
AudioVisual (Brain) Computer Controlled(ABC)
Wheelchair

By

RajKunwar Singh Kukreja

A thesis submitted to the College of Science and Engineering in partial

fulfilment for the requirements for the degree of Master of Engineering

(Electronics) at Flinders University Adelaide, South Australia

Supervisor: Dr Nasser Asgari

October 2018

 II

DECLARATION

I certify that the work presented in this thesis to the best of my knowledge and belief

does not include material that has previously been submitted for a degree or diploma

at any university; and does not contain work previously published or written by

another person except where acknowledged in the text.

Signed: RajKunwar Singh Kukreja

Date: 29/11/2018

 III

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my supervisor and mentor

Dr Nasser Asgari for the opportunity to work on the project and for all the support

and guidance provided throughout the course of study at Flinders University.

I would like to give a special thanks to Mr Jonathan Wheere who introduced me to

ROS and has constantly provided assistance on various aspects in the field of

robotics.

And finally, I would like to thank my family for their support.

 IV

ABSTRACT

Advancements in technology and medical devices have been providing solutions

such as electric and powered wheelchairs for individuals with impairments and

physical disabilities to cope with their disabilities; however, there are certain

individuals in the disabled community with a high-level of disability which restricts

them from using these mobility aids.

This thesis aims to contribute to the ABC Wheelchair project at Flinders University

by developing a cost-effective Autonomous Wheelchair which can be controlled

using multiple inputs such as speech commands, hand gestures, or facial gestures by

converting an existing electric wheelchair to an intelligent robotic system with easily

accessible sensors. The study describes various methodology used for designing and

developing an intelligent and autonomous wheelchair using Robot Operating

System. It can also act as a base for converting the majority of the existing electric

wheelchairs into autonomous ones by introducing multiple control inputs as well as

generating a map for the wheelchair environment and navigating inside it.

The system was implemented on an electric wheelchair with the new capability of

generating 2D and 3D maps of the environment and navigating within the generated

map using low-cost sensors. The tests provided convincing results for the developed

system to act as a mobility aid not only for individuals with cognitive and certain

physical impairments, but also as an accessory for converting existing wheelchairs

into autonomous ones.

 V

TABLE OF CONTENTS

DECLARATION .. II

ACKNOWLEDGEMENTS .. III

ABSTRACT ..IV

TABLE OF CONTENTS.. V

LIST OF TABLES .. VIII

LIST OF FIGURES ..IX

INTRODUCTION .. 1

BACKGROUND .. 4

2.1 RELATED WORK ... 4
2.2 ABC WHEELCHAIR PROJECT AT FLINDERS UNIVERSITY ... 8

2.2.2 Wheelchair model used .. 8
2.2.3 Inductive Joysticks:... 9
2.2.4 Interfacing with the Motor controller board: ... 9
2.2.5 Existing sensors .. 10
2.2.6 Kinematic model .. 11

THEORY AND METHODOLOGY ... 12

3.1 AUTONOMOUS MOBILE ROBOT:... 12
3.1.1 Mapping: .. 13
3.1.2 Simultaneous Localization and Mapping (SLAM) 14
3.1.3 Navigation and Path planning .. 19

3.2 SENSORS ... 20
3.2.1 Rotary Encoders: .. 20
3.2.2 RGB-D camera (Microsoft Kinect for Windows) 21
3.2.3 Inertial Measurement Unit (IMU): ... 22

3.3 ROBOT OPERATING SYSTEM (ROS) .. 24
3.3.1 What is ROS ... 24
3.3.2 Setting up the robot using ROS: .. 25
3.3.3 OpenSLAM’s Gmapping .. 26
3.3.4 Path Planning ... 27
3.3.5 Costmaps ... 27
3.3.6 ROS-ARDUINO Block diagram... 30
3.3.7 RTAB-Map (Real-Time Appearance Based Mapping) 31

EXPERIMENTAL RESULTS .. 32

4.1 INITIAL APPROACH .. 32
4.1.1 Mechanical Design Modifications .. 32

 VI

4.1.2 Migration from PIC microcontroller to Arduino: 33
4.1.3 Mapping joystick values for external input to drive the wheelchair 34
4.1.4 Controlling the wheelchair using a keyboard and moving the wheelchair
in a pre-defined sequence .. 35
4.1.5 Speed and Direction Control: ... 36
4.1.6 Avoiding obstacles Safely .. 37
4.1.7 Controlling wheelchair through speech commands: 39
4.1.8 Detecting known objects: .. 40

4.2 PROJECT DEVELOPMENT ... 42
4.2.1 Generating Odometry: ... 42
4.2.2 Navigating to landmarks: ... 43
4.2.3 Calculating dead-reckoning errors for Improving Odometry estimation: 44
4.2.4 Fusing encoders and orientation from IMU to generate odometry 46

4.3 INTEGRATION WITH ROS ... 48
4.3.1 Initial communication between ROS and Arduino: 48
4.3.2 Creating the Unified Robot Description Format (URDF) for the
wheelchair: .. 48
4.3.3 Creating a wheelchair follower:.. 50
4.3.4 Creating a Velocity controller:.. 52
4.3.5 Fusing multiple sources for position estimation: 53
4.3.7 Mapping with RTAB-Map ... 55
4.3.8 Mapping the environment:... 57
4.3.9 Sending a goal ... 60

4.4 MAKING THE WHEELCHAIR SYSTEM KIT ... 62
4.4.1 Designing the sensor shield ... 62
4.4.2 Designing the box: ... 62

DISCUSSION .. 63

5.2 LIMITATIONS .. 65
5.3 FURTHER DEVELOPMENT ... 65

5.3.1 Odometry correction/syncing .. 65
5.3.2 Generating maps with a Lidar ... 65
5.3.3 Creating a follower using an IMU ... 66
5.3.4 Integrating eye tracking control ... 67

CONCLUSION .. 68

APPENDIX A .. 69

A.1 READING AND SENDING JOYSTICK VOLTAGE VALUES TO THE MOTOR CONTROLLER 69
A.2 USING A KEYBOARD TO CONTROL THE WHEELCHAIR .. 71
A.3 MOVING WHEELCHAIR IN A SEQUENCE ... 72
A.4 ADDING VOICE COMMANDS TO THE PROGRAM. ... 73
A.5 CALCULATING TURN ANGLES ... 74

 VII

A.6 AVOIDING OBSTACLES SAFELY .. 75
A.7 OBJECT DETECTION USING OPENCV ... 76
A.8 INTEGRATION OF ROS WITH ARDUINO ... 77
A.9 GENERATING WHEEL ODOMETRY ... 79
A.10 LANDMARK NAVIGATION .. 80
A.11 COMPUTING ODOMETRY FROM ENCODERS AND IMU ... 81
A.12 WHEELCHAIR URDF MODEL .. 82
A.13 WHEELCHAIR FOLLOWER .. 90
A.14 VELOCITY CONTROLLER .. 91
A.15 MAPPING WITH RTAB-MAP .. 92
A.16 CALCULATING CORRECTION FACTORS AND COVARIANCE USING UMBMARK 97
A.17 MOVE BASE CONFIGURATION FILES ... 98
A.18 COMPLETE ARDUINO CODE .. 101

APPENDIX B ... 107

B.1 ARDUINO SENSOR BOARD SHIELD SCHEMATIC.. 107
B.2 ARDUINO SENSOR BOARD SHIELD PCB ... 108
B.3 WHEELCHAIR TRAY DESIGN ... 109
B.4 CONTROLLER BOX LID .. 110
B.5 CONTROLLER BOX BASE ... 111

REFERENCES ... 112

 VIII

LIST OF TABLES

Table 1. User inputs.. 5
Table 2. Wheelchair technical specifications .. 8
Table 3. MB1013 specifications .. 10
Table 4. IR sensor specifications... 10
Table 5. Microsoft Kinect specifications ... 22
Table 6. Potentiometer Inputs ... 34
Table 7. Distance - Angle relation .. 37

 IX

LIST OF FIGURES

Figure 1. ABC wheelchair concept ... 2
Figure 2. ABC Wheelchair concept for path generation from current position to
destination .. 3
Figure 3. Smart Wheelchair projects .. 4
Figure 4. Modern SW form factors ... 5
Figure 5. Existing System ... 8
Figure 6. Sterling ruby by sunrise medical ... 8
Figure 7. Joystick on wheelchair and voltage output range from joystick 9
Figure 8. Joystick interface board .. 9
Figure 9. Existing sensors on wheelchair.. 10
Figure 10. MB1013 and beam pattern ... 10
Figure 11. IR distance sensor ... 10
Figure 12. Robot kinematic model ... 11
Figure 13. Generating motion for differential drive robot 11
Figure 14. Autonomous Robot block diagram ... 12
Figure 15. Grid map representation ... 13
Figure 16. Feature-based or landmark based map .. 14
Figure 17. FastSLAM .. 16
Figure 18. Pose-graph representation of nodes .. 17
Figure 19. Costmap of grid cells ... 19
Figure 20. Rotary encoder .. 20
Figure 21. Odometry .. 20
Figure 22. Wheel on wheel configuration for encoders ... 21
Figure 23. Microsoft Kinect ... 21
Figure 24. IMU MPU9250 .. 23
Figure 25. ROS communication block diagram .. 24
Figure 26. ROS Communication between nodes .. 25
Figure 27. Robot setup ... 26
Figure 28. Sonar sensor range and visualization .. 28
Figure 29. Wheelchair ROS-ARDUINO Block diagram... 30
Figure 30. Mechanical design changes to the wheelchair.. 33
Figure 31. Interface board and Arduino connection .. 33
Figure 32. Joystick output values ... 34
Figure 33. Keyboard inputs .. 35
Figure 34. Avoiding distances safely .. 38
Figure 35. BITVOICER functionality ... 39
Figure 36. Known door from lab at used for object detection 41
Figure 37. Generating odometry .. 42
Figure 38. Robot landmark navigation ... 43
Figure 39. Navigating to landmarks ... 43

 X

Figure 40. Wheeled robot kinematics .. 45
Figure 41. UMBmark test ... 45
Figure 42. Raw Odometry and corrected odometry .. 46
Figure 43. IMU axis .. 46
Figure 44. RQT plugin for robot steering... 48
Figure 45. Graphviz of urdf model ... 49
Figure 46. URDF model for wheelchair .. 49
Figure 47. QR code used for creating a follower ... 50
Figure 48. Camera Coordinates ... 51
Figure 49. Detecting QRcode .. 51
Figure 50. Wheelchair follower using QR code .. 52
Figure 51. Calculating covariance values ... 54
Figure 52. RTAB-Map robot setup ... 55
Figure 53. RGB image and depth image from the Kinect sensor 56
Figure 54. Pointcloud from RGB image and Depth registered points 56
Figure 55. Laserscan from depthimage .. 56
Figure 56. Test lab area .. 57
Figure 57. 3D Cloud map of testlab ... 57
Figure 58. Mapping stages 1 and 2.. 58
Figure 59. 3D Cloud map of wheelchair accessible area at Tonsley 58
Figure 60. Grid maps generated from depth image for stages 1 and 2 59
Figure 61. Occupancy Grid map of floor at Tonsley .. 59
Figure 62. 2D Nav shortcut .. 60
Figure 63. Global costmap ... 60
Figure 64. Local costmap ... 60
Figure 65. Global Path ... 61
Figure 66. Full Plan ... 61
Figure 67. Arduino sensor shield .. 62
Figure 68. Arduino and sensor shield box.. 62
Figure 69. Current state of wheelchair ... 63
Figure 70. Global and local map from RTAB-Map ..…..………………………………64
Figure 71. Laserscans using RPLidar... 66

 1

Chapter 1

INTRODUCTION

Recent years have shown an increase in the usage of mobility aids such as electric

wheelchairs and electric scooters by individuals with certain disabilities; however,

there are still a certain number of individuals within this community with furthermore

disabilities restricting them from access to these mobility aids. According to the

World Health Organization [22] there are over 1 billion people in the world who face

some sort of disability with limited access to any health care, employment or

education. A survey on administering the physical and mental wellbeing, functional

independence and lifestyle of individuals with disabilities facing financial and

technological limitations during a 12-month period [23] showed significant

improvement in overall health and lifestyle after these individuals were equipped

with a depot style wheelchair. Another survey [24] on the usage of powered

wheelchairs for adults concluded an increased independence and improved quality

of life for the users but also mentioned the forthcomings of accidents resulting in

personal injury to the user or damage to their device.

The ABC Wheelchair aims to provide a cost effective and a safe solution for

individuals using a combination of brain signals, gaze tracking or eye-tracking and

speech commands as inputs to a system that performs various pre-defined task

based on the inputs received. The ultimate goal of the ABC wheelchair project is to

integrate brain signals with a graphical user interface that allows a user to interact

with the system and the wheelchair can drive itself to perform a task while performing

obstacle avoiding for safety of the user and completing the tasks defined by the user.

The concept of the ABC wheelchair project aims at integrating and connecting all

electronics devices (such as lifts, door actuators, coffee makers, water kettles, and

other devices used in most daily tasks) through Internet of Things (IOT).

 2

What would you like to do?

Have Coffee/Tea

Destination on map

Saved locations

Save new Location

Stop

Virtual Joystick

4/10/18. 10:10am 88% 88%

Right

Fo
rw

ar
d

R
everse

Left

Have Coffee/Tea

Go to the Washroom

Destination on Map

Save New Location

Previous Locations

Follower Mode

The ABC wheelchair concept as shown in figure 1. allows the user to choose from

multiple configured options using different inputs such as eye-tracking which allows

the user to control a computer’s cursor using their eyes, a voice command

recognition system or a touch based screen allowing the user to tap on the screen

for selecting the options. The ultimate goal will be able to control the interface using

brain signals through an electroencephalogram (EEG) headset. A scenario can be

considered where the user would like to get a cup of coffee and after the user

chooses the option, the system generates a path to travel to the cafeteria from its

current position as shown in figure 2. While the wheelchair is travelling to its

destination, based on the concept the coffee maker will be connected through IOT

and thus automates the task of travelling and preparing the coffee once the user

reaches the destination. If the path to be taken involves traveling to different floors

by the means of an elevator then by using position estimation techniques an elevator

will be called to the specific floor replicating the act of pressing a button for the

elevator once the wheelchair reaches within a certain distance from the elevator.

Figure 1. ABC wheelchair concept

 3

Figure 2. ABC Wheelchair concept for path generation from current position to destination

The entire project has been broken down into multiple parts and the goal for this

study is to develop a system or a kit that can be installed on a new or an existing

powered wheelchair that creates a map of its environment and navigates within the

map autonomously while providing a safety measure during the autonomous drive.

Current Position

Cafeteria

 4

Chapter 2

BACKGROUND

2.1 Related Work

Smart wheelchairs (SW) have

been a topic of research since

the 1980’s starting [54] with

the Navchair, Wheelesley,

SENARIO and VAHM to

develop an intelligent system

to implement a navigational

setup based on inputs from a

user. Powered wheelchairs

(PW) were introduced in 1953

by George Klein for helping

people injured during the

world war II and was quickly

moved to mass production in

the year 1956 by the American wheelchair company and Everest & Jennings. The

earlier PW consisted of a basic structure which included a Chassis, a Controller, a

seating system and a battery and in recent years there has been a more adaptive and

a collaborative control approach to provide a much more safe and reliable product.

Smart wheelchairs during the early years of development mainly consisted[53] of

technology developed for mobile robots with an attached seating system or a PW

with a computer and a few sensors attached to it. In the past decade there has been

an enormous increase in the research and development for smart wheelchairs with

Figure 3. Smart Wheelchair projects[54]

 5

39 institutions all around the world worked on developing a prototype showing the

interests and the need for more research on the subject.

Figure 4. Modern SW form factors[54]

(Parikh et al. 2007) created a simple method of

extracting user profiles to select the best trigger

as the input for the user. These triggers (table 1)

replicate the use of the controller, a joystick in

most cases and the sensors attached provide

information for the system to understand its

environment.
Table 1. User inputs

SW’s are divided into two parts:

• Semi-Autonomous Wheelchair (SASW):

The SW implements only a certain or a specific task to provide assistance such

as an obstacle avoidance system when the user is manually controlling the SW.

• Autonomous (ASW):

These SW’s execute the entire task of path planning, obstacle avoidance and

control using only an input from the user.

Researchers have developed various semi-autonomous systems [4] [9] are two

systems to create a following mode where [4] is a system which follows their

companion using a laser range finder (LSR) which guides the user’s footprint using

an extend Kalman filter for estimating the path followed whereas [9] uses daily

Input Methods
Brain Computer Interface (BCI)
Voice or Speech
Touch
Controller
Gesture
Computer Vision
Multimodal

 6

routine and behaviour to implement a follower without having any prior knowledge

of the goal.

A SASW can be classified as an ASW if it implements any one or a combination of

the following tasks:

• Localization – Determining its position in a known environment.

• Navigation – Path planning for navigating within the map generated.

• Following – The ability to follow an object or a person reducing the need for

manual control of the PW.

The Singapore – MIT Alliance for Research and Technology (SMART) in 2016

deployed[57] a SW at the Singapore’s Changi Hospital which navigates throughout

the building using a map created with 3 lidars attached on it becoming the first SW

project used in public. The SW uses a localization algorithm to determine its position

on the map previously generated and the mechanical structure of the SW has been

designed to enable it to make sharp or tight turns and as well as fit through normal-

sized doorframes. An app-based online booking and a scheduling algorithm allows

users to schedule rides on the SW.

A second SW to make public appearance[57] was Whill Model M by Panasonic and

Whill at the Haneda Airport in Japan. Whill model M uses two lidars to detect

obstacles and based on a previously prepared map the user can select the

destination through a smartphone app and the onboard computer plans the best

route to take due to which it gets the name Uber of wheelchairs. An additional

capability is to sync with nearby wheelchairs and travel in a column formation and

then can return to its home base automatically thus reducing the need of human

labour to collect these wheelchairs. Other projects dealing with smart robots such as

the iBot were not commercialized due to the high price attached to them.

 7

University of Toronto and Cyberworks Robotics (Toronto) [10] by applying the same

principles and similar sensors used in self-driving cars to wheelchairs have developed

a product costing between a range of US$300 - $700 as compared to the earlier

upward costs of $30,000 to make autonomous wheelchairs however has certain

limitations of currently intended for working only indoors due to struggles working

in full sunlight. The project started in 2015 to help users with upper-body disabilities

which restricted their movements like ALS, spinal cord injuries or hand tremors

resorting to eye-tracking technology or sip and puff devices to control the PW and

“by enabling autonomous navigation it could dramatically enhance the user’s quality

of life.”

Brain Computer Interface (BCI) provides a direct interface between the human brain

and a machine/computer using invasive and non-invasive techniques. Studies on the

subject have provided promising results in the field of Electroencephalography

(EEG)[10] where users who undergo a training period have been able to execute

external control of a wheelchair by imagining that they were moving a part of their

body. EEG offers a promising solution for helping certain individuals with disabilities

where BCI headsets available nowadays measure various muscle activities and brain

signals that can be used as external triggers. [11] [12] are systems integrated with

controlling a wheelchair using a BCI headset. The systems incorporate muscle activity

and users’ concentration measured through electrodes placed on the EEG headset.

Researchers at Federal Institute of Technology , Lausanne [10] also worked on

developing a robotic wheelchair with shared control between the user and the

wheelchair allowing the user to manoeuvre using just their thoughts and the systems

continues the previous command rather than the user controlling the system

continuously and using two web-cameras placed on the front to detect any obstacles

and provide a safer system.

 8

2.2 ABC Wheelchair project at Flinders University

The ABC wheelchair project at Flinders

University has been previously worked on by

students who have successfully achieved

integration with the motor controller board on

the wheelchair and have been able to replicate

the values from the joystick controller enabling

a microcontroller to act as a bridge between

the joystick controller and the controller board.

As mentioned in the introduction section, the

ABC wheelchair project is divided into various segments and the studies by students

have been able to provide promising results and contribute highly to this project.

One of the recent study [56] has successfully been able to control the wheelchair

using facial and head gestures. The system uses real-time processing of a user’s face

to recognize various gestures (such as head tilting, opening mouth, raising eyebrows,

lip sucking etc.) and calculates a threshold to differentiate between intentional and

non-intentional gestures for reducing false-positive outputs from the system.

2.2.2 Wheelchair model used

Figure 6. Sterling ruby by sunrise medical [34]

Parameter Value Unit
Dimension
(LxWxH)

610x482x889 mm

Weight 110 lbs
Max Speed 6 Km/h
Tire Size 203.3 mm
Range 15 km
Kinematic
Model

Differential-
Drive

N/A

Table 2. Wheelchair technical specifications

Figure 5. Existing System

 9

2.2.3 Inductive Joysticks:

Inductive joysticks use sets of copper wires laid in a circular format that induces a

magnetic field when current is applied. When the joystick (metal shaft) is moved, it

cuts through the magnetic lines causing a change in the flow of current in the coil

which is proportional to the output voltage from the joystick.

Figure 7. Joystick on wheelchair and voltage output range from joystick

2.2.4 Interfacing with the Motor controller board:

The microcontroller can be interfaced with the motor controller using an interface

board developed by [55] which consists of a four channel Analog to Digital

Convertor (ADC) MCP3004 that reads voltage from the joystick and a two channel

digital potentiometer (POT) MCP42010 to output voltage to the motor controller.

This bridge created between the joystick and the motor controller helps in replicating

the joystick values through a microcontroller using SPI communication.

ANALOG TO DIGITAL CONVERTOR
(ADC)

Joystick Microcontroller
Channel1(FB)

Channel2(LR)

VOLTAGE SPI

DIGITAL POTENTIOMETER

Motor
Controller

Microcontroller
Channel1(FB)

Channel2(LR)
SPI VOLTAGE

Figure 8. Joystick interface board

 10

2.2.5 Existing sensors

The wheelchair also included a sonar sensor (MaxSonar MB1013) and Sharp IR

sensors placed on the wheelchair tray and 6 IR sensors placed on the base rod each

aligned at an angle of 60° apart for a complete field of view as shown in figure 9.

Figure 9. Existing sensors on wheelchair

MaxSonar MB1013 – Ultrasonic Distance
measurement sensor

Figure 10. MB1013 and beam pattern

SHARP GP2Y0A02YK0F – IR Distance sensor

Figure 11. IR distance sensor

Parameter Value Unit

Resolution 1 mm

Sampling Rate 10 Hz

Output Analog/TTL
Serial/PW/RS232

N/A

Minimum Range 300 mm

Maximum Range 5000 mm

Beam Angle ±17 ° (deg)

Operating
Range

2.5 – 5.5 V

Table 3. MB1013 specifications

Table 4. IR sensor specifications

Parameter Value Unit

Resolution 1 mm

Sampling Rate 10 Hz

Output Analog voltage N/A

Minimum Range 200 mm

Maximum Range 1500 mm

Operating
Range

4.5 – 5.5 V

 11

2.2.6 Kinematic model

The wheelchair features a combination of 2 driven wheels and 2 castor wheels

attached to the front for stability. A differential drive robot can be defined as a drive

system where the robot’s movement depend on independent actuators for each

wheel as shown in the figure below.

Figure 12. Robot kinematic model [41]

Figure 13. Generating motion for differential drive robot

Figure 13 describes how various motions are generated for a differential drive robot.

Since the drive wheels are fixed and independent of each other the speed of the

wheels is varied to steer the wheelchair or to generate the desired motion.

 12

Chapter 3

THEORY AND METHODOLOGY

This chapter discusses the theory behind indoor autonomous mobile robots and the

background information required for developing one. The section contains

information on one of the major components of this study ROS, which is an Open

Source platform for designing robots. It describes the process of establishing a

communication between ROS and a microcontroller for controlling the wheelchair.

3.1 Autonomous Mobile Robot:

An autonomous robot is a robot that can perform various behavioral tasks by making

decisions with a high level of autonomy. An autonomous robot should be able to

gather information regarding the environment it is in without the need for any human

intervention. It should avoid situations that can cause harm to people or damage to

itself. The process of developing an autonomous robot can be divided into three

main branches:

1. Mapping – Generating a map or modeling of the environment.

2. Localization – Finding the robot’s position inside the environment.

3. Navigation/Path Planning – Navigating within the environment.

Autonomous Drive

Mapping Localization Navigation

Simultaneous Localization and mapping
(SLAM)

Figure 14. Autonomous Robot block diagram

 13

3.1.1 Mapping:

Since GPS cannot provide reliable information within buildings or when indoors, a

mobile robot needs to interpret its environment in order for it to execute

navigational task. Robotic mapping can be defined as the branch of autonomous

robots that deals with the construction of the map or a floor plan. The map is built

using information from different type of sensors that can interpret the environment

that the robot is currently in. A robot contains two types of sources for information:

1. Active sensors (Emit energy and probe the environment based on self-generated

energy) for example LIDAR, distance sensors, Microsoft Kinect

2. Passive sensors (Do not emit energy and wait for a response from the

environment) for example digital cameras and IMU (Inertial Measurement Unit).

These sources help solve problems for the robot such as interpreting the

environment and helping it to determine its location and generate maps based on

the responses from the sensors.

Map representation - Maps can be represented in two ways:

• Geometric or Grid based representation – These are

the most common types of maps used for

representation for humans as it considers a two-

dimensional space in which the objects are placed

with a precise coordinate. Grid maps break down the

world into cells which make the map look like a

building floor plan when mapping indoors. The grid is

considered to be static where the cells are

independent of each other and each cell is inferred to

be either free or occupied based on the sensor

readings.

Figure 15. Grid map representation [46]

 14

The probability for occupancy can be defined as:

𝐶𝑒𝑙𝑙	𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 → 𝑝(𝑚.) = 1
𝐶𝑒𝑙𝑙	𝑁𝑜𝑡	𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 → 𝑝(𝑚.) = 0

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 → 𝑝(𝑚.) = 0.5

• Topological or Landmark based representation – The framework remembers

landmarks and relations between them. The distance between these landmarks

are stored and the map can be considered a graph where the nodes correspond

to landmarks and the arcs correspond to various paths.

Figure 16. Feature-based or landmark based map [47]

3.1.2 Simultaneous Localization and Mapping (SLAM)

SLAM in the field of robotics can be defined[46] as the computational problem of

building a map of the environment the mobile robot is in while simultaneously

keeping track of the location of the robot within the map for navigation. SLAM is not

a single algorithm but rather a combination of multiple processes running at the

same time for solving the problem. It has applications in areas where the environment

is unknown for both manned and autonomous vehicles such as:

• Indoors

• Undersea

• Space

• Underground

 15

There are various algorithms for solving the SLAM problem including particle filter,

extended Kalman filter and graphSLAM which are discussed in the next sections used

in this study for developing an autonomous wheelchair. The wheelchair is a mobile

robot and will mostly be used indoors requires a system that can navigate the

wheelchair safely while developing a map of the environment simultaneously.

List of a few SLAM techniques available:

1. EKF SLAM

2. Fast SLAM

3. Graph SLAM

4. Occupancy-Grid SLAM

5. DP-SLAM

6. Parallel Tracking and Mapping (PTAM)

7. Mono-SLAM

8. ORB-SLAM

9. Co-SLAM

10. SeqSLAM

11. Visual Slam (vSLAM)

Maps created using SLAM[49] enable a quicker and adaptive response as compared

to pre-programmed routes. By using a combination of sensors on a robot such as

Lidar, camera, ultrasonic sensors are able to better interpret its environment and

effectively improve navigation and obstacle avoiding ability due to the adaptiveness

that it enables.

 16

Fast SLAM

A feature based SLAM using Rao-Blackwellization technique of using particle filters

as a tool for solving the SLAM problem[19] by applying particle filters where each

particle carries an individual map of the environment.

Particle Filter algorithm:

1. Sample the next particle based on the proposal distribution
𝑥=.~	𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙(𝑥=| …)

2. Calculate importance weights

𝑤=. =
𝑡𝑎𝑟𝑔𝑒𝑡E𝑥=.F
𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙E𝑥=.F

3. Resample to replace unlikely samples with more likely ones

SLAM posterior

𝑝(𝑥G:=, 𝑙J:K|𝑧J:=, 𝑢J:=) = 	𝑝(𝑥G:=|𝑧J:=, 𝑢J:=)	𝑝(𝑙J:K|𝑥G:=, 𝑧J:=)	
	

The robot’s path is a sample-based representation where each sample is a path

hypothesis. This removes the need for maintaining past poses. FastSLAM uses a

combination of particle filters and EKF for calculating the SLAM posterior where the

landmarks are conditionally independent and are solved as a 2-dimensional EKF.

Figure 17. FastSLAM

Map posterior Path posterior Map poses observations

Movements

 17

Graph SLAM

Graph-based SLAM[39] uses a graph to represent the problem of localization and

mapping where each node in the graph corresponds to a pose of the robot and a

sensor measurement while mapping and the edge between the nodes corresponds

to the spatial constraints between them. These nodes create a graph and the most

likely map is determined by moving the nodes till a map is rendered based on the

known poses once a loop closure is detected.

Figure 18. Pose-graph representation of nodes [39]

Loop closure

Loop closure [16] is the problem of recognizing a previously-visited location and

updating beliefs accordingly. Typical loop closure methods apply a second algorithm

to compute some type of sensor measure similarity and re-set the location priors

when a match is detected.

 18

Visual based SLAM

Visual SLAM can be considered as a type of SLAM system which leverages 3D vision

to perform localization and mapping functions when the environment and the

location of the robot is unknown. The idea behind most vSLAM systems is to track a

set of points through successive camera frames which helps to triangulate their 3D

position in real time while approximating the robot’s pose[15]. Vision sensors[49] are

attractive for employment in SLAM systems because of the richness in features

detected, accessibility and cost-effectiveness on these sensors. There are a few state-

of-the-art visual SLAM techniques which have proven to be effective even during the

presence of significant noise in the robot’s position and the landmark position

sensing.

Different types of Visual based SLAM systems available [21]:
(* - Available on ROS)
Monocular cameras

• PTAM
• DSO*
• LSD-SLAM*
• ORB-SLAM*
• SVO-SLAM*

RGB-D cameras
• OpenCV RGBD-Odometry (Visual Odometry based RGB-D images)
• Dense Visual SLAM for RGB-D Cameras*
• RTAB MAP - Real-Time Appearance-Based Mapping*
• ORB2-SLAM*
• InfiniTAM∞ v2
• Kintinuous
• ElasticFusion
• Co-Fusion

RGB-D camera and Lidar

• Google’s Cartographer*

 19

3.1.3 Navigation and Path planning

Since GPS is not available indoors a mobile robot by using computer vision

algorithms or sensors such as laser range finders, sonar sensors or photometric

cameras allows the system to extract features from the surrounding environment

required for the robot to localize itself. There are different ways of implementing

indoor navigation on a mobile robot such as line following, placing beacons, markers

or bar codes in the environment and position estimation using odometry. The robot

requires a map within which it can navigate. Once a map is available, the robot

localizes itself within the map where the location of landmarks or position of points

is defined with respect to a relative initial position. After localizing a path can be

generated for the robot to reach when given a goal to travel through traversable

regions. The map generated is assumed to be static in the terms that the map does

not change; however, since the wheelchair is a mobile robot[32] the environment is

dynamic and is continuously changing. Obstacles might appear and disappear from

the measurements of the sensor which creates a noisy estimate of the surrounding.

This results in the need for integrating the system with components that keep track

and compensate it according to these changes. There are two changes which have

to be continuously tracked:

1. Static and Dynamic Obstacles

2. Map update through new sensor readings

Figure 19 shows illustrates a map with sample

cost of the grid cells. A planner can then

generate a path from the current position to the

goal position by traversing through the cells

depending on the type of algorithm chosen.

Figure 19. Costmap of grid cells [47]

 20

3.2 Sensors

In addition to the sensors available on the wheelchair, there are various sensors

required for the task of developing an autonomous mobile robot. The mobile robot

should be able to generate a map of the environment using easily accessible and

low-cost sensors such as a sonar sensor or a RGB-D camera which can generate

pointclouds. To estimate the position of the robot for localization the motion of the

robot should be tracked which can be done through the use of encoders that keep

track of the wheel rotations and an IMU unit which when attached to the robot body

provides the velocity and the acceleration of the robot as it moves.

3.2.1 Rotary Encoders:

One of the important aspects in the field of autonomous robots is for the robot to

estimate its position relative to a known or starting position using motion sensors

such as IMU or encoders. Rotary encoders provide digital pulses for the motion of

the shaft which can be used to determine the displacement of a wheel.

Figure 20. Rotary encoder

By using the process of odometry which is a form of

dead-reckoning the encoders can be used to track

the change in position over time which estimates the

actual position of the wheelchair as shown in the

figure 20.

Figure 21. Odometry [42]

 21

The wheelchair is configured with 2 motors that control the wheels offering limited

access to the motor shaft. Due to this the encoders are placed externally using a

wheel on wheel configuration. Multiple positions tried for placing the encoders faced

slippage due to a non-firm contact with the wheel which results in missing of pulses

causing a noisy estimate of the position. A new bracket designed so the encoder

wheel stays in contact with the middle of the wheelchair wheel. The bracket includes

a cross shaped wedge which allows movement for the encoder and a firm contact

with the wheelchair wheel allowing adjustment and also for ease of replacement.

Figure 22. Wheel on wheel configuration for encoders

3.2.2 RGB-D camera (Microsoft Kinect for Windows)

 RGB-D cameras provide a colour (RGB) image along with the corresponding depth

image. The depth image is a per-pixel estimate which relates to the distance

between the image plane and the object in the RGB image.

Figure 23. Microsoft Kinect [43]

 22

Parameter Value Unit
Colour 640 x 480 @ 30fps
Depth 320 x 240 @ 30fps
Sensor Structured light Light coding
Range 0.8 – 4.0 m
Horizontal View 57 degree
Vertical View 43 degree

Table 5. Microsoft Kinect specifications

The Kinect sensor[29] uses an infrared (IR) laser for generating a pseudo-random

beam pattern and an IR camera then captures the image of dots reflected from the

objects in the environment. By the use of structured light technique, the distortion

of the dot points is calculated which correspond to the distance of the dot with

respect to the RGB pixel. The Kinect was initially used on the Microsoft X-box for 3D

perception of human motion and through reverse engineering, it has been used in

robotic applications for indoor navigation. The Kinect sensor [31] had extremely

effective results for indoor navigation in robotics application indoors however

showed interference from sunlight during outdoor applications. The Kinect uses IR,

so it does not detect glass or transparent objects and thus, sensors such as sonars

have to be used for detecting obstacles. Since the sensor is cost effective and easily

accessible it provides a great advantage over other depth cameras or laser sensors

which induce an enormous cost to the project budget. Another idea[31] to use

multiple Kinect sensors for stereovision might be applied to enhance the 3D

perception and pointclouds which can help improve the functionality outdoors.

3.2.3 Inertial Measurement Unit (IMU):

An IMU is an electronic device that can measure the acceleration, rotational velocity

and orientation through a mix of Accelerometers, gyroscopes and magnetometers.

The IMU used for this project is the MPU 9250 by Invense which features a 3-axis

gyroscope, 3-axis accelerometer and a 3-axis magnetometer. The IMU provides

linear acceleration and rotational velocities, and by using the process of dead-

reckoning the wheelchairs position can be estimated.

 23

Figure 24. IMU MPU9250 [40]

Reading raw data from accelerometer:

The output from the accelerometer can be configured to work with a programmable

full-scale range of ±2g, ±4g, ±8g and ±16g where (1𝑔	 = 9.81𝑚/𝑠P , acceleration due

to gravity).

16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	𝑤𝑖𝑡ℎ	𝑎	±2𝑔	𝑠𝑐𝑎𝑙𝑒.	
16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	65535	𝑏𝑖𝑡𝑠
±2𝑔	𝑠𝑐𝑎𝑙𝑒	 = 	4𝑔	𝑜𝑟	4000𝑚𝑔

1 − 𝑏𝑖𝑡	 = 4000/65535 = 0.061𝑚𝑔

Converting to m/𝑠P,

𝐿𝑖𝑛𝑒𝑎𝑟YZZ[\]^=._` = 𝑅𝑎𝑤b^=^ ∗
0.061	∗	9.81

1000 (Eqn 4)	

Reading raw data from gyroscope:

Output from the gyroscope can be configured to work with a programmable full-

scale range of ±250°/sec, ±500°/sec, ±1000°/sec and ±2000°/sec

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦:	16.4°/𝑠𝑒𝑐
16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	𝑤𝑖𝑡ℎ	𝑎	±2000°/sec	𝑠𝑐𝑎𝑙𝑒.	

16 − 𝑏𝑖𝑡	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	65535	𝑏𝑖𝑡𝑠
±2000°/sec	 = 		4000°/sec

1 − 𝑏𝑖𝑡	 = 4000/65535 = 0.061°/sec

Converting to rad/sec

𝐴𝑛𝑔𝑢𝑙𝑎𝑟k\[_Z.=l = 	𝑅𝑎𝑤b^=^ ∗ 	0.061	 ∗
m.
JnG

 (Eqn 5)

 24

3.3 Robot Operating System (ROS)

3.3.1 What is ROS

“The Robot Operating System (ROS) is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to simplify the

task of creating complex and robust robot behavior across a wide variety of robotic

platforms.” ROS [2] was built to promote collaborative software development and

provide support for re-usage of code in robotics research and development. It is a

distributed framework of processes (called nodes) which enable the executables to

be designed individually.

Communication is ROS takes place through nodes where each node can

publish(send) and subscribe(receive) data to and from a topic. Information such as

odometry, proximity information from sensors, velocity of the wheelchair can be

considered as examples of topics.

Figure 25. ROS communication block diagram

Node Registration

Messages

Messages Messages

Node 1 Node 2 Node 3

ROS
Master

 25

Figure 26. ROS Communication between nodes [44]

Packages in ROS:

Packages is the way the software is organized in ROS which can contain ROS-nodes,

libraries, configuration files, datasets or even third-party piece of software. The

packages allow the easy to consume functionality for re-usage of software. A ros

package, “ROSSERIAL-ARDUINO” allows the Arduino microcontroller to act as a

node and the sensor readings can be published through the Arduino and the other

nodes on the computer side can subscribe to this information and based on the

functionality defined, the system will output velocities for the wheelchair in order to

achieve the on-going task.

3.3.2 Setting up the robot using ROS:

ROS contains packages which use working algorithms that have been implemented

by users that can also be configured on other custom robots. Since a wheelchair can

be considered a mobile robot, most of the algorithms that are used for developing

autonomous mobile robots can be applied to it as well. As illustrated in figure 14 the

task for developing an autonomous robot is branched into three categories mapping,

localization and navigation.

 26

Figure 27. Robot setup [45]

Figure 26. describes the navigation stack on ROS which takes odometry information,

sensor measurements and a destination and generates velocity commands for the

controller to follow in order to reach the goal.

3.3.3 OpenSLAM’s Gmapping

GMapping is a highly efficient Rao-Blackwellized particle filter to learn grid maps

from laser data. The approach uses the particle filter by assigning a map to each

particle. This leads to a memory extensive complexity and Gmapping offers an

adaptive technique which reduces the number of particles in a Rao-Blackwellized

particle-filter used for learning grid maps. By accounting for not just the movement

but also recent observations, the uncertainty of the robot’s pose is reduced

significantly by computing an accurate proposal distribution.

ROS package “gmapping” is a wrapper for OpenSLAM’s Gmapping to provide a

laser based SLAM system. A 2-Dimensional occupancy grid map can be generated

using the robot’s pose (Odometry) and laser measurements. Each robot pose[41] is

represented as a particle where the particles are moved according to the information

from odometry source and based on how well these laser scans fits the map the

robot can be localized.

 27

Gmapping can help generate grid maps for the environment but there are a few

drawbacks of using a 2-D map as they can get confusing when the map gets too big

and are also not visually appealing to humans. For an autonomous robot to

understand the environment, 2-D maps are ideal and can function perfectly using it

but for usage with a wheelchair a visual based or a 3-D based map allowing the user

for a better visualization of what the map looks like will be more suitable.

3.3.4 Path Planning

Ros package “move_base”[26] provides an implementation that can help a mobile

robot to reach a given goal in the world. The package links a global and a local

planner to accomplish its global navigation task. The global planner uses costmaps

to find the minimum cost path from the current position to the destination using the

algorithm (Dijkstra’s) and generates a series of waypoints which the local planner

follows to reach the destination and the local planner uses sensor measurements for

updating the costmap and following the path by sending velocity values to the robot

controller for traversing through the path.

3.3.5 Costmaps

Obstacles in maps are generated using Costmaps which are data structures that

represent if it is safe for a robot to be in a grid of cells. The costmaps are created

using distance sensor information about obstacles to mark and clear these obstacles

at each update. The values represent free spaces or places where robot will be

colliding. Ros package “costmap_2d”[33]uses sensor data and information from the

static map to build a 2D occupancy grid of the data and based the on-sensor

measurements and the user specified inflation radius the cost of the grids is inflated.

The sensor measurements used for the wheelchair include a pointcloud from the

Kinect sensor and a beam from the sonar sensor discussed in section 2.2.5. The range

 28

information and the visualization of the sonar sensor can be viewed in the figure

below.

Figure 28. Sonar sensor range and visualization

The cells in the costmap have a value between the range 0-255 where high costs

decrease the desirability of the robot being in the cell and a few values which are

frequently used[33]:

• costmap_2d::NO_INFORMATION (255) - Reserved for cells where not enough

information is sufficiently known.

• costmap_2d::LETHAL_OBSTACLE (254) - Indicates a collision causing obstacle

was sensed in this cell.

• costmap_2d::INSCRIBED_INFLATED_OBSTACLE (253) - Indicates no obstacle,

but moving the center of the robot to this location will result in a collision.

• costmap_2d::FREE_SPACE (0) - Cells where there are no obstacles and the

moving the center of the robot to this position will not result in a collision.

The wheelchair uses two types of costmaps for navigation.

1. Global Costmap – This is used for generating a path in the global navigation or

a destination on the map which is far.

 29

2. Local Costmap – This is used for generating paths for local navigation which

includes avoiding obstacles.

Path Generation Algorithm

Ros package “base_local_planner” implements the trajectory rollout and dynamic

window (DWA) approaches where a plan to follow with the costmap is provided

generates velocity commands[36].

1. Discretely sample in the robot's control space (dx,dy,dtheta)

2. For each sampled velocity, perform forward simulation from the robot's

current state to predict what would happen if the sampled velocity were

applied for some (short) period of time.

3. Evaluate (score) each trajectory resulting from the forward simulation, using a

metric that incorporates characteristics such as: proximity to obstacles,

proximity to the goal, proximity to the global path, and speed. Discard illegal

trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity to the

mobile base.

5. Rinse and repeat.

The only difference between trajectory rollout and dwa approach is how the robot’s

control space is sampled.

 30

3.3.6 ROS-ARDUINO Block diagram

The block diagram shows how the various sensors are connected to the Arduino

and how messages are communicated with ROS to achieve the goal of autonomous

robot.

/rgbd-image

Figure 29. Wheelchair ROS-ARDUINO Block diagram

/odometry

ARDUINO
(rosserial-arduino-node)

/sonar /twist

/velocity

/twist

/odometry

/velocity

PC

 31

3.3.7 RTAB-Map (Real-Time Appearance Based Mapping)

RTAB-Map [17] is a RGB-D Graph-Based Slam approach based on appearance-based

loop closure detector. The loop closure detector uses a bag-of-words approach to

determine how likely a new image comes from a previous location or a new location

and when a loop closure hypothesis is accepted, a new constraint is added to the

map’s graph.

Features[25]

• Visual Odometry [15] – It is the process of determining the position and

orientation of a robot by analyzing the associated camera images. Similar to

odometry generated using encoders, Monocular, stereo cameras and RGB-D

cameras provide the ability to compute motion using a feature based method

where features are extracted in an image and tracked using the image sequence.

By correlating the correspondence of the images in sequence, the camera motion

can be estimated using optical flow. There are multiple ways of extracting

egomotion such as using image intensities or using optical flow to match features

detected through multiple frames which provides the direction of motion of a

camera and thus an estimate of the camera motion.

• Using Pointclouds for generating map: One of the drawbacks for using the

Gmapping package is the requirement for using lidars with long range and does

not work well with short range sensors while RTAB-Map allows the use of

pointclouds to generate the map.

• 3D Map Cloud: The point clouds are used to generate a cloud map of the entire

map which can be used for a 3D visualization of the environment.

• Allows Handheld Mapping: The package allows for handheld mapping using an

RGB-D camera, which can be highly beneficial for this study as it allows for the

wheelchair to localize itself within these areas which are mapped using the

handheld mapping technique.

 32

Chapter 4

EXPERIMENTAL RESULTS

This chapter has been broken down into segments starting with the initial approach

applied to develop the system for understanding the systematic parameters and its

limitations. The next segment discusses the development of a landmark based

navigation technique to reach a goal. The third segment contains the integration of

the wheelchair with ROS and how the it generates a map of its surrounding and

navigates within it.

4.1 Initial Approach

4.1.1 Mechanical Design Modifications

To convert the wheelchair to an autonomous wheelchair there are certain

modifications which have to be made. The initial setup of the wheelchair tray

included a wooden block covering the entire front making it hard for anyone to enter

and exit without lifting the tray completely making it a tiresome task. The first step

was to modify the tray for a more ergonomic design and also ease of access. The

tray is designed keeping in mind the generic size of a laptop that might be used

with the wheelchair in addition to the various sensors to be added and also the

sensors that could be included in the future developments of the project and finally,

enough space for any user to sit comfortably. The design for the tray is included in

Appendix section B3. The tray is attached using hinges which allows it to be lifted

providing much more ease for the user to enter and exit the wheelchair. The joystick

for manual control of the wheelchair was previously fixed on top of the tray which

meant that the user has to lift their hands for the entire time the joystick was used

making it a very inefficient way of controlling the wheelchair. A new joystick holder

is designed for easier access for manual control of the wheelchair.

 33

Figure 30. Mechanical design changes to the wheelchair

4.1.2 Migration from PIC microcontroller to Arduino:

The initial setup was integrated using a PIC (Peripheral Interface Controller)

microcontroller which is replaced with an Arduino microcontroller(Arduino Mega)

since Arduino is a more generic microcontroller used for prototyping and offers

support to a broad range of sensors as compared to the former, thus allowing for

further development for the project easier. The initial steps include understanding

how the interface board communicates with the joystick and the motor controller.

[55] served as reference for the initial communication between the interface board

and Arduino which allowed control of the wheelchair through the joystick. The block

diagram explains how the communication takes place.

The Arduino code for the initial communication can be found in Appendix A1.

SPI
Communication

SPI
Communication

Figure 31. Interface board and Arduino connection

 34

4.1.3 Mapping joystick values for external input to drive the wheelchair

The figure below shows the values mapped that are sent to the potentiometer

correlating to the joystick position. Where FB (Front Back) and LR (Left Right) are

the voltages received from channel 1 and channel 2 respectively from the ADC shown

in figure 8.

The digital values from the joystick are then mapped to the potentiometer range

using the equation below.

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟	𝑣𝑎𝑙𝑢𝑒 = (𝐽𝑜𝑦𝑠𝑡𝑖𝑐𝑘	𝑉𝑜𝑙𝑡𝑎𝑔𝑒	– 	100) ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟	 (Eqn. 1)
 where multiplier = 0.85

POT_FB – Forward/Reverse, POT_LR – Left/Right

Direction POT_FB POT_LR

Forward 256 128

Reverse 9 128

Right 128 9

Left 128 256

Table 6. Potentiometer Inputs

LR (398) +90°

FB (110)

LR (254)

FB (254)

LR(110)

144

FB (254)

LR (254)

FB (398)
LR (254)

0°

-90°

FB (254)

Figure 32. Joystick output values

 35

4.1.4 Controlling the wheelchair using a keyboard and moving the wheelchair in
a pre-defined sequence

Using the values in figure 32, an Arduino code is written which listens to the serial

buffer for the key pressed on the keyboard and drives the wheelchair in the specific

direction.

For understanding the delays between the input and the execution of the command,

the wheelchair was moved in a pre-defined sequence (a square) that showed an

offset for a minimum of 1 meter at each trial. It was observed that the wheels of the

wheelchair move at a different speed which resulted in a deviation from the path

when the wheelchair moves in a straight line. The slight delay between the

commands and the execution was observed which resulted in an offset from the

starting point once the sequence was complete. The code for controlling the

wheelchair using the keyboard can be found in (APPENDIX A: Section A2)

W

S

D A
A

space

Figure 33. Keyboard inputs

 36

4.1.5 Speed and Direction Control:

From the previous sections, the wheelchair has been controlled by sending constant

values for rotational and linear speed, but a robotic system should be adaptive to its

dynamically changing environment and hence needs a better speed controller. The

values sent to the potentiometer are 8-bit values ranging from 1-256 for both

channels and table 6 shows the values that are sent to the potentiometer.

It is observed from figure 32 that the difference in values for every 90° is 144.

At the mid-point the value for POT_LR is 254 and at the extreme ends(left & right)

the potentiometer values are 110 and 398 respectively each with a difference of 144

from the center point.

Mapping the values:

𝑠𝑐𝑎𝑙𝑒 =
144
90 = 𝟏. 𝟔

Which will be referred to as scale. 1° (degree) angle can be represented by 1.6

points on the potentiometer scale.

Generating the equations:

 𝑇𝑢𝑟𝑛k^[v\ = 	 (254	– 	𝒔𝒄𝒂𝒍𝒆 ∗ 𝑎𝑛𝑔𝑙𝑒) where, 𝑎𝑛𝑔𝑙𝑒	𝜖	{−90	, 90	} (Eqn 2)

Feeding the Turn value into Eqn 1,

𝑃𝑂𝑇k^[v\ = 	 (𝑇𝑢𝑟𝑛k^[v\– 	100) ∗ 	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

Using the equations:

 Let, 𝑎𝑛𝑔𝑙𝑒 = 45

𝑇𝑢𝑟𝑛k^[v\ = E254+ 1.6 ∗ (45)F 	= 326

 Verifying the value from the first quadrant:

144/2	 = 	72
398 − 72 = 254 + 72	 = 	326

The equations allowed the wheelchair to turn at any given angle providing a more

adaptive controller.

Program code to achieve specific turn angles section A5 of the APPENDIX

 37

4.1.6 Avoiding obstacles Safely

The objective for the wheelchair is to navigate autonomously while avoiding all static

and dynamic obstacles. A sonar sensor as shown in figure 9 was attached to the

bottom of the wheelchair tray to detect obstacles in view of the wheelchair.

The sonar sensor has a range from 30mm – 5000mm. Considering the width of the

wheelchair and a keeping free radius of 0.20m at all times the following table shows

the relation between the distance and the angle required for the wheelchair to safely

avoid hitting any obstacle in front of it.

Using equation 2 generated in the previous section (improved direction control), if

the values for the angle and the distance are known, the turn angle can be calculated

for the wheelchair using table 1. The angle is mapped from 45° to 90° to a distance

from 30mm to 1000mm and the distance range is divided in 10 divisions with an

increment of 5.625° for every 100mm.

𝑑𝑖𝑠𝑡�Z^[\ →
90°
2 =

144
2 →

77
45 = 1.711

Column Distance Angle(degrees)

1 >1000 No Turn

2 1000 ±45°

3 900 ±50.625°

4 800 ±56.25°

5 700 ±61.875°

6 600 ±67.5°

7 500 ±73.125°

8 400 ±78.75°

9 300 ±84.375°

10 200 ±90°

11 <200 Reverse

Table 7. Distance - Angle relation

 38

Calculating angle in degrees:

Total number of divisions in range=10

To find the value of the column value from table 3.

𝑃𝑜𝑖𝑛𝑡𝑒𝑟	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛	–	(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	/100)
	𝐶𝑜𝑙𝑢𝑚𝑛^`�[\ 	= 	𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∗ 5.625.

𝑇𝑢𝑟𝑛^`�[\(𝑑𝑒𝑔𝑟𝑒𝑒) 	= 	45	 + 	𝐶𝑜𝑙𝑢𝑚𝑛^`�[\

𝑇𝑢𝑟𝑛^`�[\(𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟) 	= 	𝑇𝑢𝑟𝑛^`�[\(𝑑𝑒𝑔𝑟𝑒𝑒) ∗ 𝑑𝑖𝑠𝑡�Z^[\

𝑃𝑂𝑇����� = 	254 − 	𝑻𝒖𝒓𝒏𝒂𝒏𝒈𝒍𝒆(𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒐𝒎𝒆𝒕𝒆𝒓)

Or 𝑃𝑂𝑇���^[= 	 [254	 −	(10	–	(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒/100)) ∗ 5.625] (Eqn 3)

Figure 34. Avoiding distances safely

Using the equations above.

 Let distance from obstacle = 550mm

 Turn Angle should fall in the range of 67.5 and 73.125° according to Table 3.

 𝑎𝑛𝑔𝑙𝑒 = ��10 − ���G
JGG
�� ∗ 5.625� = 	 [4.5 ∗ 5.625] = 	25.3125

𝑇𝑢𝑟𝑛𝑎𝑛𝑔𝑙𝑒(𝑑𝑒𝑔𝑟𝑒𝑒) 	= 	45	 + 	25.3125	 = 	70.3125

The performance of the wheelchair matches the expected outcome by avoiding all

obstacles and reversing if it gets too close to any wall or obstacle. The program can

be found in section A6 of the APPENDIX

 39

4.1.7 Controlling wheelchair through speech commands:

The idea for ABC wheelchair is to be able to use voice or speech commands as an

input to execute tasks. Now the wheelchair can navigate freely while avoiding

obstacles, similar to being controlled by the keyboard a new capability was tested

which included controlling the wheelchair using speech commands.

BitVoicer by BitSophia

“BitVoicer [7] is a speech recognition application that enables simple devices, with

low processing power, to become voice-operated. To do that, BitVoicer uses the PC

processing power to analyse audio streams, identify the sentences present in these

streams and send commands to a microcontroller connected to it.”

Figure 35. BITVOICER functionality [7]

BitVoicer processes the audio captured through the computer’s microphone and

compares to the written commands stored in the database. Since BitVoicer uses

serial communication interface, it can directly be integrated with the Arduino

 40

microcontroller and various commands can be executed. The code can be found in

the APPENDIX: Section A4.

The commands used were Forward, Reverse, Left, Right, Turn Around. The voice

commands get recognized with high confidence indoors but however, when

outdoors the confidence level of commands recognized reduces significantly. After

the commands are recognized the wheelchair performs the expected tasks of

travelling in the desired direction. It was observed that keyworks such as forward,

right, left, turn and around are commonly used in daily life by a majority of individuals

which caused false positives being recognized as commands as the ASR platform

could not differentiate between a command and conversation that the user

operating the wheelchair is indulging in.

To make the experience safer, the keywords to be recognized were changed to Drive

Forward, Drive Reverse, Turn Right and Turn Left which reduces the probability of

the common keywords used and not affecting the behavior of the wheelchair. The

recognition of commands is not limited to sending directions to the controller but

can also be used to navigate to pre-defined positions or landmarks within a map.

BitVoicer offers an unlimited number of commands that get can be recognized. An

example for implementing the speech command with the autonomous wheelchair

could be related to the idea explained during the introduction where the user would

like to travel to the cafeteria and the wheelchair can navigate their autonomously by

accepting the option.

4.1.8 Detecting known objects:

Robotic systems interpret the environment using sensors such as proximity sensors,

distance sensors, bearing sensors and cameras. Cameras can be used to detect

objects, people, shapes, signs etc. For a robotic system to provide a safe and the

wheelchair must interpret the environment correctly and execute tasks defined.

 41

After the wheelchair could move around using voice commands and avoid obstacles,

a beneficial feature for the system would be to identify objects such as doors to pass

through or signboards such as toilets or office numbers. As seen in figure 30, the

wheelchair tray also includes an USB camera which provides an RGB-image which is

used for detecting known objects. Object detection can be defined as a technology

that deals with detecting objects of a certain class in images or videos. OpenCV

(Open Source Computer Vision)[58] is a library of functions for real time computer

vison applications.

Using the source code from [3] , an object detector was created using OpenCV and

the camera attached to the front tray. The image below was used as the object to

be identified in the lab environment to find the exit from the lab which was identified

from all locations inside the lab resulting in a reliable object detection system which

will used as an accessory during navigation. The idea to be implemented was by

using the servo attached which rotates from 0-180° and when an object is detected

the servo stops rotating and the angle at which the servo stops is considered as the

direction of the object which is them refined by checking for the object multiple

times but since the web-camera was replaced with a Kinect sensor the step was not

implemented. However, since the Kinect sensor provides

depth information in addition to an RGB image the

location of the object can be estimated using the

pointcloud. This will be used in further development of

the project using the same object detector created. The

python code for the object detector can be found in

(section A7 from APPENDIX A)

Figure 36. Known door from lab at used for object detection

 42

4.2 Project Development

4.2.1 Generating Odometry:

Odometry can be defined as estimating the robots position

with time. The encoders attached to the wheelchair wheel

provide pulses which can be used to estimate the motion

the robot generates as shown in figure37.

Current Position[1] of robot (𝑥, 𝑦, q) , solving for (𝑥′, 𝑦′,q	′)

Where , w = wheelchair_wheel

 e = encoder_wheel

𝑊ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟_𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑏	
𝑏	 = 	462𝑚𝑚

𝑊ℎ𝑒𝑒𝑙_𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟		, 𝑑
𝑑¢ 	= 	195𝑚𝑚
𝑑\ 	= 	62𝑚𝑚
𝑑¢
𝑑\

= 3.145

Distance travelled by wheel for 1 complete rotation,

d¢ = 	P𝑑¢

Pulses from encoder, 𝑁			J\ = 400

Wheelchair resolution J¢ = 400 ∗ 3.145 = 1258

Distance travelled by wheel at any time, 𝑑]/[=
£∗d¤
J¤

𝑑Z\`=\] =
b¥¦	b�
P

 (Eqn 6)

 f	 = b¥–	b�
§

 (Eqn 7)

q	′	 = 	q	 + 	f (Eqn 8)

x’ = 	x	 +	d«¬®¬¯ ∗ cos(q) (Eqn 9)

y’ = 	y	 +	d«¬®¬¯ ∗ sin(q) (Eqn 10)

Arduino code[A9]

Figure 37. Generating odometry [42]

 43

4.2.2 Navigating to landmarks:

A basic robot navigation based on landmarks defined by position relative to a

starting point was implemented after generating the odometry. The robot takes an

input argument for the destination position and travels to the goal using odometry

information.

Figure 38. Robot landmark navigation[50]

Using figure 38 as reference, where the current position is defined by 𝑃G(𝑥G, 𝑦G,qG)

and 𝑃b(𝑥b, 𝑦b, qb) is the destination position.

The distance between the points r can be calculated using the Pythagorean theorem

or distance formula.

r	 = 	´((𝑥b–	𝑥G)P +	(𝑦b–	𝑦b)P) (Eqn 11)

and the heading difference a can be calculated using

a = 𝑎𝑡𝑎𝑛2(𝑦b − 𝑦G, 𝑥b − 𝑥G) −	qG (Eqn 12)

Figure 39. Navigating to landmarks

 44

4.2.3 Calculating dead-reckoning errors for Improving Odometry estimation:

The process described above for generating odometry works well in ideal situations

but there are a lot of errors which occur and are not accounted for. The major issue

with using a dead-reckoning process to estimate the robot’s position is due to the

fact it integrates the position over time the errors are also accumulated over time.

The errors can be caused due to various reasons encoder wheel slippage because of

which linear movement of the wheelchair wheel unaccounted for being the major

reason for error in this setup is due to the wheel on wheel configuration for placing

the encoders. The errors in odometry can be categorized in two categories[5]:

Systematic errors:

• Unequal wheel diameters

• Misalignment of wheels

• Incorrect wheelbase (the wheels are not in contact with the floor at a point

but rather an area)

Non-systematic errors:

• Wheel-slippage

• Travelling over uneven surfaces

• Internal and external force errors (example castor wheels)

For simplicity reasons, since the wheelchair is mostly driven in indoor environments

where the floor is mostly even, only the systematic errors are considered which are

mostly due to the defects in the mechanical design of the robot. The tyres on the

wheelchair are made with rubber, so it is susceptible to wear over time and the

wheelchair used for the project is over 7 years old because of the usage and the load

over the time the wheels have worn out leading to unequal diameters. The other

error not accounted for is the incorrect wheelbase value used for the wheelchair. The

wheelbase helps identify the Instantaneous Centre of Rotation (ICR) as shown in the

figure below. The wheelbase of a robot is calculated by the distance between the

 45

point of contact of the wheels with the floor but since the wheel is in contact in an

area and not a point resulting with an ineffective wheelbase estimate.

Figure 40. Wheeled robot kinematics [52]

A procedure created in 1994 by the University of Michigan called UMBmark [5] helps

to measure, calculate and correct dead-reckoning errors. The test consists of

manually moving the robot around a square path in both clockwise and counter-

clockwise direction from a starting position as shown in the figure below.

Figure 41. UMBmark test

Performing the test and calculating the correction factors for positional errors caused

by various odometry error sources. The results for the path are plotted in MATLAB

 46

for before and after incorporating the correction factor which shows an improvement

in the accuracy of the path taken.

Figure 42. Raw Odometry and corrected odometry

4.2.4 Fusing encoders and orientation from IMU to generate odometry

The odometry generated using the encoders is reliable but since the errors in dead-

reckoning accumulate over time, the errors in the position gradually increase in an

odometry model. To improve the accuracy of the position estimation, the data from

the encoders and the IMU can be fused to generate a motion model.

The gyroscope on the IMU provides the rotational velocity and the encoders provide

displacement information for how much the wheels rotate providing translation

motion information.

Figure 43. IMU axis [18]

 47

The IMU has three sensors with each sensor has its functionality and limitations.

§ ACCELEROMTER > X, Y, & Z linear axis motion sensing (sensitive to vibration)

§ GYROSCOPE > Pitch, Roll Yaw Rotational Sensing (Gyroscope Drift)

§ MAGNETOMETER > X, Y, & Z axis magnetic field sensing (Sensitive to magnetic

interface)

The gyroscope calculates orientation through integrating angular velocities and since

there is no frame of reference the values drift over time, but the drift is reasonable

enough for a better estimation of position. The orientation is calculated using the

equation below.

𝜃. = 	∫ 𝑔·𝑑𝑡 (Eqn 14)

The accelerometer tends to distort the acceleration due to external gravitational

forces in the motion which accumulates as noise in the system and produce errors in

the output. Using accelerometer to produce position requires the acceleration to be

integrated twice to determine a position estimate inducing noise in the system.

𝜈. = ¹𝛼.

𝑝. = 	»𝑎.

The magnetometer measures the orientation with respect to the true north but is

highly susceptible to noise due to electric interference and magnetic fields in electric

systems due to which the readings from the magnetometer are not considered for

fusion.

Substituting the value from Eqn 7 with the value of from Eqn 14 in Eqn 8

𝜃.¼v = 	¹𝑔·𝑑𝑡

𝑑Z\`=\] =
b¥¦	b�
P

x’ = 	x	 +	d«¬®¬¯ ∗ cos(q.¼v) (Eqn 15)

y’ = 	y	 +	d«¬®¬¯ ∗ sin(q.¼v) (Eqn 16)

The Arduino code for computing the odometry using encoders and the IMU can be

found in Appendix [A11].

 48

4.3 Integration with ROS

4.3.1 Initial communication between ROS and Arduino:

The Arduino code [APPENDIX A8)] is written to move the wheelchair either forward,

left, right and reverse using the robot steering plugin available through rqt in ROS.

Figure 44. RQT plugin for robot steering

Using the robot steering plugin when the sliders are moved, it enables the wheelchair

to move in the respective direction. This step forms the basis of understanding the

subscribers and publishers in ROS and how the communication between Arduino

and ROS is established.

4.3.2 Creating the Unified Robot Description Format (URDF) for the wheelchair:

ROS package “URDF” which is a parser for the XML format for representing a robot

model and can be visualized in ROS through RVIZ and simulated in ROS through

Gazebo. Robot kinematics is the relationship between the connectivity of the links

and joints of the robot. These links define the mechanical structure of the robot and

the position and orientation of different components or sensors attached to the

robot as shown in figure 45 and 46 below.

The XML code for the URDF model of the wheelchair can be found in Appendix
A12.

 49

Figure 45. Graphviz of urdf model

Figure 46. URDF model for wheelchair

Kinect sensor

 50

4.3.3 Creating a wheelchair follower:

One of the options available to the user through the interface as shown in figure 1 is

the follower mode, where the wheelchair can follow a certain individual or an object.

In this case the object the wheelchair follows is a QR code.

ViSP (Visual Servoing Platform):
ROS package “visp” is a complete cross-platform solution that allows prototyping

and developing applications in visual tracking and visual servoing. ViSP can be useful

in robotics, computer vision, augmented reality and computer animation. The

package provides trackers that rely on visual servoing techniques and can help track

an object and even estimate its position in real-time.

Visp Auto Tracker

The package depends on the Visp library for visual servoing. The package wraps

model-based trackers that have a QRcode or Flash code pattern, and the computer

vision algorithm can compute the position and orientation of the object in the image

which is fast enough to allow online or real time tracking.

Figure 47. QR code used for creating a follower

The algorithm detects the barcode using QR-code detection and uses the position

of the corners to compute an initial pose. Once the initial pose is estimated the

model-based tracker is initialized which tracks the squares around the QR-code. The

 51

tracker considers moving edges and the keypoint features on the barcode for

estimation. A python script written to read the position of the QRcode and follow

the code based on the change in the x and z position by determining the difference

in the direction and displacement of QRcode from its previous position and current

position and generates velocity values to be sent to the controller which can be found

in the Appendix section A13.

Figure 48. Camera Coordinates[2]

Figure 50 below explains the how the change in position of the QRcode is mapped

to the wheelchair follower using the Z-axis to generate linear (forward and reverse)

motion and X-axis for rotational motion.

Figure 49. Detecting QRcode

 52

4.3.4 Creating a Velocity controller:

After testing the wheelchair follower setup, the rotational speed for the wheelchair

was always fixed to ±1.57 rad/sec resulting in excess rotation causing oscillation and

jerks. To improve this, using the equations (Eqn 1, Eqn 2) to generate a smoother

motion. The values for the velocity received through ROS are of the double data type

and have to be converted to an integer data type without losing the information in

the decimal places so the values cannot be rounded up or down. Arduino code [A14]

Figure 50. Wheelchair follower using QR code

 53

4.3.5 Fusing multiple sources for position estimation:

ROS package robot_localization uses an Extended Kalman Filter (EKF) to fuse

multiple sources to better estimate an accurate motion that the wheelchair performs.

EKF is a known as a linear quadratic estimation (LQE) which produces an estimate for

a system which is accurate enough to estimate the current state of a system. The

filter produces the results in two stages known as the prediction and the correction

stage. By using a weighted average method, the relevant data is selected depending

on the covariance values and the sensor model matrix. This determines how much a

measurement should be trusted or can be relied on by calculating a gain called

Kalman gain. Higher gains make the system depend more on the measurements and

a lower gain enforces the system to depend on the prediction.

EKF Algorithm [59]:

𝑥½¾|¾¿J 	= 	 𝑓¾¿J(𝑥½¾¿J|¾¿J, 𝑢¾)	

𝑃¾|¾¿J 	= 	𝐺Á¾¿J	𝑄¾¿J𝐺Á¾¿J	Ã 	+ 	𝐹Á¾¿J𝑃¾¿J|¾¿J𝐹Á¾¿JÃ 	

𝑥½¾|¾ 	= 	 𝑥½¾|¾¿J 	+	𝐾¾	(𝑧¾ 	−	ℎ¾(𝑥½¾|¾¿J))	

𝑃¾	|¾ 	= 	𝑃¾|¾¿J 	−	𝐾¾𝑆¾𝐾¾Ã

Where,

𝑆¾ 	= 	𝑅¾ 	+	𝐻Ç¾𝑃¾|¾¿J𝐻Ç¾Ã

𝐾¾ 	= 	𝑃¾|¾¿J𝐻Ç¾Ã𝑆¾ − 1	

𝑥½¾ → 𝑆𝑡𝑎𝑡𝑒	𝑣𝑒𝑐𝑡𝑜𝑟 = 	

⎣
⎢
⎢
⎢
⎡
𝑥
𝑦
𝜃
𝜈.
𝜔.⎦
⎥
⎥
⎥
⎤

Sources:
Pose(x, y and 𝜃) from Wheel Odometry
Twist (linear acceleration and rotational velocity) from IMU

Prediction

Correction/Update

 54

4.3.6 Calculating covariance values for wheel odometry:

From the UMBmark procedure the errors for the absolute position (x	, y	,q) were

calculated as shown in the table below.

Trial Starting Position (𝐱𝟎, 𝐲𝟎,q𝟎) End Position E	𝐱Ò, 𝐲Ò,q	Ò	F

CW1 (0,0,0) (0.27,0.04,0.15)

CW2 (0,0,0) (0.18,0.0,0.13)

CW3 (0,0,0) (0.01,0.01,0.01)

CW4 (0,0,0) (0.48,0.16,0.09)

CW5 (0,0,0) (0.08,0.18,0.03)

CCW1 (0,0,0) (0.12,0.07,0.12)

CCW2 (0,0,0) (0.01,0.01,0.16)

CCW3 (0,0,0) (0.07,0.12,0.14)

CCW4 (0,0,0) (0.19,0.07,0.21)

CCW5 (0,0,0) (0.28,0.04,0.16)

Figure 51. Calculating covariance values

Mean: The average of all values

xÒ =
1
𝑛ÓxÔ

`

.ÕG

Variance: Second moment of all values

𝜎×P =
1
𝑛Ó(xÔ

`

.ÕG

− 𝑥Ò)^2		

Standard Deviation: Square root of variance

𝜎× = ´𝜎×P	

Co-variance: Second moment of all values, where x is the vector of values

Σ× =
𝑖
𝑛Ó[xÔ

`

.ÕG

− 𝑥Ò][𝑥. − 𝑥Ò]^𝑇	

Ú
𝑥
𝑦
q
Û = Ü

0.0212 0 0
0 0.0041 0
0 0 0.0042

Ü

The MATLAB script to generate correction factors and covariance values[A16]

 55

4.3.7 Mapping with RTAB-Map

Figure 52. RTAB-Map robot setup [25]

Figure 53. shows the one of the setups for the robot to be used with the RTAB-
Map package.

- Section 5.6 discusses how the odometry is generated by using the pulses from

the encoders and rotational velocity from the gyroscope.

- The Kinect sensor attached provides a RGB-D image which is read using the

“openni_launch” and “freenect” packages in ROS. The packages contain

launch files which can be used for using the Microsoft Kinect in ROS. The

packages create a nodelet which transforms the raw data from the sensor into

point clouds and other formats which can be used for appropriate visualization

or processing.

- Since the robot does not have a laser/lidar configured, the ros package

“depthimage_to_laserscan”(Wiki.ros.org, n.d.) is used to simulate a 2D laser

scan from the depth image from the Kinect as shown in the figure 49 below.

- Other ros packages used “tf_to_odometry” [26]

 56

Figure 53. RGB image and depth image from the Kinect sensor

Figure 54. Pointcloud from RGB image and Depth registered points

Figure 55. Laserscan from depthimage

 57

4.3.8 Mapping the environment:

Once the requirements are met, the environment can be mapped by manually

moving the wheelchair. The roslaunch file which contains the generic and

recommended parameters for the RTAB-Map package[25] and the additional nodes

used for the system can be found in Appendix A15.

Figure 56. Test lab area

Figure 57. 3D Cloud map of testlab

The figure 57 illustrates the map cloud generated with the use of a Kinect sensor for

the test lab. The detector[20] uses a bag-of-words approach to determine if a node

has been visited and each loop closure adds a new edge to the graph and then the

map is optimized. It can be observed that the algorithm builds dense 3D maps from

 58

point clouds and features surfaces being repeated and a distorted visualization due

to odometry noises.

Figure 58. Mapping stages 1 and 2

Figure 59. 3D Cloud map of wheelchair accessible area at Tonsley

The figures above show the cloud map for the 4th floor mapped at Tonsley building

in stages. The wheelchair is manually moved around in segments where a particular

area is mapped and then returned to the initial or starting point. As the wheelchair

moves through previously visited areas new nodes are added to the previously saved

nodes using odometry information and features from the environment. Once a loop

closure occurs at the initial position new edges are added after which the map is

optimized based on the most likely map from the information sources resulting in a

3D cloud map of the entire floor. The pointclouds can also be used to determine

 59

obstacles in the environment, where the ground is segmented at a certain height.

Then the three-dimensional map is collapsed down to two dimensions to generate

an occupancy grid map.

Figure 60. Grid maps generated from depth image for stages 1 and 2

Figure 61. Occupancy Grid map of floor at Tonsley

The grid maps seem slightly distorted due to odometry noises and the narrow beam

angle of the Kinect sensor. Since the Kinect only has a horizontal view of 57degree

the area covered while mapping is low but provides enough RGB and depth

information for generating maps which can be used for navigation. The grid

represents the blue print of the wheelchair environment where the size of the pixels

 60

in the real world and the information of the map are stored. The maps show excess

grids occupied because the grid map is generated using the depth image rather than

the laserscan.

4.3.9 Sending a goal

A goal is the pose (x, y position and the end orientation) of the robot in the map

using the 2D Nav Goal shortcut on Rviz(figure 62) . Once a goal is sent, a path is

generated to reach the goal as shown in 65 and 66 below. The local planner sends

velocity values which generate motion for the wheelchair.

Figure 62. 2D Nav shortcut

Figure 63. Global costmap

Figure 64. Local costmap

 61

Figure 63 and 64 show the costmaps being generated using the Kinect camera and

the sonar sensor. The size of the costmap window depend on the configuration set.

The local costmap uses a window of 5x5m and is not static. The window moves as

the wheelchair traverses through the path it is following.

Figure 65. Global Path

Figure 66. Full Plan

The path is shown in green in the figures above and the wheelchair follows the path

to reach the destination set from figure 62. The wheelchair has been able to generate

its map and localize itself within it. Once a goal is given a path is planned to reach

the destination by sending velocity values to the wheelchair controller.

 62

4.4 Making the wheelchair system kit
4.4.1 Designing the sensor shield

After finalising the sensors to be used, a sensor shield is designed which fits on top

of the Arduino microcontroller. The schematic for the sensor shield can be found in

Appendix section B1.

Figure 67. Arduino sensor shield

4.4.2 Designing the box:

To make the wheelchair more presentable and compact, a box was 3d printed

which fits the Arduino microcontroller, the shield and the power regulator which

powers the entire system.

Figure 68. Arduino and sensor shield box

 63

Chapter 5

DISCUSSION

The figures below illustrate the current state of the wheelchair which includes the

encoders, a Kinect sensor, the Arduino shield inside the box. The sensor shield is

powered through the wheelchair battery which allows it to be manually controlled

with the joystick even in the absence of a laptop.

Figure 69. Current state of wheelchair

The sections above discussed the development during the course of the project

where the wheelchair now has the capability to create a 3D map of the environment

using a cost-effective depth camera which is then collapsed down to a 2D map or a

grid map while generating costmaps (global and local) which are used for navigating

within the traversable areas. The wheelchair currently accepts controls using the

 64

trackpad on the laptop but have been tested by controlling the cursor using hand-

gesture recognition using OpenCV. The maps generated using the sensors provide

information about the wheelchair environment but can certainly be improved with

further testing and working on the system. The inflation radius for obstacles is

currently set high to maintain a certain distance from all obstacles and people as a

measure of safety. The inflation radius is the cost of the degradation of the adjacent

cells which are occupied. Reducing the inflation cost will generate much cleaner

occupancy maps of the environment. Figure’s 59 and 61 show a complete map of

the entire floor at Tonsley which can be broken down into multiple areas.

Segmenting the map based on locations or areas can be better visualized and

incorporated to suit the concept of the ABC Wheelchair. As shown in the figure

below the multiple maps are generated using the mapping technique used above

and then combined to create a global map. The [61] initial and the end nodes of each

mapping session are represented as diamonds in the figure above.

Figure 70. Illustration of Global and local maps through RTAB-map [61]

Multiple tasks described and implemented in chapter 4 such as speech command

control, object detection, following mode, navigating to a position on the map can

be integrated together with the use of a GUI and finite state machine to generate

the interface similar to what was shown in figure or similar to section 4.1.7 where

the controls can be replaced with actions and the wheelchair can perform the task.

 65

5.2 Limitations

Kinect Sensor - The Kinect sensor provides RGB-D information about the

environment which generates 3D pointclouds and grid maps however, due to the

narrow field of view of the sensor there is a lot of information missed about the

surroundings while generating maps. The sensor has a blind spot of 1.7m in front of

the wheelchair due to which the local costmap is not updated correctly and hence

misses obstacles below a certain height (0.1m). This can be improved completely by

using a sonar sensor attached to the front of the wheelchair providing a better

solution for obstacle avoidance or for updating the local costmaps.

5.3 Further Development

5.3.1 Odometry correction/syncing

As mentioned before, the biggest issue with using dead-reckoning as a method for

calculating the robot’s position is that the errors accumulate of time and throw the

odometry off resulting in an inaccurate position estimation. One way to correct

odometry is by using fixed landmarks and using the orientation and distance of the

wheelchair with respect to the landmark to estimate the position of the wheelchair

and reduce errors.

5.3.2 Generating maps with a Lidar

The current grid maps are generated using depth information which results in excess

grid cells being marked occupied. A lidar is a light detection and ranging device

which is used for measuring ranges. Some lidars provide a range view of 360degree

which will be useful while generating maps as the Kinect sensor has a narrow view

which results in missing turns and corner while mapping. While a lidar provides

sensor measurement only in two dimensions, the resolution is high and more

accurate compared to the fake laser scan generated by the Kinect sensor.

The lidar has not been mechanically attached to the wheelchair but figure 71

 66

Figure 71. Laserscans using RPLidar

illustrates the output of the laserscans when the lidar is manually held above the

wheelchair used for the project. The scans show a highly accurate interpretation of

its surrounding and by integrating with the Kinect sensor might generate better

maps of the environment and can certainly be used for updating the local and global

costmaps to generate a smoother navigational plan.

5.3.3 Creating a follower using an IMU

The follower created in the section 4.3.3 works well to follow the QRcode however

has certain limitations. The main limitation being that the QRcode should be in the

camera’s view the entire time. Since the wheelchair is a mobile robot and travels

within a dynamic environment, the follower needs to be adaptable with respect to

the changes in the environment and thus a better follower can be created with an

IMU using the process of dead-reckoning which estimates the current position based

on the previous position and speeds over time. The IMU can be used through a

bracelet or an Android phone or any other module publishing acceleration and

velocity values from the accelerometer and the gyroscope. The system may provide

the solution for a limited time and will have to be calibrated over a short period of

time.

 67

5.3.4 Integrating eye tracking control

The idea for sending a goal as shown in section 4.3.9 is not limited to using a trackpad

on a laptop, but can be extended to a touch control or integrating the cursor to be

controlled using eye-tracking. By incorporating eye-tracking [60] into a system gives

the user a new method of input or added control. The Tobii eye tracker can be used

with the system developed for the wheelchair which will introduce an additional

interaction method for control with the wheelchair interface discussed in section 1.

The eye tracker can be used for selecting the options from figure 1 and can be used

for sending navigation goals on a map.

 68

Chapter 6

CONCLUSION

The thesis reported the development of an electric wheelchair being converted into

an autonomous one with the use of inexpensive and easily accessible sensors using

ROS.

Chapter 1 introduces the concept of the ABC wheelchair project at Flinders

University and how it can be beneficial for individuals with cognitive, certain physical

and mobility impairments.

Chapter 4 contributes to the task of developing a cost-effective solution for building

an intelligent wheelchair capable of creating maps of the environment and

navigating within using multiple types of inputs. The section also provides

background information required for converting an existing wheelchair into an

intelligent robotic system.

Chapter 5 discusses the outputs of the experiments and ways of integrating the

results from different tasks to create the control method for the interface. Another

contribution from the chapter is the further development which can be implemented

to improve the functionality of the current system.

The experimental result of the work were positive and provide convincing results to

contribute working proof to the concept of the ABC Wheelchair and also meeting

the set project goals. The system designed can be integrated with majority of the

existing wheelchairs allowing it to be converted into an intelligent one which can

enhance lives of individuals who are dependent on others for mobility.

 69

APPENDIX A
A.1 Reading and sending joystick voltage values to the motor controller

#include<SPI.h>

#define CS_ADC 10 //chip select pins
#define CS_POT 8
#define channel0 0xE0
#define channel1 0xE8
#define POT_FB 0x12 //00010001
#define POT_FB 0x11 //00010010
#define POT_FB 0x13 //00010011

void setup() {
pinMode(CS_POT, OUTPUT);
pinMode(CS_ADC, OUTPUT);

digitalWrite(CS_ADC,LOW);
digitalWrite(CS_ADC,HIGH);
digitalWrite(CS_POT,HIGH);

Serial.begin(9600);
SPI.begin();
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE3);
SPI.setClockDivider(SPI_CLOCK_DIV128);
POTcontrol(POT_ALL,0x80);
delay(2000);
}

void loop()
{
 joystick_control();
 }
int ADCread(byte channel)
{
 int command;
 int voltage;
 byte fbit;
 byte sbit;
 command=channel<<8|0x00;
digitalWrite(CS_ADC,LOW);
voltage=SPI.transfer16(command) & 0x3FF;
digitalWrite(CS_ADC,HIGH);
return voltage;
}
void POTcontrol(byte address,byte value)
{
digitalWrite(CS_POT,LOW);
SPI.transfer(address);

 70

SPI.transfer(value);
digitalWrite(CS_POT,HIGH);
}

byte joystick_control()
{
 int turnjval;
 int drivejval;
 byte turnpot;
 byte drivepot;
 float mult= 0.85;
 turnjval=ADCread(channel0);
 turnpot=(turnjval-100)*mult;
 drivejval=ADCread(channel1);
 drivepot=(drivejval-100)*mult;
 POTcontrol(POT_FB,drivepot);
 POTcontrol(POT_LR,turnpot);
 return 1;
}

 71

A.2 Using a keyboard to control the wheelchair

void forward(byte speed)
{
POTcontrol(POT_FB,speed);
}
void reverse(byte speed)
{
POTcontrol(POT_FB,speed);
}
void right(byte speed)
{
POTcontrol(POT_LR,speed);
}
void left(byte speed)
{
POTcontrol(POT_LR,speed);
}
void stop_wheelchair()
{
POTcontrol(POT_ALL,stop);
}
byte keyboard_control()
{
 byte read;
if(Serial.available())
 read=Serial.read();
 if(read==119) //w - Forwad
 {
 forward(linear_speed);
 }
 else if(read==97) //a - Left
 {
 left(rotational_speed);

 }
else if(read==115) //s - Reverse
 {
 reverse(254 - linear_speed)
 }
else if(read==100) //d - Right
 {
 right(254 - rotational_speed);
 }
 else if(read==32) //space - Stop
 {
stop_wheelchair();
 }
return 1;
}

 72

A.3 Moving Wheelchair in a sequence

void loop()
{

forward(linear_speed);
pause(5000);
left(rotational_speed);
pause(2000);
forward(linear_speed);
pause(5000);
left(rotational_speed);
pause(2000);
forward(linear_speed);
pause(5000);
left(rotational_speed);
pause(2000);
forward(linear_speed);
pause(2500);
stop_wheelchair();
}

 73

A.4 Adding voice commands to the program.

#include<SPI.h>
#include <BitVoicer11.h>

BitVoicerSerial bvSerial = BitVoicerSerial();
byte voicecommand() {
 bvSerial.getData();
 //Quits the loop if no string data was returned from getData
 if (bvSerial.strData == "")
 return;
 //Each of the next 'if' statements performs a different task
based on the data received from BitVoicer
 if (bvSerial.strData == "fw") //Forward
 {
 POTcontrol(POT_FB,0xFB);
 POTcontrol(POT_LR,0x80);
 bvSerial.strData = "";
 }
 else if (bvSerial.strData == "rv") //Reverse
 {
 POTcontrol(POT_FB,0x08);
 POTcontrol(POT_LR,0x80);
 bvSerial.strData = "";
 }
 else if (bvSerial.strData == "rt") //Right
 {
 POTcontrol(POT_FB,0x80);
 POTcontrol(POT_LR,0xFB);
 bvSerial.strData = "";
 }
 else if (bvSerial.strData == "lt") //Left
 {
 POTcontrol(POT_FB,0x80);
 POTcontrol(POT_LR,0x0A);
 bvSerial.strData = "";
 }
 else if (bvSerial.strData == "st") //Stop
 {
 POTcontrol(POT_FB,0x80);
 POTcontrol(POT_LR,0x80);
 bvSerial.strData = "";
 }
 else {
 Serial.println("ERROR:" + bvSerial.strData);
 bvSerial.strData = "";
 }
}

 74

A.5 Calculating turn angles

void angle()
{
 int fbpotval;
 int lrpotval;
 byte angle;
 byte temp;
 Serial.println("Enter Heading");
 if(Serial.available() > 0)
 angle=Serial.parseInt();
 Serial.println(angle);
 temp=lrpotval;
 if(angle<90)
 {
 fbpotval=(398-(angle*1.6));
 lrpotval=(254+(angle*1.6));
 }
 else if(angle>90)
 {
 angle=angle-90;
 fbpotval=(398-(angle*1.6));
 lrpotval=(254-(angle*1.6));
 }
if(temp!=lrpotval || lrpotval!=254)
{
 POTcontrol(POT_FB,(fbpotval-100)*0.85);
 POTcontrol(POT_LR,(lrpotval-100)*0.85);
 Serial.println(fbpotval);
 Serial.println(lrpotval);
}
else
 POTcontrol(POT_ALL,128);
 delay(5000);
}

 75

A.6 Avoiding obstacles safely

void autowheelchair()
{
int fullspeed=398;
int stoppot=254;
int slow sleep=326;
int revfullspeed=110;
jstickval=ADCread(channel1); //for safety
 if(jstickval>260 || jstickval<240)
joystick_control();
else
volt=analogRead(SonarPin); //distance reading from sonar
dist=volt*5;
if(dist>1000) //drive forward if no obstacle
infront
{
forward(fullspeed);
left(stoppot);
}
else if(dist<1000) //if distance is less than threshold,
calculate turnangle
{
 turnangle=45+(10-(dist/100))*5.625;
 turnangleval=turnangle*1.711;
 turnpotval=254+turnangleval;
forward(slowspeed);
POTcontrol(POT_LR,(turnpotval-100)*0.85);
}
else if(dist<300) //if the wheelchair is very close to
obstacle
{ // go reverse
reverse(revfullspeed);
left(stoppot);
}
}

 76

A.7 Object detection using opencv [3]

import cv2
import numpy as np
MIN_MATCH=30
detector = cv2.SIFT()
FLANN_INDEX_KDITREE=0
flannParam=dict(algorithm=FLANN_INDEX_KDITREE,tree=5)
flann = cv2.FlannBasedMatcher(flannParam,{})
trainImg=cv2.imread('ObjectDetection/Door',0)
trainKP,trainDes=detector.detectAndCompute(trainImg,None)
cam=cv2.VideoCapture(1)
while True:
 ret,qimgrgb=cam.read()
 qimg=cv2.cvtColor(qimgrgb,cv2.COLOR_BGR2GRAY)
 qkp,qdes=detector.detectAndCompute(qimg,None)
 matches=flann.knnMatch(qdes,trainDes,k=2)

 for m,n in matches:
 if(m.distance<0.75*n.distance):
 goodMatch.append(m)
 print"Door Found"
 if(len(goodMatch>Min_Match)):
 tp=[]
 qp=[]
 for m in goodMatch:
 tp.append(trainKP[m.trainIdx].pt)
 qp.append(qkp[m.qIdx].pt)
 tp,qp = np.float32((tp,np))
 H,status= findHomography(tp,qp,cv2.RANSAC,3.0)
 h,w=trainImg.shape
 trainingBorder=np.float32([[[0,0],[0,h-1],[w-1,h-1],[w-
1,0]]])
 qBorder=cv2.perspectiveTransform(trainingBorder,H)

cv2.polylines(qimgrbg,[np.int32(qBorder)],True,(0,255,0),5)
 else:
 print"Not Enough Matches -
%d/%d"%(len(goodMatch),MIN_MATCH)
 cv2.imshow('result',qimgrgb)
 ifcv2.waitKey(10)==ord('q'):
 break

 cam.release()
 cv2.destroyAllWindows()

 77

A.8 Integration of ROS with Arduino

#include<SPI.h>
#include "ros.h"
#include "geometry_msgs/Twist.h"
int jstickval;
float x;
float y;

ros::NodeHandle nh;
void velCallback(const geometry_msgs::Twist& vel)
{
 x = vel.linear.x;
 y = vel.angular.z;
}
ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel" ,
velCallback);

void setup() {
pinMode(CS_POT, OUTPUT);
pinMode(CS_ADC, OUTPUT);
digitalWrite(CS_ADC,LOW);
digitalWrite(CS_ADC,HIGH);
digitalWrite(CS_POT,HIGH);
Serial.begin(9600);
SPI.begin();

SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE3);
SPI.setClockDivider(SPI_CLOCK_DIV128);

POTcontrol(POT_ALL,0x80);
delay(2000);
 nh.initNode();
 nh.subscribe(sub);
}
void loop()
{
jstickval=ADCread(channel1);
 if(jstickval>260 || jstickval<240)
 joystick_control();
 else
 roscontrol();
}
int ADCread(byte channel)
{
 int command;
 int voltage;
 byte fbit;
 byte sbit;

 78

 command=channel<<8|0x00;
digitalWrite(CS_ADC,LOW);
voltage=SPI.transfer16(command) & 0x3FF;
digitalWrite(CS_ADC,HIGH);
return voltage;
}
void POTcontrol(byte address,byte value)
{
digitalWrite(CS_POT,LOW);
SPI.transfer(address);
SPI.transfer(value);
digitalWrite(CS_POT,HIGH);
}
byte joystick_control()
{
 int turnjval;
 int drivejval;
 byte turnpot;
 byte drivepot;
 float mult= 0.85;
 turnjval=ADCread(channel0);
 turnpot=(turnjval-100)*mult;
 drivejval=ADCread(channel1);
 drivepot=(drivejval-100)*mult;
 POTcontrol(POT_FB,drivepot);
 POTcontrol(POT_LR,turnpot);
 return 1;
}
void roscontrol()
{
 if (x>0) //forward
 {
 POTcontrol(POT_FB,0xFB);
 POTcontrol(POT_LR,0x80);
 }
 else if (x<0) //reverse
 {
 POTcontrol(POT_FB,0x08);
 POTcontrol(POT_LR,0x80);
 }
 else if (y<0) //right
 {
 POTcontrol(POT_FB,0x80);
 POTcontrol(POT_LR,0xFB);
 }
 else if (y>0) //left
 {
 POTcontrol(POT_FB,0x80);
 POTcontrol(POT_LR,0x08);
 }
}

 79

A.9 Generating Wheel odometry

void compute_odometry()
{
right_pulses = R_count ;
left_pulses = L_count;
right_ticks = right_pulses - prev_right_pulses;
left_ticks = left_pulses - prev_left_pulses;
right_wheel_distance = right_ticks * distance_per_tick;
left_wheel_distance = left_ticks * distance_per_tick;

mean_distance = (left_wheel_distance +
right_wheel_distance)/2;
wheel_theta += (right_wheel_distance -
left_wheel_distance)/wheel_base;

//Limiting value of theta between Pi and -Pi
if(wheel_theta < -PI)
wheel_theta= PI;
if(wheel_theta > PI)
wheel_theta = -PI;
x_pos += mean_distance * cos(wheel_theta);
y_pos += mean_distance * sin(wheel_theta);
}
//Interrupt routines to read encoder pulses
void left_interrupt()
{
 char i;
 i=digitalRead(L_PHASE_B);
 if(i)
 L_count +=1;
 else
 L_count -= 1;
}
void right_interrupt()
{
 char i;
 i=digitalRead(R_PHASE_B);
 if(i)
 R_count +=1;
 else
 R_count -= 1;
}

 80

A.10 Landmark Navigation

void navigation()
{
 int junk;
 while(!goal_x)
{
 Serial.println("Enter Goal x");
 while(!Serial.available());
 goal_x=Serial.parseFloat();
 Serial.flush();
}
while(!goal_y)
{
 Serial.println("Enter Goal y");
 Serial.flush();
 while(!Serial.available());
 goal_y=Serial.parseFloat();
Serial.print("Destination:");Serial.print(goal_x);Serial.print
(",");Serial.println(goal_y);
}
compute_odometry(); // generate odometry
diff_x = goal_x - x_pos;
diff_y = goal_y - y_pos;
diff_dist = sqrt((diff_x)^2 + (diff_y)^2);
diff_heading = atan2(diff_y,diff_x);
if(diff_dist>0.5)
forward();
if((wheel_theta - diff_heading) > 0.3)
 left();
if((wheel_theta - diff_heading) < -0.3)
 right();
Serial.print("Distance to goal: ");
Serial.print(diff_dist);
Serial.println(" m");
delay(500);
 if(diff_dist <0.5)
 {
 stop_wheelchair();
 Serial.print("Goal Reached");
 goal_x=0;
 goal_y=0;
 }
}

 81

A.11 Computing odometry from encoders and IMU

Advanced_I2C.ino
Brian R Taylor
brian.taylor@bolderflight.com
Copyright (c) 2017 Bolder Flight Systems
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the
Software.

float get_imu_theta()
{
 IMU.readSensor();
 gZ = IMU.getGyroZ_rads();
return gZ;
}

void compute_odom()
{
right_pulses=R_count;
left_pulses=L_count;
current_time = millis();
imu_theta_rate = get_imu_theta();
right_ticks = right_pulses - prev_right_pulses;
left_ticks = left_pulses - prev_left_pulses;
right_wheel_distance = right_ticks * right_distance_per_tick;
left_wheel_distance = left_ticks * left_distance_per_tick;
mean_distance = (left_wheel_distance +
right_wheel_distance)/2;
diff_time = current_time - previous_time;
imu_theta -= imu_theta_rate*diff_time;
theta_global = imu_theta/1000;
if(theta_global< -PI)
theta_global+= 2*PI;
else if(theta_global > PI)
theta_global -= 2*PI;
x_pos += (mean_distance * cos(theta_global))*1.0/1000;
y_pos += (mean_distance * sin(theta_global))*1.0/1000;

prev_left_pulses=left_pulses;
prev_right_pulses=right_pulses;
previous_time=current_time;
}

 82

A.12 Wheelchair URDF model

<?xml version='1.0'?>
 <link name='chassis'>
 <pose>0 0 0.12 0 0 0</pose>

 <inertial>
 <mass value="7.0"/>
 <origin xyz="0.0 0 0.1" rpy=" 0 0 0"/>
 <inertia
 ixx="0.5" ixy="0" ixz="0"
 iyy="1.0" iyz="0"
 izz="0.1"
 />
 </inertial>

 <collision name='collision'>
 <geometry>
 <box size=".8 .8 .1"/>
 </geometry>
 </collision>

 <visual name='chassis_visual'>
 <origin xyz="0 0 0" rpy=" 0 0 0"/>
 <geometry>
 <box size=".8 .8 .1"/>
 </geometry>
 </visual>

 <collision name='caster_collision'>
 <origin xyz="-0.18 0 -0.05" rpy=" 0 0 0"/>
 <geometry>
 <sphere radius="0.13"/>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>0</mu>
 <mu2>0</mu2>
 <slip1>1.0</slip1>
 <slip2>1.0</slip2>
 </ode>
 </friction>
 </surface>
 </collision>

 <visual name='caster_visual'>
 <origin xyz="-0.18 0 -0.05" rpy=" 0 0 0"/>
 <geometry>
 <sphere radius="0.13"/>

 83

 </geometry>
 </visual>
 </link>

 <link name="left_wheel">
 <!--origin xyz="0.1 0.13 0.1" rpy="0 1.5707 1.5707"/-->
 <collision name="collision">
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <geometry>
 <cylinder radius="0.18" length="0.05"/>
 </geometry>
 </collision>
 <visual name="left_wheel_visual">
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <geometry>
 <cylinder radius="0.18" length="0.05"/>
 </geometry>
 </visual>
 <inertial>
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <mass value="10"/>
 <cylinder_inertia m="10" r="0.1" h="0.05"/>
 <inertia
 ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0"
 izz="1.0"/>
 </inertial>
 </link>

 <link name="right_wheel">
 <!--origin xyz="0.1 -0.13 0.1" rpy="0 1.5707 1.5707"/-->
 <collision name="collision">
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <geometry>
 <cylinder radius="0.18" length="0.05"/>
 </geometry>
 </collision>
 <visual name="right_wheel_visual">
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <geometry>
 <cylinder radius="0.18" length="0.05"/>
 </geometry>
 </visual>
 <inertial>
 <origin xyz="0 0 0" rpy="0 1.5707 1.5707"/>
 <mass value="10"/>
 <cylinder_inertia m="10" r="0.1" h="0.05"/>
 <inertia
 ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0"
 izz="1.0"/>

 84

 </inertial>
 </link>

 <joint type="continuous" name="left_wheel_hinge">
 <origin xyz="0.1 0.45 0" rpy="0 0 0"/>
 <child link="left_wheel"/>
 <parent link="chassis"/>
 <axis xyz="0 1 0" rpy="0 0 0"/>
 <limit effort="100" velocity="100"/>
 <joint_properties damping="0.0" friction="0.0"/>
 </joint>

 <joint type="continuous" name="right_wheel_hinge">
 <origin xyz="0.1 -0.45 0" rpy="0 0 0"/>
 <child link="right_wheel"/>
 <parent link="chassis"/>
 <axis xyz="0 1 0" rpy="0 0 0"/>
 <limit effort="100" velocity="100"/>
 <joint_properties damping="0.0" friction="0.0"/>
 </joint>

<!--link name="chassis_rod">
 <visual>
 <geometry>
 <cylinder length="0.3" radius="0.1"/>
 <origin rpy="0 0 0" xyz="0 0 0.15"/>
 </geometry>
 </visual>
</link>
<joint name="base to chassis rod" type="fixed"/>
 <parent link="chassis"/>
 <child link="chassis_rod"/>
 <origin xyz="0 0 0.15"/>
</joint-->

<link name="base_rod">
 <!--origin xyz="0.1 -0.13 0.1" rpy="0 1.5707 1.5707"/-->
 <collision name="collision">
 <origin xyz="0 0 0.12" rpy="0 0 0"/>
 <geometry>
 <cylinder radius="0.04" length="0.4"/>
 </geometry>
 </collision>
 <visual name="base_rod_visual">
 <origin xyz="0 0 0.12" rpy="0 0 0"/>
 <geometry>
 <cylinder radius="0.04" length="0.4"/>
 </geometry>
 </visual>
 </link>

 85

 <joint type="fixed" name="base_to_chassis_rod">
 <origin xyz="0.0 0.0 0.1" rpy="0 0 0"/>
 <child link="base_rod"/>
 <parent link="chassis"/>
 </joint>

<link name="base_chair">
 <collision name="collision">
 <origin xyz="0 0 0.15" rpy="0 0 0"/>
 <geometry>
 <box size=".6 .8 .05"/>
 </geometry>
 </collision>
 <visual name="base_chair_visual">
 <origin xyz="0 0 0.15" rpy="0 0 0"/>
 <geometry>
 <box size=".6 .8 .05"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="base_to_chair">
 <origin xyz="0.0 0.0 0.15" rpy="0 0 0"/>
 <child link="base_chair"/>
 <parent link="base_rod"/>
 </joint>

<link name="chair_rest">
 <collision name="collision">
 <origin xyz="-0.15 0 0.24" rpy="0 0 0"/>
 <geometry>
 <box size=".1 .8 .6"/>
 </geometry>
 </collision>
 <visual name="chair_back_visual">
 <origin xyz="-0.15 0 0.24" rpy="0 0 0"/>
 <geometry>
 <box size=".1 .8 .6"/>
 </geometry>
 </visual>
 </link>
 <joint type="fixed" name="base_chair_back">
 <origin xyz="-0.15 0.0 0.24" rpy="0 0 0"/>
 <child link="chair_rest"/>
 <parent link="base_chair"/>
 </joint>

<link name="left_arm_rest">
 <collision name="collision">
 <origin xyz="0 0.2 0.14" rpy="0 0 0"/>

 86

 <geometry>
 <box size="0.6 .1 .2"/>
 </geometry>
 </collision>
 <visual name="left_arm_rest_visual">
 <origin xyz="0 0.2 0.14" rpy="0 0 0"/>
 <geometry>
 <box size="0.6 .1 .2"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="chair_left_arm">
 <origin xyz="0 0.2 0.14" rpy="0 0 0"/>
 <child link="left_arm_rest"/>
 <parent link="base_chair"/>
 </joint>

<link name="right_arm_rest">
 <collision name="collision">
 <origin xyz="0 -0.2 0.14" rpy="0 0 0"/>
 <geometry>
 <box size="0.6 .1 .2"/>
 </geometry>
 </collision>
 <visual name="right_arm_rest_visual">
 <origin xyz="0 -0.2 0.14" rpy="0 0 0"/>
 <geometry>
 <box size="0.6 .1 .2"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="right_left_arm">
 <origin xyz="0 -0.2 0.14" rpy="0 0 0"/>
 <child link="right_arm_rest"/>
 <parent link="base_chair"/>
 </joint>

<link name="wheelchair_tray">
 <collision name="collision">
 <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/>
 <geometry>
 <box size="0.3 .8 .1"/>
 </geometry>
 </collision>
 <visual name="wheelchair_tray_visual">
 <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/>
 <geometry>

 87

 <box size="0.3 .8 .1"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="wheelchair_tray_joint">
 <origin xyz="0.1 0.1 0.145" rpy="0 0 0"/>
 <child link="wheelchair_tray"/>
 <parent link="right_arm_rest"/>
 </joint>

<link name="kinect">
 <collision name="collision">
 <origin xyz="0.15 0.05.05"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="kinect_wheelchair_tray_joint">
 <origin xyz="0.15 0.05 0.06" rpy="0 0 0"/>
 <child link="kinect"/>
 <parent link="wheelchair_tray"/>
 </joint>

<link name="sonar_link">
 <collision name="collision">
 <origin xyz="0.1 0 0" rpy="0 0 0"/>
 <geometry>
 <box size="0.01 0.03 0.05"/>
<mesh
filename="package://hector_sensors_description/meshes/sonar_se
nsor/max_sonar_ez4.dae"/>
 </geometry>
 </collision>
 <visual name="sonar_visual">
 <origin xyz="0.1 0 0" rpy="0 0 0"/>
 <geometry>
 <box size="0.01 0.03 0.05"/>
 </geometry>
 </visual>
 </link>

 <joint type="fixed" name="sonar_rod_joint">
 <origin xyz="0.1 0 0" rpy="0 0 0"/>
 <child link="sonar_link"/>
 <parent link="base_rod"/>
 </joint>
</robot>

Gazebo Model
<?xml version="1.0"?>

 88

<robot>
 <gazebo>
 <plugin name="differential_drive_controller"
filename="libgazebo_ros_diff_drive.so">
 <legacyMode>false</legacyMode>
 <alwaysOn>true</alwaysOn>
 <updateRate>20</updateRate>
 <leftJoint>left_wheel_hinge</leftJoint>
 <rightJoint>right_wheel_hinge</rightJoint>
 <wheelSeparation>0.4</wheelSeparation>
 <wheelDiameter>0.18</wheelDiameter>
 <torque>20</torque>
 <commandTopipenni_kinect.so">
 <cameraName>camera</cameraName>
 <alwaysOn>true</alwaysOn>
 <updateRate>10</updateRate>
 <imageTopicName>rgb/image_raw</imageTopicName>

<depthImageTopicName>depth/image_raw</depthImageTopicName>

<pointCloudTopicName>depth/points</pointCloudTopicName>

<cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>

<depthImageCameraInfoTopicName>depth/camera_info</depthImageCa
meraInfoTopicName>
 <frameName>camera</frameName>
 <baseline>0.1</baseline>
 <distortion_k1>0.0</distortion_k1>
 <distortion_k2>0.0</distortion_k2>
 <distortion_k3>0.0</distortion_k3>
 <distortion_t1>0.0</distortion_t1>
 <distortion_t2>0.0</distortion_t2>
 <pointCloudCutoff>0.4</pointCloudCutoff>
 </plugin>
 </sensor>
 </gazebo>

<gazebo reference="sonar_link">
 <sensor type="ray" name="sonar">
 <always_on>true</always_on>
 <update_rate>10</update_rate>
 <pose>0 0 0 0 0 0</pose>
 <visualize>true</visualize>
 <ray>
 <scan>
 <horizontal>
 <samples>2</samples>
 <resolution>1</resolution>
 <min_angle>-0.008552113</min_angle>
 <max_angle>-0.008552113</max_angle>

 89

 </horizontal>
 <vertical>
 <samples>2</samples>
 <resolution>1</resolution>
 <min_angle>-0.008552113</min_angle>
 <max_angle>0.008552113</max_angle>
 </vertical>
 </scan>
 <range>
 <min>0.15</min>
 <max>2</max>
 <resolution>0.01</resolution>
 </range>
 </ray>

 <plugin name="gazebo_ros_sonar_controller"
filename="libhector_gazebo_ros_sonar.so">
 <gaussianNoise>0.005</gaussianNoise>
 <topicName>sonar/distance</topicName>
 <frameId>sonar_link</frameId>
 </plugin>
 </sensor>
 </gazebo>

 <gazebo reference="chassis">
 <material>Gazebo/Red</material>
 </gazebo>
<gazebo reference="base_rod">
 <material>Gazebo/Grey</material>
 </gazebo>
<gazebo reference="base_chair">
 <material>Gazebo/Black</material>
 </gazebo>
<gazebo reference="chair_rest">
 <material>Gazebo/Black</material>
 </gazebo>
<gazebo reference="left_arm_rest">
 <material>Gazebo/Red</material>
 </gazebo>
<gazebo reference="right_arm_rest">
 <material>Gazebo/Red</material>
 </gazebo>
</robot>

 90

A.13 Wheelchair Follower

#!/usr/bin/env python
import math
import rospy
from geometry_msgs.msg import PoseStamped, Point , Twist
from std_msgs.msg import Int8
x=0.0
z=0.0
status=1;

def callback(msg):
 global previous_x
 global previous_z
 global x
 global z
 previous_x=x
 previous_z=z
 x = msg.pose.position.x
 z = msg.pose.position.z

def status(msg):
 global status
 status=msg.data

rospy.init_node('follower')
rospy.Subscriber("/visp_auto_tracker/object_position",PoseStam
ped,callback)
pub=rospy.Publisher("cmd_vel",Twist,queue_size=1)
rospy.Subscriber("/visp_auto_tracker/status",Int8,status)

speed=Twist()
r=rospy.Rate(10)
previous_x=x
previous_z=z
while not rospy.is_shutdown():
 if(status==3):
 rospy.loginfo_throttle(30,"Object Found,
Following Object")
 diff_x=previous_x-x
 diff_z=previous_z-z
 speed.linear.x= (diff_z*1000)
 speed.angular.z= (diff_x*1000)
 elif(status!=3):
 rospy.loginfo_throttle(30,"Searcing for Object")
 speed.angular.z= 0.0
 speed.linear.x= 0.0
 pub.publish(speed)
 r.sleep()

 91

A.14 Velocity Controller

void Callback(const geometry_msgs::Twist& vel)
{
double linear_vel= vel.linear.x;
double angular_vel= vel.angular.z;
int rotational_speed;
int linear_speed_sig;
double linear_speed_dec;
int linear_speed;
int linear_speed_val;
int fb_pot_val;
int lr_pot_val;

//Velocity values are of double data type so have to be
converted to integer
if(!checkjoystick())
{
 angular_vel = angular_vel * 57.2958; //convert to degrees
 rotational_speed = int(254 - angular_vel*1.6);//convert to
pot_val

 linear_speed_sig = int(linear_vel/1); //Get integer part
 linear_speed_dec = linear_vel - linear_speed; //get decimal
part
 linear_speed = int(linear_speed_sig*100 +
linear_speed_dec*100);//combine integer and decimal
 linear_speed_val = (254 +linear_speed*1.6);//convert to
pot_val

 if(linear_speed_val > 398)
 linear_speed_val=398;
 if(linear_speed_val<10)
 linear_speed_val=10;
 if(rotational_speed>398)
 rotational_speed=398;
 if(rotational_speed<10)
 rotational_speed=10;

 fb_pot_val=(linear_speed_val-100)*0.85;
 lr_pot_val=(rotational_speed-100)*0.85;
POTcontrol(POT_FB,fb_pot_val);
POTcontrol(POT_LR,lr_pot_val);

 }
}

ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel",Callback);

 92

A.15 Mapping with RTAB-Map

<?xml version="1.0"?>
<launch>
<!--Launch rosserial for arduino-->
<arg name="port" default="/dev/ttyACM0" />
<node name="serial_node" pkg="rosserial_python"
type="serial_node.py">
 <param name="port" value="$(arg port)"/>
 <param name="baud" value="57600" />
</node>

<param name="robot_description" command="$(find
xacro)/xacro.py '$(find
mybot_description)/urdf/mybot.xacro'"/>

 <!-- convert tf to odom -->
<node pkg= "tf_to_odometry" name="tf_to_odometry"
type="tf_to_odometry" output="screen">
</node>

 <!-- send fake joint values -->
 <node name="joint_state_publisher"
pkg="joint_state_publisher" type="joint_state_publisher">
 <param name="use_gui" value="False"/>
 </node>
 <!-- Combine joint values -->
 <node name="robot_state_publisher"
pkg="robot_state_publisher" type="state_publisher"/>

<!--Launch openni node with depth_registration := true and
publish_tf:=false-->
<include file="$(find wheelchair)/launch/kinect.launch"/>

 <!-- Move base -->
<include file="$(find
wheelchair)/launch/includes/move_base_simulation.launch.xml"/>

<node pkg="rtabmap_ros" type="rtabmap" name="rtabmap">
<!--RTAB-Map's parameters -->
 <param name="RGBD/ProximityBySpace"
type="string" value="false"/>
 <param name="RGBD/AngularUpdate"
type="string" value="0.01"/>
 <param name="RGBD/LinearUpdate"
type="string" value="0.01"/>
 <param name="RGBD/OptimizeFromGraphEnd"
type="string" value="false"/>
 <param name="Optimizer/Slam2D"
type="string" value="true"/>

 93

 <param name="Reg/Strategy"
type="string" value="1"/> <!-- 1=ICP -->
 <param name="Reg/Force3DoF"
type="string" value="false"/>
 <param name="Vis/MaxDepth"
type="string" value="4.0"/>
 <param name="Vis/MinInliers"
type="string" value="5"/>
 <param name="Vis/InlierDistance"
type="string" value="0.05"/>
 <param name="Rtabmap/TimeThr"
type="string" value="700"/>
 <param name="Mem/RehearsalSimilarity"
type="string" value="0.45"/>
 <param name="Icp/CorrespondenceRatio"
type="string" value="0.5"/>
 <param name="map_negative_poses_ignored" type="bool"
value="true"/>
 <param name="map_filter_radius" type="double"
value="0.5"/>
 <param name="map_cleanup" type="bool"
value="false"/>
 <param name="grid_unknown_space_filled" type="bool"
value="true"/>
 <param name="Grid/FromDepth" type="bool"
value="true"/>
 <param name="Grid/3D" type="bool"
value="false"/>
 <param name="Grid/CellSize" type="double"
value="0.7"/>
 <param name="Grid/RangeMax" type="double"
value="4.0"/>
 <param name="Grid/RayTracing" type="string"
value="true"/>
 <param name="RGBD/CreateOccupancyGrid"
type="string" value="true"/>
</node>

 <!-- Choose visualization -->
 <arg name="rviz" default="true" />
 <arg name="rtabmapviz" default="false" />
 <!-- Localization-only mode -->
 <arg name="localization" default="false"/>
 <!-- Corresponding config files -->
 <arg name="rtabmapviz_cfg"
default="~/.ros/rtabmap_gui.ini" />
 <arg name="rviz_cfg" default="$(find
wheelchair)/config/rtmap.rviz" />
 <arg name="frame_id" default="chassis"/>
<!-- Fixed frame id, you may set "base_link" or
"base_footprint" if they are published -->

 94

 <arg name="database_path"
default="~/.ros/rtabmap.db"/>
 <arg name="rtabmap_args" default=""/>
<!--delete_db_on_start, udebug -->
 <arg name="launch_prefix" default=""/>
<!-- for debugging purpose, it fills launch-prefix tag of the
nodes -->
 <arg name="approx_sync" default="true"/>
<!-- if timestamps of the input topics are not synchronized --
>

 <arg name="rgb_topic"
default="/camera/rgb/image_rect_color" />
 <arg name="depth_registered_topic"
default="/camera/depth_registered/image_raw"/>
 <arg name="camera_info_topic"
default="/camera/rgb/camera_info" />
 <arg name="compressed" default="false"/>

 <arg name="subscribe_scan" default="false"/>
<!-- Assuming 2D scan if set, rtabmap will do 3DoF mapping
instead of 6DoF -->
 <arg name="scan_topic" default="/scan"/>
 <arg name="subscribe_scan_cloud" default="false"/>
<!-- Assuming 3D scan if set -->
 <arg name="scan_cloud_topic" default="/scan_cloud"/>
 <arg name="visual_odometry" default="false"/>
<!-- Generate visual odometry -->
 <arg name="odom_topic" default="/wheel_odom"/>
<!-- Odometry topic used if visual_odometry is false -->
 <arg name="odom_frame_id" default="odom"/>
<!-- If set, TF is used to get odometry instead of the topic -
->
 <arg name="namespace" default="rtabmap"/>
 <arg name="wait_for_transform" default="0.2"/>

<!--Creating fake laser scan from kinect sensor-->
<node name="depthimage_to_laserscan"
pkg="depthimage_to_laserscan" type="depthimage_to_laserscan" >
 <remap from="image" to="$(arg depth_registered_topic)"/>
<rosparam>
scan_height : 190
range_min : 0.3
range_max : 4
</rosparam>
</node>

 <include file="$(find rtabmap_ros)/launch/rtabmap.launch">
 <arg name="rtabmapviz" value="$(arg
rtabmapviz)" />

 95

 <arg name="rviz" value="$(arg rviz)" />
 <arg name="localization" value="$(arg
localization)"/>
 <arg name="gui_cfg" value="$(arg
rtabmapviz_cfg)" />
 <arg name="rviz_cfg" value="$(arg
rviz_cfg)" />
 <arg name="frame_id" value="$(arg
frame_id)"/>
 <arg name="namespace" value="$(arg
namespace)"/>
 <arg name="database_path" value="$(arg
database_path)"/>
 <arg name="wait_for_transform" value="$(arg
wait_for_transform)"/>
 <arg name="rtabmap_args" value="$(arg
rtabmap_args)"/>
 <arg name="launch_prefix" value="$(arg
launch_prefix)"/>
 <arg name="approx_sync" value="$(arg
approx_sync)"/>
 <arg name="rgb_topic" value="$(arg
rgb_topic)" />
 <arg name="depth_topic" value="$(arg
depth_registered_topic)" />
 <arg name="camera_info_topic" value="$(arg
camera_info_topic)" />
 <arg name="compressed" value="$(arg
compressed)"/>
 <arg name="subscribe_scan" value="$(arg
subscribe_scan)"/>
 <arg name="scan_topic" value="$(arg
scan_topic)"/>
 <arg name="subscribe_scan_cloud" value="$(arg
subscribe_scan_cloud)"/>
 <arg name="scan_cloud_topic" value="$(arg
scan_cloud_topic)"/>
 <arg name="visual_odometry" value="$(arg
visual_odometry)"/>
 <arg name="odom_topic" value="$(arg
odom_topic)"/>
 <arg name="odom_frame_id" value="$(arg
odom_frame_id)"/>
 <arg name="odom_args" value="$(arg
rtabmap_args)"/>
 </include>

 <!-- Attaching to nodelet manager from OpenNI:
camera_nodelet_manager -->

 96

 <node pkg="nodelet" type="nodelet" name="data_throttle"
args="load rtabmap/data_throttle camera_nodelet_manager"
output="screen">
 <param name="rate" type="double" value="5.0"/>
 <param name="decimation" type="int" value="1"/>

 <remap from="rgb/image_in"
to="/camera/rgb/image_rect_color"/>
 <remap from="depth/image_in"
to="/camera/depth_registered/image_raw"/>
 <remap from="rgb/camera_info_in"
to="/camera/rgb/camera_info"/>
 <remap from="rgb/image_out"
to="/camera/rgb/image_rect_color_throttle"/>
 <remap from="depth/image_out"
to="/camera/depth_registered/image_raw_throttle"/>
 <remap from="rgb/camera_info_out"
to="/camera/rgb/camera_info_throttle"/>
 </node>
 <!-- use topics from data_throttle at lower frame rate -->
 <node pkg="nodelet" type="nodelet"
name="points_xyz_planner" args="load
rtabmap_ros/point_cloud_xyz camera_nodelet_manager">
 <remap from="depth/image"
to="/camera/depth_registered/image_raw"/>
 <remap from="depth/camera_info"
to="/camera/rgb/camera_info"/>
 <remap from="cloud" to="cloudXYZ" />
 <param name="decimation" type="int" value="1"/>
<!-- already decimated in data_throttle above -->
 <param name="max_depth" type="double" value="3.0"/>
 <param name="voxel_size" type="double" value="0.02"/>
 </node>

 <node pkg="nodelet" type="nodelet"
name="obstacles_detection" args="load
rtabmap_ros/obstacles_detection camera_nodelet_manager">
 <remap from="cloud" to="cloudXYZ"/>
 <remap from="obstacles" to="/obstacles_cloud"/> <!--
move_base topic -->
 <remap from="ground" to="/ground_cloud"/> <!--
move_base topic -->
 <param name="frame_id" type="string" value="chasssis"/>
 <param name="map_frame_id" type="string" value="map"/>
 <param name="wait_for_transform" type="bool"
value="true"/>
 <param name="min_cluster_size" type="int" value="20"/>
 <param name="max_obstacles_height" type="double"
value="0.4"/>
 </node>
</launch>

 97

A.16 Calculating correction factors and covariance using UMBmark

clear all
% Offsets at final position
x_cw=[0.27 0.18 0.01 0.48 0.08];
y_cw=[0.04 0.00 0.01 0.16 0.18];
x_ccw=[0.12 0.01 0.07 0.19 0.28];
y_ccw=[0.07 0.01 0.12 0.07 0.04];
theta=[0.15 0.13 0.09 0.01 0.03 0.12 0.16 0.21 0.16];
% Calculating maximum error
x_cw_g=mean(x_cw);
y_cw_g=mean(y_cw);
x_ccw_g=mean(x_ccw);
y_ccw_g=mean(y_ccw);
r_cw=sqrt((x_cw_g)^2 + (y_cw_g)^2);
r_ccw=sqrt((x_ccw_g)^2 + (y_ccw_g)^2);
emax=max(r_cw,r_ccw)
% Calculating correction values
L=3.5;
D_R=195;
D_L=195;
D_A=(D_R+D_L)/2;
alpha = ((x_cw_g + x_ccw_g)/(-4*L)) * 180/pi
beta = ((x_cw_g - x_ccw_g)/(-4*L)) * 180/pi
R=(L/2)/sin(beta/2)*180/3.14
E_d = (R + beta/2)/(R - beta/2)
E_b = 90/(90-alpha)
c_l=2/(E_d +1)
c_r=2/((1/E_d) + 1)
% calculating covariance values
x=[x_cw x_ccw];
y=[y_cw y_ccw];
cox=cov(x)
coy=cov(y)
cot=cov(theta)

 98

A.17 Move base configuration files

Move_base_launch

<?xml version="1.0"?>
<launch>
 <!-- Move base -->
 <node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen">
<remap from="cmd_vel" to="cmd_vel"/>
 <!--remap from="odometry/combined" to="odometry"/-->
 <remap from="wheel_odom" to="odom"/>
 <param name="scan" value="scan"/>
 <remap from="map" to="/rtabmap/grid_map"/>
<rosparam file="$(find
wheelchair)/params/simulation/costmap_common_params.yaml"
command="load" ns="global_costmap" />
 <rosparam file="$(find
wheelchair)/params/simulation/costmap_common_params.yaml"
command="load" ns="local_costmap" />
 <rosparam file="$(find
wheelchair)/params/simulation/local_costmap_params.yaml"
command="load" />
 <rosparam file="$(find
wheelchair)/params/simulation/global_costmap_params.yaml"
command="load" />
 <!--rosparam file="$(find
wheelchair)/params/simulation/teb_local_planner_params.yaml"
command="load" /-->
 <rosparam file="$(find
wheelchair)/params/simulation/global_planner_params.yaml"
command="load" />
 <rosparam file="$(find
wheelchair)/params/simulation/base_local_planner_params.yaml"
command="load" />
 <rosparam file="$(find
wheelchair)/params/simulation/navfn_global_planner_params.yaml"
command="load" />
 <rosparam file="$(find
wheelchair)/params/simulation/move_base_params.yaml" command="load"
/>
 </node>
</launch>

Base_local_planner_params

controller_frequency: 1.0
recovery_behavior_enabled: false
clearing_rotation_allowed: false

TrajectoryPlannerROS:
 max_vel_x: 1.28
 min_vel_x: -1.28
 max_vel_y: 0.0
 min_vel_y: 0.0

 99

 max_vel_theta: 1.57
 min_in_place_vel_theta: 1.0
 acc_lim_theta: 1.5
 acc_lim_x: 3.6
 acc_lim_y: 0.0
 holonomic_robot: false
 yaw_goal_tolerance: 3 # about 6 degrees
 xy_goal_tolerance: 0.5 # 10 cm
 latch_xy_goal_tolerance: false
 pdist_scale: 0.8
 gdist_scale: 0.6
 meter_scoring: true
 heading_lookahead: 0.325
 heading_scoring: false
 heading_scoring_timestep: 0.8
 occdist_scale: 0.1
 oscillation_reset_dist: 0.05
 publish_cost_grid_pc: false
 prune_plan: true
 sim_time: 1.0
 sim_granularity: 0.025
 angular_sim_granularity: 0.025
 vx_samples: 8
 vy_samples: 0 # zero for a differential drive robot
 vtheta_samples: 20
 dwa: true
 simple_attractor: false

Move_base params
shutdown_costmaps: false
controller_frequency: 5.0
controller_patience: 3.0
planner_frequency: 1.0
planner_patience: 5.0
oscillation_timeout: 10.0
oscillation_distance: 0.2
base_local_planner: "dwa_local_planner/DWAPlannerROS"
base_global_planner: "navfn/NavfnROS"

Costmap_common_params
obstacle_range: 3
raytrace_range: 3.0
#footprint: [[x0, y0], [x1, y1], ... [xn, yn]]
robot_radius: ir_of_robot
robot_radius: 0.5 # distance a circular robot should be clear of the
obstacle
inflation_radius: 0.05

observation_sources: laser_scan_sensor point_cloud_sensorA

 100

laser_scan_sensor: {data_type: LaserScan, topic: /scan, marking:
true, clearing: true}

point_cloud_sensorA: {
sensor_frame: chassis,
data_type: PointCloud2,
topic: /rtabmap/cloud_obstacles,
expected_update_rate: 1.0,
marking: true,
clearing: true,
min_obstacle_height: 0.05
}

Global costmap params

global_costmap:
 global_frame: map
 robot_base_frame: chassis
 update_frequency: 1.0
 publish_frequency: 1.0
 resolution: 0.02
 static_map: true
 width: 10.0
 height: 10.0
 rolling_window: false
 transform_tolerance: 1.0
 map_type: costmap

plugins:
- {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"}
- {name: inflation_layer, type: "costmap_2d::InflationLayer"}

Local costmap params

local_costmap:
 global_frame: odom
 robot_base_frame: chassis
 update_frequency: 5.0
 publish_frequency: 5.0
 static_map: false
 rolling_window: true
 width: 5.0
 height: 5.0
 resolution: 0.75
 transform_tolerance: 5.0
 map_type: costmap
 sonar_layer:
 topics: ["/sonar_rear"]
 no_readings_timeout: 1.0
 plugins:
 - {name: sonar_layer, type:
"range_sensor_layer::RangeSensorLayer"}
 - {name: obstacle_layer, type: "costmap_2d::ObstacleLayer"}
 - {name: inflation_layer, type: "costmap_2d::InflationLayer"}

 101

A.18 Complete Arduino Code

#include <ros.h>
#include <ros/time.h>
#include <tf/tf.h>
#include <tf/transform_broadcaster.h>
#include <geometry_msgs/Twist.h>
#include<SPI.h>
#include "MPU9250.h"
#include <sensor_msgs/Range.h>

MPU9250 IMU(Wire,0x68);
int status;

#define CS_ADC 10
#define CS_POT 8
#define L_PHASE_A 18
#define L_PHASE_B 19
#define R_PHASE_A 2
#define R_PHASE_B 3
#define wheel_base 440
#define wheel_diameter 195
#define left_counts_per_rotation 1242.7
#define right_counts_per_rotation 1242.6
#define channel0 0xE0
#define channel1 0xE8
#define POT_FB 0x12 //00010001
#define POT_LR 0x11//00010010
#define POT_ALL 0x13//00010011
#define SonarPin 9

ros::NodeHandle nh;
geometry_msgs::TransformStamped t;
tf::TransformBroadcaster broadcaster;
sensor_msgs::Range rear_range_msg;

ros::Publisher pub_range_rear("/sonar_rear", &rear_range_msg);

//Encoder Variables
volatile int L_count=0;
volatile int R_count=0;

//Odom Variables
int right_pulses ;
int left_pulses ;
int prev_right_pulses;
int prev_left_pulses;
float right_wheel_distance;
float left_wheel_distance;
float wheel_theta;
float left_distance_per_tick =
((wheel_diameter*PI)/left_counts_per_rotation);
float right_distance_per_tick =
((wheel_diameter*PI)/right_counts_per_rotation);

 102

float mean_distance;
float x_pos;
float y_pos;
int right_ticks;
int left_ticks;
float imu_theta_rate;
float imu_theta;
float theta_global;
float current_time;
float previous_time;
float diff_time;
float sonar_range;

//IMU variables
float aX, aY, aZ, gX, gY, gZ,mX,mY,mZ;

//odometry correction
double x_1;
double x_2;
double y_1;
double y_2;

void loop()
{
char chassis[] = "/chassis";
char odom[] = "/odom";
char sonar_rear[] = "/sonar_rear";

compute_odom();

if(checkjoystick())
joystick_control();

 // tf odom->base_link
 t.header.frame_id = odom;
 t.child_frame_id = chassis;
 t.transform.translation.x = x_pos;
 t.transform.translation.y = y_pos;
 t.transform.rotation = tf::createQuaternionFromYaw(theta_global);
 t.header.stamp = nh.now();
 geometry_msgs::Quaternion odom_quat =
tf::createQuaternionFromYaw(theta_global);
 broadcaster.sendTransform(t);

sonar_range=read_sonar();
rear_range_msg.header.frame_id = sonar_rear;
rear_range_msg.header.stamp = nh.now();
rear_range_msg.range=sonar_range;
pub_range_rear.publish(&rear_range_msg);
 nh.spinOnce();
 delay(10);
}

 103

//Velocity values from ROS
void Callback(const geometry_msgs::Twist& vel)
{
 double linear_vel = vel.linear.x;
 double angular_vel = vel.angular.z;
 int rotational_speed;
 int linear_speed_sig;
 double linear_speed_dec;
 int linear_speed;
 int linear_speed_val;
 int fb_pot_val;
 int lr_pot_val;

//Safety measure to override values from ROS if joystick is used
 while (!checkjoystick())
 {

 angular_vel = angular_vel * 57.2958; //convert to degrees
 rotational_speed = int(254 - angular_vel * 1.6); //convert to
pot_val

 linear_speed_sig = int(linear_vel / 1); //Get integer part
 linear_speed_dec = linear_vel - linear_speed; //get decimal part
 linear_speed = int(linear_speed_sig * 100 + linear_speed_dec *
100); //combine integer and decimal
 linear_speed_val = (254 + linear_speed * 1.6); //convert to
pot_val

 if (linear_speed_val > 398)
 linear_speed_val = 398;
 if (linear_speed_val < 110)
 linear_speed_val = 110;
 if (rotational_speed > 398)
 rotational_speed = 398;
 if (rotational_speed < 110)
 rotational_speed = 110;

 fb_pot_val = (linear_speed_val - 100) * 0.85;
 lr_pot_val = (rotational_speed - 100) * 0.85;
 POTcontrol(POT_FB, fb_pot_val);
 POTcontrol(POT_LR, lr_pot_val);
 }
}

ros::Subscriber<geometry_msgs::Twist> sub("cmd_vel", Callback);

//Generate odometry from encoders and IMU
void compute_odom()
{
right_pulses=R_count;
left_pulses=L_count;
current_time = millis();
imu_theta_rate = get_imu_theta();
right_ticks = right_pulses - prev_right_pulses;
left_ticks = left_pulses - prev_left_pulses;
right_wheel_distance = right_ticks * right_distance_per_tick;

 104

left_wheel_distance = left_ticks * left_distance_per_tick;
mean_distance = (left_wheel_distance + right_wheel_distance)/2;
diff_time = current_time - previous_time;
imu_theta -= imu_theta_rate*diff_time;
//wheel_theta += (right_wheel_distance -
left_wheel_distance)/wheel_base;

theta_global = imu_theta/1000;
//theta_global = wheel_theta;

if(theta_global< -PI)
theta_global+= 2*PI;
else if(theta_global > PI)
theta_global -= 2*PI;

x_pos += (mean_distance * cos(theta_global))*1.0/1000;
y_pos += (mean_distance * sin(theta_global))*1.0/1000;

prev_left_pulses=left_pulses;
prev_right_pulses=right_pulses;
previous_time=current_time;
}

//Rotation velocity rate from gyroscope
float get_imu_theta()
{
 IMU.readSensor();
 gZ = IMU.getGyroZ_rads();
return gZ;

}

//Interrupts for encoder pulses
 void left_interrupt()
{
 char i;
 i=digitalRead(L_PHASE_B);
 if(i)
 L_count -=1;
 else
 L_count += 1;
}
void right_interrupt()
{
 char i;
 i=digitalRead(R_PHASE_B);
 if(i)
 R_count +=1;
 else
 R_count -= 1;
}

int jstickval0;
int jstickval1;

 105

//Reading voltage from joystick
int ADCread(byte channel)
{
 int command;
 int voltage;
 byte fbit;
 byte sbit;
 command=channel<<8|0x00;

digitalWrite(CS_ADC,LOW);
voltage=SPI.transfer16(command) & 0x3FF;
digitalWrite(CS_ADC,HIGH);
return voltage;
}

//Sending values to potentiometer
void POTcontrol(byte address,byte value)
{
digitalWrite(CS_POT,LOW);
SPI.transfer(address);
SPI.transfer(value);
digitalWrite(CS_POT,HIGH);
}

void joystick_control()
{
 int turnjval;
 int drivejval;
 byte turnpot;
 byte drivepot;
 static float mult= 0.85;

 turnjval=ADCread(channel0);
 turnpot=(turnjval-100)*mult;
 drivejval=ADCread(channel1);
 drivepot=(drivejval-100)*mult;
 POTcontrol(POT_FB,drivepot);
 POTcontrol(POT_LR,turnpot);
 return 1;
}
//Checking if joystick is moved or being used for safety
byte checkjoystick()
{
 jstickval0=ADCread(channel0);
 jstickval1=ADCread(channel1);
 if(jstickval0>260 || jstickval0<248 && jstickval1>260 ||
jstickval1<248)
 return 1;
 else
 return 0;
}
void setup()
{
 status = IMU.begin();
 IMU.setAccelRange(MPU9250::ACCEL_RANGE_8G);

 106

 // setting the gyroscope full scale range to +/-500 deg/s
 IMU.setGyroRange(MPU9250::GYRO_RANGE_500DPS);
 // setting DLPF bandwidth to 20 Hz
 IMU.setDlpfBandwidth(MPU9250::DLPF_BANDWIDTH_20HZ);
 // setting SRD to 19 for a 50 Hz update rate
 IMU.setSrd(19);

 nh.initNode();
 broadcaster.init(nh);
 nh.subscribe(sub);
 nh.advertise(pub_range_rear);
 rear_range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND;
 rear_range_msg.field_of_view = 0.577;
 rear_range_msg.min_range = 0.3;
 rear_range_msg.max_range = 5;

pinMode(CS_POT, OUTPUT);
pinMode(CS_ADC, OUTPUT);

digitalWrite(CS_ADC,LOW);
digitalWrite(CS_ADC,HIGH);
digitalWrite(CS_POT,HIGH);

SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE3);
SPI.setClockDivider(SPI_CLOCK_DIV128);
SPI.begin();
Serial.begin(57600);

pinMode(SonarPin,INPUT);
POTcontrol(POT_ALL,0x80);

pinMode(L_PHASE_A,INPUT);
pinMode(L_PHASE_B,INPUT);
pinMode(R_PHASE_A,INPUT);
pinMode(R_PHASE_B,INPUT);
attachInterrupt(digitalPinToInterrupt(L_PHASE_A),left_interrupt,RISI
NG);
attachInterrupt(digitalPinToInterrupt(R_PHASE_A),right_interrupt,RIS
ING);
delay(2000);
}

float read_sonar()
{
float mm;
mm = pulseIn(SonarPin, HIGH);
return mm/1000; //Return distance in m
}

 107

APPENDIX B
B.1 Arduino Sensor board shield Schematic

 108

B.2 Arduino Sensor board shield PCB

 109

B.3 Wheelchair Tray Design

 110

B.4 Controller Box Lid

 111

B.5 Controller Box Base

 112

REFERENCES
[1] Ben-Ari, M. and Mondada, F. (2018). Elements of Robotics. Springer, Cham, pp.63-

93.
[2] Ros.org. (n.d.). ROS.org | About ROS. Available at: http://www.ros.org/about-ros/
[3] Object Recognition In Any Background Using OpenCV Python - The Codacus.

Available at: https://thecodacus.com/object-recognition-using-opencv-
python/#.W8NXzRMzZ0w

[4] K. Miyazaki, M. Hashimoto, M. Shimada, and K. Takahashi. Guide following control
using laser range sensor for a smart wheelchair. In ICROS-SICE Int. Joint Conf.,
pages 4613–4616, Fukuoka Int. Congr. Center, Japan, Aug. 2009.

[5] Borenstein, J. and Feng, L. (1996). Measurement and correction of systematic
odometry errors in mobile robots. IEEE Transactions on Robotics and Automation,
12(6), pp.869-880.

[6] Parikh, S., Grassi, V., Kumar, V. and Okamoto, J. Integrating Human Inputs with
Autonomous Behaviors on an Intelligent Wheelchair Platform. IEEE Intelligent
Systems, 22(2), pp.33-41. (2007)

[7] BitSophia. (n.d.). BitVoicer. Available at: http://www.bitsophia.com/en-
US/BitVoicer/Overview.aspx

[8] Betke, M. and Gurvits, L. (1997). Mobile robot localization using landmarks. IEEE
Transactions on Robotics and Automation, 13(2), pp.251-263.

[9] R. Murakami, Y. Morales, S. Satake, T. Kanda, and H. Ishiguro. Destination
unknown: Walking side-by-side without knowing the goal. pages 471–478, 2014

[10] (2017). "Self Driving Autonomous Wheelchairs are coming." from
https://www.disabledworld.com/assistivedevices/mobility/wheelchairs/electric/autono
mous-wheelchairs.php.

[11] Sinha, U., Saxena, P. and M, K. (2017). Mind Controlled Wheelchair. IOSR Journal
of Electrical and Electronics Engineering, 12(03), pp.09-13.

[12] Cheng, C., Li, S. and Kadry, S. (2018). Mind-Wave Controlled Robot: An Arduino
Robot Simulating the Wheelchair for Paralyzed Patients. International Journal of
Robotics and Control, 1(1), p.6.

[13] Stachniss, C. (2018). Grid Maps.
[14] Do, Q. and Jain, L. (2009). Application of neural processing paradigm in visual

landmark recognition and autonomous robot navigation. Neural Computing and
Applications, 19(2), pp.237-254.

[15] McGarey, P. (2018). Visual Odometry.
[16] Ho, K. L. and P. Newman (2006). "Loop closure detection in SLAM by combining

visual and spatial appearance." Robotics and Autonomous Systems 54(9): 740-749.
[17] Labbe, M. and Michaud, F. (2013). Appearance-Based Loop Closure Detection for

Online Large-Scale and Long-Term Operation. IEEE Transactions on Robotics,
29(3), pp.734-745.

[18] 14core.com. (2018). Wiring the MPU9250 9 AXIS Motion Tracking Micro Electro
Mechanical System | 14core.com | Ideas Converts Reality. [online] Available at:
https://www.14core.com/wiring-the-mpu9250-9-axis-motion-tracking-micro-electro-
mechanical-system/ [Accessed 14 Oct. 2018].

 113

[19] Grisetti, G., Tipaldi, G., Stachniss, C., Burgard, W. and Nardi, D. (2007). Fast and
accurate SLAM with Rao–Blackwellized particle filters. Robotics and Autonomous
Systems, 55(1), pp.30-38.

[20] Afanasyev, I., Ibragimov,I. (2017). Comparison of ROS-based Visual SLAM methods
in homogeneous indoor environment. Positioning, Navigation and
Communications(WPNC)

[21] GitHub. (2018). tzutalin/awesome-visual-slam. [online] Available at:
https://github.com/tzutalin/awesome-visual-slam [Accessed 14 Oct. 2018].

[22] World Health Organization. (2018). Disability. [online] Available at:
http://www.who.int/disabilities/en/ [Accessed 14 Oct. 2018].

[23] Shore, S. and Juillerat, S. (2012). The impact of a low cost wheelchair on the quality
of life of the disabled in the developing world. Medical Science Monitor, 18(9),
pp.CR533-CR542.

[24] Edwards, K. and Mccluskey, A. (2010). A survey of adult power wheelchair and
scooter users. Disability and Rehabilitation: Assistive Technology, 5(6), pp.411-419.

[25] Labbe, M. (2018). rtabmap_ros/Tutorials/SetupOnYourRobot - ROS Wiki. [online]
Wiki.ros.org. Available at:
http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot [Accessed 14 Oct.
2018].

[26] Viola, G. (2018). geoffviola/tf_to_odometry. [online] GitHub. Available at:
https://github.com/geoffviola/tf_to_odometry [Accessed 14 Oct. 2018].

[27] Wiki.ros.org. (n.d.). move_base - ROS Wiki. [online] Available at:
http://wiki.ros.org/move_base [Accessed 13 Oct. 2018].

[28] Wiki.ros.org. (n.d.). depthimage_to_laserscan - ROS Wiki. [online] Available at:
http://wiki.ros.org/depthimage_to_laserscan [Accessed 13 Oct. 2018].

[29] Taylor, T. (2011). Kinect for Robotics. [online] Microsoft Robotics Blog. Available at:
https://blogs.msdn.microsoft.com/msroboticsstudio/2011/11/29/kinect-for-robotics/
[Accessed 14 Oct. 2018].

[30] Sensor (2018). [online] Available at: https://www.generationrobots.com/en/401430-
microsoft-kinect-sensor.html [Accessed 14 Oct. 2018].

[31] El-laithy, R., Huang, J., Yeh, M. Study on the use of Microsoft Kinect for robotics
applications. IEEE/ION Position, Location and Navigation Symposium (2012)

[32] Grisetti, G. (2018). Introduction to Navigation using ROS.
[33] Wiki.ros.org. (n.d.). costmap_2d - ROS Wiki. [online] Available at:

http://wiki.ros.org/costmap_2d [Accessed 13 Oct. 2018].
[34] Amazon.co.uk. (2018). Sterling Ruby Wheelchair. [online] Available at:

https://www.amazon.co.uk/Sunrise-Medical-Sterling-Ruby-Plus/dp/B000NB726Q
[Accessed 14 Oct. 2018].

[35] Zheng, K. (2016). ROS Navigation Tuning Guide
[36] Wiki.ros.org. (n.d.). base_local_planner - ROS Wiki. [online] Available at:

http://wiki.ros.org/base_local_planner [Accessed 13 Oct. 2018].
[37] Lee, J. (1997). Indoor robot navigation by landmark tracking. Mathematical and

Computer Modelling, 26(4), pp.79-89.
[38] Qu, X. Landmark based Localization: detection ,matching and update of landmark

with uncertainty analysis. (2016)
[39] Www2.informatik.uni-freiburg.de. (2018). [online] Available at:

http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf [Accessed
14 Oct. 2018].

 114

[40] MPU-9250, S. (2018). SparkFun IMU Breakout - MPU-9250 - SEN-13762 - SparkFun
Electronics. [online] Sparkfun.com. Available at:
https://www.sparkfun.com/products/13762 [Accessed 14 Oct. 2018].

[41] En.wikibooks.org. (2018). Robotics/Print version - Wikibooks, open books for an
open world. [online] Available at: https://en.wikibooks.org/wiki/Robotics/Print_version
[Accessed 14 Oct. 2018].

[42] Hackaday.io. (2018). ROBOT ODOMETRY | Details | Hackaday.io. [online] Available
at: https://hackaday.io/project/158496-imcoders/log/147068-robot-odometry
[Accessed 14 Oct. 2018].

[43] Windows Central. (2018). Microsoft to end sales of original Kinect for Windows
sensor in 2015. [online] Available at: https://www.windowscentral.com/microsoft-end-
sales-original-kinect-windows-sensor-2015 [Accessed 14 Oct. 2018].

[44] W., D. (2018). Robot Operating System (ROS) - Artificial Intelligence and Machine
Learning for Robotics (Houston, TX)| Meetup. [online] Meetup.com. Available at:
https://www.meetup.com/ai-ml-for-robotics-and-
iot/messages/boards/thread/50451824 [Accessed 14 Oct. 2018].

[45] Wiki.ros.org. (n.d.). navigation - ROS Wiki. [online] Available at:
http://wiki.ros.org/navigation/Tutorial/RobotSetup [Accessed 13 Oct. 2018].

[46] Hlavac, V. Simultaneous localization and mapping (2002)
[47] Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous Localization and

Mapping via Square Root Information Smoothing. The International Journal of
Robotics Research, 25(12), pp.1181-1203.

[48] Au.mathworks.com. (2018). Costmap representing planning space around vehicle -
MATLAB- MathWorks Australia. [online] Available at:
https://au.mathworks.com/help/driving/ref/vehiclecostmap.html [Accessed 14 Oct.
2018].

[49] Muhammad, N., Fofi, D., Ainouz, S. Current State of the art of vision based SLAM.
(2012)

[50] Mycoordinates.org. (2018). Coordinates : A resource on positioning, navigation and
beyond » Blog Archive » Outdoor mobile field robot navigation. [online] Available at:
https://mycoordinates.org/outdoor-mobile-field-robot-navigation/ [Accessed 14 Oct.
2018].

[52] Ionescu, A., (2018). Kinematic scheme of the two wheeled robot. [online] Available
at: https://www.researchgate.net/figure/Kinematical-scheme-of-the-two-wheeled-
mobile-robot_fig1_272051522 [Accessed 14 Oct. 2018].

[53] Katevas, N., Sgouros, N., Tzafestas, S., Papakonstantinou, G., Beattie, P., Bishop,
J., Tsanakas, P. and Koutsouris, D. (1997). The autonomous mobile robot
SENARIO: a sensor aided intelligent navigation system for powered
wheelchairs. IEEE Robotics & Automation Magazine, 4(4), pp.60-70.

[54] Simpson, R. (2005). Smart wheelchairs: A literature review. The Journal of
Rehabilitation Research and Development, 42(4), p.423.

[55] Asayesh, S. (n.d.). Electronic Design of Brain Controlled Wheelchair. Masters.
Flinders University.

[56] Foeng, V. (n.d). Facial. Masters. Flinders University
[57] Scudellari, M. (2017). In Japan and Singapore, self-driving wheelchairs debut in

hospitals and airports. [online] ITU News. Available at: https://news.itu.int/self-driving-
wheelchairs-debut-in-hospitals-and-airports/ [Accessed 15 Oct. 2018].

[58] Opencv.org. (2018). OpenCV library. [online] Available at: https://opencv.org/
[Accessed 15 Oct. 2018].

 115

[59] Lammas, A. Kalman Filter Variants (2018)
[60] Tobii.com. (2018). Tobii and Microsoft Collaborate to bring Eye Tracking Support in

Windows 10. [online] Available at: https://www.tobii.com/group/news-media/press-
releases/2017/8/tobii-and-microsoft-collaborate-to-bring-eye-tracking-support-in-
windows-10/ [Accessed 15 Oct. 2018].

[61] Labbé, M. and Michaud, F. (2017). Long-term online multi-session graph-based SPLAM with
memory management. Autonomous Robots, 42(6), pp.1133-1150.

