Microencapsulation of Omega-3 fatty acids for enhancing their stability

A thesis submitted for the award of the degree of Master of Biotechnology at Flinders University of South Australia

SHWETA SAHNI

Department of Medical Biotechnology

College of Medicine and Public Health Flinders University of South Australia

ABSTRACT

Microencapsulation of omega-3 oil and biomass enriched in omega-3 fatty acid was investigated via ionic gelation and complex coacervation to enhance their stability. It was observed that gelation process, had a significant effect on the encapsulation efficiency and on bead properties. The alginate-oil emulsion (alginate 2% v/v with an oil loading 10%, v/v) resulted in an encapsulation efficiency of 95% and found to be stable. Under similar condition, when biomass was encapsulated the efficiency was 94%. Similarly, other wall materials such as maltodextrins and gelatin were used to encapsulate the omega-3 oil. The beads were spherical that resulted in improved encapsulation efficiency 96%. In complex coacervation, the optimum ratio between gelatin A, sodium alginate and pH to form a coacervate complex was found to be 1.4:0.8 and 3.6, respectively. Storage stability was significantly high when maltodextrin and gelatin wall material was used as compared to alginate beads (p<0.05). During 5-day oxidative stability analysis, beads and coacervates exhibited significantly high (p<0.05) stability.