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ABSTRACT 

Regions of surface water and groundwater exchange are major sites for the transfer 

and transformation of solutes and nutrients between stream and subsurface 

environments.  Conventional stream and groundwater exchange investigations are 

limited by methodologies that require intensive field investigations and/or the set-up 

of expensive infrastructure.  These difficulties are exacerbated where hydraulic 

gradients are very low and stream discharge highly variable.  This thesis uses a suite 

of environmental tracers (Cl-, 222Rn, δ2H & δ18O, 87Sr/86Sr) to characterise the extent 

of stream and groundwater exchange between a sand bed stream and adjacent 

alluvial aquifer in a subtropical catchment (the Wollombi Brook) of eastern 

Australia.  The aims were to identify sources and relative contributions of different 

sources of groundwater to stream discharge and specifically to improve the 

methodology of using 222Rn to obtain quantitative estimate of groundwater fluxes. 

 

The sensitivity of the 222Rn technique for identifying groundwater discharge based on 

the 222Rn concentration in stream water was improved via an iterative numerical 

approach to account for 222Rn loss from stream water via turbulent gas exchange and 

radioactive decay.  Optimal distances between stream sampling points for defining 

the magnitude of groundwater discharge to stream flow based on 222Rn 

concentrations in stream water is a function of average stream velocity and water 

depth.  The maximum allowable distance between sampling points for determining 

the magnitude of groundwater discharge to the Wollombi Brook was 2 km.  This 

work showed that groundwater discharged to all reaches of the Wollombi Brook 

during baseflow and flood recession conditions.  Alluvial groundwater contributed 

<30% of water to stream flow in the mid Wollombi Brook catchment. 
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Dilution of steady-state 222Rn concentrations measured in transects from the stream 

to the alluvial sediments showed that significant surface water and groundwater 

exchange occurs even when gradients between surface water and groundwater are 

low.  Lateral stream water influx to the adjacent alluvial aquifer was more extensive 

in the lowland areas of the Wollombi Catchment during low flow than flood 

recession conditions.  Extensive stream water influx to the adjacent alluvial aquifer 

occurs contrary to the net direction of surface water and groundwater flux (as 

indicated by hydraulic gradients toward the stream channel).  The rate of stream and 

groundwater exchange within the adjacent alluvial aquifer appears to be greatest 

during baseflow conditions.  Fresh alluvial groundwater appeared to provide a buffer 

against higher salinity regional groundwater discharge to the alluvial aquifer in some 

reaches of the Wollombi Brook catchment.  Pumping of the alluvial aquifer and 

diversions of surface water may jeopardise the water quality and volume of the 

alluvial aquifer and induce water flow from the regional aquifer toward the stream, 

potentially salinising the fresh alluvial aquifer and subsequently the stream. 

 

The change in the Cl- concentration and the variation in slope of the δ2H-δ18O line 

between consecutive stream sampling points could be used to differentiate between 

regional and alluvial groundwater discharge to stream flow.  Incorporating this 

information with three-component end-member mixing using [Sr2+] and 87Sr/86Sr 

showed that stream and alluvial groundwater exchange within the stream channel 

was highest in the lowland floodplains during low flow conditions.  The least stream 

and alluvial groundwater exchange occurred in the low streambed gradient mid 

reaches of the Wollombi Brook regardless of stream stage.  The greatest difference in 

the degree of stream and alluvial groundwater exchange between high and low 

stream stages occurred in the lowland floodplains of the Wollombi Brook. 
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