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ABSTRACT 
 
Advancements in technology and medical devices have been providing solutions 

such as electric and powered wheelchairs for individuals with impairments and 

physical disabilities to cope with their disabilities; however, there are certain 

individuals in the disabled community with a high-level of disability which restricts 

them from using these mobility aids.  

 

This thesis aims to contribute to the ABC Wheelchair project at Flinders University 

by developing a cost-effective Autonomous Wheelchair which can be controlled 

using multiple inputs such as speech commands, hand gestures, or facial gestures by 

converting an existing electric wheelchair to an intelligent robotic system with easily 

accessible sensors. The study describes various methodology used for designing and 

developing an intelligent and autonomous wheelchair using Robot Operating 

System. It can also act as a base for converting the majority of the existing electric 

wheelchairs into autonomous ones by introducing multiple control inputs as well as  

generating a map for the wheelchair environment and navigating inside it. 

 

The system was implemented on an electric wheelchair with the new capability of 

generating 2D and 3D maps of the environment and navigating within the generated 

map using low-cost sensors.  The tests provided convincing results for the developed 

system to act as a mobility aid not only for individuals with cognitive and certain 

physical impairments, but also as an accessory for converting existing wheelchairs 

into autonomous ones. 
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Chapter 1    

INTRODUCTION 
 
 
 
Recent years have shown an increase in  the usage of mobility aids such as electric 

wheelchairs and electric scooters by individuals with certain disabilities; however, 

there are still a certain number of individuals within this community with furthermore 

disabilities restricting them from access to these mobility aids. According to the 

World Health Organization [22] there are over 1 billion people in the world who face 

some sort of disability with limited access to any health care, employment or 

education. A survey  on administering the physical and mental wellbeing, functional 

independence and lifestyle of individuals with disabilities facing financial and 

technological limitations during a 12-month period [23] showed significant 

improvement in overall health and lifestyle after these individuals were equipped 

with a depot style wheelchair. Another survey [24] on the usage of powered 

wheelchairs for adults concluded an increased independence and improved quality 

of life for the users but also mentioned the forthcomings of accidents resulting in 

personal injury to the user or damage to their device.  

The ABC Wheelchair aims to provide a cost effective and a safe solution for 

individuals using a combination of brain signals, gaze tracking or eye-tracking and 

speech commands as inputs to a system that performs various pre-defined task 

based on the inputs received. The ultimate goal of the ABC wheelchair project is to 

integrate brain signals with a graphical user interface that allows a user to interact 

with the system and the wheelchair can drive itself to perform a task while performing 

obstacle avoiding for safety of the user and completing the tasks defined by the user. 

The concept of the ABC wheelchair project aims at integrating and connecting all 

electronics devices (such as lifts, door actuators, coffee makers, water kettles, and 

other devices used in most daily tasks) through Internet of Things (IOT).  
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What would you like to do? 
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The ABC wheelchair concept as shown in figure 1. allows the user to choose from 

multiple configured options using different inputs such as eye-tracking which allows 

the user to control a computer’s cursor using their eyes, a voice command 

recognition system or a touch based screen allowing the user to tap on the screen 

for selecting the options. The ultimate goal will be able to control the interface using 

brain signals through an electroencephalogram (EEG) headset. A scenario can be 

considered where the user would like to get a cup of coffee and after the user 

chooses the option, the system generates a path to travel to the cafeteria from its 

current position as shown in figure 2. While the wheelchair is travelling to its 

destination, based on the concept the coffee maker will be connected through IOT 

and thus automates the task of travelling and preparing the coffee once the user 

reaches the destination. If the path to be taken involves traveling to different floors 

by the means of an elevator then by using position estimation techniques an elevator 

will be called to the specific floor replicating the act of pressing a button for the 

elevator once the wheelchair reaches within a certain distance from the elevator. 

 

Figure 1. ABC wheelchair concept 
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Figure 2. ABC Wheelchair concept for path generation from current position to destination 

 

The entire project has been broken down into multiple parts and the goal for this 

study is to develop a system or a kit that can be installed on a new or an existing 

powered wheelchair that creates a map of its environment and navigates within the 

map autonomously while providing a safety measure during the autonomous drive.   
  

Current Position 

Cafeteria 
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Chapter 2 

BACKGROUND  

 
2.1 Related Work     
 
Smart wheelchairs (SW) have 

been a topic of research since 

the 1980’s starting [54] with 

the Navchair, Wheelesley, 

SENARIO and VAHM to 

develop an intelligent system 

to implement a navigational 

setup based on inputs from a 

user. Powered wheelchairs 

(PW) were introduced in 1953 

by George Klein for helping 

people injured during the 

world war II and was quickly 

moved to mass production in  

the year 1956 by the American wheelchair company and Everest & Jennings. The 

earlier PW consisted of a basic structure which included a Chassis, a Controller, a 

seating system and a battery and in recent years there has been a more adaptive and 

a collaborative control approach to provide a much more safe and reliable product. 

Smart wheelchairs during the early years of development mainly consisted[53] of 

technology developed for mobile robots with an attached seating system or a PW 

with a computer and a few sensors attached to it. In the past decade there has been 

an enormous increase in the research and development for smart wheelchairs with 

Figure 3. Smart Wheelchair projects[54] 
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39 institutions all around the world worked on developing a prototype showing the 

interests and the need for more research on the subject. 

 
Figure 4. Modern SW form factors[54] 

 

(Parikh et al. 2007) created a simple method of 

extracting user profiles to select the best trigger 

as the input for the user. These triggers (table 1) 

replicate the use of the controller, a joystick in 

most cases and the sensors attached provide 

information for the system to understand its 

environment. 
Table 1. User inputs 

SW’s are divided into two parts: 

• Semi-Autonomous Wheelchair (SASW):  

The SW implements only a certain or a specific task to provide assistance such 

as an obstacle avoidance system when the user is manually controlling the SW. 

• Autonomous (ASW): 

These SW’s execute the entire task of path planning, obstacle avoidance and 

control using only an input from the user. 

 

Researchers have developed various semi-autonomous systems [4] [9] are two 

systems to create a following mode where [4] is a system which follows their 

companion using a laser range finder (LSR) which guides the user’s footprint using 

an extend Kalman filter for estimating the path followed whereas [9] uses daily 

Input Methods 
Brain Computer Interface (BCI) 
Voice or Speech 
Touch  
Controller 
Gesture 
Computer Vision 
Multimodal 
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routine and behaviour to implement a follower without having any prior knowledge 

of the goal. 

A SASW can be classified as an ASW if it implements any one or a combination of 

the following tasks: 

• Localization – Determining its position in a known environment. 

• Navigation – Path planning for navigating within the map generated. 

• Following – The ability to follow an object or a person reducing the need for 

manual control of the PW. 

 

The Singapore – MIT Alliance for Research and Technology (SMART) in 2016 

deployed[57] a SW at the Singapore’s Changi Hospital which navigates throughout 

the building using a map created with 3 lidars attached on it becoming the first SW 

project used in public. The SW uses a localization algorithm to determine its position 

on the map previously generated and the mechanical structure of the SW has been 

designed to enable it to make sharp or tight turns and as well as fit through normal-

sized doorframes. An app-based online booking and a scheduling algorithm allows 

users to schedule rides on the SW. 

 

A second SW to make public appearance[57] was Whill Model M by Panasonic and 

Whill  at the Haneda Airport in Japan. Whill model M uses two lidars to detect 

obstacles and based on a previously prepared map the user can select the 

destination through a smartphone app and the onboard computer plans the best 

route to take due to which it gets the name Uber of wheelchairs. An additional 

capability is to sync with nearby wheelchairs and travel in a column formation and 

then can return to its home base automatically thus reducing the need of human 

labour to collect these wheelchairs. Other projects dealing with smart robots such as 

the iBot were not commercialized due to the high price attached to them. 
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University of Toronto and Cyberworks Robotics (Toronto) [10] by applying the same 

principles and similar sensors used in self-driving cars to wheelchairs have developed 

a product costing between a range of US$300 - $700 as compared to the earlier 

upward costs of $30,000 to make autonomous wheelchairs however has certain 

limitations of currently intended for working only indoors due to struggles working 

in full sunlight. The project started in 2015 to help users with upper-body disabilities 

which restricted their movements like ALS, spinal cord injuries or hand tremors 

resorting to eye-tracking technology or sip and puff devices to control the PW and 

“by enabling autonomous navigation it could dramatically enhance the user’s quality 

of life.” 

 

Brain Computer Interface (BCI) provides a direct interface between the human brain 

and a machine/computer using invasive and non-invasive techniques. Studies on the 

subject have provided promising results in the field of Electroencephalography 

(EEG)[10] where users who undergo a training period have been able to execute 

external control of a wheelchair by imagining that they were moving a part of their 

body. EEG offers a promising solution for helping certain individuals with disabilities 

where BCI headsets available nowadays measure various muscle activities and brain 

signals that can be used as external triggers. [11] [12] are systems integrated with 

controlling a wheelchair using a BCI headset. The systems incorporate muscle activity 

and users’ concentration measured through electrodes placed on the EEG headset. 

Researchers at Federal Institute of Technology , Lausanne [10] also worked on 

developing a robotic wheelchair with shared control between the user and the 

wheelchair allowing the user to manoeuvre using just their thoughts and the systems 

continues the previous command rather than the user controlling the system 

continuously and using two web-cameras placed on the front to detect any obstacles 

and provide a safer system. 
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2.2 ABC Wheelchair project at Flinders University 
 
The ABC wheelchair project at Flinders 

University has been previously worked on by 

students who have successfully achieved 

integration with the motor controller board on 

the wheelchair and have been able to replicate 

the values from the joystick controller enabling 

a microcontroller to act as a bridge between 

the joystick controller and the controller board. 

As mentioned in the introduction section, the 

ABC wheelchair project is divided into various segments and the studies by students 

have been able to provide promising results and contribute highly to this project. 

One of the recent study [56] has successfully been able to control the wheelchair 

using facial and head gestures. The system uses real-time processing of a user’s face 

to recognize various gestures (such as head tilting, opening mouth, raising eyebrows, 

lip sucking etc.) and calculates a threshold to differentiate between intentional and 

non-intentional gestures for reducing false-positive outputs from the system. 

 
2.2.2 Wheelchair model used 

 
  
 
 
 
 

 

 

 

 

 

Figure 6. Sterling ruby by sunrise medical [34]  

 

Parameter Value Unit 
Dimension 
(LxWxH) 

610x482x889 mm 

Weight 110 lbs 
Max Speed 6 Km/h 
Tire Size 203.3 mm 
Range 15 km 
Kinematic 
Model 

Differential-
Drive 

N/A 

Table 2. Wheelchair technical specifications 

Figure 5. Existing System 
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2.2.3 Inductive Joysticks: 
 
Inductive joysticks use sets of copper wires laid in a circular format that induces a 

magnetic field when current is applied. When the joystick (metal shaft) is moved, it 

cuts through the magnetic lines causing a change in the flow of current in the coil 

which is proportional to the output voltage from the joystick. 

 
Figure 7. Joystick on wheelchair and voltage output range  from joystick 

 
2.2.4 Interfacing with the Motor controller board: 
 
The microcontroller can be interfaced with the motor controller using an interface 

board developed by [55] which consists of a  four channel Analog to Digital 

Convertor (ADC) MCP3004 that reads voltage from the joystick and a  two channel 

digital potentiometer (POT) MCP42010 to output voltage to the motor controller. 

This bridge created between the joystick and the motor controller helps in replicating 

the joystick values through a microcontroller using SPI communication. 

 

 

 

 

 

 

 

 

ANALOG TO DIGITAL CONVERTOR 
(ADC) 

Joystick Microcontroller 
Channel1(FB) 

Channel2(LR) 

VOLTAGE SPI 

DIGITAL  POTENTIOMETER 

Motor 
Controller 

Microcontroller 
Channel1(FB) 

Channel2(LR) 
SPI VOLTAGE 

Figure 8. Joystick interface board 
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2.2.5 Existing sensors 
 
The wheelchair also included a sonar sensor (MaxSonar MB1013) and Sharp IR 

sensors placed on the wheelchair tray and 6 IR sensors placed on the base rod each 

aligned at an angle of 60° apart for a complete field of view as shown in figure 9. 

 
Figure 9. Existing sensors on wheelchair 

 
MaxSonar MB1013 – Ultrasonic Distance 
measurement sensor 
 

 

Figure 10. MB1013 and beam pattern 

 
SHARP GP2Y0A02YK0F – IR Distance sensor 

 
Figure 11. IR distance sensor 

Parameter Value Unit 

Resolution 1 mm 

Sampling Rate 10 Hz 

Output Analog/TTL 
Serial/PW/RS232 

N/A 

Minimum Range 300 mm 

Maximum Range 5000 mm 

Beam Angle ±17 ° (deg) 

Operating 
Range 

2.5 – 5.5 V 

Table 3. MB1013 specifications 

Table 4. IR sensor specifications 

Parameter Value Unit 

Resolution 1 mm 

Sampling Rate 10 Hz 

Output Analog voltage N/A 

Minimum Range 200 mm 

Maximum Range 1500 mm 

Operating 
Range 

4.5 – 5.5 V 
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2.2.6 Kinematic model 
 
The wheelchair features a combination of 2 driven wheels and 2 castor wheels 

attached to the front for stability. A differential drive robot can be defined as a drive 

system where the robot’s movement depend on independent actuators for each 

wheel as shown in the figure below. 

 
Figure 12. Robot kinematic model [41] 

 
Figure 13. Generating motion for differential drive robot 

 
Figure 13 describes how various motions are generated for a differential drive robot. 

Since the drive wheels are fixed and independent of each other the speed of the 

wheels is varied  to steer the wheelchair or to generate the desired motion. 
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Chapter 3 

THEORY AND METHODOLOGY 
 
 

This chapter discusses the theory behind indoor autonomous mobile robots and the  

background information required for developing one. The section contains 

information on one of the major components of this study ROS, which is an Open 

Source platform for designing robots. It describes the process of establishing a 

communication between ROS and a microcontroller for controlling the wheelchair. 

 

3.1 Autonomous Mobile Robot: 
 
An autonomous robot is a robot that can perform various behavioral tasks by making 

decisions with a high level of autonomy. An autonomous robot should be able to 

gather information regarding the environment it is in without the need for any human 

intervention. It should avoid situations that can cause harm to people or damage to 

itself. The process of developing an autonomous robot can be divided into three 

main branches: 

1. Mapping – Generating a map or modeling of the environment. 

2. Localization – Finding the robot’s position inside the environment. 

3. Navigation/Path Planning – Navigating within the environment. 

 

 
 
 
 
 
 
 
 
 
 

Autonomous Drive 

Mapping Localization Navigation 

Simultaneous Localization and mapping 
(SLAM) 

Figure 14. Autonomous Robot block diagram 
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3.1.1 Mapping: 
 
Since GPS cannot provide reliable information within buildings or when indoors, a 

mobile robot needs to interpret its environment in order for it to execute 

navigational task. Robotic mapping can be defined as the branch of autonomous 

robots that deals with the construction of the map or a floor plan. The map is built 

using information from different type of sensors that can interpret the environment 

that the robot is currently in. A robot contains two types of sources for information: 

1. Active sensors (Emit energy and probe the environment based on self-generated 

energy) for example LIDAR, distance sensors, Microsoft Kinect 

2. Passive sensors (Do not emit energy and wait for a response from the 

environment) for example digital cameras and IMU (Inertial Measurement Unit). 

These sources help solve problems for the robot such as interpreting the 

environment and helping it to determine its location and generate maps based on 

the responses from the sensors. 

  

Map representation - Maps can be represented in two ways: 

• Geometric or Grid based representation – These are 

the most common types of maps used for 

representation for humans as it considers a two-

dimensional space in which the objects are placed 

with a precise coordinate. Grid maps break down the 

world into cells which make the map look like a 

building floor plan when mapping indoors. The grid is 

considered to be static where the cells are 

independent of each other and each cell is inferred to 

be either free or occupied based on the sensor 

readings.    

 

Figure 15. Grid map representation [46] 
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The probability for occupancy can be defined as: 

𝐶𝑒𝑙𝑙	𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 → 𝑝(𝑚.) = 1 
𝐶𝑒𝑙𝑙	𝑁𝑜𝑡	𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 → 𝑝(𝑚.) = 0 

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 → 𝑝(𝑚.) = 0.5 

• Topological or Landmark based representation – The framework remembers 

landmarks and relations between them. The distance between these landmarks 

are stored and the map can be considered a graph where the nodes correspond 

to landmarks and the arcs correspond to various paths. 

 
Figure 16. Feature-based or landmark based map [47]  

 
3.1.2 Simultaneous Localization and Mapping (SLAM) 
 
SLAM in the field of robotics can be defined[46] as the computational problem of 

building a map of the environment the mobile robot is in while simultaneously 

keeping track of the location of the robot within the map for navigation. SLAM is not 

a single algorithm but rather a combination of multiple processes running at the 

same time for solving the problem. It has applications in areas where the environment 

is unknown for both manned and autonomous vehicles such as: 

• Indoors 

• Undersea 

• Space 

• Underground 
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There are various algorithms for solving the SLAM problem including particle filter, 

extended Kalman filter and graphSLAM which are discussed in the next sections used 

in this study for developing an autonomous wheelchair. The wheelchair is a mobile 

robot and will mostly be used indoors requires a system that can navigate the 

wheelchair safely while developing a map of the environment simultaneously.  

List of a few SLAM techniques available: 

1. EKF SLAM 

2. Fast SLAM 

3. Graph SLAM 

4. Occupancy-Grid SLAM 

5. DP-SLAM 

6. Parallel Tracking and Mapping (PTAM) 

7. Mono-SLAM 

8. ORB-SLAM 

9. Co-SLAM 

10. SeqSLAM 

11. Visual Slam (vSLAM) 

 
Maps created using SLAM[49] enable a quicker and adaptive response as compared 

to pre-programmed routes. By using a combination of sensors on a robot such as 

Lidar, camera, ultrasonic sensors are able to better interpret its environment and 

effectively improve navigation and obstacle avoiding ability due to the adaptiveness 

that it enables.  
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Fast SLAM 
 
A feature based SLAM using Rao-Blackwellization technique of using particle filters 

as a tool for solving the SLAM problem[19] by applying particle filters where each 

particle carries an individual map of the environment. 

 

Particle Filter algorithm: 

1. Sample the next particle based on the proposal distribution 
𝑥=.~	𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙(𝑥=| … ) 

 
2. Calculate importance weights 

𝑤=. =
𝑡𝑎𝑟𝑔𝑒𝑡E𝑥=.F
𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙E𝑥=.F

 

3. Resample to replace unlikely samples with more likely ones 
 
SLAM posterior 
 
 

𝑝(𝑥G:=, 𝑙J:K|𝑧J:=, 𝑢J:=) = 	𝑝(𝑥G:=|𝑧J:=, 𝑢J:=)	𝑝(	𝑙J:K|𝑥G:=, 𝑧J:=)	 
	 

 
 
 

The robot’s path is a sample-based representation where each sample is a path 

hypothesis. This removes the need for maintaining past poses. FastSLAM uses a 

combination of particle filters and EKF for calculating the SLAM posterior where the 

landmarks are conditionally independent and are solved as a 2-dimensional EKF. 

 
Figure 17. FastSLAM 

Map posterior Path posterior Map  poses observations  

Movements 
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Graph SLAM 
 
Graph-based SLAM[39] uses a graph to represent the problem of localization and 

mapping where each node in the graph corresponds to a pose of the robot and a 

sensor measurement while mapping and the edge between the nodes corresponds 

to the spatial constraints between them. These nodes create a graph and the most 

likely map is determined by moving the nodes till a map is rendered based on the 

known poses once a loop closure is detected. 

 

 
Figure 18. Pose-graph representation of nodes [39] 

 
Loop closure 

Loop closure [16] is the problem of recognizing a previously-visited location and 

updating beliefs accordingly. Typical loop closure methods apply a second algorithm 

to compute some type of sensor measure similarity and re-set the location priors 

when a match is detected.  
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Visual based SLAM 
 

Visual SLAM can be considered as a type of SLAM system which leverages 3D vision 

to perform localization and mapping functions when the environment and the 

location of the robot is unknown. The idea behind most vSLAM systems is to track a 

set of points through successive camera frames which helps to triangulate their 3D 

position in real time while approximating the robot’s pose[15]. Vision sensors[49] are 

attractive for employment in SLAM systems because of the richness in features 

detected, accessibility and cost-effectiveness on these sensors. There are a few state-

of-the-art visual SLAM techniques which have proven to be effective even during the 

presence of significant noise in the robot’s position and the landmark position 

sensing. 

  

Different types of Visual based SLAM systems available [21]:  
(* - Available on ROS) 
Monocular cameras 

• PTAM 
• DSO* 
• LSD-SLAM* 
• ORB-SLAM* 
• SVO-SLAM* 
 

RGB-D cameras 
• OpenCV RGBD-Odometry (Visual Odometry based RGB-D images) 
• Dense Visual SLAM for RGB-D Cameras* 
• RTAB MAP - Real-Time Appearance-Based Mapping* 
• ORB2-SLAM* 
• InfiniTAM∞ v2 
• Kintinuous 
• ElasticFusion 
• Co-Fusion 

RGB-D camera and Lidar 

• Google’s Cartographer* 
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3.1.3 Navigation and Path planning 
 
Since GPS is not available indoors a mobile robot by using computer vision 

algorithms or sensors such as laser range finders, sonar sensors or photometric 

cameras allows the system to extract features from the surrounding environment 

required for the robot to localize itself. There are different ways of implementing 

indoor navigation on a mobile robot such as line following, placing beacons, markers 

or bar codes in the environment and position estimation using odometry. The robot 

requires a map within which it can navigate. Once a map is available, the robot  

localizes itself within the map where the location of landmarks or position of points 

is defined with respect to a relative initial position. After localizing a path can be 

generated for the robot to reach when given a goal to travel through traversable 

regions. The map generated is assumed to be static in the terms that the map does 

not change; however, since the wheelchair is a mobile robot[32] the environment is 

dynamic and is continuously changing. Obstacles might appear and disappear from 

the measurements of the sensor which creates a noisy estimate of the surrounding. 

This results in the need for integrating the system with components that keep track 

and compensate it according to these changes. There are two changes which have 

to be continuously tracked: 

1. Static and Dynamic Obstacles 

2. Map update through new sensor readings 

Figure 19 shows illustrates a map with sample 

cost of the grid cells. A planner can then 

generate a path from the current position to the 

goal position by traversing through the cells 

depending on the type of algorithm chosen. 

  

Figure 19. Costmap of grid cells [47] 
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3.2 Sensors 
 
In addition to the sensors available on the wheelchair, there are various sensors 

required for the task of developing an autonomous mobile robot. The mobile robot 

should be able to generate a map of the environment using easily accessible and 

low-cost sensors such as a sonar sensor or a RGB-D camera which can generate 

pointclouds. To estimate the position of the robot for localization the motion of the 

robot should be tracked which can be done through the use of encoders that keep 

track of the wheel rotations and an IMU unit which when attached to the robot body 

provides the velocity and the acceleration of the robot as it moves. 

 
3.2.1 Rotary Encoders: 
 
One of the important aspects in the field of autonomous robots is for the robot to 

estimate its position relative to a known or starting position using motion sensors 

such as IMU or encoders. Rotary encoders provide digital pulses for the motion of 

the shaft which can be used to determine the displacement of a wheel. 

 
Figure 20. Rotary encoder 

 

By using the process of odometry which is a form of 

dead-reckoning the encoders can be used to track 

the change in position over time which estimates the 

actual position of the wheelchair as shown in the 

figure 20. 

Figure 21. Odometry [42] 
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The wheelchair is configured with 2 motors that control the wheels offering limited 

access to the motor shaft. Due to this the encoders are placed externally using a 

wheel on wheel configuration. Multiple positions tried for placing the encoders faced 

slippage due to a non-firm contact with the wheel which results in missing of pulses 

causing a noisy estimate of the position. A new bracket designed so the encoder 

wheel stays in contact with the middle of the wheelchair wheel. The bracket includes 

a cross shaped wedge which allows movement for the encoder and a firm contact 

with the wheelchair wheel allowing adjustment and also for ease of replacement. 

 

 
Figure 22. Wheel on wheel configuration for encoders 

 
3.2.2 RGB-D camera (Microsoft Kinect for Windows) 
 
 RGB-D cameras provide a colour (RGB) image along with the corresponding depth 

image. The depth image is a per-pixel estimate which relates to the distance 

between the image plane and the object in the RGB image.  

 
Figure 23. Microsoft Kinect [43] 
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Parameter Value Unit 
Colour 640 x 480  @ 30fps 
Depth 320 x 240  @ 30fps 
Sensor Structured light Light coding 
Range 0.8 – 4.0  m 
Horizontal View 57 degree 
Vertical View 43 degree 

Table 5. Microsoft Kinect specifications 

The Kinect sensor[29] uses an infrared (IR) laser for generating a pseudo-random 

beam pattern and an IR camera then captures the image of dots reflected from the 

objects in the environment. By the use of structured light technique, the distortion 

of the dot points is calculated which correspond to the distance of the dot with 

respect to the RGB pixel. The Kinect was initially used on the Microsoft X-box for 3D 

perception of human motion and through reverse engineering, it has been used in 

robotic applications for indoor navigation. The Kinect sensor [31] had extremely 

effective results for indoor navigation in robotics application indoors however 

showed interference from sunlight during outdoor applications. The Kinect uses IR, 

so it does not detect glass or transparent objects and thus, sensors such as sonars 

have to be used for detecting obstacles. Since the sensor is cost effective and easily 

accessible it provides a great advantage over other depth cameras or laser sensors 

which induce an enormous cost to the project budget. Another idea[31] to use 

multiple Kinect sensors for stereovision might be applied to enhance the 3D 

perception and pointclouds which can help improve the functionality outdoors. 

 
3.2.3 Inertial Measurement Unit (IMU): 
 
An IMU is an electronic device that can measure the acceleration, rotational velocity 

and orientation through a mix of Accelerometers, gyroscopes and magnetometers. 

The IMU used for this project is the MPU 9250 by Invense which features a 3-axis 

gyroscope, 3-axis accelerometer and a 3-axis magnetometer. The IMU provides 

linear acceleration and rotational velocities, and by using the process of dead-

reckoning the wheelchairs position can be estimated. 
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Figure 24. IMU MPU9250 [40] 

 

Reading raw data from accelerometer: 

The output from the accelerometer can be configured to work with a programmable 

full-scale range of ±2g, ±4g, ±8g and ±16g where (1𝑔	 = 9.81𝑚/𝑠P , acceleration due 

to gravity). 

16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	𝑤𝑖𝑡ℎ	𝑎	±2𝑔	𝑠𝑐𝑎𝑙𝑒.	 
16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	65535	𝑏𝑖𝑡𝑠 
±2𝑔	𝑠𝑐𝑎𝑙𝑒	 = 	4𝑔	𝑜𝑟	4000𝑚𝑔 

1 − 𝑏𝑖𝑡	 = 4000/65535 = 0.061𝑚𝑔 

Converting to m/𝑠P,  

𝐿𝑖𝑛𝑒𝑎𝑟YZZ[\]^=._` = 𝑅𝑎𝑤b^=^ ∗
0.061	∗	9.81

1000    (Eqn 4)	 

Reading raw data from gyroscope: 

Output from the gyroscope can be configured to work with a programmable full-

scale range of ±250°/sec, ±500°/sec, ±1000°/sec and ±2000°/sec 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦:	16.4°/𝑠𝑒𝑐  
16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	𝑤𝑖𝑡ℎ	𝑎	±2000°/sec	𝑠𝑐𝑎𝑙𝑒.	 

16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	65535	𝑏𝑖𝑡𝑠 
±2000°/sec	 = 		4000°/sec 

1 − 𝑏𝑖𝑡	 = 4000/65535 = 0.061°/sec 

Converting to rad/sec 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟k\[_Z.=l = 	𝑅𝑎𝑤b^=^ ∗ 	0.061	 ∗
m.
JnG

   (Eqn 5) 
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3.3 Robot Operating System (ROS) 
 

3.3.1 What is ROS 

“The Robot Operating System (ROS) is a flexible framework for writing robot 

software. It is a collection of tools, libraries, and conventions that aim to simplify the 

task of creating complex and robust robot behavior across a wide variety of robotic 

platforms.” ROS [2] was built to promote collaborative software development and 

provide support for re-usage of code in robotics research and development. It is a 

distributed framework of processes (called nodes) which enable the executables to 

be designed individually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Communication is ROS takes place through nodes where each node can 

publish(send) and subscribe(receive) data to and from a topic. Information such as 

odometry, proximity information from sensors, velocity of the wheelchair can be 

considered as examples of topics. 

 

Figure 25. ROS communication block diagram 

Node Registration 

Messages 

Messages Messages 

Node 1 Node 2 Node 3 

ROS 
Master 
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Figure 26. ROS Communication between nodes [44] 

 
Packages in ROS: 
 
Packages is the way the software is organized in ROS which can contain ROS-nodes, 

libraries, configuration files, datasets or even third-party piece of software. The 

packages allow the easy to consume functionality for re-usage of software. A ros 

package, “ROSSERIAL-ARDUINO” allows the Arduino microcontroller to act as a 

node and the sensor readings can be published through the Arduino and the other 

nodes on the computer side can subscribe to this information and based on the 

functionality defined, the system will output velocities for the wheelchair in order to 

achieve the on-going task. 

 

3.3.2 Setting up the robot using ROS: 
 
ROS contains packages which use working algorithms that have been implemented 

by users that can also be configured on other custom robots. Since a wheelchair can 

be considered a mobile robot, most of the algorithms that are used for developing 

autonomous mobile robots can be applied to it as well. As illustrated in figure 14 the 

task for developing an autonomous robot is branched into three categories mapping, 

localization and navigation.  
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Figure 27. Robot setup [45] 

 

Figure 26. describes the navigation stack on ROS which takes odometry information, 

sensor measurements and a destination and generates velocity commands for the 

controller to follow in order to reach the goal.  

 
3.3.3 OpenSLAM’s Gmapping 

GMapping is a highly efficient Rao-Blackwellized particle filter to learn grid maps 

from laser data. The approach uses the particle filter by assigning a map to each 

particle. This leads to a memory extensive complexity  and Gmapping offers an 

adaptive technique which reduces the number of particles in a Rao-Blackwellized 

particle-filter used for learning grid maps. By accounting for not just the movement 

but also recent observations, the uncertainty of the robot’s pose is reduced 

significantly by computing an accurate proposal distribution. 

ROS package “gmapping”  is a wrapper for OpenSLAM’s Gmapping to provide a 

laser based SLAM system. A 2-Dimensional occupancy grid map can be generated 

using the robot’s pose (Odometry) and  laser measurements. Each robot pose[41] is 

represented as a particle where the particles are moved according to the information 

from odometry source and based on how well these laser scans fits the map the 

robot can be localized. 
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Gmapping can help generate grid maps for the environment but there are a few 

drawbacks of using a 2-D map as they can get confusing when the map gets too big 

and are also not visually appealing to humans. For an autonomous robot to 

understand the environment, 2-D maps are ideal and can function perfectly using it 

but for usage with a wheelchair a visual based or a 3-D based map allowing the user 

for a better visualization of what the map looks like will be more suitable. 

 
3.3.4 Path Planning 

Ros package “move_base”[26] provides an implementation that can help a mobile 

robot to reach a given goal in the world. The package links a global and a local 

planner to accomplish its global navigation task. The global planner uses costmaps 

to find the minimum cost path from the current position to the destination using the 

algorithm (Dijkstra’s) and generates a series of waypoints which the local planner 

follows to reach the destination and the local planner uses sensor measurements for 

updating the costmap and following the path by sending velocity values to the robot 

controller for traversing through the path. 

 

3.3.5 Costmaps 

Obstacles in maps are generated using Costmaps which are data structures that 

represent if it is safe for a robot to be in a grid of cells. The costmaps are created 

using distance sensor information about obstacles to mark and clear these obstacles 

at each update. The values represent free spaces or places where robot will be 

colliding. Ros package “costmap_2d”[33]uses sensor data and information from the 

static map to build a 2D occupancy grid of the data and based the on-sensor 

measurements and the user specified inflation radius the cost of the grids is inflated. 

The sensor measurements used for the wheelchair include a pointcloud from the 

Kinect sensor and a beam from the sonar sensor discussed in section 2.2.5. The range 
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information and the visualization of the sonar sensor can be viewed in the figure 

below.  

 
Figure 28. Sonar sensor range and visualization 

The cells in the costmap have a value between the range 0-255 where high costs 

decrease the desirability of the robot being in the cell and a few values which are 

frequently used[33]: 

• costmap_2d::NO_INFORMATION (255) - Reserved for cells where not enough 

information is sufficiently known. 

• costmap_2d::LETHAL_OBSTACLE (254) - Indicates a collision causing obstacle 

was sensed in this cell. 

• costmap_2d::INSCRIBED_INFLATED_OBSTACLE (253) - Indicates no obstacle, 

but moving the center of the robot to this location will result in a collision. 

• costmap_2d::FREE_SPACE (0) - Cells where there are no obstacles and the 

moving the center of the robot to this position will not result in a collision. 

 

The wheelchair uses two types of costmaps for navigation. 

1. Global Costmap – This is used for generating a path in the global navigation or 

a destination on the map which is far. 
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2. Local Costmap  – This is used for generating paths for local navigation which 

includes avoiding obstacles. 

 

Path Generation Algorithm 

Ros package “base_local_planner” implements the trajectory rollout and dynamic 

window (DWA) approaches where a plan to follow with the costmap is provided 

generates velocity commands[36]. 

1. Discretely sample in the robot's control space (dx,dy,dtheta) 

2. For each sampled velocity, perform forward simulation from the robot's 

current state to predict what would happen if the sampled velocity were 

applied for some (short) period of time. 

3. Evaluate (score) each trajectory resulting from the forward simulation, using a 

metric that incorporates characteristics such as: proximity to obstacles, 

proximity to the goal, proximity to the global path, and speed. Discard illegal 

trajectories (those that collide with obstacles). 

4. Pick the highest-scoring trajectory and send the associated velocity to the 

mobile base. 

5. Rinse and repeat. 

The only difference between trajectory rollout and dwa approach is how the robot’s 

control space is sampled.  
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3.3.6 ROS-ARDUINO Block diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The block diagram shows how the various sensors are connected to the Arduino 

and how messages are communicated with ROS to achieve the goal of autonomous 

robot. 
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Figure 29. Wheelchair ROS-ARDUINO Block diagram 
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3.3.7 RTAB-Map (Real-Time Appearance Based Mapping) 
 

RTAB-Map [17] is a RGB-D Graph-Based Slam approach based on appearance-based 

loop closure detector. The loop closure detector uses a bag-of-words approach to 

determine how likely a new image comes from a previous location or a new location 

and when a loop closure hypothesis is accepted, a new constraint is added to the 

map’s graph.  

 
Features[25] 
 
• Visual Odometry [15] – It is the process of determining the position and 

orientation of a robot by analyzing the associated camera images. Similar to 

odometry generated using encoders, Monocular, stereo cameras and RGB-D 

cameras provide the ability to compute motion using a feature based method 

where features are extracted in an image and tracked using the image sequence. 

By correlating the correspondence of the images in sequence, the camera motion 

can be estimated using optical flow. There are multiple ways of extracting 

egomotion such as using image intensities or using optical flow to match features 

detected through multiple frames which provides the direction of motion of a 

camera and thus an estimate of the camera motion.  

• Using Pointclouds for generating map: One of the drawbacks for using the 

Gmapping package is the requirement for using lidars with long range and does 

not work well with short range sensors while RTAB-Map allows the use of 

pointclouds to generate the map. 

• 3D Map Cloud: The point clouds are used to generate a cloud map of the entire 

map which can be used for a 3D visualization of the environment.  

• Allows Handheld Mapping: The package allows for handheld mapping using an 

RGB-D camera, which can be highly beneficial for this study as it allows for the 

wheelchair to localize itself within these areas which are mapped using the 

handheld mapping technique.  
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Chapter 4 

EXPERIMENTAL RESULTS 
 
 
 
This chapter has been broken down into segments starting with the initial approach 

applied to develop the system for understanding the systematic parameters and its 

limitations. The next segment discusses the development of a landmark based 

navigation technique to reach a goal. The third segment contains the integration of 

the wheelchair with ROS and how the it generates a map of its surrounding and 

navigates within it. 

 

4.1 Initial Approach 

4.1.1 Mechanical Design Modifications 

To convert the wheelchair to an autonomous wheelchair there are certain 

modifications which have to be made. The initial setup of the wheelchair tray 

included a wooden block covering the entire front making it hard for anyone to enter 

and exit without lifting the tray completely making it a tiresome task. The first step 

was to modify the tray for a more ergonomic design and also ease of access. The 

tray is  designed keeping in mind the generic size of a laptop that might be used 

with the wheelchair in addition to the various sensors to be added and also the 

sensors that could be included in the future developments of the project and finally, 

enough space for any user to sit comfortably. The design for the tray is included in 

Appendix section B3. The tray is attached using hinges which allows it to be lifted 

providing much more ease for the user to enter and exit the wheelchair. The joystick 

for manual control of the wheelchair was previously fixed on top of the tray which 

meant that the user has to lift their hands for the entire time the joystick was used 

making it a very inefficient way of controlling the wheelchair. A new joystick holder 

is designed for easier access for manual control of the wheelchair. 
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Figure 30. Mechanical design changes to the wheelchair 

4.1.2 Migration from PIC microcontroller to Arduino: 

The initial setup was integrated using a PIC (Peripheral Interface Controller) 

microcontroller which is replaced with an Arduino microcontroller(Arduino Mega) 

since Arduino is a more generic microcontroller used for prototyping and offers 

support to a broad range of sensors as compared to the former, thus allowing for 

further development for the project easier. The initial steps include understanding 

how the interface board communicates with the joystick and the motor controller. 

[55] served as reference for the initial communication between the interface board 

and Arduino which allowed control of the wheelchair through the joystick. The block 

diagram explains how the communication takes place.  

 

 

 

 

 

 

 

 

 

The Arduino code for the initial communication can be found in Appendix A1. 

SPI 
Communication 

SPI 
Communication 

Figure 31. Interface board and Arduino connection 
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4.1.3 Mapping joystick values for external input to drive the wheelchair 
 
The figure below shows the values mapped that are sent to the potentiometer 

correlating to the joystick position.  Where FB (Front Back) and LR (Left Right)  are 

the voltages received from channel 1 and channel 2 respectively from the ADC shown 

in figure 8. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The digital values from the joystick are then mapped to the potentiometer range 

using the equation below. 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟	𝑣𝑎𝑙𝑢𝑒 = (𝐽𝑜𝑦𝑠𝑡𝑖𝑐𝑘	𝑉𝑜𝑙𝑡𝑎𝑔𝑒	– 	100) ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟	     (Eqn. 1) 
      where multiplier = 0.85 

POT_FB – Forward/Reverse, POT_LR – Left/Right 

 

Direction POT_FB POT_LR 

Forward 256 128 

Reverse 9 128 

Right 128 9 

Left 128 256 

Table 6. Potentiometer Inputs 

LR (398) +90° 

FB (110) 

LR (254) 

FB (254) 

LR(110) 

144 

FB (254) 

LR (254) 

FB (398) 
LR (254) 

0° 

-90° 

FB (254) 

Figure 32. Joystick output values 
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4.1.4 Controlling the wheelchair using a keyboard and moving the wheelchair in  
a pre-defined sequence 
 
Using the values in figure 32, an Arduino code is written which listens to the serial 

buffer for the key pressed on the keyboard and drives the wheelchair in the specific 

direction. 

 

 

 

 

 

 

 

 

 

 

For understanding the delays between the input and the execution of the command, 

the wheelchair was moved in a pre-defined sequence (a square) that showed an 

offset for a minimum of 1 meter at each trial. It was observed that the wheels of the 

wheelchair move at a different speed which resulted in a deviation from the path 

when the wheelchair moves in a straight line. The slight delay between the 

commands and the execution was observed which resulted in an offset from the 

starting point once the sequence was complete. The code for controlling the 

wheelchair using the keyboard can be found in (APPENDIX A: Section A2) 

 

  

W 

S 

D A
A 

space 

Figure 33. Keyboard inputs 



 

  36 

4.1.5 Speed  and Direction Control: 
 
From the previous sections, the wheelchair has been controlled by sending constant 

values for rotational and linear speed, but a robotic system should be adaptive to its 

dynamically changing environment and hence needs a better speed controller. The 

values sent to the potentiometer are 8-bit values ranging from 1-256 for both 

channels and table 6 shows the values that are sent to the potentiometer.  

It is observed from figure 32 that the difference in values for every 90° is 144. 

At the mid-point the value for POT_LR is 254 and at the extreme ends(left & right) 

the potentiometer values are 110 and 398 respectively each with a difference of 144 

from the center point.  

Mapping the values: 

𝑠𝑐𝑎𝑙𝑒 =
144
90 = 𝟏. 𝟔 

Which will be referred to as scale.  1° (degree) angle can be represented by 1.6 

points on the potentiometer scale.  

Generating the equations: 

 𝑇𝑢𝑟𝑛k^[v\ = 	 (254	– 	𝒔𝒄𝒂𝒍𝒆 ∗ 𝑎𝑛𝑔𝑙𝑒) where,  𝑎𝑛𝑔𝑙𝑒	𝜖	{−90	, 90	}    (Eqn 2) 

Feeding the Turn value into Eqn 1, 

𝑃𝑂𝑇k^[v\ = 	 (𝑇𝑢𝑟𝑛k^[v\– 	100) ∗ 	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

Using the equations: 

 Let,    𝑎𝑛𝑔𝑙𝑒 = 45 

𝑇𝑢𝑟𝑛k^[v\ = E254+ 1.6 ∗ (45)F 	= 326 

 Verifying the value from the first quadrant: 

144/2	 = 	72 
398 − 72 = 254 + 72	 = 	326 

The equations allowed the wheelchair to turn at any given angle providing a more 

adaptive controller. 

Program code to achieve specific turn angles section A5 of the APPENDIX 
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4.1.6 Avoiding obstacles Safely 
 
The objective for the wheelchair is to navigate autonomously while avoiding all static 

and dynamic obstacles. A sonar sensor as shown in figure 9 was attached to the 

bottom of the wheelchair tray to detect obstacles in view of the wheelchair. 

The sonar sensor has a range from 30mm – 5000mm. Considering the width of the 

wheelchair and a keeping free radius of 0.20m at all times the following table shows 

the relation between the distance and the angle required for the wheelchair to safely 

avoid hitting any obstacle in front of it. 

 

 

Using equation 2 generated in the previous section (improved direction control), if 

the values for the angle and the distance are known, the turn angle can be calculated 

for the wheelchair using table 1. The angle is mapped from 45° to 90° to a distance 

from 30mm to 1000mm and the distance range is divided in 10 divisions with an 

increment of 5.625° for every 100mm. 

 

𝑑𝑖𝑠𝑡�Z^[\ →
90°
2 =

144
2 →

77
45 = 1.711 

Column Distance Angle(degrees) 

1 >1000 No Turn 

2 1000 ±45° 

3 900 ±50.625° 

4 800 ±56.25° 

5 700 ±61.875° 

6 600 ±67.5° 

7 500 ±73.125° 

8 400 ±78.75° 

9 300 ±84.375° 

10 200 ±90° 

11 <200 Reverse 

Table 7. Distance - Angle relation 
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Calculating angle in degrees: 

Total number of divisions in range=10  

To find the value of the column value from table 3. 

𝑃𝑜𝑖𝑛𝑡𝑒𝑟	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛	–	(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	/100) 
	𝐶𝑜𝑙𝑢𝑚𝑛^`�[\ 	= 	𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∗ 5.625. 

𝑇𝑢𝑟𝑛^`�[\(𝑑𝑒𝑔𝑟𝑒𝑒) 	= 	45	 + 	𝐶𝑜𝑙𝑢𝑚𝑛^`�[\  

𝑇𝑢𝑟𝑛^`�[\(𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟) 	= 	𝑇𝑢𝑟𝑛^`�[\(𝑑𝑒𝑔𝑟𝑒𝑒) ∗ 𝑑𝑖𝑠𝑡�Z^[\ 

𝑃𝑂𝑇����� = 	254 − 	𝑻𝒖𝒓𝒏𝒂𝒏𝒈𝒍𝒆(𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒐𝒎𝒆𝒕𝒆𝒓) 

Or  𝑃𝑂𝑇���^[ 	= 	 [254	 −	(10	–	(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒/100)) ∗ 5.625]     (Eqn 3) 

 
Figure 34. Avoiding distances safely 

Using the equations above. 

 Let distance from obstacle = 550mm 

 Turn Angle should fall in the range of 67.5 and 73.125° according to Table 3. 

   𝑎𝑛𝑔𝑙𝑒 = ��10 − ���G
JGG
�� ∗ 5.625� = 	 [4.5 ∗ 5.625] = 	25.3125 

𝑇𝑢𝑟𝑛𝑎𝑛𝑔𝑙𝑒(𝑑𝑒𝑔𝑟𝑒𝑒) 	= 	45	 + 	25.3125	 = 	70.3125 

 

The performance of the wheelchair matches the expected outcome by avoiding all 

obstacles and reversing if it gets too close to any wall or obstacle. The program can 

be found in section A6 of the APPENDIX 
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4.1.7 Controlling wheelchair through speech commands: 
 
The idea for ABC wheelchair is to be able to use voice or speech commands as an 

input to execute tasks. Now the wheelchair can navigate freely while avoiding 

obstacles, similar to being controlled by the keyboard a new capability was tested 

which included controlling the wheelchair using speech commands. 

 

BitVoicer by BitSophia 
 
“BitVoicer [7] is a speech recognition application that enables simple devices, with 

low processing power, to become voice-operated. To do that, BitVoicer uses the PC 

processing power to analyse audio streams, identify the sentences present in these 

streams and send commands to a microcontroller connected to it.” 

 
Figure 35. BITVOICER functionality [7] 

BitVoicer processes the audio captured through the computer’s microphone and 

compares to the written commands stored in the database. Since BitVoicer uses 

serial communication interface, it can directly be integrated with the Arduino 
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microcontroller and various commands can be executed. The code can be found in 

the APPENDIX: Section A4. 

The commands used were Forward, Reverse, Left, Right, Turn Around. The voice 

commands get recognized with high confidence indoors but however, when 

outdoors the confidence level of commands recognized reduces significantly.  After 

the commands are recognized the wheelchair performs the expected tasks of 

travelling in the desired direction. It was observed that keyworks such as forward, 

right, left, turn and around are commonly used in daily life by a majority of individuals 

which caused false positives being recognized as commands as the ASR platform 

could not differentiate between a command and conversation that the user 

operating the wheelchair is indulging in.  

 

To make the experience safer, the keywords to be recognized were changed to Drive 

Forward, Drive Reverse, Turn Right and Turn Left which reduces the probability of 

the common keywords used and not affecting the behavior of the wheelchair. The 

recognition of commands is not limited to sending directions to the controller but 

can also be used to navigate to pre-defined positions or landmarks within a map. 

BitVoicer offers an unlimited number of commands that get can be recognized. An 

example for implementing the speech command with the autonomous wheelchair 

could be related to the idea explained during the introduction where the user would 

like to travel to the cafeteria and the wheelchair can navigate their autonomously by 

accepting the option. 

 

4.1.8 Detecting known objects: 
 
Robotic systems interpret the environment using sensors such as proximity sensors, 

distance sensors, bearing sensors and cameras. Cameras can be used to detect 

objects, people, shapes, signs etc. For a robotic system to provide a safe and the 

wheelchair must interpret the environment correctly and execute tasks defined. 
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After the wheelchair could move around using voice commands and avoid obstacles, 

a beneficial feature for the system would be to identify objects such as doors to pass 

through or signboards such as toilets or office numbers. As seen in figure 30, the 

wheelchair tray also includes an USB camera which provides an RGB-image which is 

used for detecting known objects. Object detection can be defined as a technology 

that deals with detecting objects of a certain class in images or videos. OpenCV 

(Open Source Computer Vision)[58] is a library of functions for real time computer 

vison applications. 

Using the source code from [3] , an object detector was created using OpenCV and 

the camera attached to the front tray. The image below was used as the object to 

be identified in the lab environment to find the exit from the lab which was identified 

from all locations inside the lab resulting in a reliable object detection system which 

will used as an accessory during navigation. The idea to be implemented was by 

using the servo attached which rotates from 0-180° and when an object is detected 

the servo stops rotating and the angle at which the servo stops is considered as the 

direction of the object which is them refined by checking for the object multiple 

times but since the web-camera was replaced with a Kinect sensor the step was not 

implemented. However, since the Kinect sensor provides 

depth information in addition to an RGB image the 

location of the object can be estimated using the 

pointcloud. This will be used in further development of 

the project using the same object detector created. The 

python code for the object detector can be found in 

(section A7 from APPENDIX A) 

 
  

 

 
  

Figure 36. Known door from lab at used for object detection 
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4.2 Project Development 
 
4.2.1 Generating Odometry: 
 
Odometry can be defined as estimating the robots position 

with time. The encoders attached to the wheelchair wheel 

provide pulses which can be used to estimate the motion 

the robot generates as shown in figure37.  

 

Current Position[1] of robot (𝑥, 𝑦, q	) , solving for (𝑥′, 𝑦′,q	′) 

Where ,        w = wheelchair_wheel 

         e = encoder_wheel 

𝑊ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟_𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑏	 
𝑏	 = 	462𝑚𝑚 

𝑊ℎ𝑒𝑒𝑙_𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟		, 𝑑  
𝑑¢ 	= 	195𝑚𝑚 
𝑑\ 	= 	62𝑚𝑚 
𝑑¢
𝑑\

= 3.145 

Distance travelled by wheel for 1 complete rotation, 

d¢ = 	P𝑑¢ 

Pulses from encoder, 𝑁			J\ = 400 

Wheelchair resolution J¢ = 400 ∗ 3.145 = 1258 

Distance travelled by wheel at any time, 𝑑]/[ =
£∗d¤
J¤

 

𝑑Z\`=\] =
b¥¦	b�
P

      (Eqn 6) 

                f	 = b¥–	b�
§

                (Eqn 7) 

q	′	 = 	q	 + 	f      (Eqn 8) 

x’ = 	x	 +	d«¬®¬¯ ∗ cos(q	)    (Eqn 9) 

y’ = 	y	 +	d«¬®¬¯ ∗ sin(q	)    (Eqn 10) 

Arduino code[A9] 

Figure 37. Generating odometry [42] 
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4.2.2 Navigating to landmarks: 
 
A basic robot navigation based on landmarks defined by position relative to a 

starting point was implemented after generating the odometry. The robot takes an 

input argument for the destination position and travels to the goal using odometry 

information. 

 
Figure 38. Robot landmark navigation[50] 

Using figure 38 as reference, where the current position is defined by 𝑃G(𝑥G, 𝑦G,qG) 

and 𝑃b(𝑥b, 𝑦b, qb) is the destination position. 

The distance between the points r can be calculated using the Pythagorean theorem 

or distance formula. 

r	 = 	´((𝑥b–	𝑥G)P +	(𝑦b–	𝑦b)P)   (Eqn 11) 

and the heading difference a can be calculated using 

a = 𝑎𝑡𝑎𝑛2(𝑦b − 𝑦G, 𝑥b − 𝑥G) −	qG   (Eqn 12) 

 

  

            
 

 

 

 

 

 
Figure 39. Navigating to landmarks 
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4.2.3 Calculating dead-reckoning errors for Improving Odometry estimation: 
 
The process described above for generating odometry works well in ideal situations 

but there are a lot of errors which occur and are not accounted for. The major issue 

with using a dead-reckoning process to estimate the robot’s position is due to the 

fact it integrates the position over time the errors are also accumulated over time. 

The errors can be caused due to various reasons encoder wheel slippage because of 

which linear movement of the wheelchair wheel unaccounted for being the major 

reason for error in this setup is due to the wheel on wheel configuration for placing 

the encoders. The errors in odometry can be categorized in two categories[5]: 

Systematic errors: 

• Unequal wheel diameters 

• Misalignment of wheels 

• Incorrect wheelbase ( the wheels are not in contact with the floor at a point 

but rather an area) 

Non-systematic errors: 

• Wheel-slippage 

• Travelling over uneven surfaces 

• Internal and external force errors (example castor wheels) 

For simplicity reasons, since the wheelchair is mostly driven in indoor environments 

where the floor is mostly even, only the systematic errors are considered which are 

mostly due to the defects in the mechanical design of the robot. The tyres on the 

wheelchair are made with rubber, so it is susceptible to wear over time and the 

wheelchair used for the project is over 7 years old because of the usage and the load 

over the time the wheels have worn out leading to unequal diameters. The other 

error not accounted for is the incorrect wheelbase value used for the wheelchair. The 

wheelbase helps identify the Instantaneous Centre of Rotation (ICR) as shown in the 

figure below. The wheelbase of a robot is calculated by the distance between the 
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point of contact of the wheels with the floor but since the wheel is in contact in an 

area and not a point resulting with an ineffective wheelbase estimate. 

 
Figure 40. Wheeled robot kinematics [52] 

A procedure created in 1994 by the University of Michigan called UMBmark [5] helps 

to measure, calculate and correct dead-reckoning errors. The test consists of 

manually moving the robot around a square path in both clockwise and counter-

clockwise direction from a starting position as shown in the figure below. 

 

 
Figure 41. UMBmark test 

Performing the test and calculating the correction factors for positional errors caused 

by various odometry error sources. The results for the path are plotted in MATLAB 
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for before and after incorporating the correction factor which shows an improvement 

in the accuracy of the path taken.  

  
Figure 42. Raw Odometry and corrected odometry 

 
4.2.4 Fusing encoders and orientation from IMU to generate odometry 

The odometry generated using the encoders is reliable but since the errors in dead-

reckoning accumulate over time, the errors in the position gradually increase in an 

odometry model. To improve the accuracy of the position estimation, the data from 

the encoders and the IMU can be fused to generate a motion model.  

The gyroscope on the IMU provides the rotational velocity and the encoders provide 

displacement information for how much the wheels rotate providing translation 

motion information.   

 

 
Figure 43. IMU axis [18] 
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The IMU has three sensors with each sensor has its functionality and limitations. 

§ ACCELEROMTER > X, Y, & Z linear axis motion sensing ( sensitive to vibration ) 

§ GYROSCOPE > Pitch, Roll Yaw Rotational Sensing (Gyroscope Drift) 

§ MAGNETOMETER > X, Y, & Z axis magnetic field sensing (Sensitive to magnetic 

interface) 

The gyroscope calculates orientation through integrating angular velocities and since 

there is no frame of reference the values drift over time, but the drift is reasonable 

enough for a better estimation of position. The orientation is calculated using the 

equation below. 

𝜃. = 	∫ 𝑔·𝑑𝑡     (Eqn 14) 

The accelerometer tends to distort the acceleration due to external gravitational 

forces in the motion which accumulates as noise in the system and produce errors in 

the output. Using accelerometer to produce position requires the acceleration to be 

integrated twice to determine a position estimate inducing noise in the system. 

𝜈. = ¹𝛼. 

𝑝. = 	»𝑎. 

The magnetometer measures the orientation with respect to the true north but is 

highly susceptible to noise due to electric interference and magnetic fields in electric 

systems due to which the readings from the magnetometer are not considered for 

fusion. 

Substituting the value from Eqn 7 with the value of from Eqn 14 in Eqn 8 

𝜃.¼v = 	¹𝑔·𝑑𝑡 

𝑑Z\`=\] =
b¥¦	b�
P

     

x’ = 	x	 +	d«¬®¬¯ ∗ cos(q.¼v	)   (Eqn 15) 

y’ = 	y	 +	d«¬®¬¯ ∗ sin(q.¼v)   (Eqn 16) 

The Arduino code for computing the odometry using encoders and the IMU can be 

found in Appendix [A11]. 
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4.3 Integration with ROS 

4.3.1 Initial communication between ROS and Arduino: 

The Arduino code [APPENDIX A8)] is written to move the wheelchair either forward, 

left, right and reverse using the robot steering plugin available through rqt in ROS. 

 
Figure 44. RQT plugin for robot steering 

Using the robot steering plugin when the sliders are moved, it enables the wheelchair 

to move in the respective direction. This step forms the basis of understanding the 

subscribers and publishers in ROS and how the communication between Arduino 

and ROS is established. 

 

4.3.2 Creating the Unified Robot Description Format (URDF) for the wheelchair: 
 
ROS package “URDF” which is a parser for the XML format for representing a robot 

model and can be visualized in ROS through RVIZ and simulated in ROS through 

Gazebo. Robot kinematics is the relationship between the connectivity of the links 

and joints of the robot. These links define the mechanical structure of the robot and 

the position and orientation of different components or sensors attached to the 

robot as shown in figure 45 and 46 below. 

The XML code for the URDF model of the wheelchair can be found in Appendix 
A12. 
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Figure 45. Graphviz of urdf model 

 
Figure 46. URDF model for wheelchair 

Kinect sensor 
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4.3.3 Creating a wheelchair follower: 
 
One of the options available to the user through the interface as shown in figure 1 is 

the follower mode, where the wheelchair can follow a certain individual or an object. 

In this case the object the wheelchair follows is a QR code. 

 

ViSP (Visual Servoing Platform):  
ROS package “visp” is a complete cross-platform solution that allows prototyping 

and developing applications in visual tracking and visual servoing. ViSP can be useful 

in robotics, computer vision, augmented reality and computer animation. The 

package provides trackers that rely on visual servoing techniques and can help track 

an object and even estimate its position in real-time. 

 

Visp Auto Tracker 
 
The package depends on the Visp library for visual servoing. The package wraps 

model-based trackers that have a QRcode or Flash code pattern, and the computer 

vision algorithm can compute the position and orientation of the object in the image 

which is fast enough to allow online or real time tracking.  

 

 
Figure 47. QR code used for creating a follower 

The algorithm detects the barcode using QR-code detection and uses the position 

of the corners to compute an initial pose. Once the initial pose is estimated the 

model-based tracker is initialized which tracks the squares around the QR-code. The 
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tracker considers moving edges and the keypoint features on the barcode for 

estimation. A python script written to read the position of the QRcode and follow 

the code based on the change in the x and z position by determining the difference 

in the direction and displacement of QRcode from its previous position and current 

position and generates velocity values to be sent to the controller which can be found 

in the Appendix section A13. 

 
Figure 48. Camera Coordinates[2] 

 

 
 
Figure 50 below explains the how the change in position of the QRcode is mapped 

to the wheelchair follower using the Z-axis to generate linear (forward and reverse) 

motion and X-axis for rotational motion. 

Figure 49. Detecting QRcode 
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4.3.4 Creating a Velocity controller: 
 
After testing the wheelchair follower setup, the rotational speed for the wheelchair 

was always fixed to ±1.57 rad/sec resulting in excess rotation causing oscillation and 

jerks. To improve this, using the equations (Eqn 1, Eqn 2) to generate a smoother 

motion. The values for the velocity received through ROS are of the double data type 

and have to be converted to an integer data type without losing the information in 

the decimal places so the values cannot be rounded up or down. Arduino code [A14] 

 
 
 
 
 
 
 

Figure 50. Wheelchair follower using QR code 
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4.3.5 Fusing multiple sources for position estimation: 
 
ROS package robot_localization uses an Extended Kalman Filter (EKF) to fuse 

multiple sources to better estimate an accurate motion that the wheelchair performs.  

EKF is a known as a linear quadratic estimation (LQE) which produces an estimate for 

a system which is accurate enough to estimate the current state of a system. The 

filter produces the results in two stages known as the prediction and the correction 

stage. By using a weighted average method, the relevant data is selected depending 

on the covariance values and the sensor model matrix. This determines how much a 

measurement should be trusted or can be relied on by calculating a gain called 

Kalman gain. Higher gains make the system depend more on the measurements and 

a lower gain enforces the system to depend on the prediction.  

 

EKF Algorithm [59]: 

𝑥½¾|¾¿J 	= 	 𝑓¾¿J(𝑥½¾¿J|¾¿J, 𝑢¾)	 

𝑃¾|¾¿J 	= 	𝐺Á¾¿J	𝑄¾¿J𝐺Á¾¿J	Ã 	+ 	𝐹Á¾¿J𝑃¾¿J|¾¿J𝐹Á¾¿JÃ 	 

𝑥½¾|¾ 	= 	 𝑥½¾|¾¿J 	+	𝐾¾	(𝑧¾ 	−	ℎ¾(𝑥½¾|¾¿J))	 

𝑃¾	|¾ 	= 	𝑃¾|¾¿J 	−	𝐾¾𝑆¾𝐾¾Ã 

Where,  

𝑆¾ 	= 	𝑅¾ 	+	𝐻Ç¾𝑃¾|¾¿J𝐻Ç¾Ã 

𝐾¾ 	= 	𝑃¾|¾¿J𝐻Ç¾Ã𝑆¾ − 1	 

𝑥½¾ → 𝑆𝑡𝑎𝑡𝑒	𝑣𝑒𝑐𝑡𝑜𝑟 = 	

⎣
⎢
⎢
⎢
⎡
𝑥
𝑦
𝜃
𝜈.
𝜔.⎦
⎥
⎥
⎥
⎤
 

 
 
Sources: 
Pose( x, y and 𝜃) from Wheel Odometry  
Twist (linear acceleration and rotational velocity) from IMU 
 
 
 
 

Prediction 

Correction/Update 
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4.3.6 Calculating covariance values for wheel odometry: 
 
From the UMBmark procedure the errors for the absolute position (	x	, y	,q	) were 

calculated as shown in the table below.  

Trial Starting Position (	𝐱𝟎, 𝐲𝟎,q𝟎	) End Position E	𝐱Ò, 𝐲Ò,q	Ò	F 

CW1 (0,0,0) (0.27,0.04,0.15) 

CW2 (0,0,0) (0.18,0.0,0.13) 

CW3 (0,0,0) (0.01,0.01,0.01) 

CW4 (0,0,0) (0.48,0.16,0.09) 

CW5 (0,0,0) (0.08,0.18,0.03) 

CCW1 (0,0,0) (0.12,0.07,0.12) 

CCW2 (0,0,0) (0.01,0.01,0.16) 

CCW3 (0,0,0) (0.07,0.12,0.14) 

CCW4 (0,0,0) (0.19,0.07,0.21) 

CCW5 (0,0,0) (0.28,0.04,0.16) 

Figure 51. Calculating covariance values 

Mean: The average of all values 

xÒ =
1
𝑛ÓxÔ

`

.ÕG

 

Variance: Second moment of all values 

𝜎×P =
1
𝑛Ó(xÔ

`

.ÕG

− 𝑥Ò	)^2		 

Standard Deviation: Square root of variance 

𝜎× = ´𝜎×P	 

Co-variance: Second moment of all values, where x is the vector of values 

Σ× =
𝑖
𝑛Ó[xÔ

`

.ÕG

− 𝑥Ò][𝑥. − 𝑥Ò]^𝑇	 

Ú
𝑥
𝑦
q
Û = Ü

0.0212 0 0
0 0.0041 0
0 0 0.0042

Ü 

 
 
The MATLAB script to generate correction factors and covariance values[A16] 
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4.3.7 Mapping with RTAB-Map 
 

 
 

Figure 52. RTAB-Map robot setup [25] 

 
Figure 53. shows the one of the setups for the robot to be used with the RTAB-
Map package. 

- Section 5.6 discusses how the odometry is generated by using the pulses from 

the encoders and rotational velocity from the gyroscope. 

- The Kinect sensor attached provides a RGB-D image which is read using the 

“openni_launch” and “freenect” packages in ROS. The packages contain 

launch files which can be used for using the Microsoft Kinect in ROS. The 

packages create a nodelet which transforms the raw data from the sensor into 

point clouds and other formats which can be used for appropriate visualization 

or processing. 

- Since the robot does not have a laser/lidar configured, the ros package 

“depthimage_to_laserscan”(Wiki.ros.org, n.d.) is used to simulate a 2D laser 

scan from the depth image from the Kinect as shown in the figure 49 below. 

- Other ros packages used “tf_to_odometry” [26] 
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Figure 53. RGB image and depth image from the Kinect sensor 

Figure 54. Pointcloud from RGB image and Depth registered points 

 
Figure 55. Laserscan from depthimage 
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4.3.8 Mapping the environment: 

Once the requirements are met, the environment can be mapped by manually 

moving the wheelchair. The roslaunch file which contains the generic and 

recommended parameters for the RTAB-Map package[25] and the additional nodes 

used for the system can be found in Appendix A15. 

  
Figure 56. Test lab area 

 
Figure 57. 3D Cloud map of testlab 

 

The figure 57 illustrates the map cloud generated with the use of a Kinect sensor for 

the test lab. The detector[20] uses a bag-of-words approach to determine if a node 

has been visited and each loop closure adds a new edge to the graph and then the 

map is optimized. It can be observed that the algorithm builds dense 3D maps from 
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point clouds and features surfaces being repeated and a distorted visualization due 

to odometry noises.  

  
Figure 58. Mapping stages 1 and 2 

 
Figure 59. 3D Cloud map of wheelchair accessible area at Tonsley  

 
The figures above show the cloud map for the 4th floor mapped at Tonsley building 

in stages. The wheelchair is manually moved around in segments where a particular 

area is mapped and then returned to the initial or starting point. As the wheelchair 

moves through previously visited areas  new nodes are added to the previously saved 

nodes using odometry information and features from the environment. Once a loop 

closure occurs at the initial position new edges are added after which the map is 

optimized based on the most likely map from the information sources resulting in a 

3D cloud map of the entire floor.  The pointclouds can also be used to determine 
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obstacles in the environment, where the ground is segmented at a certain height. 

Then the three-dimensional map is collapsed down to two dimensions to generate 

an occupancy grid map. 

 
Figure 60. Grid maps generated from depth image for stages 1 and 2 

 

 
Figure 61. Occupancy Grid map of floor at Tonsley  

The grid maps seem slightly distorted due to odometry noises and the narrow beam 

angle of the Kinect sensor. Since the Kinect only has a horizontal view of 57degree 

the area covered while mapping is low but provides enough RGB and depth 

information for generating maps which can be used for navigation. The grid 

represents the blue print of the wheelchair environment where the size of the pixels 
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in the real world and the information of the map are stored. The maps show excess 

grids occupied because the grid map is generated using the depth image rather than 

the laserscan. 

 

4.3.9 Sending a goal 

A goal is the pose (x, y position and the end orientation) of the robot in the map 

using the 2D Nav Goal shortcut on Rviz(figure 62) . Once a goal is sent, a path is 

generated to reach the goal as shown in 65 and 66 below. The local planner sends 

velocity values which generate motion for the wheelchair.  

 

Figure 62. 2D Nav shortcut 

 
Figure 63. Global costmap 

 
Figure 64. Local costmap 
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Figure 63 and 64 show the costmaps being generated using the Kinect camera and 

the sonar sensor. The size of the costmap window depend on the configuration set. 

The local costmap uses a window of 5x5m and is not static. The window moves as 

the wheelchair traverses through the path it is following.   

 
Figure 65. Global Path 

 
Figure 66. Full Plan 

The path is shown in green in the figures above and the wheelchair follows the path 

to reach the destination set from figure 62. The wheelchair has been able to generate 

its map and localize itself within it. Once a goal is given a path is planned to reach 

the destination by sending velocity values to the wheelchair controller.  
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4.4 Making the wheelchair system kit 
4.4.1 Designing the sensor shield 
 
After finalising the sensors to be used, a sensor shield is designed which fits on top 

of the Arduino microcontroller. The schematic for the sensor shield can be found in 

Appendix section B1. 

 
Figure 67. Arduino sensor shield 

4.4.2 Designing the box: 
 
To make the wheelchair more presentable and compact, a box was 3d printed 

which fits the Arduino microcontroller, the shield and the power regulator which 

powers the entire system. 

 
Figure 68. Arduino and sensor shield box 
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Chapter 5 

DISCUSSION 
 
 
 
The figures below illustrate the current state of the wheelchair which includes the 

encoders, a Kinect sensor, the Arduino shield inside the box. The sensor shield is 

powered through the wheelchair battery which allows it to be manually controlled 

with the joystick even in the absence of a laptop.  

 

 
Figure 69. Current state of wheelchair 

The sections above discussed the development during the course of the project 

where the wheelchair now has the capability to create a 3D map of the environment 

using a cost-effective depth camera which is then collapsed down to a 2D map or a 

grid map while generating costmaps (global and local) which are used for navigating 

within the traversable areas. The wheelchair currently accepts controls using the 
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trackpad on the laptop but have been tested by controlling the cursor using hand-

gesture recognition using OpenCV. The maps generated using the sensors provide 

information about the wheelchair environment but can certainly be improved with 

further testing and working on the system. The inflation radius for obstacles is 

currently set high to maintain a certain distance from all obstacles and people as a 

measure of safety. The inflation radius is the cost of the degradation of the adjacent 

cells which are occupied. Reducing the inflation cost will generate much cleaner 

occupancy maps of the environment. Figure’s 59 and 61 show a complete map of 

the entire floor at Tonsley which can be broken down into multiple areas. 

Segmenting the map based on locations or areas can be better visualized and 

incorporated to suit the concept of the ABC Wheelchair. As shown in the figure 

below  the multiple maps are generated using the mapping technique used above 

and then combined to create a global map. The [61] initial and the end nodes of each 

mapping session are represented as diamonds in the figure above.  

 
Figure 70. Illustration of Global and local maps through RTAB-map [61] 

Multiple tasks described and implemented in chapter 4 such as speech command 

control, object detection, following mode, navigating to a position on the map can 

be integrated together with the use of a GUI and finite state machine to generate 

the interface similar to what was shown in figure  or similar to section 4.1.7 where 

the controls can be replaced with actions and the wheelchair can perform the task. 
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5.2 Limitations 

Kinect Sensor - The Kinect sensor provides RGB-D information about the   

environment which generates 3D pointclouds and grid maps however, due to the 

narrow field of view of the sensor there is a lot of information missed about the 

surroundings while generating maps. The sensor has a blind spot of 1.7m in front of 

the wheelchair due to which the local costmap is not updated correctly and hence 

misses obstacles below a certain height (0.1m). This can be improved completely by 

using a sonar sensor attached to the front of the wheelchair providing a better 

solution for obstacle avoidance or for updating the local costmaps. 

 
5.3 Further Development 

5.3.1 Odometry correction/syncing 

As mentioned before, the biggest issue with using dead-reckoning as a method for 

calculating the robot’s position is that the errors accumulate of time and throw the 

odometry off resulting in an inaccurate position estimation. One way to correct 

odometry is by using fixed landmarks and using the orientation and distance of the 

wheelchair with respect to the landmark to estimate the position of the wheelchair 

and reduce errors. 

 

5.3.2  Generating maps with a Lidar 
 
The current grid maps are generated using depth information which results in excess 

grid cells being marked occupied. A lidar is a light detection and ranging device 

which is used for measuring ranges. Some lidars provide a range view of 360degree 

which will be useful while generating maps as the Kinect sensor has a narrow view 

which results in missing turns and corner while mapping. While a lidar provides 

sensor measurement only in two dimensions, the resolution is high and more 

accurate compared to the fake laser scan generated by the Kinect sensor.  

The lidar has not been mechanically attached to the wheelchair but figure 71 
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Figure 71. Laserscans using RPLidar 

illustrates the output of the laserscans when the lidar is manually held above the 

wheelchair used for the project. The scans show a highly accurate interpretation of 

its surrounding and by integrating with the Kinect sensor might generate better 

maps of the environment and can certainly be used for updating the local and global 

costmaps to generate a smoother navigational plan.  

 

5.3.3 Creating a follower using an IMU 

The follower created in the section 4.3.3 works well to follow the QRcode however 

has certain limitations. The main limitation being that the QRcode should be in the 

camera’s view the entire time. Since the wheelchair is a mobile robot and travels 

within a dynamic environment, the follower needs to be adaptable with respect to 

the changes in the environment and thus a better follower can be created with an 

IMU using the process of dead-reckoning which estimates the current position based 

on the previous position and speeds over time. The IMU can be used through a 

bracelet or an Android phone or any other module publishing acceleration and 

velocity values from the accelerometer and the gyroscope. The system may provide 

the solution for a limited time and will have to be calibrated over a short period of 

time. 
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5.3.4 Integrating eye tracking control 

The idea for sending a goal as shown in section 4.3.9 is not limited to using a trackpad 

on a laptop, but can be extended to a touch control or integrating the cursor to be 

controlled using eye-tracking. By incorporating eye-tracking [60] into a system gives 

the user a new method of input or added control. The Tobii eye tracker can be used 

with the system developed for the wheelchair which will introduce an additional 

interaction method for control with the wheelchair interface discussed in section 1. 

The eye tracker can be used for selecting the options from figure 1 and can be used 

for sending navigation goals on a map.  



 

  68 

Chapter 6 

CONCLUSION  
 
 
 

The thesis reported the development of an electric wheelchair being converted into 

an autonomous one with the use of inexpensive and easily accessible sensors using 

ROS.  

Chapter 1 introduces the concept of the ABC wheelchair project at Flinders 

University and how it can be beneficial for individuals with cognitive, certain physical 

and mobility impairments.   

Chapter 4 contributes to the task of developing a cost-effective solution for building 

an intelligent wheelchair capable of creating maps of the environment and 

navigating within using multiple types of inputs. The section also provides 

background information required for converting an existing wheelchair into an 

intelligent robotic system. 

Chapter 5 discusses the outputs of the experiments and ways of integrating the 

results from different tasks to create the control method for the interface. Another 

contribution from the chapter is the further development which can be implemented 

to improve the functionality of the current system. 

The experimental result of the work were positive and provide convincing results to 

contribute working proof to the concept of the ABC Wheelchair and also meeting 

the set project goals. The system designed can be integrated with majority of the 

existing wheelchairs allowing it to be converted into an intelligent one which can 

enhance lives of individuals who are dependent on others for mobility.   
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APPENDIX A 
A.1 Reading and sending joystick voltage values to the motor controller 
 
#include<SPI.h> 
 
#define CS_ADC 10 //chip select pins 
#define CS_POT 8 
#define channel0 0xE0 
#define channel1 0xE8 
#define POT_FB 0x12 //00010001 
#define POT_FB 0x11 //00010010 
#define POT_FB 0x13 //00010011 
 
void setup() { 
pinMode(CS_POT, OUTPUT); 
pinMode(CS_ADC, OUTPUT); 
 
digitalWrite(CS_ADC,LOW); 
digitalWrite(CS_ADC,HIGH); 
digitalWrite(CS_POT,HIGH); 
 
Serial.begin(9600); 
SPI.begin(); 
SPI.setBitOrder(MSBFIRST); 
SPI.setDataMode(SPI_MODE3); 
SPI.setClockDivider(SPI_CLOCK_DIV128); 
POTcontrol(POT_ALL,0x80); 
delay(2000); 
} 
 
void loop()  
{ 
  joystick_control(); 
  } 
int ADCread(byte channel) 
{ 
  int command; 
  int voltage; 
  byte fbit; 
  byte sbit; 
  command=channel<<8|0x00; 
digitalWrite(CS_ADC,LOW); 
voltage=SPI.transfer16(command) & 0x3FF; 
digitalWrite(CS_ADC,HIGH); 
return voltage; 
} 
void POTcontrol(byte address,byte value) 
{ 
digitalWrite(CS_POT,LOW); 
SPI.transfer(address); 



 

  70 

SPI.transfer(value); 
digitalWrite(CS_POT,HIGH); 
} 
 
byte joystick_control() 
{ 
  int turnjval; 
  int drivejval; 
  byte turnpot; 
  byte drivepot; 
  float mult= 0.85; 
  turnjval=ADCread(channel0); 
  turnpot=(turnjval-100)*mult; 
  drivejval=ADCread(channel1); 
  drivepot=(drivejval-100)*mult; 
  POTcontrol(POT_FB,drivepot); 
  POTcontrol(POT_LR,turnpot); 
  return 1; 
} 
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A.2 Using a keyboard to control the wheelchair 
 
void forward(byte speed) 
{ 
POTcontrol(POT_FB,speed); 
} 
void reverse(byte speed) 
{ 
POTcontrol(POT_FB,speed); 
} 
void right(byte speed) 
{ 
POTcontrol(POT_LR,speed); 
} 
void left(byte speed) 
{ 
POTcontrol(POT_LR,speed); 
} 
void stop_wheelchair() 
{ 
POTcontrol(POT_ALL,stop); 
} 
byte keyboard_control() 
{ 
  byte read; 
if(Serial.available()) 
  read=Serial.read(); 
  if(read==119) //w - Forwad 
  { 
  forward(linear_speed); 
  } 
  else if(read==97) //a - Left 
  { 
  left(rotational_speed); 
 
  } 
else  if(read==115) //s - Reverse 
  { 
  reverse(254 - linear_speed) 
  } 
else  if(read==100) //d - Right 
  { 
  right(254 - rotational_speed); 
  } 
  else  if(read==32) //space  - Stop 
  { 
stop_wheelchair(); 
  } 
return 1; 
} 
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A.3 Moving Wheelchair in a sequence 
 
void loop() 
{ 
 
forward(linear_speed); 
pause(5000); 
left(rotational_speed); 
pause(2000); 
forward(linear_speed); 
pause(5000); 
left(rotational_speed); 
pause(2000); 
forward(linear_speed); 
pause(5000); 
left(rotational_speed); 
pause(2000); 
forward(linear_speed); 
pause(2500); 
stop_wheelchair(); 
} 
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A.4 Adding voice commands to the program. 
 
#include<SPI.h> 
#include <BitVoicer11.h> 
 
BitVoicerSerial bvSerial = BitVoicerSerial(); 
byte voicecommand() { 
 bvSerial.getData(); 
  //Quits the loop if no string data was returned from getData 
  if (bvSerial.strData == "") 
    return; 
  //Each of the next 'if' statements performs a different task 
based on the data received from BitVoicer 
  if (bvSerial.strData == "fw") //Forward 
  { 
    POTcontrol(POT_FB,0xFB); 
    POTcontrol(POT_LR,0x80); 
    bvSerial.strData = ""; 
  } 
  else if (bvSerial.strData == "rv") //Reverse 
  { 
 POTcontrol(POT_FB,0x08); 
  POTcontrol(POT_LR,0x80);     
    bvSerial.strData = ""; 
  } 
  else if (bvSerial.strData == "rt")  //Right 
  { 
      POTcontrol(POT_FB,0x80); 
  POTcontrol(POT_LR,0xFB);     
    bvSerial.strData = ""; 
  } 
  else if (bvSerial.strData == "lt")  //Left 
  { 
     POTcontrol(POT_FB,0x80); 
    POTcontrol(POT_LR,0x0A);     
    bvSerial.strData = "";   
  } 
  else if (bvSerial.strData == "st") //Stop 
  { 
      POTcontrol(POT_FB,0x80); 
      POTcontrol(POT_LR,0x80);     
    bvSerial.strData = ""; 
  } 
  else  { 
    Serial.println("ERROR:" + bvSerial.strData); 
    bvSerial.strData = ""; 
  } 
} 
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A.5 Calculating turn angles 
 
void angle() 
{ 
  int fbpotval; 
  int lrpotval; 
  byte angle; 
  byte temp; 
  Serial.println("Enter Heading"); 
  if(Serial.available() > 0) 
  angle=Serial.parseInt(); 
  Serial.println(angle); 
  temp=lrpotval; 
  if(angle<90) 
  { 
  fbpotval=(398-(angle*1.6)); 
  lrpotval=(254+(angle*1.6)); 
  } 
 else if(angle>90) 
 { 
  angle=angle-90; 
  fbpotval=(398-(angle*1.6)); 
  lrpotval=(254-(angle*1.6)); 
 } 
if(temp!=lrpotval || lrpotval!=254) 
{ 
 POTcontrol(POT_FB,(fbpotval-100)*0.85); 
 POTcontrol(POT_LR,(lrpotval-100)*0.85); 
 Serial.println(fbpotval); 
 Serial.println(lrpotval); 
} 
else 
 POTcontrol(POT_ALL,128); 
  delay(5000); 
} 
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A.6 Avoiding obstacles safely 
 
void autowheelchair() 
{ 
int fullspeed=398; 
int stoppot=254; 
int slow sleep=326; 
int revfullspeed=110; 
jstickval=ADCread(channel1);  //for safety 
  if(jstickval>260 || jstickval<240)  
joystick_control(); 
else 
volt=analogRead(SonarPin); //distance reading from sonar 
dist=volt*5; 
if(dist>1000)   //drive forward if no obstacle 
infront  
{    
forward(fullspeed); 
left(stoppot); 
} 
else if(dist<1000)  //if distance is less than threshold, 
calculate turnangle 
{ 
  turnangle=45+(10-(dist/100))*5.625; 
  turnangleval=turnangle*1.711; 
  turnpotval=254+turnangleval; 
forward(slowspeed); 
POTcontrol(POT_LR,(turnpotval-100)*0.85); 
} 
else if(dist<300) //if the wheelchair is very close to 
obstacle 
{   // go reverse 
reverse(revfullspeed); 
left(stoppot); 
} 
} 
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A.7 Object detection using opencv [3] 
 

import cv2 
import numpy as np 
MIN_MATCH=30 
detector = cv2.SIFT() 
FLANN_INDEX_KDITREE=0 
flannParam=dict(algorithm=FLANN_INDEX_KDITREE,tree=5) 
flann = cv2.FlannBasedMatcher(flannParam,{}) 
trainImg=cv2.imread('ObjectDetection/Door',0) 
trainKP,trainDes=detector.detectAndCompute(trainImg,None) 
cam=cv2.VideoCapture(1) 
while True: 
    ret,qimgrgb=cam.read() 
    qimg=cv2.cvtColor(qimgrgb,cv2.COLOR_BGR2GRAY) 
    qkp,qdes=detector.detectAndCompute(qimg,None) 
    matches=flann.knnMatch(qdes,trainDes,k=2) 
 
    for m,n in matches: 
        if(m.distance<0.75*n.distance): 
            goodMatch.append(m) 
            print"Door Found" 
    if(len(goodMatch>Min_Match)): 
       tp=[] 
       qp=[] 
       for m in goodMatch: 
           tp.append(trainKP[m.trainIdx].pt) 
           qp.append(qkp[m.qIdx].pt) 
            tp,qp = np.float32((tp,np)) 
            H,status= findHomography(tp,qp,cv2.RANSAC,3.0) 
        h,w=trainImg.shape 
       trainingBorder=np.float32([[[0,0],[0,h-1],[w-1,h-1],[w-
1,0]]]) 
       qBorder=cv2.perspectiveTransform(trainingBorder,H) 
       
cv2.polylines(qimgrbg,[np.int32(qBorder)],True,(0,255,0),5) 
       else: 
           print"Not Enough Matches -
%d/%d"%(len(goodMatch),MIN_MATCH) 
           cv2.imshow('result',qimgrgb) 
           ifcv2.waitKey(10)==ord('q'): 
               break 
 
            cam.release() 
            cv2.destroyAllWindows() 
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A.8 Integration of ROS with Arduino 
 
#include<SPI.h> 
#include "ros.h" 
#include "geometry_msgs/Twist.h" 
int jstickval; 
float x;  
float y;    
 
ros::NodeHandle nh; 
void velCallback(const geometry_msgs::Twist& vel) 
{ 
     x = vel.linear.x; 
     y = vel.angular.z; 
} 
ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel" , 
velCallback); 
 
void setup() { 
pinMode(CS_POT, OUTPUT); 
pinMode(CS_ADC, OUTPUT); 
digitalWrite(CS_ADC,LOW); 
digitalWrite(CS_ADC,HIGH); 
digitalWrite(CS_POT,HIGH); 
Serial.begin(9600); 
SPI.begin(); 
 
SPI.setBitOrder(MSBFIRST); 
SPI.setDataMode(SPI_MODE3); 
SPI.setClockDivider(SPI_CLOCK_DIV128); 
 
POTcontrol(POT_ALL,0x80); 
delay(2000); 
 nh.initNode(); 
 nh.subscribe(sub); 
} 
void loop()  
{ 
jstickval=ADCread(channel1); 
  if(jstickval>260 || jstickval<240)   
   joystick_control(); 
  else 
   roscontrol(); 
} 
int ADCread(byte channel) 
{ 
  int command; 
  int voltage; 
  byte fbit; 
  byte sbit; 
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  command=channel<<8|0x00; 
digitalWrite(CS_ADC,LOW); 
voltage=SPI.transfer16(command) & 0x3FF; 
digitalWrite(CS_ADC,HIGH); 
return voltage; 
} 
void POTcontrol(byte address,byte value) 
{ 
digitalWrite(CS_POT,LOW); 
SPI.transfer(address); 
SPI.transfer(value); 
digitalWrite(CS_POT,HIGH); 
} 
byte joystick_control() 
{ 
  int turnjval; 
  int drivejval; 
  byte turnpot; 
  byte drivepot; 
  float mult= 0.85; 
  turnjval=ADCread(channel0); 
  turnpot=(turnjval-100)*mult; 
  drivejval=ADCread(channel1); 
  drivepot=(drivejval-100)*mult; 
  POTcontrol(POT_FB,drivepot); 
  POTcontrol(POT_LR,turnpot); 
  return 1; 
} 
void roscontrol() 
{ 
  if (x>0)    //forward 
  { 
  POTcontrol(POT_FB,0xFB); 
  POTcontrol(POT_LR,0x80); 
  } 
  else if (x<0) //reverse 
  { 
 POTcontrol(POT_FB,0x08); 
 POTcontrol(POT_LR,0x80);     
  } 
  else if (y<0) //right 
  { 
  POTcontrol(POT_FB,0x80); 
  POTcontrol(POT_LR,0xFB);        
  } 
  else if (y>0) //left 
  { 
    POTcontrol(POT_FB,0x80); 
    POTcontrol(POT_LR,0x08);     
  } 
} 
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A.9 Generating Wheel odometry 
 

void compute_odometry() 
{ 
right_pulses = R_count ; 
left_pulses = L_count; 
right_ticks = right_pulses - prev_right_pulses; 
left_ticks = left_pulses - prev_left_pulses; 
right_wheel_distance = right_ticks * distance_per_tick; 
left_wheel_distance = left_ticks * distance_per_tick; 
 
mean_distance = (left_wheel_distance + 
right_wheel_distance)/2; 
wheel_theta += (right_wheel_distance - 
left_wheel_distance)/wheel_base; 
 
//Limiting value of theta between Pi and -Pi 
if(wheel_theta < -PI) 
wheel_theta= PI; 
if(wheel_theta > PI) 
wheel_theta = -PI; 
x_pos += mean_distance * cos(wheel_theta); 
y_pos += mean_distance * sin(wheel_theta); 
} 
//Interrupt routines to read encoder pulses  
void left_interrupt() 
{ 
  char i; 
  i=digitalRead(L_PHASE_B); 
  if(i) 
  L_count +=1; 
  else 
  L_count -= 1; 
} 
void right_interrupt() 
{ 
  char i; 
  i=digitalRead(R_PHASE_B); 
  if(i) 
  R_count +=1; 
  else 
  R_count -= 1; 
}  
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A.10 Landmark Navigation 
 
void navigation() 
{ 
  int junk; 
  while(!goal_x) 
{ 
  Serial.println("Enter Goal x"); 
  while(!Serial.available()); 
  goal_x=Serial.parseFloat(); 
  Serial.flush(); 
} 
while(!goal_y) 
{ 
  Serial.println("Enter Goal y"); 
  Serial.flush(); 
  while(!Serial.available()); 
  goal_y=Serial.parseFloat(); 
Serial.print("Destination:");Serial.print(goal_x);Serial.print
(",");Serial.println(goal_y); 
} 
compute_odometry(); // generate odometry 
diff_x = goal_x - x_pos; 
diff_y = goal_y - y_pos; 
diff_dist = sqrt((diff_x)^2 + (diff_y)^2); 
diff_heading = atan2(diff_y,diff_x); 
if(diff_dist>0.5) 
forward(); 
if((wheel_theta - diff_heading) > 0.3) 
  left(); 
if((wheel_theta - diff_heading) < -0.3) 
  right(); 
Serial.print("Distance to goal:   "); 
Serial.print(diff_dist); 
Serial.println(" m"); 
delay(500); 
  if(diff_dist <0.5) 
  { 
    stop_wheelchair(); 
    Serial.print("Goal Reached"); 
    goal_x=0; 
    goal_y=0; 
  } 
}  
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A.11 Computing odometry from encoders and IMU 
 
Advanced_I2C.ino 
Brian R Taylor 
brian.taylor@bolderflight.com 
Copyright (c) 2017 Bolder Flight Systems 
Permission is hereby granted, free of charge, to any person 
obtaining a copy of this software and associated documentation 
files (the "Software"), to deal in the Software without 
restriction, including without limitation the rights to use, 
copy, modify, merge, publish, distribute, sublicense, and/or 
sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following 
conditions: 
The above copyright notice and this permission notice shall be 
included in all copies or substantial portions of the 
Software. 
 
float get_imu_theta() 
{ 
  IMU.readSensor(); 
  gZ =  IMU.getGyroZ_rads(); 
return gZ; 
} 
 
void compute_odom() 
{ 
right_pulses=R_count; 
left_pulses=L_count; 
current_time = millis(); 
imu_theta_rate = get_imu_theta(); 
right_ticks = right_pulses - prev_right_pulses; 
left_ticks = left_pulses - prev_left_pulses; 
right_wheel_distance = right_ticks * right_distance_per_tick; 
left_wheel_distance = left_ticks * left_distance_per_tick;  
mean_distance = (left_wheel_distance + 
right_wheel_distance)/2; 
diff_time = current_time - previous_time; 
imu_theta -= imu_theta_rate*diff_time; 
theta_global = imu_theta/1000; 
if(theta_global< -PI) 
theta_global+= 2*PI; 
else if(theta_global > PI) 
theta_global -= 2*PI; 
x_pos += (mean_distance * cos(theta_global))*1.0/1000; 
y_pos += (mean_distance * sin(theta_global))*1.0/1000; 
 
prev_left_pulses=left_pulses; 
prev_right_pulses=right_pulses; 
previous_time=current_time; 
} 
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A.12 Wheelchair URDF model 
 
 
<?xml version='1.0'?> 
  <link name='chassis'> 
    <pose>0 0 0.12 0 0 0</pose> 
 
    <inertial> 
      <mass value="7.0"/> 
      <origin xyz="0.0 0 0.1" rpy=" 0 0 0"/> 
      <inertia 
          ixx="0.5" ixy="0" ixz="0" 
          iyy="1.0" iyz="0" 
          izz="0.1" 
      /> 
    </inertial> 
 
    <collision name='collision'> 
      <geometry> 
        <box size=".8 .8 .1"/> 
      </geometry> 
    </collision> 
 
    <visual name='chassis_visual'> 
      <origin xyz="0 0 0" rpy=" 0 0 0"/> 
      <geometry> 
        <box size=".8 .8 .1"/> 
      </geometry> 
    </visual> 
 
    <collision name='caster_collision'> 
      <origin xyz="-0.18 0 -0.05" rpy=" 0 0 0"/> 
      <geometry> 
        <sphere radius="0.13"/> 
      </geometry> 
      <surface> 
        <friction> 
          <ode> 
            <mu>0</mu> 
            <mu2>0</mu2> 
            <slip1>1.0</slip1> 
            <slip2>1.0</slip2> 
          </ode> 
        </friction> 
      </surface> 
    </collision> 
 
    <visual name='caster_visual'> 
      <origin xyz="-0.18 0 -0.05" rpy=" 0 0 0"/> 
      <geometry> 
        <sphere radius="0.13"/> 
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      </geometry> 
    </visual> 
  </link> 
 
  <link name="left_wheel"> 
    <!--origin xyz="0.1 0.13 0.1" rpy="0 1.5707 1.5707"/--> 
    <collision name="collision"> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <geometry> 
        <cylinder radius="0.18" length="0.05"/> 
      </geometry> 
    </collision> 
    <visual name="left_wheel_visual"> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <geometry> 
        <cylinder radius="0.18" length="0.05"/> 
      </geometry> 
    </visual> 
    <inertial> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <mass value="10"/> 
      <cylinder_inertia m="10" r="0.1" h="0.05"/> 
      <inertia 
        ixx="1.0" ixy="0.0" ixz="0.0" 
        iyy="1.0" iyz="0.0" 
        izz="1.0"/> 
    </inertial> 
  </link> 
 
  <link name="right_wheel"> 
    <!--origin xyz="0.1 -0.13 0.1" rpy="0 1.5707 1.5707"/--> 
    <collision name="collision"> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <geometry> 
        <cylinder radius="0.18" length="0.05"/> 
      </geometry> 
    </collision> 
    <visual name="right_wheel_visual"> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <geometry> 
        <cylinder radius="0.18" length="0.05"/> 
      </geometry> 
    </visual> 
    <inertial> 
      <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/> 
      <mass value="10"/> 
      <cylinder_inertia m="10" r="0.1" h="0.05"/> 
      <inertia 
        ixx="1.0" ixy="0.0" ixz="0.0" 
        iyy="1.0" iyz="0.0" 
        izz="1.0"/> 
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    </inertial> 
  </link> 
 
 
  <joint type="continuous" name="left_wheel_hinge"> 
    <origin xyz="0.1 0.45 0" rpy="0 0 0"/> 
    <child link="left_wheel"/> 
    <parent link="chassis"/> 
    <axis xyz="0 1 0" rpy="0 0 0"/> 
    <limit effort="100" velocity="100"/> 
    <joint_properties damping="0.0" friction="0.0"/> 
  </joint> 
 
  <joint type="continuous" name="right_wheel_hinge"> 
    <origin xyz="0.1 -0.45 0" rpy="0 0 0"/> 
    <child link="right_wheel"/> 
    <parent link="chassis"/> 
    <axis xyz="0 1 0" rpy="0 0 0"/> 
    <limit effort="100" velocity="100"/> 
    <joint_properties damping="0.0" friction="0.0"/> 
  </joint> 
 
<!--link name="chassis_rod"> 
  <visual> 
 <geometry> 
  <cylinder length="0.3" radius="0.1"/> 
    <origin rpy="0 0 0" xyz="0 0 0.15"/> 
 </geometry> 
  </visual> 
</link> 
<joint name="base to chassis rod" type="fixed"/> 
 <parent link="chassis"/> 
  <child link="chassis_rod"/> 
   <origin xyz="0 0 0.15"/> 
</joint--> 
 
<link name="base_rod"> 
    <!--origin xyz="0.1 -0.13 0.1" rpy="0 1.5707 1.5707"/--> 
    <collision name="collision"> 
      <origin xyz="0 0 0.12" rpy="0 0 0"/> 
      <geometry> 
        <cylinder radius="0.04" length="0.4"/> 
      </geometry> 
    </collision> 
    <visual name="base_rod_visual"> 
      <origin xyz="0 0 0.12" rpy="0 0 0"/> 
      <geometry> 
        <cylinder radius="0.04" length="0.4"/> 
      </geometry> 
    </visual> 
  </link> 
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  <joint type="fixed" name="base_to_chassis_rod"> 
    <origin xyz="0.0 0.0 0.1" rpy="0 0 0"/> 
    <child link="base_rod"/> 
    <parent link="chassis"/> 
  </joint> 
 
<link name="base_chair"> 
    <collision name="collision"> 
      <origin xyz="0 0 0.15" rpy="0 0 0"/> 
      <geometry> 
        <box size=".6 .8 .05"/> 
      </geometry> 
    </collision> 
    <visual name="base_chair_visual"> 
      <origin xyz="0 0 0.15" rpy="0 0 0"/> 
      <geometry> 
        <box size=".6 .8 .05"/> 
      </geometry> 
    </visual> 
  </link> 
 
  <joint type="fixed" name="base_to_chair"> 
    <origin xyz="0.0 0.0 0.15" rpy="0 0 0"/> 
    <child link="base_chair"/> 
    <parent link="base_rod"/> 
  </joint> 
 
<link name="chair_rest"> 
    <collision name="collision"> 
      <origin xyz="-0.15 0 0.24" rpy="0 0 0"/> 
      <geometry> 
        <box size=".1 .8 .6"/> 
      </geometry> 
    </collision> 
    <visual name="chair_back_visual"> 
      <origin xyz="-0.15 0 0.24" rpy="0 0 0"/> 
      <geometry> 
        <box size=".1 .8 .6"/> 
      </geometry> 
    </visual> 
  </link> 
  <joint type="fixed" name="base_chair_back"> 
    <origin xyz="-0.15 0.0 0.24" rpy="0 0 0"/> 
    <child link="chair_rest"/> 
    <parent link="base_chair"/> 
  </joint> 
 
<link name="left_arm_rest"> 
    <collision name="collision"> 
      <origin xyz="0 0.2 0.14" rpy="0 0 0"/> 
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      <geometry> 
        <box size="0.6 .1 .2"/> 
      </geometry> 
    </collision> 
    <visual name="left_arm_rest_visual"> 
      <origin xyz="0 0.2 0.14" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.6 .1 .2"/> 
      </geometry> 
    </visual> 
  </link> 
 
 
  <joint type="fixed" name="chair_left_arm"> 
    <origin xyz="0 0.2 0.14" rpy="0 0 0"/> 
    <child link="left_arm_rest"/> 
    <parent link="base_chair"/> 
  </joint> 
 
<link name="right_arm_rest"> 
    <collision name="collision"> 
      <origin xyz="0 -0.2 0.14" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.6 .1 .2"/> 
      </geometry> 
    </collision> 
    <visual name="right_arm_rest_visual"> 
      <origin xyz="0 -0.2 0.14" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.6 .1 .2"/> 
      </geometry> 
    </visual> 
  </link> 
 
 
  <joint type="fixed" name="right_left_arm"> 
    <origin xyz="0 -0.2 0.14" rpy="0 0 0"/> 
    <child link="right_arm_rest"/> 
    <parent link="base_chair"/> 
  </joint> 
 
<link name="wheelchair_tray"> 
    <collision name="collision"> 
      <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.3 .8 .1"/> 
      </geometry> 
    </collision> 
    <visual name="wheelchair_tray_visual"> 
      <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/> 
      <geometry> 
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        <box size="0.3 .8 .1"/> 
      </geometry> 
    </visual> 
  </link> 
 
  <joint type="fixed" name="wheelchair_tray_joint"> 
    <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/> 
    <child link="wheelchair_tray"/> 
    <parent link="right_arm_rest"/> 
  </joint> 
 
<link name="kinect"> 
    <collision name="collision"> 
      <origin xyz="0.15 0.05.05"/> 
      </geometry> 
    </visual> 
  </link> 
 
  <joint type="fixed" name="kinect_wheelchair_tray_joint"> 
    <origin xyz="0.15 0.05 0.06" rpy="0 0 0"/> 
    <child link="kinect"/> 
    <parent link="wheelchair_tray"/> 
  </joint> 
 
<link name="sonar_link"> 
    <collision name="collision"> 
      <origin xyz="0.1 0 0" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.01 0.03 0.05"/> 
<mesh 
filename="package://hector_sensors_description/meshes/sonar_se
nsor/max_sonar_ez4.dae"/> 
      </geometry> 
    </collision> 
    <visual name="sonar_visual"> 
      <origin xyz="0.1 0 0" rpy="0 0 0"/> 
      <geometry> 
        <box size="0.01 0.03 0.05"/> 
      </geometry> 
    </visual> 
  </link> 
 
  <joint type="fixed" name="sonar_rod_joint"> 
    <origin xyz="0.1 0 0" rpy="0 0 0"/> 
    <child link="sonar_link"/> 
    <parent link="base_rod"/> 
  </joint> 
</robot> 
 
Gazebo Model 
<?xml version="1.0"?> 
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<robot> 
  <gazebo> 
    <plugin name="differential_drive_controller" 
filename="libgazebo_ros_diff_drive.so"> 
      <legacyMode>false</legacyMode> 
      <alwaysOn>true</alwaysOn> 
      <updateRate>20</updateRate> 
      <leftJoint>left_wheel_hinge</leftJoint> 
      <rightJoint>right_wheel_hinge</rightJoint> 
      <wheelSeparation>0.4</wheelSeparation> 
      <wheelDiameter>0.18</wheelDiameter> 
      <torque>20</torque> 
      <commandTopipenni_kinect.so"> 
          <cameraName>camera</cameraName> 
          <alwaysOn>true</alwaysOn> 
          <updateRate>10</updateRate> 
          <imageTopicName>rgb/image_raw</imageTopicName> 
          
<depthImageTopicName>depth/image_raw</depthImageTopicName> 
          
<pointCloudTopicName>depth/points</pointCloudTopicName> 
          
<cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName> 
          
<depthImageCameraInfoTopicName>depth/camera_info</depthImageCa
meraInfoTopicName> 
          <frameName>camera</frameName> 
          <baseline>0.1</baseline> 
          <distortion_k1>0.0</distortion_k1> 
          <distortion_k2>0.0</distortion_k2> 
          <distortion_k3>0.0</distortion_k3> 
          <distortion_t1>0.0</distortion_t1> 
          <distortion_t2>0.0</distortion_t2> 
          <pointCloudCutoff>0.4</pointCloudCutoff> 
        </plugin> 
      </sensor> 
    </gazebo> 
 
<gazebo reference="sonar_link"> 
      <sensor type="ray" name="sonar"> 
        <always_on>true</always_on> 
        <update_rate>10</update_rate> 
        <pose>0 0 0 0 0 0</pose> 
        <visualize>true</visualize> 
        <ray> 
          <scan> 
            <horizontal> 
              <samples>2</samples> 
              <resolution>1</resolution> 
              <min_angle>-0.008552113</min_angle> 
              <max_angle>-0.008552113</max_angle> 
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            </horizontal> 
            <vertical> 
              <samples>2</samples> 
              <resolution>1</resolution> 
              <min_angle>-0.008552113</min_angle> 
              <max_angle>0.008552113</max_angle> 
            </vertical> 
          </scan> 
          <range> 
            <min>0.15</min> 
            <max>2</max> 
            <resolution>0.01</resolution> 
          </range> 
        </ray> 
 
        <plugin name="gazebo_ros_sonar_controller" 
filename="libhector_gazebo_ros_sonar.so"> 
          <gaussianNoise>0.005</gaussianNoise> 
          <topicName>sonar/distance</topicName> 
          <frameId>sonar_link</frameId> 
        </plugin> 
      </sensor> 
    </gazebo> 
 
  <gazebo reference="chassis"> 
      <material>Gazebo/Red</material> 
    </gazebo> 
<gazebo reference="base_rod"> 
      <material>Gazebo/Grey</material> 
    </gazebo> 
<gazebo reference="base_chair"> 
      <material>Gazebo/Black</material> 
    </gazebo> 
<gazebo reference="chair_rest"> 
      <material>Gazebo/Black</material> 
    </gazebo> 
<gazebo reference="left_arm_rest"> 
      <material>Gazebo/Red</material> 
    </gazebo> 
<gazebo reference="right_arm_rest"> 
      <material>Gazebo/Red</material> 
    </gazebo> 
</robot> 
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A.13 Wheelchair Follower 
 
#!/usr/bin/env python 
import math 
import rospy 
from geometry_msgs.msg import PoseStamped, Point , Twist 
from std_msgs.msg import Int8  
x=0.0 
z=0.0 
status=1; 
 
def callback(msg): 
 global previous_x 
 global previous_z  
 global x 
 global z 
 previous_x=x 
 previous_z=z 
 x = msg.pose.position.x 
 z = msg.pose.position.z 
 
def status(msg): 
 global status 
 status=msg.data 
 
rospy.init_node('follower') 
rospy.Subscriber("/visp_auto_tracker/object_position",PoseStam
ped,callback) 
pub=rospy.Publisher("cmd_vel",Twist,queue_size=1) 
rospy.Subscriber("/visp_auto_tracker/status",Int8,status) 
 
speed=Twist() 
r=rospy.Rate(10) 
previous_x=x 
previous_z=z 
while not rospy.is_shutdown(): 
 if(status==3): 
  rospy.loginfo_throttle(30,"Object Found, 
Following Object") 
  diff_x=previous_x-x 
  diff_z=previous_z-z 
  speed.linear.x= (diff_z*1000) 
  speed.angular.z= (diff_x*1000) 
 elif(status!=3): 
  rospy.loginfo_throttle(30,"Searcing for Object") 
  speed.angular.z= 0.0 
  speed.linear.x= 0.0 
 pub.publish(speed) 
 r.sleep() 
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A.14 Velocity Controller 
 
 
void Callback(const geometry_msgs::Twist& vel) 
{  
double linear_vel= vel.linear.x; 
double angular_vel= vel.angular.z; 
int rotational_speed; 
int linear_speed_sig; 
double linear_speed_dec; 
int linear_speed; 
int linear_speed_val; 
int fb_pot_val; 
int lr_pot_val;   
 
//Velocity values are of double data type so have to be 
converted to integer 
if(!checkjoystick()) 
{ 
  angular_vel = angular_vel * 57.2958; //convert to degrees 
  rotational_speed = int(254 - angular_vel*1.6);//convert to 
pot_val 
   
  linear_speed_sig = int(linear_vel/1); //Get integer part 
  linear_speed_dec = linear_vel - linear_speed; //get decimal 
part 
  linear_speed = int(linear_speed_sig*100 + 
linear_speed_dec*100);//combine integer and decimal 
  linear_speed_val = (254 +linear_speed*1.6);//convert to 
pot_val 
   
    if(linear_speed_val > 398) 
    linear_speed_val=398; 
    if(linear_speed_val<10) 
    linear_speed_val=10; 
    if(rotational_speed>398) 
    rotational_speed=398; 
    if(rotational_speed<10) 
    rotational_speed=10; 
 
    fb_pot_val=(linear_speed_val-100)*0.85; 
    lr_pot_val=(rotational_speed-100)*0.85;   
POTcontrol(POT_FB,fb_pot_val); 
POTcontrol(POT_LR,lr_pot_val); 
 
 } 
} 
 
ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel",Callback); 



 

  92 

A.15 Mapping with RTAB-Map 
 
<?xml version="1.0"?> 
<launch> 
<!--Launch rosserial for arduino--> 
<arg name="port"  default="/dev/ttyACM0" /> 
<node name="serial_node" pkg="rosserial_python" 
type="serial_node.py"> 
            <param name="port" value="$(arg port)"/> 
            <param name="baud" value="57600" /> 
</node> 
 
<param name="robot_description" command="$(find 
xacro)/xacro.py '$(find 
mybot_description)/urdf/mybot.xacro'"/> 
 
  <!-- convert tf to odom --> 
<node pkg= "tf_to_odometry" name="tf_to_odometry" 
type="tf_to_odometry" output="screen"> 
</node> 
 
  <!-- send fake joint values --> 
  <node name="joint_state_publisher" 
pkg="joint_state_publisher" type="joint_state_publisher"> 
    <param name="use_gui" value="False"/> 
  </node> 
  <!-- Combine joint values --> 
  <node name="robot_state_publisher" 
pkg="robot_state_publisher" type="state_publisher"/> 
 
<!--Launch openni node with depth_registration := true and 
publish_tf:=false--> 
<include file="$(find wheelchair)/launch/kinect.launch"/> 
 
  <!-- Move base --> 
<include file="$(find 
wheelchair)/launch/includes/move_base_simulation.launch.xml"/> 
 
<node pkg="rtabmap_ros" type="rtabmap" name="rtabmap">  
<!--RTAB-Map's parameters --> 
          <param name="RGBD/ProximityBySpace"     
type="string" value="false"/> 
          <param name="RGBD/AngularUpdate"        
type="string" value="0.01"/> 
          <param name="RGBD/LinearUpdate"         
type="string" value="0.01"/> 
          <param name="RGBD/OptimizeFromGraphEnd" 
type="string" value="false"/> 
          <param name="Optimizer/Slam2D"          
type="string" value="true"/> 
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          <param name="Reg/Strategy"              
type="string" value="1"/> <!-- 1=ICP --> 
          <param name="Reg/Force3DoF"             
type="string" value="false"/> 
          <param name="Vis/MaxDepth"              
type="string" value="4.0"/> 
          <param name="Vis/MinInliers"            
type="string" value="5"/> 
          <param name="Vis/InlierDistance"        
type="string" value="0.05"/> 
          <param name="Rtabmap/TimeThr"           
type="string" value="700"/> 
          <param name="Mem/RehearsalSimilarity"   
type="string" value="0.45"/> 
          <param name="Icp/CorrespondenceRatio"   
type="string" value="0.5"/> 
 <param name="map_negative_poses_ignored" type="bool" 
value="true"/> 
 <param name="map_filter_radius"    type="double" 
value="0.5"/> 
   <param name="map_cleanup"     type="bool" 
value="false"/> 
   <param name="grid_unknown_space_filled" type="bool" 
value="true"/> 
   <param name="Grid/FromDepth"     type="bool" 
value="true"/> 
   <param name="Grid/3D"     type="bool" 
value="false"/> 
   <param name="Grid/CellSize"             type="double" 
value="0.7"/> 
   <param name="Grid/RangeMax"             type="double" 
value="4.0"/> 
   <param name="Grid/RayTracing"           type="string" 
value="true"/> 
          <param name="RGBD/CreateOccupancyGrid"  
type="string" value="true"/>  
</node> 
   
  <!-- Choose visualization --> 
  <arg name="rviz"                    default="true" /> 
  <arg name="rtabmapviz"              default="false" />  
  <!-- Localization-only mode --> 
  <arg name="localization"            default="false"/> 
  <!-- Corresponding config files --> 
  <arg name="rtabmapviz_cfg"          
default="~/.ros/rtabmap_gui.ini" /> 
  <arg name="rviz_cfg"                default="$(find 
wheelchair)/config/rtmap.rviz" /> 
  <arg name="frame_id"                default="chassis"/>   
<!-- Fixed frame id, you may set "base_link" or 
"base_footprint" if they are published --> 
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  <arg name="database_path"           
default="~/.ros/rtabmap.db"/> 
  <arg name="rtabmap_args"            default=""/>              
<!--delete_db_on_start, udebug --> 
  <arg name="launch_prefix"           default=""/>              
<!-- for debugging purpose, it fills launch-prefix tag of the 
nodes --> 
  <arg name="approx_sync"             default="true"/>         
<!-- if timestamps of the input topics are not synchronized --
>    
   
  <arg name="rgb_topic"               
default="/camera/rgb/image_rect_color" /> 
  <arg name="depth_registered_topic"  
default="/camera/depth_registered/image_raw"/> 
  <arg name="camera_info_topic"       
default="/camera/rgb/camera_info" /> 
  <arg name="compressed"              default="false"/> 
   
  <arg name="subscribe_scan"          default="false"/>         
<!-- Assuming 2D scan if set, rtabmap will do 3DoF mapping 
instead of 6DoF --> 
  <arg name="scan_topic"              default="/scan"/>  
  <arg name="subscribe_scan_cloud"    default="false"/>         
<!-- Assuming 3D scan if set --> 
  <arg name="scan_cloud_topic"        default="/scan_cloud"/>   
  <arg name="visual_odometry"         default="false"/>          
<!-- Generate visual odometry --> 
  <arg name="odom_topic"              default="/wheel_odom"/>         
<!-- Odometry topic used if visual_odometry is false --> 
  <arg name="odom_frame_id"           default="odom"/>              
<!-- If set, TF is used to get odometry instead of the topic -
-> 
  <arg name="namespace"               default="rtabmap"/> 
  <arg name="wait_for_transform"      default="0.2"/> 
   
 
<!--Creating fake laser scan from kinect sensor--> 
<node name="depthimage_to_laserscan" 
pkg="depthimage_to_laserscan" type="depthimage_to_laserscan" >  
  <remap from="image" to="$(arg depth_registered_topic)"/> 
<rosparam> 
scan_height : 190 
range_min : 0.3 
range_max : 4 
</rosparam> 
</node> 
 
  <include file="$(find rtabmap_ros)/launch/rtabmap.launch"> 
    <arg name="rtabmapviz"              value="$(arg 
rtabmapviz)" />  
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    <arg name="rviz"                    value="$(arg rviz)" /> 
    <arg name="localization"            value="$(arg 
localization)"/> 
    <arg name="gui_cfg"                 value="$(arg 
rtabmapviz_cfg)" /> 
    <arg name="rviz_cfg"                value="$(arg 
rviz_cfg)" /> 
    <arg name="frame_id"                value="$(arg 
frame_id)"/> 
    <arg name="namespace"               value="$(arg 
namespace)"/> 
    <arg name="database_path"           value="$(arg 
database_path)"/> 
    <arg name="wait_for_transform"      value="$(arg 
wait_for_transform)"/> 
    <arg name="rtabmap_args"            value="$(arg 
rtabmap_args)"/>   
    <arg name="launch_prefix"           value="$(arg 
launch_prefix)"/>           
    <arg name="approx_sync"             value="$(arg 
approx_sync)"/> 
    <arg name="rgb_topic"               value="$(arg 
rgb_topic)" /> 
    <arg name="depth_topic"             value="$(arg 
depth_registered_topic)" /> 
    <arg name="camera_info_topic"       value="$(arg 
camera_info_topic)" /> 
    <arg name="compressed"              value="$(arg 
compressed)"/>                                                                                   
    <arg name="subscribe_scan"          value="$(arg 
subscribe_scan)"/> 
    <arg name="scan_topic"              value="$(arg 
scan_topic)"/> 
    <arg name="subscribe_scan_cloud"    value="$(arg 
subscribe_scan_cloud)"/> 
    <arg name="scan_cloud_topic"        value="$(arg 
scan_cloud_topic)"/> 
    <arg name="visual_odometry"         value="$(arg 
visual_odometry)"/>           
    <arg name="odom_topic"              value="$(arg 
odom_topic)"/>     
    <arg name="odom_frame_id"           value="$(arg 
odom_frame_id)"/>          
    <arg name="odom_args"               value="$(arg 
rtabmap_args)"/> 
  </include> 
 
 <!-- Attaching to nodelet manager from OpenNI: 
camera_nodelet_manager --> 
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    <node pkg="nodelet" type="nodelet" name="data_throttle" 
args="load rtabmap/data_throttle camera_nodelet_manager" 
output="screen"> 
      <param name="rate" type="double" value="5.0"/> 
      <param name="decimation" type="int" value="1"/> 
 
      <remap from="rgb/image_in"       
to="/camera/rgb/image_rect_color"/> 
      <remap from="depth/image_in"     
to="/camera/depth_registered/image_raw"/> 
      <remap from="rgb/camera_info_in" 
to="/camera/rgb/camera_info"/> 
      <remap from="rgb/image_out"       
to="/camera/rgb/image_rect_color_throttle"/> 
      <remap from="depth/image_out"     
to="/camera/depth_registered/image_raw_throttle"/> 
      <remap from="rgb/camera_info_out" 
to="/camera/rgb/camera_info_throttle"/> 
    </node> 
   <!-- use topics from data_throttle at lower frame rate --> 
   <node pkg="nodelet" type="nodelet" 
name="points_xyz_planner" args="load 
rtabmap_ros/point_cloud_xyz camera_nodelet_manager"> 
      <remap from="depth/image"            
to="/camera/depth_registered/image_raw"/> 
      <remap from="depth/camera_info"      
to="/camera/rgb/camera_info"/> 
      <remap from="cloud"                  to="cloudXYZ" /> 
      <param name="decimation" type="int" value="1"/>                     
<!-- already decimated in data_throttle above --> 
      <param name="max_depth" type="double" value="3.0"/> 
      <param name="voxel_size" type="double" value="0.02"/> 
    </node> 
   
    <node pkg="nodelet" type="nodelet" 
name="obstacles_detection" args="load 
rtabmap_ros/obstacles_detection camera_nodelet_manager"> 
      <remap from="cloud" to="cloudXYZ"/> 
      <remap from="obstacles" to="/obstacles_cloud"/> <!-- 
move_base topic --> 
      <remap from="ground"    to="/ground_cloud"/>    <!-- 
move_base topic --> 
      <param name="frame_id" type="string" value="chasssis"/> 
      <param name="map_frame_id" type="string" value="map"/> 
      <param name="wait_for_transform" type="bool" 
value="true"/> 
      <param name="min_cluster_size" type="int" value="20"/> 
      <param name="max_obstacles_height" type="double" 
value="0.4"/> 
    </node>   
</launch> 
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A.16 Calculating correction factors and covariance using UMBmark 
 
clear all 
% Offsets at final position 
x_cw=[0.27 0.18 0.01 0.48 0.08]; 
y_cw=[0.04 0.00 0.01 0.16 0.18]; 
x_ccw=[0.12 0.01 0.07 0.19 0.28]; 
y_ccw=[0.07 0.01 0.12 0.07 0.04]; 
theta=[0.15 0.13 0.09 0.01  0.03 0.12 0.16 0.21 0.16]; 
% Calculating maximum error 
x_cw_g=mean(x_cw); 
y_cw_g=mean(y_cw); 
x_ccw_g=mean(x_ccw); 
y_ccw_g=mean(y_ccw); 
r_cw=sqrt((x_cw_g)^2 + (y_cw_g)^2); 
r_ccw=sqrt((x_ccw_g)^2 + (y_ccw_g)^2); 
emax=max(r_cw,r_ccw) 
% Calculating correction values 
L=3.5; 
D_R=195; 
D_L=195; 
D_A=(D_R+D_L)/2; 
alpha = ((x_cw_g + x_ccw_g)/(-4*L)) * 180/pi 
beta = ((x_cw_g - x_ccw_g)/(-4*L)) * 180/pi 
R=(L/2)/sin(beta/2)*180/3.14 
E_d = (R + beta/2)/(R - beta/2) 
E_b = 90/(90-alpha) 
c_l=2/(E_d +1) 
c_r=2/((1/E_d) + 1) 
% calculating covariance values 
x=[x_cw x_ccw]; 
y=[y_cw y_ccw]; 
cox=cov(x) 
coy=cov(y) 
cot=cov(theta) 
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A.17 Move base configuration files 
 
Move_base_launch 
 
<?xml version="1.0"?> 
<launch> 
  <!-- Move base --> 
  <node pkg="move_base" type="move_base" respawn="false" 
name="move_base" output="screen"> 
<remap from="cmd_vel" to="cmd_vel"/> 
    <!--remap from="odometry/combined" to="odometry"/--> 
  <remap from="wheel_odom" to="odom"/> 
    <param name="scan" value="scan"/> 
     <remap from="map" to="/rtabmap/grid_map"/>     
<rosparam file="$(find 
wheelchair)/params/simulation/costmap_common_params.yaml" 
command="load" ns="global_costmap" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/costmap_common_params.yaml" 
command="load" ns="local_costmap" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/local_costmap_params.yaml" 
command="load" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/global_costmap_params.yaml" 
command="load" /> 
    <!--rosparam file="$(find 
wheelchair)/params/simulation/teb_local_planner_params.yaml" 
command="load" /-->     
    <rosparam file="$(find 
wheelchair)/params/simulation/global_planner_params.yaml" 
command="load" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/base_local_planner_params.yaml" 
command="load" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/navfn_global_planner_params.yaml" 
command="load" /> 
    <rosparam file="$(find 
wheelchair)/params/simulation/move_base_params.yaml" command="load" 
/> 
  </node> 
</launch> 
 
Base_local_planner_params 
 
controller_frequency: 1.0 
recovery_behavior_enabled: false 
clearing_rotation_allowed: false 
 
TrajectoryPlannerROS: 
  max_vel_x: 1.28 
  min_vel_x: -1.28 
  max_vel_y: 0.0 
  min_vel_y: 0.0 
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  max_vel_theta: 1.57 
  min_in_place_vel_theta: 1.0 
  acc_lim_theta: 1.5 
  acc_lim_x: 3.6 
  acc_lim_y: 0.0 
  holonomic_robot: false 
  yaw_goal_tolerance: 3 # about 6 degrees 
  xy_goal_tolerance: 0.5  # 10 cm 
  latch_xy_goal_tolerance: false 
  pdist_scale: 0.8 
  gdist_scale: 0.6 
  meter_scoring: true 
  heading_lookahead: 0.325 
  heading_scoring: false 
  heading_scoring_timestep: 0.8 
  occdist_scale: 0.1 
  oscillation_reset_dist: 0.05 
  publish_cost_grid_pc: false 
  prune_plan: true 
  sim_time: 1.0 
  sim_granularity: 0.025 
  angular_sim_granularity: 0.025 
  vx_samples: 8 
  vy_samples: 0 # zero for a differential drive robot 
  vtheta_samples: 20 
  dwa: true 
  simple_attractor: false 
 
 
Move_base params 
shutdown_costmaps: false 
controller_frequency: 5.0 
controller_patience: 3.0 
planner_frequency: 1.0 
planner_patience: 5.0 
oscillation_timeout: 10.0 
oscillation_distance: 0.2 
base_local_planner: "dwa_local_planner/DWAPlannerROS" 
base_global_planner: "navfn/NavfnROS"   
 
 
 
 
 
Costmap_common_params 
obstacle_range: 3 
raytrace_range: 3.0 
#footprint: [[x0, y0], [x1, y1], ... [xn, yn]] 
robot_radius: ir_of_robot 
robot_radius: 0.5 # distance a circular robot should be clear of the 
obstacle 
inflation_radius: 0.05 
 
observation_sources: laser_scan_sensor point_cloud_sensorA  
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laser_scan_sensor: {data_type: LaserScan, topic: /scan, marking: 
true, clearing: true} 
 
point_cloud_sensorA: { 
sensor_frame: chassis, 
data_type: PointCloud2, 
topic: /rtabmap/cloud_obstacles, 
expected_update_rate: 1.0, 
marking: true, 
clearing: true, 
min_obstacle_height: 0.05 
} 
 
Global costmap params 
 
global_costmap: 
  global_frame: map 
  robot_base_frame: chassis 
  update_frequency: 1.0 
  publish_frequency: 1.0 
  resolution: 0.02 
  static_map: true 
  width: 10.0 
  height: 10.0 
  rolling_window: false 
  transform_tolerance: 1.0 
  map_type: costmap 
 
plugins: 
- {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"} 
- {name: inflation_layer, type: "costmap_2d::InflationLayer"} 
 
Local costmap params 
 
local_costmap: 
  global_frame: odom 
  robot_base_frame: chassis 
  update_frequency: 5.0 
  publish_frequency: 5.0 
  static_map: false 
  rolling_window: true 
  width: 5.0 
  height: 5.0 
  resolution: 0.75 
  transform_tolerance: 5.0 
  map_type: costmap 
  sonar_layer: 
   topics: ["/sonar_rear"] 
   no_readings_timeout: 1.0 
  plugins: 
  - {name: sonar_layer, type: 
"range_sensor_layer::RangeSensorLayer"} 
  - {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"} 
  - {name: inflation_layer, type: "costmap_2d::InflationLayer"} 
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A.18 Complete Arduino Code 
 
#include <ros.h> 
#include <ros/time.h> 
#include <tf/tf.h> 
#include <tf/transform_broadcaster.h> 
#include <geometry_msgs/Twist.h> 
#include<SPI.h> 
#include "MPU9250.h" 
#include <sensor_msgs/Range.h> 
 
MPU9250 IMU(Wire,0x68); 
int status; 
 
#define CS_ADC 10 
#define CS_POT 8 
#define L_PHASE_A 18 
#define L_PHASE_B 19 
#define R_PHASE_A 2 
#define R_PHASE_B 3 
#define wheel_base 440 
#define wheel_diameter 195 
#define left_counts_per_rotation 1242.7 
#define right_counts_per_rotation 1242.6 
#define channel0 0xE0 
#define channel1 0xE8 
#define POT_FB  0x12 //00010001 
#define POT_LR  0x11//00010010 
#define POT_ALL  0x13//00010011 
#define SonarPin 9 
 
ros::NodeHandle  nh; 
geometry_msgs::TransformStamped t; 
tf::TransformBroadcaster broadcaster; 
sensor_msgs::Range rear_range_msg; 
 
ros::Publisher pub_range_rear("/sonar_rear", &rear_range_msg); 
 
//Encoder Variables 
volatile int L_count=0; 
volatile int R_count=0; 
 
//Odom Variables 
int right_pulses ; 
int left_pulses ; 
int prev_right_pulses; 
int prev_left_pulses; 
float right_wheel_distance; 
float left_wheel_distance; 
float wheel_theta; 
float left_distance_per_tick = 
((wheel_diameter*PI)/left_counts_per_rotation); 
float right_distance_per_tick = 
((wheel_diameter*PI)/right_counts_per_rotation); 
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float mean_distance; 
float x_pos; 
float y_pos; 
int right_ticks; 
int left_ticks; 
float imu_theta_rate; 
float imu_theta; 
float theta_global; 
float current_time; 
float previous_time; 
float diff_time; 
float sonar_range; 
 
 
//IMU variables 
float aX, aY, aZ, gX, gY, gZ,mX,mY,mZ; 
 
//odometry correction 
double x_1; 
double x_2; 
double y_1; 
double y_2; 
 
 
void loop() 
{   
char chassis[] = "/chassis"; 
char odom[] = "/odom"; 
char sonar_rear[] = "/sonar_rear"; 
 
compute_odom(); 
 
if(checkjoystick()) 
joystick_control(); 
 
  // tf odom->base_link 
  t.header.frame_id = odom; 
  t.child_frame_id = chassis; 
  t.transform.translation.x = x_pos; 
  t.transform.translation.y = y_pos; 
  t.transform.rotation = tf::createQuaternionFromYaw(theta_global); 
  t.header.stamp = nh.now(); 
  geometry_msgs::Quaternion odom_quat = 
tf::createQuaternionFromYaw(theta_global); 
  broadcaster.sendTransform(t); 
 
sonar_range=read_sonar(); 
rear_range_msg.header.frame_id = sonar_rear; 
rear_range_msg.header.stamp = nh.now(); 
rear_range_msg.range=sonar_range; 
pub_range_rear.publish(&rear_range_msg); 
  nh.spinOnce(); 
  delay(10); 
} 
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//Velocity values from ROS 
void Callback(const geometry_msgs::Twist& vel) 
{ 
  double linear_vel = vel.linear.x; 
  double angular_vel = vel.angular.z; 
  int rotational_speed; 
  int linear_speed_sig; 
  double linear_speed_dec; 
  int linear_speed; 
  int linear_speed_val; 
  int fb_pot_val; 
  int lr_pot_val; 
 
//Safety measure to override values from ROS if joystick is used  
  while (!checkjoystick()) 
  { 
 
    angular_vel = angular_vel * 57.2958; //convert to degrees 
    rotational_speed = int(254 - angular_vel * 1.6); //convert to 
pot_val 
 
    linear_speed_sig = int(linear_vel / 1); //Get integer part 
    linear_speed_dec = linear_vel - linear_speed; //get decimal part 
    linear_speed = int(linear_speed_sig * 100 + linear_speed_dec * 
100); //combine integer and decimal 
    linear_speed_val = (254 + linear_speed * 1.6); //convert to 
pot_val 
 
    if (linear_speed_val > 398) 
      linear_speed_val = 398; 
    if (linear_speed_val < 110) 
      linear_speed_val = 110; 
    if (rotational_speed > 398) 
      rotational_speed = 398; 
    if (rotational_speed < 110) 
      rotational_speed = 110; 
 
    fb_pot_val = (linear_speed_val - 100) * 0.85; 
    lr_pot_val = (rotational_speed - 100) * 0.85; 
    POTcontrol(POT_FB, fb_pot_val); 
    POTcontrol(POT_LR, lr_pot_val); 
  } 
} 
 
ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel", Callback); 
 
//Generate odometry from encoders and IMU 
void compute_odom() 
{ 
right_pulses=R_count; 
left_pulses=L_count; 
current_time = millis(); 
imu_theta_rate = get_imu_theta(); 
right_ticks = right_pulses - prev_right_pulses; 
left_ticks = left_pulses - prev_left_pulses; 
right_wheel_distance = right_ticks * right_distance_per_tick; 
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left_wheel_distance = left_ticks * left_distance_per_tick;  
mean_distance = (left_wheel_distance + right_wheel_distance)/2; 
diff_time = current_time - previous_time; 
imu_theta -= imu_theta_rate*diff_time; 
//wheel_theta += (right_wheel_distance - 
left_wheel_distance)/wheel_base; 
 
theta_global = imu_theta/1000; 
//theta_global = wheel_theta; 
 
if(theta_global< -PI) 
theta_global+= 2*PI; 
else if(theta_global > PI) 
theta_global -= 2*PI; 
 
x_pos += (mean_distance * cos(theta_global))*1.0/1000; 
y_pos += (mean_distance * sin(theta_global))*1.0/1000; 
 
prev_left_pulses=left_pulses; 
prev_right_pulses=right_pulses; 
previous_time=current_time; 
} 
 
//Rotation velocity rate from gyroscope 
float get_imu_theta() 
{ 
  IMU.readSensor(); 
  gZ =  IMU.getGyroZ_rads(); 
return gZ; 
   
} 
 
//Interrupts for encoder pulses 
  void left_interrupt() 
{ 
  char i; 
  i=digitalRead(L_PHASE_B); 
  if(i) 
  L_count -=1; 
  else 
  L_count += 1; 
} 
void right_interrupt() 
{ 
  char i; 
  i=digitalRead(R_PHASE_B); 
  if(i) 
  R_count +=1; 
  else 
  R_count -= 1; 
} 
 
int jstickval0; 
int jstickval1; 
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//Reading voltage from joystick 
int ADCread(byte channel) 
{ 
  int command; 
  int voltage; 
  byte fbit; 
  byte sbit; 
  command=channel<<8|0x00; 
 
digitalWrite(CS_ADC,LOW); 
voltage=SPI.transfer16(command) & 0x3FF; 
digitalWrite(CS_ADC,HIGH); 
return voltage; 
} 
 
//Sending values to potentiometer 
void POTcontrol(byte address,byte value) 
{ 
digitalWrite(CS_POT,LOW); 
SPI.transfer(address); 
SPI.transfer(value); 
digitalWrite(CS_POT,HIGH); 
} 
 
void joystick_control() 
{ 
  int turnjval; 
  int drivejval; 
  byte turnpot; 
  byte drivepot; 
  static float mult= 0.85; 
   
  turnjval=ADCread(channel0); 
  turnpot=(turnjval-100)*mult; 
  drivejval=ADCread(channel1); 
  drivepot=(drivejval-100)*mult; 
  POTcontrol(POT_FB,drivepot); 
  POTcontrol(POT_LR,turnpot); 
  return 1; 
} 
//Checking if joystick is moved or being used for safety 
byte checkjoystick() 
{ 
  jstickval0=ADCread(channel0); 
  jstickval1=ADCread(channel1); 
  if(jstickval0>260 || jstickval0<248 && jstickval1>260 || 
jstickval1<248) 
 return 1; 
 else  
 return 0; 
} 
void setup() 
{ 
 status = IMU.begin(); 
   IMU.setAccelRange(MPU9250::ACCEL_RANGE_8G); 
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  // setting the gyroscope full scale range to +/-500 deg/s 
  IMU.setGyroRange(MPU9250::GYRO_RANGE_500DPS); 
  // setting DLPF bandwidth to 20 Hz 
  IMU.setDlpfBandwidth(MPU9250::DLPF_BANDWIDTH_20HZ); 
  // setting SRD to 19 for a 50 Hz update rate 
  IMU.setSrd(19); 
   
  nh.initNode(); 
  broadcaster.init(nh); 
  nh.subscribe(sub); 
  nh.advertise(pub_range_rear); 
  rear_range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND; 
  rear_range_msg.field_of_view = 0.577;   
  rear_range_msg.min_range = 0.3; 
  rear_range_msg.max_range = 5; 
 
pinMode(CS_POT, OUTPUT); 
pinMode(CS_ADC, OUTPUT); 
 
digitalWrite(CS_ADC,LOW); 
digitalWrite(CS_ADC,HIGH); 
digitalWrite(CS_POT,HIGH); 
 
SPI.setBitOrder(MSBFIRST); 
SPI.setDataMode(SPI_MODE3); 
SPI.setClockDivider(SPI_CLOCK_DIV128); 
SPI.begin(); 
Serial.begin(57600); 
 
pinMode(SonarPin,INPUT); 
POTcontrol(POT_ALL,0x80);  
 
pinMode(L_PHASE_A,INPUT); 
pinMode(L_PHASE_B,INPUT); 
pinMode(R_PHASE_A,INPUT); 
pinMode(R_PHASE_B,INPUT); 
attachInterrupt(digitalPinToInterrupt(L_PHASE_A),left_interrupt,RISI
NG); 
attachInterrupt(digitalPinToInterrupt(R_PHASE_A),right_interrupt,RIS
ING); 
delay(2000); 
} 
 
float read_sonar() 
{ 
float mm;   
mm = pulseIn(SonarPin, HIGH); 
return mm/1000; //Return distance in m 
} 
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APPENDIX B 
B.1 Arduino Sensor board shield Schematic 
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B.2 Arduino Sensor board shield PCB 
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B.3 Wheelchair Tray Design 
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B.4 Controller Box Lid 
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B.5 Controller Box Base 
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