLIOGRAPHY BIBLIOGRAPHY

Hardy P. and Waterman M. The sequence alignment software library at USC. 1997. URL

http://www-hto.usc.edu/software/seqaln/.

Harman D. K. and Candela G. Retrieving records from a gigabyte of text on a minicomputer

using statistical ranking.Journal of the American Society for Information Science, 41

(8):581–589, August 1990.

Heinz S. and Zobel J. Efficient single-pass index construction for text databases.J. Am.

Soc. Inf. Sci. Technol., 54(8):713–729, 2003. ISSN 1532-2882.

Henikoff S. and Henikoff J. G. Amino acid substitution matrices from protein blocks.Proc.

Natl. Acad. Sci. USA, 89:10915–10919, 1992.

Howard P. G. and Vitter J. S. Analysis of arithmetic coding for data compression.Infor-

mation Processing and Management, 28(6):749–764, 1992.

Howard P. G. and Vitter J. S. Arithmetic coding for data compression.Proc. IEEE, 82(6):

857–865, 1994.

Huffman D. A. A method for the construction of minimum redundancy codes.In Proceed-

ings of the IRE, 40:1098–1101, 1952.

Hunt E., Atkinson M., and Irving R. Database indexing for large DNA and protein sequence

collections.The VLDB Journal, 11:256–271, 2002.

International Bible Society .The Holy Bible, New International Version. Zondervan Pub-

lishing House, Grand Rapids, Michigan 49530, U.S.A., 1973 -1984.

Jaffe D. B., Butler J., Gnerre S., Mauceli E., Lindblad-Toh K., Mesirov J. P., Zody M. C.,

and Lander E. S. Whole-genome sequence assembly for mammalian genomes: Arachne

2. Genome Res, 13(1):91–96, January 2003. ISSN 1088-9051. URLhttp://dx.doi.

org/10.1101/gr.828403.

320

http://www-hto.usc.edu/software/seqaln/
http://dx.doi.org/10.1101/gr.828403
http://dx.doi.org/10.1101/gr.828403

BIBLIOGRAPHY BIBLIOGRAPHY

Johnson M. P. Holy Bible, World English Version. Rainbow Missions, Inc, Mesa CO

81643-0275, U.S.A., 2003. URLhttp://www.ebible.org.

Joint Commission on Biochemical Nomenclature . Abbreviations and symbols for the

description of conformations of polynucleotide chains. recommendations 1982.Eur. J.

Biochem., 131:9–15, 1983.

Karlin S. and Altschul S. Methods for assessing the statistical significance of molecular

sequence features by using general scoring schemes.Proc. Natl. Acad. Sci. USA, 87:

2264–2268, 1990.

Karlin S. and Altschul S. F. Applications and statistics formultiple high-scoring segments

in molecular sequences.Proc. Natl. Acad. Sci. USA, 90:5873–5877, 1993.

Karlin S., Ghandour G., Ost F., Tavare S., and Korn L. J. New approaches for computer

analysis of nucleic acid sequences.PNAS (USA), 80:5660–5664, 1983.

Kent W. Blat–the blast-like alignment tool.Genome Res., 12(4):656–664, April 2002.

Knowles G. and Gardner-Stephen P. DASH, DASH-H: A software and hardware for se-

quence alignment.WSEAS Transactions on Biology and Biomedicine, 3(1):37–42, Jan.

2006.

Knuth D. E., Morris J. H., and Pratt V. R. Fast pattern matching in strings.SIAM Journal

on Computing, pages 323–350, June 1977.

Korodi G. and Tabus I. An efficient normalized maximum likelihood algorithm for dna

sequence compression.ACM Trans. Inf. Syst., 23(1):3–34, 2005.

Kurtz S., Phillippy A., Delcher A., Smoot M., Shumway M., Antonescu C., and Salzberg

S. Versatile and open software for comparing large genomes.Genome Biology, 5:R12,

2004.

321

http://www.ebible.org

BIBLIOGRAPHY BIBLIOGRAPHY

Larsson N. J.Structures of String Matching and Data Compression. PhD thesis, Depart-

ment of Computer Science, Lund University, Sweden, Sept. 1999.

Lester N., Moffat A., and Zobel J. Fast on-line index construction by geometric partition-

ing. InCIKM ’05: Proceedings of the 14th ACM international conference on Information

and knowledge management, pages 776–783, New York, NY, USA, 2005. ACM Press.

Levenshtein V. I. Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady, 10(8):707–710, 1966.

Li M., Badger J. H., Chen X., Kwong S., Kearney P., and Zhang H.An information

based sequences distance and its application to whole motochondrial genome phylogeny.

Bioinformatics, 17(2):149–154, 2001.

Li M., Ma B., Kisman D., and Tromp J. PatternHunter II: HighlySensitive and Fast Ho-

mology Search.Journal of Bioinformatics and Computational Biology, 2(3):417–439,

2004.

Lucarella D. A document retrieval system based upon nearestneighbour searching.Journal

of Information Science, 14:25–33, 1988.

Manzini G. Invited lecture: The burrows-wheeler transform: Theory and practice. In

Kutylowski M., Pacholski L., and Wierzbicki T., editors,Mathematical Foundations of

Computer Science 1999, 24th International Symposium, MFCS’99, Proceedings, volume

1672 ofLecture Notes in Computer Science, pages 34–47. Springer, September 1999.

Manzini G. and Rastero M. A simple and fast dna compressor.Softw. Pract. Exper., 34

(14):1397–1411, 2004.

Matsumoto T., Sadakane K., and Imai H. Biological sequence compression algorithms.

Genome Informatics Workshop, Universal Academy Press, pages 43,52, 2000.

322

BIBLIOGRAPHY BIBLIOGRAPHY

McDonell K. J. An inverted index implementation.The Computer Journal, 20(1):116,123,

1977.

Moffat A. An improved data structure for cumulative probability tables. Softw. Pract.

Exper., 29(7):647–659, 1999.

Moffat A., Neal R. M., and Witten I. H. Arithmetic coding revisited.ACM Trans. Inf. Syst.,

16(3):256–294, 1998.

Moffat A. and Stuiver L. Exploiting clustering in inverted file compression. InDCC ’96:

Proceedings of the Conference on Data Compression, page 82, Washington, DC, USA,

1996. IEEE Computer Society.

Moffat A. and Stuiver L. Binary interpolative coding for effective index compression.Inf.

Retr., 3(1):25–47, 2000.

Moffat A. and Turpin A. Efficient construction of minimum-redundancy codes for large

alphabets.IEEE Transactions on Information Theory, 44(4):1650–1657, 1998.

Moffat A. and Zobel J. Parameterised compression for sparsebitmaps. InSIGIR ’92:

Proceedings of the 15th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 274–285, New York, NY, USA, 1992. ACM

Press.

Moffat A. and Zobel J. Compression and fast indexing for multi-gigabyte text databases.

Australian Computer Journal, 26(1):1–9, 1994.

Moffat A. and Zobel J. Self-indexing inverted files for fast text retrieval.ACM Transactions

on Information Systems, 14(4):349–379, 1996.

Moore G. E. Cramming more components onto integrated circuits. Electronics, 38(8):

114–117, April 19 1965.

323

BIBLIOGRAPHY BIBLIOGRAPHY

Moore G. E. Excerpts of a conversation with gorden moore: Moore’s law, 2005.

URL ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/

Excepts_A_Conversation_with_Gordon_Moore.pdf.

Mott R. Maximum-likelihood estimation of the statistical distribution of smith-waterman

local sequence similarity scores.Bull. Math. Biol., 54:59–75, 1992.

Nevill-Manning C. and Witten I. Identifying hierarchical structure in sequences: A linear-

time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997. URL

citeseer.ist.psu.edu/nevill-manning97identifying.html.

Oberhumer M. Lzo - a real-time data compression library. Technical report, 1997. URL

http://www.oberhumer.com/opensource/lzo.

Pearson W. R. Rapid and sensitive sequence comparison with fastp and fasta.Methods in

Enzymology, 183:63–98, 1990.

Pearson W. R. Empirical statistical estimates for sequencesimilarity scores.J. Mol. Biol.,

276:71–84, 1998.

Peterson E. H.Holy Bible Paraphrase, The Message. NavPress Publishing Group NZ,

Christchurch, New Zealand, 2002.

Pontius J. U., Wagner L., and Schuler G. D.UniGene: a unified view of the transcriptome,

chapter 21. National Center for Biotechnology Information, 2003.

R Development Core Team .R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2006. URL http://www.

R-project.org. ISBN 3-900051-07-0.

Rissanen J. and Langdon G. G. Arithmetic coding.IBM Journal of Research and Devel-

opment, 23(2):149–162, 1979.

324

ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
citeseer.ist.psu.edu/nevill-manning97identifying.html
http://www.oberhumer.com/opensource/lzo
http://www.R-project.org
http://www.R-project.org

BIBLIOGRAPHY BIBLIOGRAPHY

Rissanen J. and Langdon Jr. G. G. Universal modeling and coding. IEEE Transactions on

Information Theory, 27(1):12–22, 1981.

Sadakane and Imai . Improving the speed of LZ77 compression by hashing and suffix

sorting. TIEICE: IEICE Transactions on Communications/Electronics/Information and

Systems, 2000.

Saracevic T. Evaluation of evaluation in information retrieval. In Fox E. A., Ingwersen P.,

and Fidel R., editors,SIGIR’95, Proceedings of the 18th Annual International ACMSI-

GIR Conference on Research and Development in Information Retrieval. Seattle, Wash-

ington, USA, July 9-13, 1995 (Special Issue of the SIGIR Forum), pages 138–146. ACM

Press, 1995. ISBN 0-89791-714-6.

Schindler M. Szip block sorting file compression program, 1996. URL http://www.

compressconsult.com/szip/.

Schuegraf E. J. Compression of large inverted files with hyperbolic term distribution.Inf.

Process. Manage., 12(6):377–384, 1976.

Schuler G. D. Pieces of the puzzle: expressed sequence tags and the catalog of human

genes.J Mol Med, 75:694–698, 1997.

Schwartz R. M. and Dayhoff M. O. Matrices for detecting distant relationships.Altas

of Protein Sequence and Structure, Natl. Biomed. Res. Found., Washington, D.C., 5(3):

353–358, 1978.

Seward J., Burrows M., Wheeler D., Fenwick P., Moffat A., Neal R., and Witten I. The

bzip2 compression program. URLhttp://sources.redhat.com/bzip2. 2001.

Shannon C. E. A mathematical theory of communication.The Bell System Technical

Journal, 27:379–423, 623–656, July, Oct 1948.

325

http://www.compressconsult.com/szip/
http://www.compressconsult.com/szip/
http://sources.redhat.com/bzip2

BIBLIOGRAPHY BIBLIOGRAPHY

Shieh W.-Y., Chen T.-F., Shann J. J.-J., and Chung C.-P. Inverted file compression through

document identifier reassignment.Inf. Process. Manage., 39(1):117–131, 2003.

Silvestri F., Orlando S., and Perego R. Assigning identifiers to documents to enhance the

clustering property of fulltext indexes. InSIGIR ’04: Proceedings of the 27th annual

international ACM SIGIR conference on Research and development in information re-

trieval, pages 305–312, New York, NY, USA, 2004a. ACM Press.

Silvestri F., Perego R., and Orlando S. Assigning document identifiers to enhance com-

pressibility of web search engines indexes. InSAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 600–605, New York, NY, USA, 2004b. ACM

Press.

Smith T. and Waterman M. Identification of common molecular subsequences.The Journal

of Molecular Biology, 147(1):195–197, March 1981.

Smith T. F., Waterman M. S., and Burks C. The statistical distribution of nucleic acid

similarities.Nucleic Acids Research, 13:645–656, 1985.

Srinivasan G., James C. M., and Krzycki J. A. Pyrrolysine encoded by uag in archaea:

charging of a uag-decoding specialized trna.Science, 296:1459–1462, 2002.

Teahan W. J. and Harper D. J. Combining PPM models using a textmining approach. In

Data Compression Conference, pages 153–162, 2001.

Teuhola J. A compression method for clustered bit-vectors.Information Processing Letters,

7:308–311, October 1978.

Tjalkens T. and Willems F. M. J. Implementing the context-tree weighting method: Arith-

metic coding,. InInt. Conf. on Combinatorics, Information Theory and Statistics,

page 83, Portland, Maine, U.S.A, 18-20 1997.

Trotman A. Compressing inverted files.Information Retrieval, 6(1):5–19, 2003.

326

BIBLIOGRAPHY BIBLIOGRAPHY

Turpin A. and Moffat. A. Housekeeping for prefix coding.IEEE Trans. on Communica-

tions, 48(4):622–628, April 2000.

Waterman M. S. and Vingron M. Sequence comparison significance and poisson approxi-

mation.Stat. Sci., 9(3):367–381, 1994.

Weaver W. and Shannon C.The Mathematical Theory of Communication. University of

Illinois Press, Urbana, Illinois, 1949. republished in paperback 1963.

Webster N.Holy Bible, Webster’s. Christian Classics Ethereal Library, Grand Rapids, MI,

U.S.A., christian classics ethereal library edition, 1833. URL http://www.ccel.org/

ccel/bible/darby.html.

Welch T. A. A technique for high-performance data compression. IEEE Computer, 17(6):

8–20, 1984.

Werthimer D., Cobb J., Lebofsky M., Anderson D., and KorpelaE. Seti@home: massively

distributed computing for seti.Comput. Sci. Eng., 3(1):78–83, 2001.

Wilcoxon F. Individual Comparisons by Ranking Methods.Biometrics Bulletin, 1(6):

80–83, 1945.

Willems F. M. J., Shtarkov Y. M., and Tjalkens T. J. The context-tree weighting method:

basic properties.IEEE Trans. Info. Theory, pages 653–664, 1995.

Williams H. and Zobel J. Compression of nucleotide databases for fast searching, 1997a.

Williams H. E. Effective query filtering for fast homology searching. In Altman R. B.,

Dunker A. K., Hunter L., Klein T. E., and Lauderdale K., editors,Pacific Symposium on

Biocomputing, pages 214–225, 1999.

Williams H. E. and Zobel J. Indexing nucleotide databases for fast query evaluation. In

EDBT ’96: Proceedings of the 5th International Conference on Extending Database

Technology, pages 275–288, London, UK, 1996. Springer-Verlag.

327

http://www.ccel.org/ccel/bible/darby.html
http://www.ccel.org/ccel/bible/darby.html

BIBLIOGRAPHY BIBLIOGRAPHY

Williams H. E. and Zobel J. Compression of nucleotide databases for fast searching.Bion-

informatics, 13:549–554, 1997b.

Williams H. E. and Zobel J. Indexing and retrieval for genomic databases.IEEE TKDE,

14(1):63–78, 2002a.

Williams H. E. and Zobel J. Indexing and retrieval for genomic databases.Knowledge and

Data Engineering, 14(1):63–78, 2002b.

Williams R. N. An extremely fast ziv-lempel data compression algorithm. InData Com-

pression Conference, pages 362–371, 1991.

Wirth A. I. Symbol-driven compression of burrows wheeler transformed text. Master’s

thesis, The University of Melbourne, 2001.

Witten I., Bell T., and Nevill C. Indexing and compressing full-text databases for cd-rom.

Journal of Information Science, 17:265–271, 1992.

Witten I. H. and Bell. T. C. The zero-frequency problem: Estimating the probabilities of

novel events in adaptive text compression.IEEE Transactions on Information Theory,

37:1085–1094, 1991.

Witten I. H., Moffat A., and Bell T. C.Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

Witten I. H., Neal R. M., and Cleary J. G. Arithmetic coding for data compression.Com-

mun. ACM, 30(6):520–540, 1987.

Wootton J. and Federhen S. Statistics of local complexity inamino acid sequences and

sequence databases.Computers in Chemistry, 17:149–163, 1993.

Wootton J. and Federhen S. Analysis of compositionally biased regions in sequence

databases.Methods in Enzymology, 266:554–571, 1996.

328

BIBLIOGRAPHY BIBLIOGRAPHY

Young R. Holy Bible, Young’s Literal Translation. Christian Classics Ethereal Library,

Grand Rapids, MI, U.S.A., christian classics ethereal library edition, 1898. URL

http://www.ccel.org/ccel/bible/ylt.html.

Ziv J. and Lempel A. A universal algorithm for sequential data compression.IEEE Trans-

actions on Information Theory, 23(3):337–343, 1977.

Ziv J. and Lempel A. Compression of individual sequences viavariable-rate coding.IEEE

Transactions on Information Theory, 24(5):530–536, 1978.

Zobel J. and Moffat A. Inverted files for text search engines.ACM Comput. Surv., 38(2):6,

2006. ISSN 0360-0300.

Zobel J., Moffat A., and Sacks-Davis R. Searching large lexicons for partially specified

terms using compressed inverted files. In Agrawal R., Baker S., and Bell D., editors,

Proceedings of the19th Conference on Very Large Databases, pages 290–301, Dublin,

Ireland, 1993.

329

http://www.ccel.org/ccel/bible/ylt.html

	Acknowledgements
	Abstract
	I Introductory
	Introduction
	Motivation
	Statement And Scope Of Thesis
	Introduction
	Revealing Recurrences Through Data Compression
	Using Recurrences To Compress Indices
	Using Recurrences To Improve Search Sensitivity
	Opportunity And Research Questions
	Summary And Statement Of Thesis

	Assumptions
	Contributions
	Structure Of Thesis

	Background
	Sequence Alignment
	Sequence Search And Alignment
	Bioinformatics And Sequence Similarity Searching
	Exact Sub-String Alignment
	Non-Exact Sub-String (Non-Gapped) Alignment
	Non-Exact Gapped Alignment
	Dynamic Programming
	Proteomic Similarity
	Biological And Statistical Significance Of Alignments

	Comparing The Performance Of Sequence Search And Alignment Algorithms
	Human Judgement
	Benchmarks
	Sensitivity Metrics

	Accelerating Sequence Searching
	Heuristic Algorithms
	A Brief Comparison Of Selected Heuristic Algorithms
	FASTA
	BLAST
	BLAT
	FLASH
	CAFE
	Acceptance Of Heuristic Algorithms
	Ignorance Of Users To Specific Heuristic Trade-Offs

	Clustering (Parallel Computing)
	Indexing
	Summary

	Compression
	Introduction
	Entropy Coding Methods
	Dictionary Methods
	Statistical Modelling Methods
	Performance Of Compression Algorithms
	Burrows-Wheeler Transform
	Synchronisation
	DNA Compression

	Constructing Compact Indices
	Compressing Index Postings
	Efficient Index Construction
	Document Reordering And Filtering
	A Compelling Opportunity: Cooperative Compression

	Materials And Methods
	Selection Of Databases
	Nucleic Acid
	Protein

	Query Selection
	Speed And Sensitivity
	Peer Group Of Algorithms
	Smith-Waterman (SSEARCH 3.4t25)
	BLAST (NCBI-BLAST 2.2.6)
	BLAT
	Academic Version Of PatternHunter
	FASTA
	CAFE
	Algorithms Introduced In This Dissertation

	Batching Environment
	Overview
	Directory Structure
	Top Level Directories

	Generation Of Standard Queries
	Execution Of Batches
	Executing A Batch
	Summarisation Of Search Results

	Comparison Of Batched Search Results

	Benchmark Results
	Database And Index Sizes
	Search Speed
	Search Sensitivity

	II Cooperative Compression Of Redundant Proteomic Databases
	DASH: Search & Alignment For Cooperatively Compressed Databases And Indices
	The DASH Algorithm
	Stage 1: Searching For Non-Gapped Alignments
	Addressing Selectivity
	Stop Words
	Limiting Alignment Numbers In Flight
	Suppression Of Repeated Discovery Of Long Alignments
	Locally Adaptive Query Striding
	Combined Effect Of Alignment Candidate Reduction Measures

	Stage 2: Optimal Assembly Of HSPs
	Stage 3: Alignment Finishing Using Adaptive Banded Dynamic Programming
	On Search Time Complexity

	Search Parameters
	Tunable Parameters
	Tunable Alignment Properties
	Tunable Query Striding Parameters
	Tunable HSP Properties
	Tunable DP And HSP Assembly Parameters
	Canonical Parameter Sets

	DASH Search Program (dash)
	Scoring, Statistics And Output Format

	Results
	Illustrated Example Of Alignment Assembly
	Example Of Superior Alignment Assembly

	Summary

	FOLDDB: First Steps In Cooperatively Compressed Databases And Indices
	FOLDDB Index Structure And Algorithm
	FOLDDB Index Structure
	Text-Partitioned Structure
	Partition Layout
	Compression Of Inverted Lists

	Excluding Stop k-mers
	Record Folding As A Prototype Of Cooperatively Compressed Indexing
	Construction Of Folded Database Index

	Searching Folded Databases With DASH
	Method
	Results And Discussion
	Effect Of Sequence Folding
	Effect Of Query Length On Search Time

	Conclusions

	III Cooperative Compression Of Less Redundant Nucleic Acid Databases
	NP3: Compressing Sorted Nucleic Acid Databases
	Design Considerations
	Compression And Decompression Speed
	Opaque Block Compression Unsuitable
	The Lack Of Explicit Recurrence Records
	The Boundaries Of Clusters Of Similar Database Records May Not Be Known
	The Requirement For Random Access To Database Records
	The Poor Performance Of General Purpose Compression Algorithms On DNA

	Existing DNA Compression Schemes Unsuitable
	DNA Specific LZ77 Compression Suitable
	Explicit Recurrence Records
	Boundaries Of Clusters Need Not Be Known
	Provision Of Fast Random Access To Database Records

	Encoding Recurrence Records.

	The NP3 Algorithm
	Administrative Information
	Compression Of Sequence Descriptions
	Discovery Of Recurrences
	Recurrence Search Algorithms
	Discovery Of Recurrences

	Generation Of Possible Record Encodings
	Ad Hoc Code Table
	Recently Referenced Address Table
	Selection Of Codes During Compression

	Computation Of Optimal Code Streams
	Tabulation Of Coding Options
	Calculation Of Optimal Path
	Effect Of Extension Code (Code J)
	Effect Of RRAT
	Computational Cost
	Summary

	Segmentation Of Long Records
	Database Partitioning
	Parallel Compression Of NP3 Files
	Ease Of Updating And Appending To NP3 Files

	Decompression
	Sequential Record Access
	Random Record Access

	Results
	Compression Of The Human UniGene (Nucleic Acid) Database
	Compression Speed
	Decompression Speed
	Global Random Decompression
	Local Random Decompression
	Sequential Decompression

	Compression Of De Facto Corpus

	Conclusions
	Future Directions

	NIX: Producing Compact Cooperatively Compressed Indices Of Biological Sequence Databases
	The NIX Indexing Algorithm
	Omission Of Redundant Postings
	Reconstruction Of Omitted Index Postings
	Re-Use And Minimisation Of HSP Discovery Effort

	NIX Index Format
	Why Pointers To k-mer Indices Were Not Compressed
	Compressing The Inverted Lists
	Creating A Fast Interpolative Coder

	Modifications To NP3
	Optimisation One: Preferring Inter-Record References
	Optimisation Two: Per-Posting Rebate
	Optimisation Three: Maximising Inter-Record Reference Target Coverage

	Searching NP3/NIX Ensembles With DASH
	Comparison of NP3 and GeNML
	Presentation Of Duplicated Results
	Method
	Results
	Improved Search Sensitivity
	Reduced Index Sizes
	Increased Search Time
	NP3 And NIX Decompression Costs
	Time Spent Performing Dynamic Programming, Discovering HSPs, And Translating HSPs

	Cooperative Compression Of A Less Redundant Database
	Comparison Of GeNML And NP3
	Compressed Database And Index Sizes
	Effect Of Query Length On Search Time

	Discussion
	Analysis Of Performance With Disk Based Index
	Analysis Of DASH With FOLDDB And NP3/NIX
	The Beneficial Effect Of Partitioned Data
	Comparison Of Batched DASH Versus NCBI-BLAST

	Conclusions
	Future Directions
	Sorting Databases
	Improving Search Efficiency
	Avoiding NP3 Decompression Time
	Presenting Relationships Among Search Results
	Improving Compression Performance By Using Dissimilar Regressors

	IV Summary Of Results And Conclusions
	Conclusions
	Conclusions

	V Appendix
	Invocation Commands For Search Algorithms

