New Approaches in Porous Silicon Based Optical Immunosensors

Andrew Oliver Jane

School of Chemical and Physical Sciences

Supervised by

Professor Joseph Shapter (Flinders University)

Dr Roman Dronov (Flinders University)

Professor Nicolas Voelcker (University of South Australia)

Dr Alastair Hodges (Universal Biosensors Inc.)

Submitted on the 25th of March 2014 in fulfilment for the degree of Doctor of Philosophy (PhD) Accepted on the 28th of August 2014

Table of Contents

Abstract		i	
Declaration	Declarationiii		
Acknowled	lgements	iv	
List of Fig	ıres	vi	
List of Tab	les	xvi	
List of Equ	lations	xviii	
	previations		
	ts		
	wed Publications		
	uction		
1.1	Immunoassays and Immunosensing Principles	2	
1.1.1	Antibody Structure and Principles of Immunoassays	2	
1.1.2	Immunosensors	3	
1.1.3	Optical Immunosensing	5	
1.1.4	Immunosensing Summary		
1.2	Porous Silicon in Biosensor Applications	14	
1.2.1	Etching Techniques		
1.2.2	Types of pSi		
1.2.3	Surface Functionalisation		
1.2.4	pSi Based Transducers	23	
1.2.5	Photoluminescence Based Transducers		
1.2.6	Chemiluminescence-Based pSi Transducers		
1.2.7	Infrared-Based pSi Transducers		
1.2.8	Electrochemical Transduction on pSi	51	
1.2.9	pSi Summary		
1.3	S-Layer Proteins - A Versatile Receptor Platform		
1.3.1	Introduction		
1.3.2	S-Layer Structure		
1.3.3	Self-Assembly		
1.3.4	Applications of native S-layer proteins	61	
1.3.5	Genetic Modification of S-layers		
1.3.6	S-layer Summary		
1.4	Conclusions		

2	Materi	als and General Methods	69
	2.1	Materials	70
	2.1.1	Chemicals and Reagents	70
	2.2	General Methods	79
	2.2.1	pSi Etching Procedure	79
	2.2.2	Surface Modification and Functionalisation	80
	2.2.3	Spectroscopy Techniques	83
3	Porous	Silicon Optical Transducer Design	87
	3.1	Abstract	88
	3.2	Introduction	89
	3.3	Experimental	91
	3.3.1	Preparation of Porous Silicon	91
	3.3.2	Surface Functionalisation and Characterisation	91
	3.4	Results	93
	3.4.1	pSi Fabrication Technique	93
	3.4.2	N-type and P-type pSi Comparison	94
	3.4.3	Effect of Current Density on Pore Diameter	96
	3.4.4	Effect of Current Density on Porosity	96
	3.4.5	N-type pSi Etching Rate	98
	3.4.6	Current Density – Sensitivity to Refractive Index Change	98
	3.5	Conclusion	100
4		Detection of Human IgG on Porous Silicon via Enzyme Catalysed Precipitati of BCIP/NBT	
		Abstract	
	4.2	Introduction	103
	4.3	Experimental Method	106
	4.3.1	Preparation of Porous Silicon	106
	4.3.2	Formation of the Immunosensing Platform and Functionalisation of Poro Silicon.	
	4.3.3	Immobilisation of Alkaline Phosphatase	107
	4.3.4	Immobilisation of α-Human IgG Conjugated to Alkaline Phosphatase	107
	4.3.5	Functionalisation of Flat Silicon with Alkaline Phosphatase	108
	4.3.6	Enzyme Substrate Optimisation	108
	4.3.7	Human IgG pSi Immunosensing	109
	4.3.8	Cross-Reactivity/Specificity of the pSi Immunosensor	
	4.3.9	Fabrication of Immunoassay Patterned pSi for FTIR Mapping	111

4.3.10	Refractive Index Measurements	. 113
4.4	Results and Discussion	. 114
4.4.1	Surface Characterisation	. 114
4.4.2	Enzyme Substrate Optimisation	. 119
4.4.3	Signal Processing Optimisation	. 125
4.4.4	Intensity Response to BCIP/NBT Precipitation on pSi and Flat Silicon	. 131
4.4.5	Human IgG Immunosensing	. 133
4.4.6	Surface Characterisation Following Immunosensing	. 142
4.5	Conclusions and Future Directions	. 149
5 S-layer	· Fusion Protein as a Promoter for pSi Immunosensors	.151
5.1	Abstract	. 152
5.2	Introduction	. 153
5.3	Experimental Method	. 156
5.3.1	Cell Culture - Lysinibacillus sphaericus ATCC 4525	. 156
5.3.2	Extraction and Purification of Native S-layer Protein SbpA	. 156
5.3.3	Genetic Modification of S-layer Protein	. 157
5.3.4	E. Coli Cell Culture and Expression of rSbpA ₃₁₋₁₀₆₈ /ZZ	. 157
5.3.5	Extraction and Purification of $rSbpA_{31-1068}/ZZ$ S-layer Fusion Protein	. 158
5.3.6	Growth Measurements	. 160
5.3.7	Solid Substrate Preparation	. 160
5.3.8	Static Contact Angle Analysis	. 162
5.3.9	In vitro Recrystallisation of S-layers on Solid Supports	. 162
5.3.10	Atomic Force Microscopy	. 163
5.3.11	S-layer Based ELISA	. 163
5.3.12	pSi Preparation	. 165
5.3.13	pSi Functionalisation	. 165
5.3.14	Capture Antibody Immobilisation on SbpA-ZZ modified pSi and Humar IgG Immunosensing.	
5.4	Results and Discussion	. 169
5.4.1	Expression and Extraction of SbpA S-layer Protein from L. Sphaericus ATCC 4525	. 169
5.4.2	Optimisation of S-layer Recrystallisation on Silicon	. 170
5.4.3	Expression and Purification of the S-layer Fusion protein SbpA-ZZ	. 179
5.4.4	Recrystallisation of SbpA-ZZ Fusion Protein on Solid Supports	. 181
5.4.5	Accessibility of Fused ZZ Domains - Human IgG Assay	. 185

	5.4.6	Assessment of SbpA-ZZ performance (ELISA Studies)	
	5.4.7	S-layer Integration into pSi Immunosensor Architecture	
	5.5	Conclusions and Future Directions	
6		ne Mediated Signal Enhancement by Silver Reduction on Gold Me owards a New Optical Immunosensor Detection Strategy	
	6.1	Abstract	
	6.2	Introduction	
	6.3	Experimental	
	6.3.1	Preparation of porous silicon	
	6.3.2	Surface Functionalisation	206
	6.3.3	Surface Characterisation	209
	6.3.4	Silver Enhancement of Gold	
	6.3.5	Organic Synthesis of Hydroquinone Diphosphate	211
	6.3.6	Detection of Human IgG by Enzyme Mediated Silver Contrast Enha of Gold	
	6.4	Results	214
	6.4.1	Silver Contrast Enhancement on Gold Nanoparticle (AuNP) Modifie 214	ed pSi
	6.4.2	Enzyme Mediated Silver Deposition on Gold Coated pSi	
	6.4.3	Detection of Human IgG by Silver Contrast Enhancement on Gold F pSi	
	6.5	Conclusions and Future Directions	
7	Conclu	usions and Future Perspectives	
R	eferences	5	244

Abstract

The rapid and reliable detection of diseases and pathogens is essential to modern healthcare systems. Development of new and more efficient sensing techniques is continuously being undertaken to meet this requirement with a large focus on immuno- and biosensing devices. The work conducted in this thesis seeks to address these needs via the development of new detection mechanisms and receptor immobilisation techniques for porous silicon (pSi) based optical immunosensors.

Initial investigations focused on the fabrication of an appropriate pSi optical sensor platform via changes in the electrochemical etching parameters. Higher current density applied during the etching cycle resulted in increased pore size, porosity and etching rate of n-type pSi. Monolayer pSi containing higher levels of porosity were demonstrated to be more sensitive to changes in refractive index through interferometric reflectance spectroscopy (IRS). Optimisation of these parameters yielded a sensitive and flexible sensor platform.

Development of a new absorbance based pSi optical biosensor was then undertaken. Detection of a human IgG analyte was achieved via a cascade of immunological reactions at the pore walls to form a sandwich assay. The detection strategy involved an alkaline phosphatase (AP) labelled secondary antibody and precipitation of the enzyme substrate 5-bromo-4-chloro-3-indoyl phosphate (BCIP)/nitro blue tetrazolium (NBT) within the porous matrix. The intense colour change and strong absorbance of the biocatalysed BCIP/NBT compounds at 600 nm provided a measureable response on the intensity of the reflected optical profile of the porous layer. This approach yielded a limit of detection of 2.14 ng/mL, well within the working range required for analysis of clinical samples.

Following development of the new pSi sensor, a special protein based IgG affinity coating was investigated as a new method of receptor immobilisation on optical sensors. Adaptation of a previously reported genetically modified bacterial surface layer (S-layer) protein from *Lysinibacillus sphaericus* containing twin IgG binding domains (SbpA₃₁₋₁₀₆₄/ZZ) provided a route to the formation of a self-

assembling protein layer capable of immobilising receptor IgG molecules with defined orientation. In vitro self-assembly of purified recombinant rSbpA₃₁. 1068/ZZ fusion protein was demonstrated by the formation of crystalline protein layers on various surface chemistries. IgG binding capacity was shown on rSbpA₃₁₋₁₀₆₈/ZZ coated ELISA microtiter plates via the immobilisation of IgG capture antibodies and detection of human IgG and human Interleukin-6 analytes. Integration of this coating into the previously developed pSi biosensor yielded a general improvement in sensor performance compared to covalent attachment of capture antibodies indicating that this new approach resulted in less receptor inhibition and greater numbers of viable binding sites.

Finally, the development of a new pSi optical interferometric biosensor based on metallic deposition was investigated. Chemical reduction of silver and deposition within gold treated pSi was found to result in a significant decrease to the EOT of the material due to a refractive index change. This refractive index 'contrast' enhancement was demonstrated on both gold nanoparticle decorated pSi and gold plated pSi and optimised to provide maximum signal change. An enzyme mediated silver deposition system was then developed using alkaline phosphatase and a synthesised enzyme substrate, hydroquinone diphosphate. Enzyme mediated silver deposition on gold plated pSi was demonstrated and optimised. Finally, adaptation of this system to a pSi optical immunosensor was demonstrated via the detection of human IgG.

The new organic and metallic enhancement immunosensors developed in this thesis demonstrate strong sensor platforms and with further investigation may be viable as future diagnostic techniques. In addition, the S-layer affinity coating has vast potential for use in a variety of immunosensors and a swath of other applications including patterned microarrays, biomimetics and drug delivery.

Declaration

'I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text. I also certify that the entirety of the experimental work represented herein was conducted solely by the author unless otherwise stated.'

Andrew Oliver Jane

Acknowledgements

I would like to express my very great appreciation to Dr Roman Dronov who initially worked on this project as a colleague and eventually became my supervisor and friend. His support, both academic and financial, was essential in finishing this work. I would also like to thank Professor Nico Voelcker who encouraged me to undertake a PhD and was instrumental in the project's conception and direction. His willingness to take an active role and generously give his time has been very much appreciated and is recognized by all of his students. To my other supervisors, Dr Alastair Hodges and Professor Joe Shapter go my eternal thanks for their expansive knowledge and advice on the practicalities of biosensing; and especially to Joe for taking me under his wing when circumstances left me without a supervisor.

My great friend Chris Williams has shared this journey with me from the beginning of undergraduate studies and I would like to offer heartfelt thanks for keeping my spirits up and understanding the many trials and tribulations associated with a PhD when many others wouldn't. To the members of the cockpit, Marty and Steve, I thank you for your camaraderie and support. The office may be long gone but our friendship remains.

I am particularly grateful for the assistance given by Dr Endre Szili who taught me everything I know about porous silicon biosensing and provided financial support when things became difficult. To Dr Anthony Quinn and Lastek, you are the best employer anyone could ask for. Your ongoing flexibility and active support of my studies has allowed me the time and space needed to finish research work and write this thesis.

I wish to acknowledge my parents for their loving support and encouraging my education. They made me who I am today and instilled a passion for knowledge and logic, without their guidance I would never have made it so far. To my son Noah, your arrival into this world was a bright ray of light. I thank you for the happiness and laughter that you bring to my life.

Finally, and most importantly, I would like to thank my beautiful, loving and supportive wife, Megan. She has my deepest gratitude for her encouragement during the rough times and for single handedly running the household and a business so I could concentrate on my studies. You are my rock and have my undying thanks.

List of Figures

Figure 1.1: IgG antibody structure. Top: 3D representation of IgG determined via X-ray	
crystallography. Bottom: Schematic of the IgG structure and important regions [7]	3
Figure 1.2: Immunosensor design principles. (a) Schematic of general immunosensor	
design. Adapted from [1]. (b) Common forms of labelled immunoassays utilised in	
immunosensing	4
Figure 1.3: Alkaline phosphatase catalysed hydrolysis of a phosphate ester to an alcohol	
and orthophosphate.	7
Figure 1.4: Enhanced detection of the breast cancer marker, CA15-3, with modified	
AuNP's [27]. The nanoparticles acted as carriers for the secondary antibody in a	
sandwich assay, resulting in increased numbers of enzyme labels per analyte. This	
led to an improvement in the sensitivity of the approach (red trace) compared with	
	9
Figure 1.5: Detection limit of the test strip developed by Yang <i>et al.</i> [29]. Abrin-a standard	
solutions at concentrations of 0, 0.1, 1.0, 10, 100 and 1000 ng/mL were assayed. (a)	
The result of the immunochromatographic assay using gold labelled antibodies. (b)	
Amplified assay signal by gold promoted silver deposition (silver enhancement).	10
Figure 1.6: SPR sensorgram detailing formation of the sensing element and detection of	10
Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) via direct	
immunosensing [30]. The sensor signal is formed by changes in the angle of the	
light reflected from the underside of the metal film upon alterations to the refractive	
	11
	11
Figure 1.7: TIRF optical fibre sensor traces for various MC-LR concentrations. The	
sensorgrams represent an increase in fluorescence as labelled antibodies bind to the	
sensor surface. All analyte samples were pre-treated with 0.28 μ g/mL MC-LR-MAb	
and regeneration of the sensor probe was achieved by addition of 2 mg/mL pepsin	10
solution (pH 1.9) [31]	12
Figure 1.8: Electrochemical formation of pSi. The application of an electrical current decreases f_{i} to a section of the	
draws positive holes (h^+) towards the surface of the semiconductor, weakening Si-H	17
bonds and facilitating the dissolution of silicon [44]	16
Figure 1.9: Top view and cross sectional SEM micrographs of a variety of pSi	
architectures. $(a - g)$ depicts mesoporous through to macroporous silicon structures	
[47]. (i & j) SEM micrographs of pSi after exposure to blood. Size exclusion due to	
pSi is clearly evident, depicting filtered erythrocytes on the surface of the porous	10
layer [48]	18
Figure 1.10: Respective reflectance spectra, schematic and cross sectional micrograph of	
(a) a pSi single layer, (b) a pSi double layer [57], (c) multilayered pSi [58] and (d) a	
pSi microcavity [59]	20
Figure 1.11: Schematic of pSi optical detection due to pore loading. Addition of an analyte	
to the porous matrix results in the displacement of the aqueous phase at the	
pSi/medium interface and an increase in the refractive index. This causes a finite	
shift in the fringe pattern reflectance spectra, allowing quantification of an analyte	
[86]	24
Figure 1.12: A) Detection of DNA hybridisation via a shift in the reflected Fabry-Perot	
fringe pattern; and B) Subsequent control experiment indicating no signal upon	
	26
Figure 1.13: (a) Effect of functionalisation techniques on the stability of pSi in 10% (v/v)	
EtOH in PBS. The reduction in normalised EOT $(n_{eff} l / (n_{eff} l)_0)$ over time decreases	

 with increased functionalisation. (c) hydride terminated pSi, (e) ozone oxidised pSi functionalised pSi (2) thermally oxidised pSi (400°C 1 hr), (e) ozone oxidised pSi functionalised with (2-pyridyldhiboprojonamidobutyldhimethyl-methoxysilane. (b) Effect of biotin – streptavidin in dividing on the EOT of a pSi substrate. (A) Control, introduction of a solution containing pre-reacted biotin – streptavidin; (B) addition of 10 µM streptavidin and subsequent binding to biotin; (C) washing steps with buffer; (D) introduction of dithiothreitol reduced the disulphide bonds and cleaved the protein complex from the surface [66]			
 concentration before once again being rinsed with acetic acid. 28 Figure 1.15: EOT real-time experiment showing detection of DNA hybridisation via corrosion of the pSi surface [91]. (A) Addition of non-complementary DNA, (B) Addition of cDNA and subsequent degradation in 100 mM phosphate buffer, pH 7.0. (c) Represents p⁺⁺, while (•) represents p⁺ pSi. 30 Figure 1.16: (A) Effect of streptavidin detection on the EOT of a biotin-functionalised pSi surface in PBS [92]. a) Introduction of 1 mM of avidin. b) Washing step with buffer. c) Addition of 1 mM of anmonium persulfate, (NH₂)₂S₂O₈. d) Washing step with buffer. g) Addition of 1 mM of (NH₂)₂S₂O₈. (B) Reflectance spectra of the biotin functionalised pSi. The black line represents the chip prior to addition of avidin, while the red line represents the surface after 20min incubation with 1 mM of avidin. The blue trace depicts the surface after 20min incubation with 1 mM of avidin. The blue trace depicts the surface after 10min incubation with 100 mM of biotin-Ni²⁺cyclam and 1 mM of (NH₂)₂S₂O₈. Figure 1.17: Effect on the effective optical thickness of a La protein functionalised pSi surface upon detection of anti-La antibodies. A) Baseline in PBS. B) Introduction of a 200 ng/mL anti-La solution. C) Addition of 1gG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line. 33 Figure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of	Fig	pSi, (○) thermally oxidised pSi (400°C 1 hr), (●) ozone oxidised pSi functionalised with (2-pyridyldithiopropionamidobutyl)dimethyl-methoxysilane. (b) Effect of biotin – streptavidin binding on the EOT of a pSi substrate. (A) Control, introduction of a solution containing pre-reacted biotin – streptavidin; (B) addition of 10 µM streptavidin and subsequent binding to biotin; (C) washing steps with buffer; (D) introduction of dithiothreitol reduced the disulphide bonds and cleaved the protein complex from the surface [66] gure 1.14: EOT sensorgram showing reversibility of IgG binding to a Protein A modified surface [88]. Biotin functionalised pSi was introduced to PBS and a baseline established. 1 mg/mL of streptavidin was then introduced followed by a PBS wash. The surface was then exposed to 2.5 mg/mL of biotinylated Protein A before being rinsed with PBS. 2.5 mg/mL of Human IgG was then introduced before being	27
 Figure 1.15: EOT real-time experiment showing detection of DNA hybridisation via corrosion of the pSi surface [91]. (A) Addition of non-complementary DNA, (B) Addition of cDNA and subsequent degradation in 100 mM phosphate buffer, pH 7.0. (○) Represents p⁺, while (●) represents p⁺ pSi		•	•
 Figure 1.16: (A) Effect of streptavidin detection on the EOT of a biotin-functionalised pSi surface in PBS [92]. a) Introduction of 1 mM of avidin. b) Washing step with buffer. c) Addition of 1 mM of ammonium persulfate, (NH₂)₂S₂O₈. d) Washing step with buffer. e) Introduction of 100 mM of biotin-Ni²⁺cyclam. f) Washing step with buffer. g) Addition of 1 mM of (NH₂)₂S₂O₈. (B) Reflectance spectra of the biotin functionalised pSi. The black line represents the chip prior to addition of avidin. The blue trace depicts the surface after 20min incubation with 1 mM of avidin. The blue trace depicts the surface after incubation with 100 mM of biotin-Ni²⁺cyclam and 1 mM of (NH₂)₂S₂O₈. Figure 1.17: Effect on the effective optical thickness of a La protein functionalised pSi surface upon detection of anti-La antibodies. A) Baseline in PBS. B) Introduction of a 200 ng/mL anti-La solution. C) Addition of IgG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line. 33 Figure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer reflectance effect. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data a	Fig	gure 1.15: EOT real-time experiment showing detection of DNA hybridisation via corrosion of the pSi surface [91]. (A) Addition of non-complementary DNA, (B) Addition of cDNA and subsequent degradation in 100 mM phosphate buffer, pH	
 surface in PBS [92]. a) Introduction of 1 mM of avidin. b) Washing step with buffer. c) Addition of 1 mM of ammonium persulfate, (NH₂)₂S₂O₈. d) Washing step with buffer. e) Introduction of 100 mM of biotin-Ni²⁺cyclam. f) Washing step with buffer. g) Addition of 1 mM of (NH₂)₂S₂O₈. (B) Reflectance spectra of the biotin functionalised pSi. The black line represents the chip prior to addition of avidin. The blue trace depicts the surface after 20min incubation with 1 mM of avidin. The blue trace depicts the surface after incubation with 100 mM of biotin-Ni²⁺cyclam and 1 mM of (NH₂)₂S₂O₈. Figure 1.17: Effect on the effective optical thickness of a La protein functionalised pSi surface upon detection of anti-La antibodies. A) Baseline in PBS. B) Introduction of a 200 ng/mL anti-La solution. C) Addition of IgG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line. 33 Figure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layer associated with this sensor and highlights how the interaction of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4). 36 Figure 1.20: (a) Pepsin deposited onto zein modified PSi at various pmol levels, (b) Subsequent red shift of a pSi rugate filter reflectance peak due to increasing <td></td><td></td><td>30</td>			30
 surface upon detection of anti-La antibodies. A) Baseline in PBS. B) Introduction of a 200 ng/mL anti-La solution. C) Addition of IgG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line		surface in PBS [92]. a) Introduction of 1 mM of avidin. b) Washing step with buffer. c) Addition of 1 mM of ammonium persulfate, $(NH_2)_2S_2O_8$. d) Washing step with buffer. e) Introduction of 100 mM of biotin-Ni ²⁺ cyclam. f) Washing step with buffer. g) Addition of 1 mM of $(NH_2)_2S_2O_8$. (B) Reflectance spectra of the biotin functionalised pSi. The black line represents the chip prior to addition of avidin, while the red line represents the surface after 20min incubation with 1 mM of avidin. The blue trace depicts the surface after incubation with 100 mM of biotin- Ni ²⁺ cyclam and 1 mM of $(NH_2)_2S_2O_8$.	32
 a 200 ng/mL anti-La solution. C) Addition of IgG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line	Fig	gure 1.17: Effect on the effective optical thickness of a La protein functionalised pSi	
 a 200 ng/mL anti-La solution. C) Addition of IgG-HRP (1:500) and D) Introduction of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line		surface upon detection of anti-La antibodies. A) Baseline in PBS. B) Introduction of	
 of OPD solution (4 mg/mL). The sensor surface is represented as a solid line, while the control (no anti-La) is shown as a dashed line. 33 Figure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4)		-	
 the control (no anti-La) is shown as a dashed line			
 Figure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4). Gaussian and the shift of a pSi rugate filter reflectance peak due to increasing 			
 vs. time, (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix following a sensing experiment [93]			33
 following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4)	Fig	gure 1.18: Real-time detection of <i>E. coli</i> on pSi. (a) EOT vs. time, (b) Reflected intensity	
 following a sensing experiment [93]. Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4)		vs. time. (c) & (d) SEM micrographs of <i>E. coli</i> within the porous silicon matrix	
 Figure 1.19: (a) Schematic of a double-layered pSi film and sensor signal readout [57]. The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4)			34
concentrations of the protease, pepsin [95]		The schematic identifies the layers associated with this sensor and highlights how the interaction of light with each layer produces a unique reflectance effect. The combination of layers 1 and 2 gives rise to layer 3 which is utilised in the detection mechanism. (b) The plot represents the introduction of sucrose and BSA to the double-layered pSi film. The real-time trace of the EOT of layer 3 (a combination of layers 1&2) and layer 2 are depicted, allowing the calculation of a difference trace. The smaller pores of layer 2 do not allow entry of the large BSA and as such only respond to the smaller sucrose molecule, while layer 1 responds to both. This enables the selective detection of BSA by layer 1 even in the presence of large amounts of sucrose. (All data acquired in Buffer pH 4)	
		concentrations of the protease, pepsin [35].	

Figure 1.21: Optical response of a peptide modified pSi multilayer sample upon exposure to the protease, subtilisin ($(\Delta \lambda_{protease} - \Delta \lambda_{control} / \Delta \lambda_{peptide}) \ge 100$). The low value	
observed at 37 μ M can be attributed to enzyme denaturation and adsorption to the	
pores, reducing the blue shift [96].	38
Figure 1.22: Intensity of scattered light from a pSi surface as a function of bacterial cell	
concentration (CFU/mL) [97]	39
Figure 1.23: Light scattering of a pSi resonance peak due to morphological changes in primary rat hepatocytes upon cell death from the toxin Cd^{2+} . (a) The right axis depicts the relative intensity of light from the pSi surface and the left axis shows the percent viability from MTT stain with respect to time after the introduction of 50 μ M Cd^{2+} to rat hepatocytes. The solid blue trace represents the change in intensity of light scattering. The red trace represents a control contain no Cd^{2+} , while (•)	
denotes a corresponding MTT stain viability assay on a typical petri dish. (b) The pSi spectra clearly depicts an increase in the intensity of scattered light over 10 hrs [98].	41
Figure 1.24: Reduction in reflected light intensity upon functionalisation of pSi with 3-	41
aminopropyltriethoxysilane and immobilisation of a polyclonal mouse antibody	
[99]	42
Figure 1.25: SEM cross-section of a microcavity displaying the confined defect layer	
[100]	42
Figure 1.26: Photoluminescence spectra of a Gram-negative biosensor. Blue plot: Prior to	
addition of bacteria, Red plot: after incubation with bacteria, and Green plot:	
difference between the spectra before and after addition of bacteria. The spectrum	
on the left depicts the addition of Gram-positive bacteria and subsequent lack of a	
difference signal. The spectra on the right represents the addition of Gram-negative	
bacteria and displays a large wavelength shift and difference signal due to the	12
specific interaction with the surface [101].	43
Figure 1.27: Microcavity sensor calibration curve for rabbit IgG. Extent of resonance wavelength shift upon binding of increasing concentrations of rabbit IgG [48]	44
Figure 1.28: (a) & (b) Cross-section SEM images of the silicon microcavity used to detect the Intimin-ECD protein. (c) Top view of the same pSi sample. (d) Reflection spectrum of the microcavity structure with an indicative absorption dip at ~830 nm	
[103]	46
Figure 1.29: Detection of DNA hybridisation via an increase in photoluminescence intensity. (a) Functionalisation of pSi with trimethoxy-3-bromo-	
acetamidopropylsilane, (b) immobilisation of the single stranded probe DNA, (c)	
hybridisation of the probe and cDNA; and (d) exposure to non-cDNA. (I - prior to	
attachment, II – after attachment) [109].	48
Figure 1.30: Chemiluminescence signals upon <i>E. coli</i> sensing on pSi and planar silicon	
against a pSi control. The increased surface area associated with pSi led to 3x the	10
light emission of a planar silicon surface (RLU – Relative Light Units/sec) [110]	49
Figure 1.31: Cross-sectional SEM images of a pSi microarray well in two different	51
magnifications [111]	
Figure 1.32: Liver disease biosensor array, (a) Cross-sectional schematic of PDMS microfluidic system on top of a silicon substrate, (b) photograph of the device [112]	50
Figure 1.33: (a) Schematic of the pSi capacitance sensor for DNA. (b) Impedance (Z) and	
(c) phase angle (Θ) of the pSi device. The introduction of the probe DNA (pDNA1)	
and complementary DNA (cDNA1) result in a large change to both properties. The	
recovery of the signal to baseline is attributed to the drying of the sample prior to	
introduction of cDNA1 [115].	54

Figure 1.34: Schematic depicting the cell wall architecture of the major types of bacterial cells covered by S-layers. (a) Most archaea: S-Layer proteins are the only cell wall component external to the cytoplasmic membrane. (b) Gram-positive eubacteria and archaea. (c) Gram-negative eubacteria and cyanobacteria: S-layers are bound to the	
outer membrane (adapted from [119]).	55
Figure 1.35: Schematic identifying the known S-layer lattice patterns. Each lattice unit is formed from the symmetric array of identical mono-, di-, tri-, tetra-, or hexamer subunits. Graphic adapted from [119].	
 Figure 1.36: S-layer lattice on the surface of a bacterial cell and after extraction and recrystallisation. (a) Electron micrograph of S-layer lattice on the wall of a <i>Desulfotomaculum nigrificans</i> NCIB 8706 bacterial cell [118]. The lattice displays a square pattern (p4 symmetry). Scale bar 100 nm. (b) Liquid AFM image of isolated S-layer protein recrystallised on a silicon wafer. Protein was extracted from <i>Lysinibacillus sphaericus</i> CCM 2177 and also displays p4 symmetry. Image parameters: 0.5 μm × 0.5 μm, Z-range 2 nm [134]. 	
Figure 1.37: Schematic of the role of calcium in the self-assembly of S-layer subunits into a complete morphological unit [135].	60
Figure 1.38: (a) SEM micrograph of cellulose microbeads coated with the rSbpA ₃₁₋₁₀₆₈ /ZZ fusion protein. (b) Schematic depicting the surface of the microbeads and the	
capture of Human IgG via the S-layer fusion protein [148] Figure 1.39: SPR Sensorgram showing association () between PSA and an rSbpA ₃₁₋₁₀₆₈ /cAb-PSA-N7 coated gold chip. The retention of PSA after	
washing indicated specific binding of PSA to the S-layer fusion protein [153]	
Figure 2.1: Schematic of the Teflon electrochemical etching cell used to fabricate pSi Figure 2.2: pSi biological reaction vessel. (a) Assembled vessel and (b) the disassembled	80
components.	82
Figure 2.3: Interferometric Reflectance Spectroscopy. (a) Schematic of the IRS components and operation. (b) IRS flow cell used for pSi studies	84
 Figure 3.1: SEM analysis of the 2-step n-type template etching protocol. (a) Templated silicon surface after exposure to 275 mA/cm² for 1.82 seconds. (b) Final porous layer after the application of a second, lower current density, 40 mA/cm² for 100 seconds. All scale bars represent 200 nm. 	94
 Figure 3.2: Comparison between a templated and non-templated etches on n- and p-type pSi. (a & b) N-type pSi etched at 275 mA/cm² for 1.82 seconds followed by 40 mA/cm² for 100 seconds. (c & d) P-type pSi etched at 450 mA/cm² for 10 seconds. All scale bars depict 1 μm. Both the cross-sectional and surfaces micrographs were analysed to extract pore size and pore to pore distributions which are included next 	
to each image	
Figure 3.3: Dependence of pore diameter of n-type pSi on current density Figure 3.4: The relationship between current density and porosity for n-type pSi	
Figure 3.5: The relationship between current density and polosity for h-type psi.	
etching process for n-type pSi.	98
Figure 3.6: Relationship between current density and the sensitivity of the material to refractive index change as assessed by optical interferometry. (a) Response of a 50 mA/cm ² pSi sample to: i – milliQ water (n = 1.3334), ii – ethanol (n = 1.3611), iii – isopropanol (n = 1.3776), iv – milliQ water. (b) Combined EOT responses for	
different current densities normalised to 1 refractive index unit.	
Figure 4.1: Reaction pathway of BCIP/NBT precipitation [165].	.104
Figure 4.2: Surface functionalisation procedure showing oxidation, silanisation and biomolecule immobilisation.	.107

 Figure 4.3: Schematic and experimental timeline of the alkaline phosphatase, BCIP/NBT based pSi immunosensor. (a) Schematic detailing the major steps of the immunosensor procedure, Step 1: human IgG (yellow protein) capture. Step 2: binding of the secondary antibody and formation of a sandwich immunoassay. Step 3: precipitation of the substrate BCIP/NBT by alkaline phosphatase. (b) 	
 Experimental timeline indicating the sensor sequence. Figure 4.4: Schematic detailing the formation of immunoassay patterned pSi. (1) Capture antibody pSi was masked with a PDMS film and exposed to human IgG analyte (yellow protein). (2) The human IgG patterned pSi was unmasked and exposed to the secondary antibody conjugated to alkaline phosphatase. (3) Incubation with BCIP/NBT caused precipitation to only occur in the unmasked region. 	
 Figure 4.5: SEM micrographs of 0.008-0.02 Ω.cm n-type pSi etched following a two step process – surface templating: 275 mA/cm² for 1.82 seconds, pore propagation: 50 mA/cm² for 45 seconds. (a) Top down view of the pSi surface. (b) Cross-sectional perspective. (c) Pore size distribution histogram. 	115
Figure 4.6: IR spectra of sequential pSi surface modifications resulting in the immobilisation of α-human IgG capture antibody. (a) Freshly etched, thermally oxidised, isocyanate silanised and capture antibody immobilised pSi. (b) Expanded view of the isocyanate silane and capture antibody spectra to highlight the urea vibrations more clearly.	118
Figure 4.7: Response from de-phosphorylation of BCIP by alkaline phosphatase on pSi. (a) Active and control n-type pSi surfaces. (b) Active and control p-type pSi surfaces	120
Figure 4.8: Response from precipitation of BCIP/NBT by alkaline phosphatase on n-type pSi as a result of oxidation protocol and pH.	123
 Figure 4.9: Response from precipitation of BCIP/NBT by alkaline phosphatase on n-type pSi as a result of reduced exposure times. (a) Active pSi surfaces containing covalently immobilised alkaline phosphatase. (b) Control pSi surfaces containing no enzyme. (c) Change in EOT experienced by both active and control surfaces. (d) Signal ratio, active:control, for each exposure time investigated. 	125
Figure 4.10: Effect of biocatalysed BCIP/NBT precipitation on the fringe pattern of pSi.(a) Active surface containing the alkaline phosphatase enzyme. (b) Control surface containing no enzyme.	
 Figure 4.11: Comparison of 3 signal processing techniques. Goat α-human IgG antibody conjugated to alkaline phosphatase was covalently immobilised pSi at dilutions of 0:1, 1:5000 and 1:2000 antibody:Tris buffer. The modified surfaces were then exposed to BCIP/NBT and the response monitored. (a) Percentage change of EOT. (b) Percentage change of wavelength shift. (c) Percentage change in intensity at 600 nm. (d) Combined data from a, b and c comparing the signal strength from the three approaches. 	
Figure 4.12: Effect on the reflected optical profiles of pSi and flat silicon in response to precipitation of BCIP/NBT. (a) & (b) Active and control pSi surfaces. (c) & (d) Active and control flat silicon surfaces.	132
 Figure 4.13: Comparison of the change in intensity experienced by pSi and flat silicon upon precipitation of BCIP/NBT. (a) Change in intensity over time experienced by pSi and flat silicon surfaces upon exposure to BCIP/NBT (Active – alkaline phosphatase, Control – no enzyme). (b) Comparison of the total signal response experienced by pSi and flat silicon. 	133
Figure 4.14: Combined porous silicon reflection spectra and corresponding change in intensity at 600 nm for the detection of 500 ng/mL human IgG. (a) Compiled fringe patterns from 0 to 92 minutes depicting a sharp decrease in the intensity of the reflected light upon detection of the human IgG, this effect is particularly strong	

over the region 500 nm – 750 nm. (b) Change in reflected light intensity over time at 600 nm, the absorbance wavelength of NBT [166]	134
Figure 4.15: Human IgG detection on pSi via alkaline phosphatase catalysed precipitation of BCIP/NBT. (a) Sensorgrams representing the change in reflected intensity at 600 nm for the detection of human IgG. Analyte concentration was varied between 0 ng/mL, and 2000 ng/mL. The detection event occurred at 70 minutes, while the signal step at 80 minutes was a result of a final rinsing step. (b) Background corrected standard curve of human IgG detection on pSi via alkaline phosphatase –	
BCIP/NBT precipitation	136
Figure 4.16: Replicate intensity measurements for a pSi immunoassay sensor exposed to (a) 0 ng/mL human IgG analyte; and (b) 10 ng/mL human IgG analyte. The black trace represents intensity measurements; the blue dotted line represents the average	
value, while the red dashed line represents the limit of detection Figure 4.17: Precision profile of the alkaline phosphatase - BCIP/NBT based human IgG	137
pSi immunosensor. The dashed line represents the threshold of the working range of	
the assay.	140
 Figure 4.18: Sensorgrams representing cross-reactivity to alternate biomarkers on the alkaline phosphatase - BCIP/NBT based human IgG pSi immunosensor. (a) Positive and negative cross-reactivity controls using Rabbit IgG. (b) Positive and negative cross-reactivity controls using BSA. Note: the negative control for both 	
species was spiked with 25 ng/mL human IgG.	141
 Figure 4.19: Cross-sectional and top down SEM images of pSi following a human IgG immunosensor experiment. (a), (b) & (c) Control pSi surface exposed to 0 ng/mL human IgG (scale bar = 1 µm unless otherwise identified). (d), (e) & (f) Active pSi surface exposed to 1000 ng/mL human IgG. (g) Schematic of the flow cell configuration and the location of the strong colour change on active pSi. (h) EDAX 	
 analysis of the active pSi surface in (f). Figure 4.20: IR characterisation of pSi surfaces following a human IgG immunosensor experiment. (a) IR spectra displaying covalently immobilised capture antibody pSi prior to immunosensing, and masked and unmasked patterned pSi following a immunosensor experiment. (b) An expanded section of the IR spectra displaying labelled stretching vibrations of precipitated BCIP/NBT more clearly. (c) IR correlation intensity map of IR spectra matching that of the catalysed BCIP/NBT peak at 1320 cm⁻¹. (d) Schematic of the patterned pSi and the resulting immunoassay configuration following the immunosensor experiment. The IR map 	144
was obtained from the interface between the PDMS masked and unmasked regions	148
Figure 5.1: Schematic of common receptor immobilisation techniques on biosensing platforms. Binding bio-receptors via (a) adsorption and (b) covalent approaches can lead to the miss-alignment and steric hindrance of molecules such as capture antibodies.	153
Figure 5.2: Schematic of the genetically modified SbpA-ZZ fusion protein. The N-	
terminal contains a binding domain for the SCWP while the C-terminal has been modified to contain two Z domains capable of binding the Fc chain of IgG antibodies. The protein architecture aligns the IgG such that the antibodies active sites point away from the solid support. Adapted from [119]	154
 Figure 5.3: SDS-polyacrylamide gel electrophoresis of whole cell extract and purification of SbpA from <i>L. sphaericus</i> ATCC 4525. Lanes: M = Protein marker; C = Pellet of <i>L. sphaericus</i> bacterial culture; S1–S4 & P1–P4 = Supernatant and pellet fractions following cell lysis and subsequent centrifugation and washing steps; GnHCl = S-layer unfolding step with guanidine hydrochloride; P5 & S5 = Pellet and supernatant 	

fractions following dialysis and centrifugation. The single band in the S5 lane has a molecular weight of approximately 130 kDa
 Figure 5.4: SEM micrographs of n-type pSi scaffolds for S-layer recrystallisation. (a) Cross-sectional micrograph of an initial template etch demonstrating the roughness of the surface. Scale bar 200 nm. The porous silicon matrix is propagated from this surface template. (b) Top-down micrograph of pSi surface following pore propagation. Scale bar 1 µm.
Figure 5.5: Digital photograph of a static water contact angle measurement performed on freshly ozone treated silicon
 Figure 5.6: Liquid AFM images of recrystallised SbpA protein on various surface chemistries. Images are ranked in order of increasing surface hydrophobicity. The left column shows 10 μm² height images and the scale bars correspond to 2 μm. The right column shows 400 nm² height images and the scale bars correspond to 100 nm
Figure 5.7: AFM analysis of recrystallised SbpA protein on ozone treated silicon. (a) AFM
height image indicating the average centre-to-centre distance (CtC) between monomeric protein subunits. Scale bar 25 nm, Z-range 1.2 nm (b) 3D representation of the SbpA protein layer (c) AFM height image indicating the sectional height analysis of a SbpA protein layer on ozone treated silicon. The protein layer was removed from the underlying silicon surface through increased tip force. Scale bar 100 nm, Z-range 30 nm. (d) Line profile showing the height of the SbpA layer
formed. (e) Schematic representation of SbpA protein structures formed on
hydrophobic and hydrophilic surface chemistries. Adapted from [134, 139]
 Figure 5.8: SDS-polyacrylamide gel electrophoresis detailing the purification of the fusion protein rSbpA31-1068/ZZ (SbpA-ZZ) from E. coli BL21DE3. Lanes: (a), (g) & (q) Protein marker – these lanes are highlighted by a blue line; (b) <i>E. coli</i> pre-culture; (c) <i>E. coli</i> culture prior to induction; (d) <i>E. coli</i> culture after induction and expression of SbpA-ZZ; (e)&(f) <i>E. coli</i> culture 2 and 4 hours after induction; (h) Cell lysis supernatant; (i) Cell lysis pellet; (j) IgG column – Flow through 1; (k) IgG column – IgG micro bead matrix; (l) IgG column – Flow through 2; (m) IgG column – wash 1; (n) IgG column – wash 2; (o) IgG column – elutant; (p) IgG column – IgG matrix; (r) IgG column – wash 4; (s) IgG elutant following dialysis containing purified SbpA-ZZ; (t) Precipitate formed during dialysis
Figure 5.9: Liquid AFM images of recrystallised SbpA-ZZ protein on ozone oxidised
silicon and polystyrene. (a)&(c) Height image of a 10 μ m ² area, scale bar 2 μ m.
(b)&(d) Height image of a 400 nm ² area, scale bar 100 nm
AFM height image indicating the average CtC distance between monomeric protein subunits. Scale bar 50 nm, Z-range 1.5 nm. (b) 3D representation of the SbpA-ZZ protein layer (c) AFM height image indicating the sectional height analysis of a SbpA-ZZ protein layer on oxidised silicon. Scale bar 100 nm, Z-range 10 nm. (d)
Line profile showing the height of the SbpA-ZZ layer

 Figure 5.12: Human IL-6 sandwich ELISA standard curves performed on High Bind, Medium Bind, Tissue Culture, SbpA-ZZ and SbpA surfaces. Native SbpA and SbpA-ZZ fusion protein were recrystallised on each type of 96-well microtiter plate and the response compared against untreated wells. (a) ELISA response on Costar 9018 High Binding 96-well microtiter plate. (b) Response on Costar 9017 Medium Binding 96-well microtiter plate. (c) Response on Costar 3596 Tissue Culture 	
Treated 96-well microtiter plate (d) Comparison of the ELISA signal observed on the tested surfaces for an analyte concentration of 200 pg/mL Human IL-6	9
Figure 5.13: Cross-sectional SEM micrograph of n-type pSi used as a scaffold for SbpA- ZZ recrystallisation and sensing experiments. Scale bar 1 μm. For the relevant	
SEM top-down perspective, refer to Figure 5.4	2
The fusion protein was added at a concentration of 0.1 mg/mL	4
Figure 5.15: Background corrected human IgG standard curve on a SbpA-ZZ modified pSi optical immunosensor platform	5
Figure 5.16: Comparison of the human IgG pSi immunosensor prepared using covalent and SbpA-ZZ functionalisation methods. (a) Standard curves for human IgG detection.(b) Precision profiles of the two sensors. The dashed line represents the threshold of	
the working range of the assay	7
amplified improving the sensitivity compared to the use of gold alone	3
Figure 6.2: Proposed silver enhancement of gold transduction on pSi	4
Figure 6.3: Reaction scheme for the covalent attachment of AuNP's on pSi. Oxidised pSi is first silanised with APTES and the sample then exposed to AuNP's and cross-	
linked to the surface via addition of EDC/NHS.	7
Figure 6.4: Immobilisation of biomolecules to gold plated pSi. Gold deposits are first	
treated with MUA to form a carboxylic acid terminated SAM. The surface is then	
activated with EDC/NHS to facilitate covalent immobilisation of enzymes and	
antibodies	8
 Figure 6.5: SEM micrographs of covalently immobilised gold nanoparticles on pSi. (a),(b)&(c) Solution immobilisation approach (Method 1). Respective scale bars 25 μm, 500 nm, 250 nm. (d),(e)&(f) Drying immobilisation approach (Method 2). Respective scale bars 2μm, 200 nm and 500 nm. The sample in (f) was not indicative of the normal porous structure and was etched at 35 mA/cm². Its presence is merely to demonstrate propagation of AuNP's within the pores. (g) Schematic 	
representation of method 1 protocol and (h) method 2	5
 Figure 6.6: Silver enhancement of AuNP pSi prepared under method 1 (M1) and method 2 (M2) using commercial reagents. (a) pSi baselined in milliQ water. (b) Sample shielded from light and "Nanoprobes LI" silver enhancement solution injected into the flow cell. (c) MilliQ water rinse and reacquisition of the sample	7
Figure 6.7: SEM micrographs of silver contrast enhancement on gold nanoparticle	
decorated pSi. (a)&(b) AuNP's immobilised via method 1. Respective scale bars 1um and 250 nm. (c)&(d) AuNP's immobilised via method 2. Scale bars both represent 500 nm.	0
represent 500 nm	U
 hydroquinone in citrate buffer, pH 3.8. (a) EOT sensorgram of silver enhancement on AuNP modified pSi and APTES pSi. (i) AuNP modified pSi baselined in citrate buffer, pH 3.8. (ii) Sample shielded from light and silver enhancement solution injected into the flow cell. (iii) Surface rinse and reacquisition of the sample. (b) 	

	Effect of the silver contrast enhancing solution exposure time on the EOT response of AuNP modified pSi.	219
	6.9: Electroless deposition of gold reaction scheme. The electroless deposition process described in Chapter 6 section 6.3.2.3 first involves the sensitisation of the porous silicon surface with tin cations through electrostatic interactions. The sensitised porous layer is then 'activated' with silver nitrate which causes a redox reaction in which Sn^{2+} is oxidised to Sn^{4+} and aqueous Ag^+ ions are reduced to bulk silver, coating the porous surface with silver particles. Gold deposition then occurs in solution through the galvanic replacement of the silver particles by the more noble metal and growth of these particles into a coating or film is achieved by the concurrent reduction of Au^+ to bulk gold by formaldehyde. Variation to the deposition time is used to achieve gold coatings of different coverage and thickness	
	[238, 242, 243].	222
-	6.10: SEM micrographs detailing the extent of gold deposition within the porous matrix as a function of exposure time to Au bath (beta). The left column represents a top down perspective of the porous surface, while the right column displays the corresponding cross-sectional view. All surfaces were exposed to Au bath (Alpha) for 2 hours before immersion in Au bath (beta) for: (a)&(b) 0 hours, (c)&(d) 30 minutes, (e)&(f) 5 hours and (g)&(h) 17 hours. All scale bars represent 500 nm.	223
	6.11: Effect of electroless deposition of gold on the optical properties of pSi. (a)	223
-	Change experienced by the reflected fringe pattern as a function of deposition time.(b) Change to the calculated EOT of the porous layer as a function of deposition	
		224
		226
C	6.13: (a) Organic synthesis of hydroquinone diphosphate (HQDP). HQ – Hydroquinone; HQDC – bis(phosphorodichloridate); HQDP – Hydroquinone diphosphate; C(HQDP) – Cyclohexylamine salt; Na(HQDP) – Sodium salt. (b) Hypodiphosphoric acid sodium salt bi-product. (c) Elecrospray Mass Spectroscopy spectrum of aqueous Na(HQDP) solution. The major peaks at 269 and 291 m/z relate to the HQDP compound, while the other major peak at 159 m/z represents the presence of a bi-product.	228
-	6.14: Schematic and scheme of the proposed reaction pathway for enzyme mediated	220
	reduction of silver on gold plated pSi 6.15: Reactivity of hydroquinone diphosphate (HQDP) to silver acetate (SA) and	229
-	the reduction of SA by alkaline phosphatase (AP) mediated hydrolysis of HQDP to hydroquinone in solution.	230
Figure	6.16: Alkaline phosphatase mediated silver contrast enhancement of electrolessly gold plated pSi. (a) EOT sensorgram of silver contrast enhancement in citrate buffer, pH 7.0. The plot represents both enzyme based (6 mM SA, 22 mM HQDP) and SA/HQ (6 mM SA, 22 mM HQ) enhancement. i – Citrate buffer, pH 7.0, ii – Enzyme silver contrast enhancing solution, iii – Citrate buffer, pH 7.0. (b) Combined sensor responses for the optimisation of the enzyme based system and relevant controls.	
-	6.17: Detection of 10 μ g/mL human IgG via alkaline phosphatase mediated silver contrast enhancement of gold on pSi. (a) Electrolessly gold plated pSi containing	

List of Tables

Table 1.1: Common approaches to optical immunosensing. Adapted from [8]	6
Table 1.2: Common alkaline phosphatase substrates used in optical immunosensing and	
immunostaining	8
Table 1.3: Overview of functional domains fused to S-layer proteins and their application.	
Adapted from [155]	65
Table 2.1: Chemicals and biological substances used for pSi functionalisation,	
immunosensing and cell culture.	73
Table 2.2: Proteins and commercial biological kits used in immunosensing and protein	
purification.	74
Table 2.3: Cell lines and suppliers that were used for S-layer protein expression and	
extraction	74
Table 2.4: Custom made buffers and solutions used for pSi preparation, immunosensing,	
cell culture and protein purification.	77
Table 2.5: Media used for the cell culture of L. sphaericus and E. coli	78
Table 2.6: 96 well microtiter plates used in ELISA and protein recrystallisation studies	78
Table 2.7: Silicon wafer, dopant type and resistivity used for pSi fabrication.	79
Table 2.8: Typical conditions and electrolyte composition used for the electrochemical	
etching of Si.	80
Table 2.9: Experimental timeline for human IgG immunosensing on pSi	85
Table 3.1: Electrochemical etching conditions used in the optimisation of the pSi optical	
immunosensor platform	91
Table 4.1: The absorbance wavelengths of the biocatalysed alkaline phosphatase substrates,	
BCIP & NBT	104
Table 4.2: Experimental timeline of the alkaline phosphatase BCIP/NBT based pSi sensor	
experiment	111
Table 4.3: Refractive indices of solutions used in the biocatalysation of BCIP/NBT by	
alkaline phosphatase	126
Table 4.4: Intra-assay precision of the alkaline phosphatase - BCIP/NBT based human IgG	
pSi immunosensor. The pools listed above correspond to the following	
concentrations of human IgG analyte, Low - 10 ng/mL, Medium - 250 ng/mL, High	
– 1000 ng/mL	140
Table 4.5: Cross-Reactivity of the alkaline phosphatase - BCIP/NBT based human IgG pSi	
immunosensor to biomolecules from other animal species	142
Table 5.1: Experimental timeline of the SbpA-ZZ-pSi human IgG immunosensor	
experiment	168
Table 5.2: Static water contact angle measurements as a function of surface chemistry	173
Table 5.3: SbpA lattice properties extracted from AFM analysis of in vitro protein	
recrystallisation on hydrophilic and hydrophobic surfaces. CtC - Centre-to-Centre	
distance between morphological units; SbpA D – S-layer thickness; Domain $Ø$ –	
Diameter of S-layer crystalline domains; Mass – Theoretical mass of recrystallised	
protein on the surface.	176
Table 5.4: SbpA-ZZ lattice properties extracted from AFM analysis of in vitro protein	
recrystallisation. CtC - Centre-to-Centre distance between morphological units;	
SbpA-ZZ D - S-layer Thickness; Domain Ø - Diameter of S-layer Crystalline	
domains; Mass - Theoretical mass of recrystallised protein on the surface	182

Table	5.5: Limits of detection of Human	Interleukin-6 on commercial and SbpA-ZZ
	treated 96 well plate surfaces. SbpA	treated surfaces exhibited a low background
	signal and were not included in this co	1 mparison

.191
.197
.213
-

noise ratio of the pSi platform. S/N was calculated from $\Delta EO1/EO10$ values for	
active and control surfaces from each study. ED = 1hour Electroless Deposition of	
gold on pSi, SA = 6 mM silver acetate, HQ = 22 mM hydroquinone, $AP = 10 \text{ U/mL}$	
covalently immobilised alkaline phosphatase.	233
J 1 1	

List of Equations

23
24
82
126
127
137
138
139

List of Abbreviations

Abbreviation	Full Name
Ab	Antibody
ABS	Antigen Binding Site
ADH	Alcohol dehydrogenase
AFM	Atomic Force Microscopy
AP	Alkaline Phosphatase
APTES	3-aminopropyl triethoxysilane
Atg	Antigen
ATR	Attenuated total reflectance
AuNP	Gold nanoparticle
BCIP	5-bromo-4-chloro-3-indoyl phosphate
BCIP- indigowhite	5,5-dibromo-4,4-dichloro-indigowhite
BSA	Bovine serum albumin
CCD	Charge-Coupled Device
CtC	Centre-to-centre distance
CV	Coefficient of variation
DCM	Dichloromethane
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
E. Coli	Escherichia Coli
EDAX	Energy Dispersive X-ray Analysis
ED	Electroless Deposition
EDC	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
ELISA	Enzyme-Linked Immunosorbent Assay
EOT	Effective Optical Thickness
etc	et cetera
EtOH	Ethanol
FFT	Fast Fourier Transform
FTIR	Fourier Transformed Infrared Spectroscopy

GnHCl	Guanidine hydrochloride
HAc	Acetic acid
HF	Hydrofluoric acid
HQ	Hydroquinone
HQDP	Hydroquinone diphosphate
HRP	Horseradish peroxidase
IgA	Immunoglobulin A
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IL-6	Interleukin-6
IPTES	3-isocyanatopropyl triethoxysilane
IPTG	Isopropyl β-D-1-thiogalactopyranoside
IR	Infrared
IRS	Interferometric Reflectance Spectroscopy
L. sphaericus	Lysinibacillus sphaericus
LB	Lysogeny Broth
LOD	Limit of Detection
Method 1	Solution based immobilisation of AuNP's on pSi
Method 2	Drying based immobilisation of AuNP's on pSi
milliQ	Ultrapure water, resistivity 18.2 M Ω .cm
MS	Mass spectroscopy
MUA	11-Mecaptoundecanoic acid
mλ	Spectral order of the Fabry-Pérot fringe (m) times wavelength of the incident light striking the surface at an incident angle of $0^{\circ}(\lambda)$
Na(HQDP)	Sodium Salt of hydroquinone diphosphate
NB	Nutrient Broth
NBT	Nitro Blue Tetrazolium
nd	Average refractive index of a porous silicon layer (n) times porous silicon layer thickness (d)
NHS	N-Hydroxysuccinimide
NMR	Nuclear Magnetic Resonance spectroscopy
n-type	Phosphorous doped silicon

ODOptical DensityOPDO-Phenylenediamine dihydrochlorideOzone SilicoOzone oxidised silicon, treated with mild thermal oxidationPBSPhosphate Buffer SalinePBS-Tween® 20PDMSPDMSPolydimethylsiloxanePEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPorous siliconPSSPolyethylene siliconPSIPorous siliconPSYBoron doped siliconPty LtdProprietary LimitedPtyDudQuartz Crystal MicrobalancePKMRadio-immunoassayRMSSignal to noise ratioSNASignal to noise ratioSNASilver acetateSpA-ZZSecondary Cell Wall PolymerSchap-AZESodium Dodecyl Sulfae - Polyacrylamide Gel ElectrophoresisSPAGESolium Dodecyl Sulfae - Polyacrylamide Gel ElectrophoresisSPAGESulface Induco-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFStal-Sp-Creamethylene-ScineTMBSaly,5'-Tetramethylene-Scine		
Ozone SiliconOzone oxidised silicon, treated with mild thermal oxidationPBSPhosphate Buffer SalinePBS-TPBS-Tween® 20PDMSPolydimethylsiloxanePEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanePSSPorous siliconPSSPolystyrene sulfonatePty LtdPorprietary LimitedPtyLtdBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSSignal to noise ratioSASilgenal to noise ratioShpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSVPAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSulface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuceinimideTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	OD	Optical Density
PBSPhosphate Buffer SalinePBS-TPBS-Tween® 20PDMSPolydimethylsiloxanePEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanePSKPolystyrene sulfonatePSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSSignal to noise ratioSASilyer acetateStopA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₅ /ZZSPAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopySPARESurface Pasmon ResonanceSulfo-NHSQN-HydroxysulfosuccinimideTDFCSTidecafluoro-1,1,2,2-tertarhydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTMTademark	OPD	O-Phenylenediamine dihydrochloride
PBS-TPBS-Tween® 20PDMSPolydimethylsiloxanePEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanepSiPorous siliconPSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSSignal to noise ratioSASilver acetateSbpASilver acetateSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSPRSurface Plasmon ResonanceSulfo-NHSNurface Plasmon ResonanceSulfo-NHSNitface Plasmon ResonanceTIRFTotal Internal ReflectanceTIRFTotal Internal ReflectanceTIMTademark	Ozone Silicon	Ozone oxidised silicon, treated with mild thermal oxidation
PDMSPolydimethylsiloxanePEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanepSiPorous siliconPSSPolystyrene sulfonatePty LtdPorprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRMSRoto mean squaredSNSignal to noise ratioSASilver acetateSbpASilver acetateSDsPAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMSurface Plasmon ResonanceSIAperSurface Plasmon ResonanceSulfo-NHSNirface Plasmon ResonanceTDFCSTridecafluoro-1,1,2,2-tertarhydrooctyl-dimethylchlorosilaneTIRFTotal Internal ReflectanceTIRFTotal Internal ReflectanceTMTademark	PBS	Phosphate Buffer Saline
PEGPolyethylene GlycolPEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanePSGPorous siliconPSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSFoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SQPA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMSodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	PBS-T	PBS-Tween® 20
PEG Silanen-(triethoxysilylpropyl)-o-polyethylene oxide urethanePFCSPentafluorophenyl dimethylchlorosilanePSIPorous siliconPSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal Reflectance FluorescenceTMTrademark	PDMS	Polydimethylsiloxane
PFCSPentafluorophenyl dimethylchlorosilanepSiPorous siliconPSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> StPA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal ReflectanceTMTrademark	PEG	Polyethylene Glycol
pSiPorous siliconPSSPolystyrene sulfonatePty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	PEG Silane	n-(triethoxysilylpropyl)-o-polyethylene oxide urethane
PSSPolystyrene sulfonatePYs LtdProprietary LimitedP-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMSurface layer proteinSPRSurface layer proteinSUIfo-NHSN-HydroxysulfosuccinimideTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	PFCS	Pentafluorophenyl dimethylchlorosilane
Pty LtdProprietary Limitedp-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRFTotal Internal ReflectanceTIRFTotal Internal Reflectance	pSi	Porous silicon
p-typeBoron doped siliconQCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMSodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSPRSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance Fluorescence	PSS	Polystyrene sulfonate
QCMQuartz Crystal MicrobalanceRIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	Pty Ltd	Proprietary Limited
RIARadio-immunoassayRMSRoot mean squaredS/NSignal to noise ratioS/ASilver acetateSbpAS-Layer protein from <i>L. sphaericus</i> SbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRFTotal Internal ReflectanceTIRFTotal Internal Reflectance Fluorescence	p-type	Boron doped silicon
RMSRoot mean squaredS/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from L. sphaericusSbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTMTrademark	QCM	Quartz Crystal Microbalance
S/NSignal to noise ratioSASilver acetateSbpAS-Layer protein from L. sphaericusSbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance Fluorescence	RIA	Radio-immunoassay
SASilver acetateSbpAS-Layer protein from L. sphaericusSbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTMTademark	RMS	Root mean squared
SbpAS-Layer protein from L. sphaericusSbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTMTrademark	S/N	Signal to noise ratio
SbpA-ZZRecombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZSCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SA	Silver acetate
SCWPSecondary Cell Wall PolymerSDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SbpA	S-Layer protein from L. sphaericus
SDS-PAGESodium Dodecyl Sulfate - Polyacrylamide Gel ElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SbpA-ZZ	Recombinant S-layer fusion protein, rSbpA ₃₁₋₁₀₆₈ /ZZ
SDS-PAGEElectrophoresisSEMScanning Electron MicroscopyS-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SCWP	Secondary Cell Wall Polymer
S-layerSurface layer proteinSPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SDS-PAGE	
SPRSurface Plasmon ResonanceSulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SEM	Scanning Electron Microscopy
Sulfo-NHSN-HydroxysulfosuccinimideTDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	S-layer	Surface layer protein
TDFCSTridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilaneTIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	SPR	Surface Plasmon Resonance
TIRTotal Internal ReflectanceTIRFTotal Internal Reflectance FluorescenceTMTrademark	Sulfo-NHS	N-Hydroxysulfosuccinimide
TIRFTotal Internal Reflectance FluorescenceTMTrademark	TDFCS	Tridecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane
TM Trademark	TIR	Total Internal Reflectance
	TIRF	Total Internal Reflectance Fluorescence
TMB3,3',5,5'-Tetramethylbenzidine	ТМ	Trademark
	TMB	3,3',5,5'-Tetramethylbenzidine

Tris	Trizma base
Tris-HCl	Trizma HCl
Tris-T	Tris buffer-Tween® 20
ТМ	Trade Mark
UV-Vis	Ultraviolet-Visible
Ζ	Synthetic IgG binding domain
α	Anti
λ	Wavelength
R	Registered

List of Units

Unit Abbreviation	Full Name
%	Percentage
~	Approximately
<	Less than
>	Greater than
\leq	Less than or equal to
<u>></u>	Greater than or equal to
0	Degrees
°C	Degrees Celsius
$^{1}\mathrm{H}$	Proton
А	Ampere
au	Arbitrary units
avg	Average
С	Coulomb
cm	Centimetre
cm ⁻¹	Reciprocal centimetres (wavenumbers)
d	Porous layer thickness
eV	Electronvolt
g	Grams
hr	Hour
J	Coupling constant (Hz).
kDa	Kilo Daltons
kV	Kilovolt
М	Molar
m/z	Mass to charge ratio
mA	Milliamps
min	Minute
mL	Millilitre
mM	Millimolar

mmol	Millimoles
n	Refractive index
ng	Nanogram
nm	Nanometre
Ø	Diameter
pН	Potential of hydrogen
рКа	Acid dissociation constant
S	Singlet
sec	Seconds
v/v	Volume per volume
W	Watts
W/V	Weight per volume
3	Molar extinction coefficient
μg	Microgram
μL	Microlitre
μm	Micrometre
μΜ	Micromolar
Ω	Ohms

Peer Reviewed Publications

Szili, E.J., Jane, A., Low, S.P., Sweetman, M., Macardle, P., Kumar, S., Smart, R.St.C., Voelcker, N.H., 'Interferometric porous silicon transducers using an enzymatically amplified optical signal', Sensors and Actuators B, 160 (2011), 341-348.

Dronov, R., Jane, A., Shapter, J.G., Hodges, A., Voelcker, N.H., 'Nanoporous Alumina-based Interferometric Transducers Ennobled', Nanoscale, 3 (2011), 3109 - 3114.

Jane, A., Dronov, R., Hodges, A., Voelcker, N.H., 'Porous Silicon Biosensors on the Advance', Trends in Biotechnology, 27 (2009), 230-239.

Jane, A.O., Szili, E.J., Reed, J.H., Gordon, T.P., Voelcker, N.H., 'Porous Silicon Biosensor for the Detection of Autoimmune Diseases', Proceedings of SPIE 6799 (2007), 6799081-11