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Abstract

Nucleic acid and protein databases such as GenBank arengr@wia rate that perhaps
eclipses even Moore’s Law of increase in computational pﬂv@is poses a problem for
the biological sciences, which have become increasinghgnéant on searching and ma-
nipulating these databases. It was once reasonably @kctigerform exhaustive searches
of these databases, for example using the algorithm destchlp Smith and Waterman,
however it has been many years since this was the case. Hiiscthto the development of
a series of search algorithms, such as FASTA, BLAST and BL#ét are each successively

faster, but at similarly successive costs in terms of thghoess.

Attempts have been made to remedy this problem by devisiagisalgorithms that are
both fast and thorough. An example is CAFE, which seeks tatcoct a search system
with a sub-linear relationship between search time andodatsize, and argues that this

property must be present for any search system to be suatestfe long term.

This dissertation explores this notion by seeking to caicsta search system that takes
advantage of the growing redundancy in databases such d@a@lern order to reduce
both the search time and the space required to store theadashnd their indices, while

preserving or increasing the thoroughness of the search.

The result is the creation and implementation of new gen@®iuence search and align-

ment, database compression, and index compression algsriand systems that make

IMore accurately, Moore’s Law predicts that the capacitytfansistors on an integrated circuit will
double approximately every two years. In practice, dueecafforts of computer architects this has translated
into a roughly corresponding increase in computation tohgut.

iv



progress toward resolving the problem of reducing seareled@and space requirements
while improving sensitivity. However, success is tempdrgdhe need for databases with
adequate local redundancy, and the computational coseséthlgorithms when servicing

un-batched queries.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This introductory chapter provides the context and the defmof the thesis of this disser-
tation. The following sections present: (1) the motivationthis dissertation; (2) the aims
and hypotheses of this dissertation; (2) the specificatidhescope and re-statement of
thesis; and, finally, (3) the structure of this dissertatibhe chapter closes by identifying
the specific thesis that will be tested by this dissertatsrwell as outlining how that thesis

is assessed in the remainder of this dissertation.

1.1 Motivation

Biologists and bioinformaticists are reliant on nucleicaand protein sequence databases

as they push the boundaries of their science in the twentycrgury. Collectively, these

databases are growing at an exponentiajilrmat equals or surpasses Moore’s Law (Moore

1965) of increase in computational poH/.eMoreover, these databases are being searched
more often as biology becomes more information oriented. aAssult, the total time

expended on searching these databases is increasing iover lf is many years since

Yhttp://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html [On line; accessed 4 September
2006].
2Moore’s Law predicts that the capacity for transistors (drydmplication, computational performance)
on an integrated circuit will double approximately everptyears — not every 18 months as is often quoted
). The current doubling interval (2006) is stiglshorter than two years, but still longer than
the doubling interval for the GenBank nucleotide sequemtatzhse (18 months) (Benson et al. 2006).

2
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it was computationally feasible to routinely search a majatabase, such as GenBank

Benson et al. 2006), using an exhaustive, i.e., complestehgitive, alignment algorithm

such as the one describedlby Smith and Waterman|(1981).

Increased search times have created a significant motivtimmake progressively faster
sequence search and alignment algorithms. This pressarprbenpted the emergence
of a series of increasingly rapid algorithms, which havegpessively sacrificed sensitiv-

ity in order to reduce search times. The first major instarfddie phenomenon was the

rise of FASTA [Pearson 1990) at the expense of the Smith-\Wiatle algorithm. Use of

FASTA, in turn, has largely been replaced by the faster, &4 kensitive, NCBI-BLAST

ltschul et al1 1997). This process is continuing, with faster algorithms gaining popu-

larity, such as BLAT|(Ke JLZ(X)Z).

This constant sacrificing of sensitivity in order to maintacceptable search times has not

gone completely unnoticed. Dwan (2002) has raised the ile cost of increased sen-

sitivity sacrifices, particularly as end users are rarelar@nof the precise trade-offs that

have been made. Williams and Zobel have also noticed thislgmg and taken a proac-

tive approach by constructing a fast search system, CAEHi&Wis and Zobél 200243,

Williams<1199 illi LI_19_97b), which endeavdorsake no further compro-
mises against sensitivity. They argue that as computdtpoveer continues to lag behind
the growth of nucleic acid and protein databases, that fpaégorithm to be successful in
the long term, it must exhibit a sub-linear relationshipAmxn the size of a database being
searched, and the time and space required to service thahseaan opportunity that the
CAFE system partially explores. This goal is further exptbin this dissertation by con-
sidering the increasing redundancy that is present in ruated and protein databases as

they increase in size.

In summary, nucleic acid and protein sequence search agrmhadint is facing a looming

crisis as the annualised increase in computational capkagjs behind the combined ef-

3
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fects of: (a) increasing database sizes, and; (b) incrgasiarch demand by users. As long
as this remains true, the pursuit must continue for incnggygiefficient, yet sensitive, gen-

erations of sequence search and alignment algorithmsefidrer nucleic acid and protein

sequence searching and alignment is still an open topi ).

1.2 Statement And Scope Of Thesis

1.2.1 Introduction

By crafting a compression algorithm such that recurrenceexplicitly coded, it is possi-
ble to enhance the indexing and searching processes of @adinigen biological sequence

search and alignment in the following ways:

1. By indexing only one occurrence of a repetition, the indékcontain fewer post-

ings, and should, therefore, require lsgsice

2. The reduction in the number of indexed items also traeslato a natural reduction

in searchtime

3. Because the discovery of an alignment that intersectsiarent region can have the
intersecting segment cloned onto each other recurrencanibe used to seed an

alignment that may not be discovered otherwise, thus isangaearctsensitivity

In this way it is possible to simultaneously attack the tiweg trade-off of space, time and

sensitivity in biological sequence search and alignment.

To illustrate this concept, consider the Biblical text ofigeniah 3:14a (while, for clarity,
only English text is used here in this example, the argumamt®qually applicable to nu-

cleotide, protein and similar classes of character semsndabldé_T]1 presents the text as

it appears in a variety of translatiovllj_anmnalianaLEiﬁb_cj_et 1973 -19 LD_aJJ)LlE 90,

4
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Table 1.1: The Multiple Text Alignment Of Eight Translations Of Nehemiah 3:14a.

NIV: The Dung Gate was repaired by Malkijah son of Recab,
D-T: And the dung-gate repaired Malchijah the son of Rechab,
D-R: And the gate of the dunghill Melchias the son of Rechab
WEB: The dung gate repaired Malchijah the son of Rechab,
Web: But the dung-gate repaired Malchiah the son of Rechab,
YLT: And the dung-gate hath Malchijah son of Rechab,
NAS: Malchijah the son of Rechab,
T-M: The Dung Gate itself was rebuilt by Malkijah son of Recab,
NIV: ruler of the district of Beth Hakkerem.

D-T: the chief of the district of Beth-haccerem;

D-R: built, lord of the street of Bethacharam : he built it,

WEB: the ruler of the district of Beth Haccherem;

Web: the ruler of part of Beth-haccerem;

YLT: head of the district of Beth-Haccerem, strengthened;

NAS: the official of the district of Beth-haccherem repaired the Refuse Gate

T-M: the mayor of the district of Beth Hakkerem;

Challoner. 1752, Johnsan 2003, Wehster 33, Yauna|189&eBat al.| 1960 - 1995,

Petersamn 2002). The text has been aligned to assist therreBlue translations differ in

form by varying degrees, yet share similar function, sonmavahnalogously to homologous

nucleotide or protein sequences.

1.2.2 Revealing Recurrences Through Data Compression

That the set of translations can be gainfully compressegpsr@nt because of the many
shared strings and words among them. In the present comtexdre primarily interested
in encoding each successive translation as a combinatioevofext andecurrencegrom

the preceding translations. In this context, recurrentarsdo the repeated appearance of
a string of characters or words. Tablel1.2 shows the coverbthe texts by recurrences,
if word level redundancies were the basis, and where thenmimi length or length of
consensuss two words. Of the 143 words, 88 (62%) are identified as meqrin this
way. If the criterion were reduced to recurrences of a simgied, 105 (73%) words are

identified as recurrent.
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Table 1.2: Eight translations of Nehemiah 3:14a, marked with inter-translation repetitions
of two or more words (ignoring case and punctuation). Only recurrences are marked. A
marking of “NIV3” indicates the original instance of the text occurred in the NIV translation,
beginning at the third word.

| Source| Text of Nehemiah 3:14a |

NIV | The Dung Gate was repaired by Malkijah son of Recab,
ruler of the district of Beth Hakkerem.

D-T | And [the dung-gaté]'V! repaired Malchijah the [son
of]N'V8 Rechab, the chief [of the district of
BethN'V12.-haccerem

D-R | [And theP~T! gate [of the}'V1Z dunghill Melchias [the son
of Rechab~T6built, lord [of the[N'V12 street of
Bethacharam : he built it.

WEB | [The dung gate repaired Malchijah the son of Rechab,
theP~T1 [ruler of the district of Beth}'V1! Haccerem:;
Web | But [the dung-gate repairéd]’? Malchiah [the son of
Rechab, the ruler of{E® part [of Beth-haccerent] T16
YLT | [And the dung-gaté]~T! hath Malchijah [son of
Rechabf~ "8, head [of the district of
Beth-Haccerent] 13, strengthened:;

NAS | [Malchijah the son of RechaB] T°, the official [of the
district of Beth-haccereri] 13 repaired the Refuse Gate.
T-M | [The Dung Gaté]~ "7 itself was rebuilt [by Malkijah son of
Recab)''V’, the mayor [of the district of Beth
Hakkerem]'V12:

While this is a relatively trivial example, it highlightsetkind of redundancy that may be
present in a group of related texts — whether English praseyudeotide sequences. This
concept is not new, and is utilised in varying forms by mostayal purpose compression
algorithms, especially dictionary based algorithms sucthase based on the Ziv-Lempel

family of algorithms.

The Ziv-Lempel dictionary based approaches have the ppt®t the recurrence infor-
mation is clearly expressed in the encoded message. Thisastswith a statistical com-
pressor that represents this information implicitly instatistical model. It is true that a
statistical compressor, such as Dynamic Markov Comprassaiay yield better compres-

sion. However, in that case the recurrence information rhastepresented separately,

6
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probably negating any compression gains for an index of dmepcessed data. Further,
statistical compressors generally require a certain velofidata in order to achieve their
superior performance. This works well in general purposemession, where the normal
use is serial compression or decompression of an entiraisoddowever, for data com-
pression to be useful in biological sequence search andmaégt, it must be possible to

rapidly retrieve single (often short) sequences from aelaatabase.

Finally, statistical compressors generally use Arithm@wnding, which severely limits de-
compression speed. While this all but rules out the use gftadsastatistical compressors,
it again plays to the strengths of dictionary based algor#th This is because it is possi-
ble to allow a dictionary based compressor to referencermecces only in neighbouring
records (sequences) in a database, without unduly satgfibie performance of either
compression or the speed when retrieving random sequelctss way it is possible to

create a compression algorithm that retains credible pegoce while makingecurrence

records that is the location and size of recurrences, readily alslto other processes.

1.2.3 Using Recurrences To Compress Indices

An example of a potential user of recurrence records in a cesspd database, is a process
that seeks to create an index of that data. It is possible te@rmanore compact index by
making use of the recurrence information, and knowing thgtraader of the index can
do like wise. If this information were not available, it wdube necessary to index every

occurrence of every word.

A simple application is to index only those instances of vgailtht cannot be located in a
recurrence. The effect of this is illustrated in Tdblg 1.3%&vehsuch an index is presented for
the text of Nehemiah 3:14a. The individual words not inctlidethe index can be found
by taking the list of occurrences that are in the index, aed tldentifying the recurrences

that reference those particular words.
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Taking the example of “ruler”, of its three actual occurresiconly one is recorded in the
index, the one corresponding to the eleventh word of the MRY. tHowever, by referring
back to Tabl€T]2 we find that the WEB text makes referencagoTie list of occurrences
is now NIV{11}, WEB{11}. The process is now repeated for thewly added instance.
This leads to the discovery that the word ruler also occuWedi{12}. As no subsequent
texts refer to this instance, the list of occurrences is noad fat NIV{11}, WEB{11} and
Web{12}. Thus the index can efficiently look up all instana#sany word, even though it

contains direct references to only 38% of the text.

That excluding postings from the index should translate &ansmaller compressed inverted
listis not certain. This is because this process may de#iteglusters of term occurrences
that the best inverted list coding schemes make use of. Tstect that aid inverted list
compression are clusters of teemeword or term occurring, with strong spacial local-
ity. The cooperative compression of the index and databasedes adjacent words in
common phrases from the index, requiring only one instaheach word in the repeating
phrase to be indexed. Therefore a cluster of any single team lme reduced to a single
instance. Therefore the compression benefit of the clusigroa inhibited. However, with
fewer pointers requiring encoding, this should still résalsmaller size overall. (An ex-
ception to this would be if a term occurs with probabilgy> 0.5. In that case removing
pointers will actually result in the entropy of the list ieasing as it is shortened. When

this occurs, it would be better not to thin the list out.)

1.2.4 Using Recurrences To Improve Search Sensitivity

The second useful property of a compression scheme thatsmakerrence information
explicit is in the context of index driven sequence searahaignment. The reduction in
index size comes from following the chain of recurrenceskliactheir origins. By fol-

lowing the chain of recurrences in the reverse order eacé éimalignment is identified,

8
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Table 1.3: Index Of Instances Of Words In Nehemiah 3:14a, Excluding Those That Occur
In Identified Recurrences. Only 55 (38%) of the 143 occurrences are indexed in order to
cover the entire text.

| Word | Indexed Instance$ Word | Indexed Instance$
And | D-T{1} Malchiah | Web{6}
Beth | NIV{16} Malchijah | D-T{5}, YLT{6}
Bethacharam D-R{18} Malkijah | NIV{7}
built | D-R{12,20} mayor | T-M{13}
but | Web{1} Melchias| D-T{7}
by | NIV{6} of | NIV{9,12,15},
D-R{17}
chief | D-T{12} official | NAS{7}
district | NIV{14} part | Web{14}
dung | NIV{2} Recab| NIV{10}
dunghill | D-R{6} Rechab| D-T{10}
gate| NIV{3}, D-R{3}, refuse| NAS{16}
NAS{17}
Haccerem| D- rebuilt | T-M{6}
T{18},WEB{17}
Hakkerem| NIV{17} repaired| NIV{5}, D-T{5},
NAS{14}
hath | YLT{5} ruler | NIV{11}
he | D-R{19} son| NIV{8}
head| YLT{11} street| D-R{16}
it | D-R{21} strengthened YLT{18}
itself | T-M{4} the | NIV{1,13},
D-T{7,11},
NAS{6,15},
T-M{12}
lord | D-R{13} was | NIV{4}, T-M{5}
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it is possible to increase the sensitivity of the search $s lBonserved sequences. This
is because index based search algorithms ordinarily redql@re to be a consensus, with
some minimum length, between the query and a sequence. Ocmesansus is found,
it can be extended to its maximum length. During this ex@mmghase, the alignment is
normally allowed to be approximate. When such an alignmegtnent spans a recurrence,
the recurrence information can be used to immediately ifyeall instances of the recur-
rence. Hence candidate alignments can be identified witleguiiring them to contain the

minimum consensus length mandated by the index.

By way of illustration of how sensitivity can be gained inghvay, consider searching for
the NIV version of the text of Nehemiah 3:14a in an index basearch system with a
minimum consensus length of five words. The only phrase ofakithat would be found

in any other translation would be “of the district of Beth} idlustrated in TabléZIl4. This
would be sufficient for a competent index based search algoitio discover the complete

alignment of the NIV translation against the D-T, WEB, YLTAN and T-M translations.

However, no alignments would be discovered against the D\Reb texts, because there
is no consensus of five or more words between them and the Ni\Vtedespite their
functional (semantic) similarity with the NIV query texthik is a sensitivity blind spot of

traditional index based search algorithms.

By making use of the recurrence information from Tdhblg 1L25 possible to efficiently
detect the missing alignments: The D-R text makes referantiee recurrence of “the son
of Rechab”, which first occurs in D-T. The consensus here doeseed to be five words,
nor does it need to exactly match the query text, as the iredeatiinvolved in its discovery:
The recurrence records in the compressed database pravedesjuired information. The
alignment against the Web translation can be discoveredsimaar way, through either
“the dung-gate repaired” or “the son of Rechab”, both of Wahiitst occur in the D-T

translation. Hence additional alignments are discovexbde substantially preserving the

10
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Table 1.4: Consensus Region Between NIV And Other Translations Of Nehemiah 3:14a,
Minimum Length Of Five Words. No consensus is identified with the D-R or Web transla-
tions.

| Source| Text of Nehemiah 3:14a |

NIV | The Dung Gate was repaired by Malkijah son of Recab,
ruler of thedistrict of BethHakkerem.

D-T | And the dung-gate repaired Malchijah the son of Rechab,
the chiefof the district of BetFhaccerem

D-R | And the gate of the dunghill Melchias the son of Rechab
built, lord of the street of Bethacharam : he built it.

WEB | The dung gate repaired Malchijah the son of Rechab, the
ruler of the district of BetiHaccerem;
Web | But the dung-gate repaired Malchiah the son of Rechab, the
ruler of part of Beth-haccerem;

YLT | And the dung-gate hath Malchijah son of Rechab, head
of the district of BettHaccerem, strengthened,;

NAS | Malchijah the son of Rechab, the official

of the district of Betkhaccerem repaired the Refuse Gate,
T-M | The Dung Gate itself was rebuilt by Malkijah son of Recab,
the mayorof the district of BetiHakkerem;

high speed of index driven searching: This is where a gairemsisivity can be realised.
The computational cost of this additional sensitivity isr@verse through the recurrence
records in the compressed database, and to decompressegaence that is identified as
containing an alignment candidate. A potential pitfalllubtmethod is that because chains
of unknown length must be traversed to reconstruct the inttete is an unpredictable
contribution to search time. This is a significant issuefipalarly if the data are to be

disk-resident, as each step in the chain will trigger a galtik seek.

1.2.5 Opportunity And Research Questions

The potential compactness and sensitivity gains discuaBede are interesting because
they are precisely the short comings that have preventezkiddven searching from be-

coming mainstream: BLAST retains its dominance, for protsarching in particular,

11
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because it has modest space requirements, and none of thenawh faster algorithms

can match its sensitivity, as is shown later in this dissiera

The challenge comes in that this opportunity has been showreicontext of a trivial ex-
ample only, where recurrence information is abundant. § n@ be reasonable to expect
biological sequence databases to exhibit such positivecteistics. However, fortunately
there exists highly-redundant pre-sorted biological biasas, such as the UniGene tran-
scriptome databases that can be used to test this approatodvdh assuming that postings
can be thinned out from the inverted list, it is not clear vileetthe resultant lists will actu-
ally compress more compactly, as the natural clusteringrofi$ may be destroyed by this

process.

From a practical perspective, additional challenges ewistted to time and space effi-
ciency. The indexing methods described here require sal@f the compressed data
stream in order to make effective use of the recurrencenmdtion. This may prove com-
putationally prohibitive, or result in too many costly ramad disk accesses. This may imply
that the database and index must be memory resident in aradértain acceptable perfor-
mance, and there is the risk that the compressed databasedaxdmay simply be too

large, and preclude the method from being competitive.

1.2.6 Summary And Statement Of Thesis

In the preceding text, it has been argued that it is possibtegory, to compress data (and
nucleic acid and protein sequence data specifically) in aughy that the recurrences that
occur within the data are made visible. This information tteen be employed to produce
more compact index structures, and to increase the setysiivsearches that use them.
The result being an indexed search and alignment algoritiimb&tter size and sensitivity
parameters than the current state of the art, while sulstignpreserving the desirable

speed characteristics present in existing index basedoti®th
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However, this is not without challenges. It is not clear Wwieetrecurrences exist in real
databases in sufficient quality and quantity to be profitaibe is it clear whether the final
product will exhibit sufficient speed, sensitivity and caécompactness in order to be an
attractive alternative to existing methodologies. Thisdrtation examines these issues by

considering the thesis that:

By crafting a compression algorithm such that recurrencesexplicitly coded, it is pos-
sible to enhance the indexing and searching processes aifdax idriven nucleic acid and
protein sequence search and alignment in the following wé&ysBy indexing only one
occurrence of a repetition, the index will contain fewer fougs, and should, therefore,
require lessspace (2) The reduction in the number of indexed items also tratesl into

a natural reduction in searctime, and; (3) Because the discovery of an alignment that
intersects a recurrent region can have the intersectingrsag cloned onto each other re-
currence, it can be used to seed a full alignment that may edliscovered otherwise, thus
increasing searclsensitivity In this way it is possible to simultaneously attack the ¢hre

way trade-off of space, time and sensitivity in biologieadgence search and alignment.

1.3 Assumptions

The assumption is made in this dissertation that the algostand systems proposed will
be run on either a capable desktop type computer (with se@&af RAM), or a cluster
of such systems, and that the database and index size willdbetkat it can fit entirely
in the RAM of the computer or computers concerned. This aptiomis made because
it is recognised that the reconstruction of omitted indegtipgs requires random-access
retrieval of additional database records, which would riksly result in poor throughput.

It is accepted that this is atypical for this kind of algonith, and that therefore the speed

comparison with the peer group of algorithms is potentialgnted in favour of the algo-
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rithms described in this dissertation. The applicationhaf algorithms presented in this

dissertation to disk resident searching is discussed ntiple in Sectiof 7]9.

It is further assumed that the data volume is of a scale whanteng and clustering is
possible, which at the time the work was carried out mearatadetes of no more than sev-
eral giga-bases. This means that the approaches desarithesldissertation would require
some adaption if they were intended to be used with a dynaat&cset, as might be the case

in assembling shot-gun sequencing fragments. In that tassubsequentially developed

approach ' ron (2006) would be apptepiiadeed, this application

of assembly of shot-gun sequences, while now a popular usegofence search and align-
ment systems, has not been a consideration of this digsertahis is also reflected in the
selection of queries in Chapf@r 3, where longer queries tagisdto thousands of bases are
used, rather than the dozens to low hundreds of bases irhldragtis more typical of shot-

gun sequencing. This narrowing of focus is reasonable givahspecialised algorithms

used to perform shot-gun sequence assembly, e.g., (Batrephl! 2002, Jaffe etu.I_ZCOS,

Chaisson and Pevziler 2008), differ substantially from gempeirpose sequence alignment

algorithms, in part because general purpose sequenceraigralgorithms are too slow

for that application.

1.4 Contributions

This dissertation attempts to contribute to the state oathen sequence search and align-
ment by devising and testing several new algorithms reltdealicleic acid and protein
sequence search and alignment, with a particular focusductieg search time and space

requirements without sacrificing search sensitivity.

The first algorithm, DASH, seeks to create a sequence searthlggnment system that

can efficiently search both uncompressed databases acdsratid those where redundant
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records and phrases within records share their storage/¢ospace. This endeavour was

successful.

The second algorithm, FOLDDB, seeks to create a compadtase¢aand index structure for
use with DASH that when faced with redundant records shaeisgtorage to save space.
This endeavour, described in Chagfler 5 was successful wheidpd with a database with

sufficient redundant records.

The third and fourth algorithms, NP3 and NIX attempt to refii@LDDB by devising a
database and index structure that shares the storage ofdauuphrases or sub-records,
while also being suitable for high-speed sequence seaitlalagnment. This endeavour
faced mixed results. A more compact database and indexseqegion was obtained.
However, while that representation supported fast randeguard retrieval, it was not en-
tirely successful when applied to sequence search anchadigh This was due to the time
complexity involved in the exhaustive reconstruction agarshing of index records, which
while improving sensitivity, resulted in poor search speggrocessing individual queries.
However, the partitioned characteristics of the NP3/NIXadfbormats means that this
computational cost can be amortised over batches of qusuigs that DASH+NP3/NIX
can search a disk-resident database several times faateNtBBI-BLAST can search a

memory-resident database.

1.5 Structure Of Thesis

Immediately following this chapter, Chaptdr 2 provideskegound information for this
dissertation, including an overview of the popular BLASTjsence alignment program.
ChapteB follows this by describing the materials and maghased in this dissertation,
covering: (a) the databases to be searched; (b) the tes¢sue) the assessment of test re-

sults, and; (d) the generation of benchmark results for @mg the algorithms introduced
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in this dissertation. Together with this chapter, thesetdra constitute the introductory

matter of this dissertation.

Following the introductory matter, Paif$ Il throulgh 11l dedithe various components that

form the test of the thesis:

Partdl applies cooperative database and index compresstae relatively easy domain of

a highly redundant database.

Chapteft commences this part by defining the index drivegdal Assembling Search
Heuristic (DASH) sequence search and alignment algoriffw. different index structures

are considered in: (1) Chapfdr 5, and; (2) the chapters ollBar

First, in Chaptel5 an initial database format for DASH isidedl, and a coarse grained
approach to cooperative compression of biological sequéatabases, record folding, is
presented. This is used to show that the thesis of this did®eT is possible, provided that

sufficient redundancy exists in the database being prodesse

PartIIl follows the initial success of Pdit I, and descalzefine grained cooperative com-
pression scheme, that is intended to be more generallycayidi than the record folding
approach introduced in Chapidr 5. Haft I, consists of @&raf® andd7, which, respec-
tively, document the NP3 recurrence revealing nucleic deithbase compression algo-
rithm, and the NIX algorithm for producing compact compamniodices from NP3 en-
coded databases. Chapiér 7 also compares the performatiee NP3 compression al-
gorithm with GeNML in the context of cooperative compressidlhese chapters show
that substantial reductions in index size are possiblegalith a modest increase in sen-
sitivity, supporting the thesis of this dissertation. Altlgh it is shown that by batching
queries, DASH+NP3/NIX can search a disk-resident databaseral times faster than
NCBI-BLAST can search a memory-resident database, the faieayl approach turns out
to be rather computationally intensive, resulting in pagarsh speed when processing sin-

gle queries.
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The final part of this dissertation, P&rIV, consists of agkrchapter, Chapté&l 8, which
briefly summarises the results of the preceding parts, dcmslusions, and closes the

dissertation with suggested avenues for future research.
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CHAPTER 2. BACKGROUND

Chapter 2

Background

This chapter provides background information on the uydegltechnologies and method-
ologies that are relevant to this dissertation. This casgiE (1) an introduction into the
similar problems of the pair-wise alignment of nucleic asetjuences and the pair-wise
alignment of protein sequences; (2) a survey of existinghoug used to accelerate the
pair-wise alignment of these sequences; (3) a survey ofctaxipression techniques rel-
evant to database and DNA sequence compression, and; (#f anlroduction to index

construction, compression and maintenance.

2.1 Sequence Alignment

This section presents the context of the research problegivioyg an introduction to nu-
cleic acid and protein sequence search and alignment.

2.1.1 Sequence Search And Alignment

2.1.1.1 Bioinformatics And Sequence Similarity Searching

DNA sequences consist of the alphaket, G and T, representing the nucleotides that

constitute a DNA strand. Such databases may also includéadd symbols that repre-
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sent ambiguity regarding the identity of a base: These sysrdne thewild-cards The
most common wild-card I8, signifying that the identity of the nucleotide is complgte

unconstrained. See Taljle?.1 for the complete list of wélchs.

Searching biological sequence databases consists ofdisdmilarities, often in the hope
of identifying homology i.e., familial relationship, between a query and each sege in
a database. Similarity is assessed by performing pair-&ligaments of the query against

the sequences in the database. This pair-wise alignmeblegpnas closely related to the

general string similarity search methodslof Levens 1]3_95_*1 and_lsﬂulh_el_iil (1977),

such asveighted string edit distance

The edit distance of two strings is the minimal number of afiens require to transform
one string into another. For example “time” and “money” haveedit distance of 4, be-
cause “time” can be transformed into “money” in 4 stepsme — timey — mimey
— momey — money. In this case substitutions and insertions were considasezlents
of equal cost. This can be generalised such that differests@re applied depending on
whether each event is a substitution, insertion or deletiesulting in a weighted edit dis-
tance. If substitutions have a cost of 2 while insertions dekktions have a cost of 1,
then converting time into money as previously describedlevbave a weighted cost of
1+2+2+42=7, however by using the stepgime — timey — imey — mey —
mney — money Would have a weighted cost of only411+1+1+1 = 5. Provided that
the costs are formulated such that the comparison of twarargdrings results in an actual
cost, i.e.cost> 0, then this method can be used to determine the relativéesityiof two

strings. It is this property that is used in genomic pairexgequence alignment.

Three increasing strengths of sequence comparison useartwige alignment are de-
scribed below: (a) exact sub-string alignment; (b) noncegab-string (non-gapped) align-

ment, and; (c) non-exact gapped alignment.
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Table 2.1: IUPAC-IUB Codes (Joint Commission on Biochemical Nomenclature [1983) And

Their 4 bit Representations As Used In This Dissertation.

| IUPAC Code| Description | Base(s) | Four Bit Coding]
X No base - 0000
G Guanine G 0001
A Adenine A 0010
T Thymine T 0100
C Cytosine C 1000
R Purine AorG 0011
Y Pyrimidine corT 1100
M Amino AorcC 1010
K Ketone GorT 0101
S Strong interactiory CorG 1001
W Weak Interaction| AorT 0110
H Not-G A, CorT 1110
B Not-A C,GorT 1101
v Not-T A, CorG 1011
D Not-C A,GorT 0111
N Any A, C,GorT 1111

2.1.1.2 Exact Sub-String Alignment

Exact sub-string alignment consists of locating contigusiiings of corresponding sym-
bols in both a query and subject sequence. #xact in that no substitutions are allowed.
It is of sub-stringsin that an alignment may include only part of each sequenke:entire

sequence is not required to be aligned. Consider the faligwkample:

query sequence:CGA CTG ATC TAG

subject sequence:CGT GTA GCT AGC AGT GTA GTC TAG CGT ACG TGC

The sub-stringeG (the B-2"d |etters of the query sequence) can be aligned against the

1stond 25h_2@h and 24"-30" letters of the subject sequence, as shown below:

CGt gta gct agc agt gta gtc tagt acG tgc
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Similarly, TCTAG (the 8"— 12N |etters of the query sequence) can be aligned against the

20—24" |etters of the subject sequence:

cgt gta gct age agt gtarg TAG cgt acg tgc

2.1.1.3 Non-Exact Sub-String (Non-Gapped) Alignment

This is a generalisation of exact sub-string alignment wlsibstitutions, or “mistakes”
are allowed in the alignments. It ion-exactin that these substitutions are allowed, i.e.,
any one symbol may be substituted for any other symbol.nbis-gappedin that any one
symbol must be replaced by precisely one symbol, neitheemor less, since that would
result in the introduction of one or mogaps Consider again the example from exact

sub-string alignment, but now allow one or two substitusioneach alignment:

query sequence:CGA CTG ATC TAG

subject sequence:CGT GTA GCT AGC AGT GTA GTC TAG CGT ACG TGC

The stringCGACT (the B'-5" letters of the query sequence) can now be aligned against the

155N |etters of the subject sequence (substitutions are shovtalics):
CGt gTagctagc agt gta gtc tag cgt acg tgc

Similarly, TCTAG (the 8"— 12N |etters of the query sequence) can be aligned against the
3d_7h 158h_19M and 28"—24" letters of the subject sequence (substitutions are shown in

italics):
cgT gTA Getage ag gTA GTC TAG cgt acg tge

In practice, various rules are applied to determine whagllef/similarity is required before
an alignment is considered significant. These typicallpive areward score for corre-

sponding symbols in the sequences, anqetaaltyscore for differing symbols. These are
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combined with statistical theory to determine whether &gialignment is statistically sig-
nificant, or, conversely, if the alignment could be reasdnakpected to occur by chance.
For instance, comparingGACT with CGTGT using reward and penalty scores of 1 and -3

respectively would result in a score of -3 (Tabl€gl 2.2).

This score can be translated into an expected value, anahayiiii ap-value. Although the
particular formula varies among sequence alignment ttwdstranslation is almost always
based on an Extreme Value Distribution (EVD), with a two stpgocess that first converts

araw scoreS, into a normalised scor§, that takes into account the scoring system. Using

the equations indicated by Karlin and Altschul (1199is translated according to:

_)\S—InK
~ In2

WhereA is derived from the scoring system, such tigdt, zij:]_ pip;e'Si = 1, wherep
andpj are the probabilities of thid'and jt" symbols of the alphabet, aisg is the log-odds
score of substituting the same symbok&.is a less significant factor that is also derived
from the scoring system and is used to correct for the nodenancorrelation of matching

residues in the alignment of similar sequences.

For the scoring system used in our example these compate-th.37 andKk = 0.711. The
second stage takes into account the size of the search spam®/ert the normalised into

an expected value that indicates the number of alignmertksrasv score> Sthat would

be expected to occur by chan&eis computed according 6 = %‘, wheremandn are the
lengths of the query and sequence being searched. Natthiallarger the search space,
the largerE will be for a givenS, as the increased search space allows more opportunities
for matches to occur. Finally, if required, an additionapstan be applied to translate
the expected value intogvalue by computing = 1 — e E. However this is not usually
necessary, if only becauge~ p whenE < 1. In the case of our example alignment, the

full match of TCTAG in the 33 base sequence gives a raw scor8-6f5 (five matchesx
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Table 2.2: Non-Gapped Alignment Of CGACT And CGTGT.

C|G|A|C|T
C| G| T |G| T
+1 | +1]-3|-3|+1

reward score of +1), which normalises$o= 12.4, and yieldingE = p = 0.029. (Note
that for these statistics to be appropriate longer seqseareerequired than are used in this

example).

Non-exact sub-string alignment is the type of searchindopered by BLAST version 1

[tschul et al! 1990).

2.1.1.4 Non-Exact Gapped Alignment

Gapped matching introduces the concepgapscaused by insertions or deletions, i.e.,
substituting a single symbol with either: (a) more than ame,(b) zero symbols. For
example, substituting the in CGACT with AAG results in the stringGAAGCT. The strings
are now of differing lengths, and in order to align the ensirengs, gaps must be inserted
into the shorter sequence so that the strings are again af eangth. Gaps are usually

indicated by a hyphen €*).

For gapped alignmengiap creationandgap extensiompenalties are introduced to supple-
ment the reward and penalty scores associated with noredagdgnment. This system
of scoring gaps is referred to as affine, or sub-linear. Otfagr scoring approaches are
also used, such as linear, piece-wise linear and logarithaffine scoring is popular as it
provides a trade-off between the speed of computationddtbby linear, and the accuracy

of the logarithmic model preferred by many biologists.

As a simple example of affine gapping, consider the alignm@@GACT and CGAAGCT,

accomplished by adding gaps into the query sequence ([I&)leAssuming a gap creation
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Table 2.3: Gapped Alignment Of CGACT And CGAAGCT.

c| G| A|-|-|C|T
C|G|A|A |G| C|T
+1 | +1|+1|-5]|-2|+1|+1

score of -5, a gap extension score of -2, a reward score ofntlla @enalty score of -3, the

example above would have a final score of -2.

Non-exact gapped alignment is the type of search perfornyelditernHunter (Li et al.

004), BLAST version 2|(Altschul et 1997), FASTA (Pearsb990) and Smith-

Waterman LS.milh.a.n.dANa.L&mLLn.l?Sl), and most other seqaéignenent algorithms.

2.1.1.5 Dynamic Programming

Dynamic programming is generally applied to the gasiedﬁuaﬁgnment problem as

it is considered the fastest complete algorithm avail 2).

This approach consists of generating a dynamic programspage that has the query and
subject sequences as axes. Each discrete cell in the spghea isvaluated, relying on the
values of cells nearer the origin than itself. If the aligmtis global then it is required to
include the entirety of both strings, where as for localmaingnt it is not. Thus CAT=CAT
would be a valid local alignment of SCATTER and BOBCAT, whaseit would not be
a valid global alignment of those strings, because it do¢snatude the entirety of both
strings. Whether global or local alignment is being perfedmthe score of each cell is

calculated using a recurrence, such as:

maxe1(L(i, j —k) —g(k))
L(i, j) = max L(i—1,j—1)+w(qg,sj)
maXe-1(L(i —k, j) —g(k))
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WhereL (i, j) is the score of the cell in tH&' row andj" column. The gap penalty function
is g(), and henceg(n) is the penalty fon consecutive gaps. The substitution matvix)
is used to compute the appropriate reward or penalty scoridgpair of lettersy ands

which are tha'" letter of the query and subject sequence, respectively.

This recurrence then, selects the maximally scoring o@ioaong, respectively: (a) the cell
in the same row that maximises the sum of the score and theagegity from the current
cell; (b) the score of the cell corresponding to the previposition in both the query and
subject sequence plus the reward or penalty score from tteg Ia the current position
of the query and subject sequences, which will either beticn(yielding a reward), or
different (possibly yielding a penalty); or (c) the cell imetsame column that maximises
the sum of the score and the gap penalty from the currentl€étle alignment is required
rather than just the optimal score, then the option takert brusecorded for each cell. This
allows the discovery of the path that led to the optimal scanel thus the corresponding

alignment.

Note that options (a) and (c) require iterating through thveesponding row or column of
cells in order to find the maximum score. However, if the gapalty function is strictly
increasing, i.e.g(k+ 1) > g(k) Vk > 0, then this can be resolved to a single look up oper-
ation in exchange for remembering one value per row and aoldrhus the evaluation of
each cell requires O(1) time, and thus discovery of the agdtalignment requires @fx n)

time, wherem andn are the lengths of the query and subject sequences.

The dynamic programming process is illustrated in Fidui® @here the cell ati, j),
marked in grey, is to be evaluated. Only the cells with sobddiers need be evaluated,
i.e, the current row and column, and the cell correspondirihpe immediately preceding
letters of the query and subject sequences, i.e., the c@ltat, j — 1). If we assume that
g(n) =3+ 2n, and thatw(q; sj) = 1, then we can determine the optimal score for the cell

(i, ]), and record the back trace information for that cell.

25



2.1. SEQUENCE ALIGNMENT CHAPTER 2. BACKGROUND

0 1 -2 i-1 i

o i -1
Lo 4

----------------------------------------------------------- 16
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Figure 2.1: Example Of Dynamic Programming Evaluation.

The back trace information for each cell is just the coortdisaf the cell that led to the

current cell, i.e., one of:

(i—kj) where i >k>1;
(i,j—k)  where j>k>1;o0r

(i—1,j—1).

Taken as a whole, the back trace information for a dynamignarmmming space is sufficient
to determine an optimal path, i.e., least cost path, fronotlgen to any cell in the space by
inspecting the back trace for the end cell, and then reaelgseonsulting the back trace of
that cell, and so on until the start of the path is found. Theseesses are now explained

using the example of Figufe2.1.
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Considering first thg'" row, the possibles scores are computed according(itg) =
max1(L(i —k, j) —g(k)). The possible values fdt are the integers .1.i — 1, which

results in possible scores of:

L(i—1,j)—g(1) = 9-5 = 4
L(i—-2j)-g2 = 7-7 = 0
L(i—-3,j)-g@8) = 2-9 = -7
L(i—4,j)-g4) = 0-11 = -11
L(i—5,j)—g(5) = —3-13 = -15
L(i—6,j)—g(6) = —5-15 = —20

Thus, the optimal selection from tif& column isL(i — 1, j) — g(1) = 4.

The score from using the second equation of the recurrencbecaalculated as:

L(i,j)=L({i—1,j—1)+w(g,sj) =8+1=09

Finally, the optimal selection from th&' column by usind_(i, j) = max1(L(i, j —k) —

9(k)):

L(i,j—1)—9g(1) = 5-5 = 0
L(i,j—2)—9g(2) = 6-7 = -1
L(i,j—3)—9(3) = 10-9 = 1
LGi,j—4)—g(4) = 16-11 = 5
LGi,j—5)—g(5) = 4-13 = -9
LGi,j—6)—g(6) = —1—-15 = —16
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This determines that the optimal selection from tfecolumn isL(i, j) = L(i, j — 4) —

g(4) = 5. The recurrence can now be evaluated as:

L(i,j) =max| 9

As 9 is greater than either 4 or 5, the second line of the renog is used, and the cell
at (i, j) will be given the score 9, and the back trace information witlicate that the
alignment came fronfi — 1, j — 1). This process is repeated for every cell in the dynamic
programming space. In this way, the path taken to reach ahga® be determined by
tracing backwards to reveal the optimal alignment of the $&quences. Such alignments
can be eitheglobal or local. A global alignmentis an alignment that must include the
entirety of each sequence. In contrasipeal alignmentinvolves only a portion (sub-

string) of one or both sequences.

Consider also the example of Talile]l2.4 where the dynamicr@noging grid has been
evaluated for the sequend®sACT andCGAAGCT. The fifth cell in the second row (value -7)
is evaluated by finding the maximum score that is possibledmgiclering the cells imme-
diately left, above and above-left. Assuming the scoringtey of the previous example,

this would be:

—5+gapextend = -5-2 = -7
score =max| —-10+gapcreate = —-10-5 = -15
—8+reward = -8+1 = -7

If a global alignment is being performed, then the end of tlymenent would be the bottom

right cell in the dynamic programming space, i.e., the cetfesponding to the last letter
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Table 2.4: Evaluated Dynamic Programming Space For CGACT And CGAAGCT. The origin
of the space is at the top left of the table. The back trace information is indicated by the
arrows in each cell that point to the next (previous) cell that is in the least cost path to the
cell. Super scripts indicate the distance to that cell when it is not 1. In some cases the
minimum cost can be achieved by multiple paths. In those cases arrows to each path are
shown.

([ c e[ & & [ ¢ [ ¢c [ 1|
C 1 4| 26| <38 | %10 | —>12] 5-14
G|l 14 | N2 | «-3] <25 ["\°-7| «%9 | <11
All 16| 1-3 ] "3 [\«2]| «%4 | <36 | —*8
cl[ 1°8 [1%6] 1-2 | N0 | "6 | \-3 | —

T 1%10] 13-7 | 124 | -5 -3 N8 | N2

Table 2.5: Example Of Local Sequence Alignment.

C|IG|A
C|IG|A
+1 | +1| +1

in the query and subject sequences. However, if local alegrinwas being performed, then
the highest scoring cell in the dynamic programming spaceldvbe used as the starting
point. Also for local alignment, the calculation of cell ses would be adjusted so that no
cell may score below zero, thus ensuring the highest scaliggment is not concealed

because it is preceded by a negatively scoring alignment.

For Table[ZH}, a locally optimal path is obtained by finding thghest scoring cell, and
tracing the path from that cell to the lowest scoring cell battpath. This results in the
path from the cell scoring 3 ofA(A) — (G,G) — (C,C). This path is then reversed, and
the query and subject sequence fragments are collatedtdmabe alignment depicted in
Table[Z®. The globally optimal path can be obtained sityilay starting at the bottom
right cell and following the path to the origin. This yieldsetback trace path of (T) —
(c,c) — (--,G) — (A,4) — (G,G) — (C,C), yielding the global alignment of Table2.6.
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Table 2.6: Example Of Global Sequence Alignment.

C|IG|A|-|-]C T
C|IG|IA|A|G|C T
+1|+1 | +1|-5|-2|+1| +1

Table 2.7: Example Of Proteomic Sequence Alignment Using A Substitution Matrix.

I F|IG| M M R C
I S|S| M M Q C
+4 2] 0] +5|+5] +1| +9

2.1.1.6 Proteomic Similarity

The searching techniques above are also applied to pratedatabases. The four letter
nucleotide alphaben, C, G andT, is replaced by an alphabet of 22 amino aﬂidﬁhe rel-
ative properties and frequencies of the amino acids are ommplex than for nucleotides.
To accommodate this, the fixed reward and penalty scoresiscarded in favour of a
substitution matrix that assigns differing scores for epalring of amino acids. Such
matrices take into account the biological relatedness efdifferent amino acids, e.g.,
hydrophilic versus hydrophobic. Two popular families obstitution matrices are BLO-

SUM J:Lemko.tf.a.ud.l:l.amkal 1992) and PANL(Dayhoff etlal. 1 ,W)ﬁ

EEL). TabléZ17 shows a simple alignment of two peptidesguitie BLOSUM62 substi-

tution matrix. It can be seen that while identical residugses most highly, conservative
substitutions, e.gR versusy, can also produce positive scores. There necessarily nemai
a substantial number of combinations that result in a negatiore, e.gE versuss, which

scores -2.

Since each amino acid is encoded byamoneach consisting of three nucIeotiHéBis
possible to search for proteins in nucleotide sequencesabglatingto and from the nu-

cleotide to amino acid domain. Because some amino acidsnamzled by any of up to

1This includes the relatively recently discovered naturaiagling of selenocysteinmm%l)
and pyrrolysinel(Srinivasan et|al. 2002) .

2Excluding the longer encoding factors introduced by setgsteine.
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six different codons, such searching introduces new caoxte as multiple distinct nu-
cleotide sequences can encode the same protein. Transéatezhing is not given further

consideration in this dissertation.

2.1.1.7 Biological And Statistical Significance Of Alignmets

Of equal importance as finding the alignment between a paseqtiences, is giving the
alignment a score that correctly indicates its relativedgiwal significance. The difficulty
is what is “biologically significant™? For any given queryCBl & WU BLAST differ

in the alignment and scores they return, and these are ehff@gain compared with the

alignments and scores returned by the Smith-Waterman ingJDwarI\ 200R), or by

other alignment scoring metrics, such as POZ sc 2004). These algorithms

uses statistical significance to estimate the biologigaticance. However, the precise

interpretation of biological significance depends heawitythe context (Galissin 2000).

That statistical significance is a valid approximation aflbgical significance is argued by

Smith, Waterman & Burks sh 1986b). Therefatatistical significance

remains the dominant mechanical approximation for biaalgsignificance.

Work by Alls.ch.uLeLal (1997) anlLG.a.Lis::o'n_(ZI)OO) providesne commentary on the

progress made in the statistical issues of biological setpiesearching.l_Smith etlal.

198%) modelled the distribution of nucleic sequence sirties by applying the work by

Erdos and Reny| (1970), and Erdos and Revesz (1975) on fitkiéngngest run of heads

in a series of coin tosses by considering nucleotide matakéleads” and substitutions
as “tails”. Their theory is ideally applicable to non-gag@ignments with some applica-
bility to gapped alignments. A similar work that applied pto exact alignments was also
_L]_QISS Altschul (1997) and kKadnd Altschul (1993) have

also shown that it is possible to use these results to estithatcombined significance of

undertaken by Karlin et

multiple nearby alignments. More recently, Booth etlal.042introduced POZ-scores as
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another scoring method that is more resistant to falseipesjtbut may also increase the

false negative rate.

These theories provide an accurate statistical model forgapped alignments. Their

common purpose is to provide a mechanism to convert betwgeanuc programming

scores to normalised scores _(Altschul and Gish 1996a). 8aotmalised scores are of-

ten measured in “bits” of information by rescaling to base@arithms |(Altsch l_19_93,

1991 [Altschul et €l. 1997). Normalised scores allow thewdation of the probability or

expected value for alignments of any given score, and hebjeetively evaluate the statis-

tical significance of any given alignment.

Unfortunately, to date no corresponding theory for gapdeghments has been proved

3

Galisson 20 Altschul et

. 1997). However, the nonpgaitheories are generally ac-

cepted as valid for gapped alignments, subject to certainata. These caveats usually
relate to the selection of appropriate gap penalty regiifies.practical validity of applying

the non-gapped theories to gapped alignments is assumeattbyhie FASTA and BLAST

2 algorithms|(Altschul et al. 1997, Galisson 2000). Argutsen support have also been

b), Collins et al.

Lasor)

made by various authors at various times,

1&8_45)_M_0_||t 1992), Waterman and Vingrc

and Booth et all(2004).

Altschul et €

However, due to the lack of a formal theoretical model, theies of various param-

eters must be estimated by simulation with either randoma datunrelated sequences

ltschul et al.| 1997| Galiss 00, Pearson 1998). A @adr difficulty with these

statistical estimates for gapped alignments is if the caitjpm of the sequences differs

substantially from that of the data used to calculate tharmpaters. In that case the accu-

~

racy of the estimations suffers (Galisson 2000).

As previously mentioned, the relatedness of these statistiodels of significance to bi-

ology are considered hy Altschul et al. (1994) and Pe rs@ﬁj&)l who, while conceding
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that the two are not identical, argue that they are necégsamilar and related. The con-
tinued use of models of statistical significance as an esitomaf biological significance is

testimony to their general suitability to their applicatio the absence of a better approach.

2.1.2 Comparing The Performance Of Sequence Search And Alg

ment Algorithms

Difficulties, however, arise when comparing different sergee search and alignment algo-
rithms. Since there is no objective computational methaakgess biological significance,
approximations must be made. Two approximations are: (a¢chuman judged results,
and; (b) to use mechanically judged results, i.e., refdnea¢sults of a trusted algorithm —

a so called “benchmark” (which probably ultimately depeadstatistical significance).

2.1.2.1 Human Judgement

The first approach is to use human judgements. This apprechmnijlar in the information
retrieval community, e.g., the Text REtrieval ConferenEREC) community. It has also

been applied to biological sequence searching by makingfudassified sequences, such

as in some protein databases, for exampl il 2). However, there

are inherent difficulties with using human judgements.

The first difficulty is the presence of misjudgements thatgtisa correct judgements made
by computer programs. There is evidence to suggest thatassifications in human sup-

plied judgements may occur in a worryingly high percentaigeases, perhaps 10 percent

or more (Bernstein and Zolbel 2005). Having said this, thelassification rate is not usu-

ally sufficient to invalidate comparisons of search andratignt systems, as the difference

in effectiveness of the systems will be much greater, asisotstrated in this dissertation.

%http://trec.nist.gov|[On line; accessed 17 February 2007]
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The second and greater difficulty is that the number of huroaplged judgements is usu-
ally very small compared to the collection sizes. Moreotleere are no well distributed

human judged test collections for nucleotide sequencermient.

2.1.2.2 Benchmarks

An alternative to using human judged results, is to compach eompetitor to some bench-
mark. A good candidate for a benchmark in nucleic acid antepreequence alignment

is the algorithm ol‘ﬁ_mjlh_a.ndﬂaﬂnlr n (1981). This is beeaisssearch process is both

exhaustive, and well trusted. Nonetheless, there are twenpal pitfalls that must be

addressed.

Firstly, the Smith-Waterman algorithm has no mechanisriltering results that are statis-
tically significant, but biologically insignificant. Thisilvpenalise any algorithm that does
filter such uninteresting results. This bias can be redugeatidabling any low-complexity

filters in other algorithms (most supply the option to do this

Secondly, because the Smith-Waterman algorithm is degigmeptimise recall, it will
implicitly penalise algorithms that are designed to opsienprecision. This would cause
precision-oriented systems to score lower than they wdlddsessed by a human judged

framework.

Nonetheless, it seems that unless the residual electrasjadgements and biases occur
more often than in the human judged case, the electroniejuegt approach is superior,
because it can be applied to arbitrary collections withequiring the collection of human
judgements: Slow as the Smith-Waterman algorithm is, tiliswsuch faster (and easier) to
obtain results for a large collection than to solicit a sanihumber of results from human
experts. Further, since most heuristic sequence alignatgatithms are derived from the
Smith-Waterman algorithm, there is a certain fairness amdancon sense in comparing the

heuristic algorithms to their ancestor.
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Nonetheless, the fundamental limitations and blind spalisapply that arise whenever
evaluation is at an engineering level, processing levelangut levels only, such as not

extending to evaluate use or social issues such as fitnessdaor differences in produc-

tivity ( id 1995). Such social, user and use evaoasi beyond the scope of this

dissertation.

2.1.2.3 Sensitivity Metrics

Irrespective of the origin of the benchmark against whicimpetitors may be compared,
a metric must be selected in order to perform the comparigotraditional measure in
information retrieval isRecall and PrecisicH1 This double measure compares both the
sensitivity and selectivity of a querfRecallmeasures the extent to which the results of a
guery contain the correct results. Converspigcisionmeasures the proportion of returned
results that are correct. Therefore returning entirelgvaht results will result in high recall
and precision. Omitting some relevant results will causerétall to drop, but will not
affect the precision, where as including some irrelevasilte will cause the precision to

fall, but leave the recall measure unchanged.

In sequence alignment applications, it is trivial to lintietnumber of results returned. In
that case, a reduction in precision does result in a correbpg drop in recall, as relevant
results are displaced by irrelevant ones. Therefore if threlyer of results each competitor
returnsis fixed, then recall and precision are necessanigiected by a positive correlation.
Consequentially, a metric based on recall will capture nafche value of measuring both

recall and precision if the number of results is limited.

Favouring recall over precision (and using the measuresaafilrand precision at all) also
has broader implications in terms of usability, partly hessmahuman assessed relevance is,

like many aspects of humanity, practically impossible thraleor compute, partly because

4Recall and Precision are isomorphic with the alternatiyera@ch of considering false positive and false
negative rates that is perhaps more common in the field obdpyol
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its assessment is highly variable among subjects (Sa 15). Thus, the variability

in opinion that leads to many of the misclassification by homualges also introduces a

similar type of error in that recall is but one opinion of nedace.

In nucleic acid and protein sequence alignment there is dacadomplication in that a
result can bepartially returned, e.g., if only part of an alignment between two seqgas

is discovered (possibly as multiple fragments). One sotuis to sum the fractional align-
ments. However, this assumes that the majority of an aligwiniseof less value than its
entirety, and therefore will underestimate the value ofr#sellts. Alternatively, each align-
ment could be scored as though the entire alignment weretegpe- thus overestimating

the value of the results.

Lietall (2004) employ the metric of counting all alignmettst score> =, wherex is

the score of the optimal alignment, andypically being 2. This method of measuring

recall can be called thBatternHuntermetric, after the title of the algorithm presented

by ILietal. (2004). It is appealing because it is not only dengout also intuitive, in

that it compromises between the under- and over- estimmfoeviously described. A
variation on this metric is introduced later as the basisieasuring search sensitivity in

this dissertation.

2.2 Accelerating Sequence Searching

This section provides a survey of selected work in severgbmnaaeas of accelerating the
nucleic acid and protein sequence search processes. TVeysaocludes: (a) heuristic

algorithms; (b) clustered (parallel) computing, and; (@exing techniques.
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2.2.1 Heuristic Algorithms

The current heuristic algorithms typically claim two to ékr orders of magnitude

improvement in execution time compared to Smith-Water 97

.1.1997,
Williams and Zobel 2002&, K VLLEOZ). However, as obserye n_(ELO) and

Galisson|(2000), this improvement is at the expense of acgurThat is, heuristics offer

speed improvements by excluding much of the search spaazefbine, if any interesting

results lie in the excluded regions of the search space viikyot be identified.

2.2.1.1 A Brief Comparison Of Selected Heuristic Algorithns

The algorithm b,_S_mj_Lh_a.ndJA[aJ_emlr n (1981) is exhaustiee, dloes not exclude any re-

gions of the search space, and this makes it helpful as aibadgylwhich to measure both

the performance and quality of heuristic algorithins (Ow802). This is reinforced by the

fact that the majority of the heuristic algorithms are dikgor indirectly derived from the
Smith-Waterman algorithm. Takle?.8 compares the perfoomaf Smith-Waterman and

the algorithms discussed below.

2.2.1.2 FASTA

The FASTA (Pears 0) group of algorithms, developethduhe 1980s, are generally

considered to be among the best quality heuristic algosthiespite being the among

the most sensitive heuristic algorithms, significant devitsi compromises are still made

Galisson 2000). The primary interest of FASTA in this drss#on is that it is the direct

ancestor of the widely used BLAST family of algorithms.

These algorithms function by finding &imers, that is strings of leng#j that correspond
between the query and subject sequences. This listhoérs is then used to identify and

re-score the ten best scoring regions. A joining proceduigpplied to these regions and
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finally band limited dynamic programming is applied to ogmthe final score. This
algorithm finds both gapped and non-gapped similaritiesd odfers 10 to 100 times speed

improvement compared to the Smith-Waterman algorithm.

2.2.1.3 BLAST

The first version of the BLAST algorithnL_(ALLsghuLe.l |._199%®arches for non-gapped

alignments only. This makes it somewhat faster and someiekatsensitive than the
FASTA algorithm. The loss of sensitivity is partly offset @i searching for protein se-

guences, because BLAST takes into account the similarignoho acids in the initial

phase of the search (Galisson 2000): rather than using belg-mers of the query se-

guence, when searching for protein sequences BLAST al$odes all neighbourings-
mers, i.e.k-mers that are similar to each quéayner. This expanded list d¢mers is then
used to look up each exact occurrence in the subject sequemsrform an un-gapped

alignment. The highest score for each extension is retained

The BLAST algorithm was later refined to incorporate moreaabed statistical methods,

e.g.,lAltschul [(1993, 1991), Karlin and Altsc |I1| (1995.@&1)_&1_3. (1994), including

using Poisson approximations and taking into account plalthearby alignments when

calculating the expected value or probability of a matchuogig in a random sequence.

The ability to perform gapped searches with BLAST familyaalthms was later included

by bothlAltschul et &l.1(1997) and Gish resulting in NCBI-B&A 2 and WU-BLAST 2

respectively.

NCBI-BLAST 2 claims to be> 100 times faster than Smith-Waterman_(Altschul et al.

1997). This performance improvement is arguably at a netabhsitivity cost compared

to BLAST 1 (Williams and Zob€&l 2002a), although the authdrl€BI-BLAST 2 claim

that sensitivity is actually improved (Altschul et al. 1997
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The NCBI BLAST 2 nucleotide search algorithm differs in saesubstantial ways from
the NCBI BLAST 2 protein search algorithm. First, neighbogtk-mers are used during
protein searching to increase sensitivity, where as folemticle searching they are not. The
use of similar as well as identickimers as baits contributes significantly to the sensitivity
of BLAST when searching protein databases. Second, thelt&faer size is three for
protein while it is at least seven and defaults to eleven farleotide searches. Third,
whereas in order to contain the time required to perform ache&wo hits must occur in
close proximity to trigger the extension of a hit during @iotsearching, a single hit is

sufficient to trigger extension of a hit during a nucleotidarsh.

NCBI-BLAST 2 operates similarly to the original BLAST algthm, first discovering all
correspondind-mers (again using neighbouritkkgmers for protein searches) between the
guery and subject sequence(s), with each hit being extemslad non-gapped alignment,
and the highest scoring alignments being extended usingaiva of the Smith-Waterman

algorithm that allows gapped alignment.

NCBI-BLAST 2 takes time proportional to the product of theequand subject sequences
to scan the database, plus an additional factor propottiortae total length of hits due
to the dynamic programming extension performed for each Titis can cause NCBI-
BLAST 2 to search slowly if the database contains many semggesimilar to the query,
or if the query contains low complexity regions that are wealbwn to occur with ex-

cessive frequency. This problem is addressed in part by imgaske query against low

complexity regions using an algorithm such as XNU (Clavand States 1993) or DUST

Hancock and Armstron 94). However, the performancgeisdill remains for long

high-quality alignments, resulting in overall performanghich is approximately propor-
tional to the total length of alignments returned, rathemtlthe size of the query. Con-
sequentially, it is difficult to predict in advance the tinexjuired to complete a BLAST

search.
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Moreover, because for BLAST builds an index of the query sega, but not of the
database being searcHedearching is intrinsically slower than if the databaseeniar
dexed instead. The trade-off is that the size of a databapaped for searching by BLAST

will be very small compared with the algorithms that indee tfatabase.

The other variation of the BLAST algorithm, WU-BLAST 2, waseased prior to NCBI-
BLAST and makes even greater claims of speed and sensitmfyovement than does

NCBI-BLAST 2. WU-BLAST also offers NCBI-BLAST 1 & 2 compatility modes. The

actual algorithm has, unfortunately, not been releaseter issoni(2000) for a more

thorough explanation and comparison of the FASTA and the N@Bd WU- variants of
the BLAST family of algorithms.

2.2.1.4 BLAT

BLAT (Kenii2002) is a more recent heuristic algorithm thagsia memory resident index of

the database to increase speed rather than sensitivity.cbhbination of RAM-resident
index and disk-resident database enables BLAT to be runeat gpeed on inexpensive
computers. It is approximately five times faster than NCBIABT 2. Its sensitivity for
nucleic acid queries is somewhat less than that of NCBI-BLRSwhile protein sensitivity
is substantially lower, being hampered by the use of a rigigx, as will be shown later in
this dissertation. However, for its original applicatiodnggnome assembly and annotation

the sensitivity is more than acceptable, particularly gitree speed increases obtained.

BLAT operates by creating an index of all non-overlappkagers in the database that for
many databases is small enough to fit in the RAM of a desktopoten It is because the
index is constructed for only non-overlappikgners that sensitivity is sacrificed compared
with BLAST. On the positive size, BLAT stitches together gawpped alignments to form

the gapped alignments, including exons that are separgtgdis. This effectively avoids

SAccording tohttp://blast.wustl.edu/blast/dbfmts.html, the NCBI BLAST database format
indexes the names of each sequence, but not their contefing®ccessed 25 October 2008].
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much of BLAST’s problem of expending up to &) effort to discover an alignment of
lengthn, resulting in a search time that is more readily predictezetdaon the product of

the length of the query and database.

2.2.1.5 FLASH

FLASH (Califano and Rigoutsas 1993) is an earlier exampledéxed sequence search-

ing, where the intention was to maintain or improve sengjtias well as speed. FLASH
creates a probabilistic index that consists of a hash-talkecontains not only thiemers
present in the indexed databases, but also all similarlgredipermutations of eaghmer.
This allows the index to look up all sequences that contamilar strings to the query,

instead of only looking up identical strings.

This greatly aids sensitivity, and results in a system thahore sensitive than BLAST.
In addition, FLASH is an order of magnitude faster than BLA&3 success is, however,
hampered by the size of the indices it uses. The storing ofiphelbermutations of each

k-mer results in indices that are two orders of magnitudeelatijan the input sequence

collections ﬂALLlha.ms_a.n.d_mtJLLm_C 2a).

2.2.1.6 CAFE

CAFE (Williams and Zob€&l 2002h, Williams 1999, Williams aAdbel| 1997 1996) is

an example of a later indexed algorithm that utilises muchl&mnindices than FLASH,

and offers similar sensitivity to BLAST 1 or FASTA.

CAFE is intended to operate on disk-resident databasesratices, and utilises many
of the techniques used to search disk-resident collectbsxt. This includes a strong

emphasis on compressing index and data records to minihega¢trieval time.
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The CAFE search algorithm consists of two stages, a firsseosgarch that involves only
the index, and a second fine search stage that involves tbedsgor relevant parts of

records where they are large, thus further reducing retriewe.

The CAFE index stores not only which records contain a gk#erer, but also the offset of
the occurrence(s) of thtmer in the record. It is this feature that allows CAFE to parf
the coarse search without the expense of retrieving corsg@adagcords from the database.

This is because themer is known from the query sequence.

A number of scoring and ranking schemes can be applied todiecton of k-mers re-

vealed by the index to occur in any given record.

A naive scheme that works well is to simply count the numbematchingk-mers. The
authors call this FRAMECOUNT. Another scheme that workslwselto consider the
coverage of the record by tlkemers. In that scheme, two adjac&nners would score less
than twok-mers that did not overlap. The authors call this COVERAGBwever, better
results are obtained by combining these two measures in@MBINED score, according

to:

COMBINED = COVERAGE-k x (LENGTH— COVERAGE)

Wherek is an empirically determined constant, typically selectedh thak < 1.

Initially, only hits are combined that occur in the same fearne., a fixed difference be-
tween the query and subject sequence offsets. For examplg,and (6,8) would be in
the same frame, because 5-7=-2 and 6-8=-2. However, (8,addwot be in that frame

because 8 11= -3 # —2.

Hits in plausible combinations of frames may correspondiggneents containing gaps.

The scores of such frames are combined according/$ whereS is the score of the

42



2.2. ACCELERATING SEQUENCE SEARCHING CHAPTER 2. BACKGROUDN

frame, andl is the distance of the frame that is being added to the framteghreceiving

the addition.

In the fine search stage, CAFE retrieves the top ranking dscbom the database, or
the relevant sections of them, if they are long. They are thénected to a FASTA like

assembly and extension procedure.

An attractive feature of the CAFE algorithm is the sub-linearease in search time as the
database size increases. This occurs, in part becausée(eparse search does not need
to retrieve records from the database, thus decouplinglséane from database size, and;

(b) unlike in NCBI-BLAST, the fine search occurs only oncedach hit, even if it contains
gaps.
The authors note that given the continuing upward trend tdlgese sizes that this effect

will result in a shift over time towards indexed algorithns the only practicable solu-

tion. Itis also notable that CAFE search times are morebBligredicted by search space

size when compared to BLAST LGMLLLa.ms_a.n.d_ZJ)L_eLZ 02a)sHredictability of com-

putation expense is an attractive feature for operatoreg@fience search and alignment

services.

2.2.1.7 Acceptance Of Heuristic Algorithms

Perhaps the most famous and widely used of the heuristicitdges is NCBI-BLAST 2

[tschul et al1 1997)L_Galissbn (2000) observes that tleegdent use of this algorithm is

evidence that the accuracy trade-off made by heuristicihgos, and by BLAST specif-
ically, is a tolerable one. Suggested reasons for the aalo#ipt of the trade-off are both
pragmatic, i.e., the NCBI BLAST web site is fast, reliablelaasy for biologists to use,
and the habit is now firmly established; and intelligenthattBLAST must in general find
results that are helpful — otherwise it would not be used. sThiuseems reasonable to

suggest the heuristic algorithms are popular: (a) becdueseare cheap, i.e., they require
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Table 2.8: Inferred Relative Speed Of Various Heuristic Sequence Similarity Search Algo-
rithms.

| Algorithm | Gaps| Claimed Speedup vs S-W |
'Smith and Waterman (1981) Y 1.00
FASTA (Pearsdh 1990) Y 10 to 100l(Pearstn 1990)
BLAST 1 (Altschul et al[ 1990) N ~30-300{(Altschul et al. 1997)
NCBI-BLAST 2 (Altschul et al. Y ~100-1000l(|%im5_a.nd_mﬂel
1997) )
WU-BLAST 2* Y ~100-3000*% Galissan (2000)
BLAT (Keni 2002) Y ~1000-10000.(Keht 2002)
FLASH(Califano and Rigoutsos | Y ~1ooo-1000%ﬁams_am_zatbel
1993) )
CAFE(Williams and Zobél 2002a)| Y ~8oo-sooo%ms_md_mﬂe|
)
* The unpublished algorithm for WU-BLAST 2 is discussed inli&son (2000).
** Figures inferred from what information could be found eeding WU-BLAST

no special hardware; (b) because they are fast; (c) bechagete reasonably reliable;

and, (d) because they are accessible.

2.2.1.8 Ignorance Of Users To Specific Heuristic Trade-Offs

However, a significant risk with heuristic algorithms liesthe fact that the users of them
are frequently not familiar with the precise concessionadouracy made by a particular
heuristic. Therefore many people apply heuristic algangho particular problems, with-
out understanding whether it is reasonable or appropribies issue of applicability has

been explored, e.g., EIJ;LG.a.IJ'iS()_n_dOOO) nd Dwan (2002)etemit is unlikely that most

regular users of BLAST or other heuristics are familiar vilibse issues. This problem is

likely to escalate, as more aggressive heuristics are eltscombat the continuing differ-

ence between Moore’s Law and biological sequence datalzzese Slower and more accu-

rate heuristics such as FASTA are already being abandonedédyg |(Williams and Zobel

0023).
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Perhaps relief from this problem will emerge from index lshakgorithms such as CAFE
that provide sub-linear search time with respect to dawbe®, without significant addi-
tional sacrifice of accuracy. The inefficiencies introdubgdhe size of the indices will

become less significant as databases continue to grow tathewhere they will not fit

into the main memory of even a large computer or cluster (8vilk and Zobgl 2002a).

2.2.2 Clustering (Parallel Computing)

Clustering, also known as Grid Computing, is a method oflfi@mputing where a work
load is divided into a number of parts that are processedrallphon a number of com-
puters. Clustering is a popular method of improving thegrenbince of search systems, as
evidenced by their proliferation, particularly in the ca$énternet search engines. Perhaps
the most prominent cluster in popular use for sequencerakg is the NCBI BLAST on-
line search facility. Their attraction is in increasing dathroughput by typically 1 — 3

orders of magnitude, without sacrificing flexibility in wihi@lgorithms can be utilised.

Within clusters there are two main divisionsomogeneouand heterogeneoyseferring

to the level of similarity of the component nodes. Homogerssrusters are still by far the
most common, due to ease of implementation and use, pantigtdr parallel applications
requiring low latency inter-communication. However, askdep computer capabilities
have increased by several orders of magnitude over recens yieere is a vast latent re-
source available in most organisations and departments.chiillenge in harnessing this
resource is the often heterogeneous nature the compusognees. Thus specialised ap-
plications are required to use such computers as an effidigster. Also, the maintenance
of this type of cluster is typically more difficult as the nedeave more than one (poten-

tially conflicting) function. Despite these difficultiesetheterogeneous cluster approach

has been successfully employed in such projects as SETI@HAnderson et al. 2002,

Werthimer et a. 2001).
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While the implementation and running costs of clusters neelatively high (many com-

puters must be configured, powered, and maintained), thgrdegst and associated risks
are relatively small. Homogeneous clusters, in particaes well understood and can be
constructed relatively quickly and reliably. These cheeastics of high running costs and
low design risk contrast with hardware acceleration tephes, which may be cheaper to

run, but involve more risk in the design phase.

2.2.3 Indexing

There are two principle and related issues to consider wksigding a search system
that exhibits sub-linear search time with respect to da@alsize: space and time. It is
often straight forward to reduce the effect of one, or theentilThe difficulty comes in

reducing both simultaneously, a problem perhaps epitaimisethe FLASH algorithm

Califano and Rigoutsis 1993) which decreased search tgego orders of magnitude,

but increased disk space requirements by two orders of matmiGenerally, time is con-
trolled by the effective structuring of the data to be sead;hypically by indexing, while
space is controlled via compression. However, structuata thkes space, and decompres-
sion takes time, and so the use of both must be judicious. &\tése concerns apply to a
much broader range of problems, in the following discus#ienfocus is on nucleic acid

and protein search systems.

The effect of indexing on search systems is intuitively easynderstand. Indices occur
in many day to day situations. For example, telephone direxst are a list of telephone
numbers and addresses, indexed by the subscribers naneegllib of such a indexing of
the data is profound. To illustrate this, consider a teleyhdirectory that was not sorted at
all. The average consultation of the telephone directoryldioequire reading half of the
entire directory. While this might be practical for smallleations of telephone numbers,

such as a short list of the telephone numbers of friends amdyfait is a less suitable
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approach to apply to the telephone directory of even a meelsized town, and certainly

useless for a large city.

Indexing, therefore, is a technique that makes it possthébdid the cost of an exhaustive

linear search, and can result in tremendous speed incr&ﬂ'nﬁn_et_a._:lﬁé%. How-

ever, to make indexing cost effective for large collectioti® index structures must be

compressed (Witten etlal. 1999), an approach that has beeadfor biological sequence

search and alignment by Williams and Zohel (2002a) in th&FE system. Construction

of compact indices is given further attention in Secfion 2.4

2.2.4 Summary

The current state of the art can be described as heuristwaref algorithms dominating
the market. NCBI-BLAST holds the predominant position iatteector. Algorithms have
been proposed, such as BLAT ( ELDLAOOZ) and FLASH_(CalifambRigoutsas 3),

which provide significant speed up versus BLAST, but with-trdvial sensitivity or space
costs. However, with the relentless increase in data vadusortinuing to outstrip Moore’s
Law, the only long term solution remains the constructiorsedrch systems that exhibit

sub-linear time and space cost versus data volume. The dadidates to accomplish this

are those using compressed indexed databases, such as 3 20024,
Williams (199 M[LIJJ'@.UJS.&D.d.Z)I“:LlQ&?b).
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2.3 Compression

2.3.1 Introduction

Where as indexing is a technique that, when correctly appiias the effect of substantially
reducing the time required to perform a search, data comimress the reduction of the

space required to store a given set of data.

Compression can speed up the searching of large databasesluning the number of
accesses that are required to high latency storage desioels,as disks. Moreover, com-
pression may allow the entire database to be stored in a latency storage medium,
e.g., in RAM rather than on disk. Moving a database to a lowtaricy storage medium
can decrease search times by orders of magnitudes. Thisyieavhpression is of inter-
est to sequence search and alignment, and especially sodiexaed sequence search and

alignment where the raw uncompressed structures may bargeto fit into RAM.

The remainder of this section provides an overview of textjgession, giving considera-
tion to the issues that arise when compressing a randomsadatsbase, and with a final

focus on DNA compression and index compression.

2.3.2 Entropy Coding Methods

The major ground work in information theory was laid t;LS.Ian 1943),
N (1949) and Huff nla.n_(_’LQSZ). A significantribution of Shannon

was to establish the notion ehtropyin the field of data compression. The entropy of a
messageH, is calculated by summing the probability of each symbol given alphabet

a of sizen, weighted by its probability:
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Hence a symboky, with probability p(ax) = 1, contributes-p(ax) logp(ax) = —1log1l=

0 to the entropy. This makes intuitive sense, because therrecce of the symbol is
certain, it contributes zero information: There is no neegrtcode an event that must occur.
For an alphabet where all symbols are equally frequentpi(ag) = p(a1) =... = p(an-1),
each symbol contributes equally to the entropy. In facthis tase the entropy of the
message i$1 = 1. This is the case for the overwhelming majority of possibkessages.
This is significant because a message With- 1 cannot be compressed using &mgropy

codingmethod.

An entropy coding method is one that seeks to allocate codmsato symbols based on
their observed frequency; more frequent symbols are akdcshorter codewords, while
less frequent symbols are allocated longer ones. Since ohe frequent symbols are the
common case, a net saving in space results from their usmgesttodes. The relatively
rarer symbols require longer codewords. The length of agiegleword is inversely pro-

portional to the probability of its occurrence in a message.

In practice, the symbol probabilities are estimated rathan known exactly. This leads

to a problem known as theero frequency probler(LALilLan_a.n.d_B_al 19¢91). In an opti-

mal encoding, a symbol with an expected frequency of zerbbgilassigned a codeword

of infinite length. If such a symbol does actually occur in assage, the compressed
message will be infinitely long. This is obviously not a dable solution, since the ob-
jective is to reduce the message size. The practical saligi®o insist on a minimum

probability for each possible symbol. Although the methadd encodings used vary (e.g.,

Cleary and Witt n_(]_9$4_B_u_m|o 1 (1997), Cleary and Tea ),. Teahan and Harper

OO’),_B_ng.ei.LELeLLI (2004)), they are all similarlyesffive (Witten et al. 1999).

There are two major optimal entropy coding schemes usedxinctampression prac-

tice: Huffman Codes (Huffm 2) and Arithmetic Coc i 79,

Witten et al. 1987, Howard and Vitier 1992, 1994). Both aréimal, in that assuming a
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source that is memory-less, and for which the symbol prditiaisiare known, no other
code operating with the same constraints will produce alemalessage. Thus, while
Huffman Coding is not optimal in terms of entropy, it is opéhfor all whole-bit binary
codes. In the case of Arithmetic Coding, the fraction of tize ®f the encoded message
when compared to the original, will be almost exactly the@my, H, of the message. This
near optimal coding efficiency is, however, achieved at soast. Primarily, Arithmetic
Coding is slower when compared with Huffman Coding, and eg¢spiires additional care

when marking the end of a message.

In comparison to Arithmetic Coding, Huffman Coding is muakter and simpler to imple-
ment. The disadvantage of Huffman Coding is that it will proel larger output than Arith-
metic Coding, particularly if there are one or more symbathWwigh probabilities. This is
common when encoding alphabets of small size, such as theytafphabetA = {0,1}.

The redundancy of the Huffman Code has been shown to be bdinyge + 0.086, where

fl is the probability of the most frequent symbol. This is thallager Limit (Gallager

). This inefficiency can often be ameliorated, for exkentyy the extension of the al-
phabet to include digrams and higher order structures toceethe maximum frequency.
This makes Huffman Codes more generally applicable thanutiehvfirst appear. However,

there are situations when the coding inefficiency of HuffrGaxes remains problematic.

A problem that is often coincident with the inefficiency of ffinan Codes, is the cost
of generating the Huffman Code tree. For static and senticstampression, the Huff-
man Code tree need be calculated only once. However, in &dfptive compression

schemes, the tree may need to be regenerated frequenttyeiftalgorithms exist for gen-

erating Huffman Code trees, e. rpin_(19%8)wever, cost still increases

with alphabet size. As a result, the coding efficiency gastseved by extending the al-
phabet to are in direct opposition to the computational iefficy of the tree construction
process. At some point there is a cross over, where Aritlon@biding begins to offer

both better compression and computational efficiency. cljyi this is in situations where
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adaptive probabilistic models are employed (Bookstein 3). The border territories,

however, remain under dispute with ground shifting as adeamare made on either side,

e.g.,.Fenwidk|(1996), Moffat et al. (1998), Moffat (1 99)dilMD.E[aLa.D.dlLLLDiW (1998),

Turpin and Moffat.|(2000).

2.3.3 Dictionary Methods

The second major category of loss-less text compressiaritgdgis are those based on

dictionary methods. The canonical algorithms in this clagsLZ77 and LZ78 both of Ziv

and Lempell(1977, 19¥8). Both algorithms encode succegsikteons of a message by

referencing previous parts of the message. The differtartiies in how references are

encoded.

In the LZ77 algorithm, the longest matching string, plusie&t symbol is encoded. The
encoding takes the form of a triplet that specifies the degdrom the current point, the
length of the common prefix, and the single character to beraggx in order to produce the
new string. The current point is then advanced to just beyoadast symbol that has been
encoded. To cater for the situation when no match can be fagauhst the preceding text,
the prefix string is set to the empty string, and only a singtalsl is encoded. Consider
the example of coding the word “banana”. This would resulthie triplets as indicated

in Table[Z®. For the first three letters, there is no matchesdn the string. However,

upon reaching the fourth position, “an” has already beem.sée fact, because during
decompression the “an” can be extracted before the final ‘ili"oe read, the last three

letters can be recursively encoded in a single triplet.

LZ78 is a refinement of LZ77 where, instead of referring to distance and length of a
string, each candidate string for matching is referenced bpique index number. The

table of strings that can be matched against are formed byatemating a string that is
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Table 2.9: Example Of LZ77 Coding For “banana”.

| Distance| Length| Single Charactef| Region Encoded

0 0 b Banana
0 0 a bAnana
0 0 n bavana
2 3 NULL bamNA

Table 2.10: Example Of LZ78 Coding For “banana”.

| String #] Single Charactef Region Encoded New String| New String #|

0 b Banana b 1
0 a bAnana a 2
0 n bavana n 3
2 n bamNa an 4
2 - banam a- 5

already in the table, and the next symbol from the input sttéBhe candidate string table

begins with a single entry, zero, which is the empty string.

Table[ZID shows how the LZ78 algorithm works for the exanipl “banana”. For

this example, LZ78 encoding requires one more code than LHbivever, the encoded
message can be substantially smaller, because each cod®e ganch more compact.
LZ78 codes requirdlogon] + [logpa], wheren is the number of strings in the dictio-
nary a given point, ana@ is the size of the alphabet being encoded. This compares to
[logow| + [logal | + [logpal] for LZ77, wherew is the window length where strings may
be referenced, anldis the maximum length of a reference. Efficient implementegiof
either algorithm may use variable length encodings to im@@mpression performance.

However, this does little to modify the relative ratio of itheode sizes.

The attraction of dictionary based algorithms over entrepgoding techniques is two fold,

compression performance and speed.

First, dictionaries of strings can provide a better zemeomodel than does a method based

on dictionary of characters. Such high-order models caegddchieve better compression
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than a zero-order model, but a dictionary-based algoritamstill be a zero-order model

and cannot achieve better than zero-order entropy on a diedonary.

The second attraction of these algorithms is their highd&pespecially for decoding. The
speed of the LZ algorithms comes from their simple block copgrations. These opera-
tions are very fast, and when dictionary methods are condbimth byte-alignment, such

as in LZRW (Williams 1991) or LZO.(D.bﬂh.Uﬂ]\L.LlQQ?), they dielven greater speed, in

return for some sacrifice of compression. Indeed, the fagtemnt of the LZ algorithms,

LZO, decompresses only four times slower than a simple mgm&amory copy, while

still encoding below the zero-order entropy in many casdme(@umer 1997). Because of

this combination of speed and compression performanceatiges of the LZ methods are

used in many popular compression algorithms, such as casWelcn 1984) and gzip

G_a_LI_I;J 1993).

However, in the context of this dissertation the principédue of the LZ methods is that

they explicitly encode redundant strings, thus making gteindancy information visible
to a sequence search and alignment system that was equgpsesd it. The specification
and initial evaluation of such sequence search and aligheystems is a major focus of

this dissertation.

One challenge that must be overcome in this pursuit is tlat. lhmethods are adaptive
in that they build the dictionary of recurrent strings asythbeocess the data. This means
that it is not possible to obtain efficient random access thvidual records of an LZ
encoded data stream, thus rendering them unsuitable fanustrmation retrieval sys-
tems, such as sequence search and alignment systems. dtelstuaigorithms have been
developed that substantially address this issue, by canghéxplicit description of redun-

dancies with an effective means of accessing random recdigs such algorithms are

SEQUITUR(Nevill-Manning and Witten 1997) and XRAY (Canmeaand William

A

2002).
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SEQUITUR operates by creating — in a single pass with line@ ind space requirements
— a context free grammar from the input text that can be usegpt@duce the input text. It
does this by searching for repeating digrams. Wheneverramigs detected as occurring
more than once, both occurrences are replaced by a nomtdreyimbol that triggers a

rule that produces the digram.

The non-terminal symbols are treated exactly as symbots ftee input text, in that if
a digram containing a non-terminal symbol occurs twicentaecompound rule will be
created that eventually triggers the first rule. In someasibms creating a new rule may
cause an existing rule to now be used only once. In that @tu#te singly used rule is
deleted, and its occurrence replaced by its productions process is illustrated in figure

2.2 with the compression of “wooloomooldb”

No digrams are detected until the 6th letter has been predethtil that point, the gram-
mar is a single rules, that produces the output directly. Once the repetitioncaf™“is
detected, it is replaced with another rude,RuleSis altered to call rulé\ instead of using

the repeated string. The process continues uneventfulijtba next occurrence of “00”.
This time a rule A) already exists for encoding the digram, so that is used. Whnesec-
ond “I” is processed the contractioAl’ now occurs twice, so it is replaced by a new rule,
B. And so the process continues until the last letter is pisEmRs Now the construction
BA occurs twice, so a new rul€, is produced to remove the redundancy. But this means
that the only place where rulg occurs is in ruleC. In order to minimise the size of the
grammar (and thus maximise compression) Bile discarded, and its production inserted

directly into ruleC.

Redundancy is explicitly encoded using this method. Howesgnchronisation points,
and thus random access to records, is still problematicusectne grammar hierarchy is

unlikely to coincide with all record boundaries without sespecial manipulation.

SWoolloomooloo has been purposely mis-spelt to amplify tkeneple.
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symbol the string so resulting remarks
number far grammar
w S->w
wo S->wo
W00 S->woo
wool S->wool
woolo S-woolo
wooloo S-wooloo 00 appears twice
S->wAIA enforce digram uniqueness
A-00
7 wooloom S->wAIAmM
A-00
8 wooloomo S->wAIAmo
A-00
9 wooloomoo  S-»>wAIAmoo 00 appears twice
A-00
S->wAIAmMA  enforce digram uniqueness
A-00
10 wooloomool S->wAIAmAI Al appears twice
A-00
S-»>wBAmMB enforce digram uniqueness
A-o00
B->Al
11 wooloomoolo S-»>wBAmMBo
A-00
B->Al
12 wooloomoolo S-»*wBAmBoo enforce digram uniqueness
A-o00
B->Al
S-»>wBAmMBA BA appears twice
A-o00
B->Al
S->wCmC enforce digram uniqueness
A-o00
B->Al
C-BA B is only used once
S->wCmC enforce rule utility
A-o00
C->ABA

OoOuUlhkh WN -

Figure 2.2: Compression of “wooloomooloo” using SEQUITUR.
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Whereas SEQUITUR lacks a mechanism for providing synclsaditn points between

records, the XRAY algorithm is designed with random accessi§ically in mind.

XRAY compresses a document collection in three steps: (Ihallssub-set of the col-

lection is analysed to identify the recurrent phrases ancbsstruct a hierarchical phrase
dictionary, that is in many ways similar to that of SEQUITUR) the same sub-set of the
collection is compressed, record by record, using the mdee¢loped in step (1). This
is done to tune the model to take into account the differemteden algorithms used to
discover the redundant phrases in step (1), and the lefgtd-encoding performed in step
(3), and; (3) encode the entire collection, record by recasihg the refined model that

was obtained in step (2).

Because XRAY encodes record by record using a fixed modethsgnisation points nat-
urally result. Further, because the model remains statithi® collection, records can be
added, modified and deleted from the collection withoutredtethe model and requiring
an expensive rebuild. Finally, because the model is smalligim to be loaded entirely
into RAM, there is no impediment to using XRAY as the methadstoring and retrieving

records in an information retrieval system.

It is only more recently as computational power and memopacties have dramatically
increased, that a class of algorithms with potentially simpecompression to dictionary
methods capability has begun to gain popularity, that atatige statistical modelling algo-

rithms.

2.3.4 Statistical Modelling Methods

Data compression algorithms implicitly use the properigt ttymbol probabilities often
depend on the preceding symbols in the text. It is possibleséothis property, to create

compression algorithms that model the statistical behaabd the message, distinct from

its encodingl(Rissanen and Langdon Jr. 1981). If the stalsnhodel has a defined initial
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state, and is updated using only the previously encoded slgmbb is possible for the
decoder to do the same. Thus encoder and decoder remainreyised, without the need
to transmit the model explicitly, allowing the use of arlrity complex models that are,

hopefully, able to make good quality predictions for eactcesgsive symbol.

When such models are combined with an optimal entropy cedeh as Arithmetic Cod-
ing, it is possible to create powerful new algorithms withltéeperformance than the LZ
family. As the predictions approagh= 1, the number of bits required to encode each
symbol approaches zero. A statistical model that is ableotsistently make high con-
fidence predictions can, therefore, encode each symbolljnaofraction of a bit. Var-

ious approaches to modelling exist and are represented ariety of algorithms, e.g.,

Prediction by Partial Match (PPM) and varian ' 1984, Bunt IL_J_CL‘)?,

Cleary and Teah o7, Teahan and Harperi2001 etc), CamextWeighting (CTW)

Willems eta._19§45 Tialkens and Willems 1997) and Dynariarkov Compression

(DMC) (Caormack and Horsp )_I_ld87). Of these, DMC is concaltyuhe simplest, and is

described below as an example of a Statistically Modellexy tompression algorithm.

The DMC model begins with some simple structure, as in File Note that any initial
structure is possible, and that judicious selection of #&almodel can have a significant
impact on the compression performance. The model is a sifinple state machine with

probabilities assigned to each transition.

The model begins in some stage As each bit of the message arrives, the predicted prob-
abilities of the bit being a one or a zero are consulted. Tivadges are passed to an
Arithmetic Coder that encodes the event. The frequencyteotor the actual value is then
updated, thus altering the model. The state transitiorcatdd for the actual value is then
taken. Record is maintained of the number of times a s$gtés reached from any given

state,s¢, 0 < k < n, wheren is the number of states in the model.

57



2.3. COMPRESSION CHAPTER 2. BACKGROUND

p=0.5 p=0.5

Figure 2.3: Example DMC Initial Model.

Figure 2.4: Example Cloning Of States In A DMC Model.

Whensg, is repeatedly selected by more than one state, g.@nds;, it is cloned into two
copies each of which are arrived at from only onesadr sj. The frequency counts of the
old state are shared between its daughters. In this way,rtlez of the model increases,
and correlations between successive bits, i.e., conteatspe discovered and modelled.
Figure[Z% shows how this cloning could occur withbeing cloned to producgy. This

process can occur indefinitely to build up an arbitrarily péew model of the source.

2.3.5 Performance Of Compression Algorithms

A common approach for comparing the performance of diffeedgorithms is to bench-

mark them using a common corpus, such as the Canterbury QlAmn.I.d.a.n.d.B.elll_lQ_E 7).

Such a corpus contains a variety of files intended to reflectypes of files that are com-

pressed in the wild. Tablés2]11 dnd2.12 contain the Camef@orpus compression ratio

and decompression speed rankings as of 18 May 2006.
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Table 2.11: Table of compression ratio results (sorted by increasing ratio) from the Canter-
bury Corpus (Arnold and Bell [1997) web site, 18 May 2006. Results are listed in bits per
byte, where 8.00 indicates no compression.

Weighted| Average | Standard

Method Bits/Byte | Bits/Byte | Deviation
ppmD5 1.52 2.11 0.64
ppmD7 1.56 2.15 0.65
bzip-6 1.49 2.15 0.72
bzip-9 1.50 2.15 0.71
szip-b 1.46 2.16 0.74
szip 1.48 2.18 0.74
ppmC-896 1.61 2.19 0.64
ppmD3 1.65 2.20 0.62
bzip2-6 1.54 2.23 0.75
bzip-1 1.59 2.23 0.74
bzip2-9 1.54 2.23 0.75
bzip2-1 1.64 2.31 0.77
ppmCnx-896| 1.75 2.32 0.64
bred-r3 1.80 2.38 0.73
dmc-50M 1.74 2.39 0.75
dmc-16M 1.76 2.40 0.74
dmc-5M 1.81 2.43 0.74
gzip-b 2.08 2.53 0.74
gzip-d 2.09 2.54 0.73
ppmC-56 2.16 2.70 0.90
gzip-f 2.46 2.91 0.82
ppmCnx-56 241 2.93 0.95
yabba-d 2.59 3.14 0.81
srank-d 2.65 3.31 0.92
compress 2.55 3.31 0.95
lzrwl 3.58 4.18 1.07
huffword2 3.64 4.20 1.44
char 3.64 4.49 1.20
pack 3.74 4.53 1.07
yabba512 3.94 5.19 1.54
cat 8.00 8.00 0.00
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Table 2.12: Relative decompression times (sorted by increasing time) from the Canterbury
Corpus (Arnold and Bell11997) web site, 18 May 2006.

Average Standard

Method Time (seconds) Deviation
cat 0.58 0.86
gzip-b 0.72 0.96
gzip-f 0.79 1.03
gzip-d 0.81 1.06
lzrwl 0.82 1.06
compress 0.92 1.13
pack 0.97 1.13
yabba512 0.98 1.18
huffword2 1.00 1.11
bzip2-6 1.31 1.01
bzip2-1 1.32 1.04
bzip2-9 1.37 0.97
yabba-d 1.42 1.25
bred-r3 1.93 1.13
srank-d 2.03 1.57
char 2.67 1.09
szip 2.86 1.47
ppmCnx-896 3.27 1.29
szip-b 3.29 1.67
ppmCnx-56 3.38 0.89
bzip-6 3.82 1.45
bzip-9 4.28 1.64
bzip-1 4.48 1.88
ppmC-896 4.71 2.09
ppmD3 4.86 2.31
ppmC-56 4.92 1.28
ppmD5 6.45 3.14
ppmD7 7.86 3.39
dmc-5M 11.09 3.40
dmc-16M 11.11 3.11
dmc-50M 11.48 3.21
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The PPM derived algorithms dominate the top of the compoessitio chart, but are very
slow to decompress. This is to be expected, since a genégadfrthumb is that the better

the compression: (a) the slower it will be; (b) the more memibwill require; or, (c) both

Witten et all 1999). Typically, there is a large penaltyxeeution time for algorithms that

use Arithmetic Coding, and the Prediction by Partial MateRN) based algorithms are

good examples of this.

There are, however, some programs, tHi,Beward et all 2001) and szip (Schindler

1996), that compress almost as compactly as the PPM algwitbut decompress much

faster. These are the algorithms representing block faljorithms, based on the

Burrows-Wheeler transfor ler 1¢ 9). The ability of

the Burrows-Wheeler transform to compress rapidly, andoatnas compactly as the

much more complex statistical modelling compressors hasetha lot of interest, e.g.,

. 1(1999), Effrbs 99), _Deorowic 00)jr 001),Seward et al.

001), Deorowicz! (2002), Fenwick efl al. (2003) Marzm;*),and is briefly discussed

in the following text.

2.3.6 Burrows-Wheeler Transform

The Burrows-Wheeler transform_(Burrows and Wheeler L_anM:'i 1990) is not ac-

tually a compression algorithm. In fact, it slightly incees the size of the data to be
compressed. However, in the process it sorts the data inea @ppock making them more
readily compressible. For the Burrows-Wheeler transfarivet of practical interest, it must

also be reversible. This is best illustrated with an example

Consider compressing the string “CASABA’ with the BurroW#ieeler transform. The

first step is to construct a square matrix where each row stensif the successive rotation

’Note also bzip, which a previous version of bzip2 that défenly in that it uses Arithmetic Coding
instead of Huffman Coding. The difference in compressidiorand decompression speed offered by the
two is a practical example of the trade-off between time amdmressive power represented by the Huffman
Codes (bzip2) and Arithmetic Codes (bzip).
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Table 2.13: Burrows-Wheeler Transform Step 1: Construct a square matrix consisting of
the successive rotation of the input text, “CASABA”.

>0
0> |> 0>
w0 >0
@ > O > n >
>0 > n>w
o> wn > w >

Table 2.14: Burrows-Wheeler Transform Step 2: Sort the rows of the matrix.

n oW > > >
> > > 0w
@ n| O > > >
> > mn O
O|mn > > >
> >0 Wn

of the input text, as depicted in Tabled.13 for the string SBBA". Next, sort the matrix
by row, which in our example gives the result shown in TdRIEA2. The output of the
Burrows-Wheeler transform is nothing more than the riglistcolumn of the matrix and
the row at which the original text occurs, which for this exaewould be (SBCAAA,5).
Observe that the transform has produced a more comprestiinlg, by causing the list to

be partially sorted.

The transform is reversed by reconstructing the matrix fiteeoutput. This transformation

can be reversed surprisingly efﬁcientl;LﬂMlLe.n_e al. 199ehe reconstruction begins by

creating a partial re-construction of the matrix using thalable information. Recall that
the first column of the matrix has been sorted alphabeticatigt thus while we know only
the last column of the matrix, we can compute the first colupnadsting the values in the
last column, which using the running example results in @&0I%. We now have a list of
all two letter pairs that exist in the plain text, i.e., (SAABCA, AB, AC, AS). Since we
know that the matrix is sorted alphabetically, we can sat list of pairs to obtain (AB,

AC, AS, BA, CA, SA), which must be the first and second columirthe matrix. Filling in
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Table 2.15: Burrows-Wheeler Transform Step 3: Reconstruct first and last columns.

wnoO|w > > >
> > >0 Wwn

Table 2.16: Burrows-Wheeler Transform Step 4: Reconstruct second column from first and
last columns by sorting all letter pairs. The sorted letter pairs correspond to the first two
columns of the matrix. This process then continues inductively by taking the letter triples
(SAB, BAC, CAS, ABA, ACA, ASA), and sorting them to obtain the first three columns
of the matrix. This process is repeated until the matrix is fully reconstructed. The index
number from the output is used to select the row with the original plain text.

wnoOlw > > >
> > > n 0O
> > >0 Wwn

the values of the second column, we obtain Tablel2.16. Nowama@peat the process by
taking the letter triples revealed by the previous step, (SAB, BAC, CAS, ABA, ACA,
ASA), and sorting them to reveal the contents of the firstughothird columns, i.e., (ABA,
ACA, ASA, BAC, CAS, SAB). This process is repeated until tlmmients of the original
matrix have been fully restored. The original text is obegiby selecting the row number

provided in the output of the transform.

It turns out that the Burrows-Wheeler transform operatea similar theoretical basis to
the Prediction by Partial Match (PPM) statistical modgjlooders. However the modelling
is completely implicit in the process of the Burrows-Whedtansform. This explains why

the Burrows-Wheeler transform is much faster than the exjpiodelling methods, such as

PPM (Effros 199|9) (because there is no modelling work rexglin the Burrows-Wheeler

transform), and also why it does not compress quite as weltgisse the modelling is

implicit, and cannot be tuned for optimal compression).
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2.3.7 Synchronisation

Synchronisation points are points in a compressed datanst(e addition to the start of
the compressed data stream) from which decompression caonfieenced. The value of

synchronisation points varies with the application, butihtext retrieval systems, random

access is desirable (Witten etlal. 1999). However, the lmespoession algorithms do not

exhibit this property.

Arithmetic Coding is not well suited for synchronisatiorimts, because Arithmetic Coding

does not introduce clear boundaries between encoded symbtreover, adding such
boundaries is often enough to cause Arithmetic Coding téoparworse than Huffman
Coding _B_Q_QKS_LE_D_E\_LIiL Witten eflal. 1999). This peabis compounded for those

algorithms that also employ adaptive statistical modelsteBompressor working in such

an environment, and attempting to engage mid-stream, kheksequired model context.
The various solutions to this problem generally act to wotke compression performance.

For this reason static or semi-static models are preferabé synchronisation is desired.

Huffman Codes also have a extra attraction when synchrmmspoints are desired, in
that they are often self-synchronising. That is, if a decgdi@s the stream at any given
point, in can rapidly return to the correct phase and decesspcorrectly after only a few
symbols. In fact, it turns out that it is extremely difficutt make a variable length code
that lacks this self synchronising property. However, bgessynchronisation is dependant

on the symbols in the message, it is difficult to tell exactlyew a code will synchronise

Gilbert and Moore 1959). This makes self-synchronisaposblematic in many situa-

tions.

Block sorting algorithms like the Burrows-Wheeler Trarrsﬂo.B.LLLLOMLs_a.n.dMLh.e_eller

1994) described previously, offer natural division poiatdhe end of each block. This

can be used to create periodic synchronisation points. dlityealmost any compression
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algorithm can be operated in such a way as to output disciet&s However, the general

rule remains that the smaller the block size, the worse thgcession.

The trade-off of block size and compression ratios is ofipaldr concern for nucleic acid
and protein sequence retrieval, because the median sexjlestyth is likely to be much
shorter than the block size required to reach the comprepéideau of most algorithms. It

is possible to trade-off random access speed against cesipneaatio by blocking multiple

records together (Witten etlal. 1999). However, care musaken to avoid the danger of

choosing block sizes that are large enough to offer decanpoession, but prohibit fast

random access performance.

2.3.8 DNA Compression

As previously described, DNA consists of the four letterhalpet A, C, G, and T.
This suggests that it should be possible to store a DNA segu@ising no more

than two bits per base. DNA sequences may also include wild-characters

JDlDlL.OmmJSS.LQD_QLLB.LOQhﬂm.LCﬁ.LN.Qm.QDﬂaL re 1983). Hmwethese additional sym-
bols typically occur with very low frequencieS_JA[LIJja.mﬁ.(hﬂo.b_J

that these extra symbols can be efficiently encoded and dd¢cdgpically increasing the

1997b) have shown

average compressed message size to only around 2.01 bitageer

By considering the higher level structure of DNA, such asgias, approximate repeats,
and relative codon frequencies, it should be possible toorgthe compression ratio of

individual DNA sequences. A number of algorithms have beemp@sed, such as those

bylKorodi and Tabus (2005), Behzadi and Le Fessant (2005)zMeand Rastera (2004),

1.8 bits per base on a small de facto corpus (TRRId 2.17).

(200 ’:L_ZJO ). Lietial. (2001), typically acingwwompression ratios of 1.6 —

These algorithms utilise similar entropy coding and ditéity based methods to the gen-

eral purpose compression algorithms discussed previolrsontrast to general purpose
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compression algorithms, one distinctive trait that mosDddmpression algorithms share

is the encoding of approximately repeated strings (ratrear bnly exactly repeated string),

as inL.Chen et all (2000, 2002a). Many DNA compression algmstappear to be tailored

to using the compression to determine phylogenetic relahips, rather than producing

effective and compact storage formats, e.g., Li et al. (2001

=2 7

A common problem among DNA compression algorithms is exeessin time for

very long sequences. This is addressed in some of the newerithms which

show promising scalability to compress whole chromoso ' 1S_2005,

Behzadi and | e Fess D05, Manzini and Rasterol 2004). Vvéowenere are no algo-

rithms that currently offer both effective compressiorg aapid random access to individ-
ual sequences within a collection, as would be necessasffiorent combination with an

indexed search system.

2.4 Constructing Compact Indices

Indices typically consist oinverted lists that is a list of pointers to each document con-
taining some word, term or analogous structure, in some files often useful to know
not only what documents a term appears in, but the positi@acih occurrence of the term
within the document. This means, for English text, that anfsoiis required in the index

for every word in the text.

Collections of these pointers in an index are referred foossings listsAssuming that the
text consists oh bytes or documents, each posting will require at ¢, (n) | bits. The

entire index will consumé [logz(n) |, wheref is the number of pointers required. Such a

document level index of an English text database will tylbydae 50 — 100% of the size of
the original textm%).
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Table 2.17: Compression Performance Of Various DNA Compression Algorithms In Bits Per Base.

IBehzadi and | e Fessant (2005), [Korodi and Tabus (2005), Manzini and Rasterd (2004).

Results summarised from

| Sequence | chmpxx| chntxx | hehcm| humdy | humgh| humhb| humhd| humhp| mpom| mtpa| vaccg| Mean|
Algorithm / Size 121k 155k | 229k 38k 66k 73k 58k 56k 186k | 100k | 191k | 116k
0zip (Gailly1993) 2.28 2.33 2.33 2.36 2.06 2.25 2.24 2.27 2.33 | 2.29| 2.25 | 2.27
bzip (Seward et al. 2001) 2.12 2.18 2.17 2.18 1.73 2.15 2.07 2.09 2.17 | 2.12| 2.09 | 2.10
Order-2 Arith. Coding| 1.84 1.93 1.96 1.92 1.94 1.92 1.94 1.93 197 | 1.87| 1.90 | 1.92
Order-3 Arith. Coding| 1.84 1.94 1.96 1.94 1.94 1.93 1.95 1.94 197 | 1.88| 1.91 | 1.93
gzip-4 (gzip of 4 1.86 1.95 1.98 1.95 1.74 1.90 1.91 1.92 1.97 | 1.88| 1.87 | 1.90
base/byte packed file
bzip-4 (bzip2 of 4 1.97 2.01 2.01 2.07 1.87 2.00 1.99 2.00 2.01 | 1.98| 1.95 | 1.99
base/byte packed file
dna2 1.67 1.62 1.85 1.93 1.37 1.87 1.90 1.91 193 | 1.87| 1.76 | 1.79
(Manzini and Rastero
2004)
BioCompress2 1.68 1.62 1.85 1.93 1.31 1.88 1.88 1.91 194 | 1.88| 1.76 | 1.78
(Grumbach and Tahi 1994
GenCompress 1.67 1.61 1.85 1.92 1.10 1.82 1.82 1.85 191 | 1.8 | 1.76 | 1.74
(Chen et al 2001, Liet al.
2001)
CTW+LZ 1.67 1.61 1.84 1.92 1.10 1.81 1.82 1.84 190 | 1.86| 1.76 | 1.74
(Matsumoto et dl. 2000)
DNACompress 1.67 1.61 1.85 1.91 1.03 1.79 1.80 1.82 1.89 | 1.86| 1.76 | 1.73
(Chen et dil 2002a)
GeNML 1.66 1.61 1.84 1.91 1.01 1.71 1.76 1.88 1.84 | 1.76 - 1.70
(Korodi and Tabik 2005)
DNAPack 1.66 1.61 1.83 1.91 1.04 1.78 1.74 1.79 1.89 | 1.85| 1.76 | 1.71
(Behzadiand Le Fesshnt
2005)
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2.4. CONSTRUCTING COMPACT INDICES CHAPTER 2. BACKGROUND

However, for nucleic acid and protein databases, the sia@ afiverted index is patholog-
ical, because each and every overlapginger in the database must be indexed in order
to obtain maximum sensitivity. Further, while the datalsas®olved are very large, the
alphabet size is very small, which makes the ratio of postitegdata size large. This
predicts an index size dh— k) [logx(n)] bits, wheren is the number of bases or amino

acids in the database, akds the index width (typicallyk < 20). As an example, con-

sider theHomo sapiengHuman) UniGene (Pontius etlal. 2003, Schuler 1997) budchfr

June 2002, consisting of= 2 x 10° nucleotides. Each nucleotide baseg, G or T, can
be encoded in two bits. However, each posting will requlmgz(ZX 109)} = 31 bits.
There are a total ofn — k) postings to be recorded, and thus the final index will require
(n—Kk) x 31~ nx 31= 6.2 x 10'%bits. The index will be fifteen times bigger than the data

it represents.

Fortunately, much work has been done in the area of indextmmi®n and com-
pression, with many practical implementations and implatet®on issues considered,

e.g.,McDonell|(1977), Buckley and LeWwit (1985) Lucarlalmai),_tlaml_and_candlela

1990), Fox et dl..(1992), Zobel etidl. (1993), Moffat and 011&9_4_19_46). The specific

problem of biological sequence database indexing has @&en buccessfully performed

by IWilliams and Zobell(2002a). Much of this work has focusedappropriate entropy

coding systems to facilitate the production of much more gachrepresentations of index

postings lists, and efficient methods of constructing anthtaming indices of very large

collections it 2006).

2.4.1 Compressing Index Postings

Besides the Huffman and Arithmetic Codes, there are othsesiple entropy coding
schemes that have utility in index compression. Two commtuatsons are when the

frequency distribution of the symbols is unknown, or whea lgxicon size is effectively
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unbounded. These are the norm when compressing index gedists corresponding to

words of English text.

There are a range of universal integer codes that can be getpto compress inverted

lists. Some, such as the unary, binary and Elias delta andngarndes. (Bentley and Yao

1976,/ Elias 1975) are fixed codings of all natural integergatTs, they cannot be adapted

to concur with an estimation of the expected distributione fixed models of these coding
schemes have both advantages and disadvantages. An apvesttaat additional postings
can be added to the end of the compressed list without diffidacause the model is fixed.
On the other hand, if the data differs significantly from thed model then compression

suffers.

Others, such as the Bernoulli {GoI(JrlelQLiﬁﬁauagﬂLan.dhﬁl 975), Observed Fre-

92), and Hyperbolic

D

guency, Skewed Bernoulll_(Witten etial. 1992, Booksteinl

1976) codes are parametric, in that they canrszltto the expected distri-
bution. Many of these can be matteal, by using the observed frequency and range
information associated with each inverted list, in ordesetect a parametrisation that pro-
duces a coding scheme that more closely matches the obshsteblution. In either case,
the use of a parametric coding entails difficulties when agldiew data as this act may

alter the parameter, thus requiring the entire list to beded.

In addition to the parametrically adaptive coding methdksye are two relatively recent
inverted list coding method#terpolative CodingandSelector Codinghat are automat-
ically adaptive, and do not require prior parametrisateach with differing strengths and

weaknesses.

|MQ.TJ‘.a.La.LLdﬁ.LLLM ri(1996) devised the Interpolative Codiagordered lists as a method

that recursively divides the interval where the valuesdesn order to minimise the num-

ber of bits required to precisely place each one. When appiiendex postings lists, it

normally achieves compressive performance that matchlessis the other coding meth-
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ods. The improved compression is mainly due to the adapavera of the coder. This
allows it to make effective use of non-uniform distributsoof indexed terms, known as
clusters The drawbacks of the Interpolative Coding method is themaational complex-

ity, being somewhat slower than Golomb Codi:g.LAnh.an.d.hJJﬂ@.*,lmlmJ*.ZODS)

and that appending to a list requires recoding the entite lis

Selector Coding, is described by Anh and Mofiat (2005). Uikeerpolative Coding, Se-

lector Coding is sensitive to clustering, but uses a redfitigimple system of fixed width
binary selector codes. This allows the method to decode rfastar than either Golomb
or Interpolative Coding, yet achieves compression faa@pmoaching that of Interpolative
Coding. Because selector blocks are self contained, itam$e appended to an existing
list without recoding the entire list. The discrete seledilmcks also make it possible to

seek to a desired point in the inverted list without havingeéocompress it all.

In the case where a database is likely to be updated on a rdgages, Selector Coding
is probably the preferred coding method. However, if theadase remains static, and
compression ratio is more important than decompressioedsleen Interpolative Coding

may be the method of choice.

A common theme irrespective of which coding methods is eygalas that relative rather
than absolute ordinal document numbers and word positionsezorded, i.e., the size
of the gap between successive instances. This convertstiagdist that describes the
instances of some term imdocuments from being evenly distributed oy@r.n| into an

extreme distribution, which better lends itself to compies due to its skewed probability.
For a fuller discussion of all these coding methods, and tyglication to index compres-

sion, refer ta Zobel and Mo aIL(,ZQOES).
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2.4.2 Efficient Index Construction

There are a number of possibilities when it comes to constigian inverted file from a

database t 2006). The methods differ depgnoh the relative size of

the collection versus the amount of available RAM and disdcep

If the collection is substantially smaller than the avdgaBRAM, then the index can be
constructed in RAM in a single pass, and then written to digkis process is calleth-

Memory Inversion

If the collection is larger than the available RAM, it is kflossible to perform an In-
Memory Inversion by making two passes of the collection.ibythe first pass a skeleton
of the index is constructed on disk, and then constructia@ttual index during the second
pass that successive portions of the collection are index&AM, and then written out
sequentially into the skeleton that was produced durinditsiestage. This has the obvious
shortcoming of requiring two passes over the data, whicimakesirable since the transfer
time of passing over the data is often the largest time castgindex construction. Also,

it requires that the lexicon or vocabulary of the collectimnheld in RAM.

An alternative method that avoids two passes over the dadgi®duce the list of postings
during the single pass. This list of postings will be ordebgddocument number. The
index is then produced by sorting the list of postings by teitms this method is called a
Sort-Based InversianWhile this process can be made efficient, it still requingicent

RAM to hold the entire vocabulary, and in addition requiresgh disk space to write the
list of postings. The end result is a process that takes tguhgl same amount of time as

a partitioned In-Memory Inversion.

One method of avoiding the need to keep the entire vocabud®AM is to build a num-

ber of sub-indices (using either an In-Memory or and thenga¢hem in avierge-Based

Inversion{IHeinz and Zobel 2003). If this is performed efficiently,equires only a slight

overhead in disk space and is currently the most efficienhatefZobel and Moffat 2006).
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2.4.3 Document Reordering And Filtering

The development of coding schemes, like Interpolative @gdand Selector Coding,
that can efficiently encode postings lists where the frequesf a given term varies
(forming clusters of occurrences, and inter-cluster spdmween them) has prompted
a number of authors to consider how such aberrations can teueged. This has

resulted in a series of studies exploring the possibilityre@drdering the documents

within a database such that more clusters are prod ino_2005,

Silvestri et al.| 2004b| Blandford and Blelloch 2004, Blamdfet al.| 2003, Shieh etlal.

J

003, Blandford and Blelloch 2

-]

02), yielding space saviofysp to 30%. Significantly,

recent advances such as the SPEX algorithm (Bernstein anér@i 2006) that can sort a

database in roughly linear time, making it possible to sogé genomic databases.

Bernstein and Zohel (2005) have explored excluding entregent-equivalent documents

from the index of a collection. This is similar to the way iniafnthe UniGene databases
are made non-redundant by removing all identical databes®ds. By excluding a per-
centage of documents from the index in this way, the indexlbmashrunk. However, in
biological sequence searches it can be important to retuidestical or nearly identi-
cal matches against a query, if only because each may cormésp a different organism,
and so the inclusion of the target organism, or more geryespkaking, the title of each

redundant document in the results is important.

2.4.4 A Compelling Opportunity: Cooperative Compression

One area that does not appear to have been explored in indegression, is making
use of the redundancy exposed by dictionary based compnesigjorithms applied to the
database, and enhanced by document reordering methodss,Ttbgost only one copy of
each recurring string. Algorithms such as SEQUITUR and XR¥ able to expose such

redundancy in a readily usable format, but this author isawedre of any index system
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that uses the exposed redundancy to reduce the index steadnsf only the compressed

document size.

This approach retains all documents, but should be able ke improvements

in inverted list compression over document reordering @lonThis is because while

Witten, Moffat, and Bell [(1999) are reluctant to condone tise of stop lists to reduce

index size, it is safe to exclude postings that can be reeoveuring decompression from

the structure of the compressed data itself.

Statistical compression algorithms are ill suited to thisk{ because the redundancies they
encode are not readily extractable from the compressedttatam. However, in dictionary

based methods the redundancy may be more easily extrac@bfgarticular interest are

LZ77 (Zivand Lempél 1977) and LZ78 (Ziv.and Lempel 1978) ameitderivatives. Such

algorithms achieve their compression by flagging oftentleypgecurrences (i.e., repeated
instances of the same string) between nearby regions of sageslf a list of such encoded
recurrences was available during index construction amdrdpression, then only one
instance of the recurrent string need be posted in the iradethe others could be computed

during decompression.

This approach has the potential to achieve much of the savimggsaas a stop list or merg-
ing of content equivalent documents, but without sacrifjdime ability to query on abun-
dant terms, or highly similar documents. In the context giusace alignment, this benefit
could be further leveraged by reusing alignment effort exieel on one posting, in the

context of the listed recurrences of the same string.
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Chapter 3

Materials And Methods

Introduction

This chapter describes the experimental framework usedi¢fmout this dissertation. The
description begins with the selection of nucleic acid aratgin databases, each suited to
the goals of cooperative compression. The selection obdats is followed by a discus-
sion regarding the selection of a set of test queries. Hasglefqed the data context in
which the algorithms of this dissertation must work, a setxasting algorithms is listed.
These algorithms provide a peer-group and point of compatisr the algorithms intro-
duced in this dissertation. In addition, the algorithm ofitBrand Waterman is selected as

a benchmark to which each of the peers is compared.

The remainder of the chapter addresses the comparisonsd gigorithms, defining (a)

the metrics each algorithm is measured against, and (b)téinelardised and automated
system used to run and collect the results of each query. fdeter closes by presenting
a summary of the relative performance of each algorithm. s€r®immary results are
presented in a standardised format that is reproducedandatpters, with results added

for algorithms introduced in this dissertation.
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3.1 Selection Of Databases

The thesis of this dissertation is that redundancy, whesgmrein biological sequence
databases, can be harnessed to improve the time and spaeetehstics of sequence
search and alignment. This is accomplished by merging ttrag and search effort of
multiple instances of identical sequence fragments. Toengdlective use of this redun-
dancy, the recurrences must occur near one other. Thateiglatabase must sorted
which in this context means that similar sequences are fointe clusters. Therefore, the
ideal database would be one that is already well sorted. Menvan unsorted database
could be used, but it would require sorting during the indgxyphase, thus incurring con-
siderable computational expense. Therefore pre-sortedeatundant databases are to be

preferred, although methods have subsequentially bedispad that allow the sorting of

a genomic database in approximatelyn{me (Bernstein and Cameron 2006).

3.1.1 Nucleic Acid

Two nucleic acid databases were selected for use in thisrthé®n. One was chosen as
being particularly suited to cooperative compression)eviiie other was chosen as being

more typical of genomic data.

The first nucleotide database that was selected is the J@20ld of the Human Uni-
Gene database. This database was selected because then&Jbi@Hds are large sorted
nucleic acid databases. Further, because the UniGeneadgataba transcriptome, it con-
tains substantial redundancy. In these regards, the Uei@atabases satisfy the criteria
for effective cooperative compression: They contain reidumcy, and are pre-sorted by se-
guence similarity. The FASTA formatted Human UniGene (ratidle) database contains
approximately 196 x 10° bases in 3 x 10° sequences, and 470 MB of FASTA sequence
descriptions. The total size of this FASTA formatted Hs.akglatabase is 2,365 MB.
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Table 3.1: Per Chromosome And Total Size Statistics Of The April 2003 Draft Of The

Human Genome.

\ Chromosomef Number of Base$ Percent Knowd Percent WiId-Carq

1 245,203,898 89.2 10.8
2 243,315,028 97.4 2.6
3 199,411,731 97.1 2.9
4 191,610,523 97.4 2.6
5 180,967,295 98.1 1.9
6 170,740,541 97.7 2.3
7 158,431,299 97.5 2.5
8 145,908,738 97.1 2.9
9 134,505,819 85.6 14.4
10 135,480,874 96.5 13.5
11 134,978,784 96.8 13.2
12 133,464,434 96.9 3.1
13 114,151,656 83.7 16.3
14 105,311,216 82.8 17.2
15 100,114,055 81.0 19.0
16 89,995,999 88.8 11.2
17 81,691,216 94.8 4.2
18 77,753,510 95.9 4.1
19 63,790,860 87.4 12.6
20 63,644,868 93.4 6.6
21 46,976,537 72.2 27.8
22 49,476,972 69.4 30.6
X 152,634,166 96.8 3.2
Y 50,961,097 44.7 55.3
| Total | 3,070,521,116 | 92.2 7.8 |

The second nucleotide database that was selected is thAa@ditR003 build of the Human

Genome. As a complete eukaryotic genome it can arguablyrisdered representative of

nucleic acid data. Moreover, this database has been uskd basis for evaluating exist-

ing DNA compression algorithms, e.g. GeNM

J_(.ISQ.LO.d.La.D.dﬂﬁQQﬂ- Together, these

characteristics make it an appropriate and rigorous ahgdd¢or the cooperative compres-

sion techniques described in this dissertation. Tablei&d the total number of bases, and

the proportion of wild-card bases in each chromosome, antthéogenome as a whole.
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3.1.2 Protein

The protein database that was selected is a release of tie@emanscript database. This
database was selected because of its substantial intechaldancy. As will be shown in

a later chapter, one quarter of its constituent sequeneetuglicated in their entirety. The
GenPept (protein) database is not sorted, and containsxipyately 5x 108 letters (i.e.,
amino acids) in 3 x 10° sequences, and 142 MB of FASTA sequence descriptions. The

total size of this FASTA formatted GenPept (protein) dasghia approximately 620 MB.

3.2 Query Selection

Selecting suitable test queries is problematic. Therevamanain options in this area: (a)
gueries with pre-judged results, often by human assessqits) queries with no pre-judged

results.

The first category of test queries, i.e., those with pre-aeigsults, are routinely used in the
information retrieval community, e.g., by the TREC commynihe assumption is made
that the human assessors are accurate and consistent. étpiueve is evidence to suggest

that this is not the case: Itis possible that 10 percent oerabnuman supplied judgements

are incorrect or inconsistently applied (Bernstein ande/@#605). Notwithstanding this

difficulty, such queries have been used in assessing segseacch and alignment algo-

rithms. For example in work by Williams (1999), the CAFE aditfom was assessed using

the existing classification of protein sequences into fe®iand super-families. The au-
thors of that paper note that using pre-judged queriesgifidim of protein super-families,
causes the assessment to be approximate. This is becaugerahima that detects relation-
ships between sequences will be penalised if the human gutee imposed an artificial

or erroneous division between them.
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The second category of test queries, i.e., those with nguolged results, allows a differ-
ent treatment of this sensitivity assessment problem. S@mey in judgement follows if
the human judge is replaced by a trusted deterministic éilgor Moreover, if the judge
algorithm is an optimal, or so calldsenchmarkversion of the class of algorithms being
compared, then accuracy can also be assumed. The algofitmitthh and Waterman can
be used as the benchmark for each of the heuristic algorifum&yed in Chaptdd 2, as
well as those introduced in this dissertation. Of similapartance, using a fast mechan-
ical judge makes it possible to use practically any dataragter than the few, and often

restrictive data sets that have been subjected to humasifdagon.

While using a deterministic and mechanical judge solvestwiay be called the objec-
tivity problem, and allows assessment to be performed ofagsified data, it introduces
a subtle problem of its own: Each algorithm searches foissizdlly significant align-

ments, not biologically significant alignments. This islagaus to Magnetic North versus
Grid North on a map: While the link between the two conceptnsng and sound, they
are not identical. One area of divergence between staistitd biological significance
is that of low complexity regions of sequences, i.e., higlgyetitive or compositionally
biased sequences. Alignments against such regions magtistisally significant, but not
necessarily biologically significant. Ideally, to providdair sensitivity comparison of all
algorithms against that of Smith and Waterman, any mechemnis the algorithms being

compared that exclude low complexity regions should bebiitsh so that all are search-

ing for statistical significance. This criterion excludée tuse of POZ scores (Booth el al.

004) on the basis that POZ-scores attempt to remove thénoiased by low complexity

regions.

On balance, it was decided to use a mechanical determifigtge rather than human
judged queries, i.e., to use the algorithm of Smith-Waterasma benchmark against which
all other algorithms will be measured. The standard testigsi@vere generated by ran-

domly selecting two hundred sequences from each datalssg the nucleotide sequences
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to search the nucleotide database, and the protein quergesatch the protein database.
Thus, in this dissertation, there are two hundred standaedes for each of the nucleotide
and protein databases. In all cases the queries were |éi¢ iddtabase so that at least one
perfect match would be present. The nucleotide queriesechfrpm 134 to 3224 bases

(mean 625 bases), and the protein queries ranged from 5 &adds (mean 350 acids).

It is acknowledged that the selection of these queries aadiffjyregate presentation of
results corresponding to them suffers from two deficiendigsMore queries could have
been used to obtain better confidence in the results presentkis dissertation, and; (2)
The range of query lengths does not correspond to the slevdr@ dozen) residue queries

often used in high-throughput sequencing.

3.3 Speed And Sensitivity Metrics

Metrics are required to interpret and compare the resuksiof algorithm. For comparing
execution speed, the following simple metrics will be usdte mean, median and total
elapsed processing time for the two hundred queries. Thedlaipsed processing time will
be normalised as a ratio of the run time of NCBI-BLAST, reflegtthe fact that NCBI-

BLAST remains the de facto standard sequence search amdnaig program. In all cases

searches are performed “warm”, i.e., with the relevantlaiegas fully resident in RAM.

Turning now to sensitivity metrics, Cheh (2004) has shovat ttespite the multitude of

sensitivity metrics that are currently used, they give airat results. In light of this, and
following the discussion of this issue in Section 2.7.1.¥adation of the PatternHunter

metric described there is employed in this dissertation.

The variation is to measum®veraganstead of alignment score. Coverage here refers to the
number of residues included in the alignment that corregpuath the true alignment, as

returned by the benchmark. Using coverage instead of seorésacomparison difficulties
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Figure 3.1: Calculation Of PatternHunter Variant Metric. (a) is the perfect, or “golden”,
alignment against which the other results, (b), (c) and (d) are measured. The numbers on
the right hand side are the scores for each of (b), (c) and (d).

among algorithms that report scores differently, e.g.aasdynamic programming scores
versus bits, nats of information, or scores that take intmant other alignments. Measur-
ing coverage also makes it easier to resolve situationsenieitiple alignments occur, or

where alignments do not lie entirely within the alignmerdguwrced by the benchmark.

The calculation of this metric is demonstrated in Figurd 3Alignment (b) scores 70
because the two fragmentary alignments together cover f¥eaeference alignment.
Alignment (c) scores only 50, because although the aligninisegreater than 50% of the
length of the reference alignment, it covers only 50% of tekenence alignment. It is
apparent how measuring coverage avoids the difficulty oférd@hing how much of the
score should be counted. Result (d) shows a further contiglicavhere not only does
part of an alignment have to be discounted, but the oventgpparts of the alignment must
be counted only once. Again, determining the total scorelavbe difficult if the final
score was calculated based on the scores of the alignmeowgeudr, it remains trivial to

determine the total coverage against the reference alighme
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3.4 Peer Group Of Sequence Search And Alignment Al-

gorithms

A number of the algorithms surveyed in Chapiker 2 were benadtkedao provide a peer
group against which the algorithms introduced in this diss®n were compared. For
each algorithm, the benchmarking was performed using #relard queries and databases
introduced in the preceding text. Thus two hundred protachtavo hundred nucleic acid
queries were performed for each algorithm. Appeifidix A lissscommands and parame-
ters used to invoke of each of these algorithms where a densisble format is used to
describe the set-up and search commands for each invocdtamnalgorithm. This same
format also used to describe the set-up and search commaeddar the algorithms in-
troduced in this dissertation. Finally, as far as was peattithe results of each algorithm
were obtained in equivalent conditions, with any deviaditeing noted in the following

discussion.

3.4.1 Smith-Waterman (SSEARCH 3.4t25)

Two implementations of the Smith-Waterman algorithm wemnsidered: SegAln

Hardy and Waterm 97) and SSEARCH that comes with theTMB_e_a.Ls_QIr 1990)

software distribution available HTTP: //www.ciri.upc.es/cela_pblade/FASTA.htm.
SegAln was initially used to produce the Smith-Watermaenezice results in this disser-
tation. However, it later became apparent that SegAln doéslvays return the optimal
(maximally scoring) alignment. Figufe_B.2 shows an exanoplihis problem. Therefore
SSEARCH was used instead, and all reference results thatreawusly been produced

using SeqgAln were reproduced using SSEARCH.

In terms of execution characteristics, the SSEARCH progieads FASTA files directly,

no index or other ancillary structures were involved. Thacpssing and access time of the
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Score: 1753 at (gnl|UG|Hs#S4031081 AGENCOURT_6431325 Homo sapiens cDNA,
5’ end /clone=IMAGE:5503216 /clone_end=5’ /gb=BM4
67009 /gi=18516051 /ug=Hs.284170 /len=1148) [203..1041]
(gnl|UG|Hs#S3317510 602385242F1 Homo sapiens cDNA,
5’ end /clone
=IMAGE:4514242 /clone_end=5’ /gb=BG290161 /gi=13046677
/ug=Hs.284170 /1len=787) [1..785]
203 CTTTTAGCTCACTCCACAAGTAAATGGATTTAATCAAAGGTCACCTATCTGCTTTTGATT 262
FEETEEEETEEEr e e et e e e e e e e e e e e e e e e e e e e e e 1l
1 CTTTTAGCTCACTCCACAAGTAAATGGATTTAATCAAAGGTCACCTATCTGCTTTATA-T 59

916 TGGCCCCTATTTAATTTCCTGAATTTCCAAATAAAATTTTCTCATAACCGGGGCCTCCAA 975

N N R A N RN N N AN N R RN R N 11
682 TAG-CCATATT--ATTT--TGACTT--CAAATAAA--TTTCT-ATA--CTGGGTAAACAA 729
976 TAACTACCCTTCATCTCTAACACTTGCCCTTATTCAACGTGGGGCCGGCCAGCTCCTAAA 1035

o I el N I 11
730 GAAAAA------ AAAAAAAAAAAATG----GAGAAATGGAGGAAAAAAAAAAAAAGAAAA 779

1036 AAATCA 1041
LT

780 AAAGCA 785

Figure 3.2: Example Of Incorrect Result From SegAln. The scoring system is +1 for a
match, -3 for a substitution, -5 to open a gap, and -2 to extend a gap. SegAln over extends
the alignment, as can be deduced from the inclusion of the last three bases: TCA vs GCA
scores -3 +1 +1 = -1. Thus, the alignment would score higher if it were truncated, and
therefore the alignment as shown cannot be the optimal (highest scoring) one.
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database were both insignificant compared with the longkdanes that characterise the

Smith-Waterman algorithm.

Finally, the nucleic acid scoring parameters used werehratd substitution scores of +1
and -3, respectively, and gap open and extension penafti®sand -2, respectively. The
protein scoring parameters used were the BLOSUMG62 substitmatrix, and gap open
and extension penalties of -11 and -1 respectively. All o#hgorithms were run using the

same scoring system.

3.4.2 BLAST (NCBI-BLAST 2.2.6)

Search results were obtained for the two hundred standagdeguusing pre-compiled
Linux binaries for NCBI-BLAST 2.2.6. These results wereabed on a Sun V20z dual
processor AMD Opteron server (1.8 GHz, 1 MB L2 cache, 8 GB RAN)ning Red
Hat Enterprise Linux AS 3.0UP2 Linux (64bit 2.4.x kerneldaB2bit version of NCBI-
BLAST), counting only the user process time. BLAST was rumsiimgle threaded mode
for ease of comparison of run time, since several of the afgorithms did not support
multi-threaded operation. The database was formatted tisgf ormatdb program. Com-
puters with between 2 GB and 8 GB of main memory were usedrieigghat the databases

fit entirely into RAM, and I/O delays were avoided.

The queries were run using three different sets of paraséeBLAST (Table§ A B[ AW

and[A%). These correspond to, respectively: (a) The defeubmeters of BLAST; (b)
The default parameters of BLAST, but with query filteringatited, and; (c) The default
parameters of BLAST, but reporting as many alignments asiples instead of enforcing

the default limits on the both number and statistical sigarice of reported alignments.
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3.4.3 BLAT

Release 32 of BLAT was run on the same platform as BLAST. It eaampiled using the
default optimisation level selected by the installationpgs (“-07). BLAT results were
produced for both the nucleotide and protein standard gsleGomparison of search time
between BLAT and other algorithms was complicated by BLASe of a central server
to host the nucleotide index. This index server takes seweirsutes before it is ready
to respond to queries, but then requires only a few secong@soiess the two hundred
standard queries. The CPU time required by the server toanse queries was added
to the CPU time consumed by the search tool. But to providér @danparison, only the

CPU time consumed by the server after receiving the firstyqwes counted.

BLAT protein searches do not use the in-memory index, souhdime reported for the
standard protein queries were not manipulated. Howevdgte ®verhead is introduced
because the entire protein database is read for each quesyoverhead was not deduced,
as itis a real and unavoidable cost incurred in the searatepsy unlike the index prepara-

tion time for nucleic acid queries that can be paid beforeg@ssing a query.

3.4.4 Academic Version Of PatternHunter

PatternHunter is designed for nucleotide searching onlpretein query results were not
obtained. The freely distributed version of PatternHuntdrle written in Java, presents
as a Windows .EXE file. Therefore the PatternHunter resudt®wroduced on a different
hardware/software platform. PatternHunter was run on arDAMhlon 2100+ 1.7 GHz

processor with 1 GB of RAM, 512 KB L2 cache running Microsoftndows XP SP2.

The standard queries were generated with BLAST on thisgilatfas a reference point,
establishing that the search speed of this processor wamhitee percent of the 1.8 GHz
Opteron processors used for all the other tests. As thisghaacy was small, no correcting

factor was applied to the speed of the PatternHunter runs.
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Of greater concern for the comparison of PatternHuntertsess that PatternHunter in-
dexes while it searches. This meant that the run times wendrlds of times greater
than those of BLAST or BLAT. Since PatternHunter is desigtewedlign genome against
genome, not sequence against database, it could be argiexdtimting the indexing time
constitutes an unfair test. To exclude the constant indgeitime, the fastest search time
of any standard query against the database was subtractedtie search time of all the

standard queries performed by PatternHunter.

3.45 FASTA

Version 3.4t25 of the FASTA source code was downloaded fHIITP://www.ciri.
upc.es/cela_pblade/FASTA.htm. That version was not tailored to run on the
Linux/Opteron combination used as the standard test phatfoParameters specific to
Motorola PowerPC processorancpu=970 and-tune=970) were removed from the file
src/Makefile.blade.gcc64scl. The source code then successfully compiled using the

command. /compile.sh gcc 64 scalar.

The standard queries were performed using FASTA formatiabdises, as per TableA.7.
Two different configurations were used for the protein gegriThe configuration labelled

(a) in TabldAY, is more thorough than the faster altereatnfiguration labelled (b).

3.4.6 CAFE

CAFE (Williams[1999, Williams and Zobel 2002a) version 0Mids downloaded from
HTTP://www.bsg.rmit.edu.au/cafe/. This code was compiled after using the follow-

ing command:

./configure CFLAGS=-02 --prefix=/home/paul/opt/cafe
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The program was built on the same Linux/Opteron test platfas used for the other algo-
rithms. CAFEs alignment display routine was enhanced tortegdignments in a format
more like that of BLAST, BLAT and DASH to enable the use of agbénprogram to parse
the results of all four algorithms. The search parameter€AFE are tabulated in Table

A8

3.4.7 Algorithms Introduced In This Dissertation

The algorithms introduced in this dissertation were testethe same platform as for the
other algorithms, i.e., Sun V20z systems with two 1.8 GHz Al@Ppteron processors,
sufficient RAM to hold the database index in memory, and migriked Hat Enterprise
Linux AS 3.0UP2. The database formatting, index constomctand search configuration

data for each scenario is described in the appropriate placehapterEl5 arld 7.

3.5 Batching Environment

A batching environment was created to automate the exeguésult gathering, and statis-
tical analysis of the standard queries for each algoritlmatothse combination. This section

describes the directory layout and programs that compa@skdatching environment.

3.5.1 Overview

The batching environment provides the directory strustupgograms and semantics to
perform the automated execution, comparison and caloulaif statistics for groups of
searches (batches) obtained from a variety of search #Higmi In this dissertation it
is used to compare the relative performance of various seguesearch and alignment

algorithms.
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3.5.2 Directory Structure
3.5.2.1 Top Level Directories

A given instantiation of the batch environment consistseffollowing directory trees:

bin/

R/
cases/
output/

data/

This is referred to as base directory Figure[3B presents an example of the directory
structure, which is explained in more detail in the follog/ilext. Thebin andR directories
contain programs and scripts used to automate the batckgwodhe standard query se-
guences are stored in theses directory in separate FASTA format files. The summarised
output files from searches are collated beneaththeut directory, and executive and sta-

tistical summaries of those results are computed and platedhedata directory, ready

for analysis using the R statistical computing package (Reldgmment Core Teaim 2006).

Sub-directories exist within theutput directory for each search program that is being
assessed. For example, tbetput directory may contain sub-directories call@dsh,
blast andSeqAln. Below those sub-directories, a second level exists foh datch of
results for a given search program, and are referred e definition directoriesFor
some programs there may be only batch, while for others tinesebe many. Each batch

definition directory will contain at least the following fde

description
pre

post
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bin/
makemake comparejobs comparebatches pairwise2summary
seqaln2pairwise mktrace
R/
generatesummaries.R
cases/
query_1 query_2 query_3
output/
blast/
normal/
description template pre post
dash/
r7_normal/
description template pre post
r7_careful/
description template pre post
data/

Figure 3.3: Example Complete Batching Environment Directory Structure.

template

results/

The description file contains a human readable description of the mode ofabiper
employed, any special conditions, and any other commermigoppate to the set of re-
sults it contains. Figure—3.4 shows a description file for ohthe algorithms used in this

dissertation.

Thepre andpost files are executable scripts that are executed before aedpstform-
ing a set of searches. They provide a convenient mechanissefting and cleaning up
any special environment before and after searching, euddifig and removing database

indices.

Thetemplate file contains a single line containing command text and sfelables that
will be substituted by the batching environment, to prodilneefinal command required to
perform a single specific search. Figlird 3.5 illustratesamgle template line for running

a search with one of the algorithms used in this dissertation
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dash -s mode4 , revi2 July 2006,
2x (but uses only 1) AMD Opteron 244 (1.8GHz) CPU,
8GB RAM, 1MB L2 cache.
using Hs.seq.all.r.{np3,nix}, seq limit=20k,
residue limit=10M.
np3 -n -r -9 Hs.seq.all.r
nix -v -r Hs.seq.all.r.np3

Figure 3.4: Example Batching Environment Description File. This file contains a human
readable description of the conditions of the batch.

/home/paul/bin/dash -s mode2 -b 1000 -p dashn \
-d $DASH_DB_FILE -i $QUERY -o $0OUTFILE

Figure 3.5: Example Batching Environment Template File (In the real file, this must appear
as a single line). The environment variables QUERY and OUTFILE are initialised by the
batching environment. DASH_DB_FILE is a variable inherited from the user’s environment.

Theresults directory contains a sub-directory for every search cas®mpeed, each of
which will contain the run time information for that searels,well as a summarised version
of the search results. This is stored in a summarised forondafer processing by search

comparison tools.

In addition to the mandatory files described above, an amitifile,profile_template,

is also supported. This file is treated identically as tleeplate file, except that the
batching environment will run thgprof command when the search completes to gather
profiling statistics over the batch of searches. Brafile_template file is used, the
template file must still exist, as the command it contains is still usedbtain the run
time of each query, since an executable that supports mgfiéi typically much slower

than the equivalent optimised executable.

3.5.3 Generation Of Standard Queries

The individual search strings (that tpjeriesor casedor short) are selected by running the

pickquery program. This program randomly selects a single sequeanedrFASTA for-
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#!/bin/csh -f

set n=0

while ( $n < 200 )
bin/pickquery Hs.seq.all >cases/query_$n
@n =9%n + 1

end

Figure 3.6: Use Of pickquery Program To Obtain Standard Nucleic Acid Queries.

runbatch -b /home/paul/thesis_data/search_comparison_p \
-d genpept.fsa -j output/dash/r11l_moded \
-w /home/paul/tmp -1 0 -h 199

Figure 3.7: Sample Use Of runbatch Program.

matted database, including the associated FASTA desamiftie. It is used in conjunction

with a simple shell script, such as in Figlirel 3.6, to providetof query sequences.

The above procedure was used on the Human UniGene (nudgatid GenPept (protein)
databases to provide the two hundred standard query sezgi&oon each. The queries
were placed iksearch_comparison_n/cases andsearch_comparison_p/cases direc-

tories, respectively.

3.5.4 Execution Of Batches

3.5.4.1 Executing A Batch

Batches of searches are executed by usingth&atch program. This program takes as
arguments the necessary directory names to preciselyifidéme batch to perform. For
example, Figuré3l7 presents an invocation that was usedrform a batch of protein
searches using the DASH algorithm with the two hundred stahqueries. Theb option
tells runbatch the base directory for the batch. That directory is assurnembntain the
bin, R, cases, output anddata directories, as previously described. THEe and-h

options specify the inclusive range of the standard quéniég executed.
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> gnl|UG|Hs#S544556
(1-385) = (1-385), score = 383.000000

> gnl|UG|Hs#S3898566
(183-385) = (292-488), score = 179.000000
(11-185) = (15-188), score = 149.000000
(11-185) = (15-188), score = 148.000000

Figure 3.8: Example Of The Terse Alignment Format. Considerable space is saved by
excluding the alignment of the two sequences.

runbatch -p seqaln2pairwise -b batch_dir -d Hs.seq.all \
-j seqaln/normal -w /tmp -1 0 -h 199

Figure 3.9: Example Invocation Of runbatch With Custom Output Filter. The custom filter
iS seqaln2pairwise.

3.5.4.2 Summarisation Of Search Results

Therunbatch program also fills the role of summarising the results of esedrch in the
batch. This is accomplished by converting the output froerthtive format of each search
program to a terse and simple format, similar to that of Fe8B. This format contains
only the score, location and extent information of eachrattignt. This saves considerable

space when storing the results of many batches.

By default, the output of each search program is expectee io the pairwise alignment
format used by BLAST, BLAT, and DASH. It is possible to use ateenal filter when run-
ning other search programs that use differing output fospsatch as the SeqgAln program.

This is performed by using theo command line option teunbatch, e.g., as in Figurg-3.9.

3.5.5 Comparison Of Batched Search Results

Comparison of individual search results is performed byciweare job program. Simi-
larly, the comparebatches script compares the results of entire batches of searclath. B
of these programs are called automatically if a sequencemhtands similar to that of

Figure[3.ID is employed.
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cd (batch environment directory) #1

bin/runbatch -j blast/ncbi2.2.6 ... # 2a
bin/runbatch -j dash/ri1l_mode2 ... # 2b
bin/runbatch -j dash/ri1l_mode4 ... # 2c
bin/makemake ‘pwd‘ # 3

cd data # 4a
make # 4b
cd .. # 4c

Figure 3.10: Example Command Sequence To Execute And Summarise The Results Of
Several Batches.

The first command of FiguleZ3110 enters the batching dirgcfbhnis is followed by com-
mands 2a-c that execute the batches (the command line anggiassociated with these
commands are abbreviated for clarity). Once the batchesoanplete, theakemake com-
mand is used to create a make file in thea directory. makemake explores theutput
directory, identifying each valid batch. The commands nmeglto compare each batch

against every other batch are written idttta/Makefile.

Finally, commands 4a-c enter tdeta directory and use thBakefile to create the full
set of summary and statistical data. Tdwparejobs andcomparebatches commands

are invoked to perform the comparison of every pair of bagche

Following this process, and assuming the example direstivugture of FigurE3l3, results
in the files listed in Figurds 3111 ahd 3 12. The summarisadteof each query is placed in
a file calledhits in the appropriate directory, and the run time is placed @ttimes1 file

in the same directory. The data directory is populated viidVMtkefile and comparison

data, both per batch, and summarised for all batches.

The files consisting of the names of a pair of algorithms, ,e.g.
blast.ncbi2.2.6.dash.r1l_mode2.csv, contain the query by query comparison
data that are used to produce the summary 1ijg¢0s . csv, time.csv andratio.csv.
The files that are prefixed byh.”, e.g.,ph.blast.ncbi2.2.6.dash.r11_mode2.csv,

contain the PatternHunter variant scores for the pair aftizst contained in the file name.
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CHAPTER 3. MATERIALS AND METHODS

bin/

R/
generatesummaries.R
cases/
query_1l query_2
output/
blast/
ncbi2.2.6/
results/
1/
hits timesl
2/
hits timesl
dash/
ril_mode2/
results/
1/
hits timesl
2/
hits timesl
r11_moded/
results/
1/
hits timesl
2/

hits timesl

makemake comparejobs comparebatches pairwise2summary
seqaln2pairwise mktrace

description template pre post

description template pre post

description template pre post

Figure 3.11: Example Batching Environment Directory Structure After Running Batch: Ex-

cludes data Directory.
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data/

Makefile
1ph50s.csv
ratio.csv
time.csv

blast.ncbi2.2.6.blast.ncbi2.2.6.csv
blast.ncbi2.2.6.dash.rl1l1_mode2.csv

blast.ncbi2.2.6.dash.rl11_mode4.csv

dash.
dash.
dash.
dash.
dash.
dash.
ph.blast.ncbi2
ph.blast.ncbi2
ph.blast.ncbi?2
ph.dash.
ph.dash.
ph.dash.
ph.dash.
ph.dash.
ph.dash.

r1l1_mode?2
r1l1_mode?2
r1l1_mode?2
r1l1_mode4
r1l1_mode4
r1l1_mode4

r1l_mode2.blast.2.2.6.csv
r1l1_mode2.dash.r11_mode2.csv
rl1l_mode2.dash.r11_mode4.csv
rl1l_mode4.blast.2.2.6.csv
rl1l_mode4.dash.r11_mode2.csv
r1l1_mode4.dash.r11_mode4.csv

.blast.2.2.6.csv
.dash.r11_mode2.csv
.dash.r11_mode4.csv
.blast.2.2.6.csv
.dash.r11_mode2.csv
.dash.r11_mode4.csv
.2.6.blast.ncbi2.2.6.csv
.2.6.dash.r11_mode2.csv
.2.6.dash.r11_mode4.csv

Figure 3.12: Example Batching Environment Directory Structure After Running Batch:
data Directory Only.
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Table 3.2: List of Statistical Summary Files Produced By Batch Environment.

| File | Contents |

1ph50s.csv PatternHunter Metric Variant; 50% coverage threshold: A
sensitivity measure.

ratio.csv The mean ratio of query execution time (ratio calculatedoquery,
then averaged): A speed measure.
time.csv The mean ratio of batch execution time (ratio of sum of ruresijn

A speed measure.

Scores are included per query, and for acceptance threskbld% through 100% of
alignment coverage. These data are used to plot the PatteteHVariant Metric Score

versus Coverage Threshold graphs.

The command sequence also generates summary statisticaimnaseparated value (CSV)
format, suitable for the R statistical Ianguggéable[ﬂ lists the statistical summary files

produced by the commands, and describes the contents of each

Where large numbers of batches are being performed, witintéetion of comparing mul-
tiple algorithms against some benchmark, the exhaustirgaason becomes inefficient.
This is because of the inherentr@) time complexity: Comparingn batches against
batches requires? operations. To address this, marker files are added to jeltdiies.
Themakemake command can then be told to compare those batches that hpeeifiex
marker file against only a single batch, or set of batcheshidnge another specified marker
file. For example, to compare the two DASH batches againsBtl&ST batch, but not
the other way around, create distinct marker files in eacthbditrectory, and then invoke

makemake appropriately, as in Figuie_3113 on the next page.

This sequence of commands in Figlire B.13 on the following pagnpares all batches that
contain a file namedeft in their batch definition directory, against those that aonta
file namedright in their batch definition directory. This allows selectivangparison, and

avoids the quadratic time complexity described earlier.

1For whatever reason, R requires the “Comma Separated Faionage semi-colons as field delimiters,
rather than commas.
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# touch blast/ncbi2.2.6/right # 3a
# touch dash/r11_mode2 left # 3b
# touch dash/r11_moded left # 3c
# makemake ‘pwd‘ left right # 3d
# cd data # 4a
# make # 4b
# cd .. # 4c

Figure 3.13: Example Command Sequence To Selectively Compare Several Batches.

3.6 Results For Benchmark Algorithms

The following tables and figures present a summary of theopmdnce of each of the
algorithms listed earlier in this chapter. In addition te 8peed and sensitivity results, the
size of the database and index structures, if any, are athadied. These tables and graphs
are reproduced in later chapters, with the addition of tiselts of algorithms introduced

in this dissertation.

3.6.1 Database And Index Sizes

Tabled3B[314 ard 3.5 list the total database and indexXaizach algorithm. The totals
are broken down to show the space required for the sequedaesheequence descriptions
and index structures. All figures are listed in absolute sefmegabytes) and normalised

terms (bits per base or bits per acid, as appropriate).

3.6.2 Search Speed

Tabled 3B 317 arld 3.8 summarise the search speed of eactihalg Mean, median and

total values are given, and the totals are compared agawst of NCBI-BLAST 2.2.6.
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3.6.3 Search Sensitivity

Tabled3P[3]7 and 3111 presents the sensitivity of eadritign measured using the Pat-
ternHunter variant. The maximum score possible is 100, Wi¢hSmith-Waterman algo-

rithm acting as the benchmark. FigufesB.15[and|3.16 shosetme data graphically.
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PatternHunter Variant Scores for Various Algorithms

100

80

60

Score (versus Smith—Waterman)

o
&
—— BLAST 2.2.6 —— BLAT
-- - BLAST (no filter) —— PatternHunter
""" BLAST (report everything) CAFE
——  FASTA
o —
[ I I I I [
0 20 40 60 80 100

Scoring Threshold (Percent of Alignment)
Figure 3.14: PatternHunter Variant Scores (See Section Of Algorithms For Nu-

cleic Acid Queries (Against The Human UniGene (Nucleic Acid) Database). The Smith-
Waterman algorithm is used as the benchmark.

98



3.6. BENCHMARK RESULTS CHAPTER 3. MATERIALS AND METHODS

PatternHunter Variant Scores for Various Algorithms
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Figure 3.15: PatternHunter Variant Scores (See Section B.3) Of Algorithms For Nucleic

Acid Queries (Against The Human Genome database). The Smith-Waterman algorithm is
used as the benchmark.
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PatternHunter Variant Scores for Various Algorithms
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Figure 3.16: PatternHunter Variant Scores (See Section B.3) Of Algorithms For Protein

Queries (Against The GenPept (Protein) Database). The Smith-Waterman algorithm is
used as the benchmark.
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Table 3.3: Human UniGene (Nucleic Acid) Database And Index Sizes For Surveyed Algo-
rithms In megabytes (MB) And Bits Per Base (B/B)

Format Bodies Only| Descriptions Index Total
MB ‘B/B MB‘ B/B MB ‘ B/B MB ‘ B/B
ith- *%
(SFrX'g‘TX\IztSegn)an 1,886| 8.06| 470 | 2.04 | - | 2.356] 10.10
(I?I(;fr\r?;tdb) 489 | 2.09| 660| 283 | 40 | 0.17 | 1,189 5.09
*
(Blzla_'lp'\(-)rTwoBit) 630 | 2.70| - - 1,088| 4.66 | 1,718| 7.36
*%
(PFaAttSe;nAHA“géeﬁ) 1,886| 8.06| 470| 2.04 | - | - |2356|10.10
*%
I(:l'—'A\A\\SSTTAAscn) 1,886| 8.06| 470 | 2.04 - - 2.356| 10.10
CAFE***
(CAFE Index) 496 | 2.12| 102| 0.44 | 6,961 | 29.79| 7,634 | 32.67

* Indicates that program maintains an index in RAM, and thatdatabase format contains both
sequence bodies and descriptions (BLAT).

** Indicates that algorithm indexes during searching (@atiHunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteddne large index, due to technical
difficulties (CAFE).
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Table 3.4: Human Genome Nucleic Acid Database And Index Sizes For Surveyed Algo-
rithms In Megabytes (MB) And Bits Per Base (B/B)

Format Bodies Only| Descriptions Index Total
MB |B/B|MB| BB | MB | BB | MB | BB
ith- *%
(SFrR';hTXVztSeéTf” 3,004| 8.21| 289| 079 | - ~ | 3203 9.00
{Bf;rAr:;db) 736 | 2.01|433| 1.18 | 32 | 0.09 | 1,201 | 3.28
*
2;¢gTwoBit) 950 | 2.60| - - 1,867| 5.10 | 2,817 | 7.70
*k
FFa,itSe;nAHAugg) 3,004/ 821|289| 079 | - | - | 3293 9.00
**
(FFAASSTTAA ASCIN 3,004| 8.21| 289| 0.79 | - - | 3293 9.00
CAFE***
(CAFE Index) 987 | 2.70| 9 | 0.02 | 9,950| 27.18| 10,945| 29.90

* Indicates that program maintains an index in RAM, and thatdatabase format contains both
sequence bodies and descriptions (BLAT).

** Indicates that algorithm indexes during searching (@atiHunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used instezdne large index, due to technical

difficulties (CAFE).

Table 3.5: Protein Database And Index Sizes For Surveyed Algorithms In Megabytes (MB)
And Bits Per Acid (B/A) (Against The GenPept (Protein) Database).

Format Bodies Only| Descriptions Index Total
MB| B/A |[MB| B/A | MB | BIA | MB | B/A

Smith-Waterman*

(FASTA ASCII) 479 | 8.15 | 142 | 2.42 - - 621 | 10.57
BLAST 473 8.05 | 194 | 3.31 | 231 | 3.94 | 899 | 15.31
(formatdb)

BLAT*

(FASTA ASCII) 479 | 8.15 | 142 | 2.42 - - 621 | 10.57
FASTA*

(FASTA ASCII) 479 | 8.15 | 142 | 2.42 - - 621 | 10.57
CAFE™ 480 | 8.17 | 22 | 0.37 | 1,621 27.59| 2,236| 38.06
(CAFE Index) ' ' ' ' ' '

* Indicates that algorithm indexes during searching (FART@# does not use an index (Smith-
Waterman).

** |Indicates that multiple small indices were used instedae large index, due to technical
difficulties (CAFE).
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Table 3.6: Comparison Of Search Speed For Various Algorithms Against The Human Uni-
Gene (Nucleic Acid) Database.

Format Search Time (seconds) Search Time
mean | median| total (xBLAST)

Smith-Waterman |, < 5001 14 070| 3,251,827 1660.56

NCBI-BLAST 2.2.6 9.79 | 9.40 | 1,958.27 1.00

(Default)

NCBI-BLAST2.2.6 | 51 37| 1016 | 4.274.56 218

(No Filter)

NCBI-BLAST 2.2.6

(Report Everything) 49.93 | 11.33 | 9,985.01 5.10
*

BLAT 210 | 2.07 471 0.21

* %k

PatternHunter 78.37 | 78.61 | 15,673.57 8.00

FASTA 530.05| 534.69| 106,010.29 54.13
*k*k

CAFE 32.75 | 30.76 | 6,693.46 3.42

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 3.7: Comparison Of Search Speed For Various Algorithms Against The Human
Genome Database.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)

Smith-Waterman | o 14 0| 21.620.00| 5,008.305.00  2165.13
NCBI-BLAST2.2.6 | )57 10.95 2.313.17 1.00
(Default)
NCBI-BLAST22.6 | ,, 5 11.30 4.430.75 1.92
(No Filter)
NCBI-BLAST 2.2.6 | 35 50 | 1214 | 46.434.82 20.07
(Report Everything)

*
BLAT 3.91 3.87 1082.22 0.47

* %

PatternHunter 164.80 | 15.30 | 32,957.64 14.25
FASTA 611 599.9 122,195 52.83

*%%k
CAFE 30.52 25.27 6,104.9 2.64

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ:
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Table 3.8: Comparison Of Protein Search Speed For Various Algorithms (Against The
GenPept (Protein) Database).

Format Search Time (seconds) Search Time
mean | median| total (xBLAST)
Smith-Waterman |, -/ 4| 1397.00| 334,794.20 66.32
NCBI-BLAST 2.2.6 25.24 | 22.01 | 5,047.81 1.00
(Default)
NCBI-BLAST2.2.6 | 3533 | 2648 | 7.066.00 1.40
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 71.00 | 24.55 | 14,200.32 2.81
*
BLAT 85.45 | 80.40 | 17,004.37 3.39
(FaA)STA 296.00 | 273.36 | 59,199.23 11.73
(FbA)STA 83.36 | 84.38 | 16,672.14 3.30
k%%
CAFE 11.88 | 10.25 | 2,375.71 0.47

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 3.9: Nucleotide Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The Human UniGene (Nu-
cleic Acid) Database).

Format PatternHunter Variant Score

at 50%| at 75%| at 90%| at 95%| at 100%
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73 | 86.86
BLAST
(Report Everything) | 9278 | 92:36 | 8041 | 85.62 | 76.96
FASTA 66.41 | 6559 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.69 | 26.68 | 2596 | 242 | 17.32
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Table 3.10: Nucleotide Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The Human Genome
Database).

Format PatternHunter Variant Score

at 50%| at 75%| at 90%| at 95%| at 100%
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 37.14 | 37.03 | 3658 | 36.4 | 35.99
(Default)
BLAST
(No Fier) 58.9 | 58.81 | 58.73 | 58.67 | 58.54
BLAST
(Report Everything) | 60-33 | 68:82 | 68.44 | 68.28 | 67.92
FASTA 49.97 | 49.95 | 49.94 | 49.93 | 49.92
BLAT 429 | 4 | 362 | 337 | 29
PatternHunter 24.66 | 23.91 | 23.47 | 2332 | 23.11
CAFE 48.77 | 48.74 | 48.73 | 48.71 | 48.69
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Table 3.11: Protein Sensitivity Scores (PatternHunter Variant) For Various Algorithms
Versus The Results Of The Smith-Waterman Algorithm (Against The GenPept (Protein)
Database).

Format PatternHunter Variant Score

at 50%\ at 75%\ at 90%\ at 95%\ at 100%
Smith-Waterman 100 | 100 | 100 | 100 | 100
'(:SSTA 92.12 | 92.12 | 92.12 | 92.12 92.12
'(:SSTA 87.02 | 87.02 | 87.02 | 87.02 87.02
BLAST 76.15 | 70.08 | 62.92 | 58.27 50.13
(Default)
BLAST
(No Filter) 74.35 | 68.55 | 62.09 | 58.44 | 50.72
BLAST
(Report Everything) 79.56 | 72.69 | 64.98 | 59.93 51.5
BLAT 3556 | 30.82 | 26.73 | 24.48 20.15
CAFE 42.02 | 40.96 | 39.26 | 38.38 35.77
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CHAPTER 4. DASH

Chapter 4

DASH: Search & Alignment For
Cooperatively Compressed Databases
And Indices

Introduction

Cooperative compression of database and index ensembéssae recurrent strings. Re-

current strings in the database are compressed by storipngmainstance of each recurrent
string, and recording the other instances using a refettertbe stored instance. By always
storing the first instance of a recurrent string, and all@gweferences to earlier instances,

it is possible to create chains of references while avoitliegntroduction of cycles.

The benefits of chained references are that: (a) only ondfi(8tginstance of the string
needs to be stored in the database, and; (b) only one (thenststince requires posting in
the index, as the chain of references can be followed to sealy compute the address of
the other instances, regardless of the length of the refereimain. These benefits combine

to reduce the size of the compressed database and indext@dasem

There are two challenges that must be faced by any sequea snd alignment algo-
rithm that is paired with cooperatively compressed datalaasl index ensembles: (a) the

effective and efficient discovery of recurrences, and;lfp)dfficient use of recurrences.
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Effective And Efficient Discovery Of Recurrences

To use the recurrence records of a cooperatively comprelsgatiase and index ensemble,
an algorithm must find alignments that intersect with attles® instance of any given
recurrence. Thus, it is advantageous for such an algorithfmd the maximum extent
of each alignment. However, as shown by Figlire$ 4.1[add 41&jdtic sequence search
and alignment algorithms do not always find the full exteneath alignment. As mea-
sured by the PatternHunter variant metric, the level of Iretraps off as the alignment
fraction threshold (i.e., the fraction of a given alignmérdt must be discovered for it to
be counted) is increased. Also, the faster algorithms allyiobtain lower scores than the
more thorough algorithms, i.e., the faster and less seadti AT and CAFE, versus the

slower and more sensitive BLAST and FASTA.

Protein searching stresses different aspects of a segititaim, and this is reflected in the
results where the relative ranking of algorithms alters. grotein searching, FASTA is the
most sensitive. However, this thoroughness comes at ademasile speed penalty. CAFE
is much faster, and has the most sustained PatternHunter fecgrotein, suggesting that
it would be able to identify almost all recurrences. HoweW@AFE gains its speed by
constructing alignments against very few database recortsrefore, while CAFE has
both acceptable run time as well as the most sustained sdtsesverall sensitivity is

relatively poor in this context. Therefore, because ofrtheor speed to sensitivity ratios,
neither FASTA nor CAFE are attractive as a basis for seagcbooperatively compressed

database and index ensembles. PatternHunter is alsceckjéat the same reason.

Efficient Use Of Recurrences

Assuming that an algorithm can discover recurrences, tbensechallenge is to be able
to make efficient use of them. Cloning of an alignment thatrsgcts a recurrence into

its alternative locations should, ideally, make use of tignanent that has been obtained
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PatternHunter Variant Scores for Various Algorithms
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Figure 4.1: PatternHunter Variant Scores (See Section Of Various Algorithms (Nu-
cleic Acid) (Against The Human UniGene (Nucleic Acid) Database). The Smith-Waterman
algorithm is used as the benchmark.

Table 4.1: Protein PatternHunter Scores 100% Required (PH(100%)), And As A Fraction Of
PatternHunter Score 50% Required (PH(50%)) (Against The GenPept (Protein) Database).

["Algorithm | PH(50%) | PH(100%)| PH(100%)/PH(50%)

FASTA 92.12 92.12 100%
CAFE 42.02 35.77 85.1%
BLAST 79.56 51.50 64.7%
BLAT 35.56 20.15 56.6%
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PatternHunter Variant Scores for Various Algorithms
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Figure 4.2: PatternHunter Variant Scores (See Section[3.3) Of Various Algorithms (Protein)

(Against The GenPept (Protein) Database). The Smith-Waterman algorithm is used as the
benchmark.
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from the context where it was discovered. This informati@as been obtained at some
computational cost. In the interests of efficiency, suchrehould be reused rather than
duplicated. It is straight forward to do this by translatithg score and extents of the
alignment into each new context. This eschews the need éatdpe alignment process. A
suitable algorithm would make effective use of such paafighments, also known &$igh
Scoring Pairs(HSPs), when constructing a complete alignment, rather, thom example,

performing dynamic programming extension from a centratisas does BLAST.

This approach of reusing search effort has been explordbiliteérature, e.gl, K rlL(ZQOZ),

1(2003], Kurtz et Al. (2004, Li et al. (2004halugh usually with the inten-
Eh

tion of reducing run time. Of the surveyed algorithms, BL 2002) is typical of this

approach. While it makes efficient use of HSPs to minimiseadyis programming during
assembly, the resulting assembly process is not thorougha &sult, its ability to detect
the entirety of an alignment is noticeably compromisedeesly when applied to protein

searching (Tablge4.1).

More precisely, approaches similar to that of BLAT are vavpd)at identifying the regions
of near-identity with respect to a given query sequenceataikess proficient at assembling
a unified alignment from such fragments. The interveningoregof lower, but perhaps still
significant similarity are of little concern to them, and se aeglected in order to obtain
fast run times. The emphasis algorithms like BLAT place aiaes of near-identity is not
surprising, since the primary focus of such algorithms jsdally aligning entire genomes,

not individual sequences: they are operating at a diffeseale.

In the context of a cooperatively compressed index, howévsufficient assembly trans-
lates into short alignments, which in turn reduces the nurobeecurrences that will be
intersected, resulting in a cascading loss of sensitivitherefore the correct assembly
of regions of moderate similarity remains of importancehis tapplication. Therefore,

because they cannot make effective reuse of search effthen BLAST or BLAT are
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attractive as a basis for searching cooperatively compdedatabase and index ensembles

in this dissertation.

Summary

To summarise, none of the surveyed algorithms combine nedé® speed with the ap-
propriate sensitivity characteristics that are desirdblethe construction and search-
ing of cooperatively compressed databases and indices:TAAS too slow, Pattern-

Hunter and BLAT are too insensitive, CAFE considers too featabase records, and

BLAST cannot make efficient reuse of alignments against HSPgrefore, a new algo-

rithm, DASH (Gardner-Stephen and Knowles 2003, Gardnept&in and Knowles 2004,

KD.OMLLE‘j_a.D.d_G.a.Ld.D.EES.LEDJHED_ZOOG, Australian Provisieatnt 2003907016, US Patent

Application US 60/637 630, and US Patent Application US 19/807) was created, with

the following design objectives:

¢ Identification of as many HSPs as possible in order to fullyetage recurrence

records, and thus identify additional alignments;

¢ Identification of the maximum extent of each HSP, also in otdefully leverage

recurrence records in order to identify additional alignibse

e The ability to make efficient re-use of partial alignmentsewlthey are identified, so

that execution time is contained when recurrences are dlioe new contexts; and

e Comparable time and sensitivity characteristics to thie stthe art.

These objectives are addressed in this chapter by creatiefjextive alignment assembly
and extension scheme that aims to maximise alignment ogeemhile minimising the
computational cost of excessive dynamic programming. iBri®ne by making use of un-
gapped alignments, also calldthgonals and hence the name of tBegagonal Assembling

Search Heuristi¢DASH).
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N

N

Stage 1: Discovery of HSPs Stage 2: Assembly of HSPs Stage 3: Banded DP at ends

Figure 4.3: The Three Stages Of The DASH Sequence Alignment Algorithm.

Un-gapped alignment occurs to first discover HSPs in Stage 1. The set of HSPs are then
optimally assembled in Stage 2. Finally, banded dynamic programming is performed at
each end to polish the alignment in Stage 3.

4.1 The DASH Algorithm

The DASH algorithm produces alignments via a three stagegssoas depicted in Figure
H.3. Un-gapped alignments (HSPs) are first identified using@ex (Stage 1), then global
sequence alignment is performed for bounded regions batwearby HSPs to produce
gapped alignments, which are then assembled using a dyrmaongcamming algorithm

(Stage 2). Finally, banded local dynamic programming i$quered at both ends of each

alignment (Stage 3) to maximise the score and extent of thégnoduct.

As mentioned, the general approach of minimising dynanmog@mming by chaining sub-

alignments is not new, e.q., Kent (2002), Brudno et al. (2 .(2004), Li et al.

004). However, reflecting the unique environment in whichmust function, DASH

includes a novel combination of mechanisms to reduce rue.tifimis speed advantage is
then traded off in order to attain a suitable level of sevigjtby dedicating substantial effort
to the optimal assembly of HSPs into gapped alignments. dissires that the maximum
extent of each alignment is discovered in the majority oésas that extensive use can be

made of recurrence records to discover new alignments.
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4.1.1 Stage 1: Searching For Non-Gapped Alignments

DASH identifies all non-gapped aligning fragments betwdenduery and all records in
a database by using an exhaustive index, in the form of amtewdile, which contains
postings for every occurrence of &imers that occur in the database, whkres fixed

at index construction time. For nucleic acid databakes,8 was selected by empirical

process to balance search time and sensitivity. For prdegaibase¥ = 3.

There are multiple ways of using an inverted file to identifigraments. One approach is

that used by CAFE_(Williams and Zolhel 2002a), where the FRAWEucture is used to

measure the number of index postings that point to a giveabdae record, or region of a
database record. The gathered information is used to fgensiet of database records that
are likely to contain significant alignments. This approaels the advantage that it does
not require the database record bodies to be extractedgdinigninitial process, making it

particularly attractive for combination with a compressiatibase representation.

However, the advantages of the FRAMES method are negateel dfattabase record bodies
are required in order to extract the inverted lists thatedtihve process. This is precisely the
situation in the case of cooperative compression, whertgopsrof the index are computed
by consulting the recurrence records in the compressedatta Therefore DASH can-
not use the FRAMES structure, and instead attempts to genanaHSP for every index

posting, orseed that is retrieved.

This indicates a preliminary computational complexity tbe seed discovery that is di-
rectly and positively proportional to the database sizel exponentially and negatively
proportional to the index width. The cost of extending easdsinto an HSP will be pro-
portional to the length of the HSP. However, for long HSPsdhwll be many seeds that
identify it. Thus for searches involving many long HSPs tkearsh time will contain a

guadratic component. This is undesirable, and to avoid iBBAilters out redundant seeds
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that point to HSPs that have already been discovered. Thanesn for this is described

in Sub-Sectiol 4.1.11.4.

If index postings are considered as independent alignnmaerdidates, it is relatively in-
expensive to perform a BLAST 1 style, i.e., ungapped, extensf each. This allows the
discovery of non-exact alignments, also known as High &gdfairs (HSPs), which if they
span arecurrence, can be translated into other contextsd S&his formed for each posting
by extending an alignment seed until the maximum score asnattl. Extension is termi-
nated by a heuristic, rather than continuing exhaustivBI®SH'’s termination heuristic
for nucleotide extension is the presence of two consecatibstitutions, while for protein
alignment the heuristic is the presence of two consecutiveaonserving (i.e., negatively

scoring) substitutions.

The use of a heuristic sacrifices optimality for computadiagtficiency. In practice, the
sensitivity loss is likely to be negligible, as any suffidigriong alignment will be covered
by more than one posting, and hence is very unlikely to esnapee, although it may be
discovered as two or more smaller fragments. In DASH, if tiwsurs, such fragments are

likely to be reassembled during the assembly stage.

4.1.1.1 Addressing Selectivity

Achieving acceptable selectivity is also possible wherigoaring an alignment on each
candidate, as the same alignment scoring system that rsuséel to produce the final
alignment scores can be used. Refinements to this procetuistenduced that, to use
accounting parlance, “write down” the value (score) of @i@rtow complexity alignments

relative to others, in preference to the use of query filteas may prevent the discovery of
the full extent of an alignment. Explanation of this procesdis followed by a description

of the techniques employed to reduce the number of indexrssthat require evaluation,

and so minimise computational complexity.
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DASH does no pre-filtering of the query sequence before baayc While aiding sensi-
tivity, and the discovery of alignments spanning recureerecords, it has the potential to
result in poor selectivity (i.e., low precision), as low cplexity regions in the query can

cause any number of irrelevant hits to be ranked ahead ofarieesults.

An alternative approach to improving selectivity that ipiemented in DASH is to filter
those alignments that do get discovered, and ranking thagarents that appear to be
low-complexity behind others. This can be implemented loipoing the overall alignment
score of alignments containing wild-cards. While not sevesito all manifestations of
low-complexity sequence, it is particularly well suitedaddressing the problem of runs
of the letterN and other wild-cards that occur in many nucleic acid datadad-or protein
alignment the use of a scoring matrix obviates the need fpispacial treatment of wild-

cards.)

It is true that this could be realised by the use of a matrixrfocleotide comparisons,
instead of a simple reward and penalty scheme. However,gh®fua matrix is relatively
expensive. Nucleotide sequences can be compared moréyrapidsing a look up table,

e.g., as in FASTA.

The look up table can also be used to trigger the terminati@xt@nsion by comparison
to the minimum score that can be obtained without triggetiregtermination condition. If
the look up table returns a score less than some trigger \hlele extension terminates. If
the look up table uses a two bits per base representatiapractical to simultaneously
compute the alignment of 8 bases using a 16 bit look up tabieh & table is fed the binary
XOR of the relevant query and database record sequence sefffoesearch thoroughly,
8 copies of the query sequence must be maintained, one forptese, an issue that is
explained in more detail later). Ones in the XOR will corresg to substitutions in the
sequence, and so the alignment score can be computed. Swatthugltable fits easily into

the cache of a modern processor.
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However, the 2-bit look up table approach has difficulty iifiedtentially scoring wild-cards.

It is possible to approximate such scoring by randomly ngstiach wild carded base to
exactly one of the possible bases, and then use that as ikédrasomparison and scoring.
However, this leads to difficulties due to natural randomatam, where alignments may

be terminated or continued incorrectly.

These difficulties can be solved by using a four bits per begeesentation where each of
the nucleotides is represented using a One Hot Coding &i.eoding where only one bit
is set in each code, as also used by NCBI-BLAST). The IUPAGesambrresponding to
wild cards are logically represented as the union of the €ddeeach base permitted by
that code, as in Table4.2. The query and subject sequereaswarcombined using binary
AND instead of XOR. Assuming the same 16 bit wide look up tabidy four instead of
eight comparisons can be done in parallel. However, alliplsssombinations of wild card

base comparison are correctly resolved, as illustrateae®example of Figurie4.4.

Figure[£% shows the calculation of the dynamic programnsiogre for the oligonu-
cleotidesATCG versusANGG. A versusA is a match, because the bit corresponding: to
in each is setT vs N is also identified as a match, because the cod# toais the bit for

T set, and so the AND results in a non-zero value, which the lgokable will treat as a
match. However, the codes fOrversusG have no bits in common, so the result is zero,
which the look up table will treat as a substitution. Fingilyersuss is counted as a match
for the same reason asversusA. Three matches score3l = 3, and the one substitution

scores Ix (—4) = —4, giving a total score of 3 4= —1.

However, scores that are generated using the above methiatbwiliffer for alignments

containing wild cards. This can be addressed by using a ddooi up table that is fed
the binary OR of the sequences, and so estimates the prtypabih match. This is used
to write down (in the accounting sense) the score obtairad the first look up table. The

estimate is calculated by counting the number of set biteémh base, and reducing the
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Query: ATCGTAGCTGATCGTGCTG

Subject: TAGCTGATCGANGGTACTG

,,,,,,,,,, . |

0010 0100 1000 0001 ()
0010 1111 0001 0001
0010 0100 0000 0001

0010010000000001 (b)

ffffffffffffffffffffff i

DP Score (c)

Lookup Table

,,,,,,,,,,,,,,,,,,,,,, e
-1

Figure 4.4: Table Look Up For Un-Gapped Alignment And Score, Where Exact Matches
Are Scored As +1 And Substitutions As -4.

Each four base segment is compared by: a) ANDing the four bit One Hot Coding of each
base; b) Collating these values into a 16 bit value, and c) using that value to calculate the
Dynamic Programming Score, by way of a look up table.
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Table 4.2: IUPAC-IUB Codes And Their 4-bit Representations.

| IUPAC | Base | Description| 4-bit |
G Guanine G 0001
A Adenine A 0010
T Thymine T 0100
C Cytosine C 1000
R Purine AorG 0011
Y Pyrimidine corT 1100
M Amino AorcC 1010
K Ketone GorT 0101
S Strong interactiory CorG 1001
W Weak Interaction AorT 0110
H Not-G A, CorT 1110
B Not-A C,GorT 1101
v Not-T A, CorgG 1011
D Not-C A, GorT 0111
N Any A/C,GorT | 1111
X - - 0000

reward score by a corresponding fraction, according toeld3: If only one bit is set the
full reward is conferred; only half the reward is grantedwbtbits are set, as a match is
twice as likely; if three bits are set, then only a third of teevard should be conferred, as
a match is three times as likely, finally, if all bits are ségr no reward is given since a
match is certain. Thus, the maximum score for any sequergreedl against a string afs

will be zero.

Alternatively, a single look up table can be used to retumitiilated score, and the write
down process can be performed when computing the final sé¢aaah alignment after
assembly. The DASH algorithm uses the latter approach aingrdown when computing
the final score of the alignment after assembly, becauseit @simpler to implement,
requiring only one look up table during alignment; and, @&jwaming that some alignments

are discarded during the assembly phase, it results in ledsaverall.
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Table 4.3: Differential Scoring Against Wild Card Bases.

| Bits clear in basg P(mismatch) % of Reward|

3(,CGT) 3/4 100
2®, Y, MK, S, W) 2/4 50
1 (H, B, V, D) 1/4 33.3
0 M) 0/4 0

4.1.1.2 Stop Words

It is possible to filter out stop words, i.e., excessivelygtrent terms in the database, to

accomplish a similar role to that of a low complexity filteikd that of CAFEFILTER

Williams 11999). This makes the assumption that low comipferegions contain motifs

that occur with excessive frequency. If an alignment cdaagntirely of such regions, then
no index postings that point to the alignment will be consede and so the alignment will
be ignored. Conversely, if the alignment contains a mixafreow and high complexity

regions, then the high complexity regions will be postedhmihdex; only one such posting

is required for the alignment will be discovered in its estijr

This requirement for an alignment to contain a high compyenegion (which in the current
context means a region that contains motifs that do not oetthr excessive frequency)
appears to exclude a significant fraction of meaningleggalents, without missing too
many relevant ones. The definition of excessive frequensyhan visited only empirically
in this dissertation, with exclusion thresholds 0% 2 E for nucleic acids and 18 E for
proteins, wherde is the frequency expected by random, providing a reasoriedude-off

of search sensitivity versus selectivity and index size.

It is acknowledged that the filtering of stop words makes #@ising of certain queries

inefficient or impossible (Witten et LLI 1999). However, &neuristic search algorithm this

would appear to be a reasonable trade-off, because: (aptrarmgee of exhaustive search
has already been lost; and, (b) the desire to exclude low ity sequences from the

results implies that low complexity queries should alsogrered.
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A significant benefit of this method versus the commonly usdterdi SEG

n 1993, 1996), DUSM@W@D&A&DM@M) and XNU

Claverie and States 1993), is that in no case is only parnadl@gnment returned, be-

cause the masking occurs against the index, and not the qudatabase itself. This is of
particular concern for searching the cooperatively cosged databases and indices of this
dissertation, where discovery of the maximum extent of &gnalent is of importance. It
also has the beneficial side effect of significantly redutignumber of postings that must
be stored and evaluated, so reducing index size and exedumie. Other opportunities for

reducing the number of index postings that must be processagow considered.

4.1.1.3 Limiting Alignment Numbers In Flight

The number of expected alignments of some lenfjtim a random database afwords
and alphabet siza, is ;”, For nucleic acid databasass typically very large, oftens> 10°,
anda = 4. This means that if is allowed to be small, there will be a vast population of
alignments, adversely affecting both memory requiremantssearch time. To ameliorate

this situation, two methods are employed in DASH.

The first measure is to text-partition the database into geatale sized units: I0etters
or 10° database records, which ever occurs first. This limits thaber of alignments

required in memory at any given point in time.

The second measure is to place a lower limitlpeuch that a balance between resource
requirements and sensitivity is achieved. The range 1< 14 was determined empiri-
cally to be reasonable for both nucleic acid and proteimatignts, with the selection of a

specific value dictating the trade-off between sensitiaitg execution speed.

By limiting the number of alignments that must be held in meyrai one time in this way,
the foundation is being prepared for the creation of an #@lgorthat has at worst a linear

relationship between database size and search time.
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4.1.1.4 Suppression Of Repeated Discovery Of Long Alignméxn

For long exact or near-exact alignments, there will be maoggibly hundreds or thou-
sands) of index postings pointing to the one alignment. theaf these postings were
allowed to trigger the calculation of what must be an ideaitelignment, computation
would become extremely inefficient. To prevent this, a ligh@viously discovered align-
ments is maintained. The list is consulted whenever an ipdsking is considered: If the
candidate lies within the bounds of any alignment found mltkt, it is suppressed, as it

would only rediscover the alignment that it lies within.

A naive implementation of the suppression list requitgs) time to consult the list for
each index posting considered, wherés the number of alignments discovered. This
would be reduced t®(logzn) if a binary tree were used. However, by ordering the list of
alignments into the same order that the index postings wiltdnsidered, and proceeding
through the list in tandem with the inverted list for eachriethe cost can be effectively
reduced tdd(n) perterm(the list is traversed only once per term). The cost is thdaced

to O(Mn). If the number of postings per term is equal to or greater thamumber

Npostings perter

of items in the list, thep_"temsinlis_ < 1 ' and hence the cost per posting is at weét).

postings perterm

This scheme is implemented in the DASH algorithm.

4.1.1.5 Locally Adaptive Query Striding

There is a cost associated with retrieving the inverteddiseach term (i.e k-mer) of the
query. Similarly, there is a real cost in evaluating the dgbastings that each inverted
list contains. It is possible to reduce this cost by consimeonly some arbitrary fraction
of the query terms. This will be at the cost of sensitivitycéase alignments will only
be detected if an exact correspondence existsaonsecutive residues of the query and
database records. Reducing the degree of overlap of each tgue used diminishes the

ability to detect short alignments.
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Previous work described khy Barion (1996) has shown thataffeav query terms are

searched, sensitivity suffers substantially. None thg léss reasonable to allow DASH to
optionally exclude some query terms, since moderate sgridver query terms can realise
helpful increases in speed, without causing intolerabtenita sensitivity. This is termed

query striding

The simplest form of query striding is to use a stride len@hwhereS— 1 terms are
excluded following each term that is retained. Thereforérideslength ofS= 2 would
exclude one term for every term that is retained, resultmgrily % = % of query terms

being evaluated.

The form of query striding that has just been described ispeeial case whel®= Syax

for each and every stride, wheBgax is the maximum stride length. Query striding can be
generalised by allowin@to take any value in that satisfies<lS < Syax If this generali-
sation applies to each and every stride, then it is possilabptimise the stride selection in
order to minimise the total term frequencies, and hence tneber of postings that must

be processed, and consequentially the work required.

This minimisation is possible because terms differ in fezgy. This is a characteristic that
is enhanced by partitioning the database (thus preventiogssive averaging of frequen-
cies over an entire database). Thus, it is possible to gbleterms that result in the lowest
total frequency, while still satisfying the constraint twie imaximum distance between pairs

of successive selected terms.

Consider the example of Figufe 1.5, consisting of sevenamiisve overlapping query
terms. The query terms aMBCD, BCDE, ..., GHIJ, and their frequencies are as listed, e.g.,

F (ABCD)=24.

If Snax= 4, the naive algorithm§= Syay) would satisfy the constraint that at least every
4™ term be considered, by selecting thtrm OEFG) as the first and only stride, yielding

a total frequency of 32. This corresponds to line (a) in therBgwhere the chosen term is
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1 2 3 4 5 6 7
Term: ABCD| BCDE CDEF DERG EFGH FGHI GHIJ
Frequency; 24 17 9 32 15 |29 B84
| ABCD| BCDE CDEFDEFG| EFGH FGHI GHIJ
a
24 17 9 32 15 |29 34 =32
) ABCD| BCDE | CDEF| DEFG EFGH | FGHI | GHIJ
24 17 9 32 15 |29 34 =32
) ABCD| BCDE CDEF | DEFG| EFGH | FGHI | GHIJ
Cc
24 17 9 32 15 |29 34 =24
0 ABCD| BCDE CDEF | DEFG| EFGHFGH | GHIJ
24 17 9 32 15 |29 34 =36

Figure 4.5: Example Of Optimising Striding, Snax= 4.

marked with a grey background. Alternatively, more thanrtheimum number of terms
can be selected, e.g., lines (b), (c) and (d) in the figurechvhepresent three such selec-
tions. In the example, line (c) results in a total frequentc 15 = 24. This is lower than

any other possibility, including option (a) where only agdenterm was selected.

The minimisation of the total term frequencies is a classitdioptimisation problem, and
can be solved using dynamic programmingdfiengthyuery < Smax) time. Since the both
the query length an8y,5x are generally small, the cost of this process is negliggneany
savings it can introduce are essentially free. Therefasesttheme, Dynamic Programming

Optimised Query Striding, is implemented in DASH.

4.1.1.6 Combined Effect Of Alignment Candidate Reduction Masures

Combining the methods described in this section, the numiiadex postings, and hence
alignment candidates, that are actually evaluated can lmstantially reduced. Tabl[e3.4
shows a typical breakdown of the percentages of postingsidered, and those rejected

by striding, frequency based exclusion (i.e., stop wordsy suppressed by previously
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Table 4.4: Effect Of Index Posting Evaluation Reduction Strategies.

Results are the aggregates of two hundred protein queries of: candidates squelched by
a previous alignment (suppressed); skipped by query striding (avoided); stopped due to
excessive frequency (excluded); and finally, those actually considered (remaining).

Index Postings
max. stride|| Suppressed Avoided | Excluded| Remaining

1 0.57% 0% 5.47% | 93.97%
2 0.21% |52.28%| 1.73% | 45.78%
5 0.07% | 84.53%| 0.09% | 15.31%
10 0.03% | 94.15%| 0.01% 5.81 %

discovered alignments. (These data were extracted fromubeges that were executed as

part of this dissertation).

Only limited improvement is possible whé&hax= 1, since this corresponds to evaluating
every term in the query. In that case only stop words and gggpn of existing alignments
can be enforced, but query striding is of no use. Howevenmrfaximum stride lengths of
2, 5 and 10, a naive striding algorithm should, respectjMatyable to avoid an average
of 1— 1 =50%, 1- £ = 80% and - -5 = 90% of all index postings. The value of
the optimised query striding algorithm is demonstratedtbybility to consistently reject
more than the expected fraction of postings (52.28% verBis 84.53% versus 80% and
94.15% versus 90%). For the tabulated range of maximumeskeiagths, the avoidance
of highly frequent terms by the optimal striding algorithsuses the rapid decline in the
number postings that need to be excluded as stop words. [Ebigi@es further weight to
the reasonableness of excluding stop words in conjunctitimtive DASH algorithm, since

the probability of a stop word being consulted is substdptiaduced.

In apparent contrast to the potency of query striding, T&b reveals that relatively
few alignment candidates are suppressed by previouslywksed alignments. At first
glance, this suggests that this suppression may not be wuwetiadded complexity and
effort it requires. This would be true, if the suppresseddodates were randomly se-

lected, and so were very short on average (alignment lefigitbw an extreme distribution
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Erdos and Renyi 19¥0)). However, this suppression worksigely on those candidates

that produce alignments of the greatest lenéihneedless repetition of alignment discov-
ery effort is therefore avoided, independent of the raw ¢jtyaor percentage of alignment
candidates suppressed, thus ensuring that HSP discov@(y)iand not O(?) with respect
to query length, even when many high quality alignments ncthis remains true, even
as the maximum stride length increases, thus reducing taelbwumber of alignment

candidates requiring suppression.

To summarise, by combining the effects of stop words, ogtauary striding, and candi-
date suppression the total number of alignment candidasgdXASH must process, and
hence the corresponding work required, can be reduced bgdan af magnitude or more.
This is in return for the modest reduction in sensitivity esfed due to query striding,
as detailed in a later chapter. Perhaps more importantgetimeasures work to ensure
that the HSP discovery process is never worse thar With respect to query length or

database size.

4.1.2 Stage 2: Optimal Assembly Of HSPs

As previously described, the first stage of the DASH alganittiscovers ungapped align-
ments between the query and the records in the database m€hiss that there will be
zero or more ungapped alignments against each record irathbake. Those records with
no alignments are simply ignored, while those with a singdjiignanent are immediately
passed to the final stage to be extended using gapped aliginHwmever, additional work

is required when more than one alignment is found againstengecord.

In general, there are two possibilities when multiple atngmts exist. First, the alignments
may be independent, and should be treated as though eatddarigsolation. On the other

hand, various combinations of the alignments may represagments of larger overall
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alignments. In that case, the fragments must be correctgnaisled in order to realise the

overall alignments.

Several goals are possible during the assembly processg@hés to maximise the total
score of all reported alignments, i.§.s, 1 <i < n, wheres is the score of thée" align-
ment, andch is the number of alignments. However, that goal need noeptle inclusion
of all regions between the identified alignments, causinga spot toward recurrences oc-
curring in those regions when used in conjunction with coageely compressed database
and index ensembles. Moreover, a single alignment withesg.,%’s, has higher statisti-
cal significance than two alignments, each with s&rmehen multiple alignment statistics
are useﬂ Therefore, it is considered preferable to join two alignitsewnith scores;and
S, to produce a joined alignment with scasg even ifs; < s, + s, provided thatj > s,

> sp. DASH performs such a process, with the aim of producing tha falignments

with the highest overall scores.

Consider the example of Figufe ¥.6, where seven HSPs (dihgtdieavy black lines)
have been identified and scored. In addition, the regionsdeat nearby HSPs have been
explored and global dynamic programming used to deternhi@aertaximum score for the
region between each plausible pairing of HSPs. These regimshaded in grey to indi-
cate that they are subjected to dynamic programming. Thesrdsyg options are drawn as

double ended arrows, and are marked with their scores.

All assembly options for a given HSP are processed in a sidgt@amic programming
episode, by exploring the minimal rectangle that contalheebevant HSP termini. This
allows the reuse of dynamic programming effort when mudtipbssibilities exist. How-
ever, there are situations where this approach can be @gité because using the single
area may be of much larger area than the sum of the individeatahat would be required
LWhile it is possible to combine the significance of separdignaents I(Altschul and Gish _1996a,
[Collins et all 1988, Mait 1992, Waterman and Vingron 1994))akes sense to assemble alignments as fully
as possible. The opposite extreme, reporting each alighasea collection of alignments, each one base

long, is not only absurd, but also hides the real significarfdee complete alignment. Therefore complete
assembly is preferable.

130



4.1. THE DASH ALGORITHM CHAPTER 4. DASH

Query Sequence Offset

\J

18sJJO @2uanbas 10algns

\J

Figure 4.6: Hypothetical Complex HSP Assembly Situation.

if each HSP were considered separately. The large dynamigrgmnming region near the
top of the figure illustrates such an instance. Although thstieg implementation of the
DASH algorithm does not do so, it would be possible to testwthés situation arises, and

to cluster the candidates into sub-groups that requireohesisall dynamic programming.

Once the set of HSP and inter-HSP scores are known, dynamgegmming is used to
determine the maximum score that can be obtained from ngeaisemblies of the HSPs.
Figure[4.Y depicts the result of performing this step on tlmeent example. Only those
transitions that produce a higher combined score are egtalmence the absence of a join
between the two alignments at the top of the figure. The saoredch chain of HSPs is
implicitly calculated during this process. For examples #lignment scoring 81 receives
that score because of its own score of 17, plus the inter-K8f ©f -6, plus the chained
score of 70 for the HSP it connects to. That score of 70 is im tatculated from the sum
of 54— 7+ 23. Each unique high scoring chain of HSPs is recorded asgmmant. In the
example, this results in alignments with scores of 57, 81318889, some of which re-use

certain HSPs.
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Query Sequence Offset

%

\J

57

70 = 54-7+23

55

81 =17-6+70
83 =11+2+70

19sO aduanbas 108lgns

89 = 32+2+55
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Figure 4.7: Hypothetical Complex HSP Assembly Situation.

By formulating the HSP assembly problem as a dynamic progriagy exercise, and by
ordering the possible graph of HSPs, this problem is redtice@d(n?), wheren is the
number of HSPs discovered against a single sequence in thigada (rather then against
the database as a whole). Empirically, it has been foundgégrarally there are very few
HSPs that can be plausibly assembled, resulting in a belnathat is closer to O1) than

O(n?) on average.

4.1.3 Stage 3: Alignment Finishing Using Adaptive Banded Dyamic

Programming

At the completion of the first two stages, the DASH algorithas fa list of gapped align-
ments and their scores. However, the regions beyond eacbfehd alignment have not
been examined to determine if the assembled alignmentsecéurther extended. This is
the subject of the third and final stage of the DASH algoritininere a dynamic program-

ming procedure is employed to discover whether furtherresitm is possible. In order
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to reduce execution time, a heuristic approach is used ceméa completely exhaustive

algorithm.

FASTA and NCBI-BLAST 2 implement successful heuristic alfons that are relevant
to extending alignments in this way: FASTA limits the extemsto a band around the
alignment region, while BLAST ceases extension if the maxmscore on the dynamic
programming front drops more than some quantity below ttst $eore seen in the exten-
sion. DASH combines these two approaches, and adds: (agssext starting point; (b) a

slow start heuristic, and; (c) adaptive placement of thelban

The recessed starting point trims a short length from theoérash HSP in order to allow
the discovery of a more optimal alignment in the case tha{uhgapped) HSP has been

over extended, and deviates from the optimal gapped alighme

The slow start heuristic is used to make the band initiallsrova, when it is much less
likely that the alignment will drift far from the main diagahof the alignment. On average,
this results in approximately 35% less dynamic programneiffigrt, and with practically
no reduction in sensitivity. Then throughout extensiom, land is repeatedly recentred

around the highest scoring point on the dynamic programifnorg.

Adaptive band placement is best illustrated with an examplgure[4.B depicts the op-
eration of the adaptive band placement. Initially the uppest row is explored, and its
highest scoring cell (indicated by the upper most dot) igiified. As this dot is near the
mid-point of the row, i.e., not too near either the left orhiggdge of the band, the next
band is placed exactly one cell to the right the current barte dynamic programming
process is then executed, yielding the highest scoringrcéiis second row, as indicated
by the second-upper-most dot. Again, it occurs near thepuidt, so the third band is
placed exactly one cell right of the current band. Repedhigyprocess for the third row,
the highest scoring cell is now near the left edge of the rdws Tauses the dynamic band

placement algorithm to place the fourth row at the same bot& position as the third.
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Figure 4.8: Simple Example Of Adaptive Band Placement During Dynamic Programming.
Each column represents a band. The solid black dots represent highest scoring cell in
each band.

This process repeats for the fifth row, before the highegirsg@ell again occurs near the
mid-point. However, when the sixth row is evaluated the bgilscoring cell is found to
occur near the right edge. This causes the dynamic bandmpéadealgorithm to place the
seventh row two cells to the right. This occurs again for tiggnth row, after which the

adaptive band placement has recentred the band aroundytieshscoring cell.

Figure[4.® presents the dynamic programming activity foalegnment of a protein query
that was executed using DASH. This dynamic programmingisgtiesults in the align-

ment shown in FigurEZ410. The example demonstrates alttspethe adaptive banded
dynamic programming algorithm, including the slow stamtigic. As the example is ex-
tracted from a real query, there are two artifacts that shoel noted: (a) the alignment
occurs in the last 24 residues of the database record. Thigieg why the dynamic pro-
gramming figure appears truncated on the right hand-sideTHe full evaluation of the

first row is an optimisation that improves dynamic programgrefficiency, by avoiding the
need for a bounds check in the computation of each cell, fibreréhat row can be ignored

throughout the following discussion.
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query offset = 24, subject offset = 17440363, direction = backward
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Figure 4.9: Example Of DASH Adaptive Banded Dynamic Programming.

Scored using the BLOSUM®62 matrix, with penalties of -11 to open and -1 to extend a gap.
The fields above each column are, from top to bottom: (a) the number of the column, and;
(b) the amino acid in that position of the query sequence.

The fields to the left of each row are, from left to right: (a) the row number; (b) the first
column of the dynamic programming band for that row; (c) the width of the dynamic pro-
gramming band for that row; (d) the amino acid in that position of the database record;
and, (e) the relative position of the highest scoring cell in the dynamic programming band
for that row.

Note the explored band preferentially widening on the side nearest the maximum score.
Purple and green coloured cells indicate negative and positive dynamic programming
scores, respectively. Orange boxes indicate the optimal alignment path. Small grey ticks
between cells indicate the back trace path from each cell toward the origin. The extension
terminates at the furthest point with the maximum score seen (+11).
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Figure 4.10: Alignment Resulting From Figure .9 (final score = +11).

For the remaining rows of the figure, until the bands beginadrhncated by the limits
of the dynamic programming space (rows 1 — 14), the width efgticcessive dynamic
programming bands increases, i.e., the rows start narnoaviteen progressively widen,
owing to the slow start heuristic. The widening preferdhtiaccurs on the side nearest
the maximum value in each row in order to adapt to where thediggmment appears to
be. The band is also moved in absolute terms to help mairtearcéntre, and hence the

horizontal progression of each row.

As previously described, the progression of the band fdn saccessive row is monotonic,
thus maintaining the centre around the same diagonal. Theskweptions to this are if
the highest scoring cell in a given row occurs in the left ghtiquarter of the band. In
those cases, the row either maintains position, effegtiskifting the centre line one cell
to the left (as in after rows 8, 10, 12 and 25), or shifts twafpamss to the right, effectively

shifting the centre line one cell to the right (as in after sol8, 15, 16, 21, 22, 23 and
24). In cases where there are two or more cells that each hav@aximum score for a
given row, the algorithm naively chooses the right most dviere sophisticated regimes
are possible, such as trying to keep all maximally scorirlty ¢ the band, but have not

been explored.

Overall the dynamic programming effort has an upper bour@(of) with respect to query
length. However, in practice dynamic programming is onlyf@ened for relatively few
alignments, and the slow start heuristic combined withéneination heuristic ensure that
in most cases only a small constant amount of effort is expeéndgain resulting in an

typical aggregate cost that is much less than?(
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4.1.4 On Search Time Complexity

It has previously been observed in this dissertation thatliptable execution time and
sub-linear execution time are desirable characteristica sequence search and alignment
algorithm to possess. In pursuit of this goal, each staghe@DASH algorithm has been
designed to be no worse than linear in practice. Predice@eution time is further en-
couraged in DASH in much the same way that it is in CAFE. Thatyisensuring that
the fine searching (the HSP assembly and alignment finistéggs in DASH) occur only
once per hit. Meanwhile, sub-linear execution time is enaged by allowing the use of

cooperatively compressed databases, an issue that issaddria later chapters.

Another issue that requires addressing is that travergngrrence chains of unknown
length may create an unpredictable contribution to seansl.t This is a significant is-
sue, particularly if the data are to be disk-resident, ak st&p in the chain will trigger a

costly disk seek.

This issue has been mitigated to some degree by partitidhmglatabase and requiring
that all links in a chain point backwards in the partitionyghensuring that chains are
limited in length. It is further addressed by the propertéthe search system that make
it possible to stream the compressed database and indexdisko RAM in a batched
search environment. These properties are discussed ihideZhapte ¥ where DASH is
combined with an appropriate data and index representadBimen the compactness of the

compressed structures that result this solves the prolotgoninciple at least.
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4.2 Search Parameters

4.2.1 Tunable Parameters

The current implementation of the DASH algorithm contaimaienber of tunable parame-
ters, described below grouped by their function. Empirggdloration of these parameters
has led to the production of canonical parameter sets,reeféo asmodesin the rest of
this dissertation. These are more fully defined following tieneral definition of each

individual parameter.

4.2.1.1 Tunable Alignment Properties

Maximum Expected Value of Alignments (Max#)is specifies the expected value (by ran-
dom chance) that is used as the threshold for determinirigriggh and score of alignments

to report. Typical values are in the range 0.1 to 1000.

Does The Maximum Expected Value of Alignments Constituteia &r a Quota (MaxE-
Limit). If this boolean is true, then the maximum expected valueighatents constitutes
a limit. In practical terms, setting this flag reduces thi@imum alignment lengthy one,

and so slightly increases sensitivity at the cost of speed.

Minimum Alignment Length (MinAlnLen)This specifies the minimum final length an
alignment must reach in order to be reported, and is not a allgnwnable parameter.
It is overwritten at run time by the value derived from thlaximum Expected Value of
Alignmentsand the size of the database being searched. It forms panegbarameter
vector in order to keep all parameters located in one plades feduces the number of
function arguments that must be passed to various fungtamsboosts overall speed with

some compilers.
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4.2.1.2 Tunable Query Striding Parameters

The Maximum Stride Length Allowed Between Investigatedrs-of The Query Sequence
(MaxStride). The maximum stride lengtlSay) is calculated as the minimum of this pa-
rameter and the difference between the minimum HSP lengthkaihis parameter then
provides a mechanism for capping the maximum stride lemgtardless of the minimum
HSP length. Typical values are between 1 (no query striding)50 (practically equivalent

to usingminimum HSP lengtminusk).

The Number of Neighbours to Consider for Each k-mer of ther@8equence (Neigh-
bours). This specifies the number of neighbourikgners, in the style of BLAST 2, to
consult, at each stride through the stride path. A value efindicates that only the exact
k-mer from the query sequence should be usedk#Atlers activated at each position of the
guery sequence are taken into account when calculatingptiraal stride path. Typically

this value is set to 1 to indicate that BLAST style neighbogk-mer support is disabled.

4.2.1.3 Tunable HSP Properties

Minimum HSP Length (MinHSPLenThis prescribes the minimum length an HSP must
reach in order to be recorded and be a candidate for alignasseimbly. Smaller values
increase sensitivity, but not as quickly as they increaseang and computational burden.

Typical values are between 10 and 14 residues.

Maximum Continuous Incongruence Length Tolerated in HSRsEubst) This parameter
restricts the number of consecutive non-conservativetsgutisns that will be tolerated in
an HSP. Moderate values, e.g., one or two, result in fewed@mger HSPs compared to
not tolerating any substitutions. Typically this value & & one, which means that two

consecutive substitutions will terminate HSP extension.
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4.2.1.4 Tunable DP And HSP Assembly Parameters

Perform DP at Ends (DPENds)This is a boolean flag that indicates whether dynamic
programming will be attempted during the third stage of tharsh process. If it is false,
then gapped alignments will still be produced, however tileeiktent of many alignments
is unlikely to be determined, especially for protein seaschHowever, it does allow for

very rapid searching. Normally, however, this flag is settie t

Measure Before or After Performing DP at Ends (Measurelriidéthis is true, then align-
ments will be measured againginimum Alignment Lengtbefore performing dynamic
programming at each end. This contains the search time lcirgglthe number of dy-
namic programming extensions performed. The alternasivegasuring after, and results
in greater sensitivity at the expense of the computationsti due to dramatically increased
dynamic programming activity. Typically this value is setitue to cause measurement to

occur before extension, preferring execution speed ovesithaty.

HSP Joining Cut Off Score (JoinAborfl)his specifies the minimum score a global dynamic
programming alignment between two HSPs can achieve bebanedmning the attempt to
jointhe HSPs. Large negative values result in higher sgrgjtut at the cost of increased

processing time. Typical values are in the range -10 to -20.

The Maximum Distance Between HSPs Before Joining Them @¥iB&lConsidered (Join-
Range). This distance places a limit on the distance between HSPs ydging is at-
tempted, therefore placing an upper bound on the work reduirthe second search phase

when HSPs are assembled. Typical values are in the rangel®0 tietters.

The Width of the Dynamic Programming Band Used for The Gajipgension of Align-
ments (DPWidth)This specifies the maximum width of the banded dynamic pragrang
front during extension at each end of a gapped alignment.b@he dynamically centres
itself around the optimal path discovered to date, redutigband width required for

adequate sensitivity. Therefore values between 20 andesdaamally sufficient.
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The Maximum Length of Dynamic Programming Used for The Gagpéension of Align-
ments (DPMax).This sets the internal maximum length for a single episodgyofimic
programming. Multiple episodes of dynamic programmind b& used if longer dynamic
programming is warranted. This parameter has no effect ositsaty, it only effects the
memory efficiency of the banded dynamic programming procé&bss value is normally
setto 512, so that all practically every dynamic prograngmaguest is handled in a single

episode.

The Length of Recession at the Ends of an Alignment Used @Tiha Dynamic Program-
ming of Alignments (RLen)Y.his parameter is used primarily for protein searches tiall
recovery from over extended HSPs at the end of alignmentsst&yping back several
residues into the alignment and starting the dynamic progriag process from there, any
incorrect over extension can be replaced with the optiméd. p&ypical recession lengths

are between 5 and 10 letters.

The Cut-Off Score Used During the Gapped Extension of Algnsn()). This param-
eter performs the same function ¥dgin NCBI-BLAST 2. In both cases it provides the
termination criteria for gapped extension of alignmentsDASH it limits only the length
of dynamic programming, as the dynamic programming ban@mesrconstant width (dis-
counting the influence of the slow start heuristd).is typically set to terminate extension
when the alignment score drops by between -10 and -25 cochpartde previously ob-

served maximum.

Dynamic Programming Slow Start Bandwidth Divisor (SSir)is This value specifies
the ratio of the maximum to initial bandwidth. Larger valwasise dynamic programming
to commence with a narrower band, thus reducing the compntatirden. Typically this
value is set to 8, where it makes almost no impact on sertgjtivut reduces dynamic

programming effort by approximately 35%.
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Table 4.5: DASH Canonical Parameter Sets For Nucleic Acid Searching: M2.

|  Name | M2 (Nucleic Acid) |
| Parameter | Value| Parameter | Value]
MaxE 1 MeasureFirst Yes

MaxELimit | Yes JoinRange | 100
MinAlnLen 18 JoinAbort -10
MaxStride 50 DPWidth 40

Neighbours| 1 DPMax 512
MinHSPLen| 18 RLen 5
MaxSubst | 1 Xg 20

DPEnNds Yes SSDivisor 8

Table 4.6: DASH Canonical Parameter Sets For Nucleic Acid Searching: M4.

|  Name | M4 (Nucleic Acid) |
| Parameter | Value| Parameter | Value]
MaxE 10 MeasureFirst Yes

MaxELimit | No JoinRange | 100
MinAlnLen 10 JoinAbort -20
MaxStride 50 DPWidth 60

Neighbours| 1 DPMax 512
MinHSPLen| 10 RLen 5
MaxSubst 1 Xg 25

DPEnNds Yes SSDivisor 8

4.2.1.5 Canonical Parameter Sets

The canonical parameter sets are defined for nucleotiderateipsearching respectively,
and presented in TablEsU[5.14.6]14.7 4.8. The M2 modéstangled to run an order
of magnitude faster than NCBI-BLAST 2.2.6, while the M4 msdee intended to run
in comparable search time as NCBI-BLAST 2.2.6, with the Isestsitivity available. It

is likely that these are not the optimal parameter sets iswpuof their respective goals.
However, for the purposes of this dissertation all that qgineed is a fixed reference point
that can be used to compare the effect of different databadanalex representations.

Therefore further optimisation of these parameter seefigé a future exercise.
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Table 4.7: DASH Canonical Parameter Sets For Protein Searching: M2.

|  Name | M2 (Protein) |
| Parameter | Value| Parameter | Value]
MaxE 1 MeasureFirst Yes

MaxELimit | Yes JoinRange | 100
MinAlnLen 14 JoinAbort -10

MaxStride 5 DPWidth 60
Neighbours| 1 DPMax 512
MinHSPLen| 14 RLen 5

MaxSubst 1 X9 20

DPEnNds Yes SSDivisor 8

Table 4.8: DASH Canonical Parameter Sets For Protein Searching: M4.

|  Name | M4 (Protein) |
| Parameter | Value| Parameter | Value]
MaxE 1 MeasureFirst Yes

MaxELimit | Yes JoinRange | 100
MinAlnLen 14 JoinAbort -10

MaxStride 1 DPWidth 60
Neighbours| 1 DPMax 512
MinHSPLen| 14 RLen 5

MaxSubst | 1 Xg 25

DPEnNds Yes SSDivisor 8
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-- Parse command line arguments
parse_command_line_arguments ()
-— Retrieve the array of parameters based on the
-- setting selected
active_settings = settings_array[selected_setting]
—-—- Perform the search
foreach index_partition in the indexed database
-- 1. Search each index section
discover_hsps(index_partition,query)
-- 2. Assemble the HSPs into alignments
assemble_HSPs ()
-—- 3. Perform DP at each end of the assembled alignments
finish_alignments()
end foreach
—-- Output search results
output_results_using_selected_format ()

Figure 4.11: Pseudo Code For The DASH Search Algorithm: Overview.

Command line parameters are parsed to determine the database and query to search, and
to select the search parameters. Then the three stage alignment process is conducted for
each database partition. Finally, the search results are output in the selected format.

4.3 DASH Search Program (dash)

The DASH algorithm was implemented in C to produce dheh program. This program
parses command line arguments to select protein or nudéeséiarching, the database and
guery to search, and the search mode. Itimplements thedtages of the DASH algorithm
as previously described. A pseudo code overview of thisdlsided in Figur€Z4.11. Pseudo

code for each of the three steps is presented in FiguresLIR and’4.714, respectively.

4.3.1 Scoring, Statistics And Output Format

DASH scores alignments using either match and mismatctesdcoucleic acid) or a sub-
stitution matrix (protein). To this are added penaltiesdpening and extending gaps. In
addition, the scores of wild cards are written down in ordenbderate the score of align-

ments that contain them. Apart from this last addition, 8dering system is essentially
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-- Find the optimal stride path
stride_path = optimal_stride_path(query,index,max_stride)
-- For each stride in the stride path ...
foreach q in stride_path
-- get the k bases at position q in the query sequence
qt = query_segment(q,k)
-- get and decompress postings list for this term
postings_list = index.nmer_addresses[qt]
uncompress (postings_list)
-- Iterate through postings for this stride
foreach m in postings_list
-- Try to non-gapped extend the tuple match at
-- position m:q
if try_ungapped_extension(m,q) == GOOD then
-— Work out which database record the HSP occurs in
r = which_dbrecord(m)
-— Write discovered HSP to the HSP tree for that record
write HSP(m,q) to HSP_treelr]
end if
end foreach m
end foreach q

Figure 4.12: Pseudo Code For The DASH Search Algorithm: HSP discovery.

The optimal stride path is determined using the maximum stride length and k-mer fre-
guency distributions obtained from the index of the current database partition. The strides
in the path are then iterated to obtain the address of each index posting. These alignment
candidates are then tested. Those resulting in valid HSPs are recorded in the HSP tree for
the database record they occur in.
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—-- Foreach record in the database partition
for s = 1 to index_partition.record_count
-- consider the HSPs found in that record
foreach hsp in HSP_tree[s]
window = array of nearby diags to the ‘‘left’’ of diags
bestneighbour = element of window that combined with HSP
has the best dynamic programming score
if bestneighbour is not NULL then
—-- record that HSP joins to bestneighbour on the left
hsp.join_left = bestneighbour
-- Record the dynamic programming path that joins them
bestneighbour.backtrace = dp_path(HSP,bestneighbour)
end if
end foreach
-- Join the diagonals to form gapped chains of HSPs
foreach HSP in HSP_treel[s], in descending query offset order
—-— Check if this HSP has already been processed
if ( HSP.processed != true ) then
—-— Render this HSP into an alignment
alignment = (empty alignment)
alignment.append (HSP)
-- Find the HSP joined to the left of this one
left_HSP = HSP.join_left
while left_HSP is not NULL
-— Render the DP backtrace between the two HSPs
alignment.append(left_HSP.backtrace)
-—- Render the left HSP
alignment.append(left_HSP)
left_HSP.processed = true
-- See if left_HSP joins to another HSP on its left
left_HSP = left_HSP.join_left
wend
-- calculate score, and record alignment
alignment.calculate_score()
list.append(gapped_alignments,alignment)
end if
end foreach
next s

Figure 4.13: Pseudo Code For The DASH Search Algorithm: HSP Assembly.

HSPs are assembled by first identifying the candidates for joining to each HSP. These
candidates are screened to identify the best HSP, if any, that each can join to. The list
is traversed a second time to output the gapped alignments, marking the HSPs that are
output along the way. Since HSPs marked in this way already form part of a longer and
higher scoring alignment that has already been output, they are ignored during the list
traversal.
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foreach a in gapped_alignments
if ( measure_before_performing DP ) then
-- Measure alignment before DP extension.
-- Discard it if it has too low a score or is
-- too short.
if ( a.length < minimum_alignment_length ) then
—-- discard and try next a
goto next_a
end if
if ( a.score < minimum_alignment_score ) then
goto next_a
end if
end if
-— Perform DP at each end
do_banded_dp(a,left)
do_banded_dp(a,right)
-- Recalculate alignment score and length
recalculate_score(a)
if NOT ( measure_before_performing DP ) then
-- Measure alignment after DP extension.
-- Discard it if it has too low a score or is
-- too short.
if ( a.length < minimum_alignment_length ) then
goto next_a
end if
if ( a.score < minimum_alignment_score ) then
goto next_a
end if
end if

-- Record final alignment
list.insert(search_results,a)
next_a:
end foreach

Figure 4.14: Pseudo Code For The DASH Search Algorithm: Dynamic Programming Ends
Of Alignments.

If a gapped alignment meets minimum score and length requirements it receives a compre-
hensive banded dynamic programming treatment at each end. However, if the appropriate
settings are selected, then the dynamic programming extension is always performed, and
the length and score assessment is performed after. Either way, the dynamic program-
ming treatment begins recessed within the ends of the alignment to assist in the detection
of gaps around those regions. Any alignment that passes the length and score criteria is
recorded in the list of results.
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DASHN 1.0.9 [Nov-2004]

Score E

Sequences producing significant alignments (dp) val.

gnl|UG|Hs#S1090875 Homo sapiens mRNA for JM23 protein, complete ... 330 4.75076e-188
gnl|UG|Hs#52138821 Homo sapiens FtsJ homolog 1 (E. coli) (FTSJ1)... 330 4.75076e-188
gnl|UG|Hs#S3800695 602866556F1 Homo sapiens cDNA, 5’ end /clone=... 330 4.75076e-188
gnl|UG|Hs#S2155111 601116752F1 Homo sapiens cDNA, 5’ end /clone=... 330 4.75076e-188
gnl|UG|Hs#53340458 602426736F1 Homo sapiens cDNA, 5’ end /clone=... 329 1.93307e-187
gnl|UG|Hs#S4277359 AGENCOURT_6632171 Homo sapiens cDNA, 5’ end /... 327 3.19776e-186
gnl|UG|Hs#53842279 603081789F1 Homo sapiens cDNA, 5’ end /clone=... 326 1.30007e-185
gnl|UG|Hs#S3615612 602764031F1 Homo sapiens cDNA, 5’ end /clone=... 326 1.30007e-185

>gnl|UG|Hs#S2155111 601116752F1 Homo sapiens cDNA, 5’ end
/clone=IMAGE:3357348 /clone_end=5’ /gb=BE257786
/gi=9128265 /ug=Hs.23170 /len=632
Score = 330
Identities = 375/382 (98%)
Strand = Plus / Plus

Query: 1 ccggcccg-ccgaacctgggegatccacgatgecgagtttgecacgetgegacagecaat 59
FECETEEE T be e e e e e e e e e e e e e e e e e e e e e e
Sbjct: 3 ccggcccgecggaacctgggegatccacgatgecgagtttgecacgetgegacageccat 62

Query: 60 aggcttgc--ccccccggcattcgggtggactacgaacacaaactgaagecctaggactt 117
FEEEEEEE treee terr e e e e e e e e e e e e e e e e e e
Sbjct: 63 aggcttgcccccceccgggecattcgggtggactacgaacacaaactgaagecctaggactt 122

Query: 118 gtcgcccgtttgegetctcgecgaggecacaggetgetcgeggaccaccentgentccga 176
FECEEETEEEEE TR e e e e e e e e e e e e e e e e e e e e
Sbjct: 123 gtcgcccgtttgegetctcgecgaggecacaggetgetcgeggaccacce-tge-teccg- 178

Figure 4.15: Example DASH Output.

identical to that of BLAST, FASTA and many other sequencgratient programs. Ex-

pected value statistics are calculated using the meth | (1998), and the format

of the output is essentially the same as that of NCBI-BLASZ&.with an example excerpt

displayed in Figur&Z15.
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4.4 Results

The DASH algorithm as described at this point does not irelrindex format, and since
the nature of the index format is a critical component of a plete sequence search and
alignment system, influencing both speed and sensitiviig, mot appropriate to present
general search results here. That is the subject of lat@tetsa However, it is possible to

examine some behaviours of the DASH algorithm that are iedéent of the index format.

4.4.1 lllustrated Example Of Alignment Assembly

The following example depicts a real assembly as emitted®ynternal instrumentation in
thedash program during testing. Thick blue lines correspond to H8MPde red and purple
regions correspond to those areas subjected to dynamicgonogng. The thin black lines
with bars at each end correspond to reported alignments.téiteal annotations to the

right of the diagram indicate the end points and score of egbrted alignment.

Figure[4.Ib shows the case of the alignment of two very simsiéguences. The primary
alignmentis the diagonal line that reaches from the botagtid top right corner. Note that
the dynamic programming begins within the end of each HSR.i$lthe practical effect of

the recessed starting point. The smaller HSPs, symmetpiatabe main diagonal, reflect

the existence of repeat regions within the sequence.

The extension of the alignments that occurs for each of tbeeshHSPs demonstrates the
slow start and adaptive features of the dynamic programuadgpgyithm: The dynamic pro-
gramming bands begin quite narrow (red) and progressivagden until the maximum
width is reached (purple), or truncated by the limits of tly@amic programming space,
thus saving substantial effort. The adaptive placemenaoh euccessive band is particu-

larly evident in the apparent wandering of the bands onceribech full width.
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0i|28279202|gh|AAH45967.1| (BC045967) Similar to splicing factor 30, survival of motor neuron-related [Danio rerio]

Query length = 237, Subject length = 238, Total DP Area = 13424 [23.80%].
Produced 3 Alignments.

[71-113]~[175-217] score 19,
[175-217]~[71-113] score 19,
[0-237]~[0-237] score 1222,

60

119

178 7

238

237

Figure 4.16: Example Of Alignment Between Two Very Similar Sequences. HSPs are
marked blue. Dynamic programming regions are either red (slow start heuristic), or purple
(after slow start heuristic) . The effect of the slow start banded dynamic programming
heuristic is clearly visible in the widening bands (red).
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>gnl | UG |Hs#S3290308 AL570239 Homo sapiens cDNA /clone=CSODI004YD20
/gb=AL570239 /gi=12926354 /ug=Hs.284170 /len=867
Score = 277
Identities = 465/524 (88%)
Strand = Plus / Minus
Query: 1 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttt-ata 58
FECEEEREETEE e e e e e e e e e e e e e e e e e e e e e e +
Sbjct: 660 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttttrat 600
Query: 59 tgtctaggtcacagtaatccctaggatttttcaccgcttattctttgttgtctttttga 117
FECEEEEEETEE e e e e e e e e e e e e e e e e Leer et
Sbjct: 601 tgtctaggtcacagtaatccctaggatttttcaccgcttattcttt-ttgtctttttca 542
Query: 118 acaaacatattatccgaattttttttctgcaagccactgatagtctctgctaactaget 176
O e O R R e A R N e e AR RN R A A
Sbjct: 543 -catccttcttctccgaattttttttctget-gecactgttcgtctctgetecccteget 485
Query: 177 taattgacctttttacaaagtttgatccccaagcatcctcaagctaaatcattgaatac 235
R R N NN R R R e A e A R R N R A A RN RN RN
Sbjct: 486 tcattgccctttttccaaagtttgatccccatgcttcctca-tcttaatcattgaatac 427
Query: 236 ttcaatcaggatattatctggctttactttacaaataaaaaccaaatc-tttgtcaaca 293
FECEEEEEETEr e e eeee e teer et terr e terrerre
Sbjct: 428 ttcaatcaggatattatctg-ctttactttccaaataaac-ccaaatcttttgtcaaca 370
Query: 294 ggatgaaacccatcttaaaggaaagaaaaggaattggtgtgaagagagaagttagagaa 352
R R R AR e A R A N R RN R RN A RN B N B N B
Sbjct: 371 ggttgaaccccatcttaaaggaacgcaacggtattggtgtgaagagwgcagtttgygtn 311
Query: 353 gggaaatgcaggtgaattactatctgtgtccatcaggaagtttgtcctgttaaccaaat 411
FELEEEEEE PR e e e e e e e e e e e e e e e e e
Sbjct: 312 gggnaatgcag-tgaattactatctgtgtccttcaggaagtttgtcctgttaaccaaat 253
Query: 412 ggttactgcactacca-ggttactggtttattttccagggagctgataaagcaggagaa 469
FECEEEEEETEr 0 CEr e b e e e e e e e teer b e et
Sbjct: 254 ggttactgcactmccagggttactggtttattttccagggtgctgtttaagcaggageca 194
Query: 470 ctgttgctgcatgttttctatttggactccgtcacaatatggtaggatatcccte 524
FECEEEEEETEEE e vt te =+ b e+ 1 il

Sbjct: 195 ctgttgctgecatgttttctttttkg-ctccktcacattttggtagkttctcccte 142

Figure 4.17: DASH Alignment of S3317510 Versus S3290308.
Note that the alignment consists of two long high quality HSPs which DASH has correctly
stitched together into a single high scoring alignment.

4.4.2 Example Of Superior Alignment Assembly

Figured4.1l7 anA 4118 depict the alignment of the same paegfiences as returned by
DASH and BLAST respectively. Note that DASH constructs gkriull alignment, while
BLAST constructs only fragmentary alignments. This fajlon the part of BLAST has the
significant effect that the lower scores of the fragmentsedhe alignment to be placed 44

positions further down the list of results.
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>gnl|UG|Hs#S3290308 AL570239 Homo sapiens cDNA /clone=CSODI004YD20
/gb=AL570239 /gi=12926354 /ug=Hs.284170 /len=867 Length = 867
Score = 335 bits (169), Expect = 1e-89
Identities = 322/367 (87%), Gaps = 7/367 (1%)
Strand = Plus / Minus

Query: 150 gccactgatagtctctgctaactagcttaattgacctttttacaaagtttgatccccaag 209
Freeeer errrererrr e tree reer rer e e Fer e e
Sbjct: 513 gccactgttcgtctctgectccctcgettcattgecctttttccaaagtttgatccccatg 454

Query: 210 catcctcaagctaaatcattgaatacttcaatcaggatattatctggctttactttacaa 269

Frrerrr e ere e e e e e e e e e e e e e e e e e e P e e
Sbjct: 453 cttcctcat-cttaatcattgaatacttcaatcaggatattatctg-ctttactttccaa 396

Query: 270 ataaaaaccaaatcttt-gtcaacaggatgaaacccatcttaaaggaaagaaaaggaatt 328

FEEEE TEREEEEEr e Peeer e reer e e e e e e
Sbjct: 395 ataaac-ccaaatcttttgtcaacaggttgaaccccatcttaaaggaacgcaacggtatt 337

Query: 329 ggtgtgaagagagaagttagagaagggaaatgcaggtgaattactatctgtgtccatcag 388
(R R e R e e N R RN A A RN R R R RN R R RN RN AR
Sbjct: 336 ggtgtgaagagwgcagtttgygtngggnaatgcag-tgaattactatctgtgtccttcag 278

Query: 389 gaagtttgtcctgttaaccaaatggttactgcactacca-ggttactggtttattttcca 447
FEEEEEEEEEEErr e e e e e e e e e teer e e e e
Sbjct: 277 gaagtttgtcctgttaaccaaatggttactgcactmccagggttactggtttattttcca 218

Query: 448 gggagctgataaagcaggagaactgttgctgcatgttttctatttggactccgtcacaat 507

Fre e rrrereer e P e e e e e e e e e e e e rerer
Sbjct: 217 gggtgctgtttaagcaggagcactgttgetgecatgttttctttttkg-ctecktcacatt 159

Query: 508 atggtag 514
(RRRN
Sbjct: 158 ttggtag 152

Score = 182 bits (92), Expect = 1e-43
Identities = 112/116 (96%), Gaps = 2/116 (1%)
Strand = Plus / Minus

Query: 1 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgctttata-t 59
FEEEEEEEEEEEr e e e e e e e e e e e e e e e e e e e e e e e
Sbjct: 660 cttttagctcactccacaagtaaatggatttaatcaaaggtcacctatctgcttttratt 601

Query: 60 gtctaggtcacagtaatccctaggatttttcaccgettattctttgttgtcttttt 115
FECEEREEEEEE TR e e e e e e e e e e e e e e e e e Lerr e

Sbjct: 600 gtctaggtcacagtaatccctaggatttttcaccgecttattcttt-ttgtcttttt 546

Figure 4.18: BLAST Alignment of S3317510 Versus S3290308.

Note that while the alignment consists of two high quality HSPs, BLAST fails to assemble
them into a single high-scoring alignment. This failing causing such alignments to appear
further down the list of results than their significance warrants, possibly causing them to be
ignored.
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4.5 Summary

In summary, the DASH algorithm has been defined as a three ptagess of: (1) HSP dis-
covery; (2) assembly, and; (3) finishing by adaptive bandethdhic programming. These
procedures have been described with a view to explain howgbpport the objectives
of this dissertation by constructing an algorithm that caakenefficient use of a coopera-
tively compressed database and index ensemble, and offattifactive characteristics of
predictable execution time, and the potential for subdirexecution time with respect to
uncompressed database size. Therefore the current impiatioa is used as the vehicle

for testing the thesis of this dissertation in Chaplérs S&nd
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Chapter 5

FOLDDB: First Steps In Cooperatively
Compressed Databases And Indices

Introduction

In an English text, each indexed word is discrete, i.e., wandEnglish text do not overlap
one another. For example, to index the first two words of teigence, “For” and “exam-
ple” would be indexed, but “or €” and “r ex” would not. Theredpto create an exhaustive

index for all words in an English text requires only one peirger word. The average word

length is in the range of five to six lettet i PIonsequentially, the number
of pointers required in the index will be one-fifth to onethithe number of letters in the

text.

An English word can be represented using perhaps five bittefier, and so requires of
the order of 30 bits per word. Using an appropriate codingsah the inverted list for

a given word can be compressed to around 6 bits per postiraypand 12 — 18 bits per

posting, if the position of a word within a record is requii¥i _J_‘LJQ). In either
case, the volume of the index (6 — 18 bits per word) will be sohs smaller than the
uncompressed text (30 bits per word).

However, in the case of biological sequence databasesswwatlap because there are no

natural word breaks: A word is instead a seriek @abnsecutive letters — often called a
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k-mer. Assuming that the word lengtk n, wherenis the number of letters in the database,
there will be~ n words: Thus the per-word index storage cost is incurred factally

every letter in the database.

In the case of nucleotide or amino acid strings, respegtiedetter can be encoded in 2 or
5 bits. However, the size of the compressed inverted ligili$s- 18 bits for each posting,
and, as previously mentioned, a posting is required fortjpaty every letter. Therefore,
the compressed index of a biological sequence databasbensibmewhat larger than the
uncompressed text. The excessive relative size of congatdsslogical sequence database

indices makes it attractive to discover more efficient repngations.

Aims

An opportunity for improving biological sequence databasex compression exists when
redundancy in the database is sufficient that entire dag¢aleasrds may bsubsumedy a

superiordatabase record, i.e., if some database records are subreeg of others. This is

in some ways similar to the work bf Bernstein and Zbbel (2@5)he content equivalence

of documents. However, here the relation is generaliseoh fequal-to(=) to greater-
than-or-equal-tq>). For example, if a database contains the two records “eagpiland
“pill”, the latter can be subsumed by the former, since “apj” contains the entire text
of the record “pill”: The record “pill” provides no contenhat is not already contained
in “capillary”, i.e., “capillary” > “pill”. (Partial redundancy, as between “capill&rgnd

“laryngitis”, or between “capiliry” and “filler”, is addressed in Chapfdr 6).

Subsumed sequences do not need to be indexed, since any $t8Reded in the superior
record can be translated into the subsumed record. Bedagigatire subsumed sequence
exists in the superior sequence, the entire alignment carabslated — avoiding dupli-

cation of HSP discovery, assembly and finishing activiti8gce these activities are no
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longer duplicated, search time is reduced. Thiseeord folding and it is presented as a

first generation cooperative compression scheme.

The remainder of this chapter describes the implementati@n index format and con-
struction program, FOLDDB. This index format is integrateth DASH, and results are
given for the standard queries used in this dissertatiotin Wwadh and without record fold-
ing. The results show that simultaneous index space andrsgare savings are possible
when record folding is employed. Sensitivity is also slighitnproved. It is, therefore, a
proof of the thesis of this dissertation, in that it excludesterial from the search with-
out reducing the thoroughness of the search, thus reduethging search space and time

requirements without compromising search sensitivity.

5.1 FOLDDB Index Structure And Algorithm

This section defines the FOLDDB indexing algorithm and inslexcture, that implements
record folding of biological sequence databases. The FORRQorithm is optimised for

fast memory resident searching, rather than size. Theredside from record folding, few
measures are used to contain the index size, and only toestiatrthe index could fit into

the RAM of the computers used during development.

5.1.1 FOLDDB Index Structure
5.1.1.1 Text-Partitioned Structure

The final size of an inverted list is not the only difficulty wheonstructing the index of
a database. The memory requirements during index constnugtow with increasing
lexicon size (i.e., number of unique “words” kimers in the database) and database size.

Because fixed-width words are used when indexing a biolbgeauence database, the

156



5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

maximum size of the lexicon can be determined before indegommences, easing the

construction problem somewhat. However, the databaseesizains unbounded.

One technique for dealing with the unbound database sizeds/ide the input text into

a number of fixed sized partitions, and to index each in turittéWet al. 1999). These

partitioned indices can be efficiently combined to form tinalfindex.

However, there is no actual requirement to combine the ipdetitions: each is a valid in-

dex inits own right. The drawback of not combining the pais is that some compression
leakage occurs. The degree of leakage reduces as theguesiite increases, suggesting
that relatively large partitions should be acceptable. ddwer, certain advantages arise in
the current situation from maintaining the partitionedisture. These advantages pertain

to search efficiency and parallelism.

Search efficiency benefits include the enhancement of qtréating), because of the greater
variation in word frequencies that results from averagessldata. Further, by considering
only a portion of a larger database at any one point lessistegquired to be held in RAM.
While this can be resolved in software by using advancedltatdling arrangements, it is
more difficult to do the same in hardware. As the DASH algonithas originally designed
to operate in hardware as well as software the decision wak nmafavour of simplicity

and hardware compatibility.

Parallelism is aided in that each partition can be simultasly constructed or searched
without contention. While it is possible to efficiently cteaand maintain a single index
Les.Le.Lel_Jll_ﬂX 5), there remain certain advantages totenaing a partitioned index. A

partitioned index can be fully RAM resident on a cluster ofmgaiters in a much simpler

way than can be a single large index. This is particularisaative when using a hetero-
geneous cluster to perform the searching. Again, when im@iging a search system in

hardware (or a combination of hardware and software woykérgreatly simplifies the
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process if each worker can operate on discrete units of dagaring that the search pro-

cess can be performed without synchronisation or consigtemnsiderations.

5.1.1.2 Partition Layout

The FOLDDB index format divides the indexed database intoralver of partitions. Each
partition contains up to 65,000 database records, inautheir lengths, FASTA format

descriptions, and a compressed inverted list for elaner, for some fixedk.

The FASTA format descriptions are stored in plain ASCII &g they are relatively small
when compared to the combined size of the inverted lists hadéquence bodies. The
nucleotide sequences are stored using four bits per baséento allow encoding of all 15
IUPAC nucleotide codes, and rapid access by the DASH seagihethat uses the same
internal representation during HSP construction. Proseiquences are stored in ASCII

format, hence consuming eight bits per base.

None of these representations are particularly space egfficreflecting that this index
structure is optimised for speed, not size. (A more spaceiaiti representation is ad-
dressed in the NP3 database representation of CHdpter BeahdX index representation

of Chaptefr).

5.1.1.3 Compression Of Inverted Lists

The entries, i.e., postings, in the inverted lists are 32dlites that encode the offset of the
first letter of thek-mer the posting relates to, relative to the start of thatpamt The record
numbers, i.e., ordinal position of the record in the pattiare not explicitly recorded, as

they can be computed from a table of cumulative record length

A number of coding schemes could be applied to the inversd, lsuch as thé- and
y-Elias codes|(Bentley and \Ja_o_li)% I'Las_]975), global Blell‘h‘G.alLa.g.eLa.ndJQ.o.Ll:]is
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1975, 1966), local Bernoulli (Witten et al. 1 )_Z_Bamm_e_t_a| 1992), skewed

[ 19¢

%)

Bernoulli (Moffat and Zob

frequency (Moffat and Zobe 2), Interpolative_(MoffaidaStuive 1996), or Se-
4

IectorAﬂh_a.D.d_Mﬂ.ﬁilsLZX‘ 2004).

Instead, a fast ad hoc byte-aligned approach was deviseddhmn the prefix omission

Teuh 978), Hyperb 76), batched

method described hy Choueka et al. (1988) which is normagdudor compressing lexi-

cons: for each set of four successive pointers a controlibgieates the number of bytes
that must be replaced in the previous pointer in order to ywedhe new pointer. The
modified bytes then follow. FiguleB.1 demonstrates how shieeme works in practice.
The eight non-zero eight-digit hexadecimal numbers ondftdhbind side of the figure are
the index postings that are being compressed. For eachssiveavord, determine the
number of consecutive bytes that must be replaced in thequeindex posting in order to

transform it into the new posting. Processing begins assythiat the hexadecimal value
00000000 has already been recorded. Thus for the posting30@@ the bottom three
bytes must be replaced. Two control bits are then generatichiting the number of bytes
replaced minus one. This is repeated for each index poghiitgr. every fourth index post-

ing the control bits are collected into a single control bythich is written to the output

stream, followed by the data bytes it indicates.

Certain storage inefficiencies occur because there aretwolgontrol bits. For example,
bytes are wasted if the lowest order byte(s) are identicdlhlgher order bytes differ, as
in the case of index postings 000581dc and 000abOdc. Whiletbe middle two bytes
differ, our scheme must write out three bytes. Nonethetb&sscheme has the compelling

advantage of being very fast, because it almost exclusiussdyg byte-aligned operations.

This ad hoc approach coded below the zero-order entropyctf lege of the 32 bit point-
ers when indexing the Human UniGene (nucleic acid) datab&bde it is certain that this

does not provide the best compression possible, it does &lovery rapid decompression
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# ctl data control data
00000000
00038924] 3 10 248903 10011000 24 89 03 87 fe 02 81 05 a9
0003fe87 | 2 01 87fe
00058102 3 10 028105
00058149 ] 1 00 a9
000581dc] 1 00 dc 00100110 dc dc b0 0a 64 b5 72 89 0Ob
000ab0dc| 3 10 dcboOa
000ap564] 2 01 64b5
0oopb8972| 3 10 72890b

output 98 24 89 03 87 fe 02 81 05 a9 26 dc dc b0 0a 64 b5 72 89 Ob

Figure 5.1: Fast Ad Hoc Index Posting Compression Algorithm. Only the low order bytes
that have changed are recorded for each successive index posting (as indicated by the
shaded bytes in the index postings). A control byte is required for each four postings to
indicate the number of bytes recorded for each index posting.

of the inverted lists. Combined with the clear text représgons of the sequence bodies
and descriptions, the net result is a database and indembrlesghich, while hardly com-

pact, imposes little processing overhead during the sqaaxtess. This makes it a useful
baseline for observing the effect of using record foldingdgoperative compress biological

sequence database and index ensembles.

5.1.2 Excluding Stopk-mers

In addition to the inverted list compression scheme desdrdbove, one other measure is
used to control the size of the index, stomers. Stogk-mers are analogous to stop words
in English full text retrieval systems: They are terms thatexcluded from the index on

the basis of their excessive frequency in the database.

Argument can be made against the exclusion of stop wordsd&romdex, on the basis that

it makes it impossible to efficiently search for the excludadry termsi(Witten et &l. 1999).

However, these arguments need to be interpreted in thextooitdiological sequence

databases.
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In order to raise the biological precision of database @serthe query itself is often
filtered to mask so-calletbw complexityregions, which generally correspond to over
frequent terms in the database, and hence ktoers. Among the most common low
complexity regions are contiguous runs of a single base o, @&g., AAAAA...AAA.

There are a number of algorithms commonly used to filter tlask similar structures

from queries, and included in that list of algorithms are SJSAB).OILQD.&D.d.E&d.ELth
1991 ,_J_99J6), DUSTL(Hancock and Armstring 1994), XILI_U_(_C_I_%aLand Statés 1993) and

CAFEFILTER (William ‘_199J9). Therefore, it appears thatpstemers play an impor-

tant and credible role in maintaining precision in biol@disequence sequence search and

alignment.

Because of the correlation between skemers and regions of low biological complexity
(such as long runs of consisting of only one or two of the maies), it is much less
reasonable to search for a nucleic acid or protein queryishedmposed exclusively of
stopk-mers, than it is to search for an English phrase that cansaely of stop words.
Moreover, because each overlappkamer is indexed, it is extremely difficult to construct
a query that is composed entirely of stiopners, without it being composed entirely of a

single base or amino acid.

Consider a sequence composed of a run of As followed by a fdrso The frequency of
the all Ak-mer and the all Tk-mer may be such that both are stompers. However, it is
unlikely that thek-mers consisting of one throug+- 1 A's, followed byk — 1 through one
T’s, i.e., AA..AT, ..., AT..TT, would all occur with suffient frequency that they would
also be stofk-mers; if only one of thé&-mers is not a stog-mer, that is sufficient for the

guery to succeed. Therefore recall is unlikely to suffer.

While recognising that the use of any sort of query filter iolbgical sequence database

searching results in some loss of sensitivi ' 'Jms_EL)QSFOLDDB employs stox-

mers as an effective method of index size reduction witheart bf excessive loss of sensi-

161



5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

tivity. The observed frequency of sté&gmers is recorded however, so that DASH's query

striding algorithm can function correctly.

The decision to exclude stdpmers was made in order to restrain the size of the index,

and is a reflection of the primitive index compression usatihar than on the feasibility of

indexing stop words. Indeed, Bell ef al. (1993) have showahwith an efficient compres-

sion scheme, stop words contribute only slightly to theltmdex size. Thus, while the
FOLDDB index structure does not index stop words, this deBaddressed by its sequel,

NIX, in Chaptel¥.

5.1.3 Record Folding As A Prototype Of Cooperatively Compresed

Indexing

The key feature of FOLDDB is that it implements a prototypmaoperative compression
scheme called record folding. This takes the form of mergirggstorage (and thus in-
dex postings) of records that are sub-sequences of otherglatabase. The containing
sequence is called trmuperiorsequence. Each of the folded records are recorded in an

appendix to the FASTA description of the relevant superoord.

Alignments that occur against a superior record are trégtslanto the context of each
folded record, as illustrated in Figureb.2. The inner squapresents the folded record,
while the outer square represents the superior record.nilent discovery proceeds for
the superior record according to the three stages of the DAlgbtithm. After this, the

intersecting portion of the alignment is translated int® ¢bntext of the folded record.

The two advantages of this approach are: (a) its lack of itnpac¢he search process, and
(b) its computational efficiency. The search process ismpticted, because the unfolding
of alignments can be performed as a post-processing stdpsasbed above. The compu-

tational efficiency arises for a similar reason; as the $eprocess need only process the
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N

1. Find Un-Gapped Alignments 2. Join Un—-Gapped Alignments

4. Unfold Alignments against 3. Extend ends of Gapped Alignmel
Redundant Records.

Figure 5.2: Example Of Alignment Unfolding for a Folded Record.
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superior record, finding any alignment against a foldednace-uses the work previously

carried out against the superior record.

One disadvantage of this approach is that the initial dispoof the foldable records in
an unsorted database is time consuming. The heuristicigdgoused in this dissertation
is to take each sequence in the database and search forwheldatabase for candidate
sequences. Farsequences this requirés—1)+(n—2)+---+(n—(n—1))+(n—n) =
zg‘ln actions, and thus completes in approximat®in?) time. However, this occurs
only during index construction, and so the cost is an acbéptane. However, once a
database has been constructed, additional sequencesbeoaititied in Q) time, i.e., the

time required to search the index.

5.1.4 Construction Of Folded Database Index

A two phase process is used to build the index. Databaseipairig, index compression
and stopk-mer exclusion are used in both phases; the database isrs&tinto partitions
that extend until they just exceed either a record countttgrleount quota. Within each
partition, the inverted lists are compressed using the adiethod previously described,
with stopk-mer exclusion discarding any very long lists. Pseudo-dodéhis index con-
struction process is presented in Figlird 5.3. Finally, titkces of each partition of the

database are concatenated to form a single index file foratabddse.

The first phase produces a temporary index that is used dtivengecond phase to dis-
cover record folding opportunities. Construction of thenp@rary index is relatively fast,

requiring only a few minutes per giga-base on a 750 MHz SUNXaBPARC 11l processor.

The second phase of the index construction process invimeksg for record folding op-
portunities using the index that was produced during theginase. The DASH algorithm
performs this search by exhaustively searching for evasgreein the index against every

other record in the index. The pseudo code for this procgaeented in Figufe3.4.

164



5.1. FOLDDB INDEX STRUCTURE AND ALGORITHM CHAPTER 5. FOLDDB

k = index word width
for m = 1 to (database_section_length-k)
-- Check if this is the beginning of a new record
if (a record starts here) then
-- record sequence description

record_description[record_count] := sequence description
-- record starting location of the record
start_of_record[record_count] :=m

—- increment number of records
increment record_count
end if

-- Obtain the k-mer at this position in the database
t = the k-mer beginning at position m in the database
-— Record location of this n-mer
addresses_of_occurrences[t] [number_of_occurrences[t]] = m
-— Increment the number of occurrences of this k-mer
increment number_of_occurrences[t]
—-— Write the residue to the index
write residue[m] to index

next m

-- Write list of sequence descriptions

write record_description[0 .. record_count] to index

-- Write list of record starting points

write start_of_record[0 .. record_count] to index

-- Write table of n-mer addresses for each n-mer with

-- a frequency lower than the low selectivity cut-off

for t in (the complete set of k-mers)
-— Write the number of occurrences of the n-mer to the index
write number_of_occurrences[t] to index

—— If the number of occurrences does not reach the cut-off,
-- write the complete list, otherwise write an empty list
if number_of_occurrences[t] < low_selectivity_cut_off then
-— Compress the list of addresses
compress addresses_of_occurrences [t]
-- Write the compressed list of addresses to the index
write addresses_of_occurrences[t] [0 .. number_of_occurrences[t]]
else
-- Too many occurrences, write only an empty list
write (empty list) to index
end if

next t

Figure 5.3: Pseudo Code For Index Construction Process.

This fragment describes the process used to index a partition of the database (removal of
folded records occurs later). The partition is traversed, and the frequency of each k-mer
is calculated, and the address of each occurrence recorded. The starting location and
textual description of each record in the database partition is noted. Once the traversal is
complete, the list of descriptions is written out to the index. The frequency of each k-mer is
also written, along with the compressed list of addresses where it occurs. However, if the
k-mer is over abundant in this database partition, then only the frequency is written: The
addresses where it occurs are not written.
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For this application, the DASH algorithm is re-tuned forichppproximate searching; it
searches for only onk-mer per record, resulting in very few index postings reiqgir
investigation. Further, the minimum HSP length is set taémgth of the query sequence,
and the minimum score to the identity score of the query. iBwiay, only exact alignments
that span the entire query sequence are identified. Thigalé@arching for more than
200 records per second in the 2 giga-base Human UniGene (nucleic acid) database.
Nonetheless, this process required several hours for tmeaduJniGene (nucleic acid)

and GenPept (protein) databases.

This algorithm is fundamentally @f), and better algorithms exist, such as the SPEX vari-

ant developed for genomic databases (Bernstein and C that uses document

fingerprinting to perform the all-to-all comparison in rdig O(n) time. However, that
algorithm was not published when this work was undertakehil&¥he O(?) algorithm of
this dissertation is not the most efficient possible, it wdB@ent for testing the hypotheses

of this dissertation.

The second phase of index construction is concluded bydakia list of foldable record
pairs in the database, and rebuilding the index with thoserds folded. If more than one
superior record is identified for any given foldable recdft longest superior record is
chosen. In the case of a tie, the superior record that is sigdw@end of the database wins.
This minimises the number of superior records required tdaio all foldable records. If
superior records were chosen arbitrarily from the validsgambties, then chains or cycles

of reference could result, complicating the process.

All superior records are tagged with the description of aslgdd record(s) they contain.
The pseudo code for writing the cooperatively compresseaebimand recording the record
folding information is presented in Figurlesls.5 5.6eespely. This index writing pro-

cess takes only a few minutes, and is performed using a useifieg stogk-mer frequency
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—-- Search for each record in the database

for s = 1 to index.record_count
-- Obtain the record from the database
query = index.recordl[s]
-- Search for it in the database. Look for only
-- exact full length alignments.
alignments = dash.search.exact(query,index)
-- Exclude the query sequence itself from the results
alignments = alignments - subset(alignments,query)
-- Keep only the longest alignment(s)
alignments = subset(alignments,longest)

-- Keep only the last alignment in the list
alignments = alignments[alignments.last]

-- Reject the alignment host if it is the same length as
--  the query, and occurs earlier in the database
if (alignment.host.length == query.length) then
if ( alignment.host.number < query.number ) then
-- Alignment host is a record that is identical to the
-- query in content and length, and occurs earlier in the
-- database. Therefore it is a record that we make
-- redundant, so don’t say that we are made redundant by
-- it!
alignment = (empty list)
end if
end if

-- If we still have an alignment, record it as the superior record
-- of this record. Also record its location in the superior record
if ( alignment != (empty list) then
-- Mark this record as foldable
record_is_foldable[s] = true
-- Record which record contains it
record_superior[s] = alignment.superior
-- Record where it occurs in the superior record
record_offset[s] = alignment.subject_start
-- The foldable record is also recorded against the superior
-- record for during index reconstruction
list.append(made_foldable_by[alignment.superior], query)
end if

next s

Figure 5.4: Pseudo Code For Index Construction Process.

This fragment describes the process used to identify foldable records within a database.
The temporary index is queried to find the superior records, if any, of each record. Only
exact full-length alignments are used. The alignments are sifted to leave only the longest
and latest appearing superior record. If this superior record is the same length as the query
sequence, it is checked that it occurs later in the database to prevent cycles forming. If an
alignment passes these tests, it is a superior record, and the query sequence is marked
foldable.
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threshold. The resulting record folded index will vary izesiaccording to the degree of

redundancy it has identified and removed.

5.2 Searching Folded Databases With DASH

As previously described, the only change made to the seaodegs to support the search-
ing of database and index ensembles cooperatively congutessng record folding is
the addition of an alignment unfolding post-processing.s#&lignments are unfolded by
checking each to see if they occur in a superior record. Iftls® list of folded records
the superior record contains is consulted. Where any ofdlued records intersect with
the alignment, the intersecting portion of the alignmentasslated into the context of the
folded record. This contributes negligibly to the totalrebatime, and has the advantage
that it has time complexity proportional to the number ofathents, and not the size of

the database. Thus we have the potential for sub-lineactséare versus data-base size.

5.3 Method

To evaluate the effect of the record folding cooperative psasion technique, control, i.e.,
non-record folding, indices of the Human UniGene (nuclaicrand GenPept (protein)
databases were constructed. Skemer frequency thresholds of®2x E;gngom and 10x
Erandom Were used, respectively. These thresholds were deterneimgdrically as being
small enough to enable the indices to fit into the main membtli®@computers on hand,
and large enough to not significantly detract from searclsigeity. Folded versions of

these indices were then created, using the samekstogr frequency thresholds.

DASH and FOLDDB were compiled as single-threaded 32bitegpons, with optimisa-

tion flag -02 passed to the C compiler. The configurations of Table$ A.9mAd were
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k = index word width
skipping = false
for m = 1 to (database_section_length-k)
-- Check if this is the beginning of a new record
if (a record starts here) then
if (record_is_foldable[sequence description]) then
—- This record is marked as foldable, so don’t record it
skipping = true
else
-- record is not foldable, so record it normally
-- record sequence description

record_description[record_count] := sequence description
-- record starting location of the record
start_of_record[record_count] :=m

—- increment number of records
increment record_count
end if
end if

-- Only write record data out if the record is not

-- redundant

if (skipping == false) then
-- Obtain the k-mer at this position in the database
t = the k-mer beginning at position m in the database

—-— Record location of this k-mer
addresses_of_occurrences[t] [number_of_occurrences[t]] = m

—- Increment the number of occurrences of this k-mer
increment number_of_occurrences[t]

—-- Write the residue to the index
write residue[m] to index
end if

next m

Figure 5.5: Pseudo Code For Index Construction Process.
The index is rebuilt, using the information of which records can be folded. This is identical

to the
index.

first pass of index construction, except that folded records are not included in the
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-- Write list of record descriptions
write record_description[0 .. record_count] to index
-- For each non-folded record in the database ...
for s = 1 to record count
-- ... see if it is the superior of any other records
if (made_foldable_by[s] != (empty list) then
-- Yes: write the information for each record made
-- redundant by this record
for r = 1 to made_redundant_by[s].length
-— Write description of record
write made_foldable_by[s] [r] .description to index
-- Write offset of folded record in its host
write record_offset[made_foldable_byl[s] [r].record] to index
next r
end if
next s
-- Write list of record starting points
write start_of_record[0 .. record_count] to index

-- Write table of n-mer addresses for each n-mer with

-- a frequency lower than the low selectivity cut-off

for t in (the complete set of k-mers)
-— Write the number of occurrences of the n-mer to the index
write number_of_occurrences[t] to index

—-- If the number of occurrences does not reach the cut-off,
-- write the complete list, otherwise write an empty list
if number_of_occurrences[t] < low_selectivity_cut_off then
-— Compress the list of addresses
compress addresses_of_occurrences[t]
-— Write the compressed list of addresses to the index
write addresses_of_occurrences[t] [0 .. number_of_occurrences[t]]
else
-- Too many occurrences, write only an empty list
write (empty list) to index
end if

next t

Figure 5.6: Pseudo Code For Index Construction Process.

This fragment describes how the record descriptions and other information are written.
This is similar to the first pass, but with the addition of the information necessary to record
that each folded record is stored in its respective superior record.
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used for the DASH M2 and DASH M4 variants, respectively. Birofqueries were run
twice: (a) with an ordinary index, and; (b) with an index cecgtively compressed using
record folding. All queries were executed using the batghenvironment described in

ChapteB.

Record folding had practically no effect on the Human Uni&émucleic acid) database,
folding only 0.1% of the 3.6 million records. This is becatisere are multiple codons that
encode each protein, and therefore it is uncommon to seégdenucleotide sequences,
even when they encode exactly the same protein. Therefolgtlee results for the ordi-

nary index of the Human UniGene (nucleic acid) database rasepted. Finally, because
record folding targets large scale repetitions, this methias not attempted on the Human

Genome database, because that database contains litttelsetty of this kind.

5.4 Results And Discussion

Tables[EN[B1Z B3 F.45.5 ahdl5.6, and Figlirek 5. Tanh@resent the database and
index size, search speed and sensitivity data for the megedintrol indices built from the
Human UniGene (nucleic acid) and GenPept (protein) daéshamd the record folded
index built for the GenPept (protein) database. As preWoosentioned, record folding
had practically no effect on the Human UniGene (nucleic Jadatabase. Therefore no
results are reported for the Human UniGene (nucleic acithbdse with a record folded

index.

5.4.1 Effect Of Sequence Folding

Considering the control indices first, TablEs]5.3 5.5 &igure[5F show that
DASH+FOLDDB is competitive with the surveyed algorithms faucleotide searching.

DASH M2 posts the fastest search time among the group, winilel&aneously delivering
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PatternHunter Variant Scores for Various Algorithms
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Figure 5.7: PatternHunter Variant Scores (See Section [3.3) For Nucleic Acid Queries (Us-

ing The Human UniGene (Nucleic Acid) Database). The Smith-Waterman algorithm is
used as the benchmark.
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PatternHunter Variant Scores for Various Algorithms
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Figure 5.8: PatternHunter Variant Scores (See SectionB.3) For Protein Queries (Using The
GenPept (Protein) Database). The Smith-Waterman algorithm is used as the benchmark.
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good sensitivity. The situation is similar for protein seng, with Table§514 arld 3.6, and
Figure[&.8 showing that DASH+FOLDDB is competitive with teerveyed algorithms.

However, the FOLDDB indices are very large, second in sidg trthat of CAFE.

Turning to the GenPept index that was cooperatively conspigksising record folding,
Table[54% shows that search times were reduced by about wartke This shows clear

evidence of sub-linear search time with respect to (uncesgad) database size.

Table[56 and Figule .7 show that this speed improvemerst dokinvolve a sensitivity

trade-off. Rather, sensitivity scores are slightly insezh (Two-Sided Wilcoxon Signed

Ranks Test (Wilcoxon 1945), p-value = 0.00014).

The question arises: Is this gain in sensitivity due to treeafsooperative compression, or
due to some other cause? There is one potential cause thebencsnsidered, that is the
potential for improved sensitivity caused by the normaigaof somek-mer frequencies
that results from folding similar records. Whenever a rdderfolded, the frequencies of
the k-mers it contains are slightly reduced. This effect can bicgnt to cause somk-
mers to drop below the stdpmer threshold, allowing them to be included in the index. In

this way the search process becomes more thorough.

Fortunately, any gains that result from the inclusion of engraterial in the index can be
disambiguated from any gains that result from cooperatbrapression. This is because
only the use of cooperative compression can allow the desgoof alignments that do not

contain an exactly corresponding region at least as lonlgeamtiex is wide.

In other words, we can be sure an alignment resulted fromeratige compression alone
ifitis not possible for it to be discovered using dayide index. If even a single alignment
can be produced that does not incllkamnsecutive matching amino acids, then cooperative
compression must be responsible for its discovery. Refeigore[5.® where several of the
1,102 examples are presented of this occurring with the DASHqueries against the

GenPept (protein) database.
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Therefore, and as a result of cooperative compressiorglssansitivity has been increased,
while search time and space requirements have been redhosdgonfirming the thesis
of this dissertation. Moreover, with a finer grained applotere is the hope of further
sensitivity gains, because in that case the entire populat discovered HSPs could be

cloned before being thinned out during the later stageseoD#SH algorithm.

Finally, as Tabl€5]2 shows, the record folding processaedihe indexed database size
from 1,669 MB to 1,374 MB, thus demonstrating that it is pbkesio construct a search
system with sub-linear space requirements. Despite thessotth reduction in size, the
FOLDDB indexed GenPept (protein) database is still sulbst&nlarger than that required

by all other algorithms, with the exception of CAFE.

5.4.2 Effect Of Query Length On Search Time

It has been previously stated that a desirable charadtesish sequence search and align-
ment tool is that search time be predictable based on thetsspace. For a situation where
the database is constant, this translates to the searctbémg predictable based on the
query length. This response is plotted in FiguresIS.1T) ST and 572 for both DASH

and BLAST and for both the UniGene nucleotide database an@éhe protein database
to give an indication of the behaviour of the two algorithrar both databases both al-
gorithms exhibits a more or less linear relationship betwggery length and search time.
However, DASH suffers from excessive search time for a feerigs, and greater general

variability in search time than BLAST for protein queries.

As DASH+FOLDDB does not involve the traversal of recurrecbains (recall that se-
guence unfolding is done after alignments have been disedy,ewe must conclude that
the DASH algorithm itself, while generally faster than BLASs in fact has a search time

less readily predictable than does BLAST.
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> g128279202|gb| AAH45967.1| (BC045967) Similar to splicing factor 30,
survival of motor neuron-related [Danio rerio]
vs gil32488904|emb|CAE03655.1| (AL606691) 0SJNBaOO60NO3.20
[Oryza sativa (japonica cultivar-group)]
: (130-191) = (577-641), score=96.
Query: 130 DEIDGKPKSKKELQAEQREYKKKKAQKKVQRMKELEQER---EDQKSKWQQFNNKAYSKN 186
[ 1++ | +]+ | + | ++ |[+++ | +++]+[+ |+ + | +]+] ++ ++]| ]| +]+
Sbjct: 577 DELERKKRSQODEKRKELEKQKQEEERKELDRQKQREEERKAKELEKQKQREEERKALEKQ 636
Query: 187 KKGQ 190
[+1+

Sbjct: 637 KQGE 640

> gi|7228887 |gb|AAF42677.1|AF226529_1 (AF226529) membrane protein GNA1220
[Neisseria meningitidis]
vs gil|25004946|emb|CAB03018.2| (Z81072) C. elegans STL-1 protein
(corresponding sequence F30A10.5) [Caenorhabditis elegans]
: (114-150) = (136-172), score=89.
Query: 114 RSVIGRMELDKTFEERDEINSTVVAALDEAAGAWGV 149
[ ++++] | +[+]| |+ +]+++] |[+++]++ | |+

Sbjct: 136 RSEVGKINLDTVFKERELLNENIVFAINKASAPWGI 171

> g128279202|gb| AAH45967.1| (BC045967) Similar to splicing factor 30,
survival of motor neuron-related [Danio rerio]
vs gi|28830036|gb|AA052526.1| (AC116957) similar to Xenopus laevis
(African clawed frog). DNA ligase I (EC 6.5.1.1)
(Polydeoxyribonucleotide synthase [ATP]) [Dictyostelium discoideum]
: (33-189) = (347-497), score=77.
Query: 33 LQKDLQEVIELTKDLLTSQPAEGTTS--TKSSETVAPSHSWRVGDHCMATWSQDGQVYEA 90
| + +]+]+++ ||+ [ 1+ +|  |++]++ + + +| [T ++ + | |
Sbjct: 347 LTSPKKETIDIS-DLFKRANAEAKSSVPTSTSKNSKTNKKQKVDHKPTATTKKPSPVLEA 405
Query: 91 EIEEIDNENGTAAITFAGYGNAEVMPLHMLKKVEEGRIRDEIDGKPKSKKELQAEQREYK 150
+ ++ |++ |+ ] +++ ++ + | ] |+ ]
Sbjct: 406 K-——---- QSTTTTTTTTTTSTATTISSKSISSPSKKEEKEVITSK-KQVEATKVEVKKEK 458
Query: 151 KKKAQKKVQRMKELEQEREDQKSKWQQFNNKAYSKNKK 188
+H+ +]+ + ] |H|H] [+ H] A | A+

Sbjct: 459 EKEKEKEKEDDEEEEEEEEDDDEKLEDIDEEEYEEEEE 496

Figure 5.9: Several Alignments From Search Results Due To Cooperative Compression.
The index width was k = 3, but none of these alignments contain three consecutive match-
ing acids, confirming that they could not have resulted from direct index look ups, but must
instead be the result of cooperative compression.
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cleotide Database.
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Gene Nucleotide Database.
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Gene Protein Database.
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5.5 Conclusions

It has been shown that search time and index space savingecaade by employing the
record folding method of database and index cooperativepoession — provided abun-
dant redundancy of whole records exists. These time ana S§aangs were accompanied
by slightly improved sensitivity. These results suppod thesis of this dissertation, that
it is possible to reduce the time and space costs of the spaockess, while increasing
the sensitivity of the search. In the present case, the lsepace and time requirements
were reduced, respectively, by 18% and between 6% and 13%eAtme time sensitivity

increased slightly, but consistently.

Importantly, these results simultaneously improving sedéime, space and sensitivity are
applicable to all adequately redundant nucleic acid datdaThe rapidly growing EST
and shotgun genome sequencing databases of GenBank woeldhese criteria. Thus
the findings of this chapter offer one solution to the corgcthmanagement and search of

such data.

Together, these positive results suggest that it is wonhoexg finer grained cooperative
compression techniques, so that: (a) similar gains can loe it databases that contain
common sequences, but where foldable records are rare eexistent, such as in the
Human UniGene (nucleic acid) database or the Human Genouote(o acid) database,
and; (b) the sensitivity gains of the thesis of this disgentecan be tested in less redundant

databases.

Such a fine grained cooperative compression technique &ajed in the following two

chapters, where, respectively, (a) a compact databasesesgation, NP3, is developed
that makes available information about common sequenndgjg a more compact index
structure, NIX, is devised that makes use of the common segseencoded in an NP3

formatted file.
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Table 5.1: Human UniGene (Nucleic Acid) Database And Index Sizes In Megabytes (MB)
And Bits Per Base (B/B). Results are shown for the ordinary index only, as this database
did not differ noticeably when using the folded index.

Format Bodies Only| Descriptions Index Total
MB |B/B|MB| BB | MB | BB | MB | B/B

DASH+FOLDDB | o35 | 4 00| 470| 2.04 | 2,200| 9.39 | 3,606| 15.43

(ordinary index)

Smith-Waterman*

(FASTA ASCII) 1,886| 8.06| 470| 2.04 - - 2,356| 10.10

BLAST 489 | 2.09| 660 2.83 | 40 | 0.17 | 1,189| 5.09

(formatdb)

BLAT*

(faToTwoBit) 630 | 2.70| - - 1,088| 4.66 | 1,718| 7.36

PatternHunter**

(FASTA ASCII) 1,886| 8.06| 470| 2.04 - - 2,356| 10.10

FASTA**

(FASTA ASCII) 1,886| 8.06| 470| 2.04 - - 2,356| 10.10

CAFE™ 496 | 2.12| 102 | 0.44 | 6,961| 29.79| 7,634 | 32.67

(CAFE Index) ' ' ’ ' ' '

* Indicates that program maintains an index in RAM, and thatdatabase format contains both
record bodies and descriptions (BLAT).

** Indicates that algorithm indexes during searching (@attiunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteddne large index, due to technical

difficulties (CAFE).
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Table 5.2: GenPept Protein Database And Index Sizes In Megabytes (MB) And Bits Per
Acid (B/A).

Format Bodies Only| Descriptions Index Total
MB| B/A |[MB| B/A | MB | BIA | MB | B/A

DAS.H+FQLDDB 470| 8.00 | 142 | 2.42 | 1,057|17.99| 1,669 28.40

(ordinary index)

DASH+FOLDDB

(folded index) 392| 6.67 | 142| 2.42 | 840 | 14.30| 1,374| 23.39

Smith-Waterman*
(FASTA ASCII)
BLAST
(formatdb)

BLAT*

(FASTA ASCII)
FASTA*

(FASTA ASCII)
CAFE**

(CAFE Index)

* Indicates that algorithm indexes during searching (FART@ does not use an index (Smith-
Waterman).

** |Indicates that multiple small indices were used inste&dre large index, due to technical
difficulties (CAFE).

479 | 8.15 | 142 | 2.42 - - 621 | 10.57

473| 8.05 | 194 331 | 231 | 3.94 | 899 | 1531

479 | 8.15 | 142 | 2.42 - - 621 | 10.57

479 | 8.15 | 142 | 2.42 - - 621 | 10.57

480 | 8.17 | 22 | 0.37 | 1,621 | 27.59| 2,236| 38.06
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Table 5.3: Comparison Of Nucleotide Search Speed (Using The Human UniGene (Nucleic
Acid) Database). Results are shown for the ordinary index only, as this database did not
differ noticeably when using the folded index. DASH (M2, ordinary index) is the fastest
algorithm here.

Format Search Time (seconds) Search Time
mean | median|  total (xBLAST)
DASH+FOLDDB
(M2, ordinary index) 1.582 | 1.345 316.46 0.16
DASH+FOLDDB
(M4, ordinary index) 22.20 | 19.45 4439.34 2.27
Smith-Waterman | 16 566/ 14,070| 3,251,827 1660.56
NCBI-BLAST 2.2.6 9.79 9.4 1,958.27 1.00
(Default)
NCBITBLAST 226 21.37 | 10.16 4,274.56 2.18
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49,93 | 11.33 | 9,985.01 5.10
*

BLAT 2.10 2.07 471 0.21

**k
PatternHunter 78.37 | 78.61 | 15,673.57 8.00
FASTA 530.05| 534.69| 106,010.29 54.13

*%k%

CAFE 32.75 | 30.76 | 6,693.46 3.42

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ:
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Table 5.4: Comparison Of Protein Search Speed (Using The GenPept (Protein) Database).
DASH (M2, folded index) is the fastest algorithm here.

Format Search Time (seconds) Search Time
mean | median| total (xBLAST)

DASH+FOLDDB

(M2 ordinary index) 6.76 4.51 1,352.41 0.27

DASH+FOLDDB

(M2, folded index) 5.68 3.99 1,136.36 0.23

DASH+FOLDDB

(M4, ordinary index) 34.68 | 21.90 | 6,935.75 1.37

DASH+FOLDDB

(M4, folded index) 29.08 | 19.99 | 5,815.57 1.15

Smith-Waterman |, - 4| 1397.00| 334,794.20 66.32

NCBI-BLAST 2.2.6 25.24 | 22.01 | 5,047.81 1.00

(Default)

NCBI-BLAST2.2.6 | 3533 | 2648 | 7.066.00 1.40

(No Filter)

NCBI-BLAST 2.2.6

(Report Everything) 71.00 | 24.55 | 14,200.32 2.81
*

BLAT 85.45 | 80.40 | 17,004.37 3.39

(FaA)STA 296.00 | 273.36 | 59,199.23 11.73

(FbA)STA 83.36 | 84.38 | 16,672.14 3.30
*k%

CAFE 11.88 | 10.25 | 2,375.71 0.47

* Search times include time spent by server shared amongefies (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 5.5: Nucleotide Sensitivity Scores (PatternHunter Variant) Versus The Results Of
The Smith-Waterman Algorithm (Using The Human UniGene (Nucleic Acid) Database).
Results are shown for the ordinary index only, as this database did not differ noticeably
when using the folded index. Apart from BLAST, DASH is the most sensitive algorithm
here, being much more sensitive than BLAT, which is the next fastest algorithm after DASH.

Format PatternHunter Variant Score

at 50%\ at 75%\ at 90%\ at 95%\ at 100%
DASH
(M2, ordinary index | 6911 | 69.10 | 68.85 | 68.61 | 65.19
DASH
(M4, ordinary index | 8141 | 8139 | 8124 | 79.00 | 7228
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fien) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 92.36 | 89.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 4459 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 242 | 17.32
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Table 5.6: Protein Sensitivity Scores (PatternHunter Variant) Versus The Results Of The
Smith-Waterman Algorithm (Using The GenPept (Protein) Database). DASH is beaten in
sensitivity only by the FASTA algorithm, which is around 50 x slower than DASH.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH+FOLDDB
(M2, ordinary index)
DASH+FOLDDB
(M2, folded index)
DASH+FOLDDB
(M4, ordinary index)
DASH+FOLDDB
(M4, folded index)
Smith-Waterman

61.47 | 57.88 | 55.32 | 53.80 | 51.18

62.66 | 59.16 | 56.38 | 54.79 | 52.16

70.48 | 66.66 | 63.31 | 61.30 | 57.67

71.28 | 67.38 | 63.96 | 61.92 | 58.39

100 100 100 100 100

'(::)STA 92.12 | 92.12 | 92.12 | 92.12 | 92.12
'(:SSTA 87.02 | 87.02 | 87.02 | 87.02 | 87.02
BLAST 76.15 | 70.08 | 62.92 | 58.27 | 50.13
(Default)

BLAST

(No Filter) 74.35 | 68.55 | 62.09 | 58.44 | 50.72
BLAST

(Report Everything) 79.56 | 72.69 | 64.98 | 59.93 | 51.5
BLAT 35.56 | 30.82 | 26.73 | 24.48 | 20.15
CAFE

42.02 | 40.96 | 39.26 | 38.38 | 35.77
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Chapter 6

NP3: Compressing Sorted Nucleic Acid
Databases

Introduction

Size And Entropy Of Biological Sequence Databases

There is little doubt that biological sequence databaseg@wing at a rate that exceeds
both that of hard disk storage capacities and Moore’s Lawwéder, while the volume
of sequenced data is increasing exponentially, the inereagntropy must be closer to
linear, perhaps even sub-linear. Four factors that styosgggest that entropy grows more
slowly than database size are: (a) the similarities betwpenies; (b) the homology among
individuals of a species; (c) the occurrence of similar ages within an organism, and;
(d) the super-redundant shotgun sequencing method corngrasetl in high-throughput
sequencing. Taken to the logical conclusion, where evergdithing on the planet is
sequenced, it would be absurd to expect the entropy of thdtiresdatabase to be the sum
of the entropy of each genome. Otherwise sequence alignnentl not be a useful tool,

as there would be no similar sequences to align.

It is reasonable to expect then, that it should be possibfgaduce compression algo-

rithms that take advantage of this shared entropy to prodocepact representations.
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As the volume of sequencing grows, and the redundancy iseseat is not unreason-

able to envisage future compression algorithms achievingrder of magnitude better

than the 1.6 bits per base of current algorithms, such as trk of IKorodi and Tabus

005%), Behzadiand Le Fes<aL1_LZ|O(5,)__M_a_uanj_a_n_d_BJa<m@10, Cheng et all (2003)

and Chen et all (2002a, 2001, 1999). Indeed, GenBank Reléasmntains about 1210°

bases of data derived from the human gerﬂ;meen though the human genome is only
about 3x 10° bases in length. The question is no longer whether such deshay exists in

GenBank, but rather in how to make effective use of the redooy

Document Reordering (Reassignment Of Ordinal Document Nurbers)

Reordering of documents in a database, or equivalentlygiéesignment of ordinal docu-

ment numbers, has been demonstrated to increase thelgdatial redundancy, i.e., clus-

tering, available when compressing inverted files (Blanmb BRarreirc 20085, Silvestri et al.

3

004 Shieh et

Ayt

[. 200 ch 2002)s @pproach has been shown

to yield reductions in compressed inverted list sizes of %%%,jﬂ promoting cluster-

ing of similar content.(Blanco and Barreiro 2005, Silvestral. 200 Shieh etlal. 2003,

Blandford and Blellodh 2002).

While individual DNA sequences are notoriously difficultdompress, groups of similar

DNA sequences compress much better (Williams and Zobel)997or example when

compressing a collection of genomes, compression shoulthpeved by collating se-
guences by similarity, rather than by organism. This is fi@ieation of document reorder-
ing to DNA compression. The challenge is the efficient reongdeof the large databases

involved.

Recently, work has been done that demonstrates that dotureerdering of large

databases is possible in linear time and space (Silvesthi @004Db), suggesting that

Ltp://ftp.ncbi.nih.gov/genbank/gbrel.txt, [On line;a@ssed 20 September, 2007]
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the approach may become more popular in the future. Thebiégsof document re-

ordering of biological databases is demonstrated by thalaegelease of sorted Uni-

Gene databases (Pontius et al. 2003), such as the Humanténf@ecleic acid) database,

and more recently by the publication of annpélgorithm for sorting genomic databases

Bernstein and Camerion 2006).

For the purposes of the compression algorithm introducedisnchapter, the assumption

is made that a database is already sorted, and exhibitsa degfee of local redundancy.

Improving the compression of sorted, partially-redund#aitbases, such as the Human
UniGene (nucleic acid) database, is particularly relevarthe problem of storing large
nucleic acid databases such as GenBank, since much of thend&enBank is at least
partially redundant, e.g., the Expressed Sequence TagksjE®id shotgun sequencing
data. In fact, by focusing on the transcriptome of only orgaairsm, the redundancy of
the whole of the GenBank database is somewhat under-estinas complete duplication
of sequences, and inter-organism similarities are notidersd. Indeed, as previously
mentioned, GenBank contains four times as many bases fremuiman genome as there
are bases in the human genome. Therefore a sorted verstim@enBank database should

compress much more effectively than the results of this temegguggest. However, while

such a sorting exercise is now practic ' 20006), it is beyond the

scope of this thesis.

Aims

The intention of this chapter is to produce a prototypicaboathm, NP3

Gardner-Stephen and Knowles 2006, and US Patent Apaic&0/787,028), that can

harness the inter-sequence redundancy that is presentmndatabases that are already

sorted, such as the UniGene builds. The NP3 algorithm is etyqe in that it: (a) as-
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sumes the database is already sorted, and; (b) the ad hacudihods it uses are neither

optimal nor general.

The two goals of the NP3 algorithm are: (a) to demonstratesopcompression of a
sorted database, and; (b) to create a compression algatidgnmeets the functional re-
guirements necessary to test the thesis of this dissertalmaccomplish the second goal,
a compression algorithm is required that can be used in thtexof cooperative compres-
sion and searching of nucleic acid and protein databasemdiwds. Therefore it should
explicitly encoderecurrence records.e., references to recurrent strings to allow the index
of the database to take advantage of the recurrent strisgs\dired during compression,
and provide rapid random access to individual databasedeto make searching as fast

as possible.

The remainder of this chapter: (a) explores the design deraiions in creating the NP3
compression scheme; (b) defines the NP3 nucleotide conngmesgorithm; (c) presents
the compression performance of NP3 with the sorted HumarGeme (nucleic acid)
database, and; (d) presents the compression performandéBivith the de facto cor-
pus of nucleotide sequences traditionally used to comp&t& Eompression algorithms.
In Chapteflr, the NP3 algorithm is combined with the DASH atgan and the NIX index
format introduced there, in order to test the thesis of tigseaftation in a more challeng-
ing context than that of ChaptEr 5 where duplicate and realoindatabase records were

present.

6.1 Design Considerations

Assuming that a database contains sufficient redundanaypiaost effective compression,
a coding scheme must be selected. In view of the aims of tlaipten there are a number
of issues that must be addressed. These arise because thessed data will be used in

a sequence search and alignment algorithm, and in the ¢aite@operative compression
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of databases and indices. Three prominent issues are:r(gression and decompression

speed; (b) explicit access to recurrence information, &)drandom access to database

records. In this regard, NP3 is similar to the CINO systencdlsd by Williams and Zobel

1997b), and attempts to make a compromise between whatithera describe agrtical

compressior{compression of clusters of similar records or sequenees),the principle

that records be independently decodable.

6.1.1 Compression And Decompression Speed

NP3 is adistribution algorithm in that NP3 compressed files are expected to be decom-
pressed many times, but compressed rarely. Because cagoressperformed only rarely,

it can be afforded the luxury of a large time budget. Howeawesupport efficient searching,
decompression must be rapid. In this regard, what is desif@a asymmetric compression

algorithm that maximises the compression factor, withaatiicing decompression speed.

Statistics from four hundred queries performed using the&sBAalgorithm of Chaptell4
indicate that, for any given search, it is common to accessdsn 1% and 25% of the
records in the database. Therefore, for a DNA compressgarigim to be employed with-
out significant time overhead, it must be capable of exingdbetween tens of thousands
and millions of database records in the 1 — 10 seconds DASHiresgto perform each
search. This precludes compression algorithms based tmAetic Coding and Statistical

Modelling, as they would decompress too slowly.

6.1.2 Opaqgue Block Compression Unsuitable

There are a number of fast compression algorithms that dmilased to compress blocks

of database records, e.g., GZIP_(Gal 993), or LZO (Oberér 199i7). Using existing

algorithms has the attraction that it would be trivial to iempent, due to the availability
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of existing programming libraries. Using existing libesiwould also make it simple to
compare different compression libraries, without modatifythe NP3 program. However,
the approach of using an existing compression library hasddficulties: (a) the lack of
explicit recurrence records; (b) the boundaries of clgstéisimilar database records may
not be known; (c) the requirement for random access to dsg¢afeeords, and; (d) the poor

performance of general purpose compression algorithmshoh §2quences.

6.1.2.1 The Lack Of Explicit Recurrence Records

Regardless of the particular compression library usedjrrence records would be not
encoded in a format that NP3 could quickly and easily parstheE(a) additional time
must be spent parsing this information from the compresagalstream, if it is possible at
all; or (b) the recurrence information must be explicitlgoeded along side the compressed

data. Both options are undesirable as they introduce addittime and/or space costs.

6.1.2.2 The Boundaries Of Clusters Of Similar Database Recds May Not Be

Known

In order to obtain the best compression, each cluster ofl@irdatabase records should
be compressed in a single block. That is, compression blstloisld be aligned to cluster
boundaries. However, there is a difficulty: a sorted dataloEes not necessarily contain
information on cluster boundaries. Further, there may lefgiccompression to be made
between clusters. This is especially true if clusters ofilsimmecords are in turn sorted to
form super-clusters. This makes it difficult to select thecklsize that maximises com-

pression performance, while maintaining acceptable nanalccess speed.
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6.1.2.3 The Requirement For Random Access To Database Redsr

Effective use of block compression is further complicatgdhe need for fast random ac-
cess. This suggests that synchronisation points shoustllsedween each database record,
so that single records can be quickly extracted. This is lieatliopposition to the max-
imisation of compression performance, as most compres$ibi@mnies require blocks much

larger than the several hundred characters of a typicakiuatid or protein sequence.

6.1.2.4 The Poor Performance Of General Purpose CompressicAlgorithms On

DNA

General purpose compression algorithms are generallyleitmbompress DNA data at or

below entropy, except where sequences are clustered.

6.1.3 Existing DNA Compression Schemes Unsuitable

At the time that this work was performed, no suitable DNA sfiecompression algo-
rithm was available. Generally, the algorithms: (a) usatistical prediction methods (and
thus lack explicit recurrence records), and; (b) were ingdft slow to decompress. Since

then, a DNA compression algorithm has emerged that partyesdes these failings. That

algorithm is GeNML (Korodi and Tabus 2005), and its use ind¢batext of cooperative

compression and sequence search and alignment is corsidézbaptef]r.

Finally, it would have been possible to use an existing exXplecurrence encoding algo-

rithm that supports synchronisation points, such as XRA¥n(@ne and Willians 2002),

however that algorithm was not known to this author when tbhekwvas carried out. Also,
XRAY requires a collection-wide memory-resident model. ithis may not have posed
a problem for the collections tested in this dissertatibns not unreasonable to expect

the model to have difficulties with very large collectiongy.eGenBank, due to either the
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model growing too large to fit in memory, or not obtaining stéfnt compression over
the whole collection due to local variations in compositiétso, while it is possible that
XRAY or another method could be hand tuned to offer equal ®tebeompression than
NP3, the NP3 algorithm presented here offers faster deassajmn than XRAY (faster than
gzip, versus slower than gzip). This is significant, becasswill be shown in Chaptéi 7,
the decompression of sequence bodies is the most time camgaomponent of the search

process described there.

6.1.4 DNA Specific LZ77 Compression Suitable

In contrast to block compression using a general purposgrEssion algorithm, a DNA

specific LZ77 \(Ziv.and Lempel 19/77) derived algorithm has ple¢ential to answer the

demands of NP3, namely that: (a) the recurrence records fileidly encoded; (b) the
boundaries of clusters need not be known, and; (c) randoesado database records be

fast.

6.1.4.1 Explicit Recurrence Records

The LZ77 algorithm explicitly records the location and ettef references to recurrent
strings, i.e., recurrence records, making it easy to pdmseadcurrence records from the

compressed data stream.

6.1.4.2 Boundaries Of Clusters Need Not Be Known

The LZ77 algorithm searches for recurrent strings in amstjdvindow. This means that it
can discover any recurrence between the record being cesgztend the records in the
window. Thus, there is no requirement for cluster informiatio be explicit in the database.
The tension between (1) fast random access and (2) impr@anmgpression by sourcing

recurrences from other database records is discussed later
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6.1.4.3 Provision Of Fast Random Access To Database Records

Rapid LZ77 implementations have been devised in the pagt, b/ Williams (1991) and

Oberhumer|(1997). One technique that they use to acceldratalready rapid decom-

pression of LZ77 algorithms is byte-aligned codes, whiabihithe computational cost of

decoding variable bit-length tokens.

A byte-aligned implementation of the LZ77 algorithm alséeo$ byte-aligned synchroni-
sation points. The only prerequisite is that every datalbaserd boundary corresponds
with a fresh code. Therefore synchronisation points araionétl in return for little fur-
ther compression leakage. However, there is one remaimimgplication with providing
per-record synchronisation points; because recurrengstmay be sourced from another
record, access to other records may be required. Therdfererticoding of recurrence

records is now the subject of further discussion.

6.1.5 Encoding Recurrence Records.

In opposition to the need for random access, is the requinetoeexplicitly encode recur-
rences of identical strings, not only within, but also besweecords. Such inter-record
references complicate the decompression of randomlytsel@ecords, reducing decom-
pression speed. This is because one recurrence record nrdyt@another recurrence
record. That recurrence record may point to yet anothersarah. In this wayecurrence
chainsmay form. Long recurrence chains are a problem, becausedtisssary to extract
the records along the length of the chain in order to exttaetrécord at the head of the
chain. Linear decompression is not affected, because toed® in the chain will have
already been decompressed when each successive recdraiset however decompres-

sion of random records suffers.
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Inefficient random-order decompression of records caugeedurrence chains can be par-
tially addressed by making use of: (a) the realisation thedird access in sequence search

and alignment is not really random, and; (b) the divisiorhef database into partitions.

Recurrence chains do not necessarily introduce any oweénvban searching a sorted
database. This is because the so-called random access téqtired for sequence search
and alignment is, in practice, the retrieval of records & similar to a given query.
Therefore, the ordering of the sorted database by recorntbsityincreases the locality of
access. Thatis, if one record from a cluster of similar seqgeg s retrieved in response to
a query, thenitis likely that the other records in that austill also be recalled. Therefore,
the decompression overhead of allowing nearby recordgeoarece one another should be

relatively small, since if one is required, most of the oshare likely to be required too.

However, if references occur between clusters, then ussacg extractions may occur.
This behaviour should be self limiting, however, as the gmethe similarity between two
records from neighbouring clusters, the greater the hiogld that both will be required to
service any query that requires either of them. Converdi&dgimilar records are unlikely

to reference one another.

Finally, partitioning the compressed database limits tleximum length of recurrence
chains to the number of records in each partition. Such tigawf the database into
manageable sized portions has two other benefits: FirstHDa8umes and requires that
databases are partitioned, and, second, it becomes fe&sibache all extracted records
from a given partition, thus avoiding the possibility of fii@iency due to repeated ex-
traction of records, and any recurrence chains that ardvesto Caching decompressed
partitions in this way also allows the decompression timbd@mortised among queries

processed as a batch.

Thus, while the length of recurrence chains should be mmtdtdéo ensure satisfactory

random access performance, the methodology of encodirgsescessive record using a
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byte oriented LZ77 variant has the potential to be both &ffeand reasonably efficient.

The NP3 algorithm is thus constructed as a byte oriented MAridnt, as described below.

6.2 The NP3 Algorithm

The NP3 algorithm converts a nucleic acid database (in FA®FA&at) into a number of

concatenated database partitions, each consisting eftaen parts. These three parts are:

1. Administrative information;
2. Compressed record descriptions; and

3. A series of code streams describing how to assemble eaoldref the database

from new and previously seen strings, some of which may caome bther records.

Figurel®1 illustrates the general data flow of the NP3 algori The solid and dashed lines
describe the compression and decompression data flowsctesby. The asymmetric time
relationship between compression and decompressionastedlin the relative complexity

of their data flows.

The compression data flow shows how the FASTA format dataisasgially parsed, and

separated into record description and record body strelaasite handled separately. The
remaining processes are elucidated in the correspondihetw, that describes how the
compressed representations of the description and bodyadatgenerated, collated and

partitioned to produce an NP3 file.

6.2.1 Administrative Information

An NP3 file begins with a header that identifies the file as advdlP3 file, and contains

summary information. This includes the total number of rdsaand letters stored, and a
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pointer to the first database partition. Each partitionss @refixed with a header contain-
ing the summary information for that section, as well as omto the various parts of
that section, principally the code stream and record detsen look up tables that facilitate

random access to the compressed records.

While it would have been be possible to compress the tabladdresses for the per-record

synchronisation points, e.g., according_to Bell etlal. G)9%here was little motivation to

compress them, as they comprised only 2% of the size of th@ssed database. There-

fore they were stored uncompressed.

Finally, all information in an NP3 file is stored in a considtéyte order to provide file

compatibility between CPU architectures.

6.2.2 Compression Of Sequence Descriptions

The major arguments against opaque block compression areonpelling when com-
pressing sequence descriptions, because: (1) recurrecoels are not required, because
the sequence descriptions will not be indexed (and thezefdl not be cooperatively com-
pressed); (2) sequence descriptions are retrieved foimtiied number of results returned
by a search, rather than for the possibly millions of recaasessed during the processing
of the same search, and; (3) general purpose compressimnitlatgs work well on FASTA
format sequence descriptions. Therefore, for NP3 an aegigieneral purpose compression

library was used when compressing sequence descriptions.

The tension in selecting a compression algorithm and blaekfer the sequence descrip-
tion data lies in balancing reduction of message lengthnatjdecompression speed. Com-
pression is performed only once for a database, so compretisie is of lesser concern.
However, since a goal of NP3 is to develop the next generatababase and index format
for DASH, the decompression of the sequence descriptiors$ nai weigh heavily on the

total run time.
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As shown in Chaptelll5, the DASH M2 algorithm typically takesuand 1 second on a
modern computer to search the Human UniGene (nucleic aei@pdse. Typical search
parameters are to return alignments against 200 recordsie lire to assume that the
Human UniGene (nucleic acid) is a typical sized databasgifatescription retrieval is to
contribute< 50% of run time, then the sequence descriptions must bectatran < 0.5

second. This allows 2.5 milli-seconds per sequence deorip

The BZIP2 (Seward et £l. 2001) algorithm was selected amiilsaneously offers among

the best combined compression performance and decongmegsed (Witten et Al. 1999).

Compressing the 470 MB of description data from the apprai@hy 2 giga-base Human
UniGene (nucleic acid) database with BZIP2 reduced thetgiZé MB, i.e., a compression
factor of about 6. Decompression requires 50 CPU seconds1ohMD Opteron 244
(1.8 GHz) processor, equating t010MB/sec Therefore (Gbsecx 10MB/sec= 5MB of

descriptions can be decompressed in the 0.5 second timetudg

If 470MB of sequence description data per giga-base is representdtthe typical vol-
ume of sequence description text in a biological sequentabdae, then no more than
5MB/470MB = 1.06% of all description data can be decompressed in the tirdgdiu
This dictates a method of storing each sequence descripiibar separately, or in rel-
atively small blocks. The former is difficult when using @xig compression libraries,
while still aiming for optimal compression ratios, and #fere the blocking approach was

chosen.

Taking the block based approach, and assuming that thehsesmalts consists of the 200
best matching records, and further assuming that the géiseriof each of these records
occurs in a different block, then 200 blocks must constigenore than 1% of the total
number of blocks. This gives a minimum of about 260% = 20,000 blocks, or a mean

uncompressed block size of 4B - 20,000blocks= 23.5KB/block
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However, the selection of a compression block size influemog only the decompression

speed, but also the degree of compression that can be edBetéet all 1993). Smaller

blocks will provide less opportunity for compression. Iede32 KB blocks were observed
to yield compression factors of 4 to 5, versus the 6 obsereeBZIP2’'s maximum block

size of 900 KB.

It was observed that most sequence descriptions end witknan tag. These tags added
to the entropy of the description data, as the sequencehemgg not predictable from
record to record. However, from a holistic perspective,tdgs add almost zero entropy,
since practically every record included such a suffix tag, tte precise content of the tag
could be deterministically computed for each record. Tloees the NP3 program trims
these tags from descriptions before blocking and comprg¢sem. The tags are recreated
during decompression. Trimming these tags improved thepcession factor of 32 KB

blocks from the 4 — 5 range, to 5 — 5.5, and consequentiakyrtt@thod was adopted.

After BZIP2, the next most attractive algorithm for commieg sequence descriptions was
GZIP, because it decompresses substantially faster th#2BAnd with only moderately
worse compression performance. The faster decompressiGZI® would allow larger
block sizes, while remaining within the time budget, andrsodverall margin of compres-

sion performance between GZIP and BZIP2 would be reductthuadh not eliminated.

However, there is good reason to suggest that the time cabtsasfor decompressing se-
guence descriptions using BZIP2 is pessimistic. The poalaieason is that the database
being compressed is sorted. Therefore, as mentioned pdyjaecords are likely to be
accessed in clusters. Thus, the total number of blocksmedjfor extraction is likely to be
much less than the total number of sequences included iretirelsresults, as similar se-
guences are likely to be near one another in the databasepardquentially to have their

descriptions stored in the same block. Therefore, the tafieime cost for decompres-
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sion of sequence descriptions is likely to be substantr@tiuced, making the improved

compression of BZIP2 affordable in terms of time cost.

Finally, as will be shown later, even when compressed withPR2Z the compressed se-
guence descriptions of the Human UniGene (nucleic acidjbdeste were about one half
the size of the compressed record bodies. Thus, reducingizbeof the compressed se-
guence descriptions contributes significantly to the dvemanpactness of an NP3 com-
pressed database. Thus using BZIP2 to maximise the congrdastor of the sequence

descriptions is worthwhile, despite any residual time dastroduces.

6.2.3 Discovery Of Recurrences
6.2.3.1 Recurrence Search Algorithms

The problem of discovering the longest recent occurrench®iext few symbols of a

string has been well explored. Bell and LJ[Q_(_].993) surveyedmber of approaches that

were known at the time. Their conclusion was that, espgdaitllarger window sizes, the
1ist2 method was the fastest for English text. It is contraindidainly when the text being
compressed is highly skewed as, for example, in bi-leveh&jt images. This presents no
problem for nucleotide sequences, which have approximatgial representation of each

base.

The1ist2 method uses a circular buffer to store the sliding window. oilale linked list
is maintained for each of thg? bi-grams, wherej is the alphabet size. That is, a list is

maintained of the address of each occurrence of each bi-gpanoccurs in the window.

Aside from the problems with skewed data, the only othernvesi®n voiced by the authors
about therist2 method was the excessive memory requirementsypf-N pointers and
integers, wherd\ is the window size. However, memory has become relativebaprand

plentiful, and for nucleotide strings whece= 4, the memory cost of a window size of
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N = 1(P, is inconsequential — requiring only>242 4+ 10° ~ 10° pointers and integers.
Advantage can be taken of the small nucleotide alphabet img lsgrams instead of bi-

grams, to produce a method that can be calledk. Choosingk = 10 reduces the length

410

k
of each list that must be searched by a factoa(‘;'—zof: =

65,536, while only modestly
increasing memory requirements to<2K + N = 2 x 4104106 = 221 4+ 10° ~ 3 x 10°

pointers and integers.

A different approach that has become increasingly attractince Bell and Kulp’s 1993

survey, is the use of suffix structures, such as suffix-treéssaffix-arrays. This is both

because memory is more plentiful, and also because theopidyidifficult problem of
deletion of nodes in a suffix-tree has been solve r@()

, allowing suffix struc-

tures to be efficient in a sliding window context.

However,j_a_da.ka.n_e_a.n_d_l_rln i (2D00) discovered that, atiledlse case of suffix arrays,

suffix structures are unlikely to be faster than thetk approach at the window sizes that

are envisaged for NP3, i.e., 10 1 letters. So, while there is increasing interest in using

suffix structures to search DNA data, e.g., Chenglet al lﬂh’ﬁt_el_a (2002), theistk

approach is unlikely to be far from the state of the art in ®ohspeed, and certainly fast

enough for the asymmetric compression required in the cuagplication.

6.2.3.2 Discovery Of Recurrences

Recurrent strings are discovered by using theck method (withk = 10) to search for
matching regions in a window of sequence data spanningaéduandred records or several

hundred kilo bases, which ever is the lesser.

Consider FigurE&l2, where three records share commogstias indicated by the striped
regions. In this case, Record #2 contains a region that alsare®in Record #1, as indicated
by arrow (a). Similarly, Record #3 contains a portion of teame region, which occurs

in both Record #1 and Record #2 (arrows (b) and (c)). Wherk sudti-way recurrences
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occur, they are linked to the nearest record. In this exanipke means that the recurrence
of Record #3 gets recorded against Record #2, and that theeace of Record #2 against

Record #1, thus forming a short recurrence chain.

While minimising the distance of reference, this approdsb amaximises the number of
links in the chain required to eventually find the originadtance of the recurrence. This
aids cooperative compression of the index by making the maxxi number of recurrence
records available. Nearer references also imply shorenage reference distances to en-
code, aiding compression performance. However, becausettydyte-aligned compres-
sion scheme is used in this chapter, only limited advantagdéoe made of the shorter codes

afforded by reducing the average reference distance.

However, maximising the number of links in recurrence chauorks against decompres-
sion speed when extracting random records from the datalF@stinately, and as previ-
ously described, record access in a sorted database isiyotandom, and many or all of
the records along a recurrence chain may be required to aaswejuery that requires any
one of the records in the chain. In that case, the overhedarsst marginal, regardless of
the length of the recurrence chains, and there is little tgdaeed by minimising the chain

length.

Itis also possible to reduce the average recurrence chagthiéy avoiding the use of inter-
record references when they offer no space advantage ¢earative codes. However, this
reduces the number of recurrence records that are avaf@abé®operative compression.

NP3 allows the user to specify whether to activate this Iséiari

This process of searching for recurrences takes time ptiopaf to the amount of material
seen to date, up until the window is fully loaded, and a caridiene cost to update the
memory structure for each base that is inserted into the awndsiven that the window
size is of the same order of magnitude as the index partiti this results in an effect

computational cost of @) with respect to window or index partition size.
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Record #1

‘ Record #2

VI I IV
/7

/17777 ‘Record #e

Figure 6.2: Example Of Three Records Each Containing A Common, i.e., Recurrent, Re-
gion. (The recurrent region is shaded).

6.2.4 Generation Of Possible Record Encodings

6.2.4.1 Ad Hoc Code Table

Selecting an optimal set of encoding methods for a broad a&snputs is not trivial.

It is in no way claimed that this has been achieved in the aulP3 code table. The
constraint of using byte-aligned tokens all but rules oatgbssibility of optimality, and by
focusing on a single database, Human UniGene (nucleic,aciglextremely unlikely that
the resulting code will be robust in the face of varied indadeed, it gives the resulting
algorithm an advantage over any generalised compresstens However, what has
been created is an ad hoc code table that obtains effectimpression on the Human
UniGene (nucleic acid) database, is extremely fast to dpcess, and encodes recurrences
explicitly, thereby meeting the requirements imposed pevative compression, and thus
allowing the testing of the thesis of this dissertation. Asad hoc scheme has the required
properties to allow the testing of the thesis of this disdernh, the construction of a more

general or optimal code is left as a future exercise.

The full coding scheme used by NP3 is presented in Table GHL.bwith the various codes
and the Recently Referenced Address Table (RRAT) beingexgd in the following para-
graphs. Bit positions in Table_8.1 are marked as containitigelea constant 1 or a 0,

address (‘a’), relative address offset (‘r’), number ofdmgncoded (‘n’), extra bits for
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number of bases encoded (‘x’), optional change of case\{bgre a 1 indicates toggling

upper/lower case, or a base represented in either 2 bif) (@l bit (‘base’) format.
Codes B, D and E store one, two or three bases, respectiel\gingle byte.

Code F is used to encode longer strings, storing four basebype, but has a 2 byte
overhead. This code is intended for coding long regions nfcmmpressible sequence, and
in that context is relatively efficient, as the 2 byte overhisaamortised over many bases.
To encourage rapid decompression, Code F can only be uséidetsavithin a record that
are a multiple of four. This allows direct byte copying for 2 floermat extraction, and the

efficient use of look up tables to extract in either four bid&CII formats.

Codes H and | are used to encode repeating letters and bsgeagy, AAAA or GCGCG.
These codes use the 4 bit IUPAC code to describe each regpbase, which allows them to

also encode wild cards, such as N or R. The encoding of wildisdarthis way obviates the

need for a patch table as in the CINO method of Williams ande? D), but otherwise

serves the same purpose.

In order for Codes H and | to fit in two bytes each, they incluglatively few bits (marked
with ‘n’ in the table) to specify the number of bases encodexallow efficient encoding
of longer lengths to be accommodated, Code J is provideddw #he addition of three
extra address bits to the length field of these codes. Code dlsa be used with Codes M

through Q, which are described later.

Codes K and L are similar to Codes H and I, but indicate chafgase, and are used to
encode bases that appear in opposite case. These codesdyauseaxhif preservation of

case is requested when constructing an NP3 file.

Code M encodes a reference to a string in a recently processed], i.e., it encodes a
recurrence record. The location of the string is encoded28 kit value, as described in

the table, allowing reference to the 512 most recently meee records.

208



6.2. THE NP3 ALGORITHM

CHAPTER 6. NP3

Table 6.1: NP3 Binary Encoding Scheme For Nucleotide Sequence Data.
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Code | Binary | Bits | Range Description
Format

B 100000bb 8 1 A single 2 bit encoded base.

D 1001bbbb 8 2 Two 2 bit encoded bases.

E 11bbbbbb 8 3 Three 2 bit encoded bases.

F 010nnnnn 16+ | 8192 | A series of 2 bit encoded bases. This is how lgng
nnnnnnnn 2n stretches ohon-recurrent sequence are encoded with

bbxn an efficiency approaching that of direct codimgmust
be a multiple of 4.
H Ollnnnnn 16 32 | A run of identical base pairs, e.g. GCGCG. (4 bit en-
basebase coding allows the use of all 16 IUPAC codes for nu-
cleotide bases).
I 10001001 16 16 | Arunof up to 16 identical bases (4 bit encoding allows
basennnn the use of all 16 IUPAC codes for nucleotide bases)

J 10100xxx 8 x8 | The extend token is placed immediately after any other

token to add three extra bits to the length fields, e.g|, a
maximum range of 255 becomes 2303.

K 1000101¢ 16 1 A single 4 bit encoded base with an implied case shift

0000base before it, and an optional case shift after (4 bit encpd-
ing allows the use of all 16 IUPAC codes for nucleotide
bases).

L 100011cc 16 2 Two 4 bit encoded bases with an implied case shift pe-
basebase fore the first, and optionally after each base.

M OOaaaaaa 32 256 | Recurrence with address encoded as a 22 bit value.| The
aaaaaaaa lower 13 bits are the offset in a record, and the upper
aaaaaaaa bits encode the record number of that record relative to
nnnnnnnn the current record. Therefore it is possible to address up

to 512 recent records of length 8,192 bases each.

N 100001rr| 16 256 | Recurrence with address encoded as a 2 bit value rela-
nnnnnnnn tive to the previously accessed address. Useful for|en-

coding regions with short insertions and deletions (in-
dels).

@) 1011rrrr| 24 256 | Recurrence with address encoded by the last sequence

rrreereer address used (which might be in a different record), plus
nnnnnnnn 12 bit offset.

P 101010aa 16 256 | Recurrence with address encoded by the specified| one
nnnnnnnn of four entries from the recently referenced address ta-

ble (RRAT), which might point to a different record.

Q 101011aa 24 256 | Recurrence with address encoded by the specified| one

rrreereer of four entries from the RRAT, which might point to|a
nnnnnnnn different record, plus an 8 bit relative offset (rrrrrrrr).
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123 222 /45&

456 599 123 456 >222
>

/
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789 > 456 \123/
>

1012 789 789

(a) ' (b) ©

Figure 6.3: Recently Referenced Address Table (RRAT) Management.

6.2.4.2 Recently Referenced Address Table

Because of the clustering that is assumed to exist in thdds¢a it is possible that when a
record references multiple recurrent strings, that theregices will be to strings in records
that are near one another, and that multiple references mayade to a single record. To
take advantage of this, a table is maintained of the addsedsecently referenced strings,
the Recently Referenced Address Tafi®RAT). This table contains the addresses of the
four most recently referenced strings. Each time a stringferenced, the address of the
string is inserted in the first entry of the table, and all otketries are moved down one
position, causing the fourth entry to be discarded. Howeftre address is already in the

table, then it is promoted to the first entry, and the inteivgentries are moved down.

Management of RRAT entries is illustrated by example in Fd&.3. At (a), the table

contains the four addresses 123, 456, 789 and 1012. Thefritihgeat address 222 is ref-
erenced. Because it is not already in the table, the othaeemire shuffled down, causing
address 1012 to be discarded; address 222 is then storegfirsttentry, as depicted in (b).
Finally, in (c), address 456 is referenced. Because it &adly in the table, only the entries

above it are shuffled down to make room; no address is disgarde
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Returning to Tablg®l1, Codes N and O use the RRAT to encoéeerefes to recurrent
strings, i.e., recurrence records, using less than fougsbyiThey gain their brevity by
supplying only a relative address, which is combined witraddress from the RRAT to
obtain the complete address. Code N, with its two byte formatvides the lowest cost
option for resuming recurrences that are interrupted byt shael events, i.e., insertion and
deletions, while Code O’s larger relative addressing rgrgeides increased utility, at the

cost of an additional byte. Codes N and O use only the firsyeritthe RRAT.

Codes P and Q are similar to Codes N and O, but can use any drttrg &RAT. The
trade-off is their reduced relative addressing range.ddd€ode P has no relative address
component, and can therefore be used only when an RRAT emtitgios the precise ad-
dress required. Therefore, the RRAT is managed in orderrtecity predict the address of
future references as often as possible, and so allow moeesixt use of the shorter Codes

N through Q. This is best explained with an example.

Consider encodingAAAAAAACCCGGGTTTTTTTTTT. The strings oft’s, C's, G's andT’s are
used for clarity here, but in practice could be any sequeart#pf any length. Assume that
the address in the first entry of the RRAT points to a stringdofdnsecutiva’s followed by
11 consecutiva’s, i.e., A1*T!L. In that case, the first 8's of the example sequence could
be encoded in two bytes using either Code N or Code P. The bstifutions,CCCGGG
versusiAAAAA, might then be coded using two instances of Code E to enceciandGGa,

respectively.

Considering the contents of the RRAT, if the address of recuirstrings, once entered in
the RRAT, are fixed, then after each code is output, the firshR&ntry will continue to
point to thebeginningof the A1*T!! string, as depicted by arrow (a) in Figurel6.4. This is
a problem when seeking to efficiently encode the remainiriggsof T11: The distance be-
tween the beginning af**T! and itsT*! tail, which could be used to encode the remaining

string as a recurrence, is 14 bases. Therefore, four bitequered to encode this relative
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AAAAAAAACCCGGGTTTTTTTI

(@) (b) (c) (d)

Figure 6.4: Comparison Of Different RRAT Advancement Strategies.

to the entry in the RRAT. This rules out the short Codes N anlddPeby necessitating the

extra byte entailed by Code O or Q.

However, if the RRAT entries are set to the address of the syfolbowing the referenced
string, it would point to the first C in the example sequenceidated by arrow (b) in
Figure[&4, and the distance would be only six bases. Unfataly, this does not redeem
the current example, because the magnitude of the distanms too large to be encoded

using either of the shortest codes, Code N or Code P.

The current example can be saved by advancing RRAT entnievéryresidue that is en-
coded. Assuming the use of Code N to encode the first eighsp&dlwed by Code E
x 2 to encod&CCGaE, the entry would begin pointing to the start of T string, indi-
cated by arrow (a) in Figufe8.4, then be advanced by eiglgsasthe position indicated
by arrow (b), then by a further three bases to the positioitatdd by arrow (c) wheacc

is encoded, and then by three more bases to the positioratediby arrow (d) wheaGaG

is encoded, bringing it to the firgtof the T4 string: The address in the RRAT now points
to exactly the right address, and Code N or Code P could novsée to encod@!! in two

bytes.

By introducing this rule of advancing the RRAT entries, th&tahce has been reduced to
zero — regardless of the length of the substitution — all@uhre use of the shorter Codes
N and P. This creates a form of approximate repeat matchimgasto the techniques used
in other nucleotide compression algorithms. However, theiency is limited because the

codes are byte-aligned.
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6.2.4.3 Selection Of Codes During Compression

There are often multiple codes that can be used to encodéeuparstring. In the previous
example, Code E was used to encade andGGG. However, Codes B, D, F, H or | could
have been used instead. The set of valid codes at each sueceffset in the record is

determined using the code table and indexed circular baffexcently processed records.

Figure[&5 illustrates an example of the set of possible €atlseveral offsets in a sample
sequence. Assume for this example that the first entry in R&TRcontains the address of

the stringTTAAAAAAAAG.

At offset zero, it is possible to use either the long or shortris of direct coding, using
Codes B, D, or E, to encode, respectivelyAC or ACA in one byte. Because the offset is a
multiple of four, Code F can be used to encode either fouhtetgelve or all sixteen bases
in 3, 4, 5 or 6 bytes, respectively. It is also possible to uge Rength Encoding (Codes H
and I).

At offset one, long direct encoding (Code F) is not possikleduse the offset is not aligned

to a multiple of four. However, Codes B, D, E, H and | remairidal

At offset two, Codes B through E and Codes H and | continue t@bé options. Moreover,
Codes M through Q are now possible, because the sStAAgAAAAG can be encoded as a
recurrence of a previously encountered string. Becausgrghentry of the RRAT points
to the precise address of the recurrence (remember thatsssdrin the RRAT will have

been advanced two bases, skippingTigrefix), the shorter codes are all possible.

6.2.5 Computation Of Optimal Code Streams

The optimisation process operates by processing the seicotieng possibilities at each
offset of a record, as described in the preceding text. Thehref these possibilities,

i.e., how many bases can be encoded at each offset usingdhebée mechanisms, are
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Input Sequence

Offset Zero

Offset One

Offset Two

ACAAAAAAAAGTCGTG
A Code B; 1 byte
AC Code D; 1 byte
ACA Code E; 1 byte
ACAA Code F; 3 bytes
ACAAAAAA Code F; 4 bytes
ACAAAAAAAAGT Code F; 5 bytes
ACAAAAAAAAGT CGTG Code F; 6 bytes
A Code H; 2 bytes
ACA Code I; 2 bytes
C Code B; 1 byte
CA Code D; 1 byte
CAA Code E; 1 byte
C Code H; 2 bytes
CA Code I; 2 bytes
A Code B; 1 byte
AA Code D; 1 byte
AAA Code E; 1 byte
AAAAAAAA Code H; 2 bytes
AAAAAAAA Code I; 2 bytes
AAAAAAAAG Code M; 4 bytes
AAAAAAAAG Code N; 2 bytes
AAAAAAAAG Code O; 3 bytes
AAAAAAAAG Code P; 2 bytes
AAAAAAAAG Code Q; 3 bytes

Figure 6.5: Coding Options For Three Successive Offsets In An Example Sequence.
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considered in conjunction with the byte cost of each. By whgxample, consider the

sequenc@ACAAAAAAAAGTCGTG.

6.2.5.1 Tabulation Of Coding Options

Using the coding possibilities of Table 6.1, the valid pdimtpoint transitions and their
costs are tabulated in Tablesl6.2 6.3, respectivelyyfhes represents the start offset
in the record, and the x-axis the end offset, where the erskbfefers to the first base
immediately after the base(s) encoded by the Code indidafEable[6.2. The blank spaces
in the tables indicate record positions that cannot be ezhehth a single code from the

respective initial record position.

The diagonal band of cost 1 byte arises from the direct coatiethod that can record up to
three bases. Recall that the direct coding scheme for Istgaegs can only be employed
between points that are aligned to four base boundariess@imimost cases this is not an
option. Indeed, at most offsets there are relatively fewsfimigties. In all situations, the

shortest code that can make a given transition is always inspaeference to all others.
Thus Code E (1 byte) was recorded for the transition fromedfdsto offset 6, even though

Code H (2 bytes) or Code | (2 bytes) were also possible.

6.2.5.2 Calculation Of Optimal Path

Upon calculation of the cost of each possible code, the catinel cost of coding from
the beginning to the end of the record can be computed, ashie[®4. Global dynamic
programming is used to choose the path with optimal (mininncwst. For example, for the
route from position 0 to 4, and 4 to 5, with a cumulative cos8 ef1 = 4 bytes, would be
set aside in favour of the lower cost route from 0 to 3, and 3 &t & costofonly +1=2

bytes.
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Table 6.2: Codes Corresponding To The Coding Costs In Table &3

[ [1[2[3]4[5[6]7]8[9]10[11][12[13]14]15] 16|
B[D|E F F F
B|D
B
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=
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W Omm

16

Table 6.3: Matrix of Coding Costs (in bytes). The left hand column is the start offset,
and the top row the final offset. Each row represents the cost of reaching each possible
destination point using a single code from that offset.

[ [1[2[3]4[5[6]7]8[9]10[11][12[13]14]15] 16|

oOf1|1|1|3 4 5 6
1 1111

2 111112222 2

3 1111222 2

4 11111 (2]2)| 2 4 5
5 11112 2

6 1711 2

7 1111

8 11113 4
9 1111

10 1111

11 1111

12 11|13
13 1111
14 1|1
15 1
16
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Table 6.4: Matrix of Cumulative Coding Costs (in bytes) from the beginning (offset=0) to
any final offset, using the cheapest string of available codes.

The left hand column is the start offset, and the top row the final offset. The cheapest
path from the start of the record to a given offset is found by determining which cell in the
column corresponding to that offset has the lowest score. The underlined cells represent
the cheapest encoding for the entire record, as determined by using this method from the
end of the record and working backwards.

[ J1[2[3[4][5[6]7]8]9][10[11][12[13]14]15]16]

Of141|1]|3 4 5 6
1 2122

2 22| 2

3 212213333

4 313|344 4 6 7
5 313|344

6 313 |3 |4

7 4 | 4 | 4

8 4 1 41 4]|6 7
9 4 | 4| 4

10 4 | 4| 4

11 5| 5|5

12 5| 5|57
13 5| 5|5
14 6| 6
15 6
16

The dynamic programming procedure finds an optimal encdajrizack-tracking from the

cheapest cost at the end of the record. In the case of thigeeaamd referring to Table 8.4,
back-tracking from the end of the record (column 16) wouldibesvith the entry in row 13

(cost 5 bytes). By consulting Tallle B.2, it is found that CRdeas used. The starting point
of this transition (offset 13) is now used as the end pointHernext iteration: This process
is repeated recursively, visiting offsets 10 and 3, befeaching the start of the record.
This path is indicated by the underlined values in TébIé BHis path is then reversed to
give the forward path, O to 3to 10 to 13 to 16, which can themduestated to find the codes

used by the encoding scheme and the final representatioe aé¢brd (TablE®]5).
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Table 6.5: The Optimum Code For The Record In Figure 6.5l

| Transition | 03 | 3510 | 10-13 | 13516 |
Cost (bytes) 1 2 1 1
Codes Used E I E E
(Tabled 6.1 612)

Binary Codes 11000100 10101001 11101101 11101110
00000111

6.2.5.3 Effect Of Extension Code (Code J)

The use of the length extension code, Code J, that variesfféwtiee length of a code,
depending on the number of bases being encoded, helps rédtuercoded record length.
However, this complicates the task of the optimiser, besgusffectively creates multiple
versions of each of the original codes, with differing bytests and maximum reaches.
For each code, the optimiser must know where the break paiats.e., the lengths where
an extend coded is required. Each transition that spansfahgse break points must be
considered as a series of independent coding options inyth@naic programming grid,
where each extend code creates another break point. Fopéxaarun length encoding
code requires 2 bytes for up to 16 bases, or when combinedawitxtend code, a run of
between 17 and 127 bases can be encoded, but at the cost afidored third byte. For
example, a run of 40 identical bases would produce two rugtteaencoding possibilities:
one for 40 bases (with the extend code, and costing 3 bytesymafor 16 bases (with no

extend code, and costing only 2 bytes).

6.2.5.4 Effect Of RRAT

There is one other difficulty faced by the optimiser, and teafodes N through Q that
make use of the RRAT and relative addressing. Because dgranogramming optimi-

sation works backwards from the end, the optimiser seesdtieesses in reverse order.
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While the magnitude of the distances between successigeergfes are not modified by
this inversion, the contents of the RRAT can only be guesAsa result, the optimiser can
make incorrect judgements as to which code is best in anygiveation, and so the length
of the final bit stream may differ from the predicted lengttisTnon-optimal behaviour
is reflected in the slightly different file sizes that resutiem the policy changes between
preferring inter-record references and avoiding inteprd references, even though the

situation should be cost neutral.

6.2.5.5 Computational Cost

Because the stream generation process utilises a dynaogapmming optimisation pro-
cess that can be represented as a two dimensional dynangi@prming space, the com-
putational cost is @¢) with respect to the input record length. Partly becauséisf the

input record length is limited to a few KB as described in Sdstior[6.216, thus the cost
is effectively constrained, and is generally much smakl@ntthe cost of the preceding

recurrence discovery step.

However, provided that the database is much larger tharettigipn size, the compression
time will be linear with respect to the database size dued@tiproximately constant cost

of compressing each fixed-sized partition.

6.2.5.6 Summary

The optimisation framework just described makes it re@yivsimple to employ a wide
variety of coding methods, and obtain the best results thedn afford. This is due to
the decoupling of the optimiser from the specific codes angdditerns; the optimiser is
only aware of the cost of each option at a given point. Thivioles flexibility in later

improving the coding scheme, without requiring significehange to the optimiser. The
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ability to change the coding back end also makes the NP3 appneadily adaptable to

other types of data, e.g., protein or English text.

6.2.6 Segmentation Of Long Records

Long sequences are common in genomic databases. To sirtiy@ifcurrence discovery,
database partition processes, and to ensure the speed pfession, long sequences are

cut into a number of shorter records08,192 bases.

In anticipation of the use of NP3 files in the context of seq@esearch and alignment, a
short overlap is provided between each successive segmeimplify stitching of results
that span multiple segments. The overlap can be used tddtarsignments between
neighbouring sequence segments. This overlap contrilbumlgsnegligibly to the total file
size, as it can always be encoded in 2 bytes using Code P,deettaIRRAT is initialised

for each Record such that the first entry contains the addfe¢ke overlap.

When sequences are segmented, the description is apperdelderbyte 0x01, and stored
with the first record of the sequence. Then=ntag cannot be removed from the description
in this situation, as during serial decompression the lemdtthe reassembled sequence

cannot be determined before hand.

Subsequent record descriptions consist of a 0x01 bytewelll by the record number of the
first segment, and the offset of the current record withinstaguence. The non-terminal
records also have a 0x01 byte appended to the end of theirptésts, to indicate that

more fragments follow. This system is used both within arttvben database partitions.

The complete procedure is illustrated in Tabld 6.6, wheristaof record descriptions is

presented for a hypothetical sequence that is divided imézdrds.
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Table 6.6: Example Of Sequence Segmentation Tags In Record Descriptions.

The first record of a segmented sequence contains the true description of the sequence,
followed by a 0x01 character to indicate that the sequence has subsequent records. The
non-terminal records 2 and 3 also contain 0x01 characters at the end to indicate that the
sequence continues. The non-head blocks 2, 3 and 4 are prefixed with 0x01 to indicate
that they are fragments, and the description data identifies the head record and the offset
of each block in the head record.

| Record #| Stored Description |
1 “> hypothetical protein foo”(0x01
2 (0x01)"1:81607(0x01)
3 (0x01)"1:16320"(0x01)
4 (Ox01)“1:24672"

6.2.7 Database Partitioning

As indicated previously, an NP3 file is produced as a serigmditions. A new partition

is commenced whenever the size of the previous partitioreri€ a threshold. While this
partitioning is a requirement for use with the DASH algamithit can also be leveraged
to provide two additional benefits: (a) Parallel Constructf NP3 files, and; (b) Ease of

appending and updating of NP3 files.

6.2.7.1 Parallel Compression Of NP3 Files

Because the partition boundaries can be rapidly determahéue beginning of the index
process, it is possible to perform the compression proceparallel, as each partition is
identified and isolated. Very high efficiency is possibleidgihis parallel index construc-
tion, because there is no cooperation required betweettbads or processes compress-
ing each database partition. NP3 implements just such degdareode by using Sun Grid

Engine to spawn multiple NP3 processes on one or more congpute
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6.2.7.2 Ease Of Updating And Appending To NP3 Files

Partitioning also makes it trivial and rapid to patch an g#xgdatabase to include new or
updated records, since only a single partition need be neddifihe currentimplementation
of NP3 contains an append mode to allow the convenient addai new material to an

existing repository, although periodic rebuilding woulidl e required to sort the material.

6.2.8 Decompression
6.2.8.1 Sequential Record Access

To serially decompress an NP3 file, each database partgioanisidered in turn. Within
each partition, the code stream for each record is integgrit turn, to reconstruct the
sequence. Any references to other records are implicitly aseall preceding records have
already been extracted. This results in a decompressi@that is linearly proportional to

the number of records decompressed.

6.2.8.2 Random Record Access

Random access decompression functions similarly: if tieercemakes no reference to
other records, then decompression can occur just as foretted sase. Otherwise, the
referenced records are decompressed recursively to db&amecessary referenced strings.
Thus the computational cost of random record retrieval poaential with respect to the
number of records in the index partition and the average rumitother records referenced

by each record.

However, if many records are to be retrieved by random adbessthe exponential com-
ponent will be reduced as the probability of each referemeedrd having already been

decompressed increases. Thus in the situation where alideare retrieved by random
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access the computational cost of decompression will rétubeing linearly proportional

to the number of records retrieved.

Moreover, it is suggested that random record retrieval qusace search and alignment
is not truly random, in that the objective is to retrieve altords that are similar to some
qguery. Thus, since only records with similar content areneziced, it is reasonable to
suggest that a fraction of those records will require readi@nyway. Thus the effective

cost is reduced. The question is whether this occurs to amnimgful extent.

6.3 Results

6.3.1 Compression Of The Human UniGene (Nucleic Acid) Datadse

To assess the performance of NP3 versus existing compréssedls, the sorted Human
UniGene (nucleic acid) database was compressed using Nfgsaime database was also
compressed using a collection of existing compression oaksth General purpose com-
pression algorithms were included in the comparison, sexathile they are ineffective on
typical (unsorted) nucleic acid databases, they can makefuke clustered recurrences in
a sorted database — and actually compressed the Human Un{Ge&cieic acid) database

better than some dedicated DNA compression programs.

DNACompressl(Chen et al. 2002b) is used as a represent&tivdAd compression algo-

rithms, due to its being the best performer that was avalibely available. Had GeNML

Korodi and Tabus 2005) and DNAPack (Behzadiand L e F ﬂssmjL)Zbeen freely avail-

able, they would have been included in the comparison. dsse has been partially
resolved by implementing a variation of GeNML as a codec lier NP3 framework that
is optimised for fast random-access sequence retrieva. Chaptefds for further details
of the GeNML codec for NP3. Finally, where possible, the gpased by each program

to represent the sequence bodies only (as distinct fromrbdime sequence descriptions
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Table 6.7: Comparison Of NP3 File Size With Other Formats For Human UniGene (Nucleic
Acid) Database (1.96 x 10° bases).

Files sizes are listed in mega-bytes (MB) and bits per base (bits). NP3 produces a smaller
file than any of the other methods, almost 10 times smaller than the original FASTA file ver-
sion of the database. The two NP3 variations, “prefer inter-record references” and “prefer
short chains” (i.e., avoid inter-record references) produce similar sized databases, with a
slight size advantage when preferring to include inter-record references.

Format Bodies Only| Bodies and Descriptions Compress
MB | bits | MB | bits | % NP3 | Time (m:s)

FASTA Format

o) -
(ASCII) 1,886| 8.06 | 2,356| 10.10| 931%
BLAST (formatdb) 0 :
| |[1997) 489 | 2.09| 1,150| 4.93 | 455% 6:09
DNACompress o .
| i ) 459 | 1.96| 512 | 2.19 | 202% 30:00
gzip 300 | 1.28| 438 | 1.87 | 173% 6:08
bzip2 0 )
I et A 2001) 285 | 1.21| 369 | 1.58 | 146% 13:23
GeNML Variant
(Chapteflr) 170 | 0.73| 256 | 1.10 | 102% | 1605:00
(16 way parallel build)
NP3 166 | 0.71| 252 | 1.08 | 100% | 630:40
(prefer inter-record refs.)
NP3 | 166 | 0.71| 253 | 1.08 | 100% | 630:40
(prefer short chains)
NP3

0, .
(16 way parallel build) 166 | 0.71] 253 | 1.08 | 100% 41:54

included in the FASTA format database) is presented. Thesdts are presented in Table

0. 4.

These results show that NP3 is able to compress slightleb#tan the GeNML imple-
mentation that is operating in the same framework as the Nge8itom, and significantly
better than the other algorithms surveyed, including théPBZyeneral purpose compres-
sion program (which is also able to make good use of the rezhoydin this database),
primarily through being able to compress the sequence badieng only 0.71 bits per

base. This compares exceptionally well with the 2.09 bitdyse achieved by the BLAST

ltschul et al.l 1997)f ormatdb program, which is the only other format surveyed that
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allows fast random access to stored sequences. DNACompeessmed substantially
worse than the general purpose compression algorithmgestigg that it is not tuned to
take advantage of the many recurrences that exist betwesbynescords in this sorted

database.

6.3.2 Compression Speed

As Table[8¥ shows, NP3 compresses slower than any of the aljarithms (except the
GeNML Variant), requiring 630 minutes to compres86lx 10° bases£ 190 mega-bases
per hour). The slow compression is mitigated by near-lirseaeleration when the par-
allel build mode was activated to make use of 16 processoag giga-bases per hour;
15.2 times faster), which also validates the previous assetiegarding linear compres-
sion time with respect to database size. Considering th&tislixtended as a distribution
algorithm, i.e., decompressed frequently, but compresagdrarely, these figures are tol-

erable.

6.3.3 Decompression Speed

To assess the decompression speed of NP3, tests were run.8rG&la AMD Opteron
system running RedHat ES 3 (64bit), the results of which aesgnted in Tablds 8.8 and

0.9.

As previously discussed, extracting sequence descriptitom the bzip2 compressed
blocks is an expensive process. In light of this, statistiese generated for extracting
sequence bodies alone, or along with their descriptions.t@$ts were run for three differ-

ent contexts: (a) Global Random; (b) Local Random, and; écjuSntial.
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Table 6.8: NP3 Decompression Performance (UniGene Nucleic Acid Database). NP3 con-
figured to prefer inter-record references if the cost is the same as the cheapest option, i.e.,

code selection ties are broken in favour of inter-record references.

Without Descriptions |

With Descriptions |

Records/se¢ Bases/sec | Records/se¢ Bases/sec
Global Random 748 417,984 366 204,481
Local Random 71,160 44,642,536 644 409,617
Sequential 339,650 | 193,303,120 27,675 16,486,549

Table 6.9: NP3 Decompression Performance (UniGene Nucleic Acid Database). NP3 con-
figured to avoid inter-record references, by using them only if they are the single cheapest
option, i.e., code selection ties are broken in favour of not making inter-record references.

| | Without Descriptions |  With Descriptions |
Records/se¢ Bases/sec | Records/se¢ Bases/sec
Global Random 950 533,276 378 212,214
Local Random 79,644 49,872,516 627 395,811
Sequential 341,103 | 194,272,864 27,493 16,370,482

6.3.3.1 Global Random Decompression

Global Randomaccess refers to randomly selecting any one of the 3,480@&28ds in
the database and recalling it. The slight reduction in fiee $hat the prefer-inter-record-
references-when-cost-neutral heuristic offers comesabatantial cost to decompression

speed for random sequence access, both in this context émel liitocal Random context.

It is not surprising that Global Random access is slow coeth&w the other contexts, as
there is no spatial locality to exploit, and so each requesd a degree of effort to service.
Notwithstanding this, it is still possible to randomly iietre hundreds of sequences per
second in this way, a feat not previously possible with sucbrapact representation of the

data.
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6.3.3.2 Local Random Decompression

Local Randonaccess refers to randomly selecting any one of tBe<@.0° records in a
given database partition. This is useful as an indicatiotnefretrieval speed that can be
expected if NP3 were used in the DASH sequence search amaredig program, where
this is exactly the kind of activity that NP3 will be subjedt®. This is because DASH
consults each partition in turn. Here, the spatial localyd NP3’s caching of previ-
ously extracted records within a database partition pewiseveral orders of magnitude
improvement, provided that sequence descriptions areeqained. This was sufficient for
the decompression rate to reach well into the target rarggeresl for integration with the

DASH algorithm (tens of thousands to millions of records gerond).

Decompression is slightly faster when the NP3 file is corsga with fewer inter-record
references. This is in line with expectation since resagvirier-record references necessi-
tates decompressing extra records. Nonetheless, theedifie in decompression speed is

relatively small.

Retrieval of descriptions could be improved by caching dgm@ssed description blocks
similar to the way that extracted sequence bodies are cauthedIndeed, for Sequential
decompression, retrieval of sequences with descript®iser 100 times faster, because

the present caching of a single block of sequence desargisosufficient in that context.

6.3.3.3 Sequential Decompression

Finally, Sequentiahccess refers to asking for each successive record in thbads. This

provides a good measure of the true decompression speed3fdskeach record is de-
compressed exactly once. The entire database could bendiadjyelecompressed in 130
seconds on the test hardware. If sequence descriptionsneémn@quired, then decom-
pression could be accomplished in just 10.6 seconds, equtil85 million bases per

second, as summarised in Table ®.10. This is slightly falster gzip, and much faster than
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Table 6.10: Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And The
GeNML Implementation Of Chapter [ For The De Facto DNA Corpus, And The DNA
Databases Used In This Dissertation.

Database | Program | Seconds Bases per Second
Human UniGene GZIP* 13.23 148,100,786
NP3 10.58 185,195,973

GeNML Variant** | 91.95 21,309,137
* To make the comparison between GZIP and the NP3 and GeNMiaMaalgorithms,
GZIP was given an input file consisting only of the DNA letters., striped of all descrip-
tions and white space.

** These GeNML results were produced using the implemeoatf the GeNML de-
scribed in Chaptdn 7.

the GeNML Variant. The relative slowness of GeNML is not sisipg, as it is the only

algorithm of the three to make heavy use of Arithmetic Codikigpwever, NP3 must be

much slower than CINQ_(Williams and Zohel 1997a), since &bgdrithm is claimed to be
several times faster than gzip — but CINO cannot compress RNFelow 2 bits per base.
6.3.4 Compression Of De Facto Corpus

However the performance of NP3 is less impressive wheree tiselittle or no opportu-

nity for exploiting the inter-record redundancy of a welfted database, such as the small

de facto corpus (for an example, see Chenlet al. (2002b)) tosexhluate existing DNA
compression algorithms that focus on intra-record rednoglaln a complete inversion,

NP3 compresses those sequences at an average of 2.03deifs/besus 1.73 bits/base

using DNACompress, and 1.69 bits/base for GeNI i 5 2005). This re-

flects the fact that NP3 focuses on large scale inter-re@mdndancies rather than on the
intra-record redundancy and other DNA structures that DN#@ress leverages: each is
operating on a different scale of structure. GeNML appearsoimbine the best of both
worlds, in that it obtains the best compression of the deofaotpus, and also performs
well on the Human UniGene (nucleic acid) database. Howagepreviously mentioned,

GeNML uses Arithmetic Coding, and hence decompresses mood stower than NP3.
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6.4 Conclusions

The results demonstrate that, given a database that is aré#lds the NP3 algorithm is
capable of producing loss-less representations of nuatettdatabases that are at least as
small as the best known algorithm (GeNML), but unlike GeNMLtgserving the desirable
feature of fast random access to sequences. NP3 offers geession of random records
within a partition, and with sufficient speed to make it a ptied database format for
sequence search and alignment algorithms. This makes NEGalysuited to providing
a database representation for nucleic acid search andradigirapplications that is several
times smaller than is current used. However, NP3 does nopizss as well as GeNML
if the database does not contain much large scale redunddrioys NP3 and GeNML
represent a trade-off between compressed size and decsigorepeed. A similar trade-
off exists between NP3 and CINO, with CINO being even fasietdcompress than NP3,

but with a lower ratio of compression.

It is true that other compression schemes such as SEQUITERIMManning and Witten

1997) could be expected to obtain similar or better compragkan the NP3 byte-aligned

codec, but without the somewhat arbitrary coding decisised in that codec. However,
this does not detract from the utility of NP3 in supporting thypotheses of this disserta-
tion. Nor does it detract from the NP3 framework, as it is aally codec independent.
The consideration of an appropriate SEQUITUR variant as B8 Bbdec with a particu-
lar emphasis on examining the speed and compression tredewt be a fruitful future

exercise.

As mentioned, in the traditional context of nucleic acidadetses where there is little ex-
ploitable local redundancy, NP3 has inferior compressieriggmance compared to the
existing algorithms. However, the recent advent of effictatabase reordering algorithms
and the immense internal redundancy of collections sucheasBénk (recall that Gen-

Bank includes about 12 10° bases that originate from the human genome, yet the human
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genome consists of only about3L0° bases, indicating a four-fold redundancy for that
portion of the database), combined with the attractive aesgion of sorted databases
presented here, suggests that database reordering ofcnacie databases is a powerful
approach. As database sizes continue to balloon, and gmahtredundancy increases as
a natural result, this method has the potential to beconmreastgly potent as an effective

means of containing the storage, processing and trangmisssts of these databases.

In short, NP3’s (1) effective compression; (2) databaseagbdity afforded by byte order

independence, and; (3) asymmetric computational cosufawp decompression, all con-
tribute to making it useful distribution and search fornmatlirge sorted DNA databases,
provided that the databases contain sufficient local realbeyd While sorted databases
may be uncommon today, it is almost inevitable that sorteahhiques such as enabled

by algorithms such as SPE&_(.B_QLDS.L&iﬂ_a.D.d_Qa.UL 2ronl 2006 )bwilipplied to make the

collections more manageable.

6.5 Future Directions

In the current implementation, a completely byte-alignedecformat is used to facilitate
high speed decompression in software. It is recognisedattmat aligned format would
be more space efficient, but at the cost of decompressionl sjftermining the precise
cost of this decision would be constructive in objectivebg@ssing this design decision.
More generally, compression gains are all but certain thindurther exploration of coding
method space. The complementary strengths of NP3 and DNAGE® suggests that a
combination of their methods has the potential to yield @yoddhm with superior com-
pression to both. This is considered in part in Chapter 7 Ingttuting the byte-aligned

codec of this chapter with a variant of the GeNML algorithm.

It is also worth noting that the compression ratio of the sege description data, at best

7:1 in our experiments with BZIP2, often lags behind thatakhiNP3 achieves on the se-
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guence bodies, to the point where the compressed sequescepten data constitutes
around 30% of the total NP3 compressed Human UniGene (cuenbéd) database. While
the current approach is considered a satisfactory stapimgf, further work in the area
of sequence description compression is warranted — péatlguas databases and their
inherent redundancies grow; the entropy of the sequenaeipisn will become the dom-
inant factor in compressed file size. Given the specialisszhlbulary common in bio-

logical sequence descriptions, compression priming figcies that take advantage of the

global properties of the data being compressed (Bell et@83) are an obvious starting

point. The structure presented by the almost universaligigh of accession numbers in
sequences descriptions is also a logical target for impt@eenpression. This could be
attacked by utilising a dual-model compression schemé, s@parate models for encoding

the accession numbers and the textual part of the desergptiespectively.

Work is also warranted on the creation and disseminatiorffizient and effective tools
for sorting and compressing the major biological sequeratalises, and then searching
the compressed databases that result. The combination 8HD#d NP3 in Chaptéd 7

explores this goal by searching NP3 compressed sortedioaclel databases.
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Chapter 7

NIX: Producing Compact Cooperatively
Compressed Indices Of Biological
Sequence Databases

Introduction

This chapter describes the NIX (short for NP3 Index) ald¢nonit which builds on the foun-
dation laid by the FOLDDB algorithm introduced in ChajifeiThe method of cooperative
compression presented in that chapter proved effectiowjged that whole records were
redundant. In contrast, NIX uses a fine grained method of @@bpe compression that is
effective, even when only parts of records are redundantrder to reach this goal, this
chapter also presents modifications to the NP3 algorithrd,amlds NIX/NP3 searching
capability to DASH.

The algorithms presented in this chapter are intended asad pf concept, and thus they
are tuned for compact index size rather than speed. Makaggtalgorithms computation-
ally efficient is left as a future avenue of research. Thesgfeearch speed is compared
between the unfolded and fine-grain folded versions of tiftevace described in this chap-

ter, rather than being compared with other software, SUBLAST.
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Results are presented showing that by performing cooperampression using the al-
gorithms described in this chapter, it is possible to redbeesize of already compressed
indices by a further 40%. Moreover, it is shown that seaighinese compact indices yields
improved sensitivity, thus supporting the thesis of thssdrtation. However, for this proof

of concept at least, these gains come at the cost of greéitiyad search times.

Finally, brief results are shown attempting to apply the fin@ned cooperative compres-
sion algorithms of this chapter to a much less redundaneiuatid database (the Human
Genome), which demonstrates that, as things currentlylsthe algorithms have limited

applicability to unsorted databases.

7.1 The NIX Indexing Algorithm

The NIX indexing algorithm consists of constructing a cami@nal compressed inverted
list that excludes redundant postings can be recomputadgddecompression with the

assistance of the recurrence records.

7.1.1 Omission Of Redundant Postings

Cooperative compression consists of posting in the indéxame instance of each recur-
rent string. The question arises as to which instance shmbsted. This problem can be
simplified if we resolve sets of recurrent strings into painsis reducing the question to:
Should we post the first or the last occurrence? This queiianswered by considering
the context (sequence search and alignment) in which theecatively compressed index

will be searched.

Sequence search and alignment involves extracting retramisa database that are similar
to some query sequence. Extracting a record from an NP3 el database requires

the resolution of any recurrence chains that the recordeeées. Therefore, when some
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record, Ry, is extracted, the possibly empty set of recoAd&,), on which it depends,
must also be extracted. Therefore, it makes sense to pokighimstance of a recurrent
string, as the postings can be cloned into the context of ezdrd inA(R,) as they are
extracted from the database (recall that recurrence ciraMB3 files link toward the start
of a database). Specifically, no additional data structurequired to facilitate the efficient
reproduction of the omitted postings from the cooperagi@mpressed index. This is

Reverse Indexing

However, if multiple sequences point to a common source, timdy one instance (the one
that is in the common source) can be omitted from the coopehatcompressed index.
This can be mitigated to some extent by constructing the NR&bése so that common
sources are avoided whenever possible. However, this leeatdst of producing longer

recurrence chains.

In contrast to Reverse Indexing, it is possible to instedéxonly the first instance of each
pair of recurrent strings. This iBorward Indexing The advantage of forward indexing
is that when a recurrent string occurs many times, only os&irte requires posting in
the index (the common source). Thus, this method requitesioat, an equal number
of postings to Reverse Indexing, but requires fewer postthgn Reverse Indexing when
common sources exist. However, the disadvantage of forwaleking is that because it
is the first and not last repetition of a string that is postéé, recurrence chains in the
NP3 file link forwards, which is the wrong direction to progid path to locate the other
repetitions of the string; an additional data structureguired to provide this information.
Nonetheless, if this data structure is smaller than theespaed by omitting more postings
from the index, then the result will be more compact than camadhieved with Reverse

Indexing.

Figure[Z1, demonstrates the difference between Forwaleking and Reverse Indexing

with a simple example consisting of four postings, Postindg?dsting 2, Posting 3 and
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Posting 4, each of which correspond to instances of a radusteng. The set of four

postings are decomposed into pairs (indicated by arrowsifigure) where each posting is
linked to the next nearest posting towards the start of thebdae partition. In our example,
the recurrent string is not exactly repeated between Rys8mand 4, thus requiring Posting

4 to point to Posting 2 rather than Posting 3.

With Reverse Indexing, considering each linked pair in tuve need only store the last
instance. Therefore we cancel the storage of the first instamhus the pair (Posting 1,
Posting 2) allows the cancellation of storage of Postingithil&rly either pair (Posting 2,

Posting 3) or (Posting 2, Posting 4) allows us to cancel thage of Posting 2. However,
no instances point to Postings 3 or 4, so they must be stofeds, With Reverse Indexing,

two postings must be stored.

With Forward Indexing, the process is similar, but we caricelstorage of the latter post-
ing in each pair. Thus (Posting 1, Posting 2) allows the déatamn of storage of Posting
2; (Posting 2, Posting 3) the cancellation of storage ofiRgs, and; (Posting 2, Posting
4) the cancellation of storage of Posting 4. Forward indgkias the advantage that where
multiple postings point to the same source, as with (Pog2irfgosting 3) and (Posting 2,
Posting 4), we need only store one posting, the common sonhere as with Reverse In-
dexing we must store one posting per pair. Thus, with Fonk@aldxing, only one posting
must be stored. However, as previously mentioned, with Badvindexing, we must main-
tain a list of which database records contain referenceshiohnother database records,

thus reducing the space advantage.

What is common in both cases and forms the core of the NIX imgealgorithm is that
postings are excluded from the index where they can be showe tedundant by virtue

of their residing within a recurrent string.
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Towards
Start of Database
Partition
A
Posting 1 Posting 1
A A
Posting 2 Posting 2
Posting 3 Posting 3
Posting 4 Posting 4
\J
Towards
End of Database
Partition
Forward Indexing Reverse Indexing

Figure 7.1: Forward And Reverse Indexing Of Chains Of Recurrences. Here four postings
are depicted, each corresponding to an instance of a recurrent string. Shaded postings
indicate postings that must be stored. Forward Indexing stores the head of each recur-
rence chain, while Reverse Indexing stores the tail (or leaf node) of each recurrence chain.
Reverse Indexing may store more postings because, as in this example, branching may
occur, meaning that there may be multiple leaf nodes for a given recurrence chain.
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7.1.2 Reconstruction Of Omitted Index Postings

The method of reconstruction of omitted index postingsed#ffor Forward and Reverse

direction indices.

For Reverse Indexing, the method is straightforward andiefft: Whenever an HSP is
discovered: (a) check the recurrence records that comedpdhat record (recall that these
are extracted implicitly when decompressing the NP3 filall; gb) translate the relevant
portion of the HSP into each context indicated by the recuneaecords. This process is

performed recursively until no new contexts are discovered

For Forward Indexing, the situation is complicated by the that the recurrence records
cannot be used to determine the existence of instanceswfeet strings further forward
in the index (recall that the recurrence records in an NPalidays point to records earlier
in the database). Therefore an additional data structusg briconsulted that indicates
for each recordR, the forward recordsRy, that have recurrence records that point to
R. This list is then traversed, and the HSP translated intt eantext identified by a
recurrence record in sonfig that intersects with the HSP as discovereRimThis process

is performed recursively until no new contexts are disceder

This process is not as efficient as the reverse indexing basause the data structure may
indicate records that depend on the record under consioler&iut are not similar in the
region of the HSP being translated. Therefore, unlike ieres indexed searching, records

may be unnecessarily extracted and examined.

Note that a Forward direction index can be subjected to buthréverse and forward di-
rection searches, with the potential of increased seitgjtut at the cost of computational
burden. The additional sensitivity arises because, whigeforward search will exhaus-
tively discover all omitted postings (and so guarantee 86 tf sensitivity compared to a

conventional index), by searching forwards and backwarsdadn-exact HSPs (recall that
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HSPs are permitted to contain substitutions), it is poegibHiscover approximate matches

that would otherwise remain undetected.

An issue that is not seriously considered in this dissentais whether this trade-off in
predictability of execution time is overly excessive, at i sufficiently offset by improved
sensitivity. It would be a productive future exercise to lexe this issue in more detail,

perhaps with the objective of discovering techniques thagate or manage this issue.

7.1.3 Re-Use And Minimisation Of HSP Discovery Effort

Compared with searching an ordinary index, searching aeratigely compressed index
necessitates an additional and potentially costly traéiosiastep whenever an HSP is dis-
covered. This step involves taking some HBRand determining if the record segment it
covers corresponds to any recurrent strings (as recorddteifNNP3 file). If it does, the

recurrent regions are translated into the context of eastamce of the recurrent string, to

produce translated HSHS, ... h,.

If the HSP being translated lies entirely within a recurrgtning, then the translated HSP
does not require extension, because the translated loda®the same immediate context
as the original HSP. In other words, the details of the cdriteat defined the end points
of the original HSP are the same in the context of the traeg|BiSP. However, if the HSP
being translated includes the boundary of one or more recustrings, then the translated
HSP requires extension on the boundary that the HSP crass#dsat end of the translated
HSP has a different context to the original HSP. Fiduré Tutitates the process, showing:
how the translation occurs; how the previous HSP extensiork ws reused; and, how

additional HSP extension is minimised.

HSP 1 in fragment (a) lies completely within the recurremingt and so its immediate

context does not change, i.e., it is still boundedG@¢AT on the left, andCGTTT on the
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3
© cceTAcc';‘é‘Tb'A'TéAA'é%‘éé‘éﬁ;\é/&éfm, mrA@}Ac

Figure 7.2: HSP Translation Scenarios. Each record fragment (a), (b) and (c) contains a re-
current string, as represented by the dashed boxes. Three HSPs are found as represented
by the solid boxes, and identified by the corresponding super-scripts.

right. Therefore, when it is translated into fragments (id &), it does not require further

extension.

In contrast, HSP 2 completely contains the recurrent stringhis case, only the portion
of the HSP that is shared with the recurrent string can beskated into fragments (a)
and (c). Further, because the immediate context of thel&t@asportion of the HSP has
changed GTACTGC for record (a), OICCGTACG for record (c), instead ofTTGCAA on the
left, andGGATACGTC for record (a), OATATTAGAC for record (c), instead afAGTATCGC on

the right), this translated HSP must be extended at both ends

Finally, HSP 3 presents a combination of the conditions oPHSand HSP 2. Only the
portion of the HSP that intersects the recurrent strigliCGTTT) can be translated into
fragments (a) and (b). Because the context on the left hatel des not change, the
translated HSPs do not require extension on that side. Hawthe context does change

on the right hand side, and so the translated HSPs must hedexten that side.

In each case, translating each of the three HSPs preser@adakimum extent of each
HSP when translated. Moreover, the translated HSPs do waialneed to be extended
on both ends in order to ensure that they remain maximallgneldd. Together, these
factors reduce the computational burden compared to descwy each of the nine final

HSPs independently. The assumptions in this process ase:tl{&) that the list of all
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instances of each recurrent string can be efficiently ifiedtiand; (2) that HSP translation

can be performed more quickly than HSP discovery and exdansi

A final consideration in this process is that by requiring B&SH algorithm to now fol-
low chains of recurrences during the early part of the seprobess, rather than merely
cloning results at the end, detracts from the attractive tammplexity properties of the
DASH algorithm. Specifically, while the NIX algorithm is Bar with respect to the num-
ber of stored postings, it inherits NP3’s exponential udgmmd when reconstructing and
exploring the cooperatively compressed parts of the intixile the NP3 decompression
cost can reduce to linear when all records are retrievedsdh®e is not true of the HSP
translation cost when considering the cooperatively cesged postings. This is because
the recurrence records must be examined even if the datedxame they correspond to has

already been retrieved.

7.2 NIX Index Format

The NIX index format is an inverted file, similar to the FOLDDilex format. However,

there are two important distinctions between NIX and FOLDDB

The first distinction is that, where as the FOLDDB index corgall the data structures

required to search the database it represents, includenggitjuence bodies, the NIX format
contains only the index structures; the storage of the sexspugodies is handled by the NP3
file format. Thus, while only a single file is required to séead~OLDDB indexed database,

two files, an NP3 file and a NIX file, are required to search a Nidexed database.

The second distinction is that the representation of therted lists is made to be space
efficient rather than fast to decompress. Rather than usirgidnoc compression scheme,

recent advances in inverted list compression are used tonisimthe space requirements.
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7.2.1 Why Pointers Tok-mer Indices Were Not Compressed

The lexicon size of a fixed-width index can be calculated ftbm alphabet size and the
index width. Further, for typical index widths, this lexitgize is very small. Any useful
representation of an inverted file must store a pointer tqthsting list of eaclk-mer in

the lexicon. Therefore, while the pointers to the comprésseerted list corresionding

to eachk-mer could be compressed, for example according to the rdeth

1993), because the lexicon is small compared to the sizbeoflatabase, the savings

would be small (only a few percent for a typical NIX file). Teéwre, these pointers were
stored uncompressed in a NIX file. This is the one exceptidhégeneral rule that NIX

structures are optimised for compactness rather thansaspegd.

7.2.2 Compressing The Inverted Lists

In place of the fixed and ad hoc inverted list compression e R®LDDB algorithm, and
similar to NP3, NIX uses a plug-in system so that it can suppovariety of inverted
list compression coding and decoding schenuesléc$. This separates the cooperative
compression functions of NIX from the inverted list codiagd allows greater freedom in
the selection of the optimal codec for a given applicatiartipularly as new inverted list

compression schemes are developed.

The selection of a suitable codec for inclusion in NIX regdisome thought into the effect
that cooperative compression would have on the distributiovalues in an inverted list.
The greatest impact that cooperative compression has @digtribution is that it can thin
out any clusters in an inverted list. This occurs becaus@@&@bive compression merges
the index postings of nearby recurring strings. Thereftusters of postings may become

sparser, and in the extreme, each cluster may be reducednigi@ gosting.

However, it is unlikely that clustering will be eradicatdtbgether, especially since similar,

but not identical, sequences are common. Since the seqarenot identical, the NP3 al-
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gorithm cannot merge their storage, and because NIX usest¢haence information from
the NP3 file, such clusters will not be affected. Therefdre,ibverted list compression al-

gorithms that can make good use of clusters remain atteaclivo recent cluster-sensitive

inverted list coding schemes were considered: Interp@afioding (Moffat and Stuiver

00 ,_19&6),and Selector Coding (Anh and Maoffat 2005, 2004)

Interpolative Coding is slower to decompress than SeleCtating lmlma'r 2003), be-

cause Interpolative Coding involves recursion. Howevemression is much faster, be-
cause there is no searching phase in the compression hlgofit contrast to Interpolative
Coding, Selector Coding must search for the best seleceveay iteration. Even if this

is performed heuristically, empirical evidence suggelstd tompression is many times
slower than for Interpolative Coding, and more than an oadenagnitude slower if op-

timal compactness is to be achieved. Turning from speedféctefeness, Interpolative
coding generally compresses inverted lists better thaec8®l Coding, and indeed better

than any of the other published inverted list compressitieses published at the time of

writing (Anh_ et al.. 2001} Moffat and Stuiver 2000). In summadnterpolative Coding is

faster to compress, and compresses better, while Selectbngoffers faster decompres-

sion.

Improved compression effectiveness, i.e., smaller remtesions, do not always translate
into greater query throughput. This is, first, because decession always takes time,

and, second, because of fixed delays, such as disk seek asfttrames ﬂmlmiL_ZQf)S’,).

However, in the context of this dissertation it is assumexd #m index will be resident in
RAM, and so the retrieval time will be negligible. Moreovsince the index must fit in to
RAM, compactness takes priority, even though this may Gaspeed penalty: The penalty

of not fitting into RAM would be much greater.
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In light of this need to minimise the compressed index siaterpolative Coding was cho-
sen as the inverted list codec for NIX. To mitigate the decasgion speed penalty, a fast

Interpolative Coding routine was written that is iteratre¢her than recursive.

7.2.2.1 Creating A Fast Interpolative Coder

Interpolative Coding compresses a list of ascending vabyagcursively dividing the in-

terval and using only the minimum number of bits to place eadbe within its interval.

This is best illustrated with an example. The example fronffsd@nd Stuiver{(2000) is

reproduced.

Consider the following inverted lis%7; 3,8,9,11,12,13 17), i.e., an inverted list containing
the seven values 3, 8, 9, 11, 12, 13 and 17. Further, assuté¢happer limit is known

to beN = 20. In encoding the first value, 3, assume that the second i@hiready known

to be 8. In that case, the first value must lie in the range Thé:first value can be thus be
encoded in three bits. Moving to the third value, 9, assuratithaddition to knowing the
second value, that the fourth value, 11, is also known. Taerethe third value must lie

in the range 9..10, and can be encoded in a single bit. Forfthevéilue, assume that the
forth and sixth values are known to be 11 and 13. In this cassfifth value must be 12:
Therefore no code is required to place this value. Finallgricode the seventh value, we
know that the upper limitN, is 20. Therefore the value must lie in the range 14..20, and

can be encoded in three bits.

This is all very well, but it has been assumed that the sedondh and sixth values were
already known. This can be dealt with if that list of valué%,8 11,13), is encoded first.
Following the same method as for the original list, assuntivag the second value, 11, is
known when encoding the first value, then the first value masnlthe range 1..10, and
can be encoded in four bits. However, we know that there idwevan either side of it.

Therefore, it cannot be 1, nor can it be 10. This allows thgeaio be narrowed to 2..9,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.3: Example Interpolative Coding Intervals For The Inverted List, (7; 3, 8, 9, 11,

12, 13, 17), drawn from IMoffat and Stuiver (2000).

and hence one bit can be shaved from the code. The third JMewjse, must lie in the
range 12..20, which using the same logic as before, can bewed to 13..19, also saving

a bit.

Finally, the second value of this list must be available bethese two values can be en-
coded. Thus the listl;11) must be encoded. The single value, 11, must lie in the range
1..20. Now itis known that three values must lie on each sidéhe range can be narrowed
to 4..17, and the value can be encoded in four bits. Howeyersimg a centred minimal bi-

nary code (as described b;d:l.oma.Ld_a.n.dAJ'ltLeL(_‘L992)), the@7-4+1)=16—-14=2

spare values in the four bit code can be traded away in faviana&ing two of the remain-

ing codes one bit shorter. If these are placed in the centiteeofange, then in this case a

further bit can be saved.

Figure[Z.B depicts the recursive Interpolative Coding g¥ardescribed above. The shaded
regions indicate the interpolated range of each value, add layer of recursion is depicted
on a separate number line. The number of layers of recursidogy(n)|, wheren is the

length of the list.

In order to increase decoding speed, the fast interpolatider in NIX replaces recursion

with a blocked iterative strategy. This is possible, beeatm a fixed length inverted list,
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the elements of that list are visited in a deterministic grdelependent of the values of
the elements. By pre-computing tables for: (a) the ordensfation, and; (b) the nearest
elements on either side that are known. These tables carbth&maversed, allowing In-
terpolative Coding to be performed without recursion, amti@ut maintaining an explicit

stack.

This is all very well, provided the table matches the lendtihe inverted list being encoded
or decoded. However, it readily generalises to allow psatetative Interpolative Coding

of both shorter and longer lists.

The generalisation for shorter lists is to add monotornyaaltreasing values to the end of
the inverted list until it is the same length as the table.d8se the values are monotonic,
the Interpolative Coder does not require any bits to encbideperfect cluster of values.
Further refinement is possible: By maintaining additiomalpomputed tables that indicate
the first and last positions in the table that require evaludor a given length list, the
number of elements can be reduced to be approximately emjtred tength of the list being

encoded or decoded.

The generalisation for longer lists is to use a hierarchieethod. This introduces a limited
amount of recursion, in return for raising the upper boundranlength of the inverted
lists that can be processed. For NIX, the maximum requiredriad list length is 2.
Using a table size of®2- 1 = 255, only three levels of recursion are required, which can
be efficiently implemented as a nested loop. The table si26%s and not 256, because
every 258" value is placed by the middle of the three levels of recursio every 258

of those values is placed by the top of the three levels ofrssmol. The block size of 255
aL(ZIOOO) in sahectiees to be of sizek2- 1,

so that sub-trees will be of equal size. Also in obedience tffal and Stuiver|(2000),

also obeys the advice

<

the centred minimal binary code is used for all but leaf noddeere the shorter codes are

instead placed on the outside of the range.
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The use of tables to accelerate Interpolative Coding idaima the methods of Cheng et al.

004). However, the methods presented in this dissentage only Interpolative Coding,

and unlike_Cheng et al. (2004), do not introduce any comje$sakage.

A further optimisation to Interpolative Coding that has heen implemented, is to use
knowledge of thek-mer that an inverted list corresponds to. M&snhers, cannot occur

at successive positions, because the overlapfirgl) bases must be in agreement. For
example, consider the 8-m&CGTAGTA. This 8-mer can only occur every seven bases, be-
cause only the As at each end will match. HowewsIGTACGT could occur every four
bases. This minimum distance thak-aner can follow itself can be easily computed, and
could be used when narrowing the interpolated range bettiregorevious and next known
entries in an inverted list. Given the frequency of repeatnost genomes and transcrip-

tomes, this may deliver substantial space savings.

7.3 Modifications To NP3 To Optimise For Forward And

Reverse Indexing

As it was described in Chaptier 6, the NP3 algorithm was natoged for either the For-
ward Indexing or Reverse Indexing forms of cooperative lolzda and index compression.
This is addressed by the introduction of three optimisatitwo general optimisations that
apply to both Forward Indexing and Reverse Indexing; andaptamisation specific to

Reverse Indexing.

7.3.1 Optimisation One: Preferring Inter-Record Referen@s

By default, the NP3 algorithm attempts to minimise the langt recurrence chains in
order to maximise decompression speed. Specifically, rethee two options to encode

a given record fragment which result in identical bit lergjttihe one that does not require
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an inter-record reference will be chosen in preferencedmtie that does require an inter-
record reference. The trade-off is that fewer postings argted from the cooperatively

compressed index.

The first optimisation, then, is to reverse this policy andf@r inter-record references,

using them whenever they require no more bits than the beshative.

7.3.2 Optimisation Two: Per-Posting Rebate

The first optimisation can be taken further by estimatingréduction in index size that
results from any given inter-record reference. This coBtnede can then be taken into
account by the NP3 optimiser. Rather than minimising the fle3lone, the optimiser

would then be optimising the combined NP3 and NIX file size.

While this method of minimising the combined file size is sienip principle, it is difficult

to accurately predict the reduction in index size that itssiubm any given inter-record
reference. This is because the index is compressed,; it is difficult to correctly predict
the savings in compressed index size than it is to predidadkimgs in uncompressed index

size. Nonetheless, a simple approximation of a fixed numbleit®per posting was tried.

The second optimisation, then, is to offset the cost of eatdr-record reference by a fixed

number of bits for each posting that it removes from the index

7.3.3 Optimisation Three: Maximising Inter-Record Reference Tar-

get Coverage

The third modification is specific to Reverse Indexing. Itéséd on the fact that Reverse
Indexing posts in the index only the last instance of a rexsurstring pair, i.e., it excludes
the posting for the first (source) instance of the string. réfaege, when using Reverse

Indexing, the more unique source material included in tntéeord references, the more
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postings that can be omitted, and the greater the savingthigend, the NP3 algorithm
is supplemented with a coverage bitmap that indicates veheidch residue in the current
window has been used as a source string or not. When chodergest source material
for a recurrent string from among several options, only thmber of previously unused
residues in the source are counted when assessing the saWigle this may result in a

larger NP3 file, it should result in a smaller combined NP3 X file size.

The third optimisation, then, is to pair recurrent stringststhat the pairs preferentially ref-
erence unique source material, thus maximising the nunflperstings that can be omitted

from the index using Reverse Indexing.

7.4 Searching NP3/NIX Ensembles With DASH

The DASH algorithm required relatively few modificationsaonder to search NP3/NIX
ensembles. The most obvious change was adding the codeddroma NP3 and NIX
files. Beyond that, the only other additions were: (a) theecoshuired to reconstruct
the postings omitted from the index, and; (b) the code to takentage of the presence
of recurrent strings in order to enhance the sensitivityhef HSP discovery stage of the

DASH algorithm.

7.5 Comparison of NP3 and GeNML

The NP3 byte-aligned compression algorithm introduced ap@er[® is effective for
databases containing many long repeated strings. HowlNRS,is not effective when
applied to typical nucleic acid databases that do not co@simany long repeated strings,

such as genomes of single organisms. Indeed, NP3 is outperdion these circumstances

by algorithms such as DNACompress (Chen ét al. 2002a) andMEdgorodi and Tabus
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005). This is unfortunate, because NP3 does offer thecttteacharacteristics of: (a)

faster decompression, and; (b) the explicit coding of inéeord references, allowing the
construction of compact indices. This trade-off is expibloy adding a GeNML codec to
NP3 to allow the comparison of the two algorithms in the crindé a sequence search and

alignment system.

A new implementation of GeNML was created as the source cad8éNML is not freely
available. In order to fit within the framework of the DASH seqce search and alignment

system, this implementation differs in several ways fromd¢hnonical GeNML algorithm

published by Korodi and Tabus (2005). First, databasetjanitng reduces the average

window size. Secondly, synchronisation points are adde@dch database record, with
each record forming a single GeNML macro-block. Both of éne®difications slightly de-
grade compression performance, but were unavoidable ptiadaGeNML for use. More-
over, exactly the same concessions apply to the NP3 bydaeaicompression algorithm,
thus making the comparison fair. Finally, the GeNML implernagion used here boasts a
hybrid arithmetic and direct coding scheme that uses adtltonooding only when required,

thus accelerating decompression speed.

7.6 Presentation Of Duplicated Results

The explicit representation of recurrence records as et this chapter make it possi-
ble to efficiently determine for a pair of alignments whettiey are sourced from identical
or near identical material. When that is the case, it candpegeatthat such results should be
presented to the user in such a way that these relationgieiptearly visible. Indeed, when
alignments are identical, only one of the alignments neetis@ayed, as the others can be

fully described by indicating only the source sequence ochedhat is, because we have

“knowledge of content-equivalence relationships withoo#dection” (Bernstein and Zobel

005), more effective user interfaces can be envisagedaffiaetion of such representa-
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tions increases as the redundancy within biological secpidatabases increases over time.
The attractiveness of merging results for easier readiaffirsned by the fact that BLAST
has formatting options that partially achieve this goal.wdeer, the implementation of
such a system is outside of the scope of this dissertatioerefdre, the presentation of
results in the current experiment remains unchanged framnubed in previous chapters,

i.e., a BLAST-like report.
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7.7 Method

In order to assess the effectiveness of the NIX coopergtoghpressed index format, NP3
and NIX ensembles were constructed of the Human UniGenégfiolacid) database with
a variety of configurations. For each configuration, DASH wasusing the two canonical
parameter sets described in Chapler 3, and the indices wastracted using frequekt
mer (i.e., stofk-mer) exclusion thresholds of 1.5, 2.5, 5.0 and 10 timesoanexpectation.
The list of configurations below describe the cooperativem@ssion optimisations to NP3
that were enabled for each test. The section and table nsméker, respectively, to the
corresponding text from the previous section, and the sahl&ppendixA that contain the

command line parameters passed to NP3, NIX and DASH. Thegroations used were:

1. Cooperative compression disabled, and &topers excluded (as a negative control)

(TableflAT11);
2. Forward Indexing, and stdpmers excluded (Tab[e/AIL2);
3. Asfor (2), but preferring inter-record references (8edZ.3.1) (Tabl&AT3);
4. As for (3), but with per-posting rebates (Sectibns T.8d[A3.2) (Tabl&AT4);
5. As for (4), but with stogk-mers included (Sectiolis 7.8.1 dnd 7.3.2) (TARIEA.15);
6. Reverse Indexing, and st&pmers excluded (Tab[e/AIL6);
7. As for (6), but preferring inter-record references (8es{7.3.1) (TableZA7);
8. As for (7), but with per-posting rebates (Sectibns T.8d[A3.2?) (Tabl&AT8);

9. As for (8), but maximising distinct source material ($et$[Z.31[7.3]12 and 7.3.3)
(TablefAID); and

10. As for (9), but with stogk-mers included (Sectiods Z.BII,7]3.2 4nd 1.3.3) (Table
AZ0).
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To assess the effectiveness of NP3/NIX compression on dakdavith a more typical
level of redundancy, the Human Genome (nucleic acid) databas also compressed and

indexed, using configurations 1 and 3.

Using the methods described in Chapler 3, the following nnessents were made for each

of the experiments described above:

1. Increase in search sensitivity relative to operatindnauit cooperative compression

(i.e., the negative control), and the peer group of algorgh

2. Reduction in NP3 and NIX index sizes (and the time takemtstruct them) relative

to operating without cooperative compression (i.e., thgatiee control); and

3. Reduction in search speed relative to operating withooperative compression (i.e.,

the negative control), and also the results of Chdpter 5.

7.8 Results

7.8.1 Improved Search Sensitivity

Tabled 7N 714, 18 4.8 TEI1617.7 7.8 present tistsaty information for DASH
Mode 2 and DASH Mode 4 for the four posting exclusion thredholL5x random expec-

tation, 25x random expectation,8x random expectation, and ¥andom expectation.

The sensitivity scores listed in these tables reflect twadsehat were expected: (a) That
increasing the posting exclusion frequency threshBldresults in increased sensitivity.
That is, the more comprehensive the index, the more seasite/search. (b) That DASH
Mode 4 (M4) is much more sensitive than DASH Mode 2 (M2), whics first established

in Chaptefb. This is the single largest influence on seanchitbéty.
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Table 7.1: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M2
Config 1 E-L5 70.06 | 70.04 | 69.86 | 69.83 | 69.72
DASH M2
Config 2. £-1.5 70.62 | 70.61 | 70.42 | 70.40| 70.29
DASH M2
Config 3. E-L5 70.90 | 70.89 | 70.70 | 70.68 | 70.57
DASH M2
Config 4. E-1.5 71.42 | 7141 | 7122 | 7120 | 71.00
DASH M2 83.83 | 83.82 | 83.62 | 8356 | 83.47
Config 5, E=o
DASH M2
Config 6. E-L5 71.08 | 71.07 | 70.80 | 70.87 | 70.76
DASH M2
Config 7 E-L5 71.25 | 71.23 | 71.05 | 71.03 | 70.92
DASH M2
Config &, E-15 72.20 | 72.19 | 72.01 | 71.99 | 71.86
DASH M2
Config 6, E-15 72.20 | 72.19 | 72.01 | 71.99 | 71.86
DASH M2
Config 10, E=o 83.80 | 83.78 | 83.58 | 83.49 | 83.39
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 9236 | 80.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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Table 7.2: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M2
Confia 1 E=2.5 75.69 | 75.69 | 75.50 | 75.47 | 75.39
DASH M2
Config 2 E=2.5 75.69 | 75.69 | 75.50 | 75.47 | 75.39
DASH M2
Config 3. E=2.5 75.97 | 75.97 | 75.78 | 75.75 | 75.67
DASH M2
Config 4 E=2.5 76.53 | 76.53 | 76.34 | 76.31 | 76.22
DASH M2 83.83 | 83.82 | 83.62 | 8356 | 83.47
Config 5, E=o
DASH M2
Config 6. E=2.5 75.77 | 75.75 | 7556 | 75.53 | 75.43
DASH M2
Config 7 E=2.5 75.94 | 75.92 | 75.73 | 75.70 | 75.61
DASH M2
Config &, E=2.5 76.83 | 76.82 | 76.62 | 76.60 | 76.50
DASH M2
Config 6, E=2.5 76.83 | 76.82 | 76.62 | 76.60 | 76.50
DASH M2
Config 10, E=o 83.80 | 83.78 | 83.58 | 83.49 | 83.39
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 9236 | 80.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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Table 7.3: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

gﬁr?fll_g; '\]/_I,ZE:5 79.51 | 79.50 | 79.30 | 79.22 | 79.14
gﬁl’?fl;] '\2/|,2E=5 79.55 | 79.55 | 79.34 | 79.27 | 79.19
gﬁr?fll_é] '\3/>I,2E=5 79.6 | 7959 | 79.39 | 79.32 | 79.24
gﬁl’?fl;] I\A/fI’ZE:S 80.13 | 80.12 | 79.92 | 79.88 79.8
gﬁl’?fll_é] '\S/I’ZE:DO 83.83 | 83.82 | 83.62 | 83.56 | 83.47
gﬁrﬁ‘% '\éI’ZE:S 79.76 | 79.75 | 79.54 | 79.47 | 79.38
gﬁr?fll_g] '\7/I,2E=5 79.95 | 79.94 | 79.73 | 79.67 | 79.57
gﬁr?fll_g] '\él’ZE:S 80.41 | 80.39 | 80.18 | 80.11 | 80.02
gﬁrﬁ‘% I\S;I’2E=5 80.41 | 80.39 | 80.18 | 80.11 | 80.02
gﬁr?fll_g] hl/lg’ Ezo 83.80 | 83.78 | 83.58 | 83.49 | 83.39

Smith-Waterman 100 100 100 100 100

BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)

BLAST

(No Fier) 88.43 | 88.38 | 87.96 | 87.73 | 86.86
BLAST

(Report Everything) | 9278 | 92:36 | 8041 | 85.62 | 76.96
FASTA 66.41 | 6559 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE

26.69 | 26.68 | 25.96 | 24.20 | 17.32
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Table 7.4: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 2 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 10x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M2
Config 1. £-10 81.70 | 81.70 | 81.50 | 81.41 | 81.33
DASH M2
Config 2. E-10 81.69 | 81.69 | 81.49 | 81.40 | 81.32
DASH M2
Config 3. E-10 81.74 | 81.73 | 81.53 | 81.44 | 81.36
DASH M2
Config 4. E10 82.02 | 82.01 | 81.81| 81.75| 81.67
DASH M2 83.83 | 83.82 | 83.62 | 8356 | 83.47
Config 5, E=o
DASH M2
Config 6. E-10 82.12 | 82.11 | 81.91 | 81.82 | 81.72
DASH M2
Config 7. E-10 82.18 | 82.17 | 81.97 | 81.88 | 81.78
DASH M2
Config 8. E-10 82.39 | 82.38 | 82.17 | 82.08 | 81.99
DASH M2
Config 9. E-10 82.39 | 82.38 | 82.17 | 82.08 | 81.99
DASH M2
Config 10, E=o 83.80 | 83.78 | 83.58 | 83.49 | 83.39
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73 | 86.86
BLAST
(Report Everything) | 9278 | 92:36 | 8041 | 85.62 | 76.96
FASTA 66.41 | 6559 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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Table 7.5: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 1.5x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M4
Config 1. E=15 78.35 | 78.27 | 77.88 | 77.78 | 77.57
DASH M4
Config 2. E-1.5 79.22 | 79.14 | 78.75 | 78.65| 78.35
DASH M4
Config 3, E-15 79.39 | 79.31 | 78.92 | 78.82 | 78.50
DASH M4
Config 4. E-15 79.67 | 7959 | 79.20 | 79.11| 78.88
DASH M4 91.04 | 91.88 | 91.53 | 91.38 | 90.91
Config 5, E=o
DASH M4
Config 6. E-15 79.95 | 79.87 | 79.48 | 79.39 | 79.17
DASH M4
Config 7. E-15 80.12 | 80.03 | 79.64 | 79.55 | 79.34
DASH M4
Config &, E-15 81.00 | 80.92 | 80.51 | 80.41| 80.20
DASH M4
Config 6. E-15 81.00 | 80.92 | 80.51 | 80.41| 80.20
DASH M4
Config 10, E=o 91.94 | 91.87 | 91.52 | 91.37 | 90.92
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 9236 | 80.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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Table 7.6: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 2.5x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M4
Confia 1. E=2.5 85.25 | 8517 | 84.69 | 84.55 | 84.17
DASH M4
Config 2. E=2.5 84.65 | 84.58 | 84.21 | 84.08 | 83.75
DASH M4
Config 3, E=2.5 84.72 | 84.64 | 84.28 | 84.16| 83.83
DASH M4
Config 4. E=2.5 85.12 | 85.05 | 84.69 | 84.56 | 84.23
DASH M4 91.04 | 91.88 | 91.53 | 91.38 | 90.91
Config 5, E=o
DASH M4
Config 6. E=2.5 86.61 | 86.53 | 86.06 | 85.92 | 85.53
DASH M4
Config 7. E=2.5 86.60 | 86.61 | 86.14 | 86.00| 85.61
DASH M4
Config &, E=2.5 87.12 | 87.05 | 86.56 | 86.42 | 86.04
DASH M4
Config 6. E=2.5 87.12 | 87.05 | 86.56 | 86.42 | 86.04
DASH M4
Config 10, E=o 91.94 | 91.87 | 91.52 | 91.37 | 90.92
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 9236 | 80.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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Table 7.7: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 5.0x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

gﬁr?fll_g; I\]/-I,4E:5 88.94 | 88.86 | 88.51 | 88.38 | 88.00
gﬁr?fll_g'] '\2/|,4E:5 89.17 | 89.08 | 88.74 | 88.59 | 88.21
gﬁr?fll_g'] '\3/>|,4E:5 89.20 | 89.13 | 88.79 | 88.64 | 88.27
gﬁr?fll_g'] 'Zl,ArE:S 89.32 | 89.25 | 88.89 | 88.74 | 88.30
gﬁr?fll_g'] '\5/I,4E=oo 91.94 | 91.88 | 91.53 | 91.38 | 90.91
gﬁr?fll_;] I\él14E=5 89.83 | 89.75 | 89.39 | 89.25 | 88.86
gﬁr?fll_;] |\7/|,4E=5 89.87 | 89.79 | 89.44 | 89.30 | 88.91
gﬁr?fll_;] I\él14E=5 89.99 | 89.91 | 89.54 | 89.41 | 89.03
gﬁr?fll_;] gl’Aszs 89.99 | 89.91 | 89.54 | 89.41 | 89.03
gﬁr?fll_;] I\l/lg’ Ezo 91.94 | 91.87 | 91.52 | 91.37 | 90.92

Smith-Waterman 100 100 100 100 100

BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)

BLAST

(No Fier) 88.43 | 88.38 | 87.96 | 87.73 | 86.86
BLAST

(Report Everything) | 9278 | 92:36 | 8041 | 85.62 | 76.96
FASTA 66.41 | 6559 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE

26.69 | 26.68 | 25.96 | 24.20 | 17.32
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Table 7.8: Sensitivity Results For Each Of The Ten Configurations Of DASH Mode 4 +
NP3/NIX, And Posting Frequency Exclusion Threshold = 10x Random Expectation.

Format PatternHunter Variant Score
at 50%\ at 75%\ at 90%\ at 95%\ at 100%

DASH M4
Config 1. £-10 90.89 | 90.82 | 90.47 | 90.33 | 89.86
DASH M4
Config 2. E-10 90.95 | 90.89 | 90.53 | 90.39 | 89.92
DASH M4
Config 3. E-10 90.97 | 90.91 | 90.56 | 90.42 | 89.96
DASH M4
Config 4. E-10 90.94 | 90.87 | 90.53 | 90.37 | 89.89
DASH M4 91.04 | 91.88 | 91.53 | 91.38 | 90.91
Config 5, E=o
DASH M4
Config 6. E-10 91.18 | 91.11 | 90.77 | 90.62 | 90.16
DASH M4
Config 7. E-10 91.19 | 91.13 | 90.79 | 90.65 | 90.19
DASH M4
Config 8. E-10 91.41 | 91.34 | 91.00 | 90.85 | 90.40
DASH M4
Config 9. E-10 91.41 | 91.34 | 91.00 | 90.85 | 90.40
DASH M4
Config 10, E=o 91.94 | 91.87 | 91.52 | 91.37 | 90.92
Smith-Waterman 100 | 100 | 100 | 100 | 100
BLAST 82.04 | 81.64 | 78.69 | 74.97 | 66.58
(Default)
BLAST
(No Fier) 88.43 | 88.38 | 87.96 | 87.73| 86.86
BLAST
(Report Everything) | 9278 | 9236 | 80.41 | 85.62 | 76.96
FASTA 66.41 | 65.59 | 65.36 | 65.28 | 65.25
BLAT 51.69 | 51.41 | 50.88 | 50.04 | 42.06
PatternHunter 46.22 | 4558 | 44.59 | 43.67 | 40.05
CAFE 26.60 | 26.68 | 2596 | 24.20 | 17.32
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In addition to these expected trends, the search sengiti@dres improve as cooperative
compression is more aggressively applied (Wilcoxon sighyteldsp < 0.0008 forE=1.5
index with DASH M2). For example, Configurations 2, 3 and 4 ebhémploy forward
chained cooperative compression differ only in the indrepdegree to which cooperative
compression was applied. However, the statistical confieléimat sensitivity was increased
diminishes and eventually disappears as the indices beommne thorough (i.e. ak in-
creases). This is not surprising, as the more thorough trelsethe less results will be
missed, and therefore the smaller the potential sengitgain due to searching using a
cooperative compressed index. However, as will be expidosow, because cooperative
compression results in a smaller index, it is possible ta gabstantial sensitivity by using
a more thorough index, while still requiring a smaller indliean would be necessary for a

less thorough search using an ordinary, i.e., non-codpelatompressed, index.

Overall, reverse chained cooperative compression rasuistter sensitivity than forward

chained cooperative compression — except whem, where forward chained indexing
gains a slight edge. Regardless of the preference for eitihesrrd or reverse chained
cooperatively compressed indices, what is certain is tbaperative compression affords
a modest gain in sensitivity. What has not been attemptez] bat would be possible, is to

use both forward and reverse chaining in the same searchidamdbrther sensitivity gains.

It will be noticed that the scores obtained with Configunatlo(the negative control which
does not use cooperative compression) with an exclusieshloid ofE=1.5x random are
slightly better than the equivalent results presented iapg®{b (see Tabl[e5.5). Moreover,
the comparison also shows that the results presented ichthger have a much higher ratio
of sensitivity scores when the PatternHunter Variant Stareshold is to require 100% of
an alignment (right most column in the tables) versus whentlineshold is to require
only 50% of an alignment (left most column of results in thielég). Both of these are
the result of minor changes made to the DASH algorithm betwelgen the experiments

in these chapters were performed. Also substantial seitgigains are realised by using
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more thorough indices5={2.5, 5.0, 10.0}x random expectation) in the experiments in
this chapter in addition to the less thorough indéx1.5xrandom expectation) which was

used in the experiments of Chapiér 5.

Compared with the peer group of algorithms, DASH with NP3 Mboperative compres-
sion is now able to match or beat the sensitivity of every o#igorithm when 90% or

more of an alignment is required, and only falls slightly glod this achievement when the
scoring threshold is relaxed to 50% of an alignment. Thieflected in Figur€714 where
a selection of the DASH+NP3/NIX results are compared withrésults of the peer group

of algorithms.

7.8.2 Reduced Index Sizes

Tabled 7B 710, 711 ahd 7112 present the index sizesddethconfigurations, with each
table using a differerik-mer frequency threshold for posting exclusion in the indexose
thresholds are 16 random (Tablé_7]9), 2.6 random (Tabl¢~Z10), 5:0 random (Table
[£13) and 16& random expectation (Tadle7]112). The time required to cooseach index
varied between 24 and 97 minutes using a RedHat Linux ES8maystth a 1.8 GHz AMD
Opteron and 8 GB of RAM.

Not surprisingly, the general rule governing index sizéhs,lower the threshold for posting
exclusion, the smaller the index. For the smallest indexi@aration 3, E=1.5), the index
is less than 20% larger than the only lightly indexed fornmssiduby BLAST (6.05 bits per
base for DASH+NP3/NIX versus 5.09 bits per base for BLASm)all cases, the index is
smaller than the 3,606 MB (15.43 bits per base) requirechidFHOLDDB index presented
in Chapteb. Thus, for a fixed index size budget, we see not thiel direct sensitivity

gains of cooperative compression, but also the opportdoitgignificant secondary gains

by using a more thorough index.
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PatternHunter Variant Scores for Various Algorithms
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Figure 7.4: Pattern Hunter Variant Scores For Nucleic Acid Queries (Using The Human
UniGene (Nucleic Acid) Database). CAFE, BLAT and PatternHunter all score lower than
the results presented here, and are omitted from this graph for clarity. DASH obtains excel-
lent sensitivity compared with the other algorithms, especially when the scoring threshold
approaches 100% of the alignment.
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Looking within each table now, we can observe the differaheg the ten configurations
make on index size. Recall that Configuration 1 is the nega&introl, where cooperative
compression is not performed; Configurations 2 through Sarseard-indexed cooperative
compression and; Configurations 6 through 10 use revedsx@u cooperative compres-
sion. Recall also, that Configurations 5 and 10 disable the@fuhreshold for posting

exclusion, i.e., do not exclude stop words from the indexuslthe threshold value is not
used, and the indices generated for Configuration 5 and QGoatign 10 do not differ with

the value ofE.

Table[Z.IB shows the relative size of the smallest index athéeved for each value of
E, versus the size of the negative control index (producedgu€ionfiguration 1). For
all values ofE, Configuration 3 (forward indexing cooperative compressiaus prefer
inter-record references) produced the smallest index.t fdmevard indexing performed
better than either the negative control or reverse indeang line with expectation; for-
ward indexing should always compress at least as well assewedexing. What comes
as a surprise, is that Configuration 4 produced a larger ititgax Configuration 3, since
Configuration 4 should have benefited from the larger numbenrter-record references
in the NP3 files produced using that configuration. This argipeobably indicates that
using a fixed sized per-posting rebate is not appropriafgaeslly when combined with
a posting compression algorithm that is sensitive to ctast€he same phenomenon also
occurs with Configurations 8, 9 and 10 (which use the fixed p&zgoosting rebate) versus
Configuration 7 (which produces the smallest index that tmesrse direction cooperative

compression).

The final observation is that the benefit of cooperative casgion of the indices increased
with the posting exclusion threshold. This makes senseesirseems reasonable that very
frequentk-mers should be more likely to form part of recurrent striqyecisely because
they are more frequent. In other words, a more thorough imdixndex more redundant

strings, and thus the resulting index should compressrbeltes may also explain why
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the difference in compression between forward and revaedexing widens as the posting

exclusion threshold increases.

7.8.3 Increased Search Time

Tabled ZTW 7%, 716, 7117 A4.18 7109, 17.20[and 7.21 shewearch times for DASH
using NP3/NIX files. The search times of the peer group of ritlgms are included to

provide context and perspective.

Two issues are immediately apparent: (a) The search tineegesy slow compared with
the FOLDDB results; and (b) The search times become slovagrfaster, as coopera-
tive compression is enabled. To shed light on these maffalde[Z2P presents a break
down of the time DASH+NP3/NIX spent performing various @ik several configuration
combinations. The time spent in each activity is unscaleayrder to show the absolute
difference in time spent between negative control and c@dpe compression. However,
note that these times were necessarily obtained with DASHpded to include profiling
instrumentation. Thus, the search times presented hédee biyf some (hopefully constant)
factor from the search speed results presented earliechwere produced using a version

of DASH compiled with compiler optimisations enabled.

7.8.3.1 NP3 And NIX Decompression Costs

Table[Z.2P reveals that NP3 decompression is the singledaapntributor to search time.
Indeed, even if all other activities could somehow be awbithe NP3 decompression time
would cause DASH to search more slowly than BLAST — this igptteshe effort invested
in making NP3 very fast to decompress. Note that the NP3 @idratime for Configura-
tion 4 is much worse than for Configurations 1 through 3. Asahly difference between
Configurations 3 and 4 is the more aggressive use of interdeedundancy records in

the NP3 file, we must conclude that the assumption made int€HBghat searches will
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Table 7.9: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 1.5).

Format Bodies Only| Descriptions Index Total

MB \ B/B | MB \ B/B | MB \ B/B | MB \ B/B
Smith-Waterman* (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10
BLAST (formatdb) 489 | 2.09|660| 2.83 | 40 | 0.17 | 1,189| 5.09
BLAT* (faToTwoBit) 630 | 2.70| - - 1,088| 4.66 | 1,718| 7.36
PatternHunter** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10
FASTA** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356 | 10.10
NP3+NIX per Tabl€ ATl (negative control) 166 | 0.71| 87 | 0.37 | 1,771| 7.58 | 2,023 | 8.66
NP3+NIX per Tabl€’A IR (forward indexed cooperative 166 | 0.71| 87 | 0.37 | 1,181| 5.06 | 1,434| 6.14
compression)
NP3+NIX per Tabl€ A3 (as above, but prefer inter-record 165 | 0.71| 87 | 0.37 | 1,162 4.98 | 1,414| 6.05
references when not more expensive)
NP3+NIX per Tabl€ZA M (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 1,322| 5.66 | 1,763| 7.55
NP3+NIX size)
NP3+NIX per Tabl€ A5 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 2,420| 10.36| 2,860| 12.25
NP3+NIX per Tabl€ A6 (reverse indexed cooperative 166 | 0.71| 87 | 0.37 | 1,196| 5.12 | 1,448| 6.20
compression)
NP3+NIX per Tabl€ A7 (as above, but prefer inter-record 166 | 0.71| 87 | 0.37 | 1,183| 5.07 | 1,435| 6.14
references when not more expensive)
NP3+NIX per Tabl€’ATB (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 1,281| 5.49 | 1,722| 7.37
NP3+NIX size)
NP3+NIX per Tabl€ AP (as above, but maximise distinctseur | 354 | 1.52| 87 | 0.37 | 1,281| 5.49 | 1,722| 7.37
material referenced by inter-record references)
NP3+NIX per Tabl€ZA 20 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 3,086| 13.21| 3,527| 15.10
CAFE*** (CAFE Index) 496 | 2.12| 102 | 0.44 | 6,961| 29.79| 7,634 | 32.67

* Indicates that program maintains an index in RAM, and thatdatabase format contains both sequence bodies andptiess{BLAT).
** Indicates that algorithm indexes during searching (@attHunter and FASTA), or does not use an index (Smith-Wadajm
*** |Indicates that multiple small indices were used instedidne large index, due to technical difficulties (CAFE).
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Table 7.10: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 2.5).

Format Bodies Only| Descriptions Index Total
MB \B/B MB\ B/B MB \ B/B | MB \ B/B

Smith-Waterman* (FASTA ASCII) 1,886| 8.06| 470| 2.04 - - 2,356| 10.10

BLAST (formatdb) 489 | 2.09| 660 | 2.83 40 0.17 | 1,189 5.09

BLAT* (faToTwoBit) 630 | 2.70| - - 1,088 | 4.66 | 1,718| 7.36

PatternHunter** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

FASTA** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

NP3+NIX per Tabl€ ATl (negative control) 166 | 0.71| 87 | 0.37 | 2,538 | 10.87| 2,791| 11.95

NP3+NIX per Tabl€ AP (forward indexed cooperative 166 | 0.71| 87 | 0.37 | 1,602 | 6.86 | 1,855| 7.94

compression)

NP3+NIX per Tabl€AT3 (as above, but prefer inter-record 165 | 0.71| 87 | 0.37 | 1572 | 6.73 | 1,824| 7.81

references when not more expensive)

NP3+NIX per Tabl€A. T (as above, but optimising combined 354 | 1.52| 87 | 0.37 |1,828.7| 7.83 | 2,270| 9.72

NP3+NIX size)

NP3+NIX per Tabl€ATb (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 2,420 | 10.36| 2,860| 12.25

NP3+NIX per Tabl€A.Tb (reverse indexed cooperative 166 | 0.71| 87 | 0.37 | 1,847 | 7.91 | 2,099| 8.99

compression)

NP3+NIX per Tabl€ATl7 (as above, but prefer inter-record 166 | 0.71| 87 | 0.37 | 1,830 | 7.84 | 2,082| 8.91

references when not more expensive)

NP3+NIX per Tabl€A.IB (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 1,955 | 8.37 | 2,396| 10.26

NP3+NIX size)

NP3+NIX per Tabl€ AP (as above, but maximise distincteeur | 354 | 1.52| 87 | 0.37 | 1,955 | 8.37 | 2,396| 10.26

material referenced by inter-record references)

NP3+NIX per Tabl€A.20 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 3,086 | 13.21| 3,527| 15.10

CAFE*** (CAFE Index) 496 | 2.12| 102 | 0.44 | 6,961 | 29.79| 7,634| 32.67

* Indicates that program maintains an index in RAM, and thatdatabase format contains both sequence bodies andotiessi{BLAT).
** Indicates that algorithm indexes during searching (@attHunter and FASTA), or does not use an index (Smith-Wadajm
*** Indicates that multiple small indices were used instedidne large index, due to technical difficulties (CAFE).
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Table 7.11: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 5.0).

Format Bodies Only| Descriptions Index Total
MB \B/B MB\ B/B | MB \ B/B | MB \ B/B

Smith-Waterman* (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

BLAST (formatdb) 489 | 2.09|660| 2.83 | 40 | 0.17 | 1,189| 5.09

BLAT* (faToTwoBit) 630 | 2.70| - - 1,088| 4.66 | 1,718| 7.36

PatternHunter** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

FASTA** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356 | 10.10

NP3+NIX per Tabl€ ATl (negative control) 166 | 0.71| 87 | 0.37 | 3,138 13.44| 3,391| 14.52

NP3+NIX per Tabl€’A IR (forward indexed cooperative 166 | 0.71| 87 | 0.37 | 1,898| 8.13 | 2,151| 9.21

compression)

NP3+NIX per Tabl€ A3 (as above, but prefer inter-record 165 | 0.71| 87 | 0.37 | 1,860| 7.96 | 2,111| 9.04

references when not more expensive)

NP3+NIX per Tabl€ZA M (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 2,210| 9.50 | 2,650| 11.35

NP3+NIX size)

NP3+NIX per Tabl€ A5 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 2,420| 10.36| 2,860| 12.25

NP3+NIX per Tabl€ A6 (reverse indexed cooperative 166 | 0.71| 87 | 0.37 | 2,576| 11.03| 2,829 12.11

compression)

NP3+NIX per Tabl€ A7 (as above, but prefer inter-record 166 | 0.71| 87 | 0.37 | 2,561| 10.97| 2,813 | 12.04

references when not more expensive)

NP3+NIX per Tabl€’ATB (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 2,658| 11.38| 3,098| 13.27

NP3+NIX size)

NP3+NIX per Tabl€ AP (as above, but maximise distinctseur | 354 | 1.52| 87 | 0.37 | 2,658| 11.38| 3,098| 13.27

material referenced by inter-record references)

NP3+NIX per Tabl€ZA 20 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 3,086| 13.21| 3,527| 15.10

CAFE*** (CAFE Index) 496 | 2.12| 102 | 0.44 | 6,961| 29.79| 7,634 | 32.67

* Indicates that program maintains an index in RAM, and thatdatabase format contains both sequence bodies andptiess{BLAT).

** Indicates that algorithm indexes during searching (@attHunter and FASTA), or does not use an index (Smith-Wadajm
*** |Indicates that multiple small indices were used instedidne large index, due to technical difficulties (CAFE).
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Table 7.12: Nucleic Acid Database And Index Sizes In Megabytes (MB) And Bits Per Base (B/B) (NIX E-value = 10.0).

Format Bodies Only| Descriptions Index Total
MB \B/B MB\ B/B | MB \ B/B | MB \ B/B

Smith-Waterman* (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

BLAST (formatdb) 489 | 2.09|660| 2.83 | 40 | 0.17 | 1,189| 5.09

BLAT* (faToTwoBit) 630 | 2.70| - - 1,088| 4.66 | 1,718| 7.36

PatternHunter** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356| 10.10

FASTA** (FASTA ASCII) 1,886| 8.06| 470 | 2.04 - - 2,356 | 10.10

NP3+NIX per Tabl€ ATl (negative control) 166 | 0.71| 87 | 0.37 | 3,349| 14.34| 3,602| 15.42

NP3+NIX per Tabl€’A IR (forward indexed cooperative 166 | 0.71| 87 | 0.37 | 1,985| 8.50 | 2,237 | 9.58

compression)

NP3+NIX per Tabl€ A3 (as above, but prefer inter-record 165 | 0.71| 87 | 0.37 | 1,942 8.32 | 2,194| 9.39

references when not more expensive)

NP3+NIX per Tabl€ZA M (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 2,337| 10.01| 2,778| 11.89

NP3+NIX size)

NP3+NIX per Tabl€ A5 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 2,420| 10.36| 2,860| 12.25

NP3+NIX per Tabl€ A6 (reverse indexed cooperative 166 | 0.71| 87 | 0.37 | 2,875|12.31| 3,127| 13.39

compression)

NP3+NIX per Tabl€ A7 (as above, but prefer inter-record 166 | 0.71| 87 | 0.37 | 2,862| 12.25| 3,114 | 13.33

references when not more expensive)

NP3+NIX per Tabl€’ATB (as above, but optimising combined 354 | 1.52| 87 | 0.37 | 2,927| 12.53| 3,368| 14.42

NP3+NIX size)

NP3+NIX per Tabl€ AP (as above, but maximise distinctseur | 354 | 1.52| 87 | 0.37 | 2,927| 12.53| 3,368| 14.42

material referenced by inter-record references)

NP3+NIX per Tabl€ZA 20 (as above, but no stop-word filtering) | 354 | 1.52| 87 | 0.37 | 3,086| 13.21| 3,527| 15.10

CAFE*** (CAFE Index) 496 | 2.12| 102 | 0.44 | 6,961| 29.79| 7,634 | 32.67

* Indicates that program maintains an index in RAM, and thatdatabase format contains both sequence bodies andptiess{BLAT).

** Indicates that algorithm indexes during searching (@attHunter and FASTA), or does not use an index (Smith-Wadajm
*** |Indicates that multiple small indices were used instedidne large index, due to technical difficulties (CAFE).
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Table 7.13: Relative Size Of Most Compact Index Versus Negative Control.

| Threshold| Negative Control Sizeé Smallest Siz¢ Configuration #/ Reduction|

1.5x 1,771 MB 1,162 MB 3 34%
2.5x 2,539 MB 1,572 MB 3 38%
5.0x 3,138 MB 1,860 MB 3 41%
10x 3,349 MB 1,942 MB 3 42%

either involve all or none of a set of records that are chainegh NP3 file is flawed, or
at least has limits. In comparison, the handling of NIX stuues turns out to be relatively
computationally light, with the time cost being directlyoportional to the number of post-
ings being handled, thus affirming the decision to use the IRéerpolative Coder. The
best hope for reducing the NP3 decompression time would sedm to amortise it over

multiple queries, by performing searches in batches ofgEsi0 to 100.

7.8.3.2 Time Spent Performing Dynamic Programming, Discasring HSPs, And
Translating HSPs

An unexpected result of using cooperative compressionaisttie time spent performing
dynamic programming actually decreased compared to thetimegontrol (Configuration

2 versus Configuration 1). What was expected, was that sinopecative compression
resulted in the discovery of more HSPs, that more dynamigraraming would be re-
quired to process them. Thus, even the modest reductionnardic programming effort
that was observed came as a complete surprise. The mogtdikelanation of this effect
is that many of extra HSPs that were discovered due to HSBI#at&on were in regions
that would have otherwise been subjected to dynamic pragiagy By finding an HSP

in such a region, DASH’s alignment assembly algorithm wdwdge gained an additional
piece of information, and the dynamic programming regioruMide divided into two

smaller regions at each end of the extra HSP, as illustrat€&igure[Zb. Since dynamic

programming has quadratic time cost with respect to theteofjthe region, such a divi-
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DP Area

DP Area \

DP Area

(@) (b)

Figure 7.5: How Finding Extra HSPs Can Reduce Dynamic Programming Time. In (a) the
DP region covers a large area, and so will require a long time to search. In (b) an extra
HSP is introduced that allows the DP area to be divided into two much smaller regions,
which together can be searched in much less time than the single large area.

sion would yield substantial time savings. Eventually, asperative compression is more
aggressively applied to discover more HSPs, this effeatvagped by the additional dy-

namic programming required to service those HSPs that degmond to new alignments.

Turning to HSP discovery time (including the time spent stating HSPs in Configura-

tions 2 through 4 where cooperative compression is englitad)observed that coopera-
tive compression results in significantly increased HSEadisry times, in contrast to the
expectation that HSP discovery time would reduce. It mustdrecluded that the time
overhead incurred in attempting to translate HSPs, on geeraeatly out weighs the time
saved by not independently discovering each member of af sé¢mtical HSPs. A con-

tributing factor is that whereas in the original DASH algbnm an O(1) algorithm could

be employed to prevent the repeated discovery of alreadydddHSPs, no such algorithm
was found that could be applied to HSP translation. Thus #ydose search was required
in order to prevent the repeated discovery of translatedsH3Roreover, the tree search

could not be avoided, because to do so would result in theategaliscovery of HSPs —
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which is exactly we were trying to avoid. Thus, itis this H8&slation overhead, together

with that of NP3 record decompression, that cause such €aveking.

One opportunity that has not been explored here is the rexudgnamic programming
effort in the case where HSPs are translated. Provided hieab\terhead of determining
when such re-use can occur is not excessive, then it may lsébpo® reduce the total dy-
namic programming effort incurred. However, as the expesewith attempting to re-use
HSP discovery effort has shown, it is by no means trivial ttaobthe efficiency required
to reduce search times. None the less, the relatively high @operforming dynamic
programming compared with HSP discovery suggests thatomildnbe easier to reduce

dynamic programming time than to reduce HSP discovery time.

7.8.4 Cooperative Compression Of A Less Redundant Database

Finally, TabldZ.ZB shows the effect of cooperative congicgson the database and index
of a database with less redundancy, the Human Genome. Résulioth the unfolded
(Configuration 1) and folded (Configuration 3) are shownngs posting frequency ex-
clusion threshold of 5x random expectation. In this case, the index size is reduged b
only 3%, much less than the 30% — 40% obtained when compresmore redundant
Human UniGene (nucleic acid) database. This is due to thisekihability of NP3 to find
recurrent strings in unsorted databases and those withddundancy. Thus, while NP3
already decompresses too slowly to facilitate competsigarch times, it is worthwhile
to attempt cooperative compression of the Human Genoméakstaising GeNML+NIX.
This is because it allows us to determine if the current besiopming DNA compres-
sion algorithm can discover sufficient redundant stringsiéke cooperative compression

feasible on an typical and unsorted genomic database, suble &luman Genome.
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7.8.5 Comparison Of GeNML And NP3

Table[Z.Zh summarises the decompression speed resulteforiginal NP3 byte-aligned
codec and the GeNML codec developed in this chapter. Thesecanpared against the
general purpose compressor GZIP. Unsurprisingly, the-atmed codec is much faster
than the GeNML codec, reflecting the computational cost ef Anthmetic Coding re-

quired for the GeNML codec. The NP3 byte-aligned codec is algyhtly faster than

GZIP. However, as discovered in Chagdikr 7, this is not fagtigh to support fast search-
ing of nucleic acid databases, and therefore we must coathat, given that the GeNML
codec is about ten times slower, that it is much too slow tetidast searching of nucleic

acid databases.

7.8.6 Compressed Database And Index Sizes

Turning to compression effectiveness, Tdblel7.25 preseeatsompressed database sizes of
the NP3 byte-aligned and GeNML codecs versus the canonegldM& algorithm. For the
two NP3 codecs, results are presented first with cooperedvgression disabled (marked
“(a)”), and with cooperative compression enabled (mark@]’y. For the NP3 codecs,
the size of the NIX index structures is also listed, and wheoperative compression is
enabled, the percentage of postings that were removed freindex by cooperative com-

pression are also listed. Performance of the canonical Geallybrithm is listed only for

those databases where results were published by Korodi ) 5). Consequen-

tially, no canonical GeNML results are given for the HumariGsne database.

By comparing the performance of the NP3 GeNML codec to thew@al GeNML algo-
rithm, it is apparent that the NP3 GeNML codec does not perfas well as the canonical
GeNML algorithm. This is to be expected for the reasons tbetagarlier in this chapter,

particularly the insertion of regular synchronisationrgej and the reduction in effective
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window size imposed by database partitioning. Howeves, ritateworthy that only a small

amount of compression is sacrificed.

For the de facto DNA Compression Corpus and the Human Genatabakes, we observe
that the GeNML codec compresses the sequence bodies mogactynthan does the
byte-aligned codec. This is in line with expectation — treele off being greatly reduced
decompression speed. However, for the Human UniGene databea discover that the
NP3 byte-aligned codec performs slightly better than th& E@NML codec. Two pos-
sible contributors come to mind. First, the NP3 byte-altjoedec was developed using
the Human UniGene Database as its test input. Therefor®nibti surprising to discover
that it performs particularly well when compressing thaiatbase. Thus, the byte-aligned
codec results may be better than can normally be expectedn8gthe GeNML algorithm
was designed for optimal performance with “typical” DNA datThat is, the GeNML
algorithm contains few specific features aimed at efficleotimpressing the many long
well preserved recurrent strings that occur in close prayito one another in the Human
UniGene database. In particular, the way that GeNML encaodés in relatively small
blocks, each of which contains some addressing overheprhligbly sufficient to explain
the difference — thus explaining the observation that thegtive performance of the NP3
GeNML codec for the Human UniGene is worse (compared to th&iNfe-aligned codec)

than can be expected for “typical” DNA data.

Turning now to cooperative compression performance, weliedame trends occurring as
for body compression: Because the GeNML algorithm is mote tabefficiently compress
approximate matches than the NP3 byte-aligned compreakjonthm, the NP3 GeNML
codec is able to remove several times more postings fromnithexithan the NP3 byte-
aligned codec. This translates into substantially smafiéices, with overall savings of
about two bits per base for both the index of the de facto DNA@@ssion Corpus, and
the index of the Human Genome database, in both cases yeddreduction in size of

about 15%. Note that this saving in index size (about two fi@isbase) is as large as the
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best savings that can ever be made through compressingghers® bodies, since they
require only two bits per base to encode directly. Moreawer15% reduction in index size
using the NP3 GeNML codec compares favourably to the 3% obdavith the NP3 byte-
aligned codec. Thus, we find that cooperative compressiomlotain useful reductions in
index size when dealing with a typical nucleic acid datapasen coupled with the current

state of the art in DNA compression algorithms.

In the case of compressing the index of the Human UniGenéddsgawe discover that,
as was the case for sequence body compression of the Hum&ehmdatabase, the NP3
byte-aligned codec out performs the NP3 GeNML codec. Hére,idsue seems to be
that the NP3 GeNML codec does not remove as many postingstfienmdex (see the
right hand column in TableZZP5), and thus is condemned tdyme a larger index. This is
because the NP3 GeNML codec seeks to optimise the size oRBdild, not the combined
NP3 and NIX file pair. Thus, whenever it will save some bitg, GeNML algorithm will
use Arithmetic Coding instead of referencing an approxarapeat to encode a block.
However, it is only by referencing repeats that cooperatmmpression can reduce the
index size. Since the index is several times larger than dmepcessed database, using
Arithmetic Coding to obtain the greatest space savingsHerdatabase, may cause the
index to be much larger, and so the GeNML algorithm may endagtireg space overall.
This could be addressed by implementing a similar schemieatioused in the NP3 byte-
aligned codec, where the combined size of the NP3 and NIXdileipoptimised, although
as discovered with the NP3 byte-aligned codec, this is neimaple as merely instituting a

fixed rebate based on the average cost of storing an indexgost

7.8.7 Effect Of Query Length On Search Time

In order to assess the impact of query length on search tinieiDASH+NP3/NIX envi-

ronment it is helpful to break down the search time into sgfgacomponents for dynamic
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programming extension of alignments, HSP discovery, Nidemreconstruction and NP3
decompression. Figuke¥.6 shows that dynamic programmaurgases and NIX index re-
trieval times increase more slowly with increasing quengkla compared to the NIX and
NP3 retrieval activities. NP3 decompression is the mosg ttwnsuming activity overall,

while NIX index retrieval experiences the largest propmrél growth.

It is the time spent in the NIX and NP3 activities that are aftigalar interest. The linear

growth of NIX index retrieval time is in line with expectatipsince the longer the query
the more index columns must be extracted. The relatively ploportional growth of NP3

decompression time is also expected, as it is only the mpsfiadditional sequences that
result in additional NP3 decompression time. Moreover titthe that can be required for
NP3 decompression is bounded by the number of sequences tathbase. Thus NP3
decompression time must eventually be logarithmic witlpees to total query length as
the proportion of decompressed sequences approaches Eafi#te[ 7.6 shows some hints
of this logarithmic behaviour in the way that the NP3 decagspion time increases more

quickly at the shorter end of query lengths than it does alathger end.

Together, these factors indicate that the DASH search mystauld be used to service
batches to effectively amortise the NP3 decompressionawee many queries, with only
a linear increase in search time due to the NIX index rettiamd other activities. In this
way the space benefits of the NP3/NIX data structures candbsed without incurring a
penalty in the form of excessive search time. Criticallg thedian time for each activity

grows only linearly or logarithmically with respect to qyéength.
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Median Search Time By Activity And Query Length
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Figure 7.6: DASH+NP3/NIX Search Time Versus Query Length: Mode 2; Human UniGene

Database; Configuration 3 (Forward Indexing).
Each bar represents 13 of the 200 queries. Median times are used in all cases.
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7.9 Discussion

7.9.1 Analysis Of Performance With Disk Based Index

The previous material has assumed that the search process adth the database and
index resident in RAM at all times. It is in that context thaetexcessive search time is
detrimental. Let us briefly consider the performance of aB/NPX compressed database
and index ensemble versus a FOLDDB uncompressed databédsedax ensemble. We

will assume that both are stored on a disk system that dslwaustained data stream of

100 MB per second. The resulting characteristics are therpaced with those of BLAST.

7.9.1.1 Analysis Of DASH With FOLDDB And NP3/NIX

We know from Chaptel]5 that a FOLDDB index and database erisefmbthe Human

UniGene nucleic acid database constructed uking 1.5x random expectation will be
3,606 MB (Tabld’5]1). Further, we know that the average &etinge of that database
using DASH M2 is 1.582 seconds. Thus, the total search tinith, tve FOLDDB index

and database ensemble stored on disk, will be 3,606-MB)0 MB per second = 36.06
seconds. The mean search time of 1.582 seconds ([Iable $3¥ithan the time taken to
read the data from disk, and so we can assume that the searais adile the data stream

is being read.

Considering now the NP3/NIX ensemble for the Human UniGemgeaic acid database
constructed usin@gE = 1.5x random expectation and using Reverse Indexing, we know
from Table[ZD the files will be 1,448 MB in size. We also knownfr Table[Z.TW that
the mean search time is 13.86 seconds. Thus, the total staehwith the NP3/NIX
ensemble stored on disk, will be 1,448 MB100 MB per second = 14.5 seconds. Again,
the search time is less than the time taken to read the daedisk, and so we can assume

that the search occurs while the data stream is being read.
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Thus we find that, even though searching an NP3/NIX compdesa@abase and index en-
semble is much slower than searching a FOLDDB formattedodataand index ensemble,
if the data must be stored on disk, then NP3/NIX is preferadoie that overall search time
can be better than halved. This is particularly advantagi@muor example, the scenario
where a workstation with relatively limited memory is usedsh a large collection, with
the secondary benefit that the reduced index size may makestlge to fit the NP3/NIX

compressed database into RAM.

7.9.1.2 The Beneficial Effect Of Partitioned Data

However, because the DASH, NP3 and NIX algorithms are desigmound a partitioned
database, itis possible to obtain better query throughpus.is by searching for batches of
queries. Because the database and index are partitiontadeadh partition small enough
to fit in the memory of even a modest computer, each partitemdrbe read only once for a
whole batch of queries. This is a significant advantage owratithic database structures,
because random disk access is completely replaced by dejwisk access, which is

much faster. Thus the disk delay can be divided by the nunflespreries in the batch.

Moreover, if each partition is extracted only once, the NEGainpression time can be paid
only once per batch instead of once per query. As Tabld 7.@&shthe NP3 decompres-
sion time accounts for between 79% and 86% for DASH M2. Tiss alfffectively deals

with the problem of unbound computational cost when evalgatecurrence chains, as
each partition can be fully resident in RAM when being seadchFinally, because the
database is formed into a number of approximately equatl ga€titions that are searched

independently, search time will scale linearly with datbaize.
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7.9.1.3 Comparison Of Batched DASH Versus NCBI-BLAST

Thus, assuming that a batch of 20 queries were process&aadhest a single query, the
disk time would remain constant. The search time would eedy no more than the time
taken for the NIX, HSP, DP and X stage of the 19 additional igserThis would be no
more than 1% (100%— 79%) x meansearchtime 19x 21%x 13.86 seconds = 55.30
seconds. Thus the total search time for all 20 queries woeld386 seconds + 55.30
seconds = 69.16 seconds, or an amortised 3.46 seconds per fbes is almost 3 times

faster than NCBI-BLAST when using a memory resident databas

7.10 Conclusions

In conclusion, it has been shown that by using cooperativepcession, it is possible
to reduce the compressed index of a sorted moderately radundcleic acid index by
34% — 42%, without requiring that the database contain whellundant records. This

compression result is accompanied by an increase in satysiti

These achievements of cooperative compression come atificgigt computational cost,
primarily as a result of: (a) the time taken to decompressieeces from an NP3 com-
pressed database (which might be possible to amortise owktipha searches); and (b)
that in the current implementation it takes more time to @iec an HSP via translation
using recurrence records, than it does to discover it ndgmahe GeNML algorithm, al-
though compressing slightly better in some cases, is artmmiiimes slower to decompress
than the NP3 byte-aligned coding scheme, precluding it fo@ing useful in the context
of sequence search and alignment. Thus the decision tedteafast but slightly space

inefficient NP3 byte-aligned coding scheme has been vitetica

Where the database must be stored on disk the NP3/NIX caodyacompressed index

and database ensemble can reduce the data size to the pemsttivé savings in data trans-
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fer time more than compensate for the additional time specduohpressing and searching,
resulting in a faster search overall. Moreover, if batchfegueries are processed, then the
NP3/NIX decompression time would be amortised to the poinéne DASH+NP3/NIX
operating on an on-disk database could search faster th&1-RICAST with a memory
resident database, with DASH requiring search time propuat to the product of the

database size and sum of the query lengths.

In summary, it has been shown that cooperative compressaionvork, and can simulta-
neously deliver improved search sensitivity, reduced diies and reduced overall search
times. Together, these results provide evidence for theadiud this dissertation. This evi-
dence is in addition to that found in Chapliér 5, where codperaompression was shown

to be effective for databases where whole records wereahipt.

Nonetheless, there are significant efficiency hurdles thest tme overcome for it to be use-
ful with unsorted databases that do not contain large nusrdfevholly redundant records,
or when performing few queries on a memory based databasdeednwhereas compressed
indices could be shrunk by around 34% — 42% for sorted moelgnsgdundant nucleic acid
databases, reductions of only 3% — 15% were achieved on gmted Human Genome
database. Nonetheless, index space savings of at leastitsvpel base were possible
for each database considered, thus confirming that coogecatmpression can save more
space than DNA compression, which can never save more trabits/per base. More-
over, this problem of poor performance when compressingrnied databases has been

substantially addressed by the recent development of amnithign that allows for sorting a

genomic database in @)(time (Bernstein and Cameron 2006).
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7.11 Future Directions

7.11.1 Sorting Databases

The recent publication of a variant of the SPEX algorithnt #ieows for sorting genomic
databases in approximately )ime presents a significant opportunity to generalise the
attractive compression performance that NIX can obtair witsorted database to any
database with sufficient intrinsic internal redundancynimgking the sorting step practi-

cable for all collection sizes.

7.11.2 Improving Search Efficiency

The logical next course of action is to address the ineffayesf the HSP translation, so
that, on average, HSP translation is at least as efficien&#sdiscovery. Specifically, there
is an opportunity to produce and implement an O(1) algoritbrndetermining whether a
given translation would point to an already discovered Hfid thus can be skipped. If
that can be achieved, then in order to further improve sgitgjit may be worth exploring

attempting translation in both the forward and reversectimas when searching a for-
ward chained cooperatively compressed index. Also, atteishould be given to reusing

dynamic programming effort expended for an HSP for any tediosms of that HSP.

7.11.3 Avoiding NP3 Decompression Time

It may also be possible to increase the value of search tinsedeystepping the decompres-

sion of the NP3 compressed database by replacing the NP3itil@wlirect 2-bit or simi-

lar representation (such as CINlO (Williams and Zobel 199 &and storing the recurrence

records in a dedicated data structure. If this can be dorethat the recurrence records

and the cooperatively compressed index are smaller thaeqthigalent non-cooperatively
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compressed index, then it may be possible to complete wistieg nucleic acid search

algorithms.

7.11.4 Presenting Relationships Among Search Results

It would be a valuable exercise to consider how to use thermresce record information

made available by cooperative compression to accuratelysaccinctly communicate the
relationships and equivalences in the results of a givertee®f course, such techniques
could be applied to the results of any search algorithm,peddent of whether it uses the

methods described here.

7.11.5 Improving Compression Performance By Using Dissirtar Re-

gressors

An opportunity exists for improving the compression of tlaaanical GeNML algorithm
by using dissimilar regressors. That is, to model one rebgibmparing it against another
that shares no bases in common with it. This counter intigeheme works because if you
know for every base in some DNA sequence you are encodingghidase cannot be one
particular one of the four nucleotides (since the string gmeiencoding and the regressor
are known to not coincide at any position, and you know thes lzsany given position
of the dissimilar regressor), then that base must be oneeaktiaining three nucleotides.
For example, if you are encodirig and know that it is noi, then you need only encode a
choice between, G andT. In other words, by knowing what the sequence you are engodin
is not, its entropy has been reduced by 25%. If the dissimelgressor has only a few bases
in common with the sequence being encoded, i.e., are massindlar, then the entropy

may still be reduced, but by a lesser degree.
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The challenges in implementing this scheme are severat, Kimust be possible to effi-
ciently search for dissimilar DNA sequences, a subject whi&s been partially explored,

but only for the restricted domain of designing oligonutiges that do not bind to a given

piece of DNA [Abbasi and Sengufta 1997). Second, given tigattaximum compression
possible is 25%, if space is to be saved, then the address digsimilar block must be able

to be encoded in relatively few bits, an issue that is andlyséhe following paragraphs.

For block lengthn, the probability of a completely dissimilar regressor Blothat is one
in which none of the bases correspond (for now, we ignore tdmgribution of mostly
dissimilar regressors), @)”. Forn = 32, this equates tp = 1.004524x 104, for n = 56,
p=1.008x 10/, while forn=120itisp=1.017x 10~ 1°. Given that for a window length
of m, and provided thatn > n, there are approximately= 2 x m regressorsn forward
ones, andn palindromic ones). Thus the probability of finding at lease alissimilar

regressor in a window of lengthis pg = 2np.

Thus for window sizes in the mega-base range, it is not uoredse to expect to find
dissimilar regressors for modest block lengths. The diffyas whether the address field to
reference the dissimilar regressor exceeds the savingodéary length: The space saving
will be nx (—log, 2 +10g,3) = nx (2—1.585) = 0.415n bits. However, the address takes
[1+log, m| bits to encode the direction and position of the regressbusTa net saving

requires 04151 > [1+log, m|, and thush > 2.41[1+ log, m|.

In short, the block length must be about 2.5 times longer tharaddress length necessi-
tated by the window size. Assuming a window size of 2022° bases, this would require

a block length of at least.21 x 21 = 50.61 bases. Since block sizes must be a multiple
of eight, the minimum block size is 56 bases, which would giveet saving of 2.24 bits
for each block. The probability of finding a completely dmegar regressor of this length

was previously found to bpg = px 2 xn=1.008x 107 x 2x 220 = 0.211. Thus, ap-
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proximately one in five 56 bit blocks could be expected to bmmessed in this way. The

overall affect would be to reduce the worst case compressi@211x 2.24= 0.473 bits.

This method has the advantage that it has the potential tpis® those blocks that cannot

be profitably compressed in any other way. However, the aanbat cost of finding the dis-

similar regressor blocks (the most similar algorithm inliterature i ta

1997) requires at least ®lpgn) time), combined with the marginal returns, suggests that

it would be of questionable valug; i abus almodagdy made the correct de-
cision to focus their efforts on the simultaneously morecedfit and effective Constrained
Normalisation. Nonetheless, the opportunity exists tghély improve the compression of
the GeNML algorithm by using dissimilar regressors. Howetkas falls outside of the

scope of this dissertation.
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Table 7.14: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=1.5.

Format Search Time (seconds) Search Time

mean | median | total (xBLAST)
gﬁr?fll_g; I\J/.I%unfolded), E=15 13.52 13.13 2,703.27 1.38
gﬁr?fll_g; |\2/I,2E21.5 19.74 19.48 3,948.20 2.02
gﬁr?fll_g; I\?:I,ZE:]__S 21.40 21.10 4,280.86 2.19
gﬁr?fz T,ZE:1_5 67.39 59.89 13,478.57 6.88
gﬁr?fll_g; |\5/I,2E:1.5 71.81 62.82 14,362.75 7.33
gﬁr?fll_g; I\éI,ZE:]__S 13.86 13.43 2,772.85 1.42
gﬁr?fll_g; '\7/I,2E:1_5 14.94 14.41 2,988.20 1.53
gﬁr?fll_é] I\él12E:1_5 45.36 44 .34 9,071.25 4.63
gﬁr?fll_é] '\S;I,ZE:LS 45.35 44 .44 9,069.62 4.63
DASH M2

Config 10, E=1.5 60.21 45.78 12,041.44 6.15

Smith-Waterman

16,259.14| 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6

(Detal) 9.79 9.40 1.058.27 1.00

NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 2.18

(No Filter)

NCBI-BLAST 2.2.6

(Report Everything) 49.65 | 11.27 | 9.929.06 5.07
*

BLAT 2.10 2.07 420.75 0.21

* %k

PatternHunter 7837 | 78.61 | 15.673.57 8.00

FASTA 500.24 | 506.14 | 100,048.54| 51.09

CAFE™

1,673.37 | 1,537.97| 334,673.07 170.90

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 7.15: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=2.5.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M2
Config 1 (unfolded), E=2.5 14.37 14.09 2 .874.52 1.47
DASH M2
Config 2. E=2.5 19.63 19.27 3,925.80 2.00
DASH M2
Config 3. E=2.5 21.09 20.59 4,218.33 2.15
DASH M2
Config 4. E=2.5 68.40 60.64 13,679.90 6.99
DASH M2
Config 5. E=2.5 71.88 62.60 14,377.00 7.34
DASH M2
Config 6. E=2.5 14.94 14.59 2973.14 1.52
DASH M2
Config 7. E=2.5 16.08 15.71 3,215.47 1.64
DASH M2
Config 8. E=2.5 46.30 45.41 9,213.32 4.70
DASH M2
Config 9. E=2.5 46.36 45.52 9,225.35 4.71
DASH M2
Config 10, E=2.5 60.24 45.75 12,048.93 6.15
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1.660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9.929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
* %k
PatternHunter 7837 | 7861 | 15,673.57 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k*k
CAFE 1,673.37 | 1,537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ

287



7.11. FUTURE DIRECTIONS CHAPTER 7. NIX

Table 7.16: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=5.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M2
Config 1 (unfolded), E<5 14.76 14.43 2.951.58 1.51
DASH M2
Config 2. E=5 21.26 20.94 4,251.74 217
DASH M2
Config 3. E=5 22.80 2250 4,559.29 2.33
DASH M2
Config 4. E=5 70.30 61.89 14,060.70 7.18
DASH M2
Config 5. E=5 71.81 62.45 14,362.42 7.33
DASH M2
Config 6. E=5 15.38 15.10 3,060.80 1.56
DASH M2
Config 7. E=5 16.51 16.13 3,301.64 1.69
DASH M2
Config 8. E<5 59.11 45.66 11,821.70 6.04
DASH M2
Config 9. E=5 59.09 45.59 11,817.18 6.03
DASH M2
Config 10, E=5 60.27 45.83 12,054.41 6.16
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1,660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9,929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
Kk
PatternHunter 7837 | 7861 | 15,673.57 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k%k
CAFE 1,673.37 | 1537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 7.17: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M2, E=10.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M2
Config 1 (unfolded), E=10 15.07 14.50 3,014.77 1.54
DASH M2
Config 2. E=10 21.60 20.99 4,319.24 2.21
DASH M2
Config 3. E=10 23.02 22.35 4,603.76 2.35
DASH M2
Config 4. E=10 70.93 62.46 14,186.79 7.24
DASH M2
Config 5. E=10 71.78 62.42 14,355.01 7.33
DASH M2
Config 6. E=10 15.77 15.20 3,154.32 1.61
DASH M2
Config 7. E=10 16.87 16.02 3,374.47 1.72
DASH M2
Config 8. E=10 59.61 45.58 11,922.71 6.09
DASH M2
Config 9. E=10 59.51 45.55 11,902.85 6.08
DASH M2
Config 10, E=10 60.22 45.74 12,044.17 6.15
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1,660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 1016 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9.929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
* %k
PatternHunter 7837 | 7861 | 1567357 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k*k
CAFE 1,673.37| 1537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBf:
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Table 7.18: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=1.5.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M4
Config 1 (unfolded), E=1.5 45.96 42.08 9,191.08 4.69
DASH M4
Config 2, E=1.5 58.36 53.10 11,672.56 5.96
DASH M4
Config 3, E=1.5 60.43 54.53 12,086.86 6.17
DASH M4
Config 4, E=1.5 157.42 | 14026 | 31,484.02 16.08
DASH M4
Config 5, E=1.5 228.19 | 202.94 | 45637.93 23.31
DASH M4
Config 6, E=1.5 49.96 45.11 9,991.64 5.10
DASH M4
Config 7, E=1.5 51.06 45.81 10,212.24 5.21
DASH M4
Config 8, E=1.5 89.35 81.39 17,869.50 9.13
DASH M4
Config 9, E=1.5 89.34 81.88 17,867.26 9.12
DASH M4
Config 10, E=L.5 131.25 | 114.04 | 26,250.75 13.41
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1.660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9.929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
* %k
PatternHunter 7837 | 7861 | 15,673.57 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k*k
CAFE 1,673.37 | 1,537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 7.19: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=2.5.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M4
Config 1 (unfolded), E=2.5 54.86 51.30 10,971.98 5.60
DASH M4
Config 2, E=2.5 66.56 60.50 13,312.95 6.80
DASH M4
Config 3, E=2.5 68.75 62.30 13,750.53 7.02
DASH M4
Config 4, E=2.5 175.42 | 158.83 | 35,084.76 17.92
DASH M4
Config 5, E=2.5 228.30 | 202.31 | 45,659.76 23.32
DASH M4
Config 6, E=2.5 60.71 56.38 12,141.75 6.20
DASH M4
Config 7. E=2.5 61.92 57.38 12,384.72 6.32
DASH M4
Config 8, E=2.5 101.40 | 93.67 20,279.94 10.36
DASH M4
Config 9, E=2.5 101.38 | 93.63 20,275.09 10.35
DASH M4
Config 10, E=2.5 131.33 | 113.87 | 26,266.05 13.41
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1.660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9.929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
* %k
PatternHunter 7837 | 7861 | 15,673.57 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k*k
CAFE 1,673.37 | 1,537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 7.20: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=5.

Format Search Time (seconds) Search Time
mean | median | total (xBLAST)
DASH M4
Config 1 (unfolded), E<5 67.03 61.25 13,406.81 6.85
DASH M4
Config 2, E=5 82.62 75.76 16,523.68 8.44
DASH M4
Config 3, E=5 85.76 79.04 17,151.31 8.76
DASH M4
Config 4, E=5 207.93 | 187.86 | 41,585.04 21.24
DASH M4
Config 5, E<5 228.14 | 202.86 | 45.628.39 23.30
DASH M4
Config 6, E=5 75.06 68.69 15,012.03 7.67
DASH M4
Config 7, E=5 76.43 69.80 15,286.00 7.81
DASH M4
Config 8, E<5 118.83 | 107.69 | 23,766.83 12.14
DASH M4
Config 9, E<5 118.85 | 107.72 | 23,770.43 12.14
DASH M4
Config 10, E=5 131.34 | 11358 | 26,268.15 13.41
Smith-Waterman 16,259.14| 14,069.69| 3.251,827.13 1,660.56
NCBI-BLAST 2.2.6 9.79 9.40 1,958.27 1.00
(Default)
NCBI-BLAST 2.2.6 2137 | 10.16 | 4.274.56 218
(No Filter)
NCBI-BLAST 2.2.6
(Report Everything) 49.65 11.27 9,929.06 5.07
*
BLAT 2.10 2.07 420.75 0.21
Kk
PatternHunter 7837 | 7861 | 15,673.57 8.00
FASTA 500.24 | 506.14 | 100,048.54 51.09
*k%k
CAFE 1,673.37 | 1537.97| 334.673.07| 170.90

* Search times include time spent by server shared amongeties (BLAT).
** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBJ
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Table 7.21: Comparison Of Nucleic Acid Search Speed (Using The Human UniGene (Nu-
cleic Acid) Database), DASH M4, E=10.

Format Search Time (seconds) Search Time

mean | median | total (xBLAST)
gﬁr?fll_g; l\]/-lé(lunf()lded), E=10 73.28 65.48 14,656.82 7.48
gﬁr?fll_g; |\2/|,4E:10 90.22 80.72 18,044.92 9.21
gﬁr?fz '\3/|,4E:10 92.92 83.09 18,584.88 9.49
gﬁr?fll_g; IZI,4E:10 222.54 199.86 44,507.16 22.73
gﬁr?fll_g; |\5/I,4E:10 228.04 202.27 45,608.33 23.29
gﬁr?fll_g; '\élf‘rE:]_O 82.35 74.36 16,470.22 8.41
gﬁr?fll_g; '\7/I,4E:10 83.73 74.41 16,746.83 8.55
gﬁr?fll_é I\él14E:10 128.36 112.52 25,672.03 13.11
gﬁr?fll_é I\S;I14E:10 128.38 112.41 25,676.75 13.11
DASH M4

Config 10, E=10 131.32 113.56 26,264.41 13.41

Smith-Waterman

16,259.14| 14,069.69 3,251,827.13 1,660.56

NCBI-BLAST 2.2.6

(Detal) 9.79 9.40 1.058.27 1.00

NCBI-BLAST 2.2.6 2137 | 1016 | 4.274.56 2.18

(No Filter)

NCBI-BLAST 2.2.6

(Report Everything) 49.65 | 11.27 | 9.929.06 5.07
*

BLAT 2.10 2.07 420.75 0.21

* %k

PatternHunter 7837 | 7861 | 1567357 8.00

FASTA 500.24 | 506.14 | 100,048.54| 51.09

CAFE™

1,673.37| 1,537.97 | 334,673.07 170.90

* Search times include time spent by server shared amongeties (BLAT).

** Minimum search time subtracted from all other queries xalade cost of indexing for algo-
rithms that index while searching (PatternHunter).

*** Search time is divided by number of index partitions (CBf:
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Table 7.22: Break Down Of DASH+NP3/NIX Search Time: Total seconds expected on
various activities for the 200 standard queries for configurations (C) 1 — 4, and posting
exclusion thresholds (E) 1.5, 2.5, 5.0 and 10 times random expectation. Configuration 1 is
the control which does not employ cooperative compression.

DASH M2 DASH M4

Activity Activity
C| E| NP3 | NIX | HSP|DP| X || NP3 | NIX | HSP | DP | X
1]15] 4664 | 225 | 181 | 264| 82 || 7,852 | 1,329| 2,173 | 5570 | 501
2|15| 5639 | 575 | 468 | 237| 82 | 8,576 | 1,354 3,687 | 4,804 | 443
3]15| 6,004 | 624 | 497 | 238| 82 || 9,452 | 1,476| 3,978 | 6,185 | 518
4] 15]18,674| 1,227] 2,376| 296 | 91 | 22,189| 2,164 | 15,939 7,078 | 585
1]25] 4928 ] 241 | 197 | 314| 88 || 8,922 [ 1,627 1,943 | 8,139 | 640
2|25| 5885 | 578 | 510 | 276| 85 || 9,385 | 1,441| 3,829 | 6,620 | 547
3]25| 6340 | 619 | 529 | 277| 86 || 9,613 | 1,473| 3,948 | 6,514 | 541
4]25]18,732| 1,234] 2,471| 323 | 94 | 22,259] 2,191] 16,168 7,469 | 605
1]50] 4992 ] 247 | 206 | 373| 95 || 9,510 [ 1,950 2,313 [ 11,402| 796
2 |50] 5945 | 579 | 526 [ 326 89 || 9,872 [ 1,560 4,495 | 8,947 | 664
3]50| 6382 | 628 | 552 | 322| 92 | 10,082| 1,579| 4,613 | 8,772 | 656
4150]18710| 1,240] 2,552| 381 | 99 | 22,785| 2,375 18,964 | 10,289| 753
1]10] 5013 [ 248 | 210 | 458 104 9,638 | 2,054] 2,515 | 13,106| 894
210 5954 | 581 | 537 [ 393| 99 | 9,958 | 1,592| 4,740 | 10,210| 736
3] 10] 6394 | 628 | 559 [ 389 99 || 10,169| 1,607 | 4,837 | 10,003| 724
4] 10| 18,692| 1,244] 2,581 462 | 107 || 22,968| 2,428 19,778| 19,778| 841

NP3 counts time spent decompressing NP3 compressed data.
NIX counts time spent decompressing compressed postistgsiom NIX files.
HSP counts time spent discovering and extending HSPs dmguranslating HSPs when this is done.
DP counts time spent performing dynamic programming.

X counts time spent doing all other activities, includingmu and house keeping.
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Table 7.23: Human Genome Nucleic Acid Database And Index Sizes For Surveyed Algo-
rithms In Megabytes (MB) And Bits Per Base (B/B).

Format Bodies Only| Descriptions” Index Total
MB |B/B |MB| B/B | MB | B/B | MB | B/B

DASH+NP3/NIX
(No folding)
DASH+NP3/NIX
(With folding)
GeNML

I%.dﬁndlahﬂs 563 | 1.54| - - - - - -
)

Smith-Waterman*

654 | 1.78] 1 0.01 | 3,442| 9.36 | 4,098 | 11.15

654 | 1.78] 1 0.01 | 3,352| 9.12 | 4,007 | 10.91

(FASTA ASCII) 3,004| 8.21| 289| 0.79 - - 3,293 | 9.00
BLAST 736 | 2.01| 433| 1.18 32 0.09 | 1,201 | 3.28
(formatdb)

BLAT*

(faToTwoBit) 950 | 2.60| - - 1,867| 5.10 | 2,817 | 7.70
PatternHunter**

(FASTA ASCII) 3,004| 8.21| 289| 0.79 - - 3,293 | 9.00
FASTA**

(FASTA ASCII) 3,004| 8.21| 289| 0.79 - - 3,293 | 9.00
CAFE***

987 | 2.70| 9 0.02 | 9,950| 27.18| 10,945| 29.90

(CAFE Index)
* Indicates that program maintains an index in RAM, and thatdatabase format contains both
sequence bodies and descriptions (BLAT).

** Indicates that algorithm indexes during searching (@attiunter and FASTA), or does not use
an index (Smith-Waterman).

*** Indicates that multiple small indices were used insteddne large index, due to technical
difficulties (CAFE).

~ The great variability in the size of the compressed detorip arises because the descriptions
in this database are very compressible, but only CAFE andHDAfke a serious attempt at

compressing them.
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Table 7.24: Nucleotide Decompression Speed (No Descriptions) Of GZIP, NP3, And The
GeNML Implementation Of Chapter [ For The De Facto DNA Corpus, And The DNA
Databases Used In This Dissertation.

| Database | Program | Secondg Bases per Second

De Facto Corpus? GZIP** 0.09 14,212,789
NP3 (byte-aligned) 0.06 21,319,183

NP3 (GeNML variant)] 0.82 1,559,940
Human UniGene GZIP** 13.23 148,100,786
NP3 (byte-aligned) | 11.93 164,239,178

NP3 (GeNML variant)] 91.95 21,309,137
Human Genome GZIP** 25.52 120,790,046
NP3 (byte-aligned) | 22.21 138,791,624

NP3 (GeNML variant)] 215.68 13,294,078

* The small size of this corpus made it difficult to obtain aate timing on the 1.8GHZ
Opteron systems running Linux with its 10ms granularity. @04ViHz Ultra-SPARC-II
based system running Solaris 10 with micro-second graityilaas used instead.

** To make the comparison between GZIP and the NP3 hosteditliges, GZIP was given
an input file consisting only of the DNA letters, i.e., stipef all descriptions and white

space.
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Table 7.25: For Each Of: The De Facto DNA Compression Corpus; The Human Uni-
Gene Database; And The Human Genome Database: Compressed Database And Index
Sizes, With Cooperative Compression Disabled (a), and Enabled (b), And Postings Omit-
ted Through Cooperative Compression.

Compressed Size (bits per baseéjostings
Program| Bodies| Index | Both Omitted

De Facto Corpus |

GeNML* | 1.73 - - -

NP3 (byte-aligned) (a) 1.93 | 20.44 22.37 -
NP3 (byte-aligned) (b) 1.93 | 19.82 21.75 4.31%

NP3 (GeNML variant) (a) 1.79 | 20.44 22.23 -
NP3 (GeNML variant) (b) 1.79 | 17.86 19.65 16.41%

Human UniGene

GeNML* - - - -

NP3 (byte-aligned) (a) 0.71 | 7.58 8.29 -
NP3 (byte-aligned) (b) 0.71 | 4.98 5.69 19.90%

NP3 (GeNML variant) (a) 0.73 | 7.59 8.32 -
NP3 (GeNML variant) (b)) 0.73 | 5.43 6.16 16.13%

Human Genome
GeNML* 1.54 - - -

NP3 (byte-aligned) (a) 1.78 | 9.37 11.15 -

NP3 (byte-aligned) (b) 1.78 | 9.21 10.99 1.61%
NP3 (GeNML variant) (a) 1.67 | 8.29 9.96 -
NP3 (GeNML variant) (b) 1.67 | 7.11 8.78 7.24%

* GeNML results are those reported by Korodi and Tahus (200) results have been

reported by them for the Human UniGene database.
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Chapter 8

Conclusions

In Partdl] it was demonstrated that, for a database whereeuigaglords are redundant, that
using cooperative compression could reduce sequencénsmadalignment time require-
ments by 6% — 13%, and space requirements by 18%, while ahbgeansmall increase in

sensitivity.

The results of Pafflll were generalised in Bait |1, wheredbeperative compression tech-
niques were refined and applied to a sorted database comjd@ss redundancy (the Hu-
man UniGene nucleotide database), and finally to an unsdebase of “typical” com-
position and redundancy, namely the Human Genome DataBabstantial space savings
were again made, of 40% (for the Human UniGene database) E¥td(fbr the Human

Genome database), and were also accompanied by sign¥igaeriased sensitivity.

The partitioned data model allows DASH to processes batohggeries from an on-disk
database several times faster than NCBI-BLAST could psotfesm using a memory res-
ident database. This is in spite of increased search timesrfgle queries due to the high

computational cost of decompressing database and inderdsec

It is this computational complexity that presents the gsiadifficulty in making the meth-
ods of this dissertation generally successful. The needd¢ompress additional documents
in order to reconstruct the index postings omitted by thepeoative compression of the

postings list results in an unavoidable time cost.
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The partitioned index structure means each databasei@aibd its index can be fully
decompressed into RAM, thus allowing much of the extra $etamte cost to be amortised
by processing queries in batches. However, this is not ag@esblution: single queries
are still slow and, critically, the time cost of translatidgPs from one context to another
remains. Therefore the end result is a search process tliathaving the potential to be
faster by avoiding the repeated searching of identical nadteften ended up being slower
due to higher constant overheads, as reflected in the fadd®R translation turned out to

be slower than discovering HSPs in the ordinary way.

Work is warranted in exploring how to make the translatiotH&Ps faster. This may be
possible by creating a more efficient test as to whether argngranslation can be skipped.
The current test requires a cache unfriendly tree traverdath results in the test being
slower than either the translation step, or the discoverthefalignment in the ordinary

way.

Nonetheless, it was shown that it is possible to explicéhuse information about recurrent
strings obtained during the database compression phabke itompression of the index,

and also the searching of the database, which efficiencgssaside, was successful and
did result in a small gain in sensitivity. In this way the matls of this dissertation have

contributed a new approach to increasing the sensitivitgrofndex based search. This
creates a significant new avenue of exploration in atterggbndevise a new generation

of genomic search algorithms that combine the seeminglflicong goals of improved

speed, sensitivity and space characteristics.

Overall, it was shown that the considerable space savirgjscthoperative compression
delivers can result in reduced search times overall, eajhpedi the data are stored on
disk. Thus, the possibility of creating DNA compressiormaring, and search algorithms
that reduce the space and time requirements, while sinadtgsty increasing the search

sensitivity was again demonstrated in principle, if notiiagtice.
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8.1 Conclusions

In conclusion then, | can say that evidence was found in sugbdhe thesis of this dis-

sertation that was proposed in Chajiller 1. However, this whsachieved when sufficient
redundancy existed within the database being consideneldthat the redundancy was in
the form of whole repeated records, when searches wereduhtolgether, or when the

database was stored on disk.

When the redundancy consisted of smaller units, such asremtistrings within records,
then space savings and sensitivity increases can be matdat e cost of a dispropor-
tionate increase in search time. However, this increasedrch time could be reversed by
batching queries, and would allow a DASH based system tcggsoqueries against a disk-
resident database several time faster (in aggregate) tieBI-RLAST, even if BLAST

were able to operate from a memory-resident database.

The increased search time for individual queries was foortzktprimarily due to the fact
that: (a) Decompressing sequence bodies, even using thiéR&dyte-aligned codec, was
slow if not amortised over multiple searches, and; (b) the grained approach of copying
or translating alignments discovered for each instanceretarrent string into each other
instance of that string was more time consuming than simjgigodering each alignment
independently. That HSP translation turned out to be sldinamn re-discovery was a sur-
prising result. Indeed, if this situation could be revergtén the algorithms presented in
this dissertation have the potential to be significantlydiaghan existing genomic sequence
search and alignment algorithms. Indeed, the benefits meyféav on to other search and

comparison systems, such as internet search engines.

In order to obtain further space savings, a DNA compressigorithm such as GeNML
is required. However, this would further increase the dgu@ssion time, and therefore,
the search time. Although the variation of the GeNML aldoritpresented in this disser-

tation already reduces the amount of Arithmetic Codinggrentd, it is still too slow. The
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greatest hope for making it faster would seem to lie in usheglatest advances in fast

Arithmetic Coding algorithms.

In summary, cooperative compression has been shown tawoktathwhile time and space
savings, accompanied by minor sensitivity gains, thus st the thesis of this disser-
tation. However, the current state of the art limits its alility to biological sequence
databases that contain sufficient redundancy. This ismilyrhe exception rather than the
rule, but as the quantity and redundancy of sequenced datmges to grow, cooperative
compression will increase in relevance, particularly vitie recent advent of algorithms

that allow for the efficient sorting of large genomic datadsas
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Appendix A

Invocation Commands For Search
Algorithms

This appendix contains the invocation commands for: (alh @i¢he peer group of algo-
rithms; and (b) the various invocations of the DASH seargioddhm introduced in this

thesis.

Table A.1: SSEARCH 3.4t25 (Smith-Waterman) Configuration.

| | Command Template

Nucleic Acid | ssearch34 -n -a -b 500 -d 500 -E 1000000 -r +1/-3 -f
Queries -5 -g -2 -m 0 -Q $QUERY -0 $0UTFILE ${database}
Protein ssearch34 -p -a -b 500 -d 500 -E 1000000 -f -11 -g -1
Queries -m 0 -Q $QUERY -0 $0UTFILE ${database}
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Table A.2: BLAT Configuration.

| | Command Template

Database/Indexgrep -v ’~$|"#’ Hs.seq.all > hs.fa ; faToTwoBit hs.fa
Construction | hs.seq.all.2bit ; gfServer localhost 12345 -tileSize=8
-maxDnaHits=500 -repMatch=65536 hs.seq.all.2bit

Nucleic Acid | gfClient -out=blast localhost 12345 / $QUERY $0UTFILE
Queries
Protein “/bin/i386/blat -out=blast ~/data/genpept.fsa $QUERY
Queries -prot -tileSize=3 -ooc=3.00oc $0UTFILE

Table A.3: NCBI-BLAST 2.2.6 Default Configuration.

| | Command Template

Database/Indexformatdb -p F -i Hs.seq.all ; formatdb -p T -i
Construction | genpept.fsa

Nucleic Acid blastall -p blastn -G 5 -E 2 -d $BLAST_DB_FILE -i

Queries $QUERY -o $0UTFILE
Protein blastall -p blastp -d $BLASTP_DB_FILE -i $QUERY -o
Queries $0UTFILE

Table A.4: NCBI-BLAST 2.2.6 No Filtering Configuration.

| | Command Template

Database/Indexformatdb -p F -i Hs.seq.all ; formatdb -p T -i
Construction | genpept.fsa

Nucleic Acid blastall -p blastn -G 5 -E 2 -F F -d $BLAST_DB_FILE -i
Queries $QUERY -o $OUTFILE

Protein blastpgp -s T -F F -d $BLASTP_DB_FILE -i $QUERY -o
Queries $0UTFILE

Table A.5: NCBI-BLAST 2.2.6 Report Everything Configuration.

| | Command Template

Database/Indexformatdb -p F -i Hs.seq.all ; formatdb -p T -i
Construction | genpept.fsa

Nucleic Acid | blastall -p blastn -G 5 -E 2 -e 500 -v 100000 -b

Queries 100000 -d $BLAST_DB_FILE -i $QUERY -o $OUTFILE
Protein blastall -p blastp -e 500 -v 100000 -b 100000 -d
Queries $BLASTP_DB_FILE -i $QUERY -o $0UTFILE
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Table A.6: PatternHunter Configuration.

| | Command Template

Nucleic Acid | phn -m 32 -db 3 -i $query -j $database -o $outputfile
Queries

Table A.7: FASTA Configuration.

| | Command Template

Nucleic Acid fasta34 -n -a -b 500 -d 500 -E 1000000 -f 56 -g 2 -m O
Queries -Q $QUERY -0 $OUTFILE Hs.seq.all 6
Protein fasta34 -p -a -b 500 -d 500 -E 1000000 -f 11 -g 1 -m O
Queries (a) -Q $QUERY -0 $0UTFILE genpept.fsa 1
Protein fasta34 -p -a -b 500 -d 500 -E 1000000 -f 11 -g 1 -m O
Queries (b) -Q $QUERY -0 $0UTFILE genpept.fsa 2

Table A.8: CAFE Configuration.

| | Command Template

Database/Indexcafe -g 9 -f -v Hs.seq.all; cafe -a -g 3 -f -v
Construction | genpept.fsa
Nucleic Acid | cafe -n 500 -G 5 -E 2 -I $database < $query

Queries >$outputfile
Protein cafe -a -n 500 -G 11 -E 1 -I $database < $query
Queries >$outputfile

Table A.9: DASH+FOLDDB M2 Configuration.

| | Command Template

Database/Indexfolddb -e 2.5 -r 50000000 -s 65000 -d Hs.seq.all -o
Construction | index.Hs.seq.all; folddb -e 10 -r 50000000 -s 65000 -d
genpept.fsa -o index.genpept.fsa; folddb -2 -e 10 -r
50000000 -s 65000 -d genpept.fsa -o
index.genpept.fsa.nofold

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d index.Hs.seq.all -i

Queries $query -o $outputfile -G 5 -E 2

Protein dash -s mode2 -b 1000 -p dashp -d index.genpept.fsa -i
Queries $query -o $outputfile

(folded)

Protein dash -s mode2 -b 1000 -p dashp -d

Queries index.genpept.fsa.nofold -i $query -o $outputfile
(normal)
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Table A.10: DASH+FOLDDB M4 Configuration.

| | Command Template

Database/Indexfolddb -e 2.5 -r 50000000 -s 65000 -d Hs.seq.all -o
Construction index.Hs.seq.all; folddb -e 10 -r 50000000 -s 65000 -d
genpept.fsa -o index.genpept.fsa ; folddb -2 -e 10 -r
50000000 -s 65000 -d genpept.fsa -o
index.genpept.fsa.nofold

Nucleic Acid | dash -s mode4 -b 1000 -p dashn -d index.Hs.seq.all -i

Queries $query -o $outputfile -G 5 -E 2

Protein dash -s mode4 -b 1000 -p dashp -d index.genpept.fsa -i
Queries $query -o $outputfile

(folded)

Protein dash -s mode4 -b 1000 -p dashp -d

Queries index.genpept.fsa.nofold -i $query -o $outputfile
(normal)

Table A.11: DASH + NP3/NIX Configuration 1. No Cooperative Compression (Negative
Control).

| | Command Template |

Database/Indexnp3 -9 Hs.seq.all;

Construction | nix -v -r -k -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.12: DASH + NP3/NIX Configuration 2: Forward Indexing.

| | Command Template

Database/Indexnp3 -9 Hs.seq.all;

Construction | nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;
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Table A.13: DASH + NP3/NIX Configuration 3: Forward Indexing, Prefer Inter-Record Ref-
erences.

| | Command Template |

Database/Indexnp3 -9 -n Hs.seq.all;

Construction | nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.14: DASH + NP3/NIX Configuration 4: Forward Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings.

| | Command Template

Database/Indexnp3 -9 -n -R 13 Hs.seq.all;

Construction | nix -v -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.15: DASH + NP3/NIX Configuration 5: Forward Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings, Do Not Exclude Stop k-mers.

| | Command Template

Database/Indexnp3 -9 -n -R 13 Hs.seq.all;

Construction | nix -v Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.16: DASH + NP3/NIX Configuration 6: Reverse Indexing.

| | Command Template

Database/Indexnp3 -9 Hs.seq.all;

Construction | nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;
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Table A.17: DASH + NP3/NIX Configuration 7: Reverse Indexing, Prefer Inter-Record Ref-
erences.

| | Command Template

Database/Indexnp3 -9 -n Hs.seq.all;

Construction | nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.18: DASH + NP3/NIX Configuration 8: Reverse Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings.

| | Command Template

Database/Indexnp3 -9 -n -R 13 Hs.seq.all;

Construction | nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;

Table A.19: DASH + NP3/NIX Configuration 9: Reverse Indexing, Prefer Inter-Record Ref-
erences, Rebate Estimated Savings Of Omitted Postings, Maximise Distinct Source Mate-
rial.

| | Command Template

Database/Indexnp3 -9 -n -r -R 13 Hs.seq.all;

Construction | nix -v -r -E 1.50 Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;
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Table A.20: DASH + NP3/NIX Configuration 10: Reverse Indexing, Prefer Inter-Record
References, Rebate Estimated Savings Of Omitted Postings, Maximise Distinct Source
Material, Do Not Exclude Stop k-mers.

| | Command Template

Database/Indexnp3 -9 -n -r -R 13 Hs.seq.all;

Construction | nix -v -r Hs.seq.all.np3

Nucleic Acid | dash -s mode2 -b 1000 -p dashn -d Hs.seq.all.nix -i
Queries $query -o $outputfile -G 5 -E 2;

dash -s mode4 -b 1000 -p dashn -d Hs.seq.all.nix -i
$query -o $outputfile -G 5 -E 2;
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