Antiviral immune responses in abalone and influence of potential abiotic and biotic factors

A thesis submitted to the Flinders University

By

Vinh Dang

In candidature for the degree

Doctor of Philosophy

School of Biological Sciences

Flinders University

August 2012

Con	ten	ts
COII	ten	LS

Contents	2
List of tables	6
List of figures	7
Abbreviations	8
Declaration	9
Authority of access	10
Abstract	11
Acknowledgement	14
Thesis Structure	15
CHAPTER 1: General introduction	17
1.1. Major economic abalone species in Australia	17
1.2. Effects of microbial infection and environmental stress on abalone prod	uction 19
1.2.1. Virus infections	19
1.2.2. Bacterial infections	20
1.2.3. Environmental stress factors	23
1.3. Immune responses against microbial infections	25
1.3.1. Cell-mediated immunity	26
1.3.2. Humoral immunity defense	27
1.3.3. Dietary derived anti-microbial factors	29
1.4. Research Aims	
CHAPTER 2: In vitro antiviral activity against herpes simplex virus in abalone	e
Haliotis laevigata	32
Abstract	
2.1. Introduction	34
2.2. Materials and methods	37
2.2.1. Abalone	37
2.2.2. Cell culture and virus	
2.2.3. Tissue and haemolymph collection	38
2.2.4. Lipophilic and non-lipophilic extraction	38
2.2.5. Peptide extraction	
2.2.6. Protein determination	39

Contents

2.2.7. Cytotoxicity assays	40
2.2.8. Anti-HSV assay	40
2.2.9. Timing of antiviral activity	41
2.2.10. Attachment assay	42
2.2.11. Entry assay	43
2.2.12. Virucidal assay	43
2.2.13. Statistical analysis	44
2.3. Results	44
2.4. Discussion	53
Acknowledgments	58
CHAPTER 3: Variation in the antiviral and antibacterial activity of abalor laevigata, H. rubra and their hybrid in South Australia	ne <i>Haliotis</i> 59
Abstract	60
3.1. Introduction	62
3.2. Materials and methods	65
3.2.1. Abalone	65
3.2.2. Spawning induction	66
3.2.3. Haemolymph collection	66
3.2.4. Cell culture and virus	67
3.2.5. Anti-HSV assay	67
3.2.6. Bacteria	68
3.2.7. Antibacterial assay	68
3.2.8. Statistical analysis	69
3.3. Results	70
3.4. Discussion	76
Acknowledgments	83
Appendix 3.1. Map of abalone collecting locations	84
CHAPTER 4: Effects of micro and macroalgal diet supplementations on g immunity of greenlip abalone, <i>Haliotis laevigata</i>	growth and85
Abstract	86
4.1. Introduction	
4.2. Materials and methods	91
4.2.1. Experimental abalone and diets	91
4.2.2. Macro-and microalgae feeding trials	91
	3

Contents

4.2.3. Haemolymph analyses	93
4.2.4. Lipophilic extraction and antiviral assay	96
4.2.5. Statistical analysis	96
4.3. Results	97
4.3.1. Growth rates	97
4.3.2. Haemolymph immune parameters	99
4.3.3. Antiviral activity of lipophilic extracts	103
4.4. Discussion	105
Acknowledgments	110
CHAPTER 5: Influence of elevated temperatures on the immune response abalone, <i>Haliotis rubra</i>	of 111
Abstract	112
5.1. Introduction	114
5.2. Materials and methods	117
5.2.1. Field-sampled abalone	117
5.2.2. Laboratory temperature challenge	117
5.2.3. Haemolymph parameter measurements	119
5.2.4. Statistical analysis	
5.3. Results	
5.3.1. Field survey	
5.3.2. Laboratory temperature challenge experiment	124
5.4. Discussion	129
Acknowledgements	137
Appendix 5.1. Effect of incubation temperature on antibacterial activity	138
CHAPTER 6: Immunological changes in response to herpesvirus infection	ı in
abalone Haliotis laevigata and Haliotis rubra hybrids	139
Abstract	140
6.1. Introduction	142
6.2. Materials and methods	143
6.2.1. Abalone	143
6.2.2. Infection of abalone by immersion	144
6.2.3. TaqMan real-time PCR	146
6.2.4. Haemolymph analyses	147
6.2.5. Statistical analysis	
	4

Contents

6.3. Results	.149
6.3.1. Viral infection and TaqMan real-time PCR	.149
6.3.2. Immune responses at subclinical stage of viral infection	.151
6.3.3. Immune responses at clinical stage of viral infection by immersion (da 5, 6, 7 post-challenge)	iys .153
6.4. Discussion	.155
Acknowledgements	.160
Appendix 6.1. Infection of abalone by injection	.161
Methods	.161
Results	.162
Appendix 6.2. Standard curve between plasmid Topo-ORF49 and C_T value	.164
CHAPTER 7: General discussion	.165
References	.173

List of tables

Table 1.1	The reported infectious bacteria and viruses in abalone
Table 1.2	Proposed mode of actions for antiviral compounds
Table 2.1	Cytotoxicity and antiviral activity of haemolymph and lipophilic, non- lipophilic, and peptide extracts of different tissues from abalone
Table 2.2	Antiviral activity of acyclovir, abalone haemolymph and lipophilic extract of digestive gland
Table 2.3	Characterisation of antiviral activity in abalone haemolymph
Table 2.4	Characterisation of lipophilic or non-lipophilic component in abalone haemolymph for antiviral activity
Table 4.1	The impact of macro- and microalgae supplementations on shell gain and body weight gain of greenlip abalone
Table 4.2	The effect of diet and feeding period (fixed factors) on the overall immune status (multivariate PERMANOVA) and specific immune parameters (univariate PERMAONVA)
Table 4.3	Effect of different diets on percent antiviral activity of lipophilic extract of abalone digestive gland against HSV-1
Table 5.1	The effect of temperature and length of exposure (fixed factors) on individual immune parameter (univariate PERMAONVA) or combined four different immune parameters

List of figures

Fig. 1.1	The "holy triad" of disease causality: interactions between the molluscan host, environmental factors and pathogens
Fig. 2.1	Differing infection protocols for addition and residency times of abalone extracts relative to virus-cell incubation
Fig. 2.2	Activity against HSV-1, as % reduction in plaque numbers, for abalone haemolymph, lipophilic extract of digestive gland and acyclovir
Fig. 2.3	Antiviral activity of abalone A) haemolymph and B) lipophilic extract of digestive gland
Fig. 3.1	Variation in A) antiviral activity (%) and B) antibacterial activity (%) at individual, family line, population and species scale
Fig. 3.2	Comparison of A) antiviral activity (%) and B) antibacterial activity (%) between farmed and wild abalone
Fig. 3.3	Correlation between the shell length (cm) and A) antiviral activity (%) and B) antibacterial activity (%)
Fig. 3.4	Comparison of A) antiviral activity (%) and B) antibacterial activity (%) between pre- and post-spawning
Fig. 4.1	Summary of macroalgae and microalgae feeding experiments
Fig. 4.2	Effect of macroalgal diets on immune status of <i>H. laevigata</i>
Fig. 4.3	Effect of microalgae supplementations on immune status of <i>H. laevigata</i>
Fig. 5.1	The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens
Fig. 5.1 Fig. 5.2	The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment
Fig. 5.1 Fig. 5.2 Fig. 5.3	The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4	 The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature Effect of challenge temperature and length of exposure on (a) total haemocyte count (THC, cells x 10⁴ per ml), (b) superoxide anion (SO, OD 630nm), (c) antiviral activity (%) against HSV-1 and (d) antibacterial activity (%) against <i>Vibrio anguillarium</i>
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4	 The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature Effect of challenge temperature and length of exposure on (a) total haemocyte count (THC, cells x 10⁴ per ml), (b) superoxide anion (SO, OD 630nm), (c) antiviral activity (%) against HSV-1 and (d) antibacterial activity (%) against <i>Vibrio anguillarium</i> Principal coordinates plot showing the grouping of abalone according to temperature
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 6.1	 The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature Effect of challenge temperature and length of exposure on (a) total haemocyte count (THC, cells x 10⁴ per ml), (b) superoxide anion (SO, OD 630nm), (c) antiviral activity (%) against HSV-1 and (d) antibacterial activity (%) against <i>Vibrio anguillarium</i> Principal coordinates plot showing the grouping of abalone according to temperature Summary of the abalone herpesvirus challenge trial
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 6.1 Fig. 6.2	The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature Effect of challenge temperature and length of exposure on (a) total haemocyte count (THC, cells x 10 ⁴ per ml), (b) superoxide anion (SO, OD 630nm), (c) antiviral activity (%) against HSV-1 and (d) antibacterial activity (%) against <i>Vibrio anguillarium</i> Principal coordinates plot showing the grouping of abalone according to temperature Summary of the abalone herpesvirus challenge trial Quantification of AbHV gene copies (log ₁₀) based on ORF49 qPCR Ct values, in apparently healthy and moribund abalone from day 5 post- infection
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 6.1 Fig. 6.2 Fig. 6.3	The "holy triad" of disease causality: interactions between molluscan host, environmental factors and pathogens Summary of laboratory temperature challenge experiment The relationship between antiviral and antibacterial activity and water temperature Effect of challenge temperature and length of exposure on (a) total haemocyte count (THC, cells x 10 ⁴ per ml), (b) superoxide anion (SO, OD 630nm), (c) antiviral activity (%) against HSV-1 and (d) antibacterial activity (%) against <i>Vibrio anguillarium</i> Principal coordinates plot showing the grouping of abalone according to temperature Summary of the abalone herpesvirus challenge trial Quantification of AbHV gene copies (log ₁₀) based on ORF49 qPCR Ct values, in apparently healthy and moribund abalone from day 5 post- infection Effect of AbHV infection and time post-infection on A) total haemocyte count (THC, cells x 10 ⁴ per ml), B) superoxide anion (SO, OD 620nm), C) antiviral activity (%) against HSV-1

Abbreviations

AbHV	Abalone herpesvirus
AVG	Abalone viral ganglioneuritis
DMSO	Dimethyl sulfoxide
EMEM	Eagle's minimal essential medium
HSV-1	Herpes simplex virus type 1
NBT	Nitroblue tetrazolium
OD	Optical density
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PFU	Plaque-forming unit
qPCR	Quantitative real time polymerase chain reaction
RT	Room temperature
SO	Superoxide anion
THC	Total haemocyte count

Declaration

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

2/2

12/11/2012

Vinh Dang

Date

Authority of access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act of 1968.

26

12/11/2012

Vinh Dang

Date

Abstract

Abalone (Haliotidae) are marine gastropod mollusks and important aquaculture species worldwide. Unfortunately, severe mortality of abalone caused by a herpesvirus (AbHV) has been reported in Australia. The manifestation of disease involves an interaction between virus, environment and abalone immunity (Chapter 1). Therefore, this research aimed to investigate the presence of antiviral activity in abalone *Haliotis laevigata* (greenlip), *H. rubra* (blacklip) and their hybrid. Due to the lack of molluscan cell lines for culturing AbHV, antiviral activity of abalone was assessed against a similar neurotropic herpesvirus, herpes simplex virus type 1 (HSV-1) using the plaque assay. Assessment of antiviral activity was complemented with other immune assays, measuring total haemocyte count (THC), phagocytosis, phenoloxidase activity, respiratory burst and antibacterial activity against *Vibrio* spp. to provide an overall view of immune status in abalone after exposure to various biotic and environmental factors.

A number of abalone organs were screened for anti-HSV-1 activity, but only the haemolymph (20%, v/v) and the lipophilic extract of digestive gland (3,000 μ g ml⁻¹) were found to substantially decrease the number and size of virus plaques (Chapter 2). Haemolymph inhibits viral infection at an early stage (e.g. viral entry) whereas the antiviral effect of the lipophilic extract is greatest when added one hour after infection (e.g. the intracellular stage of viral infection).

There was considerable variation in the levels of antiviral and antibacterial activity in the haemolymph among abalone within the same aquaculture family lines and natural populations in different geographic locations (Chapter 3). Antiviral and antibacterial activity increased slightly with an increase in shell length. However, there was no significant effect of gender or spawning status on antiviral or antibacterial status.

Concomitant with strong antiviral activity against HSV-1 in a lipophilic extract of *Ulva lactuca* and *Spyridia filamentosa*, higher antiviral activity was detected in the digestive gland lipid extract of abalone fed *Ulva lactuca* (64.2% at 650 μ g ml⁻¹) or *Spyridia filamentosa* (69.51%) compared to abalone fed pellets (47.42%) or pellets supplemented with *Arthrospira maxima* (46.3%) or *Dunaliella salina* (46%) (Chapter 4). There was no influence of diet on the humoral antiviral activity, indicating antiviral factors in the haemolymph are likely to be innately biosynthesized by the abalone.

Sampling of wild-caught *H. rubra* showed a significant correlation between temperature and antiviral or antibacterial activity, with higher activity in summer than in winter months (Chapter 5). However, antibacterial activity was compromised in favour of antiviral activity as the water temperatures peaked in summer. A controlled laboratory experiment with water temperature raised from 18 to 21 or 24 °C showed that THC and SO increased at day 1 and then dropped back to control levels by days 3 and 7. By comparison, the humoral immune parameters showed a delayed response with antibacterial and antiviral activity significantly increasing on days 3 and 7, respectively. Consistent with the field study, antibacterial activity became significantly depressed after prolonged exposure to elevated temperatures. Consequently, abalone may have more resilience to viruses than bacterial pathogens under conditions of elevated temperature.

Experimental transmission trials were undertaken using an immersion model to study the abalone immune response to infection with AbHV (Chapter 6). The infection status of abalone was confirmed by real-time PCR. THC decreased by 38.8% in moribund abalone, but increased by 42.6 and 13.6% in apparently healthy abalone that were PCR-negative and PCR-positive for AbHV, respectively, in comparison to the non-infected group. The level of SO decreased in abalone confirmed as PCR-positive for AbHV, by 30.8% in moribund abalone and by 7.2% in apparently healthy abalone. However, for apparently healthy abalone that were PCR-negative after viral challenge, SO significantly increased, by 59.3%, in comparison to uninfected controls. These results suggest that THC and SO provide potential immune markers for AbHV infection status.

In conclusion, abalone have at least two antiviral compounds with different modes of action against viral infection. Humoral antiviral factors appear to be constitutively produced and are influenced by high temperature but not by diet or infection status. Further investigation is required to establish whether the individual variability in antimicrobial activity is heritable in breeding programs and whether higher activity confers greater resistance to disease.

Acknowledgement

Acknowledgement

This research was supported by a CRC Seafood Industry Scholarship and Science and Engineering Faculty International Fee Waiver Postgraduate Scholarship, Flinders University. I have acknowledged people for their specific contributions at the end of each data chapter, but many others have contributed to my research more generally. These people are acknowledged below.

I wish to express my sincere gratitude to my principal supervisor, Dr Peter Speck and my co-principal supervisor, Dr Kirsten Benkendorff for their invaluable guidance and support over the past years. Peter Speck and Kirsten Benkendorff have given their enormous contribution to this project, their enthusiasm and encouragement during my PhD study, and their constructive advice to help me become a more creative and productive researcher. Particularly, Peter Speck has provided training in cell culture and antiviral assay while Kirsten Benkendorff has facililated antibacterial assay and cell-mediated immune assays, as well as provided guidance on statistics analysis. Both of them have given valuable advice/feedbacks on experimental design and manuscript drafts. I thank my industry mentor, Mr Ben Smith for his great support during my research at Southern Australian Seafoods, Port Lincoln and providing valuable advice from industry perspective. Special thanks are extended to Dr James Harris for showing me how to dissect abalone and all my lab members for their valuable advice to keep the project in good progress.

On a more personal note, I would like to thank my wife and my parents for their endless love and encouragement. They always stay beside me to mentally support me throughout my study. To my son Quang Dang and my daughter An Dang, you give me so much fun and energy.

Thesis structure

Thesis Structure

This thesis encompasses five discrete experiments, each of which is presented in an independent manuscript format. Thus, some repetition of background and methods may be found between chapters. Each chapter has independent hypotheses and aims, and these complement the overall aims mentioned in the introductory chapter. For chapters that have been published or have been accepted for publication in peer-reviewed journals, the literature citation is given on the title page of that chapter. Within each manuscript, the "study" refers to the particular experiment associated with only that chapter. References to other experiments are made by formal citation of published or submitted work. Although the nominative form "we" is used in journal submitted manuscripts of Chapter 2-6, the work presented was undertaken by myself under supervision of the coauthors.

My supervisors, Peter Speck and Kirsten Benkendorff, are listed on all papers due to intellectual input in experimental design, interpretation and feedback on manuscript drafts. Contributions of other co-authors are listed for chapters below.

- Chapter 3: Prof. Mehdi Doroudi is a named investigator on the original Seafood CRC grant that funded this project and he had intellectual input into the idea of screening different geographic populations and family lines. Ben Smith is my industry mentor and he facilitated access to farmed family lines and helped set up the spawning experiment.
- Chapter 4: Yan Li facilitated bacterial culture for antibacterial assay and helped set up the phagocytosis assay.

• Chapter 6: Dr Mark Crane is a co-investigator on the Seafood CRC grant that funded this research and he facilitated the experiments at AAHL, arranged animal ethics approval for the infection experiment and had intellectual input into the experimental design and interpretation. Dr Serge Corbeil and Lynette Williams helped set up the infection experiments and facilitated the PCR and interpretation. John Hoad facilitated cell culture work at AAHL.

Chapter 1 is a general introduction to the concepts involved in this research, as well as a presentation of the aims and significance of this work. Chapter 2 contains a manuscript, published in Journal of General Virology, that describes the in vitro antiviral activity against herpes simplex virus in abalone *Haliotis laevigata*. Chapter 3 contains a paper published in *Aquaculture* that describes variation in the antiviral and antibacterial activity of abalone *H. laevigata*, *H. rubra* and their hybrid in South Australia. Chapter 4 contains a manuscript, published in Aquaculture, which identified the effects of micro- and macro-algal diet supplementations on growth and immunity of greenlip abalone, H. laevigata. Chapter 5 contains a manuscript published in Fish and Shellfish Immunology that documents the influence of elevated temperatures on immune responses of abalone, H. rubra. Chapter 6 contains a manuscript, submitted to Fish and Shellfish Immunology (3rd July 2012), which describes immunological changes in response to herpesvirus infection in abalone Haliotis laevigata and Haliotis rubra hybrids. Chapter 7 represents a general conclusion and summary of the entire study, drawing together the results and implication from all papers.