
 

 

 

 

Contrastive Visual and 

Language Learning for Visual 

Relationship Detection 

 

By 
 

Thanh Gia Tran 

 

 

Thesis 

Submitted to Flinders University 

for the degree of Master of Science in Computer Science 
 

 

 

College of Science and Engineering 

July 13th, 2023 
 



 

i 

Table of Contents 

TABLE OF CONTENTS ................................................................................................ I 

ABSTRACT .................................................................................................................. III 

LIST OF FIGURES ....................................................................................................... V 

LIST OF TABLES ...................................................................................................... VII 

CHAPTER 1 INTRODUCTION ................................................................................... 1 

1.1 Visual understanding ............................................................................................... 3 

1.2 Thesis statement ...................................................................................................... 4 

1.3 Thesis outlines ......................................................................................................... 5 

CHAPTER 2 LITERATURE REVIEW ....................................................................... 6 

2.1 Deep learning architectures ..................................................................................... 7 

2.1.1 Convolutional Neural Network ......................................................................... 7 

2.1.2 Transformer ...................................................................................................... 8 

2.2 Representational learning for image and text ........................................................ 13 

2.2.1 Language representational learning ................................................................ 13 

2.2.2 Image representational learning ...................................................................... 15 

2.2.3 Joint language and image representational learning ....................................... 17 

2.3 Contrastive Representational Learning ................................................................. 19 

2.3.1 Statistical models and Energy-based models .................................................. 19 

2.3.2 Loss Functions for Energy-Based model ........................................................ 21 

2.3.3 Noise Contrastive Estimation Loss ................................................................. 23 

2.4 Structured representation of a scene ...................................................................... 28 

2.4.1 Scene Graph and Visual Genome ................................................................... 29 

2.4.2 Visual Relationship Detection ........................................................................ 31 

2.4.3 Engineering Loss Objectives for VRD ........................................................... 32 

2.4.4 Message Passing Approaches for VRD .......................................................... 34 

2.4.5 A General CNN-based Architecture for VRD ................................................ 37 

2.5 Discussion ............................................................................................................. 38 

CHAPTER 3 DATASETS AND EVALUATION METRIC FOR VISUAL 

RELATIONSHIP DETECTION ................................................................................. 40 

3.1 The long-tail problem of Visual Genome dataset.................................................. 40 

3.1.1 From Unstructured to Structured Data ........................................................... 41 

3.1.2 Statistics of VRD and VG150 ......................................................................... 42 

3.1.3 Tackling the long-tail problem ....................................................................... 44 

3.2 Evaluation Metrics ................................................................................................ 45 

3.2.1 Precision, Recall, and F-measure .................................................................... 45 

3.2.2 Precision-Recall Curve and ROC Curve ........................................................ 47 



 

ii 

3.3 Discussion ............................................................................................................. 50 

CHAPTER 4 CONTRASTIVE VISUAL AND LANGUAGE LEARNING FOR 

VISUAL RELATIONSHIP DETECTION ................................................................. 51 

4.1 Visual Relationship Detection ............................................................................... 52 

4.2 The VLTransE Architecture .................................................................................. 54 

4.2.1 Visual and Spatial Module .............................................................................. 55 

4.2.2 Language Module ........................................................................................... 56 

4.2.3 Loss Functions ................................................................................................ 57 

4.3 A Simple Contrastive Learning Architecture ........................................................ 61 

4.3.1 Visual Module ................................................................................................ 62 

4.3.2 Language Module ........................................................................................... 63 

4.3.3 Contrastive Loss Module ................................................................................ 63 

4.5 Discussion ............................................................................................................. 64 

CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS .............................. 66 

5.1 Implementation ...................................................................................................... 66 

5.1.1 Implementation details of the VLTransE architecture .................................... 67 

5.1.2 Implementation details for a Simple Contrastive Learning Architecture ....... 69 

5.1.3 Replication details for Scene Graph Benchmarks models .............................. 72 

5.2 Experimental Results and Analysis ....................................................................... 72 

5.2.1 VLTransE Experimental Results .................................................................... 72 

5.3.2 Simple Contrastive Learning Architecture Experimental Results .................. 76 

5.3 Discussion ............................................................................................................. 86 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ........................................... 89 

BIBLIOGRAPHY ......................................................................................................... 92 

APPENDICES ............................................................................................................. 112 

Appendix A: Biased Object Detector for VRD ......................................................... 112 

Appendix B: ROC Curves for top sixteen predicate classes ..................................... 114 

 

  



 

iii 

Abstract 

The visual world is highly structured, and real-world scenes are often decomposed 

into multiple objects and parts of objects that interact with one another. While deep 

learning models have demonstrated their abilities to detect visual objects from images, 

they remain unable to detect higher level visual relationships that exist between these 

object pairs. In this work, we focus on building visual relationship detection (VRD) 

systems that can recognize visual relationships between objects in images. Here, we use 

the scene graph representations from the Visual Genome dataset, which contains objects 

and relationships grounded to image regions in the form of (subject, predicate, object) 

triples. Different from existing work which used supervised classification techniques to 

build VRD systems, we interpret VRD as a representational learning task and apply 

visual-language contrastive learning in conjunction with knowledge graph 

representational learning techniques to build joint visual and language embedding spaces 

for the VRD task. The results show that contrastive visual and language learning can 

improve the model’s performance on the Recall@n metric while penalizing its ability to 

generalize to rare visual relationship classes. We also show that translational knowledge 

graph embedding techniques can be applied to preserve the first-order hierarchical 

structure without penalizing the model’s overall performance on VRD. With these results, 

we argue that deep learning models have extra capacity to learn visual relationship 

concepts and structures through additional contrastive loss constraints, and further 

categorization of visual relationship labels can improve the final representational spaces. 

Keywords: scene graph, deep learning, contextualized representational learning, 

contrastive learning, transfer learning 
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Chapter 1  

 

Introduction 

Scene understanding aims not only to detect objects in real-world scenes but also 

to form an interpretation of how these objects are related to one another. Deep learning, 

when combined with recent advances in computing hardware and large-scale image-text 

datasets, offers a powerful set of tools that can help us tackle the perception tasks through 

its representational ability. Yet, using deep neural networks’ representations learned from 

simple perception tasks such as object recognition (Dosovitskiy et al., 2020; He et al., 

2015) and object detection (Lin et al., 2017; Ren et al., 2015) alone is not enough to 

achieve scene understanding. Instead, the problem calls for a more structural approach in 

representing the visual scene. 

The visual world is highly compositional and structured, and these structures often 

manifest themselves in our daily usage of language when describing an image or a scene. 

For example, we can describe the image in Figure 1.1 with a natural language phrase: 

“the person is riding a horse”, forming a (subject, verb, object) semantic structure. In this 

work, we use such structures in visual scenes’ descriptions to build systems that generate 

interpretable and structured representations called scene graphs. More specifically, we 

aim to tackle a specific subtask of scene graph generation called visual relationship 

detection (VRD), where the goal is to detect not only objects in the visual image but also 

the visual relationships that exist between these object pairs, forming multiple (subject, 

predicate, object) triples (Lu et al., 2016). 

 

Figure 1.1: An example of a scene graph of a man riding a horse 
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A common approach for VRD is to build a deep neural classifier that directly 

predicts the predicate from the input image and object’s labels (Yu et al., 2017; J. Zhang 

et al., 2019). While this approach has shown impressive performance on benchmarking 

datasets (Krishna et al., 2017; Lu et al., 2016), such models are highly susceptible to 

dataset biases and often learn spurious correlations that do not generalize well to out-of-

domain compositions. For example, a classification model may detect common 

relationships like (person, ride, horse), while struggle to detect (person, ride, dog) or 

(dog, ride, bike). This thesis aims to tackle part of these issues for VRD by exploiting 

different types of priors, including the natural language priors of the visual relation triples. 

To exploit the priors from the benchmark dataset, we started by exploring the 

language aspect of the visual relationship datasets in Chapter 3 to analyse the labelled 

visual relationships in the VRD dataset benchmarks. While examining the visual 

relationship dataset, we highlighted how the use of English descriptions in the original 

data curation process gives rise to polysemy (Rodrigues et al., 2020), resulting in 

prepositions and relationships with different senses or meaning. For example, the 

preposition ‘on’ can be used in both the ‘attach to object’ sense such as (wheel, on, car) 

and the ‘on top of’ sense such as (skateboard, on, ground). This polysemous nature of the 

visual relation triples makes it difficult to evaluate the model’s performance with the 

commonly used Recall@n metric where only one predicate can be assigned to every 

(subject, object) pair. Thus, we also propose the use of one-vs-all evaluation metrics based 

on ROC analysis (D. Powers, 2015) for each class in Chapter 3, allowing more than one 

predictions for every (subject, object) pair. 

After the analysis of the visual relationship dataset and the evaluation metrics, we 

apply contrastive learning to build different visual relationship detection systems, while 

exploiting the recent advances in contextualized encoders called the Transformer 

(Vaswani et al., 2017). Through the visual-language consistency contrastive loss 

function, we aim to encode both image and text onto a joint vision-language space by 

maximizing mutual information between the two modalities. We also incorporated a 

knowledge graph embedding loss called translational loss which enforce the first-order 

hierarchical structure of the (subject, predicate, object) triple (EMB<subject> + 

EMB<predicate> = EMB<object>). At test time, the model encodes the relevant image 

regions and text pairs to rank them using scoring distance metrics. With engineered 

negative sampling strategy, the model can achieve comparable Recall@n results (Chapter 

5) on the VRD classification task when compared against other benchmark models. 
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The VRD problem can also be treated as a subset of the overarching challenge of 

visual understanding, described in the Section 1.1 below. 

1.1 Visual understanding 

Understanding visual contents from images through means of image 

decomposition and parsing has dated back to the 1960s-1970s (S.-C. Zhu & Mumford, 

2006). In these earlier works, the task of image parsing aims to bridge the semantic gap 

between low-level noisy visual pixels and high-level parse graphs. Here, a parse graph is 

represented as a hierarchical tree structure that consist of scene labels, objects, parts, 

primitives, pixels, and functional relations (S.-C. Zhu & Mumford, 2006). 

For object-level structure parsing, traditional approaches prior to deep learning 

era leverage human’s domain knowledge and build local feature descriptors for different 

objects such as HOG (Dalal & Triggs, 2005), SIFT (Lowe, 2004), and Shape Context 

(Belongie et al., 2000). After obtaining these hand-crafted feature representations, 

classifiers such as the support vector machines (SVM) are often used to make the final 

predictions (Cortes & Vapnik, 1995). However, an object’s appearance can be diverse 

and wide ranging, making it difficult to build local descriptors that can generalize beyond 

the assumed domain and fit all plausible configurations. 

  

 

 

 

Removed due to 

copyright restriction. 

 

Figure 1.2: Left1) black bear in a forest. Middle2) polar bear on snow. Right3) polar bear in a 

forest. 

Recent innovations in deep learning have allowed us to bypass such manual 

feature engineering process while being successful in detecting and classifying objects 

 

1 Left black bear image: https://www.ysnp.gov.tw/En/StaticPage/BSE01Copy 
2 Middle polar bear image: https://en.wikipedia.org/wiki/Polar_bear 
3 Right polar bear image: https://panthertown.org/2016/04/01/polar-bear-in-panthertown-usfs-closes-hiking-trails/ 
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(LeCun et al., 1999). However, deep learning is not without its problems. While deep 

learning models are often treated as black boxes that can automatically learn structures 

from data and map any input to output, it is more often the case that these models learn 

spurious correlations and not causations (Shekhar et al., 2017; Szyc et al., 2021). For 

example, in Figure 1.2, if we train a black bear vs polar bear classifier using a set of 

images similar to the left and middle ones and test the model on the right image, the model 

can still make a mistake and classify the polar bear (Figure 1.2, right) as a black bear by 

looking at the green forest background. Therefore, applying deep learning as a universal 

black box without human’s involvement is not a solution either. Human’s domain 

knowledge is still required to introduce different forms of priors to help the model to learn 

the relevant features. 

1.2 Thesis statement 

In this work, we propose that contrastive learning when applied to domains 

represented as scene graphs can reduce the need for more labelled data for the 

representational learning problem, thus help us tackle visual relationship detection in a 

resource-constraint setting. However, given the unbalanced nature of the dataset, using 

the recall metric for evaluation gives a biased view towards common predicates. Thus, to 

have a more holistic view of the models’ performances, we also propose the use case of 

one-vs-all evaluation metrics and ROC curve for each individual relationship class. Our 

main contributions in this work are: 

1. We applied translational loss in conjunction with contrastive vision and 

language loss for scene graph representational learning and showed that 

translational loss can improve the expressivity of the final embedding space 

without penalizing the performance of the VRD task. 

2. We explored a new use case of the recent contrastive contextualized encoder-

encoder architecture called CLIP for the visual relationship detection task, 

showing that existing pre-trained contrastive vision and language model can 

be applied to the VRD task. 

3. We proposed an adaptive negative sampling strategy that drew negative 

samples from the inverse distribution of the drawn samples. By applying this 

sampling strategy over the naïve random sampling approach, our model 

achieves a consistent improvement on the Recall@n metric as we scale up its 

size. 
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1.3 Thesis outlines 

This thesis is structured as follows. In Chapter 2, we start by reviewing the 

foundational building blocks of deep learning and the relevant literature on scene graph 

generation (D. Xu et al., 2017) and visual relationship detection (C. Lu et al., 2016). We 

also describe the different contrastive learning approaches used in this work. 

In Chapter 3, we examine the origin of the Visual Genome dataset and discuss the 

different priors and limitations of the benchmarked data. We also examine the commonly 

used evaluation metrics for the VRD benchmarks and proposed the use of Informedness 

and ROC curves to evaluate the performance of the model. 

Chapter 4 begins by describing how multi-modal representational learning via 

contrastive method can benefit the VRD task and propose two contrastive learning 

architectures to tackle the problem. The first VLTransE architecture interprets a scene 

graph as a knowledge graph and focuses on preserving the first-order hierarchical 

structure of the graph. The second architecture focused on reducing the memory footprint 

used during the contrastive training process and employs an existing contrastive learning 

architecture to tackle the VRD task. 

In Chapter 5, we report the experimental results for our models along with other 

benchmarked results, identifying strengths and weaknesses in our proposed architectures. 

Here, we also outline the implementation details and design decisions, and analyse the 

outcomes of the proposed contrastive losses. 

Finally, we conclude the thesis with a general discussion and future work section 

on VRD in Chapter 6. 

Parts of this thesis were presented at the AAAI-MAKE 2022 Spring Symposium, 

Stanford, US (Tran, Santos, et al., 2022) and ALTA 2022, Flinders University, AU (Tran, 

Neau, et al., 2022). 
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Chapter 2  

 

Literature Review 

In recent years, deep learning systems have achieved considerable success in 

computer vision and natural language processing. This is especially true when the task 

involves perception or pattern recognition. However, these deep learning methods often 

exhibit brittleness and unpredictable errors when attempting to generalize beyond the 

given datasets (Geirhos et al., 2020). These errors happen because deep learning models 

are susceptible to shortcut learning, where the systems learn correlations that give the 

correct answers but for the wrong reasons (Geirhos et al., 2020). Over the years, there 

were three prevalent approaches that aimed to tackle this problem, including the evolution 

of hardware accelerator and computing strategies, the development of quality datasets 

and data processing pipelines, and the innovation in the deep learning architecture 

designs. While the improvements of the dataset and computer architecture are outside of 

the scope of this work, we aim to provide an overview of different neural architectures 

and give an interpretation on how these design choices can impact the performance of 

visual relationship detection models. 

In this chapter, we describe the recent innovations in the deep learning 

architectural design space and show how introducing different types of human-

engineered inductive biases or priors to the system can lead to better generalization in a 

wide variety of tasks. Building on top of these neural network architectures, we then 

review different methods of learning numeric vector representations called embeddings 

for images and text, with an emphasis on contrastive learning approaches. Finally, we 

explore the development of a scene graph dataset called the Visual Genome (VG) 

(Krishna et al., 2017), understand the implications of such dataset in recent years, and 

give an intuition on how the architectural choices can blend itself to improve the VRD 

task. Here, the VG dataset contains 108K pairs of image and scene graphs crowdsourced 

from Amazon Mechanical Turk workers (Keith et al., 2017), where each scene graph is 

represented by a set of visual relationship triples in RDF format. 
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2.1 Deep learning architectures 

Artificial neurons are the foundational building blocks of any modern deep 

learning architecture, where each neuron is a linear function that transforms a set of input 

signals into an output signal. Here, an additional activation function is often applied to 

get the final output signal for other neurons to process, and many of these neurons can be 

aggregated into multiple interconnected layers, creating an Artificial Neural Network 

(ANN) or Multi-Layer Perceptron (MLP). 

 𝐴𝑁(𝑥) = W𝑥 + b Eq. 2.1  

While Hornik et al. (1989) have theoretically proved that ANNs with at least one hidden 

layer are universal approximators for any functions, practical applications of ANNs show 

that one hidden layer is far from enough. In practice, deeper networks are required in 

order to learn better representations of a complex set of data. 

Still, labelled observations and datapoints are limited, and ANN, when trained on 

a small set of data, often leads to biases and poor generalization. Therefore, different types 

of inductive biases and architectures were introduced to help the model better generalize 

to new situations. While we cannot cover all possible inductive biases and architectures 

here, we will describe some contemporary architectural choices for visual relationship 

detection such as Convolutional Neural Network (CNN) and the Transformer as they are 

most relevant to this work. 

2.1.1 Convolutional Neural Network 

Convolutional Neural Network (CNN) (Lecun et al., 1998) is one of the most 

popular deep learning architectures used to tackle many of the perception problems, 

including object recognition (LeCun et al., 1999), object detection (Ren et al., 2015), and 

instance segmentation (He et al., 2018). Its success can be attributed to the design choices 

based on two observable properties in visual images (LeCun et al., 1999). First is the 

locality property where nearby pixels are often related to the same object, and second is 

the spatially invariant property which states that the same object can occur in different 

locations in an image. The CNN architecture, designed with constraints surrounding these 

two observations, consists of three main types of layers: the convolutional layer, the 

pooling layer, and the fully connected layer. 

• The convolutional layer consists of multiple weighted kernels or filters, where 

each filter aggregates local information or pixels from the previous layer to 
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produce a new pixel in the next layer. To fully form a new layer, the filter can be 

thought as a sliding window that produces one new pixel with every slide. 

• The pooling layer focuses on regularizing the network by performing a down 

sampling operation, usually in the form of a MAX or AVERAGE pooling. Like 

the convolutional layer, we can think of the pooling layer as a sliding rectangular 

window that performs the selected operation at every slide. 

• The fully connected layer or multi-layer perceptron (MLP) is used to perform a 

matrix multiplication followed by a bias offset that transforms the previous layer 

into a new layer. Usually, a non-linearity activation function such as ReLU (Eq. 

2.2) is applied after the fully connected layers and the convolutional layers in 

order to enables the depth of the network. 

 𝑓𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) Eq. 2.2 

With these three operations, a CNN trained on image classification task can 

capture general knowledge about the objects, including the hierarchical structure of pixels 

where lower layers learn local information like edges and higher layers learn global 

information like objects (Krizhevsky et al., 2017). Despite CNN's original design for 

pattern recognition, its scope has broadened as subsequent works demonstrating the 

effective use of pre-trained CNN models to extract visual embeddings for more complex 

downstream tasks. Selvaraju et al. (2017) adds this point by showing through activation 

maps how convolutional layers learn to localize discriminative parts and features, which 

has been crucial for downstream image classification, object detection, and visual 

question answering tasks. In this work, we use these pre-trained CNN models to extract 

visual embeddings for downstream VRD task. Besides the CNN architecture, we also use 

the Transformer architecture for extracting both visual and textual embeddings as 

described in Section 2.1.2 below. 

2.1.2 Transformer 

While the CNN has led to breakthroughs in many computer vision tasks, the 

strong local spatial assumption that made the CNN succeed in the image domain have 

prevented its application to the language domain which requires a holistic understanding 

of the global context. The Transformer architecture (Vaswani et al., 2017), originally 

designed for machine translation (Sutskever et al., 2014), solves such limitation by 

relaxing the spatial assumptions inherent to the CNN design. As a result of these relaxed 
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assumptions, the architecture can be applied to multiple domains including language 

(Devlin et al., 2019), speech (Chorowski et al., 2015; Radford et al., 2022), and image 

(Dosovitskiy et al., 2020), although the latter required a somewhat unnatural 

representation of images as sequence. Unlike the CNN which assumes the locality and 

spatially invariant property of the input, the Transformer makes no assumptions about the 

temporal and spatial relationships across data (Devlin et al., 2019; Radford et al., 2018). 

Instead, along with the widely used MLP and skip connection, the Transformer encodes 

the position of its token and mainly operates using the scaled dot product attention 

mechanism where it learns to retrieve the most relevant information from the previous 

layer based on a learnable query (Bahdanau et al., 2016). While there are other methods 

to compute attention, this following section focuses solely on the scaled dot product 

attention operation and calls it as attention for short. 

Formally, given input 𝑋 ∈ ℛ𝑏𝑎𝑡𝑐ℎ×𝑡𝑜𝑘𝑒𝑛𝑠×𝑑𝑚𝑜𝑑𝑒𝑙 where 𝑡𝑜𝑘𝑒𝑛𝑠 is the length of 

the input sequence and 𝑑𝑚𝑜𝑑𝑒𝑙 is the vector length of each token embedding, the attention 

mechanism learns three weight matrices 𝑊𝑄 , 𝑊𝑘 , 𝑊𝑣 ∈  ℛ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 that transform the 

tokens’ vectors into queries, keys, and values with arbitrary dimension 𝑑𝑘. The attention 

operation is defined as follows: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  

Eq. 2.3  

 𝑄 =  𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾, 𝑉 = 𝑋𝑊𝑣   

A simple and hypothetical way to visualise how attention works is to look at the 

example of retrieving values from a hash table using a given set of queries and keys 

(Vaswani et al., 2017). Of course, in the attention mechanism, the hash tables are the 

output embeddings of the previous fully connected layers, and the hash functions are 

learnable linear projections or weights. Here, the query-key matching operation generates 

a probability distribution over all possible keys and retrieves the weighted sum of the 

associated values based on the generated distribution. This attention operation can also 

be visualized in Figure 2.1.  
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Figure 2.1: a visualization of scaled dot product attention. Adapted from Vaswani et al., 2017. 
 

Under this hash table analogy, a layer with only one attention operation can route 

information in a single way. However, different words in a sentence can relate to each 

other in many ways, and routing information from only a limited set of input tokens 

prevents the model from learning the distinct syntactic, semantic, and discourse 

relationships (Voita et al., 2019). To overcome this limitation, the Transformer performs 

multiple attention operations with distinct learnable weights in parallel, creating multiple 

information routes at each layer. This process is also called multi-head attention where 

each head consists of an attention operation: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 Eq. 2.4  

 where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉𝑊𝑉
𝑖)  , 𝑖 = 1, … , ℎ   

Originally designed for the machine translation task, the Transformer’s goal is to 

transform the original language input into a sequence of probability distribution of 

targeted language tokens (Vaswani et al., 2017). To facilitate the transformation of 

language, the architecture encodes the original language using the encoder module 

(Figure 2.2, left) and transforms the encoded tokens to the target language tokens using 

the decoder module (Figure 2.2, right). This encoder-decoder architecture applies the 

described multi-head attention in three different types of layers: the self-attention 

layer, the causual self-attention layer, and the cross-attention layer. 
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Figure 2.2: Visualizing the building blocks for the Transformer model. Adapted from Vaswani 

et al., 2017.  

In the self-attention layer, the keys, queries, and values are learned directly from 

the input. The described multi-head attention operation is then applied to aggregate 

information from the previous input layer to generate an output vector for the next layer. 

The causual self-attention layer also performs the multi-head attention operation to 

generate the output vectors. However, instead of aggregating information from every 

input vector in the entire sequence, the causual self-attention mechanism only looks at 

input vectors that occur in the previous positions in the sequence (Figure 2.3). In practice, 

this is done by multiplying the input sequence by a binary mask. Due to its backward-

looking property, this layer is only used in the decoder block to perform inference for the 

next token. The cross-attention layer is also used in the decoder like the causual self-

attention layer. However, different from the above two layers, the layer aims to retrieve 

information or values from the encoder output embeddings by matching the encoder 

generated keys with the decoder generated queries. This facilitates information flow 

between the encoder and decoder module as shown in Figure 2.2. 
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Figure 2.3: a visualization for causual self-attention layer vs self-attention layer. 

Besides the described attention layers, the architecture also uses the residual 

connection or skip connection (Figure 2.4) to prevent information loss as the depth of the 

network increases (He et al., 2015). This residual connection when coupled with MLP 

has shown to be an important structural prior that enables the depth and scalability of the 

model. Here, the residual connection serves two purposes: (1) it prevents the gradient 

vanishing problem that often occurs with deeper neural networks (He et al., 2015), and 

(2) it creates additional pathways for information flow from the lower layers to the higher 

layers (Dong et al., 2021). While Transformer-based models demonstrated impressive 

performance on a wide variety of tasks, it is still an open question on how to effectively 

interpret and explain the results generated by the model. Such topic involves the subfield 

of explainability and responsible AI (Arrieta et al., 2019; Ilinykh & Dobnik, 2021) and is 

not covered under the scope of this work. 

 
Figure 2.4: visualization for residual connection. Adapted from He et al., 2015. 

In Section 2.2 below, we further describe the applications of Transformer-based 

and CNN-based architectures in the image and text representational learning problem, 

highlighting their strengths and weaknesses when compared with alternative designs. In 

Section 2.4.4, we also highlight how Transformer can be used to learn different 

topological structures from knowledge graphs and the scene graph. While such approach 

described in Section 2.4.4 is not directly applied in this work, understanding of how neural 
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network architectures can be engineered for scene graph can help us build better models 

in future work. 

2.2 Representational learning for image and text 

Deep learning main strength stems from its powerful representational ability of 

large-scale datasets, where the learned numeric representation can be transferred to other 

downstream tasks through a process called transfer learning (F. Zhuang et al., 2020). 

Here, transfer learning is the process of learning and storing general knowledge from a 

set of pre-defined tasks and applying this knowledge towards a different or related 

machine learning task (Bengio et al., 2012). With ANNs, this general knowledge is stored 

in a distributed manner using continuous and low-dimensional vector embeddings 

(Bengio et al., 2012). For the visual relationship detection task, these vector embeddings 

should capture knowledge from both the image and text modalities because the objects’ 

interactions rely not only on visual appearances but also the labels and use cases of the 

given objects. This multimodal representational learning is particularly challenging 

because images are considered as signal with redundant information whereas textual 

triples are symbolic.  

In Section 2.2.1, we introduce different techniques for learning language 

representations from large textual corpora in the form of dense vector embeddings. 

Similarly, in Section 2.2.2, we introduce different state-of-the-art techniques used to 

capture visual features from images. Finally, in Section 2.2.3, we describe different 

approaches to jointly learn image and text representations that incorporate information 

from both modalities. 

2.2.1 Language representational learning 

In language, words that have similar meanings often have similar surrounding 

context and syntactic structure, and embedding models make use of such observation to 

generate words’ vector representations. For example, Mikolov et al. (2013) introduce 

Word2Vec, which consists of two methods of learning word vector representations: the 

continuous bag of words (CBOW) method and the Skip-Gram method. The CBOW 

model finds word representations based on their surrounding words or context, while the 

Skip-Gram model finds word representations by predicting the surrounding words in the 

sentence or document (Mikolov et al., 2013). After training, these dense vectors can 

capture not only the syntactic relationships but also the surface-level correlations between 
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words’ meanings. For example, vector("King") - vector("Man") + vector("Woman") 

results in the vector("Queen"), where vector(w) is the embeddings for the word w. 

While these distributed representations or embeddings can capture general words’ 

meaning, the trained embedding vectors for individual words are fixed no matter what the 

surrounding word or context is (McCann et al., 2018; Peters et al., 2017). This drawback 

means that these vectors cannot fully represent the polysemous nature of language, where 

one word can have a different meaning in a different context (Herskovits, 1986). To 

resolve this problem, Peters et al. (2018) introduced a new type of deep contextualized 

word embedding model called ELMo. Unlike traditional word embeddings that are fixed 

for every input word, contextualized models can generate word embeddings that vary 

according to the sequence context. For example, the same token ‘bank’ in the sentence 

‘he withdraws money from the bank’ and the sentence ‘he is sitting on the bank next to 

the river’ would have two different contextualized embeddings. To generate these 

contextualized word embeddings, the model takes the entire sequence of words as input 

and learns to predict the next word from the previous words in a task called language 

modeling. Here, ELMo uses a recurrent neural network (RNN) or more specifically long 

short term memory (LSTM) network (Sutskever et al., 2014), to learn the contextualized 

embedding for each word (Peters et al., 2018). 

However, using recurrent neural networks often exhibits long-term dependency 

issues due to their sequential nature and the information bottleneck problem (Cheng et 

al., 2016). To counteract these problems, RNN is often trained with the attention 

mechanism which aims to aggregate information from all the hidden states weighted by 

their importance (Bahdanau, 2014). This attention mechanism is later extended to create 

the Transformer architecture described in Section 2.1.2 above (Vaswani et al., 2017). In 

a way, the Transformer trades away the sequential nature of the RNN architecture in 

preference for parallelism, where the model processes the entire sequence at once instead 

on a token-by-token basis. The downside to this parallelism is that the length of the input 

sequence is limited by the amount of physical resource available, with GPU’s memory 

being the most important constraint. To preserve the position of the input, the model 

introduces an additional input refinement step that adds sinusoidal positional encoding to 

the input embeddings. Every layer in the Transformer can be thought of as a sequence of 

states, and a single state in the sequence is formed by aggregating information from all 

states in the previous timestep using the attention operation (Vaswani et al., 2017). Thus, 
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zothe final output embedding of a position encodes information not just from input token 

but also from other tokens in the input sequence. 

Given the success of Transformer in the machine translation task, different 

contextualized word embedding models emerged under the same design choices and 

building blocks. For example, Devlin et al. (2019) introduced BERT, a Transformer 

encoder pre-trained on the masked language modeling and the next sentence prediction 

tasks (Devlin et al., 2019). Here, BERT takes a sequence of encoded tokens as input and 

propagates them through multiple layers of self-attention and MLP blocks to output a 

sequence of contextualized word embeddings. Similarly, GPT-2 uses only the decoder 

blocks of the Transformer and was pre-trained using the language model task. Unlike 

BERT, GPT-2’s embeddings are often not directly used for downstream tasks. Instead, 

GPT-2 is often fine-tuned using discriminative losses that fit the needs of the 

experimenter’s goal (Radford, Narasimhan, et al., 2019). 

In this thesis, we apply Transformed-based encoders like BERT to learn 

contextualized word embeddings for visual relationship triples. Still, these word 

embedding techniques are not enough. While word embedding models can capture 

general language prior knowledge, VRD also requires visual features extracted from the 

visual entities or objects in the image. The next section describes the image 

representational learning process and introduces the application of CNN and Transformer 

to generate visual embeddings. 

2.2.2 Image representational learning 

 As described in Section 2.1.1, a CNN is designed with two main assumptions: (1) 

the locality property which indicates that nearby pixels are related, and (2) the spatially 

invariant property which states that different portions of the image should be processed 

identically despite their location by sharing the filter weights (LeCun et al., 1999). Under 

these design decisions, a CNN trained on image classification task can capture the 

hierarchical structure of pixels where the lower layers learn local information like edges 

and the higher layers learn global information like objects (Krizhevsky et al., 2017).  

As image datasets become larger and computational hardware becomes 

exponentially faster over the year, pre-trained CNN models such as AlexNet (Krizhevsky 

et al., 2017), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 

2014), and ResNet (He et al., 2015) for image representation have also become larger and 

deeper. As a practical result of the increased scale of these models, the final layer output 
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of the CNN pre-trained on the image classification task is often used as a feature map for 

visual embeddings that can be transferred to other relevant downstream tasks. Beyond 

image classification for image representation, CNN is also used in object detection, which 

aims to detect and classify different objects by predicting their corresponding bounding 

boxes in conjunction with the object’s class. One specific object detection model is Faster 

R-CNN, which consists of a shared backbone convolution network, a region proposal 

network (RPN), and a region of interest detector (Ren et al., 2015). Built on top of the 

backbone network, the RPN proposes potential bounding boxes by predicting the 

probability that an object exists while minimizing the difference between the ground truth 

bounding boxes and the proposed anchor boxes, which are then refined to get the final 

proposals (Ren et al., 2015). Still, the original Faster R-CNN architecture uses only the 

final output layer of the backbone CNN to perform both RPN and feature extraction, 

creating a bottleneck and limiting its capability to detect smaller object sizes because the 

smaller objects’ information is often lost in higher layers due to the pooling procedure. 

To resolve this problem, the Feature Pyramid Network (FPN) is often used in 

conjunction with Faster R-CNN model to incorporate features from different levels in the 

backbone network (T.-Y. Lin et al., 2017). The FPN constructs multiple feature maps 

with different resolutions based on convolutions, allowing the detection of large objects 

to take place in lower-resolution feature maps and small objects to take place in higher-

resolution feature maps. As a result, the model does not only depend on the final layer 

output of the CNN backbone but also on the intermediate layers to extract its features, 

increasing the model’s expressivity and reducing the amount of information loss through 

multiple pooling layers. In Chapter 4, we train the Faster R-CNN with FPN for detecting 

objects in the visual embedding module to facilitate fair comparisons with existing work. 

We also use the multi-resolution feature maps extracted from the trained CNN backbone 

to extract visual features for downstream tasks. 

 While CNN has been the dominant architecture for visual encoding, Transformer-

based models for vision have also gained popularity in recent years due to their flexibility 

and scalability. More specifically, Transformer variants called the Visual Transformer 

(ViT) (Dosovitskiy et al., 2020) have shown competitive results in computer visions tasks 

such as image recognition (Touvron et al., 2021), object detection (Carion et al., 2020; X. 

Zhu et al., 2021), and image segmentation (J. Chen et al., 2021). However, the ViT’s 

architecture does not contain any spatial inductive biases like the CNN’s convolutional 

layer. To solve this issue, the model subdivides the image into smaller patches to form 
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2D grids of different sizes (14x14, 16x16, 32x32) and incorporates spatial information by 

assigning an additional positional embedding for each patch. These positional 

embeddings can be automatically learned during training via projection matrices. 

Interestingly, empirical experiments show that the different initialization techniques for 

positional embeddings do not affect the final performance of the model (Dosovitskiy et 

al., 2020). Even with randomly initialized positional embeddings, a ViT model trained 

the image classification task can automatically learn structures that capture local 

information at lower layers and global information at higher layers (Raghu et al., 2022). 

While this observation is similar to that of a CNN, ViT models require more training data 

and scale to achieve the same level of performance as that of CNN-based models (Raghu 

et al., 2022). In a way, deep neural networks with relaxed assumptions like ViT can still 

implicitly learn object-level patterns and structures from images. However, there is still 

value in introducing design biases to the neural model to increase learning and inference 

efficiency (C.-Y. Wang et al., 2022). 

In Section 4.3, we compare the performance of ViT of different scale on the visual 

relationship detection benchmarks in the context of joint visual and language 

representational learning. Section 2.2.3 briefly expands upon the task of joint language 

and image representational learning and introduces contrastive representational learning 

within the wider context of self-supervised learning framework.  

2.2.3 Joint language and image representational learning 

The task of joint vision and language representational learning can be seen as a 

subtask of the multi-modal machine learning problem, where the goal is to process and 

understand information from different sensors. Here, we focus on the challenge of 

learning how to represent both image and text in a way where each modality can 

complement and not interfere with the other. This motivates further research in 

developing a joint representation for both language and vision where each modality 

contributes positively to the other, facilitating a more complete set of concepts. 

Most techniques for learning joint representations depend on deep learning 

architecture automatically learn relevant information from the language and image 

modalities. Given the successes of Transformer in unimodal representational learning like 

BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al., 2020), the same Transformer 

architecture was also applied to learn joint vector representations that capture not only 

image and text features but also their dependencies. There are two main approaches to 
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adapt the existing Transformer architecture to both image and text: (i) the single-stream 

method and (ii) the dual-stream method. In the single-stream approach, both image and 

text are encoded using a single encoder module with self-attention operations, and their 

interactions are automatically learned during optimization (Y.-C. Chen et al., 2020; Li et 

al., 2019; Su et al., 2020). This is usually done by concatenating image region embeddings 

and word embeddings into an input sequence and encoding the sequence using the 

encoder network and loss functions. Different from the single-stream method, the dual-

stream approach uses two encoder modules, one for image and one for text (J. Lu et al., 

2019). The encoded image embeddings and the text embeddings are exchanged through 

the co-attention transformer layer (J. Lu et al., 2019). In either case, we can observe that 

information from both modalities is exchanged through the attention mechanism, and the 

flow of information is determined by the architectural choice and a set of pre-defined 

objectives. 

While the simplicity of the Transformer architecture made it popular in recent 

work, a well-designed ANN architecture is not enough. Another critical determinant of 

success for these networks are the self-supervising objectives or loss functions. Here, self-

supervised learning (SSL) encompasses both supervised and unsupervised learning, and 

the goal of the SSL is to help the model to learn useful representation that can be 

transferred to downstream supervision task. Two of the most common SSL goals involve: 

(i) predicting the future from the past, or (ii) predicting the masked parts from the visible 

parts (Ericsson et al., 2022). For example, UNITER (Y.-C. Chen et al., 2020) applied four 

different SSL pretext objectives: (i) the masked language modeling aims to predict the 

missing words based on the surrounding input context, (ii) masked region modeling that 

aims to reconstruct the image region based on the surrounding context, (iii) image-text 

matching that aims to predict whether the image and text are related, and (iv) word-region 

alignment that aims to minimize a defined distance between matching words and image 

regions. In practice, selecting a good neural architecture along with relevant SSL loss 

objectives leads to a consistent improvement in benchmark performance. However, the 

theory as to why certain combinations of architectural choices and loss functions improve 

the model’s representations remains open. This topic involves the subfield of multitask 

learning and meta learning and is covered by Hospedales et al. (2022)’s survey. 

While our approach presented in Chapter 4 also leverages SSL to learn joint visual 

and language representations, the architecture mostly comprises of contrastive loss 

functions as described in Section 2.3 below. 
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2.3 Contrastive Representational Learning 

 Contrastive Representational Learning (CRL) (Le-Khac et al., 2020) is a subtask 

of the self-supervised learning framework which aims to enforce a set of loss functions 

that minimize the distance between the embeddings of positive pairs while maximising 

the distance between the embeddings of negative pairs. In the visual relationship detection 

context where data annotations are scarce, we believe that CRL can serve as an efficient 

method for aligning the image representation with the corresponding visual relation 

triples. To fully understand the inner workings of contrastive methods and compare them 

with other self-supervised learning objectives, we first describe both the statistical 

modeling framework and the energy-based modeling framework (Lecun et al., 2006). 

Afterwards, we explore the different approaches for learning the Energy-based model, 

with an emphasis on noise contrastive estimation (NCE) and its variants. Here, we give 

examples for the classification task and ranking task because most of the current literature 

frames the VRD task as a discriminative problem. 

2.3.1 Statistical models and Energy-based models 

For the classification or prediction task, the goal of estimating a statistical model 

is to capture the dependencies between the input features and the label. In the ideal case, 

the model encodes the relevant dependencies from the observed samples, giving it the 

ability to make predictions about unknown samples drawn from the population. 

Given that we have 𝑚 samples with labels  𝐷 = {(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚)) } 

where each pair is drawn from an unknown data distribution 𝑝𝑑𝑎𝑡𝑎(∙,∙) over ℝ𝑛 × 𝒴, we 

create a statistical model parametrized by 𝜃 with a distribution 𝑝𝜃(𝑌|𝑋) that aims to 

predict the label from the observable data. Using maximum likelihood estimation (MLE), 

we can then estimate 𝜃 by maximizing an objective function such as the log likelihood 

function. Under the stochastic modeling constraint, any estimated solution �̂� must satisfy: 

∫ 𝑝�̂� (𝑌|𝑋)𝑑𝑥 = 1 

To satisfy the above constraint where the probability distribution is integrated to one, we 

can redefine the PDF using a normalizing constant 𝑍𝜃 and a new function 𝜑𝜃(𝑌|𝑋). 

𝑝𝜃(𝑌|𝑋) =
𝜑𝜃(𝑌|𝑋)

𝑍𝜃
  

Eq. 2.5  
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where 𝑍𝜃 = ∫ 𝜑𝜃(𝑦|𝑋)
𝑦∈𝒴 

 
 

Here, 𝜑𝜃(𝑌|𝑋) can be an unnormalized model parametrized by 𝜃 and 𝜑𝜃(𝑌|𝑋) ∝

 𝑝𝜃(𝑌|𝑋). The normalizing constant 𝑍𝜃, also known as the partition function, ensures that 

the above constraint for 𝑝𝜃(𝑌|𝑋) holds. One problem arises is that the integral for the 

partition function 𝑍𝜃  is intractable and cannot be easily evaluated under closed-form 

solution when the labels 𝒴 are high dimensional or have high cardinality (Lecun et al., 

2006). Thus, it becomes difficult to directly compute the gradient for the log likelihood 

term 𝑙𝑜𝑔 𝑍𝜃 with respect to its parameters 𝜃 (see Eq. 2.7). 

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

log ∏ 𝑝𝜃(𝑦𝑖|𝑥𝑖)

𝑚

𝑖=1

 

          = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

∑ log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

𝑚

𝑖=1

  

 

Eq. 2.6  

     ∇θ ∑ log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

𝑚

𝑖=1

 =  ∑ ∇θ log 𝜑𝜃(𝑦𝑖|𝑥𝑖) − ∇θ log 𝑍𝜃

𝑚

𝑖=1

 
 

Eq. 2.7 

 To avoid the intractable integral problem, the energy-based model (EBM) relaxes 

the normalization constraint and propose the use of an energy function for gradient 

optimization (Lecun et al., 2006). Here, instead of optimizing the log likelihood of a 

probability density function, an energy-based model optimizes the energy function, which 

outputs a number that measures the dependency between the input 𝑥 and the label 𝑦. 

Following convention, the energy function parameterized by 𝜃 is denoted as 𝐸𝜃(𝑋, 𝑌), 

and the optimization procedure aims to find the optimal solution for a loss function, which 

measures the quality of the energy function. In our context which involves real-world 

visual information, the energy function can also be interpreted as a nonlinear neural 

network model with parameters 𝜃, and a loss function is an objective function that guides 

the optimization process. Here, we select neural network models due to their success in 

representing visual images in recent years as described in Section 2.2.2. In Section 2.3.2 

below, we describe the loss functions used in this work under the energy modeling 

framework. 
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2.3.2 Loss Functions for Energy-Based model 

With relaxed assumptions, there are many ways to design a loss function for an 

energy-based model (H. Li et al., 2022). However, not all loss functions can yield an 

optimized EBM that can perform the classification task. While the search space for a loss 

function is large, we can apply two intuitive conditions to design a good loss function. 

First, by convention, a model optimized on a good loss function should yield the lowest 

energy for a correct sample pair (Lecun et al., 2006). More formally, given matching 

(𝑥𝑖 , 𝑦𝑖) pair, the energy function gives the correct answer for 𝑥𝑖 if 𝐸𝜃(𝑥𝑖 , 𝑦𝑖) <

 𝐸𝜃(𝑥𝑖 , 𝑦), ∀𝑦 ∈ 𝒴 𝑎𝑛𝑑 𝑦 ≠ 𝑦𝑖. Second, for an optimized model, the energy score for 

the matching pairs should be lower than that of non-matching pairs by a margin of 𝑚 

(Rosasco et al., 2004). More formally, given an additional incorrect pair (𝑥𝑖 , �̅�𝑖) and a 

positive margin 𝑚, the model should give the correct answer for 𝑥𝑖 if 𝐸𝜃(𝑥𝑖 , 𝑦𝑖) <

 𝐸𝜃(𝑥𝑖 , �̅�𝑖) − 𝑚. In the current literature (Gentile & Warmuth, 1998; Schroff et al., 2015; 

Wei et al., 2020), these two conditions combined form the foundation of the margin loss 

functions. 

One of the most popular margin loss functions for the classification problem is 

the hinge loss (Rosasco et al., 2004). Given a positive margin 𝑚 and a parameterized 

energy function, the per-sample hinge loss is defined in Equation 2.8: 

     𝐿ℎ𝑖𝑛𝑔𝑒(𝑥𝑖 , 𝑦𝑖) = max (0, 𝑚 + 𝐸𝜃(𝑥𝑖 , 𝑦𝑖) − 𝐸𝜃(𝑥𝑖 , �̅�𝑖)) Eq. 2.8 

     ℒℎ𝑖𝑛𝑔𝑒 =
1

m
∑ 𝐿ℎ𝑖𝑛𝑔𝑒(𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=1

+ 𝜆𝑅𝜃 
Eq. 2.9 

Here, ℒ is the loss function averaged over all observed samples and 𝑅𝜃 is a regularizer 

that prevents the energy function from overfitting or underfitting. In the hinge loss, the 

parameter is only optimized if the difference between the energy of the incorrect answer 

and energy of the correct answer is larger than 𝑚. Still, because there is no constraint to 

the output energy, the model can be overfitted to the data samples and perform poorly on 

unseen pairs. Thus, an additional regularizer function is added to regularize the 

parameters, forcing the model to explore relevant features. 

While the hinge loss was traditionally used for the classification task, it can also 

be applied to the ranking task. Different from the classification task that aims to select 

only the best label 𝑦 given the input 𝑥, the ranking task produces a complete ranking of 
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all possible labels 𝑦 ∈ 𝒴 when given input 𝑥. This application is more suitable to the 

VRD task since the (subject, object) pair can have multiple relations. In the current 

literature (Balntas et al., 2016; Ge et al., 2018; B. Yu & Tao, 2019), the hinge loss when 

applied to the ranking task is also known as the triplet margin loss (Balntas et al., 2016), 

and the energy function in the triplet margin loss outputs a defined distance of the input 

pair. Figure 2.5 below shows how the triplet margin loss pushes the positive and anchor 

vectors closer together while pushing apart the negative and anchor vectors. 

 

Figure 2.5: a visualization for triplet margin loss. In this figure, 𝒎 is the margin, 𝒅𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 is the 

distance anchor embedding and positive embedding, and 𝒅𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 is the distance anchor 

embedding and negative embedding. 

While the above margin loss functions are not restricted to the conditional 

probabilistic form under the EBM framework, following the probabilistic interpretation 

when formulating a loss function is still useful for the classification task. The negative 

log-likelihood loss (NLL) (Bosman & Thierens, 2000), also known as the cross-entropy 

loss, is one of such loss functions that can be used to train a model to produce conditional 

probability estimates. Due to the convention where we want to minimize the energy, the 

negative sign is added to the log likelihood function, hence the name negative log-

likelihood. Under the EBM framework, we can modify Equation 2.5 and replace 𝜑𝜃(𝑌|𝑋) 

with 𝑒−
1

𝑡
𝐸𝜃(𝑋,𝑌)

 to yield: 

𝑝𝜃(𝑌|𝑋) =
 𝑒−

1
𝑡𝐸𝜃(𝑋,𝑌)

∫ 𝑒−
1
𝑡𝐸𝜃(𝑋,𝑦)

𝑦∈𝒴

  

Eq. 2.10 

where the temperature 𝑡 is an arbitrary constant used to regulate the model’s 

representational space and ∫ 𝑒−
1

𝑡
𝐸𝜃(𝑋,𝑦)

𝑦∈𝒴
 is the partition function. In machine learning, 

the above model is also known as the SoftMax function of −
1

𝑡
𝐸𝜃(𝑋, 𝑌), and the 

exponential function is a monotonic function applied for mathematical convenience. 

Applying negative log to the above likelihood, we get the following NLL: 
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𝐿𝑛𝑙𝑙(𝑥𝑖 , 𝑦𝑖) =  −log ∏ 𝑝𝜃(𝑦𝑖|𝑥𝑖)

𝑚

𝑖=1

=  ∑ − log (
𝑒−

1
𝑡𝐸𝜃(𝑋,𝑌)

∫ 𝑒−
1
𝑡𝐸𝜃(𝑋,𝑦)

𝑦∈𝒴

)

𝑚

𝑖=1

 

 

Eq. 2.11 

Because the partition function is parameterized and consists of all labels 𝑦 ∈ 𝒴, the NLL 

does not only push down the energy of the matching pair but also pulls up the energy of 

all answers in proportion to the amount of energy that gets pushed down (Lecun et al., 

2006). In the probabilistic framework, minimizing the NLL is equivalent to minimizing 

the KL divergence between the estimated distribution 𝑝𝜃(𝑦𝑖|𝑥𝑖) and the underlying data 

distribution of the dataset 𝑝𝑑𝑎𝑡𝑎(𝑦𝑖|𝑥𝑖) (Song & Kingma, 2021).  

∑ −
1

m
log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

𝑚

𝑖=1

= −𝔼𝑦𝑖|𝑥𝑖~𝑝𝑑𝑎𝑡𝑎(𝑦𝑖|𝑥𝑖)[log 𝑝𝜃(𝑦𝑖|𝑥𝑖)]  

                                         = 𝐷𝐾𝐿(𝑝𝑑𝑎𝑡𝑎(𝑦𝑖|𝑥𝑖) || 𝑝𝜃(𝑦𝑖|𝑥𝑖)) − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Eq. 2.12 

Here, minimizing the NLL is also equivalent with maximizing the mutual information 

between the matching observed samples and labels (Bengio et al., 1993; Wu et al., 2020). 

Despite its popularity, taking the derivative of the NLL still requires the evaluation of the 

partition function and its derivatives which can be computationally demanding (Gutmann 

& Hyvärinen, 2010). To tackle this problem, multiple methods were proposed including 

Markov chain Monte Carlo (MCMC) sampling (van Ravenzwaaij et al., 2018), Score 

Matching (Hyvärinen, 2005), and Noise Contrastive Estimation (Gutmann & Hyvärinen, 

2010). Here, we focus on Noise Contrastive Estimation because it forms the foundation 

of the contrastive learning approach with negative sampling used in this work. 

2.3.3 Noise Contrastive Estimation Loss 

The Noise Contrastive Estimation function aims to estimate the parameter of an 

EBM without the calculation of the partition function (Gutmann & Hyvärinen, 2010). 

Instead of learning to predict the label 𝑦 given the observed feature 𝑥, NCE aims to learn 

a binary classifier 𝑝𝜃(𝐷|𝑌, 𝑋) that predicts whether the sample pair comes from the real 

distribution 𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋) or the noise distribution 𝑞𝑛𝑜𝑖𝑠𝑒(𝑌). These conditional probability 

terms can be written as: 

𝑝(𝐷 = 0 |𝑌, 𝑋) =
𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑋)

𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋) + 𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑌)
  

 

 

𝑝(𝐷 = 1 |𝑌, 𝑋) =
𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋)

𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋) + 𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑌)
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To gather the data for the above conditional terms, we sample 𝑘 negative samples with 

label 𝐷 = 0 from the noise distribution 𝑞𝑛𝑜𝑖𝑠𝑒(𝑌) for every one positive sample with label 

𝐷 = 1 from 𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋). In the original paper (Gutmann & Hyvärinen, 2010), as the 

number of negative examples 𝑘 approach infinity, the gradient of 𝐿𝑏𝑖𝑛𝑎𝑟𝑦𝑁𝐶𝐸 becomes 

zero once 𝐸𝜃(𝑌, 𝑋) =  𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋). By the weak law of large numbers, this self-

normalization assumption allows us to replace 𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋) with the energy function 

𝐸𝜃(𝑌, 𝑋): 

𝑝𝜃(𝐷 = 0 |𝑌, 𝑋) =
𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑋)

𝐸𝜃(𝑌, 𝑋) + 𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑌)
  

 

 

𝑝𝜃(𝐷 = 1 |𝑌, 𝑋) =
𝐸𝜃(𝑌, 𝑋)

𝐸𝜃(𝑌, 𝑋) + 𝑘𝑞𝑛𝑜𝑖𝑠𝑒(𝑌)
 

 

 

We can rewrite the log likelihood of the above conditional probabilities as the binary 

classification loss: 

𝐿𝑏𝑖𝑛𝑎𝑟𝑦𝑁𝐶𝐸 = ∑ log 𝑝𝜃(𝐷 = 1 |𝑌, 𝑋) + 𝑘
(𝑋,𝑌)∈𝐷

𝔼𝑌′~𝑞𝑛𝑜𝑖𝑠𝑒
[log 𝑝𝜃(𝐷 = 1 |𝑌′, 𝑋)]  

 

Eq. 2.13 

One observation is that the NCE loss is highly dependent on the choice of the 

noise distribution, and a poorly selected noise distribution can interfere with the learning 

process (Gutmann & Hyvärinen, 2010). Ideally, the noise distribution 𝑞𝑛𝑜𝑖𝑠𝑒 is close to 

the real data distribution and it is easy to sample from. However, this can quickly become 

difficult without additional labels. In practice, the process of identifying noise requires a 

closer manual examination of the task and the dataset at hand. An alternative way to 

interpret the selection of noise distribution is through the process of negative sampling 

proposed by Mikolov et al. (2013). Here, negative sampling is the process of generating 

negative examples that are beneficial to the given task. It can be viewed as a simplified 

version of NCE since it is not aiming to model 𝑝(𝑦|𝑥) but to model a different quantity 

related to joint distribution 𝑝(𝑥, 𝑦) (Mikolov et al., 2013). In this work, we examine two 

different negative sampling techniques for VRD, showing that random selection of 

negative samples can impede the learning process and yield subpar performance. 

 More recent work extends NCE to the multiclass ranking case called InfoNCE by 

creating a classifier that identifies the positive samples from the negative samples (Oord 

et al., 2019). Given the labels 𝑦1, … , 𝑦𝑚 that consist of one real sample 𝑦𝑖 ~ 𝑝𝑟𝑒𝑎𝑙(𝑌|𝑋), 

and 𝑚 − 1 noisy samples 𝑦𝑗≠𝑖~𝑞𝑛𝑜𝑖𝑠𝑒(𝑌), we create a categorical indicator 𝑑 where [𝑑 =
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𝑖] means that 𝑦𝑖 is a positive example. Using d, we can construct the probability for 

classifying the positive example correctly using in the equation below (Oord et al., 2019): 

𝑝(𝑑 = 𝑖 |𝑌, 𝑋) =
 
𝑝(𝑦𝑖|𝑋)

𝑝(𝑦𝑖)

∑
𝑝(𝑦𝑗|𝑋)

𝑝(𝑦𝑗)
𝑘
𝑗=1

 

 

Under the assumption that a neural network model is expressive enough to represent the 

density ratio 
𝑝(𝑌|𝑋)

𝑝(𝑌)
, we can replace it with 𝜙𝜃(𝑋, 𝑌) ∝

𝑝(𝑌|𝑋)

𝑝(𝑌)
. 

𝑝(𝑑 = 𝑖 |𝑌, 𝑋) ≈
 𝜙𝜃(𝑋, 𝑦𝑖)

∑ 𝜙𝜃(𝑋, 𝑦𝑗)𝑘
𝑗=1

  
Eq. 2.14 

While the above term looks like Equation 2.5, the main difference is that we are 

estimating for 
𝑝(𝑌|𝑋)

𝑝(𝑋)
 instead of 𝑝(𝑌|𝑋). We can then compute the negative log likelihood 

over all samples in the dataset to get the infoNCE loss in Equation 2.15. 

𝐿𝐼𝑛𝑓𝑜𝑁𝐶𝐸 =  −
1

𝑚
∑ log

 𝜙𝜃(𝑋, 𝑦𝑖)

∑ 𝜙𝜃(𝑋, 𝑦𝑗)𝑚
𝑗=1

 

𝑚

𝑖=1

 
Eq. 2.15 

Under this construct, the InfoNCE paper (Oord et al., 2019) also shows that by 

approximating the density ratio  
𝑝(𝑌|𝑋)

𝑝(𝑌)
 with an EBM model, the above loss maximizes the 

mutual information between the datapoint 𝑦𝑖 and its context 𝑋, 𝐼(𝑦𝑖 , 𝑋), while minimizing 

the mutual information between the 𝑦𝑗≠𝑖 and the context X, 𝐼(𝑦𝑖≠𝑖; 𝑋). Here, mutual 

information between two random variables measures how dependent they are to one 

another, and is defined as: 

𝐼(𝑌; 𝑋) =  ∑ 𝑝(𝑌, 𝑋) log (
p(𝑌, X)

𝑝(𝑌)𝑝(𝑋)
) 

𝑌,𝑋

= ∑ 𝑝(𝑌, 𝑋) log (
𝑝(𝑌|𝑋)

𝑝(𝑌)
) 

𝑦,𝑋

 
Eq. 2.16 

where 
𝑝(𝑌|𝑋)

𝑝(𝑌)
 is approximated by 𝜙𝜃(𝑋, 𝑌). 

Soft nearest neighbour (SNN) loss (Frosst et al., 2019) takes a step further to 

include multiple positive samples for the ranking task. Given a batch of samples 

{(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} where 𝑦𝑖 is the class label of 𝑥𝑖 and 𝑑(∙,∙) measures the distance 

between two inputs, the soft nearest neighbour loss is defined as: 
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𝐿𝑠𝑛𝑛 =  −
1

𝑚
∑ log

∑ 𝑒−
1
𝑡𝑑(𝑥𝑖,𝑥𝑗)

𝑖≠𝑗,𝑦𝑖=𝑦𝑗,𝑗=1…𝑚

∑ 𝑒−
1
𝑡𝑑(𝑥𝑖,𝑥𝑘)

𝑖≠𝑘,𝑘=1…𝑚

𝑚

𝑖=1

 

 

Eq. 2.17 

where the temperature 𝑡 is a hyperparameter used to tune how concentrated the features 

are in the final representational space. In practice, the samples (𝑥𝑖 , 𝑦𝑖) do not have to be 

defined as (feature, label) pairs. Instead, they can be interpreted as positive pairs or 

negative pairs as shown in T. Wang & Isola, (2020). Here, positive pairs are often 

obtained by augmenting the same sample with random pre-processing techniques such as 

cropping, changing colours, etc. Let 𝑝𝑑𝑎𝑡𝑎(∙) be the data distribution over ℝ𝑛 and 

𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (∙,∙) be the distribution of the positive pairs over ℝ𝑛 × ℝ𝑛 with following two 

assumptions: (i) the symmetry assumption where 𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑥, 𝑦) =  𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑦, 𝑥) for all 

𝑥 and 𝑦 pairs, and (ii) the matching marginal assumption where ∫ 𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑥, 𝑦)𝑑𝑦 =

𝑝𝑑𝑎𝑡𝑎(𝑥). The contrastive loss is defined as: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =  𝔼(𝑥,𝑦)~𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,

{𝑥𝑖
−}

𝑖=1

𝑀
 ~𝑝𝑑𝑎𝑡𝑎

[− log
𝑒

1
𝑡𝑑(𝑥,𝑦)

𝑒
1
𝑡𝑑(𝑥,𝑦) + ∑ 𝑒

1
𝑡𝑑(𝑥𝑖

−,𝑦)
𝑖  

 ] 

Eq. 2.18 

where 𝑀 is a fixed number of negative samples drawn from the data distribution. 

Due to the relaxed definition of what contributes to positive or negative examples, 

this loss has been used in both supervised and unsupervised settings (T. Chen et al., 2020). 

In the unsupervised learning case, contrastive learning can help the model to learn to 

ignore different types of feature invariants such as color or noise through positive 

sampling of different data augmentations (Jaiswal et al., 2021). In the image 

representational learning case, a pre-trained supervised contrastive learning model has 

shown to produce better representations than a pre-trained unsupervised contrastive 

learning model (T. Chen et al., 2020). Instead of using only random augmentation, the 

supervised learning approach used ground truth labels in conjunction with augmentations 

to guide the positive and negative sampling process, leading to a more accurate clustering 

of different features. Under the mutual information interpretation, the contrastive loss 

function can also be extended to learn joint text and image representations by maximizing 

the mutual information between both modalities (Radford et al., 2021). 

This task is also known as the image and text alignment task, and the loss function 

is known as image-text consistency loss that pushes the same visual and language 

concepts together (J. Zhang et al., 2019). For example, the Contrastive Language-Image 

Pretraining (CLIP) model trained contrastively on social media positive and negative 
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(image, caption) pairs can identify real pairs from false pairs (Radford et al., 2021). Here, 

the model essentially uses the InfoNCE loss function to map similar images and text close 

to each other in the joint embedding space, while pushing apart dissimilar image and text. 

In the VRD context, contrastive image-text learning can also been applied to visual 

relationship triples where the visual features of objects are aligned with the textual 

features of the triple (subject, predicate, object) labels. Peyre et al. (2019) also used this 

contrastive approach and proposed a two-stage model. In the first stage, a contrastive 

visual-language model is used to learn joint object, subject, and relationship embeddings. 

These embeddings are then used in the second stage model, dubbed as the Analogy 

Transfer (AT) network, to compose novel embeddings of a target relationship from 

existing relationship embeddings. For example, if the goal is to estimate the target 

embedding for “person ride cow”, the downstream analogy transformation network 

would aggregate all "Analogy Transformation” of similar pre-trained word embeddings 

such as “person ride horse” or “person ride bike” weighted by their relevance to the target 

embedding using language cosine distance score (Peyre et al., 2019). This aggregation 

process can also be thought of as a variant of the attention mechanism described in Section 

2.1.2. While this application shows a potential application of contrastively learned 

embeddings to form novel compositions, it uses a second analogy transformation neural 

network and is highly dependent on the upstream contrastive visual and language 

network. 

Unlike Analogy Transfer (Peyre et al., 2019), which trains two networks on the 

Visual Genome dataset (Krishna et al., 2017), our work uses BERT with self-attention 

operation alongside contrastive learning to learn joint visual and language embeddings in 

a single pipeline. For the VRD ranking task in Section 4.2, we applied two types of 

contrastive loss functions: (1) the triplet loss (hinge loss) and (2) the InfoNCE loss 

(negative log likelihood loss). In Section 4.3, we use the CLIP architecture with only the 

InfoNCE loss to measure the impact of large-scale pre-trained image and text models on 

visual relationship detection. Still, without the knowledge of how the scene is structured, 

the negative sampling process proved to be a challenging subproblem. This also raised 

another question on the visual relationship representational learning task: how can we 

preserve the structure of the final learned representation using contrastive learning? We 

believe that one potential answer lies in the manual knowledge engineering task of the 

input graph data. 
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2.4 Structured representation of a scene 

One common criticism against deep learning models is that they lack the ability 

to represent compositionality. In a way, these models still learn spurious correlations that 

stem from dataset biases. We can observe these inherent biases within CNN’s activation 

map. For example, to distinguish “nurses” from “doctors”, the model uses the person’s 

hairstyle as a discriminative feature, showing that the model suffers from gender biases 

and still focuses on surface-level features to make its predictions (Selvaraju et al., 2017). 

Thus, simply making architectural changes and enforcing correlations via learning 

objectives such as object classification or missing part prediction cannot fully prevent the 

model from learning false correlates. Instead, the model needs to be pre-conditioned on a 

set of background knowledge, and the problem becomes how can a deep learning model 

acquire and use such background knowledge. 

The resurgence of engineered structured representations such as Visual Genome 

(Krishna et al., 2017), Concept Net (Speer et al., 2018), and ATOMIC (Sap et al., 2019) 

aims to fulfil this need for background knowledge. Instead of using object labels as 

learning signals, these structure datasets and ontologies serve as a holistic guiding signal 

to the learning model. In a way, we believe the choice of knowledge, whether it be in the 

form of knowledge graphs or other structured representations, will become increasingly 

important. In this thesis, we focus on scene graph structures from the Visual Genome 

(VG) dataset to perform the visual relationship detection (VRD) task. It should be noted 

that the scene graphs in VG, created through crowd-sourced annotations, lack the 

systematic and formal structure typically associated with a factual ontology. Still, its 

creation process introduced and enforced a wider range of perspectives across objects 

(See Section 3.1.1 for more details), making it potentially less biased than unstructured 

image caption datasets. While focusing solely on one dataset puts a limit on what the 

trained model can achieve, we believe that scene-level sub-symbolic structures provided 

by these scene graphs is sufficient to test the limit of these deep learning models on their 

ability to learn compositions. 

Section 2.4.1 describes the VG dataset in more detail and formalizes the scene 

graph definition. Section 2.4.2 describes the visual relationship detection (VRD) task and 

motivates the use of graph representational learning to tackle the problem. Section 2.4.3 

and Section 2.4.4 gives an overview of common approaches for VRD and SGG, with an 

emphasis on structural-preserving techniques. Section 2.4.5 describes the general 

architecture used to extract visual features for the downstream VRD task. These five 
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sections serve to describe the VRD problem statement in more details and highlight 

existing approaches used to tackle the problem. 

2.4.1 Scene Graph and Visual Genome  

An image alone cannot fully represent all the syntactic relationships between 

entities. For the computer to understand “a man swinging a baseball bat” from an image, 

it needs not only to recognize the “baseball bat” and the “man” but also the direction of 

motion, the function of the bat, or the relationship between the man and the bat. Thus, to 

build such semantic description of one image without an exceeding amount of labeled 

data, background knowledge such as physics, motion, or a symbolic representation can 

be used. In this section, we limit the scope to static images and the sub-symbolic scene 

graph structure. Here, the sub-symbolic representation is defined as the visual connections 

between objects in the image through (subject, predicate, object) labels rather than well-

defined rules and logic. 

 

Figure 2.6: a visualization of the labelled visual relationship triples from an image. The above 

image is retrieved from the Visual Genome dataset. 

A scene graph uses a graph-based formulation that explicitly models objects, 

attributes of objects, and relationships between objects (Johnson et al., 2015). This 

graphic representation does not only describe an image in greater details when compared 

to object classification labels, but also contains structured textual descriptions of the 

scenes in the image. Scene graph has been shown to improve the image retrieval task by 

comparing the structure of query sentences against the scene graph representations of 

images (Schuster et al., 2015). Moreover, it has been shown that scene graphs can enhance 
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computer vision tasks such as object localization because they can better represent 

relationships between entities (Krishna et al., 2018). Finally, scene graphs can model 

compositionality which allows the model to combine different objects and relationships 

to form a novel composition. As a result, when applied to downstream tasks such as VQA 

or VCR, a scene graph can also act as a knowledge base representation that can be queried 

upon (Hudson & Manning, 2019). Here, the visual relationships are represented in the 

RDF triples (subject, predicate, object) format, where subject and object are visual objects 

grounded to the image through 2D bounding boxes and predicate can be of a relation 

about distinct categories including action, spatial, preposition, comparative, and verb. 

Still, the VG dataset, being crowdsourced, has multiple drawbacks including inconsistent 

labels, missing annotations, or incorrect relationships. We will further explore the data-

related issues Chapter 3. 

More formally, given a dataset 𝒟 = {(𝐼1, 𝐺1), … , (𝐼𝑚 , 𝐺𝑚)} where 𝐼𝑛∈(1,𝑚) are the 

images and 𝐺𝑛∈(1,𝑚) are the corresponding scene graphs. Here, a scene graph 𝐺𝑖 = (𝑂, 𝐸) 

consists of a set of objects 𝑂 and edges 𝐸, where each element of 𝑂 = {(𝑜1, … , 𝑜𝑘} is an 

object label grounded to image via a bounding box, and each element of 𝐸 ⊆

{(𝑜𝑖 , 𝑟𝑖𝑗 , 𝑜𝑗)|𝑜𝑖 , 𝑜𝑗 ∈ 𝑂, 𝑜𝑖 ≠ 𝑜𝑗} is a triple. Note that each object 𝑜𝑖∈(1,𝑘) can be further 

decomposed into (𝑏𝑖 , 𝑦𝑖) where 𝑏𝑖 is the bounding box coordinates and 𝑦𝑖 ∈ 𝒴 is the class 

label of the object. A scene graph is an incomplete graph with missing labels, and each 

relationship 𝑟𝑖𝑗 ∈ ℛ is a predicate category between the objects. There are three scene 

graph generation tasks with increasing levels of difficulty: 

1. The visual relationship detection task, also known as the predicate 

classification task (PredCls), aims to find the missing relationship when are 

given the object pairs’ ground truth bounding boxes and labels.  

2. The scene graph classification task (SGCls) aims to predict the relationship as 

well as the object categories of the subject and the object in every pairwise 

relationship when given only the localized bounding boxes without the labels. 

3. The scene graph generation task (SGGen) aims to construct the entire scene 

graph when given only the image. 

In Chapter 4, we assume that the object detection task is a solved problem given the 

current state of the art and focus solely on visual relationship detection or PredCls. This 

assumption allowed us to effectively evaluate the model’s ability to represent and predict 

visual relationships rather than object detection. In practice, given the small and 
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unbalance VG dataset, object detection remains a large bottleneck for scene graph 

generation systems. Section 2.4.2 below summarizes the common approaches for tackling 

the VRD task. 

2.4.2 Visual Relationship Detection 

Given the success of deep neural network architectures for the multiclass object 

classification task, multiple works (C. Lu et al., 2016; R. Yu et al., 2017; Zellers et al., 

2018) have extended ANN model to build visual relationships classifier 𝑝(𝑟𝑖𝑗|𝑜𝑖 , 𝑜𝑗). 

However, different from the multi-class object classification task, visual relationships 

depend not only on the visual features localized by the objects’ bounding boxes (𝑏𝑖 , 𝑏𝑗) 

but also on the textual features given by the objects’ labels (𝑦𝑖 , 𝑦𝑗). Thus, it is a common 

strategy to construct not only a CNN-based model to estimate visual likelihood 

𝑝𝑣𝑖𝑠𝑢𝑎𝑙(𝑟𝑖𝑗|𝐼, 𝑏𝑖 , 𝑏𝑗) but also a separate network to estimate textual likelihood 

𝑝𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 (𝑟𝑖𝑗|𝑦𝑖 , 𝑦𝑗) (C. Lu et al., 2016). These two models are then combined to get the 

final predictive model, 𝑝(𝑟𝑖𝑗|𝐼, 𝑜𝑖 , 𝑜𝑗). To simplify the modeling framework for the 

classification case, we combine both visual and textual models into a single EBM model 

parameterized by 𝜃. We can construct the general likelihood for the relationship class as: 

𝑝𝜃(𝑟𝑖𝑗|𝐼, 𝑜𝑖 , 𝑜𝑗) ≈  
𝑒−

1
𝑡𝐸𝜃(𝑟𝑖𝑗,𝐼,𝑜𝑖,𝑜𝑗)

∑ 𝑒−
1
𝑡𝐸𝜃(𝑟,𝐼,𝑜𝑖,𝑜𝑗)

𝒓∈ℛ

 

Eq. 2.19 

which can be learned through the following negative likelihood loss: 

𝐿𝑉𝑅𝐷 =  ∑ − log (
𝑒−

1
𝑡𝐸𝜃(𝑟𝑖𝑗,𝐼,𝑜𝑖,𝑜𝑗)

∑ 𝑒−
1
𝑡

𝐸𝜃(𝑟,𝐼,𝑜𝑖,𝑜𝑗)
𝒓∈ℛ

)

𝑚

𝑖=1

 

Eq. 2.20 

While this simplified model and loss function underpin multiple works (Y. Li et 

al., 2017; Zellers et al., 2018; B. Zhuang et al., 2017), the definition comes with a few 

assumptions. First, the above loss function does not explicitly account for the underlying 

RDF structure of the scene graph and other known priors, which has proven crucial for 

VRD (Liang et al., 2018). Second, the parameterized energy model does not reflect the 

diverse architectural choices that can be customized for the given task. Third, the above 

loss function is applied under the classification setting, which assumes that each object 

pair can only have one decision. However, this assumption highly depends on the 

downstream use case for the estimated model. If the scene graph were to be designed for 

a well-defined and specific use case (e.g., spatial relationship classification under a 



 

32 

specific frame of reference for robot navigation), then making one final decision for each 

pair would be valid. However, visual relationships from the VG dataset are diverse and 

wide-ranging, making it difficult to predict only one predicate without additional context. 

Thus, with a fixed dataset, we argue that a better approach to tackle the VRD problem is 

to apply the EBM framework to learn a general representation that can be transferred to 

other downstream tasks. 

To tackle the lack of structuring with the multi-labelled classification objective, 

multiple works have interpreted the VRD task as a ranking problem and aim to learn a 

representational space that preserve the structure of the graph. In a way, the observation 

made by these approaches is that the visual relationship prediction task is dependent on 

the surrounding context, and choice of the context is influenced by the choice of the graph 

structure. The work in Chapter 4 also uses this observation and incorporates local 

contextual information via a knowledge graph embedding technique to predict visual 

relationships. In general, the approaches taken by these works can be organized into two 

categories: (1) the engineering of loss objectives, and (2) the customization of the neural 

network architecture. 

2.4.3 Engineering Loss Objectives for VRD 

Since the VRD problem is framed as a ranking problem with an emphasis on 

representational learning, the final loss objective used to train the model has to be 

modified to accommodate the goal. One approach is to use additional auxiliary metric 

learning objectives (e.g., the triplet margin loss) that preserve a certain assumed structure. 

For example, Lu et al. (2016) assumed the word2vec embedding space contains visual 

triple knowledge via its individual component and added an auxiliary clustering loss that 

projects similar word relationships (subject-predicate-object) closer to one another. 

However, the assumed loss is highly dependent on the underlying word2vec embeddings 

or the language prior that exists within larger pre-trained word2vec’s corpora. Other 

work, including ours, assumed that the labelled scene graph structure is similar to that of 

a knowledge base and aimed to preserve the first-order structure of the knowledge base 

using the translational constraint (Hung et al., 2020; Liang et al., 2018; H. Zhang et al., 

2017). Originally used for knowledge base completion, the translational constraint aimed 

to preserve the first-order hierarchical structure of the RDF triple (ℎ , 𝑟, 𝑡) in a set 𝑆 by 

enforcing the constraint 𝐸𝑀𝐵(ℎ) + 𝐸𝑀𝐵(𝑟)  ≈ 𝐸𝑀𝐵(𝑡) (Bordes et al., 2013). To do 

this, Bordes et al. (2013) used the hinge loss (or triplet loss) function with negative 

sampling. Here, negative sampling aims to curate a set of corrupt triples 𝑆′ by replacing 
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the head and tail entities with random entities, annotated as ℎ̅ and 𝑡̅. Given that the 

embeddings are learned using an EBM model, the TransE loss over the entire knowledge 

base is defined as: 

     𝐿ℎ𝑖𝑛𝑔𝑒 = max (0, 𝑚 + 𝑑(𝑙ℎ + 𝑙𝑟 , 𝑙𝑡) − 𝑑(𝑙ℎ̅ + 𝑙𝑟 , 𝑙𝑡̅)) Eq. 2.21 

     ℒ𝑇𝑟𝑎𝑛𝑠𝐸 = ∑ ∑ 𝐿ℎ𝑖𝑛𝑔𝑒

(ℎ̅,𝑟,𝑡̅)∈𝑆′(ℎ,𝑟,𝑡)∈𝑆

 
Eq. 2.22 

where 𝑚 is a fixed margin, 𝑙𝑥 is the embedding of 𝑥, and 𝑑(∙,∙) outputs the distance 

between its inputs. Inspired by the TransE knowledge base completion approach, Zhang 

et al. (2017) also enforced the TransE constraint on the (subject, predicate, object) visual 

relationship triples. However, unlike the factual triples in the knowledge base, visual 

relationship triples consist of labelled 2D image regions, making it difficult to execute the 

same random negative sampling strategy. Thus, under the observation that most labelled 

triples have only one relationship, VTransE (Zhang et al., 2017) used the negative 

likelihood loss with a distance-based EBM model: 

   ℒ𝑉𝑇𝑟𝑎𝑛𝑠𝐸 =  ∑ − log (
𝑒−𝑑(𝑙𝑟,𝑙ℎ−𝑙𝑡)

∑ 𝑒−𝑑(𝑙𝑟′,𝑙ℎ′−𝑙𝑡′)
(ℎ′,𝑟′,𝑡′)∈𝑆

)
(ℎ,𝑟,𝑡)∈𝑆

 
Eq. 2.23 

where 𝑑(𝑙𝑟 , 𝑙ℎ − 𝑙𝑡) computes the cosine similarity between the EMB(predicate) and 

EMB(subject) - EMB(object). However, using such classification objective ignores the 

co-occurrence of predicates. Thus, Liang et al. (2018) instead proposed the use of 

adaptive margin hinge loss with a simple negative sampling approach. Here, the negative 

sampling process selects all non-labelled triples for every labelled triple. 

     ℒ𝐷𝑆𝑅 = ∑ ∑ max (0, ∆ + 𝑑(𝑙�̅� , 𝜙𝜃(ℎ̅, 𝑡̅)) − 𝑑(𝑙𝑟 , 𝜙𝜃(ℎ, 𝑡)))

(ℎ̅,�̅�,𝑡̅)∈𝑆′(ℎ,𝑟,𝑡)∈𝑆

 
Eq. 2.24 

where ∆ is the adaptive margin and 𝜙𝜃(ℎ̅, 𝑡̅) calculates the joint visual and spatial features 

of the head and tail entity. Under the observation that the labelled relationships set is 

incomplete and the negative sampling technique can select wrong negative examples, the 

DSR loss applied an adaptive margin, ∆, that is more lenient to the incomplete annotation 

with a high counting prior probability (Liang et al., 2018). While we also use the hinge 

loss and translational loss in Chapter 4, we do not apply the described adaptive margin. 

Instead, we specified a static margin m and propose the use of an adaptive negative 
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sampling technique that directly tackle the wrong negative samples selection problem. 

This technique is further described in the implementation section in Chapter 5. 

2.4.4 Message Passing Approaches for VRD 

 Another approach to preserve the structure of the scene graph in the final learned 

representation is to modify the deep neural network architecture. The most direct way is 

to control the direction of information flow between the embedded features using a graph 

structure layout and a process called message passing, which decides how to aggregate 

information from the input nodes to get a refined output feature representation. Here, a 

graph-based neural network model is often used, and the model’s design depends on the 

choice of vertices, edges, and a message passing algorithm. The entire design process can 

be summarized into three steps. The first step involves the construction of a graphical 

structure or layout, which includes the choice of vertices, edges, and their interactions. 

The second step is the feature extraction step which aims to transform a set of image and 

text inputs into a distributed embedding. The third and final step involves the choice of 

the message passing algorithm. In general, the messages are the learned input features 

and the choice of message passing technique highly depends on the layout structure of 

the graph.  

Two of the most popular layouts for scene graphs are the bipartite graph and the 

hierarchical tree structure. In Xu et al. (2017), the scene graph is interpreted as a directed 

bipartite graph that consists of two sets of vertices: object vertices and relationship 

vertices, where the vertices are the features extracted from the objects and labelled triples. 

To facilitate the interaction between the two sets of object and relationship vertices, Xu 

et al. (2017) used a RNN-based model called the gated recurrent unit (GRU) to iteratively 

aggregate and refine information from neighbour vertices, forming a chain-like structure. 

Different from the bipartite graph, a tree structure represents the visual objects in a 

hierarchical manner. Tang et al. (2018) proposed VCTREE, the first architecture that 

applies a tree layout to the scene graph generation and VRD tasks. Here, Tang et al. (2018) 

add an additional step to construct a maximum spanning tree using Prims’ algorithm 

based on the input object labels and scene graph. However, Tang et al. (2018) observed 

that the resulting spanning tree consists of only a “hard” hierarchical layout, which added 

an additional constraint to the direction of the message passing algorithm and prevented 

the model from gathering relevant contextual information from parallel nodes when 

needed. Thus, the generated multi-branch tree is further refined into a binary tree by 

changing non-leftmost edges into right branches, allowing nodes from the same level to 
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interact with one another. The final representation is then learned using a bi-directional 

TreeLSTM to encode the visual contexts (Tang et al., 2018). 

Still, these two structured layouts or inductive biases are simply heuristics 

engineered under the assumption that the given layout is beneficial to downstream visual 

relationship detection or visual reasoning tasks. In practice, due to the diverse 

appearances and interactions between visual objects, quantifying such an assumption 

remains difficult. Thus, instead of constructing an alternative structured layout, other 

work directly interpreted a scene graph as a heterogeneous graph with multiple types of 

vertices and edges, where vertices can be larger visual composites instead of individual 

subject, predicate, and object parts. For example, Li et al. (2018) proposed Factorizable 

Net, which factorized the scene graph into smaller subgraphs and learned individual 

subgraph embeddings before refining them into a unified representation for the given 

task. Similarly, Zellers et al. (2018) observed that there exist recurring patterns within the 

larger subgraphs (or motifs) in the labelled scene graph, and proposed the use of 

contextualized encoders (e.g. bi-directional LSTM) to learn representations from not only 

the local nodes but also the global nodes. 

Other work has also extended the graph representational learning process using 

other neural network architectures such as the Transformer or Graph Neural Network 

(GNN) (S. Ji et al., 2021; Scarselli et al., 2009). While we do not explore the details of 

GNN architecture in this work, the idea of GNN is based on that of message passing, 

which aggregates features from incoming neighbouring nodes to learn a refined feature 

for the target node. This principle is then recursively applied from the first-level nodes, 

second-level nodes, or the entire subgraph depending on the specification of the graph 

algorithm, allowing a more expressive global representation of the target node. For 

example, Mi & Chen (2020) applied the Graph Attention Network, a variant of the Graph 

Neural Network, to learn the hierarchical embeddings of subgraph structures starting from 

object-level features to triplet-level features to scene-level features. Similarly, Lin et al. 

(2022) further decomposed the (subject, predicate, object) triplet into four types of 

compositional pairs: (subject, predicate), (subject, object), (predicate, predicate), 

(predicate, object), and proceeded to learn pair-level features before performing message 

passing between these features using a GNN. 

The Transformer’s self-attention layer can also be thought of as a special case of 

the message passing algorithm, where the structured layout of the input embeddings is a 



 

36 

fully connected graph and the message passing algorithm is the self-attention operation. 

As the number of self-attention layers increases, the amount of contextual information 

aggregated from neighbouring features also increases for the target feature. However, the 

use of a fully connected graph can be redundant. While an out-of-the-box Transformer 

architecture has fixed structure and connections, the input or output embeddings can be 

refined using an upstream or downstream neural network to make the learning more 

efficient. For example, inspired by the bipartite graph interpretation and motivated by the 

Transformer-based detector (X. Zhu et al., 2021), Li et al. (2022) used CNN-Transformer 

sub-networks to capture the joint visual and language features of the set of entity and 

predicate nodes. These entity and predicate features are then further refined in a 

downstream graph assembling module, which learns two adjacency (distance) matrices 

for the (subject, predicate) and (predicate, object) pairs, and the top K relationships are 

selected from each matrix to construct multiple (subject, predicate, object) triples. 

In general, the engineering of neural network architectures for VRD task makes 

use of an assumed graph structure and incorporates contextual information from both the 

local atoms (subject, predicate, or object) and the global graph through a message passing 

technique. This engineering of the graph structure and learning algorithm yield overall 

improvement to the model’s performance. However, the majority of these assumptions 

rely on biases observed in the scene graph benchmark and the learned representation 

cannot be easily transferred to another downstream task. In this work, we only incorporate 

the first-order information from the object’s immediate neighbour via the translational 

embedding. While such approach does not capture the full contextual information that 

exists between the visual entities in the image, it provides a good starting point for 

exploring the application of knowledge graph embedding to visual relationship triples 

from the contrastive learning standpoint. 

While we only summarized the most popular approaches to the VRD task in this 

section, there are alternative ways to reconfigure the neural network model to make it 

more suitable for the given task and achieve a higher benchmark result. So far, the 

discovery of neural architectures for VRD has mostly been done manually. However, 

there exists a subfield called Neural Architectural Search which aims to learn how to 

learn by searching for more efficient architectures and loss functions (Pengzhen et al., 

2021). While this topic is not covered under our work, we believe that future work can 

explore the potential of automating neural network architecture design for a more efficient 

model under the benchmark data. 
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2.4.5 A General CNN-based Architecture for VRD 

While there are many proposed structured layouts with various message passing 

architectures over the years, the feature extraction step from the given image and labelled 

scene graph remains consistent. One of the most popular architecture designs for VRD 

and SGG is to couple an object detection network such as the Faster-RCNN with a 

customized visual relationship detection network. The general architecture diagram for 

this design is shown in Figure 2.7. Here, visual representations are extracted from the 

Faster-RCNN’s backbone pre-trained on ImageNet or COCO datasets. There are two 

approaches to constructing the general architecture: (a) coupled CNN backbone network 

and (b) decoupled CNN backbone network. 

  

Figure 2.7a: The general coupled Faster R-CNN architecture for scene graph generation. 

 

Figure 2.7b: The general decoupled Faster R-CNN architecture for scene graph generation. 
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Through observations, Han et al. (2021) has shown that the decoupled approach 

performs better in the VRD and SGG tasks. One possible reason for these observations is 

that each of the two CNN backbones in the decoupled network serves only one 

functionality: one backbone network fine-tuned on the Scene Graph dataset for the object 

detection task, and one backbone network for the visual relationship detection network 

trained on VRD or SGG tasks (Han et al., 2021). By separating the functionality for each 

network, the decoupled backbone approach allows gradients to backpropagate more 

effectively since VRD and object detection task does not necessarily require the same 

underlying features. 

Since both of these general architectures are highly inspired by the design of 

Faster-RCNN, we can apply variants and other engineering priors to its individual 

component. For example, instead of extracting only one feature map from the CNN 

backbone, a feature pyramid network (FPN) can also be used to extract multi-resolution 

feature maps. Similarly, different regions of interest pooling techniques such as RoiPool 

or RoiAlign can also be applied. The Region Proposal Network (RPN) can also be adapted 

to suit the need of VRD. For example, J. Zhang et al. (2017) introduced a relationship 

proposal network (RelPN), which combined the union proposals from three different 

subject, predicate, and object RPNs to predict the “relationshipness” of the proposed 

bounding regions. Finally, the relation network and loss objectives can be customized for 

the representational learning task as introduced in the previous sections. The simplest 

relation network for VRD is to add an ANN that inputs the visual features to classify the 

predicate label, while a more complex approach incorporates an additional feature 

refinement step, which refines the visual features in correspondence with other 

engineered priors or external information. While we do not apply all the shown techniques 

in this work, exploring these engineering priors help us understand how neural networks 

can be designed to better fit the task at hand. 

In Section 4.2, we first fine-tuned the object detection network in the decoupled 

Faster-RCNN model on the given benchmark dataset, and then train a duplicated 

backbone network to extract visual features from the image regions for the VRD task. 

2.5 Discussion 

In this chapter, we explore two contemporary deep learning architectures called 

the Convolutional Neural Network (CNN) and the Transformer, identifying assumptions 

and motivations behind the design of each architecture. We then described the 
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applications of these architectures in both image and text modalities and give an overview 

of how to apply them to learn joint visual and language representation. Afterwards, we 

explored the motivations and use cases of contrastive learning under the energy-based 

model framework. Finally, we briefly highlighted the importance of background 

knowledge with an emphasis on a sub-symbolic structure called the scene graph and 

described different existing techniques to get a better intuition on how to build a visual 

relationship detection system. 

In Chapter 4, we combine the described neural network and loss engineering 

techniques to build a complete VRD system. Through a clear understanding of the design 

principle of these neural networks, we can select appropriate neural network architectures 

and engineer additional pathways to perform VRD. Through contrastive learning, we can 

guide the model representational learning process for both visual and language while 

incorporating relevant knowledge graph embedding loss to preserve the hierarchy of the 

visual relationship triples. In the next chapter, we explore the Visual Genome dataset in 

more detail and look at the VRD through the data-centric standpoint. We also describe 

the common issues highlighted by the literature and give a qualitative overview of the 

data collection issues which have demonstrated to be the one of the key bottlenecks for 

VRD systems. 
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Chapter 3   

 

Datasets and Evaluation Metric for Visual Relationship 

Detection 

In this chapter we describe the common problems that affect the visual 

relationship detection task through a data-centric lens. Instead of focusing on the 

architectural and loss design like the previous chapter, we redirect our focus to the data 

collection process of the Visual Genome (VG) dataset and take a closer look at the data 

samples. In Section 3.1, we describe the data collection process for the VG dataset, its 

properties, and the common long-tail problem. In Section 3.2, we describe existing 

evaluation metrics that come with the VG-derived benchmarks and propose an alternative 

metric using Youden’s J Statistics (Youden, 1950). 

3.1 The long-tail problem of Visual Genome dataset 

In statistics, a long-tailed distribution is a distribution that has a long tail that 

tapers off at the end. Here, a dataset is said to have a long-tailed distribution if only a 

small number of class labels have a massive number of samples while others are 

associated with only a small number of samples. Such class imbalance poses a huge 

challenge to the model training process, and in many real-world scenarios, it is also the 

quality and not just the quantity of data labels that determines the success of the model. 

The VG dataset, containing 3.8 million object labels and 2.3 million relationship labels, 

also suffers from this long tail problem. While it is easy to identify and dismiss the 

problem by assuming that the dataset is static, it is still important to revisit the original 

motivation for the Visual Genome dataset, analyse it, and get a better intuition for the root 

cause. In a hindsight, this understanding allows us to find novel and appropriate solutions 

for not only the neural network engineering problem but also the data collection problem 

in future work. 
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3.1.1 From Unstructured to Structured Data 

Deep learning’s rise is intrinsically linked to the scale and complexity of the 

datasets, starting from the smaller hand-labelled datasets for image classification such as 

MNIST (Cireşan et al., 2011) and Caltech 101 (Fei-Fei et al., 2006) to the larger and more 

complex datasets for object detection such as Pascal VOC (Everingham et al., 2010) and 

ImageNet (Deng et al., 2009). However, as deep learning models become larger and more 

sophisticated, object-centric recognition tasks are no longer enough to test the limits of 

the technology. To push the boundary of these models, newer “AI-complete” tasks and 

benchmarks with an emphasis on multimodal learning were proposed, including image 

captioning and visual question answering (VQA). To this end, newer image and text 

datasets such as MS-COCO (Lin et al., 2015) and VQA 1.0 (Antol et al., 2015) were 

developed. Still, these benchmark datasets, for the most part, remain unstructured, free-

form and open-ended. For example, image captioning aims to generate free-form 

sentences from the input image, and VQA aims to give an answer to an open-ended 

question with respect to the input image. However, humans’ natural language, in free-

formed format, has its own biases stemming from their beliefs and background. For 

example, annotators tend to describe salient features and provide high-level summaries 

relevant to the given task, leaving out implicit details. 

 To tackle the biased annotation problem, Krishna et al. (2017) focused on curating 

a general-purpose representation of the visual scene without bias toward a particular task. 

To this end, a more sophisticated data collection pipeline was introduced to generate the 

VG dataset using a combination of human annotators and automation techniques. To 

facilitate the curation of coarse-to-fine annotations, the data collection process required 

human annotators to provide descriptions of numerous image regions. However, human 

annotators are biased and tend to describe the most contextually relevant relationships, 

which led to overlapping or duplicating sentences. The pipeline subsequently removed 

uninteresting or duplicated sentences by comparing them with existing sentences using 

the BLEU metric or the n-gram scores (Papineni et al., 2002). These image region 

descriptions are then parsed using a semantic parser to get the region graphs, which are 

then combined to get the final scene graph representation. While the proposed scene graph 

dataset gives a more detailed view of the image than its predecessors, the free-formed 

region descriptions are biased and still largely depend on natural language which leads to 

ambiguity in the final parsed visual relationships triples. 
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This ambiguity is an artifact of natural language and is partially caused by 

polysemy, which is pervasive in natural language and often affects both the content and 

function of the word (Quilty-Dunn, 2021). For example, the word ‘on’ in the following 

relationships (wheel, on, train) and (person, on, sidewalk) has two distinct senses: a part-

whole sense and a spatial preposition sense (Rodrigues et al., 2020). To tackle this 

problem, Krishna et al. (2017) added the final canonization process which maps 

individual scene graph elements such as the objects and relationships to their 

corresponding WordNet’s synonym sets (synsets). Here, these synsets do not explain 

what the concepts are, but merely signify that the concepts exist (Miller, 1995). However, 

the automated process still results in noise in the final representation as a result of the 

noisy WordNet’s fine-grained sense distinctions (Krishna et al., 2017). This challenge 

when combined with the sparse nature of most scene graph labels prompted the creation 

of smaller datasets with denser classes. To this end, C. Lu et al., (2016) proposed a smaller 

subset of the VG dataset called VRD, containing 5000 images and 70 predicate classes. 

Similarly, Xu et al., (2017) proposed a distilled version of the Visual Genome dataset 

called the VG150 with 150 object classes and 50 predicate classes. Finally, Peyre et al., 

(2017) proposed a version of the Visual Genome dataset that emphasizes rare visual 

relationships called UnRel. Still, these smaller benchmarks are often automated using a 

small number of hand-made rules or taxonomies, trading off accuracy for efficiency. 

While most benchmarks contain an acceptable level of inaccuracies, tackling the long-

tail problem remains a huge challenge and the problem of how to collect high quality 

structured knowledge in an efficient manner remains open, and this data problem is one 

of the limiting factors of the contemporary deep learning approach in this work. 

In the Section 3.1.2 below, we will give a brief analysis of the VRD dataset and 

the VG150 dataset, which were used to train and test our models in Chapter 4. 

3.1.2 Statistics of VRD and VG150 

While the VRD and VG150 have reduced the number of relationships in the 

original Visual Genome dataset from over 40,000 unique predicates to 70 unique 

predicates and 50 unique predicates respectively, the predicate class distributions for both 

datasets still suffer from the long tail problem due to the nature of the task. A similar 

phenomenon is observed for the subject and object classes, which have been reduced from 

76,000 unique classes to 100 unique classes in VRD and 150 unique classes in VG150. 

This long tail problem is further amplified when the individual parts are combined to form 

the (subject, predicate, object) triple classes (See Figures 3.1, 3.2, and 3.3). Through 
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counting, we also observed that the top 16 visual relationships in VG150 account for 

93.56% of all the predicate labels. 

 

Figure 3.1: Frequency counts of different objects in the (a) test and (b) train set in VRD dataset 

(C. Lu et al., 2016). 

 

Figure 3.2: The long tail distribution of the number of subjects, predicates, and objects in the 

VG150 test dataset. 

 

Figure 3.3: The long tail distribution of the visual relationship triples in the VG150 dataset. 
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Beyond the long tail distributions, the datasets contain relationships that cannot 

be predicted using solely visual and textual information from the dataset. For example, 

the predicate ‘watching’ represents an action that requires background information such 

as the function of the human’s eye. Similarly, the predicate ‘between’ expresses the 

spatial position of an object relative to two or more objects, which cannot be labelled 

using a single (subject, predicate, object) triple. Another aspect of the curated datasets is 

that the predicates with similar meanings are duplicated such as ‘on’, ‘over’, and ‘above’. 

While the listed predicates do not necessarily represent the same spatial relationship and 

the use case of each predicate depends on the context, any of the above predicates can be 

interpreted as the correct answer in many cases, making it difficult for the learned model 

to select one over the other using visual information and visual relationship triples alone. 

Finally, without a specific frame of reference when labeling the images, the labelled 

preposition predicates can be inconsistent across the labelled data, making it difficult for 

the model’s loss function to converge. This inconsistency in data labels is observed in our 

qualitative evaluation results in Section 5.3. 

While these problems can be viewed as characteristics of language, they are often 

ignored in the analysis of the VRD results. Here, we identify the flaws stemmed from the 

nature of the VRD task, which helped us understand the weaknesses of the common 

benchmarks while highlighting a need for a better and well-defined benchmark for visual 

relationships. While a combination of human labels and automation techniques are still 

needed, perhaps the uses of annotated English descriptions and semantic parser are no 

longer enough. Understanding the limitations of the VG-related benchmarks also allows 

us to evaluate the true performance and limitations of the visual relationship detection 

model in the context of real-world photos. Section 3.1.3 below briefly describes the 

techniques used to tackle the long-tail problem. 

3.1.3 Tackling the long-tail problem 

One way to tackle the long-tail problem in VRD is to directly address the 

unbalanced distribution of the predicate classes through re-weighting or re-sampling 

approaches. In the re-weighting approach, the final loss function assigns adaptive weights 

or margins (Liang et al., 2018) for different predicate classes depending on the number 

of occurrences of the classes (Cao et al., 2019). Different from the re-weighting approach 

which focuses on engineering the loss function, the re-sampling approach focuses on 

smoothening the data distribution by performing a biased selection of the predicate 

classes. While both approaches can be beneficial to the VRD task when evaluated under 
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the mean Recall metric (see Section 3.2), these approaches introduce biases to the final 

learned model, making the model’s predictions deviate from the natural data distribution 

and penalizing the model’s ability to generalize when given a test set with similar 

distribution to the train set. In the context of our work, where the goal is to build a general 

representation of the visual relationships using contrastive learning, we aim to model the 

original data distribution while allowing the model to perform the VRD task. Thus, we 

did not apply any of the above re-balancing techniques which improve the model’s 

performance on one evaluation metric but penalize its performance on another evaluation 

metric (Section 3.2). Instead, we used a supervised negative sampling technique that 

depends on the original dataset distribution. We described this negative sample approach 

in Section 5.1.2 in more detail. 

Section 3.2 below describes the benchmark evaluation metrics, allowing us to 

understand the trade-off between different evaluation techniques and how they affect the 

model’s design decision for the VRD benchmark. 

3.2 Evaluation Metrics 

Given the unbalanced nature of the datasets for the VRD task, a balance evaluation 

metric is needed to have a more holistic overview of the model’s performance. While the 

evaluation metric should not be biased towards the head classes of the long tail 

distributions, it should not over penalize the models for selecting the most prevalent class 

that follows the distribution. The sections below give an overview of the commonly used 

evaluation metrics for the machine learning tasks with an emphasis on object detection 

and visual relationship detection. In Section 3.2.1, we provide a comprehensive overview 

of the widely used Recall, Precision, and F-measure, highlighting common issues for each 

metric. In section 3.2.2, we describe the visualization techniques such as Precision-Recall 

Curve and ROC Curve and propose the use of an ROC-based metric 

called Informedness as a measure. 

3.2.1 Precision, Recall, and F-measure 

One of the most used metrics for the binary classification task in machine learning 

is Recall (Eq 3.1) and Precision (Eq 3.2). Here, Precision computes the fraction of the 

number of correctly predicted positives over the set of all positive predictions, and Recall 

(also known as Sensitivity) computes the fraction of the number of correctly predicted 

positives over the set of ground truth labels. A simple way to conceptualize Precision and 
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Recall is to use a confusion matrix (See Table 3.2), which subdivides a prediction made 

by the model into four quadrants: (1) the true positive (TP) quadrant that counts the 

number correctly predicted positive, (2) the true negative (TN) quadrant that counts the 

number of correctly predicted negatives, (3) the false positive (FP) quadrant that counts 

the number of incorrectly predicted positives, and (4) the false negative (FN) quadrant 

that counts the number of incorrectly predicted negatives. 

 Prediction 

Positive Negative 

Ground 

Truth 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN)  
 

Table 3.1: Confusion matrix for binary classification 

In the VRD multiclass classification context, Recall@n (short as R@n) is the most 

used metric for evaluation, which computes the number of top n correctly predicted 

predicates over all relations with that label. In the original VRD work, Recall@n is 

computed using the micro-averaging approach which aggregates the TP and FN counts 

for all classes prior to computing Recall. This may lead to confusion since such micro-

averaging Recall is equivalent to Accuracy in the multiclass classification context (Eq. 

3.3). Here, a common argument for using such Recall@n metric is that it is more lenient 

to missing relationships that were not annotated. However, given that both the VRD and 

VG datasets are dominant by a few predicate classes, using the Recall@n metric alone 

does not reveal how performant the model is on rare classes. As a hypothetical scenario, 

if a test set with fifty predicate classes were to contain one-hundred examples and eighty 

of those examples were labelled as ‘on’, a classifier that always guesses ‘on’ would have 

an overly high Accuracy of eighty percent while yielding zero Recall for the remaining 

forty-nine classes. 

Besides Recall@n, another popular metric used to evaluate VRD is mean 

Recall@n (short as mR@n). Different from Recall@n which uses the micro-averaging 

approach, mR@n computes one-vs-all Recall for each predicate class and takes their 

average in a process called macro-averaging. While mR@n tones down the optimism 

reflected by the Recall@n metric, it still uses binary Recall at its core which can still be 

misleading. For example, the experimenter can optimize for Recall by lowering the 

model’s threshold for each class to reduce False Negatives at the cost of increased False 
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Positives and lower Precision. Moreover, given that the experimental dataset is static, 

mR@n can be considered as an overly pessimistic evaluation metric since it gives equal 

importance weight to every predicate class, ignoring both the skewed dataset distribution 

and the intentionally introduced bias by the experimenter. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑚𝑒𝑎𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
𝑖∈(0,𝑛)

 

Eq 3.1 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Eq 3.2 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑛 =  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑛𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

Eq 3.3 

The alternative is the Precision metric, which measures the ratio of correct positive 

predictions to the total number of positively predicted classes. Here, optimizing the model 

for high precision reduces the number of false positives and makes the classifier more 

consistent across different test sets. However, as a consequence of this optimization, the 

classifier often becomes more conservative in its prediction, penalizing Recall in the 

process. For example, an experimenter can increase the threshold of the classifier to 

optimize for Precision, reducing the number of false positives while increasing the 

number of false negatives, resulting in a lower Recall. One of the most popular unified 

metrics used to tackle such trade-offs is F-measure, which computes the harmonic mean 

of both Recall and Precision. Although the F-measure shown in Equation 3.3 gives equal 

weight or importance to both Recall and Precision, practical applications of F-measure 

often assign different weights to each depending on the goal of the targeted experiment. 

𝐹1 =
2

𝑅𝑒𝑐𝑎𝑙𝑙−1 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Eq 3.3 

3.2.2 Precision-Recall Curve and ROC Curve 

Still, observing the model’s performance using a single F-measure number can be 

misleading as it does not indicate whether the model is performing well on either Recall 

or Precision. One approach to tackle this issue is by plotting the Precision-Recall Curve 

(PRC) from information retrieval, which shows the trade-offs between the two metrics at 
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different thresholds. A complementary metric that is often used with PRC is Average 

Precision (AP), which computes the average of Precisions across the thresholds. In the 

multi-class object detection context, mean Average Precision (mAP) first computes the 

Average Precision for each object class and takes their mean. While such a metric makes 

sense in the object detection context, it is still considered as a pessimistic evaluation 

metric for visual relationship detection due to the missing annotations that stemmed from 

human biases (C. Lu et al., 2016). 

Another common trade-off metric pair that experimenters use to measure the 

model’s performance is the True Positive Rate (TPR) and False Positive Rate (FPR). 

Here, TPR is equal to Recall and is calculated by computing the fraction of correctly 

predicted positives over the number of ground truth positives. Similarly, FPR is calculated 

by computing the fraction of incorrectly predicted positives over the number of ground 

truth negatives. Unlike the PRC which originates from information retrieval and helps 

visualise the trade-offs between Precision and Recall, the Receiver Operating 

Characteristic Curve (ROC) originates from information theory and plots the trade-off 

between TPR and FPR which shows us the classifier ability to distinguish between 

positive and negative classes. Different from the PRC which aims to maximize both 

Precision and Recall, ROC aims to maximize TPR while minimizing FPR. With ROC, an 

experimenter can compare the model’s performance to chance or random guessing, 

indicated by the TPR equals FPR diagonal line. Such measurement is called Youden J’s 

Statistic in the binary case or Informedness in the multi-classes case (D. M. W. Powers, 

2020), which specifies the probability that a prediction is informed in relation to the 

condition versus chance (see Eq 3.6). 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Eq 3.4 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Eq 3.5 

𝑌𝑜𝑢𝑑𝑒𝑛 𝐽’𝑠 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 Eq 3.6 

Under certain conditions, both the Precision-Recall Curve and the ROC Curve can 

be considered equal, and one curve dominates a second curve in ROC space if and only 

if the first dominates the second in the Precision-Recall space (Davis & Goadrich, 2006). 

However, optimizing a model using a ROC-based metric such as Area Under the Curve 

(AUC) does not necessarily optimize the model for the PRC-based metric. To explore 
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why using ROC is more suitable than the Precision-Recall Curve, we must first avoid the 

assumption that the distribution of the model’s prediction is predetermined by the 

distribution of the test samples or that bias tracks prevalence (D. M. W. Powers, 2020).  

Here, prevalence is determined by the test set we collected, and bias is determined 

by the model’s predictions which can be controlled by the experimenter. Comparing the 

metrics used in ROC to PRC, we can observe that TPR and FPR’s denominators are both 

constants defined by the static dataset whereas Precision’s denominator can vary across 

the model. Thus, ROC is highly dependent on prevalence and can show how likely the 

classifier is influenced by different test samples or conditions rather than chance, where 

expected positive predictions turn up at the same rate as negative predictions. This ability 

to optimize the model to perform well under different conditions is highly beneficial to 

the VRD task since many visual relationships are missing. On the contrary, there is no 

easy way to visualize this chance line using the PRC. 

Moreover, by observing the denominators of FPR when compared to Precision, 

we can also see that ROC aims to find a balance threshold between lower FN predictions 

and higher TN predictions, while PRC aims to find a balance threshold between lower 

FN and lower FP. Thus, optimising prediction thresholds based on ROC puts more 

emphasis on the negative examples that are often ignored by PRC analysis (D. M. W. 

Powers, 2020). In the context of our work, which emphasizes the use of contrastive 

learning with positive and negative examples, the ability to distinguish between positive 

and negative classes by ROC is more relevant. However, in the VRD case, where the 

distribution of the predicate classes is highly skewed, optimising the threshold for 

individual class using ROC-AUC can give a more optimistic view than optimizing the 

model based on the PRC-AUC. 

Given the above reasons, we opted for ROC in this work and applied Informedness 

(see Eq. 3.7) as a measurement, which is calculated using bias-weighted Youden’s J 

Statistic (D. M. W. Powers, 2020). Here, weighting Youden’s J Statistic by bias respects 

the experimenter’s model choices by taking the intentionally introduced biases into 

account. Arguably, this is better than assigning equal weights to every predicate class 

such as mAP or mR@n because equal weight assignment does not account for the various 

de-biasing techniques or priors that are incorporated into VRD models. Here, we 

emphasize the use of bias-weighted measure over prevalence-weighted measure since the 

number of visual relationships is exponentially large and the labelled dataset is 

incomplete. 
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𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = ∑ 𝑏𝑖(𝑇𝑃𝑅𝑖 − 𝐹𝑃𝑅𝑖)

𝑖∈(0,𝑛)

 
Eq 3.7 

In this Informedness equation, 𝑛 is the number of predicate classes 𝑖 ∈ (0, 𝑛) are the 

indices of the predicates, and 𝑏𝑖 =
𝑇𝑃𝑖+𝐹𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝑇𝑁𝑖+𝐹𝑁𝑖
 is the ratio of predicted positive over 

all samples. 

3.3 Discussion 

While picking good deep learning architecture and loss design can improve the 

model’s performance, one of the inconvenient truths is that the selected benchmarks or 

dataset play an important role in determining the model’s success. In this chapter, we 

explored the Visual Genome dataset in more detail, highlighted the common long tail 

problem, and described common rebalancing techniques used to tackle it. Beside the 

dataset, we also explored the evaluation metrics that are commonly used for Visual 

Relationship Detection. Here, we argue that optimizing the model using solely the 

Recall@n metric can lead to a bias classifier and propose the use of ROC curve and the 

Informedness metric to evaluate the system. 

The next chapter presents the main contribution of this thesis. We propose two 

different contrastive learning approaches to tackle the VRD task. The first approach 

focuses on learning structural-preserving representations or embeddings for VRD, while 

the second approach emphasizes simplicity and examines the effect of scaling up the pre-

trained vision and language model on the VG150 benchmark performance.  

  



 

51 

Chapter 4  

 

Contrastive Visual and Language Learning for Visual 

Relationship Detection 

In this chapter, we motivate and describe the use of contrastive learning in the 

visual relationship detection task. First, we briefly describe the visual relationship 

detection problem in the context of the current literature. In Section 4.2, we propose a 

contrastive VRD architecture that preserves the first order structure of the scene graph 

using translational losses. In Section 4.3, we experiment with pre-trained models of 

different sizes to measure the impact of size and scale on VRD. 

Visual relationship detection (VRD) aims to facilitate real-world description by 

bridging the gap between low-level visual information and high-level symbolic visual 

relationships, written in the form of (subject, predicate, object) triples. Previous work has 

explored the use of contrastive learning to generate joint visual and language embeddings 

that aid the detection of both seen and unseen visual relation triples. However, these 

contrastive approaches often learn the mapping functions implicitly and do not fully 

explore the underlying structure of the triples. Section 4.2 in this chapter aims to build 

joint visual and language embedding models that can capture such hierarchical structure 

between objects and predicates by explicitly imposing structural loss constraints. 

Thus, instead of tackling the VRD problem as an end-to-end classification task, 

the architecture in Section 4.2 assumes the graphical structure of these visual relation 

triples, interprets this structure as a knowledge graph (Ji et al., 2021), and formulates the 

VRD problem as a knowledge graph completion problem (Z. Chen et al., 2020). However, 

unlike traditional knowledge graphs that are based on factual knowledge bases, the 

knowledge graphs here are represented by a set of visual entities and their interactions, 

where the nodes are subjects and objects grounded in the image through bounding boxes, 

and the edges are the relation predicates that exist between pairs of subjects and objects 

(Johnson et al., 2015). In the literature reviewed in Chapter 2, such formulation of a 

knowledge graph is also called a scene graph, and the task of knowledge graph completion 

is called scene graph completion (Wan et al., 2018). 
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Central to the scene graph completion is the idea of scene graph embedding 

(SGE), which aims to build embedding models that transform the entities and relations 

into low-dimensional vector spaces while preserving the structure of the original 

knowledge graph. Such approach is beneficial to VRD in two ways. First, because these 

embedding spaces preserve the graphical structures, unseen relations can be inferred by 

aggregating the relevant neighbours’ features (Maheshwari et al., 2021). Second, like any 

other knowledge graph, a scene graph can be augmented with other domain-specific 

knowledge graphs or common-sense knowledge graphs (Sap et al., 2019) during training, 

allowing the model to incorporate background knowledge that might assist the detection 

of rare visual relationship. 

In this chapter, we perform scene graph embedding using the contrastive learning 

approach, which learns representations by pulling together the target vector (or anchor) 

and a matching (positive) vector, while pushing apart the anchor from non-matching 

(negative) vectors. We believe that such a contrastive approach, when paired with 

negative sampling, can help us construct a better scene graph representation that can be 

transferred to other downstream tasks while giving us more control over the output 

embedding spaces. Here, we experimented different contrastive loss functions on two 

architectures, as described in Section 4.2 and Section 4.3 below. In Chapter 5, we report 

the results for both architectures, along with their experiments. In summary, we found 

that translational losses can penalize the VRD task, but this negative effect can be 

alleviate using TransR over TransE approach (see Chapter 5 for more details). We also 

found that larger models yield better performance when compared with their smaller 

counterparts, while models pre-trained on larger datasets do not necessarily present the 

best performance amongst the existing benchmark models. 

4.1 Visual Relationship Detection 

Visual Relationship Detection aims to construct a symbolic representation from 

an unstructured scene by representing it as a set of visual relationship triples in the form 

of (subject, predicate, object) such as (person, riding, horse) or (window, on, train). Here, 

the subject and object are labels grounded to the salient image regions through bounding 

boxes, and the predicate is defined as a real-world interaction between these object pairs. 

However, due to the large number of potential real-world interactions, existing visual 

relation datasets including VRD (C. Lu et al., 2016) and Visual Genome (Krishna et al., 
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2017) are often sparse and unbalanced, where common relations occur more frequently 

than rarer but plausible ones. 

To tackle this problem, existing work seek to incorporate linguistic knowledge as 

additional training features to the learning model. For example, C. Lu et al. (2016) showed 

that leveraging pre-trained word embeddings can help the models learn linguistic 

statistical priors; similarly, Yu et al. (2017) showed that distilling knowledge from 

external Wikipedia datasets can improve the model's performance. Other work have also 

directly targeted the bias nature of the benchmark by incorporating spatial information, 

and (subject, object) co-occurrence priors as learning features for the classifiers (T. Chen 

et al., 2019), improving the model's performance significantly. Recent approaches have 

also tackled the effect of bias by introducing model-agnostic counterfactual prediction 

during inference such as Total Direct Effect (TDE) (Tang et al., 2020) or by 

experimenting with different sampling strategies (Desai et al., 2021). For our works in 

Section 4.2 and Section 4.3, we do not incorporate any external information or co-

occurrence prior during training. Instead, we make use of pre-trained language models 

that encodes linguistic knowledge from larger corpora such as BERT (Devlin et al., 2019) 

or CLIP (Radford et al., 2021). 

Perhaps the work that is most relevant to ours are from Peyre et al. (2019) and J. 

Zhang et al. (2019), who interpreted the VRD problem as a zero-shot detection task, and 

uses contrastive metric learning to construct joint visual and language embedding spaces 

that can be transferred to detect unseen visual relation triples. Here, Peyre et al. (2019) 

emphasizes the importance of analogy transfer, which is a downstream neural network 

module that leverages compositional embedding parts to compose novel visual relation 

triples. While the method shown in our work also constructs joint embedding spaces for 

visual relationships using contrastive learning method, the entire pipeline is trained end-

to-end and the method focuses on the use of scoring distance metric to rank and select 

potential visual relationships, as we shall see in Section 4.2 and Section 4.3. 

To facilitate the training of the embedding models in Section 4.2 and 4.3, we used 

two different subsets of the Visual Genome (Krishna et al., 2017) dataset. In Section 4.2, 

we first use the smaller VRD dataset that contains 5000 images to examine the impact of 

the explicit incorporation of translational losses. Afterwards, we evaluate the remaining 

of the work in Section 4.3 using the larger VG150 dataset with 60K images to compare 

with previous work. 
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4.2 The VLTransE Architecture 

This section proposes an architecture for detecting visual relations triples to test 

whether translational constraint can improve the performance of the model for rare visual 

relationships. The general architecture, visualized in Figure 3.2 below consists of three 

modules: (1) the Visual and Spatial Module that extracts visual features and bounding 

box features (Figure 4.1, left), (2) the Language Module that learns contextualized token 

embeddings (Figure 4.1, right), (3) the Loss Functions that enforce the translational 

property and visual-language consistency (Figure 4.1, center). 

The final output of the method consists of six embeddings with three visual 

embeddings (𝒗𝒔, 𝒗𝒑, 𝒂𝒏𝒅 𝒗𝒐) and three language embeddings (𝒘𝒔, 𝒘𝒑, 𝒂𝒏𝒅 𝒘𝒐). These 

embeddings are then trained on two set of losses: (𝑳𝒔𝒖𝒃𝒋
𝒗𝒍 , 𝑳𝒑𝒓𝒆𝒅

𝒗𝒍 , 𝑳𝒐𝒃𝒋
𝒗𝒍 ) are the visual-

language consistency losses, while 𝑳𝒗
𝑻𝒓, 𝑳𝒘

𝑻𝒓 are the translational losses for visual and 

language embeddings triples. 

 

Figure 4.1: Overview of the proposed VLTransE architecture. Red, black, and blue colors 

represent subject, predicate, and object respectively. 

In summary, the visual and spatial module (1) in Figure 4.1 consists of a shared 

backbone convolution neural network (CNN) that extracts visual features from the image 

based on the bounding box regions, and three neural network heads for subject, predicate, 

and object. Here, the predicate features are also concatenated with the spatial features 

extracted from the 2D bounding boxes’ coordinates before passing through the predicate 

neural network head. Similarly, the language module consists of a shared token encoder 

and three separate neural network heads. For the language module (2) in Figure 4.1, we 
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decided to use BERT (Devlin et al., 2019), which is based on the self-attention mechanism 

and the Transformer architecture (Dong et al., 2021), to generate contextualized vectors 

that changes according to the context of the input triples. For the loss functions (3) in 

Figure 4.1, the model applies translational loss on the visual embedding triples and the 

language embedding triples independently from one another to preserve the first-order 

graph structure. To ensure the consistency between the visual embeddings and language 

embeddings, triplet margin loss is applied between the (visual, language) embeddings 

pairs for subject, predicate, and object respectively. 

Below, each of the modules composing the architecture shown in Figure 4.1 are 

explained in more details. 

4.2.1 Visual and Spatial Module 

Visual Module: One of the main sub-tasks of visual relationship detection is to detect 

subjects and objects from a given image and extract their visual features for downstream 

embeddings. Given the success of CNN-based architecture in learning image 

representations from large scale pre-training, the visual feature extraction module in this 

work uses Faster R-CNN pre-trained on the COCO 2017 dataset. In the current 

implementation, Faster-RCNN consists of a shared ResNet-101 backbone network, a 

region proposal network (RPN), and a region of interest (ROI) detector. Thus, given the 

ground truth subject, object, and union bounding boxes, the visual features are extracted 

from the shared backbone and a region of interest pooling operation, yielding 𝒛𝒔, 𝒛𝒐, and 

𝒛𝒖𝒏𝒊𝒐𝒏 respectively. 

Spatial Module: The model also extracts spatial feature (Figure 4.1, bottom left) from 

the subject, object, and union bounding boxes to incorporate spatial and position priors. 

Unlike tradition object detection task which aims to detect salient objects in an image, 

our spatial module is introduced to capture crucial spatial relationship between objects. 

To do this, we defined a 22-dimensional feature vector similar to that of J. Zhang et al., 

(2019), Peyre et al., (2019), and Sadeghi et al., (2015). Here, given the three boxes 

𝑏𝑠 , 𝑏𝑢𝑛𝑖𝑜𝑛 , 𝑏𝑜  in [𝑥, 𝑦, 𝑤, ℎ] format, where (𝑥, 𝑦) is the starting coordinate and (𝑤, ℎ) is 

the width and height of the box, the spatial encoder first generates Δ(𝑏1,  𝑏2), which 

defines the relative position, normalized displacements, and scale between two bounding 

boxes. It also generates 𝒄(𝑏), which captures individual characteristics of the bounding 

box relative to the entire image. The resulting vector is a 22-dimensional feature vector 

defined in Equation 4.3 below. 
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Δ(𝑏1,  𝑏2)  =   〈 
𝑥1  −  𝑥2

𝑤2
,  

𝑦1 − 𝑦2

ℎ2
, 𝑙𝑜𝑔 (

𝑤1

𝑤2
) ,  𝑙𝑜𝑔 (

ℎ1

ℎ2
)〉 

 

 

Eq. 4.1 

𝒄(𝑏)  =   〈 
𝑥

𝑤𝑖𝑚𝑔
,  

𝑦

ℎ𝑖𝑚𝑔
,
𝑥 + 𝑤

𝑤𝑖𝑚𝑔
,
𝑦 + ℎ

ℎ𝑖𝑚𝑔
,

𝑤ℎ

𝑤𝑖𝑚𝑔ℎ𝑖𝑚𝑔

〉 

 

Eq. 4.2 

 

〈 Δ(𝑏𝑠,  𝑏𝑜) ,  Δ(𝑏𝑠,  𝑏𝑢𝑛𝑖𝑜𝑛), Δ(𝑏𝑢𝑛𝑖𝑜𝑛 ,  𝑏𝑜), 𝒄(𝑏𝑠), 𝒄(𝑏𝑜) 〉 Eq. 4.3 

The spatial feature vector in Equation 4.3 is passed through two fully connected layers to 

get the final 64-dimensional spatial embedding, 𝒔𝒑. 

While the generated spatial feature vector is partially inspired by VisKE (Sadeghi et al., 

2015), it should be noted that VisKE aimed to find the most probably explanation by 

comparing the detected spatial coordinates pair against multiple sets of images of shared 

visual phrase, making spatial coordinates the main feature for VisKE. In this work, we 

also include visual features in addition to the spatial features as described in the Visual 

Module. 

These extracted visual and spatial feature vectors are then passed through three separate 

neural networks to generate the subject, predicate, and object embeddings. For the subject 

and object embeddings, the visual feature vectors go through three fully connected layers 

with RELU activation function to get 256-dimensional embedding vectors, 𝑣𝑠 and 𝑣𝑜 . 

Similarly, the union feature vector, 𝑧𝑢𝑛𝑖𝑜𝑛, is first concatenated with the spatial 

embedding, 𝑠𝑝, before going through three fully connected layers with RELU activation 

function to get the 256-dimensional predicate embedding vector, 𝑣𝑝 . 

4.2.2 Language Module 

For the language module, the model also learns three separate neural networks for subject, 

predicate, and object that map the pre-trained language features toward the final joint 

visual and language spaces. Here, the architecture uses frozen BERT instead of word2vec 

as our pre-trained language encoder to leverage the contextualized information from the 

entire triplet. While the subject-predicate-object triples are unnatural input sequences for 

BERT which was pre-trained on Wikipedia and the BookCorpus dataset (Devlin et al., 

2019), we believe that contextualized encoders like BERT are still beneficial for visual 

relationship detection because the same predicate can have different meanings under 

different (subject, object) contexts. However, empirical results from Ilinykh and Dobnik, 
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(2022) showed that training a text-only model on image captions data gives different 

semantics from a text model trained on general text. Given that visual relationship triples 

are extracted from image captions, the pre-trained BERT model used in this work is not 

fully applicable to visual relationship triples. To overcome this limitation, we also 

finetuned the extracted BERT features using the three separate neural networks, resulting 

in three 256-dimensional embedding vectors, 𝑤𝑠, 𝑤𝑝, and 𝑤𝑜, in the final output. 

4.2.3 Loss Functions 

The model is tested on triplet margin loss and contrastive cross entropy losses. Here, 

cosine similarity is used as the distance metric d for all loss functions. 

Triplet Losses for Visual and Language Consistency. The following set of loss 

function aims to bring the three positive visual embeddings (𝑣𝑠 , 𝑣𝑝 , 𝑣𝑜) closer to the three 

positive language embeddings (𝑤𝑠 , 𝑤𝑝, 𝑤𝑜), while pushing apart negative pairs. To 

reduce the number of equations, the loss function in Equation 4.6 or 𝐿𝑣𝑙 is applied 

separately for the three subject, predicate, and object heads. Therefore, given the set 𝑽 =

{𝒗, 𝒘} of positive visual and language embedding pairs, the set 𝑽𝒗− = {𝒗−, 𝒘} of 

negative visual with positive language pairs, and 𝑽𝒘− = {𝒗, 𝒘−} of positive visual with 

negative language pairs, the triplet losses are: 

𝐿𝑣
𝑣𝑙 =  ∑

1

|𝑽𝑣−|
∑ [𝑚 + 𝒅(𝑣, 𝑤) −  𝒅(𝑣−, 𝑤)]+

(𝑣−,𝑤)∈𝑽𝒗−(𝑣,𝑤)∈𝑽

 
Eq 4.4 

𝐿𝑤
𝑣𝑙 =  ∑

1

|𝑽𝑣−|
∑ [𝑚 + 𝒅(𝑣, 𝑤) −  𝒅(𝑣, 𝑤−)]+

(𝑣−,𝑤)∈𝑽𝒗−(𝑣,𝑤)∈𝑽

 
Eq 4.5 

𝐿𝑣𝑙 =  𝐿𝑣
𝑣𝑙 +  𝐿𝑤

𝑣𝑙 Eq 4.6 

where  [𝑥]+ = 𝑚𝑎𝑥(0, 𝑥) denotes only the positive part of the input, m denotes a margin 

of 0.2, and d is cosine similarity distance metric. 𝐿𝑣𝑙 is applied correspondingly for 

objects, subjects, and predicates pairs. 

Contrastive Cross Entropy Losses for Visual and Language Consistency. Similar to 

Hermans et al. (2017), we also observe that triplet losses yield slow convergence to a sub-

optimal solution when random sampling is applied. To overcome selection bias problem 

with random negative sampling (B. Yu et al., 2018) that leads to local minima, we also 

apply the contrastive cross entropy losses for the three subject, predicate, object heads. 



 

58 

Thus, given the set 𝑺𝒗 of all visual embeddings and set 𝑺𝒘 of all word embeddings for the 

given head, the contrastive cross entropy loss is represented by: 

𝐿𝑣𝑙−𝐶𝐸 =
1

|𝑺𝒗|
∑ ∑ −𝟏𝑦𝑣=𝑦𝑤

∙ log (
𝑒𝒅(𝑣,𝑤) 

∑ 𝑒𝒅(𝑣,𝑡)
𝑡 ∈ 𝑺𝒘

)

𝑤∈𝑺𝒘𝑣∈𝑺𝒗

 
 

Eq 4.7 

where 𝟏𝑦𝑣=𝑦𝑤
= {

1 , 𝑖𝑓 (𝑣, 𝑤) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
0                    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and d is the cosine similarity distance. The 

same 𝐿𝑣𝑙−𝐶𝐸 is applied correspondingly for subject, predicate, and object heads. 

Translational Loss. To enforce the hierarchical structural priors of visual relation triples, 

the model also enforces the translational loss on the visual embeddings and language 

embeddings. Thus, given a set S of valid triples (s, p, o), and 𝑺− of randomly selected 

negative triples (s', p, o'), the translational losses are defined as: 

𝐿𝑣
𝑇𝑟 =  ∑

1

|𝑺−|
∑ [𝑚 + 𝒅(𝑣𝑠  + 𝑣𝑝, 𝑣𝑜) −  𝒅(𝑣𝑠′

+ 𝑣𝑝, 𝑣𝑜′
)]

+
(𝑠′,𝑝,𝑜′)∈𝑺−(𝑠,𝑝,𝑜)∈𝑺

 
Eq 4.8 

𝐿𝑤
𝑇𝑟 =  ∑

1

|𝑺−|
∑ [𝑚 + 𝒅(𝑤𝑠  + 𝑤𝑝, 𝑤𝑜) −  𝒅(𝑤𝑠′

+ 𝑤𝑝, 𝑤𝑜′
)]

+
(𝑠′,𝑝,𝑜′)∈𝑺−(𝑠,𝑝,𝑜)∈𝑺

 

 

Eq 4.9 

Here, the predicate embeddings act as the translational vector between the subject and 

object embeddings. Thus, the final combined loss function is defined as: 

𝐿 =  𝐿𝑠𝑢𝑏𝑗
𝑣𝑙 + 𝐿𝑜𝑏𝑗

𝑣𝑙 + 𝐿𝑝𝑟𝑒𝑑
𝑣𝑙 + 𝐿𝑣

𝑇𝑟 + 𝐿𝑤
𝑇𝑟 

 

Eq 4.10 

or 

𝐿 =  𝐿𝑠𝑢𝑏𝑗
𝑣𝑙−𝐶𝐸 + 𝐿𝑜𝑏𝑗

𝑣𝑙−𝐶𝐸 + 𝐿𝑝𝑟𝑒𝑑
𝑣𝑙−𝐶𝐸 + 𝐿𝑣

𝑇𝑟 + 𝐿𝑤
𝑇𝑟 

 

Eq 4.11 

Test-Time Inference. To perform test-time inference on the generated visual and 

language embeddings, the evaluation algorithm computes the cosine similarity distances 

between the visual embeddings and language embeddings and ranks them to select the 

top predictions. Depending on the evaluation task, different embedding parts of (subject, 

predicate, object) can be used (Figure 3.2) In this work, we evaluated the model on two 

tasks: (i) the predicate prediction task, and (ii) the tail entity prediction task. 
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Figure 4.2: A visualization for test time scoring functions. Red, black, and blue colours represent 

subject, predicate, and object respectively. 𝒅(𝒙, 𝒚) computes the cosine distance between x and 

y, and the distances are ranked in an ascending order. In (a), n is the number of predicate classes 

in the dataset. In (b), e is the number of object classes in the dataset. 

For the predicate prediction task (Figure 4.2a), both the ground truth bounding 

boxes and labels for subject and object are given. Thus, given the ground truth bounding 

boxes and an image, the three visual embeddings (𝑣𝑠 , 𝑣𝑝 , 𝑣𝑜) for subject, predicate and 

object are first generated by the visual and spatial module (Figure 4.2, 1). For the 

language modality, due to the usage of BERT contextualized encoder, the evaluation 

algorithm first enumerates all possible (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖 , 𝑜𝑏𝑗𝑒𝑐𝑡) triples where      

 𝑖 ∈  (0, 𝒏) and n is the number of predicates. These triples are then passed through the 

language module (Figure 4.2, 2) to generate n language embeddings triples, 

(𝑤𝑠 , 𝑤𝑝 , 𝑤𝑜)𝑖∈(0,𝒏). Thus, given the visual (𝑣𝑠 , 𝑣𝑝 , 𝑣𝑜) embedding triple and the 

language (𝑤𝑠 , 𝑤𝑝, 𝑤𝑜)𝑖∈(0,𝒏) embedding triples, the visual-language consistency score 

for the predicate is computed as: 

𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝒅(𝑣𝑝, 𝑤𝑝) 
 

Eq 4.12 

and the translational score is computed from: 

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 𝒅(𝑣𝑜 − 𝑣𝑠 , 𝑤𝑝) 
 

Eq 4.13 

These two scores are then multiplied to get the final ranking score 

𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒 = 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙  
 

Eq 4.14 

For the tail entity prediction task (Figure 4.2b), we aim to predict the object entity 

given only the ground truth bounding box for subject and ground truth labels for subject 
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and predicate. Unlike the predicate prediction task, where both the subject and object 

ground truth bounding box information are given, this task only has the subject’s 

bounding box information, leaving the object to be predicted. This introduces ambiguity 

to the task, making it more challenging. First, the object’s location becomes uncertain due 

to the absence of the object’s bounding box information, making it harder than the 

predicate prediction task where bounding box information is available for both the subject 

and object. Moreover, the model has to deal with ambiguity and immense variability of 

potential objects, broadening the search space considerably compared to predicate 

prediction task. Despite its challenges, the tail entity prediction task encourages the model 

to interpret subject-predicate pairs, which we believe can help the model relies more upon 

the information from the visual context provided by the subject and its surrounding. 

Thus, without the ground truth object bounding box, the union box is set to be the 

subject bounding box. Therefore, given the image and the subject bounding box, the 

visual and spatial module (Figure 4.2, 1) generates the visual embeddings (𝑣𝑠 , 𝑣𝑝) for 

the subject and predicate. Similarly, from the subject and predicate ground truth labels, 

the evaluation algorithm first enumerates all possible (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡𝑖) 

triples where 𝑖 ∈ 𝒆 and 𝒆 is the number of object classes. These triples are then passed 

through the language module (Figure 4.2, 2) to generate (𝑤𝑠 , 𝑤𝑝, 𝑤𝑜)𝑖∈(0,𝒆) embedding 

triples. Given the visual (𝑣𝑠 , 𝑣𝑝) embeddings and the language 

(𝑤𝑠 , 𝑤𝑝 , 𝑤𝑜)𝑖∈(0,𝒆) embedding triples, the translational score function is computed as: 

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 𝒅(𝑣𝑠 + 𝑣𝑝 , 𝑤𝑠 + 𝑤𝑝) 
 

Eq 4.15 

The computed scores above are then used to rank and select the top predicate or tail entity 

for the task. The evaluation results for the experiments in this section is presented in 

Chapter 5.  
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4.3 A Simple Contrastive Learning Architecture 

We observed that it is not optimal to create separate contextualized embeddings 

for each subject, predicate, and object. Thus, we propose a simple contrastive learning 

approach that is more aligned to the VRD task. During this process, we examine whether 

contrastive embedding models pre-trained from the abundant amount of unstructured 

web-scraped image and text pairs (See Table 4.1) can improve the model’s performance. 

Dataset No. unique image-text pairs 

LAION 400M 413 million pairs 

LAION2B-EN 2.32 billion pairs 

Table 4.1: Number of unique image-text pairs for two different datasets used in pre-training. 

Figure 4.3: Overview of the proposed contrastive architecture. Visualization is partially adapted 

from pairs Radford et al. (2021). 

This section describes the architecture and outlines the details of the 

implementation. While the general architecture here consists of three modules similar to 

the one described in Section 4.2, each module deviates from the one described in Section 
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4.2 as follows: (1) The Visual Module now generates visual embeddings based on the 

extracted features from the (subject, object) union image regions rather than individual 

objects, (2) the Language Module generates one contextualized embedding by 

concatenating the (subject, predicate, object) into a string instead of three separate 

embeddings for every elements in the triple, and (3) the Contrastive Loss Module now 

applies Cross Entropy variants instead of the Triplet Loss or TransE loss. Like VLTransE 

in Section 4.2, we use the cosine similarity metric as the distance metric and the Cross 

Entropy loss as our main loss objective. 

Dataset Image encoder No. Params 

CLIP ResNet50 25.6M 

CLIP ResNet101 44.5M 

OpenCLIP VIT-B-16 86M 

OpenCLIP VIT-B-32 86M 

OpenCLIP VIT-L-14 307M 

OpenCLIP VIT-H-14 632M 

Table 4.2: Number of parameters for the visual encoder used in CLIP and OpenCLIP. 

Table 4.1 describes the size of the two datasets used to pretrained CLIP and 

OpenCLIP model, and Table 4.2 describes the number of parameters used by different 

image encoders. We used the open-source CLIP and OpenCLIP models and did not 

perform the pre-training. OpenCLIP is the open-source version of CLIP with released 

pre-trained models for the larger encoder sizes. For the image encoder, VIT-B-16 denotes 

a Vision Transformer Base model with an input sequence of 16x16 patch sizes. The VIT 

Base is smaller than VIT Large, and VIT Large is smaller than VIT Huge. We expand 

upon the architecture of the Vision Transformer in greater details in Section 5.1.2. 

4.3.1 Visual Module 

Visual Encoder. Given the success of CNN-based architecture and Transformer-based 

architecture in learning image representations from large-scale datasets, we applied two 

different types of pre-trained backbone as our encoders: (i) the ResNet50 CNN-based 

visual backbone, and (ii) the ViT Transformer-based image backbone. We used the 

OpenCLIP pre-trained image encoder and language encoders (Section 3.2) on either the 

LAION 400m or LAION 2b-en datasets (See Table 4.1) to evaluate the impact of scaling 

up the size of the model and dataset on the final performance of the VRD task. 
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Image Pre-processing. Given the ground truth bounding boxes from an input image, we 

enumerated all n possible union bounding boxes and extracted 𝐼𝑖∈(0,𝑛)embedding vectors 

using one of the image encoders. It is worth noting that most of the encoder parameters 

were frozen during the fine-tuning process due to the limited resource setting, and we 

only trained the last two encoder layers. We also applied this fine-tuning approach to the 

language encoder described in Section 4.3.2 below. 

4.3.2 Language Module 

Language Encoder. Similar to the Vision Transformer used in the Visual Encoder, the 

language encoder used in this work is a 12-layer 512-wide Transformer architecture 

(Vaswani et al., 2017) with 8 attention heads that can leverage the contextualized 

information from the entire input sentence. Here, the input sentence is a concatenation of 

the subject, predicate and object triples as described in the pre-processing step below. 

Language Pre-processing. For each triple in the set of k ground truth triples, we first 

enumerated p (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖∈(0,𝑝), 𝑜𝑏𝑗𝑒𝑐𝑡) triples where p is the number of 

predicates. We then concatenated each of these triples into ′𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡′  

string format, resulting in 𝑚 = 𝑘 ∗ 𝑝 sentences. We also added a 'null relation' string as a 

matched pair with union image regions for (subject, object) pairs that have no visual 

relationship. 

4.3.3 Contrastive Loss Module 

Similar to the VLTransE architecture in Section 4.2, we apply a dual Cross Entropy loss 

function for the vision and language consistency loss. Here, cosine similarity was used as 

a distance metric d for the loss function 

Negative Sampling. We performed negative sampling during the image and language 

enumeration and pre-processing step, where embeddings of each modality were paired 

against multiple negative embeddings of the other modality. This process resulted in a 

non-symmetric table as shown in Figure 4.3, where the row represents the n image 

embedding vectors and the column represents the m text embedding vectors. Using this 

table mask of positive and negative examples, we constructed the labels y for both image 

and text. 

Visual and Language Consistency Loss. We computed a cross entropy loss along the 

table's rows and a cross entropy loss along the table's columns. Thus, given the set 𝑺𝑣 
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containing all possible image embeddings I and the set 𝑺𝑙 containing all possible text 

embeddings T, the cross-entropy loss equation that aligns image to text is: 

𝐿𝑣−𝐶𝐸 =
1

|𝑺𝒗|
∑ ∑ −𝟏𝑦𝐼=𝑦𝑇

∙ log (
𝑒𝒅(𝐼,𝑇) 

∑ 𝑒𝒅(𝐼,𝑇)
𝑇 ∈ 𝑺𝒍

)

𝑇∈𝑺𝑙𝐼∈𝑺𝒗

 
 

Eq 4.16 

Similarly, the cross-entropy loss equation that aligns text to image is: 

𝐿𝑙−𝐶𝐸 =
1

|𝑺𝒍|
∑ ∑ −𝟏𝑦𝐼=𝑦𝑇

∙ log (
𝑒𝒅(𝐼,𝑇) 

∑ 𝑒𝒅(𝐼,𝑇)
𝐼 ∈ 𝑺𝒗

)

𝐼∈𝑺𝑣𝑇∈𝑺𝒍

 
 

Eq 4.17 

where  

−𝟏𝑦𝐼=𝑦𝑇
= {

1,   𝑖𝑓 (𝐼, 𝑇) 𝑎𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

 
 

The final visual and language consistency loss can be defined as: 

𝐿𝑣𝑙−𝐶𝐸 = 𝐿𝑣−𝐶𝐸 + 𝐿𝑙−𝐶𝐸 Eq 4.18 

Test Time Inference. At test time, given a set of ground truth (subject, object) class pairs 

and a set of objects' bounding box regions, the evaluation algorithm first enumerates all 

possible (subject, predicate, object) triples and union image regions. These relation triples 

are then pre-processed into strings as described in Section 3.2, yielding p textual 

embeddings for each pair, where p is the number of predicates. Similarly, the union 

bounding boxes and the image were pre-processed and encoded according to the method 

described in Section 3.1, yielding n possible embeddings. 

For each image embedding 𝐼𝑖∈(1,𝑛), the evaluation code measured the similarity scores 

between the given image embedding and all possible corresponding textual embeddings 

in 𝑇𝑗∈(1,𝑝). The evaluation algorithm then ranks 𝑛 ∗ 𝑝 scores and selects the top result to 

compare against the ground truth labels using the Recall metrics described in Han et al. 

(2021). 

4.5 Discussion 

 Visual Relationship Detection is the cornerstone of many modern machine 

learning tasks that require a comprehensive understanding of the visual scene. Current 

contrastive distance metric approaches in learning joint visual-language embeddings for 
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VRD often rely on neural networks learning the necessary transformations implicitly 

without any structural constraints. To this end, we propose VLTransE (Section 4.2), a 

contrastive visual-language embedding model that preserves the first-order structure of 

the graph using the translational constraint. 

We also proposed a simplified contrastive vision and language embedding model 

in Section 4.3 to reduce the memory requirements, and investigated whether large neural 

encoders pre-trained on a large amount of web image-text pairs can assist the detection 

of visual relations. Here, we fine-tuned deep neural encoders of different scales and 

proceed to report the results in Chapter 5 below. 
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Chapter 5  

 

Experimental Results and Analysis 

In this chapter, we give a detail overview of the experimental details used for the 

visual relationship detection task and analyse the evaluation results for the models 

presented in Chapter 4. 

5.1 Implementation 

Both architectures described in Chapter 4 are implemented using PyTorch on a 

single RTX 3090 GPU. We first perform the evaluation for the VLTransE experiments in 

Section 4.2 on the smaller VRD dataset, and evaluate the simplified contrastive models 

described in Section 4.3 on the larger Visual Genome 150 (VG150) dataset. It should be 

noted that the experimental results for the model described in Section 4.2 cannot be 

compared against experiments for the model described in Section 4.3 because they are 

trained and evaluated on two different datasets. A summary of the train and test splits for 

each of the above datasets are shown in Table 5.1 below. 

Dataset No. Objects No. Predicates Training Set Test Set 

VRD 100 70 4,000 1,000 

VG150 150 50 60,784 26,466 

Table 5.1: The train and test split for the smaller VRD dataset and larger VG dataset 

For the VLTransE architecture described in Section 4.2, we performed smaller 

scale experiments to see the impact of additional first-order constraint has on the model. 

Here, we used the common Recall@n metric for VRD to compare different models. The 

details of the implementations and design decisions of the model is described in Section 

5.1.1. For the simple vision and language contrastive learning model described in Section 

4.3, we performed experiments to examine the impact of large-scale pretraining have on 

the model. Here, we opted for a larger Visual Genome 150 (VG150) dataset and replicated 

the experiments using the Scene Graph Benchmark codebase. We also take advantage of 

the open-source implementation of CLIP (Wortsman et al., 2022), and implement our 

own set of evaluation metrics described in Section 3.2. The details of the implementations 

of both the CLIP model and the benchmark models are described in Section 5.1.2 below. 
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5.1.1 Implementation details of the VLTransE architecture 

One of the main problems with the visual relationships dataset is that they are 

highly unbalanced, resulting in a biased object detector (See Appendix A for details). 

Here, a poorly performed object detector penalizes downstream tasks, which has a 

significant implication on more complex scene graph generation tasks. We use a 

decoupled CNN architecture as described in Section 2.4.5, where the backbone network 

of the object detector is separate from that of the visual relationship detection task. Here, 

we performed a two-stage training strategy where we train the object detector in the first 

stage and the end-to-end visual relationship detection network in the second stage. We 

also assumed that the object detection task is solved and freeze the object detector 

backbone during the second stage of training. 

Visual Module. We used Detectron 2’s Faster R-CNN with FPN and the ResNet101 

backbone as the base implementation (Yuxin et al., 2019) of our object detector. In the 

second training stage, we duplicated the finetuned ResNet101 and applied the decoupled 

architecture to train our relationship network. For the three (subject, predicate, object) 

projection heads in the visual relation network, we use MLP and the Leaky ReLU 

activation function with a negative slope of 0.01 (B. Xu et al., 2015). To regularize the 

network, all MLP heads are set to have a dropout rate of 30 percent. 

 

Figure 5.1: A visualization of TransE vs TransR architectural differences, where 𝑓𝑐(. ) is a 

MLP with Leaky ReLU. 

Based on our initial experiments, we observed that the gradients are unstable when 

using only one projection function for the translational loss. With this observation, we 

also implemented a variant of TransE knowledge graph embedding technique called 

TransR (Y. Lin et al., 2015). Instead of optimizing for both the translational loss and the 

consistency loss on the same embedding space, we incorporate additional projection 
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functions 𝑓𝑐1(. ) to map the subject and object from the entity space to the predicate space 

before applying the translational loss function (see Figure 5.1). While the implementation 

of the projection function used an MLP instead of a projection matrix like that of the 

original paper, the core idea remains the same. Since every pair of visual objects have 

more than one predicate, the additional projection function allows for multi-relationship 

modeling as each visual relationship exists in its own space. During test time, we use the 

appropriate projected embeddings to evaluate the visual relationship detection task and 

observe a consistent performance of TransR over TransE approach. 

Language Module. Different from the visual module which used CNN-based 

architecture to extract the visual feature, the language module extracts the features by 

taking the average of the last four layers of BERT. The embeddings of the corresponding 

visual objects’ labels and relationship labels are extracted from this one embedding. In a 

hindsight, this is not the optimal approach to extracting the language features. To exploit 

BERT’s contextualized embedding, perhaps a more optimal approach is to directly 

compute both the (subject, predicate, object) embeddings and the corrupt triple 

embeddings. We also added the three subject, predicate, and object projection heads using 

MLP with Leaky ReLU activation like the visual module implementation to test both the 

TransE approach and the TransR approach. Due to the high memory demand under the 

contrastive training regime, we precomputed all the BERT embeddings for the subject, 

predicate, object, and stored them in the disk. 

Training Procedure. In the first training stage, we finetuned the object detector module 

until convergence, with a 65.2 average precision on the train set. In the second training 

stage, we attached the frozen backbone network to our relationship networks. After 

setting up both the visual and language modules, we train the relationship networks using 

both the translational loss function and the visual-language consistency loss function 

simultaneously for four epochs. Here, we use momentum stochastic gradient descent with 

an initial learning rate of 0.001 and a momentum of 0.9. We also enforce a learning 

schedule that decreases the learning rate by a factor of 10 in the second and fourth epochs. 

Contrastive Losses. We ran two experiments to test different approaches for constructing 

both the translational losses and the visual-language consistency losses: (i) the Hinge 

margin loss and (ii) the Cross Entropy loss (or InfoNCE). In all experiments, we used the 

cosine distance metric, which computes the angle between the two projected vectors on 

the unit sphere. In our initial experiments, we used this cosine distance with the Hinge 
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loss function, also known as the Cosine Embedding loss, for both the translational losses 

and the visual-language consistency losses. During the preliminary tests, we observed 

that the Hinge loss for visual-language consistency losses yielded worse results than that 

of the Cross Entropy loss. Thus, we mainly applied the Cross Entropy loss for the visual-

language consistency losses while keeping the Hinge loss for the translational losses. 

Sampling Strategy. One of the main bottlenecks of the contrastive learning approach is 

the GPU memory footprint and the negative sampling strategy. In the VLTransE work, 

we use a random negative sampling strategy for both the translational loss and the visual-

language consistency loss. This has a huge implication for the result of the learning model 

because random negatives can adversely affect the learned features. Moreover, due to the 

limited memory footprint, we must limit the number of negative examples that can be 

used to train the model at every iteration. These two reasons combined have contributed 

to the underperformance of the model.  

To tackle these contrastive learning related problems, we had to (1) reduce the 

number of negative examples needed at every training iteration and (2) improve the 

negative selection process. For these two main reasons, we propose a simpler approach 

to tackle the visual relationship representational learning task in Section 4.3 above. We 

will further describe the implementation details in Section 5.1.2 below. 

5.1.2 Implementation details for a Simple Contrastive Learning Architecture 

Different from VLTransE, the Simple Contrastive Learning architecture focuses 

on simplifying the architecture and loss functions to scale down the required GPU 

memory footprint during training. One of the design decisions is to remove the additional 

translational loss constraint which took up training memory for the negative examples but 

did not improve the smaller VRD benchmark metrics. Instead, we only applied the 

conventional InfoNCE contrastive loss functions that align the image and text modality. 

Given that the fine-tuned Faster-RCNN object detector on the smaller VRD test dataset 

has only an average precision of 13.7 (See Appendix A), another decision we made is to 

replace the Faster R-CNN object detection network and backbone with a vision 

Transformer-based network. Here, we used the open-sourced version of CLIP called 

OpenCLIP which was pretrained on a large image and text dataset scraped from the web 

(Radford et al., 2021). 
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Visual Module. By replacing the CNN-based architecture with the Transformer-based 

architecture, we traded off accuracy and efficiency for simplicity. Instead of training a 

fine-grained object detector to extract features from the object’s bounding box region, we 

first cropped the union bounding box regions of the (subject, object) entity and further 

subdivided the cropped regions into square patches. Here, each patch is treated as an input 

node to the Transformer network to generate the visual embedding vector (See Figure 

5.3). The downside to this approach is that there is no fine-grained spatial information 

signal to guide the network, and we assumed that the network could attend to the relevant 

objects implicitly. Whether this assumption holds requires further examinations of the 

learned model via linear probing or other explainable AI techniques that are outside of 

the scope of this work. 

 

Figure 5.2: A visualization of a Vision Transformer encoder (Adapted from Dosovitskiy et al., 

2020). 
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Language Module. Like VLTransE, we also used a Transformer-based encoder for our 

language module. However, instead of using BERT which is pretrained solely on textual 

corpora, we used the OpenCLIP models that were pretrained on image and text 

descriptions. Due to limited resource setting, we only unfroze the last two layers of the 

Transformer. 

Training Procedure. We unfroze the last two layers of both the image and text encoders 

and trained them for one epoch on the VG150 dataset. Here, we used an adaptive 

stochastic gradient descent, AdamW, with an initial learning rate of 0.05, 𝛽1 of 0.9, and 

𝛽2 of 0.98 (Loshchilov & Hutter, 2019). We also enforced a learning schedule that decays 

the learning rate every 15,000 steps, and an initial warm up period of 1000 steps (see 

Figure 5.3). The scheduler with an initial warm up period prevents the model from 

overfitting the initial training samples by assigning lower learning rate, allowing the 

model converges faster in the later iterations. 

 

Figure 5.3: Learning rate schedule that warmups for 1000 steps and decays every 15,000 steps. 

Negative Sampling. One of the limitations of VLTransE learning was that the negative 

sampling process for the visual and language consistency loss is random. This naïve 

implementation introduced a couple of issues, including inefficient learning, incorrect 

negative examples selection, or biases due to the long-tail distribution. To overcome these 

problems while solving the limited GPU memory problem, we introduced an Adaptive 

Negative Sampling Strategy that drew negative samples from the inverse distribution of 

the drawn samples. The intuition here is that the negative triples that has been drawn 

before for a given anchor triple should not be penalized as much in later iterations. To do 

this, we kept track of the drawn negative samples for a given positive sample in memory 
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and computed the reciprocal distribution of its multinomial distribution. This reciprocal 

distribution is initialized as a uniform distribution and slowly changed depending on the 

selected samples. To prevent the negative sampling process from selecting incorrect 

negative samples, we also keep track of other correct labels and adjust the distribution 

appropriately prior to the sampling process. Still, this negative sampling process can only 

be used for the selection of negative language embeddings. For the visual negative 

selection process, we naively selected all the other union regions of the given image that 

do not have the same predicate label. Such an approach can potentially cause issues in the 

final representation since there are overlapping relationship regions. 

5.1.3 Replication details for Scene Graph Benchmarks models 

To facilitate comparison with existing work, we also re-trained a few of the 

benchmark models on the same VG150 dataset under the same environment (GPU). Here, 

we used the scene graph benchmark provided by Han et al. (2021). All re-trained models 

used Faster R-CNN with ResNet50 backbone. Like above, we trained these models for 

one epoch. However, we followed the author’s default learning rate, optimization 

algorithm, and scheduler. We observed that there was a learnable bias logits vector added 

to the final prediction logits as a priori. Here, the bias logits vector is learned from an 

initialized co-occurrence matrix between the subject, object, and predicate. To ensure fair 

comparisons, we trained two versions for each model where the bias term is added and 

not added. The experimental results and comparisons between our models and the 

replicated models are shown in Section 5.2 below. 

5.2 Experimental Results and Analysis 

The following section presents the evaluation results and analysis for the 

described experiments. We present the VLTransE experiments on the VRD dataset in 

Section 5.2.1 and the Simple Contrastive experiments on the VG150 dataset in Section 

5.2.2. For VLTransE, we only present our results using the traditional Recall@n metric 

to compare with existing work as we did not replicate their results. For the second 

experiment, we present the results using the traditional Recall metric, the more recent 

mean Recall metric, and the proposed Informedness metric from Chapter 3. We then 

compare our results with other models in the Microsoft’s scene graph benchmark (Han et 

al., 2021). 

5.2.1 VLTransE Experimental Results 
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This section evaluates the performance of VLTransE on the VRD dataset, which 

contains 4000 images for training and 1000 images for testing. Here, the VRD dataset 

contains 100 object classes, 70 predicate classes, and 37,993 relationships. 

Evaluation. All evaluation results are computed using the Recall@n metric and 

evaluated on the predicate prediction task (Table 5.2 and 5.3) and tail entity prediction 

task (Table 5.4) similar to the metrics used in C. Lu et al., (2016) and R. Yu et al. (2017). 

Here, we select the top n predicates predicted by the model, and k is the maximum number 

of predicates we can select for each (subject, object) pair. For the Relationship Detection 

task, where the ground truth bounding box and labels are not given, the IoU threshold or 

ratio between the Faster R-CNN predicted subject and object boxes is set to at least 0.5 

with the ground truth boxes. Moreover, for each (subject, object) pair, we selected 𝑘 

different predicted predicates. The baseline model used a simple frequency counting 

approach, where we computed the estimated probability 𝑃(𝑝𝑟𝑒𝑑 | 𝑠𝑢𝑏𝑗, 𝑜𝑏𝑗). It should 

also be noted that we were using a random negative sampling technique, which might 

have resulted in suboptimal convergence. From Table 5.3, it can be observed that triplet 

margin loss functions yield worse performance than cross entropy loss functions. This 

finding is in line with analysis from Schroff et al. (2015), which indicates that triplet 

margin losses require semi-hard negatives to converge. 

  Predicate Prediction 

(k = 1) 

Relationship Detection 

(k = 70) 

Model Name External 

Knowledge 

R@50 R@100 R@50 R@100 

Baseline by counting frequency No 33.11 33.11 − − 

VRD (C. Lu et al., 2016) No 47.87 47.87 13.86 14.70 

VTransE (H. Zhang et al., 2017) No 44.76 44.76 14.07 15.20 

SA-Full (Peyre et al., 2017) Yes 52.60 52.60 15.80 19.50 

KL-distilation (R. Yu et al., 2017)   Yes 55.89 55.89 22.68 31.89 

Zoom-Net (Yin et al., 2018) Yes 50.69 50.69 21.37 27.30 

CAI + SCA-M (Yin et al., 2018) Yes 55.98 55.98 22.34 28.52 

RelDN (J. Zhang et al., 2019) Yes − − 28.15 33.91 

VLTransE (Ours) No 41.40 41.40 11.35 13.99 

Table 5.2: comparison with state-of-the-art results on VRD test set (− means unavailable or 

unknown). None of the other models are replicated.  

 Table 5.2 shows that the predicate prediction and relationship prediction results 

between different models. We can observe that models that incorporate additional 
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contextual information from external data such as KL-distillation, Zoom-Net, and CAI + 

SCA-M, and RelDN achieve the best results for the predicate prediction task. However, 

one observation is that the model with KL-distilation regularization technique can achieve 

similar predicate prediction performance with a recall@n of 55.89 and better relationship 

detection performance with a recall@50 of 22.68 with compared to the other two methods 

that use external knowledge. This indicates that the long-tail problem in the dataset pose 

a challenge to the predictive model, and the use of a regularization approach can benefit 

the model’s performance significantly. Besides the use of regularization techniques, we 

can also observe that the contrastively learned RelDN model external Wikipedia data can 

achieve the highest performance on the relationship detection task with a Recall@50 of 

28.15. While we also use contrastive learning objectives, our model performs worse than 

that of RelDN and other models. We hypothesize that the poor performance is caused by 

three main reasons: (1) the naïve negative sampling strategy, (2) the lack of language 

likelihood bias and external language information, and (3) the non-usage of regularization 

techniques. 

   all triples unseen triples only 

model method scoring function k=1 k=5 k=70 k=1 k=5 

𝐿𝑣𝑙 − 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  24.18 44.20 − 7.10 22.07 

𝐿𝑣𝑙 + 𝐿𝑇𝑟   TransE 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  15.21 36.71 − 3.93 16.60 

  𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 6.83 26.01 − 4.62 16.25 

  𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 18.64 43.75 − 6.33 22.58 

𝐿𝑣𝑙−𝐶𝐸    − 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  41.54 72.1 76.3 13.09 42.34 

𝐿𝑣𝑙−𝐶𝐸 + 𝐿𝑇𝑟   TransR 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  34.63 71.03 75.39 13.34 43.37 

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 29.58 59.57 65.16 10.18 35.76 

𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 41.40 70.22 74.57 12.83 41.92 

Table 5.3: Predicate prediction results on VRD test set for different loss functions using the 

Recall@n metrics.  

Table 5.3 compares the results of different experiments and methods that we 

performed. For the model, we compared the use of 𝑳𝒗𝒍 which applies the triplet margin 

loss for visual and language consistency and the use of 𝑳𝒗𝒍−𝑪𝑬 which applies the cross 

entropy contrastive loss for visual and language consistency. We also compared these 

models against those that trained with the auxiliary translational loss, 𝑳𝑻𝒓, which 

preserves the first-order hierarchical structure of the (subject, predicate, object) triple. 

For these models with the translational loss, we also compare the results for the TransE 
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embedding method and the TransR embedding method which separates the visual object 

space and the visual relationship space. 

The results in Table 5.3 also shows that by multiplying the visual-language 

consistency score (𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) and the translational score (𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙), the 

model’s detection results improve for both the 𝐿𝑣𝑙 and 𝐿𝑣𝑙−𝐶𝐸 losses for all triples in the 

test set. However, this could be a result from the joint training methodology. When 

compared the model trained on both losses against the model trained on solely the vision 

and language consistency loss, we can observe that the model with single objective 

performs better on the VRD task. This indicates that the additional translational loss is 

interfering with the optimization process for the VRD task. However, this negative effect 

can be mitigated significantly by applying TransR transformation as shown in Section 

5.1.1. In fact, when evaluated on unseen triples, the TransR model trained on dual 

objectives has better performance than the model trained on a single cross entropy 

objective. This demonstrates that introducing first-order structural preserving inductive 

biases can benefit the scene graph representational learning process for rare visual 

relationships. 

Another benefit of the additional translational structural loss is that the 

embeddings can be extended to tasks other than visual relationship detection. Like a 

knowledge graph, we evaluated model on the tail entity prediction task where the goal is 

to infer potential objects given only the subject and predicate ground truth label.  

   all triples unseen triples only 

loss method scoring function Recall 

top@1 

Recall 

top@5 

Recall 

top@1 

Recall 

top@5 

𝐿𝑣𝑙 + 𝐿𝑇𝑟   TransE 𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 10.72 33.80 3.51 14.37 

𝐿𝑣𝑙−𝐶𝐸 + 𝐿𝑇𝑟   TransR 𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 24.60 47.21 8.85 23.62 

Table 5.4: Tail entity prediction results on VRD test set. 

Table 5.4 describes the result for the tail entity prediction task for models trained 

with the auxiliary translational loss. The results indicate that the embeddings learned from 

the additional translational loss can be used to predict the object (tail entity) label given 

only the ground truth subject label and bounding boxes. Here, we observe that the TransE 

method where both the object and visual relationship embeddings exist on the same space 

performed worse than the TransR method which separates the object embedding and 

visual relationship embedding spaces. This shows that the additional neural network 
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projection function from the object space to the relationship space used in TransR 

improves the model’s overall expressivity, doubling its recall@n metric with compared 

with the TransE counterpart. Still, most of the predictive power of the model still depends 

on the bias of the given dataset. For example, the model’s predictions are biased towards 

the most common predicate like ‘on’ and fail to predict the relevant predicates such as 

`sit on` or `lay on`. To counteract such dataset bias, we performed another experiment on 

a larger dataset and used the CLIP-based simple contrastive learning architecture and 

present the results in Section 5.3.2 below. 

5.3.2 Simple Contrastive Learning Architecture Experimental Results 

This section presents an evaluation of the performance of different contrastive 

language and image visual relationship detection models fine-tuned on the Visual 

Genome dataset. Here, we first evaluate the model using the Recall@n metric on the 

entire test set to compare with other work. It should be noted here that Recall@n is not 

the same metric as the one described in Table 5.2 because we are only evaluating on the 

predicate classification task using a different benchmark dataset. Different from the 

Recall@n in Table 2, where n predictions can reach the combined total of subject, 

predicate, and object, the scope of potential predictions n for this section is confined to 

the 150 predicate labels. We then optimize the models’ thresholds using the one-vs-all 

Youden’s J Statistic (see Section 3.2) and evaluate the model using the Informedness on 

both the default and optimized thresholds. 

Model Layers Hidden size # Attention Heads #Params 

ViT-Base 12 768 12 86M 

ViT-Large 24 1024 16 307M 

ViT-Huge 32 1280 16 632M 

Table 5.5: Statistics of the ViT models (Dosovitskiy et al., 2020). 

Table 5.5 shows the scale of different Vision Transformer encoder. Here, the 

smallest model ViT-Base consists of 12 encoder layers with 86 million parameters. ViT-

Large has 24 encoder layers and 3.56 times the number of parameters as ViT-Base, and 

ViT-Huge has 32 encoder layers with twice as many parameters as ViT-Large. ViT-Base 

consists of only 12 attention heads at each encoder layer, whereas the ViT-Large and ViT-

Huge have 16 attention heads at each encoder layer.  
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Model Visual Encoder 
Finetuned 

MLP 

Finetuned 

Attention 

CLIP-ResNet50-laion400m ResNet50 53.2 − 

CLIP-ResNet101-laion400m ResNet101 47.7 − 

OpenCLIP-VIT-B/16-laion400m VIT-B/16 42.2 59.1 

OpenCLIP-VIT-B/32-laion400m VIT-B/32 57.0 59.8 

OpenCLIP-VIT-B/32-laion2b-en VIT-B/32 50.35 60.0 

OpenCLIP-VIT-L/14-laion400m VIT-L/14 55.6 61.8 

OpenCLIP-VIT-L/14-laion2b-en VIT-L/14 54.8 62.0 

OpenCLIP-VIT-H/14-laion2b-en ViT-H/14 51.4 63.1 

Table 5.6: Predicate Classification Results using the Recall@1 metrics for different contrastive 

models on the Visual Genome dataset. 

Table 5.6 describes the Recall@1 results for the different contrastive models. 

Here, results for two fine-tuning strategies are shown for these models: (i) Finetuned MLP 

and (ii) Finetuned Attention. In the (i) approach, MLPs were attached on top of the frozen 

visual and language encoders, whereas in the (ii) approach, the last two encoder blocks 

of the Transformer were unfrozen for both language and image. The results indicate that 

fine-tuning these Transformer-based models without unfreezing the attention layers did 

not lead to better performance as the model size was increased. On the contrary, fine-

tuning the Transformer models with unfrozen attention layers yield a consistent 

improvement in the model’s performance as the model size increases. Here, ViT-B/32 is 

smaller than ViT-L/14, and ViT-L/14 is smaller than ViT-H/14 (see Table 5.5). From 

Table 5.6, a slight improvement in performance was observed between models pretrained 

on the laion400m dataset and those pre-trained on the larger laion2b-en dataset. For 

Vision Transformer models, an input image can be split into either 14x14 patches, 16x16 

patches, or 32x32 patches. By comparing the model with ViT-B/16 visual encoder and 

the model with ViT-B/32 encoder trained on the laion400m dataset, we observe that larger 

patch sizes can slightly improve the model’s performance. Since a model with a larger 

patch size has a shorter sequence length and is less expensive to run, the ViT-B/32 model 

generalizes better than that the ViT-B/16 model. 

Table 5.7 describes the predicate classification results on the Recall@1 metric for 

our model and other existing benchmark models. Results that were marked with 1 have 

been computed by retraining the models using the PyTorch implementation from Han et 

al. (2021), and results that were marked with 2 are not replicated. From Table 5.7, we can 

observe that the CLIP-based model performs reasonably well when compared with other 
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state-of-the-art models on the Recall@1 metric despite having little inductive biases from 

structural or spatial configurations. Still, it can be flawed to analyse the model’s 

performance based solely on Recall@1 since the model can still be biased toward the 

commonly occurring classes. This can be observed in Figure 5.4 below, where most of 

the model’s predictions are concentrated on the most prevalent classes. 

Model Visual Encoder PredCls 

IMP1 (Xu et al., 2017) ResNet50 57.6 

MSDN1   ResNet50 59.6 

G-RCNN1 (Yang et al., 2018) ResNet50 59.94 

RelDN2 ResNet50 60.9 

Neural Motif1 ResNet50 63.0 

GPS-Net2 ResNet50 66.9 

ITS+RTS2 ResNet101 67.3 

OpenCLIP-ViT H/14-laion2b-en ViT-H/14 63.1 

Table 5.7: Comparing Predicate Prediction Results on Visual Genome dataset using the recall 

metrics. The replicated results are slightly different from those in Han et al., (2021). 
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Figure 5.4: Predicate Prediction Results on Visual Genome dataset by individual relationship 

class. The blue line represents the prevalence of the class labels in the dataset. 
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Figure 5.4 presents a visualization of how models of different sizes perform on 

individual predicate classes on the Recall@1 metric. Here, we observe that the contrastive 

model trained using ViT-Huge/14 performs better than the smaller models on 

relationships like ‘sitting on’ and ‘above’ without penalizing the performance of 

relationship ‘on’. However, the ViT-Huge/14 performs worse than the smaller models on 

predicate ‘riding’, leading us to believe that there are little differences between the model 

of different sizes. Still, one common observation across all models is that the model’s 

performance on a predicate class is highly dependent on the number of occurrences of 

that class indicated by the blue line. 

To better compare the different models above, we also computed the confusion 

matrices for our models’ predictions and the replicated models’ predictions and plotted 

the one-vs-all ROC curves to calculate the Informedness metric, which measures the 

probability that the model is making an informed decision over chance.  Here, we also 

evaluate the informed decision after optimizing the prediction thresholds for each 

predicate class. We also computed the mean Recall metric which takes the average of the 

one-vs-all Recalls for every predicate class. 

Model 
Biased 

Priori 

Mean 

Recall 

Informedness 

Default 

threshold 

Optimized 

threshold 

IMP1 No 0.168 0.591 0.639 

 Yes 0.122 0.641 0.707 

MSDN1 No 0.151 0.590 0.629 

 Yes 0.159 0.662 0.719 

G-RCNN1 No 0.138 0.526 0.577 

 Yes 0.166 0.658 0.708 

Neural Motif1 No 0.112 0.659 0.682 

 Yes − − − 

OpenCLIP-ViT H/14-laion2b-en No 0.118 0.640 0.704 

Table 5.8: Comparing Predicate Prediction Results on VG150 dataset with other work using the 

mean Recall and Informedness metric.  

Table 5.8 compares the performance of our model and other replicated models. 

The biased priori column indicates whether the model adds an additional learned co-

occurrence logit vector. Mean Recall is the average of the Recall of all predicate classes, 

and Informedness is the biased weighted sum of one-vs-all Youden’s J Statistics. While 

the IMP model without added biases achieved the highest mean recall of 0.168, the 
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MSDN model achieved the highest Informedness of 0.662 with the default threshold. We 

can also observe that most replicated models with added co-occurrence biases have 

improved performance when compared to those without on the mean recall metric. 

Interestingly, the iterative message passing (IMP) approach with added co-occurrence 

biases performed worse on mean recall but better on Informedness when compared 

against IMP without the added co-occurrence biases. 

We also observe that the simplified contrastive OpenCLIP model without any 

layout constraints or biases perform worse than other models on the mean Recall metric, 

indicating that the model’s prediction is not as diverse as the others. In contrast, the IMP 

model with customized structure layouts for message passing performed better than the 

OpenCLIP model. This demonstrates that larger models without inductive biases do not 

necessary perform better than models with engineered inductive biases on long-tailed 

relationships. However, the mean recall metric can be a pessimistic evaluation for all 

models since it assigns equal weighting to every predicate class which do not reflect long-

tail nature of the problem. Thus, we also compute the biased weighted Youden’s J 

Statistics or Informedness for the model’s prediction. While the OpenCLIP model does 

not perform as well as the other replicated models using the default threshold, it performs 

better than the optimized models without the added co-occurrence biases. Still, the models 

with the added biased priori perform better than OpenCLIP on their default threshold.  

 Here, the thresholds are optimized using one-vs-all Youden’s J Statistics which 

measures the model’s absolute performance over the chance line indicated by the dotted 

diagonal line (TPR = FPR) on the ROC curves. To better visualize the optimization 

process, we also plotted the ROC curves to show the trade-offs between the true positive 

rate (TPR) and false positive rate (FPR) at different thresholds. For example, we can 

observe the model’s performance for the predicate ‘on’ and ‘lying on’ in Figure 5.5 and 

Figure 5.6 below. An ideal model should have a curve that is as close to the optimal (0,1) 

point on as possible. For example, if we compare the ROC curves for the most common 

predicate ‘on’, we can see that our OpenCLIP model with ViT-H/14 has a similar shape 

with other scene graph benchmark models with co-occurrence bias (Figure 5.5a), 

indicating that these models have similar performances for the given predicate. On the 

contrary, the ROC curve for our OpenCLIP model with ViT-H/14 model rises faster and 

is closer to the optimal point than the ROC curves for other scene graph benchmark 

models without co-occurrence bias (Figure 5.5b), indicating that our model has better 

performance.  
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(a) 

 

(b) 

 

(c) 

Figure 5.5: Receiver operating characteristic curves for the predicate class ‘on’. 
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(a) 

 

(b) 

 

(c) 

Figure 5.6: Receiver operating characteristic curves for the predicate class ‘lying on’. 
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In Figure 5.5c, we can also observe the ROC curve for a larger model contrastive model 

is closer to the optimal point than the ROC curves for the smaller counterparts, indicating 

a consistent improvement in performance as we scale up the model for the predicate ‘on’. 

Different from the ROC curves for the predicate ‘on’ shown in Figure 5.5, the 

ROC curves for predicate ‘lying on’ in Figure 5.6 tells a different story. First, because 

there are fewer test samples for the predicate ‘lying on’ than those for the predicate ‘on’, 

there are fewer thresholds, making the curves more jagged. This time, the ROC curve for 

the OpenCLIP model with ViT-H/14 rises slower than the ROC curves for other models 

in both Figure 5.6a and Figure 5.6b, indicating that OpenCLIP model with ViT-H/14 is 

not the best model for predicting the predicate ‘lying on’. In Figure 5.6c, we can also 

observe that scaling up the size of the model does not necessary improve the performance 

of the predictor. In fact, when comparing the area under the curve for these ROC Curves 

in Figure 5.6a, Figure 5.6b, and Figure 5.6c, we can observe that the most potential model 

is the OpenCLIP model with ViT-B/32 pre-trained on the LAION_2B dataset. Because 

there are a total of 50 predicate classes, we can only show a few examples here. The top 

ROC curves for the top 16 predicate classes are shown in Appendix B. 

Ground Truth Predicted Ground Truth Predicted 

(man, in, shirt) (man, wearing, shirt) (person, in, snow) (person, on, snow) 

(wing, on, plane) (wing, of, plane) (man, sitting on, bench) (man, on, bench) 

(man, wears, shirt) (man, wearing, shirt) (ear, on, cat) (ear, of, cat) 

(man, has, leg) (man, wearing, leg) (car, parked on, street) (car, on, street) 

(window, of, building) (window, on, building) (man, riding, horse) (man, on, horse) 

(man, has, shirt) (man, wearing, shirt) (window, in, building) (window, on, building) 

(women, with, hair) (women, has, hair) (wheel, of, bike) (wheel, on, bike) 

(window, of, train) (window, on, train) (person, riding, horse) (person, on, horse) 

(man, with, hair) (man, has, hair) (window, near, building) (window, on, building) 

(man, riding, bike) (man, on, bike) (woman, in, shirt) (woman, wearing, shirt) 

(window, of, bus) (window, on, bus) (man, holding, surfboard) (man, on, surfboard) 

(leg, on, giraffe) (leg, of, giraffe) (man, has, shoe) (man, wearing, shoe) 

(head, on, person) (head, of, person) (person, sitting on, bench) (person, on, bench) 

(man, riding, skateboard) (man, on, skateboard) (leg, on, zebra) (leg, of, zebra) 

(tail, on, plane) (tail, of, plane) (man, in, jacket) (man, wearing, jacket) 

Table 5.9: Top 30 misclassified visual relationships made by the OpenCLIP model with ViT-

B/32 pretrained LAION_400M. 
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Table 5.9 presents the thirty most notable misclassifications made by the 

OpenCLIP model with ViT-B/32 visual encoder. From an analysis of the textual triples 

alone, it is evident that the predictions deemed incorrect by the evaluation code are not 

entirely merit. For instance, the top misclassified prediction, which involves the triplet 

(man, wearing, shirt), can also be interpreted as (man, in, shirt) or (man, has, shirt). 

Similarly, the predictions (window, on, train) or (window, on, bus) correctly express the 

intended meaning but are nevertheless evaluated as erroneous. These observations show 

the inherent limitations of the VG150 benchmark, where the constructed predicate classes 

and triples are ambiguous and inconsistent. Thus, the evaluation results may not convey 

an accurate and holistic picture of how the model would perform. To further demonstrate 

the ambiguous nature of the labelled triples, we also show six examples of misclassified 

visual relationships along with the ground truth image and label in Figure 5.7. 

   

GT: (vase, with, flower) 

Pred: (vase, has, flower) 

GT: (building, with, clock) 

Pred: (building, has, clock) 

GT: (girl, with, kite) 

Pred: (girl, holding, kite) 

   

GT: (dog, eating, food) 

Pred: (dog, looking at, food) 

GT: (bannana, growing on, tree) 

Pred: (bannana, on, tree) 

GT: (window, of, bus) 

Pred: (window, on, bus) 

Figure 5.7: A visualization of misclassified visual relationships made by the OpenCLIP model 

with ViT-B/32 pretrained LAION_400M. 

In the six images in Figure 5.7, we can see that either the ground truth relationships 

or the predicted relationships can be interpreted as the correct answers. In a way, the 

problem stems from the ambiguity and confounding nature of the fifty visual predicates 

in the dataset, making it difficult to truly evaluate and compare the performance of 

different models quantitatively. 
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5.3 Discussion 

 In this work, we proposed the use of contrastive learning as a tool for learning 

scene graph embeddings that can be used to tackle the VRD task. While the proposed 

VLTransE architecture performance is lower than existing benchmark models (see Table 

5.3), we speculate that part of the issue can be traced back to the naïve implementation of 

the random negative sampling strategy which only selects a few negative examples for 

each batch. Still, further experiments are needed to verify this speculation. From the 

VLTransE training and evaluation results, we observed two interesting findings related 

to the architectural and loss design space. First, optimizing two different objectives such 

as the vision-language consistency loss and the translational loss on the same embedding 

space led to suboptimal convergence and poor final performance on the Recall metric. To 

tackle this problem, there should be a clear separation of responsibility between the 

embedding space that preserves the translational property of the visual relationship and 

the embedding space that holds the relevant concepts for subjects and objects. This 

architectural change is also known as TransR knowledge graph embedding, and it gives 

the model the additional ability to perform knowledge graph completion tasks such as 

predicting the tail entity class (see Table 5.4). Second, both translational loss and vision-

language consistency loss are contrastive learning objectives, which requires a large 

negative batch size and a higher GPU memory usage. Despite utilizing the same set of 

negative examples, the model requires additional gradients for the translational loss in 

addition to the vision-language consistency loss. This requirement for negative examples 

introduces complexity to the training of both the visual and textual encoders as we have 

to maintain a sufficient number of negatives in each batch. Consequently, this leads to an 

increase in the number of training epochs and an overfitting model. 

 In our simple contrastive vision and language model (Section 4.3), we directly 

optimized for the VRD task and reduced the memory footprint during training by 

removing the translational loss and freezing most of the parameters. During this process, 

we also made use of the large scale pre-trained vision and language models called CLIP. 

While we observed that scaling up the model from ViT-B to ViT-L to ViT-H improved 

the overall model’s performance, scaling up the number pre-trained image and text pair 

showed little improvements (see Table 5.6). Moreover, despite the use of contrastive 

learning, we conclude that scaling up the model and dataset alone is inefficient and does 

not guarantee a high performance across different classes on the VG150 benchmark (see 

Table 5.8). For example, based on the mean Recall results in Table 5.8, we can observe 
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that the CLIP models performed worse than existing models on rarer classes. Still, with 

enough negative examples and GPU memory, we believe that contrastive learning can 

learn distributed representations from the scene graphs labels. However, the approach 

should take graph structural layout priors into account when designing the network to 

improve the overall learning efficiency for the targeted task. 

 From the ROC curves presented in Figure 5.5 and Figure 5.6 (more in Appendix 

B), we can see that the CLIP-based model with ViT-H encoder performed on par or even 

better than other replicated models on commonly occurred classes, while it performed 

worse than other models on rare classes like ‘on back of’, ‘painted on’, or ‘over’. This 

long tail problem can also be clearly observed in Figure 5.4, where the models performed 

well on classes with high prevalence and poorly on tail classes with low prevalence. Still, 

the model performance cannot be observed through the algorithmic lens alone. By 

examining the misclassified visual relationships qualitatively, we observed that data 

inconsistency and ambiguity penalize the quantitative performance of the model even 

when the predictions are not necessarily incorrect. This shows that further work on the 

dataset and not the model is needed to build a benchmark that accurately represents the 

structure of the visual world. 

 While both the VLTransE and CLIP-based experiments offer insight into their 

respective areas of VRD, the differences in architectural design, benchmark used, and 

experimental objective make a direct comparison difficult. Mainly, the VLTransE model 

was designed to assess the value of first-order translational structural prior for VRD, using 

a smaller benchmark specific to this aim. On the other hand, the CLIP-based model was 

created to investigate the feasibility of applying large-scale pretrained contrastive image 

and text models to the VRD task, necessitating a larger dataset and a different benchmark. 

Moreover, the differences in training techniques and scale of the models further hinder 

any direct comparison. Still, we can make an indirect and non-straightforward 

comparison through observations while training these two models.  

From the VLTransE experiment, we can speculate how techniques such as the 

addition of TransE structural constraints might have an impact on the CLIP-based model. 

While we speculate that the incorporation of TransE does not improve the overall 

performance of the CLIP-based model, the VLTransE experiment did highlight the 

importance of maintaining a clear separation of embedding spaces through techniques 

such as TransR, which can be beneficial to the CLIP-based model. Moreover, results from 
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the CLIP-based experiment suggest that the integration of additional spatial information, 

a technique similar to other benchmarked models like MSDN, can enhance the model’s 

overall performance on the VRD task. However, we acknowledge that these are 

speculations, and it is of considerable value for future research to facilitate a fair and 

direct comparison between the techniques used for these two experiments. 

To facilitate such a comparison, we could modify the original CLIP architecture 

to include multiple heads for the vision and language encoders, similar to the VLTransE 

experiment. The model could then be trained contrastively using multiple InfoNCE 

losses. One of the main challenges lies in the appropriate integration of the subject and 

object positions into the Vision Transformer architecture used by the CLIP model. Our 

CLIP-based experiment cropped the relevant union image region, but this method fails to 

incorporate additional contextual visual information or clearly separate the features for 

each of the subject, predicate, and object heads. One potential workaround involves 

crafting additional attention masks for subject, object, and their union regions. These 

crafted masks could then refocus the model’s attention at later layers to create subject, 

predicate, and object embeddings. This can be achieved either via additional learning 

objectives or by taking a weighted average between the crafted attention masks and the 

learned attention masks during training. Afterwards, we can introduce translational losses 

alongside the contrastive losses to effectively gauge the impact of TransE and TransR 

approaches on the CLIP-based model. 

In conclusion, both the VLTransE and CLIP-based experiments, despite their 

divergent benchmarks and experimental goals, enrich our understanding of the VRD task, 

highlighting both the strengths and limitations of current methodologies. Lessons learned, 

such as the need for embedding space delineation and the limitations of mere model and 

data scaling, illuminate potential pitfalls and set a trajectory for future research. Future 

models could potentially draw from both approaches, creating a unified model that can 

be used to effectively measure and compare the impact of the different proposed 

techniques in this work. Therefore, while direct comparison isn't feasible currently, these 

experiments pave the way for further refinement in the VRD space.  
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Chapter 6  

 

Conclusions and Future Work 

The aim of this work was to develop a visual relationship detection system using 

contrastive representational learning. To this end, we interpreted a scene graph as a 

knowledge graph and built a contrastively learned knowledge graph embedding model 

called VLTransE that preserves the first-order structure of the scene graph. Here, we 

examined the impact of the TransE knowledge graph embedding technique on the 

contrastively learned model and found that additional constraints on (subject, predicate, 

object) adversely affected the performance of the VRD task. Thus, we separated the entity 

embedding space and the predicate embedding space by adding additional projection 

functions from the entity space to the predicate space. Through this architectural change, 

the negative effect of the translational constraint was reduced, and we were able to extend 

the contrastively learned embeddings’ capabilities to the tail entity prediction task. 

However, both translational loss and vision-language consistency loss required heavy 

memory resource usage which is not readily available. 

Taking a divergent approach from VLTransE, we also proposed the new use case 

of a simplified visual and language contrastive learning model called CLIP for the VRD 

task. Here, we explored the impact of scale on VRD and found that scaling up the model 

improved the overall performance consistently on all metrics, including the Recall and 

the Informedness metrics. While the model achieved comparable results on the Visual 

Relationship Detection task to other benchmarked models, the lack of inductive biases 

such as spatial priors or structure-preserving techniques prevented the model from 

generalizing to rare predicate classes as seen from the mean Recall metric or ROC curves. 

This indicated that scaling up deep learning model blindly is not an efficient approach to 

tackle the Visual Relationship Detection problem which suffered mainly from the long-

tailed distribution. To prevent overfitting while overcoming the GPU memory constraint, 

we also proposed a new adaptive negative sampling approach by sampling the inverse 

distribution of the selected samples for a given relationship triple with careful 

consideration of other positive relationships in the given image. Still, the negative 

sampling strategy is only applied for language within the context of the local image, 

showing that there is room for further improvement on negative sampling techniques in 
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future work. This highlights an important trade-off when using contrastive learning 

approach in the self-supervised learning framework. While contrastive learning can 

benefit from having a large training batch size, every additional sample requires more 

memory storage for the models’ gradients, leading to an ever-increasing need for memory 

as batch size increases. 

In general, the results from the above two models indicate that an encoder-encoder 

contrastive learning can be applied to tackle the visual representational learning problem 

for VRD. However, because of the high memory demand, the optimal approach moving 

forward is not to use solely contrastive learning, but to pair it with other self-supervised 

learning losses and architectural changes. While we presented the use case of translational 

knowledge graph embedding techniques on the scene graph dataset for VRD, the method 

only preserves the first-order hierarchical structure of the scene graph. Thus, future study 

can examine knowledge graph embedding techniques that preserve higher level structure 

of the scene graph. Another challenge that needs to be addressed is the long-tail nature of 

the visual relationship triples. While the scene graph datasets provide us a structured 

knowledge representation of the visual scene, representational learning of sparse data 

structure using deep learning approaches are highly susceptible to biases. Thus, future 

work may also explore new loss engineering approaches, including the use of 

regularization losses, clustering losses, or contrastive learning losses during the 

representational learning process. Still, focusing on improving the neural architecture and 

loss function do not necessarily lead to a better model. 

We must also re-examine the validity of the common benchmarks used to build 

these visual relationship detection systems. In a way, the curation process for these 

benchmarks, especially the VG150 dataset, over-relied on heuristics and automation 

techniques, leading to inconsistency and ambiguity in the data labels. While this 

ambiguity can be thought as a feature of natural language, such a feature can make it 

difficult to truly evaluate and compare the model’s performance. Thus, future work 

should seek to improve the existing benchmarks or define a narrower visual relationship 

detection task for a more specific use case. Another limitation of this study is that the 

scene graph dataset required expensive manual curation processes. Thus, future work may 

explore newer automation approaches for generating and combining both structured and 

unstructured sub-symbolic representations, curating a dataset that incorporate not only 

the scene-level structures but also the relevant background knowledge from unstructured 

language. Finally, this work did not explore the explainability for these deep learning 
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models, leading to the blind assumption that the models learn the relevant features for the 

visual relationships. This is most likely not the case for our simple contrastive vision and 

language architecture since we did not introduce any spatial priors or task to the learning 

model. Future work can explore the explainability problem in more details for higher 

level visual relationships. 
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Appendices 

Appendix A: Biased Object Detector for VRD 

 

Figure 0.1: A screenshot output of the Average Precision of the Object detection 

module (on the test set). 

From Figure 7.1, we can observe that object detection module suffers from bias 

and the majority of classes have a low average precision. This effect is due to the sparse 

and unbalanced nature of the VRD dataset, where many object classes occur only a dozen 

of time whereas a small number of classes occur up to thousands of times in the training 

data. We further explore the impact of object’s size in term of area =  𝑝𝑖𝑥𝑒𝑙2 on the 

performance of the object detector in Figure 7.2 below. 
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Figure 0.2: A scatterplot of object’s area versus object detector performance in average precision.  

 On surface level observations of Figure 7.1, objects’ areas do not impact the object 

detector performance beyond a certain scale. However, we can also observe a cluster of 

small objects around the origin that have low performance on the Test Set. Since the 

detector does not have the same issue on the Training Set, we can conclude that the 

detector has overfit the training data for the small objects’ samples which are rarer. 
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Appendix B: ROC Curves for top sixteen predicate classes 

 

(a) 

 

(b) 

 

(c) 

Figure 7.3: Receiver operating characteristic curves for the predicate class ‘has’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.4: Receiver operating characteristic curves for the predicate class ‘wearing’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.5: Receiver operating characteristic curves for the predicate class ‘of’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.6: Receiver operating characteristic curves for the predicate class ‘in’. 

  



 

118 

 

(a) 

 

(b) 

 

(c) 

Figure 7.7: Receiver operating characteristic curves for the predicate class ‘near’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.8: Receiver operating characteristic curves for the predicate class ‘with’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.9: Receiver operating characteristic curves for the predicate class ‘behind’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.10: Receiver operating characteristic curves for the predicate class ‘holding’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.11: Receiver operating characteristic curves for the predicate class ‘wears. 
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(a) 

 

(b) 

 

(c) 

Figure 7.12: Receiver operating characteristic curves for the predicate class ‘above’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.13: Receiver operating characteristic curves for the predicate class ‘sitting on’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.14: Receiver operating characteristic curves for the predicate class ‘under’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.15: Receiver operating characteristic curves for the predicate class ‘in front of’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.16: Receiver operating characteristic curves for the predicate class ‘riding’. 
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(a) 

 

(b) 

 

(c) 

Figure 7.17: Receiver operating characteristic curves for the predicate class ‘standing on’. 
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Figure 7.18: ROC Curves for all predicate classes except for ‘on’ in VG150 for ViT and 

replicated models with biased priori. 
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Figure 7.19: ROC Curves for all predicate classes except for ‘on’ in VG150 for ViT and 

replicated models with no biased priori. 
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Figure 7.20: ROC Curves for all predicate classes except for ‘on’ in VG150 for 

OpenCLIP-based models. 
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