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Abstract 
The rapid and reliable detection of diseases and pathogens is essential to modern 

healthcare systems.  Development of new and more efficient sensing techniques is 

continuously being undertaken to meet this requirement with a large focus on 

immuno- and biosensing devices.  The work conducted in this thesis seeks to 

address these needs via the development of new detection mechanisms and 

receptor immobilisation techniques for porous silicon (pSi) based optical 

immunosensors. 

Initial investigations focused on the fabrication of an appropriate pSi optical 

sensor platform via changes in the electrochemical etching parameters.  Higher 

current density applied during the etching cycle resulted in increased pore size, 

porosity and etching rate of n-type pSi.  Monolayer pSi containing higher levels 

of porosity were demonstrated to be more sensitive to changes in refractive index 

through interferometric reflectance spectroscopy (IRS).  Optimisation of these 

parameters yielded a sensitive and flexible sensor platform. 

Development of a new absorbance based pSi optical biosensor was then 

undertaken.  Detection of a human IgG analyte was achieved via a cascade of 

immunological reactions at the pore walls to form a sandwich assay.  The 

detection strategy involved an alkaline phosphatase (AP) labelled secondary 

antibody and precipitation of the enzyme substrate 5-bromo-4-chloro-3-indoyl 

phosphate (BCIP)/nitro blue tetrazolium (NBT) within the porous matrix.  The 

intense colour change and strong absorbance of the biocatalysed BCIP/NBT 

compounds at 600 nm provided a measureable response on the intensity of the 

reflected optical profile of the porous layer.  This approach yielded a limit of 

detection of 2.14 ng/mL, well within the working range required for analysis of 

clinical samples.  

Following development of the new pSi sensor, a special protein based IgG affinity 

coating was investigated as a new method of receptor immobilisation on optical 

sensors.  Adaptation of a previously reported genetically modified bacterial 

surface layer (S-layer) protein from Lysinibacillus sphaericus containing twin IgG 

binding domains (SbpA31-1064/ZZ) provided a route to the formation of a self-



 

 

assembling protein layer capable of immobilising receptor IgG molecules with 

defined orientation.  In vitro self-assembly of purified recombinant rSbpA31-

1068/ZZ fusion protein was demonstrated by the formation of crystalline protein 

layers on various surface chemistries.  IgG binding capacity was shown on 

rSbpA31-1068/ZZ coated ELISA microtiter plates via the immobilisation of IgG 

capture antibodies and detection of human IgG and human Interleukin-6 analytes.  

Integration of this coating into the previously developed pSi biosensor yielded a 

general improvement in sensor performance compared to covalent attachment of 

capture antibodies indicating that this new approach resulted in less receptor 

inhibition and greater numbers of viable binding sites. 

Finally, the development of a new pSi optical interferometric biosensor based on 

metallic deposition was investigated.  Chemical reduction of silver and deposition 

within gold treated pSi was found to result in a significant decrease to the EOT of 

the material due to a refractive index change.  This refractive index ‘contrast’ 

enhancement was demonstrated on both gold nanoparticle decorated pSi and gold 

plated pSi and optimised to provide maximum signal change.  An enzyme 

mediated silver deposition system was then developed using alkaline phosphatase 

and a synthesised enzyme substrate, hydroquinone diphosphate.  Enzyme 

mediated silver deposition on gold plated pSi was demonstrated and optimised.  

Finally, adaptation of this system to a pSi optical immunosensor was 

demonstrated via the detection of human IgG. 

The new organic and metallic enhancement immunosensors developed in this 

thesis demonstrate strong sensor platforms and with further investigation may be 

viable as future diagnostic techniques.  In addition, the S-layer affinity coating 

has vast potential for use in a variety of immunosensors and a swath of other 

applications including patterned microarrays, biomimetics and drug delivery. 
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etc et cetera 

EtOH Ethanol 

FFT Fast Fourier Transform 

FTIR Fourier Transformed Infrared Spectroscopy 



 

 

GnHCl Guanidine hydrochloride 

HAc Acetic acid 

HF Hydrofluoric acid 

HQ Hydroquinone 

HQDP Hydroquinone diphosphate 

HRP Horseradish peroxidase 

IgA Immunoglobulin A 

IgG Immunoglobulin G 

IgM Immunoglobulin M 

IL-6 Interleukin-6 

IPTES 3-isocyanatopropyl triethoxysilane 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

IR Infrared 

IRS Interferometric Reflectance Spectroscopy 

L. sphaericus  Lysinibacillus sphaericus 

LB Lysogeny Broth 

LOD Limit of Detection 

Method 1 Solution based immobilisation of AuNP's on pSi 

Method 2 Drying based immobilisation of AuNP's on pSi 

milliQ Ultrapure water, resistivity 18.2 MΩ.cm 

MS Mass spectroscopy 

MUA 11-Mecaptoundecanoic acid  

mλ 
Spectral order of the Fabry-Pérot fringe (m) times wavelength 
of the incident light striking the surface at an incident angle of 
0˚ (λ) 

Na(HQDP) Sodium Salt of hydroquinone diphosphate 

NB Nutrient Broth 

NBT Nitro Blue Tetrazolium 

nd Average refractive index of a porous silicon layer (n) times 
porous silicon layer thickness (d) 

NHS N-Hydroxysuccinimide 

NMR Nuclear Magnetic Resonance spectroscopy 

n-type Phosphorous doped silicon 



 

 

OD Optical Density 

OPD O-Phenylenediamine dihydrochloride 

Ozone Silicon Ozone oxidised silicon, treated with mild thermal oxidation 

PBS Phosphate Buffer Saline 

PBS-T PBS-Tween® 20 

PDMS Polydimethylsiloxane 

PEG Polyethylene Glycol 

PEG Silane n-(triethoxysilylpropyl)-o-polyethylene oxide urethane  

PFCS Pentafluorophenyl dimethylchlorosilane  

pSi Porous silicon 

PSS Polystyrene sulfonate 

Pty Ltd Proprietary Limited 

p-type Boron doped silicon 

QCM Quartz Crystal Microbalance 

RIA Radio-immunoassay 

RMS Root mean squared 

S/N Signal to noise ratio 

SA Silver acetate 

SbpA S-Layer protein from L. sphaericus  

SbpA-ZZ Recombinant S-layer fusion protein, rSbpA31-1068/ZZ 

SCWP Secondary Cell Wall Polymer 

SDS-PAGE  Sodium Dodecyl Sulfate - Polyacrylamide Gel 
Electrophoresis 

SEM Scanning Electron Microscopy 

S-layer Surface layer protein 

SPR Surface Plasmon Resonance 

Sulfo-NHS N-Hydroxysulfosuccinimide 

TDFCS Tridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane 

TIR Total Internal Reflectance 

TIRF Total Internal Reflectance Fluorescence 

TM Trademark 

TMB 3,3’,5,5’-Tetramethylbenzidine 



 

 

Tris Trizma base 

Tris-HCl Trizma HCl 

Tris-T Tris buffer-Tween® 20 

™ Trade Mark 

UV-Vis Ultraviolet-Visible 

Z Synthetic IgG binding domain 

α Anti 

λ Wavelength 

® Registered 
 

  



 

 

List of Units 
 

Unit Abbreviation Full Name 

% Percentage 

~ Approximately 

< Less than 

> Greater than 

≤ Less than or equal to 

≥ Greater than or equal to 

˚ Degrees 

˚C Degrees Celsius 
1H Proton 

A Ampere 

au Arbitrary units 

avg Average 

C Coulomb 

cm Centimetre 

cm-1 Reciprocal centimetres (wavenumbers) 

d Porous layer thickness 

eV Electronvolt 

g Grams 

hr Hour 

J Coupling constant (Hz). 

kDa Kilo Daltons 

kV Kilovolt 

M Molar 

m/z Mass to charge ratio 

mA Milliamps 

min Minute 

mL Millilitre 

mM Millimolar 



 

 

mmol Millimoles 

n Refractive index 

ng Nanogram 

nm Nanometre 

ø Diameter 

pH Potential of hydrogen 

pKa Acid dissociation constant 

S Singlet 

sec Seconds 

v/v Volume per volume 

W Watts 

w/v Weight per volume 

ε Molar extinction coefficient 

μg Microgram 

μL Microlitre 

μm Micrometre 

μM Micromolar 

Ω Ohms 
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