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Summary 

Attentional and interpretation biases have long been considered a contributing factor to 

anxiety and depression. As such, research has turned to investigating ways to modify these biases to 

alleviate the distressing symptoms of anxiety and depression. However, the cognitive processes that 

are responsible for attentional and interpretation biases, and their successful modification, are not 

well understood. Furthermore, there are questions surrounding the reliability of the attentional bias 

score. This score is the primary measure of attentional bias; thus, the issues of reliability are a 

concern for the integrity of the findings in the attentional bias modification literature.  

Through a series of studies, this thesis explores the value of applying a mathematical model, 

the diffusion decision model (Ratcliff, 1978), to data returned from the dot probe and yes/no tasks, 

two measures of biased attention toward, and interpretation of, emotional information, respectively. 

In doing so, the aim is to advance theoretical understanding of the mechanisms that underlie 

cognitive biases in anxiety and depression. The diffusion decision model belongs to a class of 

models called evidence accumulation models. Evidence accumulation models are a more 

sophisticated form of analysis that can isolate and identify different implicit decisional processes. 

By doing so, better understanding of these processes can potentially lead to the development of 

more targeted interventions, and ultimately improve treatment outcomes for individuals living with 

anxiety and depression.  

Additionally, this thesis explores the potential of the diffusion decision model to be a more 

sensitive and reliable way to measure attentional bias. If the suitability of diffusion decision model 

analysis as an alternative, more reliable, way to analyse data from the dot probe task is established, 

the findings presented in this thesis may encourage other researchers without a mathematical 

psychology background to explore the benefits of these kinds of models in their own work. 

This thesis presents the successful application of diffusion decision model analysis to data 

from the dot probe task for the first time. In doing so, the capacity for the diffusion model to 

identify implicit decisional processes that differ between anxiety and depression that are not 
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captured by RTs alone, has been demonstrated. While the test-retest reliability of the diffusion 

model parameters was mixed, guidance has been provided for future research to gain clarity on the 

reliability of the diffusion model parameters, and their suitability as an alternative measure of 

attentional bias. Finally, the research in this thesis has demonstrated the value of adopting a 

mathematical psychology analytical approach to the field of applied clinical psychology. 
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Chapter 1: Introduction 

Anxiety and depression have the highest prevalence rate of all mental health issues, affecting 

approximately 10% of the world’s population (Chisholm et al., 2016). According the Diagnostic 

and Statistical Manual of mental disorders (5th Edn; American Psychiatric Association, 2013), 

generalised anxiety disorder is characterised by persistent, ongoing, excessive worry, that is 

difficult to control. Symptoms can include restlessness, fatigue, difficulty concentrating, irritability, 

and sleep disturbance, which cause significant distress in daily functioning. Correspondingly, major 

depressive disorder is characterised by uncharacteristic levels of sadness or hopelessness. 

Symptoms can include diminished interest in previously pleasurable activities, appetite change, 

weight gain or loss, psychomotor agitation or retardation, fatigue, feelings of worthlessness, 

indecision, poor concentration, recurrent thoughts of death, which cause significant distress in daily 

functioning.  

According to Beck’s Cognitive Theory of Emotional Disorders (1976), individuals are 

drawn to mood-congruent emotion; this is known as the Content Specificity Hypothesis. 

Specifically, individuals with anxiety are prone to attend to stimuli they perceive as threatening, and 

interpret benign information as more threatening, whereas individuals with depression are drawn to 

dysphoric stimuli, and interpret benign or ambiguous information with a dysphoric overtone. These 

biases in attention for mood-congruent stimuli, termed attentional and interpretation biases, have 

been hypothesised to have an aetiological and maintaining role in anxiety and depression. As such, 

research into the processes by which these biases operate, and how to effectively reduce their 

impact, has been expanding. One such area of research is attentional bias modification.  

Attentional bias modification developed from attempts to induce an attentional bias to try to 

understand the causal role it has on mood (MacLeod, Mathews, & Tata, 1986). Over time, the 

research focus has shifted to how this bias induction could be used to effectively reduce, or 

neutralise, negative attentional biases. Attentional bias modification (ABM; MacLeod, Rutherford, 

Campbell, Ebsworthy, & Holker, 2002) is now being promoted as a potential therapeutic technique 
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that has the ability to train away negative bias, using a simple, implicit computer task called the dot 

probe task.  

The dot probe task is a commonly used attentional bias assessment tool. It is a computerised 

task that instructs participants to focus on a fixation cross in the centre of a computer screen. The 

fixation interval is followed by the brief presentation of two stimuli, typically images or words, 

side-by-side or vertically aligned. One stimulus is emotional and the other is neutral in valence. 

After the stimuli disappear, a dot appears in the location previously occupied by one of the stimuli, 

and the participant is required to execute a speeded response indicating in which of the two 

positions the probe appeared. The participant is instructed to ignore the stimuli and focus only on 

the location of the probe. Trials on which the dot replaces the emotional stimulus are called 

congruent trials, and trials on which the dot replaces the neutral stimulus are called incongruent 

trials. There are equal numbers of congruent and incongruent trials for all emotional categories 

across the task. If the participant’s attention has been captured by a specific emotional stimulus, it is 

assumed to be reflected by faster RTs when the dot appears in the location previously occupied by 

that stimulus. An estimate of attentional bias for emotional stimuli is calculated by subtracting the 

mean RT for congruent trials from the mean RT for incongruent trials. Positive scores result from 

faster RTs to congruent trials and are taken to indicate an attentional bias toward that emotion.  

In the training paradigm that has been developed from this task, the probe appears most 

often at the location of the stimulus type that is the focus of training (e.g., neutral), and only 

infrequently at the location of the stimulus type that is the target of modification (e.g., negative). It 

is hypothesised that training effects occur on an implicit level, which has numerous positive 

implications for a clinical treatment tool. For example, one of the common symptoms of anxiety is 

hypervigilance. Hypervigilance reduces cognitive capacity for higher-order thinking. Similarly, a 

common symptom of depression is poor concentration, another higher-order cognitive process. 

Limitations on an individual’s higher-order cognitive processes reduce their capacity to engage with 

forms of therapy that rely on these processes, e.g., cognitive behavioural therapy (Renaud, Russell, 
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& Myhr, 2014). This can hinder therapeutic outcomes, which can exacerbate symptoms further due 

to feelings of failure or incompetence. The availability of a treatment tool that could reduce bias and 

mitigate the symptoms that interfere with other forms of therapy would be incredibly valuable.  

The promise of a treatment tool to target implicit attentional biases is clearly encouraging. 

However, the cognitive processes that are responsible for the occurrence of an attentional bias, or 

for successful bias modification, are still not fully understood. The attentional bias score can 

identify differences between groups, and whether a modification paradigm has shifted bias values 

because of training, but the processes that underlie the group differences or the change over time 

cannot be identified. Additionally, one of the major concerns regarding the dot probe task is that the 

reliability of the attentional bias score is poor. This has implications for the strength of the evidence 

for the efficacy of ABM, because confidence in research findings can only be as robust as the 

psychometric properties of the task used. Recommendations have been made to address the 

reliability of the attentional bias score and these include: (a) finding a new task, (b) being open to 

the possibility that the theory that attentional bias as a stable construct is flawed, and (c) applying a 

more sophisticated analysis technique that may have better sensitivity to reliably detect change 

(Price et al., 2015). It is this last suggestion that is addressed in this thesis.  

Evidence accumulation models are a more sophisticated form of analysis that can isolate and 

identify different decisional processes, but they can be difficult to fit to data. As such, much of the 

work analysing cognitive processes in clinical disorders using evidence accumulation models has 

come from researchers with a strong mathematical psychology background (e.g. Heathcote et al., 

2015; White, Ratcliff, Vasey, & McKoon, 2010; White, Skokin, Carlos, & Weaver, 2016).  

However, with several methods of fitting the models to data now available to researchers (Fast-dm, 

Voss & Voss, 2007; EZ diffusion, Wagenmakers, van der Maas, & Grasman, 2007; DMAT, 

Vandekerckhove & Tuerlinckx, 2008), the models are becoming easier to use and apply for 

researchers without a mathematical psychology background. The program Fast-dm-30 (Voss & 

Voss, 2015) was used to fit the data in the studies that form this thesis. 
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Aims 

The aims of this thesis are threefold: (1) To successfully fit the diffusion model to data from 

the dot probe task; (2) To advance understanding of the cognitive processes responsible for 

attentional and interpretation biases in anxiety and depression; and (3) To assess the reliability of 

the diffusion model parameters, and their suitability as a reliable alternative to the traditional dot 

probe measure.  

Contribution of the Current Thesis  

The primary contribution of this thesis lies in the consolidation of two areas of psychology, 

applied cognitive psychology and mathematical psychology, for the advancement of clinical 

psychological outcomes. Using an analytical method that is often shied away from in applied 

psychology due to its complexity, this thesis explores the value of the diffusion model to advance 

theoretical understanding of the mechanisms that underlie cognitive biases in anxiety and 

depression. By doing so, these processes can lead to the development of more targeted 

interventions, and ultimately improve treatment outcomes for individuals living with these 

disorders.  

Due to the poor psychometric properties of the attentional bias score, an alternative, more 

reliable measure is needed. If the suitability of fast-dm analysis as an alternative, more reliable, way 

to analyse data from the dot probe task is established, the findings presented in this thesis may 

encourage other researchers without a mathematical psychology background to explore the benefits 

of these kinds of models in their own work. 

Thesis Structure  

The thesis is arranged over six chapters. Chapter 1 provides the context for the subsequent 

research chapters. It provides a broad overview of the value of attentional bias modification, as well 

as the methodological obstacles of the primary measure of attentional bias, the dot probe task. It 

also outlines the aims and the important contribution of this thesis.  Chapter 2 presents an overview 
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of the current issues surrounding research into attentional bias and its modification, in anxiety and 

depression. Namely, how the poor reliability of the attentional bias score, derived from the dot 

probe task, impacts the integrity of research in the field, and the inability of the bias score to offer 

insight into the cognitive processes that it is hypothesised to represent. From this, an argument is 

presented as to why a novel form of analysis in this area, the diffusion decision model, may be able 

to address these issues. The next three chapters present separate studies prepared for publication. 

Chapter 3 presents the first research study. The diffusion decision model, using the fast-dm 30 

program, is applied to data from the dot probe task in a non-clinical population to assess its 

suitability to account for the data from the dot probe task. This is the first time that data from the 

dot probe task have been analysed using the diffusion model. The results were promising and 

encouraged further application of the model. Chapter 4 (Study 2) broadens the line of enquiry to 

interpretation bias. The diffusion model is applied to data from a yes/no emotional interpretation 

bias task to identify the cognitive processes that are responsible for the interpretation of ambiguous 

stimuli in a non-clinical population. The model was applied successfully and offered further insight 

into the processes underlying cognitive biases. Chapter 5 presents a bias modification study. The 

aim was to examine the effects of bias modification on the fast-dm parameters returned for 

attentional and interpretation bias, in individuals with a history of anxiety and depression. Changes 

in parameters from pre- to post-training would identify which cognitive processes underlie these 

cognitive biases. Unfortunately, neither a disorder-congruent attentional nor interpretation bias was 

identified from the data obtained at the pre-training testing phase, so this was not achieved. What 

was achieved was an examination of the cognitive processes that differ across the attentional and 

interpretation bias tasks, between clinical and non-clinical cohorts. This study also evaluates the 

test-retest reliability of the diffusion model parameters from the data from a control cohort taken at 

pre- at post-training. Finally, Chapter 6 draws together the pertinent findings from the three studies 

to respond to the aims of this thesis. The theoretical and clinical implications of the findings are 
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explored, as are the challenges that arise when trying to bring a more complex model of analysis 

into the broader research domain. From this, directions for future research are proposed.  
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Chapter 2: Literature Review 
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Abstract 

Anxiety and depression have the highest prevalence rate of all mental health issues, for which an 

attentional bias for mood-congruent stimuli has been implicated in the onset and maintenance of 

both disorders. Attentional bias modification (ABM) has been promoted as a technique designed to 

redress this negative bias, using a simple, implicit computer task called the dot probe task. The 

implications of this task as a treatment tool are valuable in that engagement with other, more 

explicit therapies can be one of the biggest challenges a therapist faces with these clients. However, 

the primary task used to measure the success of ABM, the dot probe task, has recently been awash 

with questions surrounding its reliability and the implications this has on the strength of evidence 

for the efficacy of ABM. We review the literature and identify inconsistent findings and 

methodological issues concerning this task, as well as questions surrounding the theoretical nature 

of the mechanisms of change in successful ABM. To address these issues, we recommend the use of 

evidence accumulation models to analyse the data returned from the dot probe task. Evidence 

accumulation models can isolate and identify different implicit decisional processes. We explain 

how these models may clarify the inconsistencies in findings of between-group differences, as well 

as provide information about what occurs at the level of the individual. Furthermore, we discuss the 

clinical implications of this more comprehensive method of analysis, and its potential to identify 

individuals for whom ABM may be a particularly effective intervention.  

 

Key words: Anxiety, depression, attentional bias, attentional bias modification (ABM), dot probe 

task, evidence accumulator models  
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Measurement and analysis of attentional bias in clinical research on anxiety and depression: 

A way forward 

Anxiety and depression affect nearly 10% of the world’s population at any one time, costing the 

global economy an estimated $US1 trillion dollars each year (Chisholm et al., 2016). There is an 

estimated four-fold dollar return on treatment, such that for every dollar spent, an average of $4 is 

gained in health benefits and employment outcomes (Chisholm et al., 2016). Therefore, investing in 

effective treatment for anxiety and depression is beneficial not only for the individual, but also from 

a socio-economic perspective. NICE (2011) guidelines recommend cognitive behavioural therapy 

(CBT) as the gold standard treatment for anxiety and depressive disorders. However, even with 

successful rounds of treatment, both disorders have high rates of relapse (Burcusa & Iacono, 2007; 

Scholten et al., 2013). As a result, researchers continuously seek to improve treatment efficacy and 

longevity, by exploring different treatment types and delivery modes, or targeting different 

underlying mechanisms. CBT specifically targets explicit cognitive processes to alleviate symptoms 

of anxiety and depression; however, it has long been theorized that implicit cognitive processes are 

involved in the onset and maintenance of both anxiety and depression (e.g., Beck, Rush, Shaw, & 

Emery, 1979; Beck, Emery, & Greenberg, 1985). For this reason, research has begun to focus on 

therapeutic techniques that target implicit cognitive processes in conjunction with CBT, with the 

aim of improving treatment outcomes. One such technique is attentional bias modification (ABM). 

The clinical advantage of ABM is that it is hypothesised to work at the implicit cognitive level, and 

thus, the brevity and computerised, automatic nature of the training, means the task is not 

cognitively onerous, unlike other forms of therapy, and there is the potential for clients to complete 

the training daily in their own surroundings, with the further benefit of increased client engagement.  

Attentional bias is the tendency to allocate attention preferentially toward certain kinds of 

information in the environment at the expense of other information (MacLeod, Mathews, & Tata, 

1986). The dot probe is the task most commonly used to measure attentional bias, and is the task 

that was used to establish a link between attentional bias and clinical disorders such as anxiety and 
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depression (Bradley, Mogg, & Lee, 1997; MacLeod, Rutherford, Campbell, Ebsworthy, & Holker, 

2002; Mobini, Reynolds, & Mackintosh, 2012; Mogg & Bradley, 2005). The evidence of an 

association between attentional bias and symptoms of anxiety and depression led to research on 

ABM, which attempts to reduce clinical symptomology by reducing an individual’s automatic 

preferential attention to negative, disorder-relevant stimuli.  

In recent years, there have been numerous reports of ABM treatment success (e.g. MacLeod 

& Clarke, 2015). The cognitive processes that underlie changes in attentional bias scores are 

hypothesised to stem from a shift in implicit bias; however, current methods of analysis cannot 

reliably confirm this. More worryingly, a recent meta-analysis by Cristea, Kok, and Cuijpers (2015) 

posits that claims of successful ABM have been made too soon, and are based on substandard 

research methodology. For example, the reliability of the dot probe task has been questioned 

(Schmukle, 2005; Staugaard, 2009), which, ultimately casts doubt over the validity of the measure 

and the results inferred from it. In addition, there are concerns that false positive findings and a file 

drawer effect may have resulted in a biased representation of the efficacy of ABM, such that the 

effect seems stronger and more robust than it may be.  

This paper reviews the literature and identifies inconsistent findings and methodological 

issues concerning to the use of the dot probe task to measure attentional bias. We also consider the 

theoretical nature of the mechanisms of change in successful ABM, and, following on from a 

suggestion by Price and colleagues (2015), recommend the use of a more informative means of 

analysing the data obtained from the dot probe task. Specifically, we advocate for the use of 

evidence accumulation models to analyse behavioural data. In doing so, we outline how evidence 

accumulation models may reveal the cognitive mechanisms of attentional bias and successful bias 

modification, and we describe the clinical implications of this knowledge. Further, we explain how 

evidence accumulation models have the potential to clarify the inconsistencies in findings of 

between-group differences, and we offer insight into what occurs at the level of the individual. 

Individual difference data are of particular interest because this is where the reliability of the dot 
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probe task is most strongly questioned. These are also the data that will inform clinicians’ use of 

ABM as a treatment for their individual clients.  

Attentional Bias 

Theories of selective attention refer to the cognitive mechanisms that select and prioritize 

information for processing, enabling us to notice, recognise, or act on some elements of the 

environment to the exclusion of others (Broadbent, 1958; Treisman, 1960; Deutsch and Deutsch, 

1963). When functioning well, selective attention guides our limited perceptual and cognitive 

resources toward task-relevant information to ensure adaptive behaviour. Sometimes, however, this 

mechanism may become overly attuned to specific stimuli, exacerbating associated emotional 

responses (Beck, 1976; Mathews & MacLeod, 2005). Accordingly, when the stimulus that is 

excessively attuned to is negative in nature, the individual is said to have an attentional bias for 

negative information (Fox, Russo, & Georgiou, 2005; MacLeod, Campbell, Rutherford, & Wilson, 

2004; Mathews & MacLeod, 2005). This bias is an automatic process that is neither within 

conscious awareness nor under conscious control (Beard, 2011).  

An attentional bias for negative information has been implicated in the aetiology and 

maintenance of both anxiety and depression (Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, 

& Van Ijzendoorn, 2007; Beck, 1976; Mathews & Mackintosh, 1998; Mathews & MacLeod, 2005; 

Mogg & Bradley, 2005; Pergamin-Hight, Naim, Bakermans-Kranenburg, Van Ijzendoorn, & Bar-

Haim, 2015), but presents differently for each disorder (Browning, Holmes, & Harmer, 2010). 

Anxiety has been associated with a bias toward threatening stimuli whereas depression has been 

associated with a bias toward dysphoric stimuli (Mogg & Bradley, 2005). Additionally, the stage of 

attentional processing at which the bias appears to operate differs between the two disorders (Mogg 

& Bradley, 2005). Specifically, individuals with a variety of anxiety disorders have a stronger 

orientation toward stimuli that are perceived as threatening than do individuals who do not have 

anxiety. That is, when presented with stimuli thought to be threatening in nature, individuals with 

anxiety will have their attention captured more quickly by those stimuli than their non-anxious 
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counterparts (Koster, Verschuere, Crombez, & Van Damme, 2005; Pergamin-Hight et al., 2015; 

Shechner et al., 2012). Individuals with depression do not always attend to dysphoric stimuli at a 

faster rate than their non-depressed counterparts, but they do have greater difficulty disengaging 

their attention from the dysphoric stimulus once it has captured their attention (Bradley et al., 1997; 

Donaldson, Lam, & Mathews, 2007; Gotlib, Krasnoperova, Yue, & Joormann, 2004; Leyman, De 

Raedt, Schacht, & Koster, 2007).  

The attentional biases for negative information found in anxiety and depression are evident 

in different windows of time following stimulus presentation: anxiety is associated with an 

attentional bias for negative information when the probe is presented 10 to 500ms after stimulus 

onset, whereas for depression the bias is most commonly identified when the probe appears 

between 500 and 1,000ms after stimulus onset (Gotlib et al., 2004). This stimulus onset asynchrony 

(SOA) between the attention capturing stimulus and the probe accounts for when (deployment 

versus disengagement) the bias is found, and has been explained by dual process models of 

attention. These models propose two systems of attention: implicit, automatic, “bottom-up” 

processing, and explicit, controlled, “top down” processing, which are temporally separable 

(Mathews & MacLeod, 2005; & see Carver, Johnson, & Joormann, 2008, for a review of dual 

process models in emotional disorders). The heightened initial engagement of attention in anxiety, 

and the increased difficulties in disengaging attention in depression, suggest that anxiety is more 

strongly associated with abnormalities in the early, automatic processing of information, whereas 

depression is more strongly associated with abnormalities in the later, controlled, processing stages 

(De Raedt & Koster, 2010; Leyman et al., 2007). 

Measurement of Attentional Bias 

The dot probe task is the most commonly used method for measuring attentional bias. The 

task was adapted by MacLeod and colleagues (1986) from experimental cognitive psychology 

paradigms such as the Posner task (Posner, 1980), which enables the orientation of visuospatial 

attention to be assessed from manual response times (RTs) to visual probes. The premise is that 
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individuals respond faster to a probe stimulus (e.g., a small dot) that is presented in an attended 

rather than unattended region of a display.  

Since its initial development, there have been numerous modifications to the dot probe task 

(Koster, Crombez, Verschuere, & De Houwer, 2004; Mogg, Bradley, De Bono, & Painter, 1997), 

and as a result the task exists in several variations. Most commonly, a trial begins with a fixation 

cross in the centre of the computer screen. Two stimuli are then presented simultaneously, 

equidistant from the centre of the screen. The stimuli are either words or pictures associated with 

the construct of interest (e.g., in the case of anxiety, threatening information, and in the case of 

depression, dysphoric information) or words or pictures that are considered benign (neutral stimuli). 

Stimulus pairs generally consist of one of each of a negative and neutral item. The stimuli remain 

onscreen briefly (duration across studies has ranged from 100 – 1500ms; the most common 

presentation is 500ms), and when they disappear, a probe (e.g., dot, arrow, letter) appears in the 

location previously occupied by one of the stimuli. Generally, the probe is equally likely to replace 

either the negative or neutral stimulus. The participant is then required to make a forced-choice 

response, indicating either the position or the identity of the probe.  

The bias score is calculated by subtracting the mean RT to probes replacing the emotional 

target (i.e., congruent trial) from the mean response time to probes replacing the neutral target (i.e., 

incongruent trial). Positive bias scores reflect shorter RTs for probes that replace emotional stimuli, 

and negative bias scores reflect shorter RT for probes that replace neutral stimuli. Positive scores 

imply that attention was drawn toward the emotional stimulus, whereas negative scores imply an 

orienting away from the emotional stimulus, or attentional avoidance. When an individual has a 

positive score, they are said to have an attentional bias to the stimuli of interest, in this case, 

information that is negative in valence. 

Variations to the dot probe protocol can include differences in stimulus type (e.g., lexical 

versus visual), stimulus valence (e.g., positive/negative), emotional intensity of the stimulus, and 

SOA (under the assumption that a shorter SOA [100-500ms] targets earlier, automatic stages of 
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processing, identifying attentional capture, and that a longer SOA [>1000ms] targets later, more 

strategic stages of processing, identifying difficulty disengaging attention). Variations in participant 

characteristics can include differences in disorder type (e.g., anxiety versus depression) and sample 

characteristics (e.g., clinical versus subclinical versus nonclinical). Characteristics of the dot probe 

protocol and the participant sample are important moderating variables that make between-study 

comparisons difficult (Cisler, Bacon, & Williams, 2009). As a result, the reliability of the evidence 

obtained by the dot probe task continues to be debated, as does the temporal stage of attentional bias 

activation, and the best way to measure and analyse the behavioural data.  

Attentional Bias Modification 

To understand how attentional bias contributes to the aetiology and maintenance of anxiety 

and depression, researchers began to examine the effect of inducing an attentional bias for negative 

information and modifying existing negative attentional biases on an individual’s emotional 

wellbeing. Bias modification research was initially used to demonstrate the causal nature of the 

relationship between attentional bias and emotional stimuli (MacLeod et al., 2002). By training 

participants to attend toward a negative emotional stimulus, thus inducing an attentional bias for 

negative information, the effects of their responses to emotional stressors increased and the causal 

nature attentional bias on emotional reactivity was inferred (MacLeod et al., 2002). Focus then 

turned to the ability of ABM to alleviate clinical symptomology. By training participants to attend 

to an alternative, neutral stimulus, the aim is to inhibit attentional capture by the negative stimulus 

toward which their attention is biased. This ABM training aims to reduce the associated emotional 

response that the stimulus triggers. As time and research have evolved, the potential implication of 

bias malleability for clinical populations has grown into what is now known as ABM therapy.  

The most commonly used task to modify attentional bias is a variant of the dot probe task 

that was devised by MacLeod and colleagues (2002). It is hypothesized to directly alter the implicit 

cognitive processes that result in an attentional bias to disorder-congruent stimuli. In the assessment 

version of the dot probe task, probes are presented equally often following each stimulus type 
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(positive/neutral/negative). In the training variant, the probe appears most often at the location of 

the stimulus type that is the focus of training (e.g., neutral), and only infrequently at the location of 

the stimulus type that is the target of modification (e.g., negative). Results of bias modification, and 

its subsequent effect on clinical symptoms, have been mixed (Clarke, Notebaert, & MacLeod, 2014; 

Cristea et al., 2015; Kuckertz and Amir, 2015; MacLeod and Clarke, 2015). This is perhaps not 

surprising given the debate surrounding the ability of the dot probe task to capture bias, and the 

hypothesized function of attentional bias within clinical disorders. While there is more evidence for 

attentional bias in anxiety than in depression (Mogg & Bradley, 2005), the underlying issues are the 

same: the mechanisms of how the bias operates and its relationship to disorder symptomology are 

still not fully understood. 

Progression of Attentional Bias Research over the Last Decade  

Attentional bias for threat, as measured by the dot probe paradigm, has been reported in 

individuals with anxiety since the 1980s (e.g., MacLeod et al., 1986), and attentional bias for 

dysphoric information in those with depression since the 1990s (e.g., Mogg, Bradley, & Williams, 

1995). Early this century, efforts to modify attentional bias and explore its causal effect on 

symptoms of anxiety and depression began (e.g., MacLeod et al., 2002). As this early research into 

the efficacy of ABM returned favourable findings (e.g., Schmidt, Richey, Buckner, & Timpano, 

2009; See, MacLeod, & Bridle, 2009; Watkins, Baeyens, & Read, 2009) and a special section in a 

journal (Goodman, 2009) fostered excitement, research into ABM exploded. This research boom 

produced enough data for narrative reviews, and eventually, for quantitative meta-analytic reviews. 

Unfortunately, these reviews have discovered that the efficacy of ABM may be less robust than 

initial excitement indicated.  

Overview of the evidence of attentional bias in anxiety and depression. Over the last 

decade, numerous narrative review papers and two quantitative meta-analyses have explored the 

literature on attentional bias in anxiety (Bantin, Stevens, Gerlach, & Hermann, 2016; Bar-Haim et 

al., 2007; Cisler et al., 2009; Cisler & Koster, 2010; Mathews & MacLeod, 2005; Mogg & Bradley, 
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2005; Pergamin-Hight et al., 2015; Shechner et al., 2012; Van Bockstaele et al., 2014) and 

depression (Everaert, Koster, & Derakshan, 2012; Gotlib & Joormann, 2010; Leppänen, 2006; 

Mathews & MacLeod, 2005; Mogg & Bradley, 2005; Peckham, McHugh, & Otto, 2010). The 

consensus was that attentional biases exist for both anxiety and depression, but that the mechanisms 

by which they operate differ.  

A meta-analysis (Bar-Haim et al., 2007) of 172 studies (N = 2,263 anxious, N = 1,768 non-

anxious) concluded that attentional bias was reliably demonstrated in anxious populations with a 

moderate effect size of d = 0.45, but was not demonstrated in non-anxious populations. It also 

reported that the publication bias was not a concern as the number of studies included in the meta-

analysis was 20 times that of Rosenthal's (1991) fail safe. A more recent meta-analysis (Peckham et 

al., 2010) of 29 studies (N = 2,351, 1,459 of whom completed the dot probe task, and 892 of whom 

completed the emotional Stroop task) examined differences in attentional bias between 

dysphoric/depressed and non-depressed/non-dysphoric individuals. It found a moderate effect of 

attentional bias (d = 0.52), as measured by the dot probe task, to negative information in depressed 

relative to non-depressed individuals.  

Different attentional bias mechanisms in anxiety and depression. Reviews by Mathews 

and MacLeod (2005) and Mogg and Bradley (2005) highlighted differences in the way attentional 

bias seemed to manifest in anxiety and depression. Mathews and MacLeod concluded that 

attentional bias operates rapidly and automatically in anxiety, emerging at SOAs of less than 

500ms, but is slower and more controlled in depression, emerging at SOAs of greater than 500ms. 

Mathews and MacLeod posit the reason for this is that within anxiety, individuals maintain an 

attentional set for potential threat and engage with it quickly. However, in depression the sensitivity 

to dysphoric cues is inhibited, and thus a slower attentional processing strategically directed at 

mood congruent stimuli is engaged (i.e., a rumanitive response; Mathews & MacLeod, 2005).  

Mogg and Bradley (2005) came to similar conclusions, noting that there is evidence of a 

non-conscious attentional bias toward negative stimuli in anxiety, but that the evidence of a similar 
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rapid, implicit attentional capture in depression is less convincing. They reported that when an 

attentional bias for negative information is found in individuals with depression, it is found at the 

later stages of processing that allow individuals to elaborate on self-relevant negative stimuli. As a 

result, Mogg and Bradley hypothesised that the mechanisms underlying attentional bias in anxiety 

and depression may differ, with depression related to a difficulty disengaging from self-relevant 

dysphoric information, as opposed to an attentional capture by threatening information, as is the 

case in anxiety.  

However, as research into the role of attentional bias in anxiety and depression progressed, 

findings became more mixed. In a review of the literature, Cisler and colleagues (2009) noted that 

although anxious populations showed a bias toward threat early in stimulus processing, there was 

evidence that they also seemed to have difficulty disengaging from the threat and would avoid the 

threatening stimulus as processing continued (e.g., Koster et al. 2006; Salemink et al. 2007). As a 

result, Cisler and colleagues recommended that current models of information processing and 

attentional bias be adjusted to incorporate a temporal component. While facilitated attention was 

considered to be automatic, and difficulty disengaging was considered to be strategic (as per 

Garner, Mogg, & Bradley, 2006; Koster et al., 2004; Koster et al., 2005; Koster, Crombez, 

Verschuere, Van Damme, & Wiersema, 2006; Mogg et al., 1997; Mogg, Bradley, Miles, & Dixon, 

2004), Cisler and colleagues proposed that attentional avoidance of threatening stimuli could be 

accounted for by Mogg, Mathews, & Weinman’s (1987) vigilance-avoidance hypothesis. 

According to this hypothesis, attention initially orients to threat, then shifts away to prompt escape 

from the threatening stimulus or to reduce anxious or fearful affect. Thus, they concluded that 

differences in findings regarding attentional bias within the literature may reflect a measurement 

issue related to the experimental stimulus presentation duration, rather than evidence that the bias 

does not exist.  

Cisler and Koster (2010) tried to make sense of this time-course complexity of attentional 

bias by relating the hypothesised cognitive and affective processes to neural mechanisms. 
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Specifically, they linked facilitated attention with threat detection, the amygdala, and automatic 

(bottom-up) processing. In addition, they linked attentional avoidance with emotion regulation 

goals, the prefrontal cortex, and strategic (top-down) processing. They further linked difficulty 

disengaging from threat to a lack of attentional control, and thus theorised that it sits somewhere 

between automatic and strategic processing, in that the activation of the threat detection system 

impeded the efficacy of the prefrontal cortex to down regulate. Although this hypothesised link to 

neural structures could account for the results seen in anxiety, it does not explain the rather different 

pattern of results for depression.  

Gotlib and Joormann (2010) reported that the facilitated attention toward disorder congruent 

information found in individuals with anxiety appeared to be lacking in individuals with depression. 

However, once negative information had become the focus of their attention, depressed individuals 

had increased difficulty disengaging from it, and seemed to engage with it in a ruminative fashion. 

By contrast, Peckham and colleagues (2010) examined attentional bias differences between 

dysphoric/depressed and non-depressed/non-dysphoric individuals, and did not find evidence of a 

time course effect on bias, concluding that both early and late stage processing contribute to 

attentional bias in depression. De Raedt and Koster (2010) proposed a neurobiological framework 

to account for the mood-congruent attentional bias found at the later stages of information 

processing that characterizes depression. They suggested that difficulties in frontal lobe activation 

led to the amygdala being activated for longer periods of time, resulting in difficulty disengaging 

from negative information. Thus, while there have been significant developments in our hypotheses 

of the cognitive mechanisms that underlie attentional bias in anxiety and depression, there is still 

much that we do not know and our understanding remains at the theoretical level.  

Progression of ABM Research over the Last Decade  

Research into ABM has gained enough traction over the last decade that the first reviews of 

the efficacy of the technique have started to emerge. In the first such review, Bar-Haim (2010) 

concluded that ABM is successful at directly reducing attentional bias for threatening information, 
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and subsequently, associated symptoms of anxiety. He did, however, caution that the stability and 

test-retest reliability of the dot probe task had to be carefully established before treatment efficacy 

could be assured. That same year, the first quantitative meta-analysis into the effect of attentional 

bias modification on anxiety (Hakamata et al., 2010) reported that ABM training reduced anxiety 

significantly more than control training, with a medium effect size, d = .61. Hakamata and 

colleagues (2010) concluded that ABM was a promising treatment for anxiety, and they 

recommended that additional randomised controlled trials be carried out to evaluate the treatment 

efficacy in clinical populations. However, questions as to the proposed mechanisms responsible for 

the changes in bias scores and/or associated clinical symptomology began to emerge.  

Mechanisms of change. When creating the modified version of the dot probe paradigm 

used to retrain attentional bias, MacLeod and colleagues (2002) initially hypothesized that 

successful bias modification stemmed from the implicit training of bottom-up attentional processes. 

However, in a review of the evidence of bias modification in anxiety, Beard (2011) noted that the 

effects of ABM do not always show on measures of anxiety or mood alone, but require a stressor to 

be evident. She argued that this indicated that ABM alters cognitive vulnerability to stress rather 

than directly affecting anxiety symptomology or mood. Beard suggested that while cognitive biases 

play a causal role in anxiety vulnerability, individual differences in the ability to control attention 

(top-down processing) are the key moderator of the relationship between attentional bias and 

anxiety in that anxious individuals with good attentional control do not exhibit an attentional bias to 

negative information. As such, she argued that ABM may improve attentional control overall (top-

down), rather than targeting the stimulus-driven (bottom-up) components of attentional bias toward 

negative information. While this conclusion is contrary to the mechanisms of change initially 

hypothesised by MacLeod and colleagues (2002), it too presupposes a dual-process model of biased 

processing. Regardless of the mechanism of change underlying successful bias modification, ABM 

interventions that alter the function of either one or both systems (top-down/ bottom-up) will 
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influence attention to emotional stimuli and, in turn, current symptomatology of anxiety and 

depression.  

Efficacy of ABM on anxiety and depression. Reviews continued to praise ABM as a 

potentially effective treatment for anxiety and depression (e.g., Baert, Koster, & De Raedt, 2011; 

Hertel & Mathews, 2011; MacLeod, 2012; MacLeod & Mathews, 2012), with a meta-analysis 

(Beard, Sawyer, & Hofmann, 2012) concluding that ABM has a moderate and robust effect on 

attentional bias toward threat stimuli. However, other reviews were published that raised some 

important questions regarding the mechanisms of action responsible for the successful results seen 

thus far, highlighting limitations of the research. For example, a meta-analysis investigating the 

efficacy of ABM for anxiety and depression noted that the small effect sizes observed (ranging 

from g =.13 to .29, k=151) suggested that the efficacy of ABM may be more modest than had 

initially been believed (Hallion & Ruscio, 2011). This is potentially because most studies 

investigating treatment efficacy to date were pilot studies comprising small samples, resulting in 

unreliable effect sizes (Beard, 2011). Importantly, Beard also noted that only one published study 

(Amir et al., 2009) followed the Consolidated Standards of Reporting trials (CONSORT) 

guidelines. In addition, most studies used the dot probe task to both train the change in attentional 

bias and assess that change. As a result, a generalized change in bias could not be distinguished 

from a narrower, task-specific response.  

Emmelkamp (2012) went so far as to call attentional bias modification 'the Emperor's new 

suit', arguing that regular cognitive therapy and exposure methods achieve much better clinical 

results for anxious individuals than attentional bias modification procedures. In line with this, 

Mogoaşe, David, and Koster (2014) conducted a meta-analysis (k = 43, N = 2,268) on the 

therapeutic benefit of ABM for anxiety, and ultimately concluded that the effect is, at best, small 

(g = 0.160), and that more efficient, psychometrically sound procedures are needed for assessing 

and modifying attentional bias than the dot probe task. 

                                                
1 g = Hedge’s g. Effect sizes are comparable to Cohen’s d.  k = number of studies included in the meta-analysis 
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Cristea and colleagues (2015) conducted an updated meta-analysis examining the efficacy of 

cognitive bias modification (CBM) in general, so ABM and interpretation bias modification (IBM), 

across all samples (clinical and non-clinical) that have been included in CBM studies, as well as on 

clinical samples separately. Their conclusion of the state of the literature was unfavourable. They 

noted numerous weaknesses within the literature that limit the conclusions that could be made about 

the efficacy of CBM. Specifically, they reiterated Beard’s (2011) concern that research in the field 

was overly reliant on small studies that did not follow the CONSORT guidelines. The results of 

their meta-analysis showed small, if any, effects of attentional bias modification (k=10, g =.02, 

n.s.), and they concluded that any CBM effects that were significant were because of outliers and/or 

publication bias and that adjustment for publication bias rendered any significant results 

unconvincing. Cristea and colleagues also reported evidence of demand effects, such that effect 

sizes were larger for cohorts of participants who received payment, and for those who received the 

intervention in a laboratory with an experimenter present. Furthermore, they found that the placebo 

conditions that used a sham training also showed reductions in bias scores after “training”. Cristea 

and colleagues argued that this reduction in bias in sham conditions is evidence of practice effects 

of the training tasks, and thus, the tasks may be capturing improvement in task performance rather 

than a genuine reduction in bias.  

Moreover, Cristea and colleagues (2015) found evidence of a time-lag effect, where, over 

time, effect sizes in studies become smaller. This is a common phenomenon in intervention research 

where the first studies within a field generally show a large effect to get published in the first place, 

and this effect becomes moderated as more studies are conducted and unsuccessful replications are 

published. Cristea and colleagues concluded that the praise for CBM as a potentially effective 

treatment for clinical disorders had been premature, and that “highly laudatory narrative reviews, 

comments and editorials, published before the efficiency of the new interventions had been 

established in well-powered, methodologically appropriate RCTs” (p.14) had contributed to the 

time lag effect seen in the current state of the literature.  
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MacLeod and Clarke (2015; see also Clarke et al., 2014) and to a lesser extent, Kuckertz and 

Amir (2015) have argued that the discrepancies in findings regarding the efficacy of ABM are the 

result of a failure to change the bias during treatment delivery, rather than a failure of ABM itself. 

They reported that when training has successfully shifted attention away from the previously 

capturing stimulus, it has also reliably reduced anxiety vulnerability and symptomatology. 

However, when no change in symptoms is observed, they argue that the bias was not successfully 

changed, and thus it was evidence of a fault in the delivery of ABM, not of the inefficacy of ABM 

itself. MacLeod and Clarke suggested that there may be individual differences in the malleability of 

attentional bias, which may contribute to the mixed success in training, and argue that research 

needs to focus on identifying the cognitive mechanisms that are responsible for individual 

differences in the malleability to attentional change.  

Issues Surrounding the use of the Dot Probe Task to Modify Attentional Bias 

Whether it be applied to anxiety or depression (or plausibly, any other disorder), the issues 

surrounding the efficacy of attentional bias modification are the same. We do not understand the 

mechanism of bias change, nor are we sure that the primary task used to assess this change reliably 

measures changes in attentional bias. The lack of research on the psychometric properties of the dot 

probe task was recognized as early as 2005 (Schmukle, 2005), and subsequent research has further 

called these properties into question (Cisler et al., 2009). The dot probe task is the most popular tool 

used to assess and modify attentional bias, as well as to measure the success of attentional bias 

modification. However, without adequate psychometric rigour, it stands that the data derived from 

this task can only be presented with a level of confidence on par with the properties of the task.  

In treatment studies, reliability of a measure is a particularly important factor. The reliability 

of the measure used to assess outcomes is required to be much higher than for research identifying 

statistical association or differences between groups (Rodebaugh et al., 2016). This is a critical 

issue, because the internal consistency (split half and Cronbach’s alpha) and test-retest reliability of 

the dot probe task are inadequate (see Schmukle, 2005). If a measure is both internally inconsistent 
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and unstable over time, it is unreliable. This raises a very important question: If the dot probe task is 

not a valid measure of attentional bias, what if anything does it measure and what if anything does 

attentional bias modification train? Schmukle (2005) reported the existence of a curvilinear 

relationship between anxiety and bias, whereby low and moderately anxious subjects do not show 

an attentional bias but highly anxious individuals do (e.g., Broadbent & Broadbent, 1988). 

However, they also noted the lack of replication of attentional bias for high trait anxious subjects, 

calling into question even this relationship (e.g., Mogg et al., 1997; Mogg, Millar, & Bradley, 

2000). If the dot probe task is unable to reliably detect group differences, the validity of the task 

cannot be assured.  

Furthermore, Price and colleagues (2015) noted that if test–retest reliability for a specific 

index of bias has not been established, statistical tests for changes in this bias may be invalid. 

Therefore, as the dot probe task has low test-retest reliability, the ability of the task to effectively 

capture changes in bias resulting from ABM may also be problematic. Price and colleagues further 

argued that reliability may vary as a function of sample characteristics, task design, and analysis 

decisions made by the experimenter. For example, stimuli positioned vertically produce stronger 

attentional bias than stimuli positioned horizontally, and stimulus-type (pictures of emotional faces 

versus written words versus abstract/other pictorial stimuli) moderated the strength of the bias 

(Beard et al., 2012). Differences in task protocol may be responsible for the disparate findings; 

however, until there is a standardised protocol for administering the dot probe task as an assessment 

or as a training tool, evaluation of treatment efficacy remains difficult. 

Rodebaugh et al. (2016), in discussing attentional bias toward threat, noted that most studies 

that use the dot probe task do not report psychometric properties of the attentional bias measure, 

and those that do typically report poor reliability. Two primary methodological worries arise from 

poor reliability of the attentional bias measure. These concern the sensitivity and specificity of 

participant selection based on individual differences, and the validity of mediation analyses linking 

attentional bias to clinical disorders via a third variable (Rodebaugh et al., 2016).  
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Sensitivity and specificity of a measure are important when deciding who is (and is not) 

suitable to be targeted by a treatment, and even more so when assessing the efficacy of that 

treatment. Rodebaugh et al. (2016) report that internal consistency of at least .90 is needed to be 

confident that decisions about individuals — for example, decisions about whether a certain 

individual is a good candidate for ABM, or whether treatment has been successful in shifting bias—

are accurate. Thus, confidence in the apparent success of modification training is limited by the 

reliability of the measure. To date, measures of internal consistency of the attentional bias score 

from the dot-probe task fall well below the recommended level of at least .90, hovering around .45 

(see Rodebaugh et al., 2016, for a review). 

Additionally, without adequate reliability of the bias measure, confidence in concluding that 

a third variable (i.e., the modification training) was the mechanism for change is compromised. 

Specifically, if the reliability of the attentional bias measure cannot be established, alternative 

explanations for a shift in bias scores, such as random error or regression to the mean, could be 

responsible for changes in scores across time (Rodebaugh et al., 2016). Hence, adequate reliability 

is important to draw firm conclusions as to the efficacy of ABM.  

MacLeod and Clarke (2015) argued that the dot probe task can reliably detect group 

differences (e.g., clinical versus non-clinical; Bar-Haim et al., 2007) as well as the success of ABM 

training conditions (e.g., active versus placebo training; Hakamata et al., 2010); however, they 

acknowledge that the dot probe task is not a satisfactory measure of inter-individual differences. 

Price and colleagues (2015) also acknowledged the instances where the dot probe task could 

differentiate between groups but noted the published exceptions where no group differences were 

found (e.g., Mohlman, Price, & Vietri, 2013; Price et al., 2013; Waters, Lipp, & Spence, 2004). 

They further highlighted the risk of file drawer effect, which means that there are likely numerous 

studies that did not find differences and thus were not published, emphasizing the necessity for pre-

registration of studies.  
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It may be that the dot probe task is not sensitive enough to detect attentional bias. For 

example, Mogg and Bradley (2005) found an attentional bias using an eye-tracking task, but not 

using the dot probe task. And even when it does detect the attentional bias, the dot probe task can 

only reveal that something has happened, not what has happened or when (Cisler et al., 2009). As a 

result, other ways of analysing the data from the dot probe task have been recommended to improve 

the task’s test-retest reliability. In studies where stimuli are vertically aligned, Kuckertz and Amir 

(2015) recommended using only data from the bottom dot-location to reduce noise, as the bottom 

location appears to capture bias more strongly than the top location. Alternatively, Price and 

colleagues (2015) recommended using only horizontal stimuli allocation to reduce the noise from 

the vertical alignment positional bias. They also recommended combining multiple assessment 

points into one measure, as results from numerous dot probe assessments are more stable than 

results from a single assessment. They further suggested using a bias variability index rather than a 

mean bias score, as the variability index has better test-retest reliability. As a final point, they 

discussed the option of Winsorizing data (rescaling outliers) or adopting more comprehensive 

analysis techniques to enable reliable inferences about individuals to be made (Price et al., 2015). In 

response to this last suggestion, we would not advocate for Winsorizing data because by cleaning 

data to improve reliability we risk discarding valuable information. That is, cognitive effects of 

interest might well manifest in the tail end of the RT distribution (Heathcote, Popiel, & Mewhort, 

1991). As an alternative, analysis by fitting an evidence accumulation model to data from the dot 

probe task offers the possibility of discerning specific decisional processes of interest.  

Way Forward: Evidence Accumulation Models 

Evidence accumulation models such as the diffusion decision model (DDM; Ratcliff & 

McKoon, 2008) and the linear ballistic accumulator model (LBA; Brown & Heathcote, 2008) 

isolate and quantify components of cognition that underlie speeded decision-making, decomposing 

behavioural data - accuracy, mean response times, and response time distributions - into meaningful 

components of cognitive processing. The components, or parameters, that evidence accumulation 
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models return represent well-defined and theoretically meaningful psychological constructs. The 

models posit that speeded decision-making can be conceptualised as a process in which evidence 

accrues continuously from a starting point to a decision threshold, at which point a response is 

triggered. Some models, e.g. the DDM, assume that evidence accrues along a single bipolar scale, 

with thresholds corresponding to two different response options lying at opposite ends of the scale 

response. Other models, e.g. the LBA model, assume a separate accumulator corresponding to each 

potential response. Focussing on the diffusion decision model (see Figure 1), the parameters of 

central interest are boundary separation, starting point, drift rate, and non-decision time (see Voss, 

Rothermund & Voss, 2004; Voss & Voss, 2007; or Ratcliff & McKoon, 2008 for a detailed 

explanation of how behavioural data is transformed into these components).  

There were two ways data from the dot probe task can be mapped to the diffusion model. In 

most circumstances, the model is mapped to the response keys. The response keys for the dot-probe 

task are generally left/right, or up/down, depending on the configuration of the task. Therefore, the 

upper and lower response thresholds of the diffusion model represent each of the available response 

choices (i.e., left/right, up/down). Mapping the data in this manner means that the parameters are 

based on evidence for the probe appearing on the left or right, or for the arrow pointing up and 

down. To examine the impact of the stimuli on decision making, parameters would need to be 

compared based on trial type (congruent/incongruent) and emotion (happy/sad/angry). Differences 

based on trial type and emotion would then offer insight into how the emotive stimuli impacted the 

implicit decision-making parameters separated by the diffusion model.  

An alternative way to map data from the dot probe task to the diffusion model is to map the 

response thresholds by congruence (Voss, Voss, & Lerche, 2015). For example, congruent 

responses are represented by the upper threshold, and incongruent responses are represented by the 

lower threshold. Mapping the data this way enables direct feedback of the impact of trial type 

(congruent/incongruent), such that the parameters directly reflect bias toward or away from 

congruent stimulus/dot pairings. This is based on the premise that if attentional bias is consistent,  
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Figure 1. Diffusion decision model response parameters, boundary separation (a), relative starting 

point (zr), drift rate (v), non-decision time (t0) for a decision where the response alternatives are 

congruent and incongruent, as per the dot-probe task. (Diagram adapted from Voss & Voss, 2007; 

Reproduced with permission.) 

 

when negative information is displayed, attention should be captured by the negative information 

(Rodebaugh et al., 2016). 

Mapping the parameters to the task in this format means that boundary separation (a) 

represents how much evidence is required of the existence of the probe before responding, and start 

point (zr) represents an expectation for the probe to appear more on congruent or incongruent trials. 

Drift rate (v) represents the rate at which evidence accumulates for congruent or incongruent 

responses. If evidence accumulates more quickly for congruent responses, this will result in a 

positive drift rate, whereas if evidence accumulates more quickly for incongruent responses, this 

results in a negative drift rate. As non-decisional times (t0) represent the speed of processes outside 

the decisional components of responding, they are theoretically not affected by how the parameters 

are mapped. 
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More specifically, boundary separation (a) reflects the decision-maker’s response caution. 

This is reflected in the separation between a lower limit decision boundary (0) and an upper 

decision boundary (a), each of which corresponds to one of the two available response choices. 

Because the value of the lower boundary is fixed at 0, a larger value of a indicates a larger boundary 

separation. A larger boundary separation, holding all other parameters equal, requires more 

evidence to trigger one of the available response options, and thus results in slower, but more 

accurate, decision-making, i.e., increased caution.  

Relative starting point (zr) is the point between the decision boundaries from which 

evidence accumulation starts, measured as a proportion of boundary separation. This parameter 

reflects the decisional bias an individual has for one response option over another. The closer the 

starting point is to either boundary, the shorter the processing time will be for the corresponding 

response, and thus a decisional bias for that response.  

Drift rate (v) is the mean rate of evidence accumulation for the different response 

possibilities. Faster accumulation of evidence, with all other parameters being equal, implies a 

faster accrual of evidence to the decision threshold, and thus a shorter response time. The rate of 

evidence accumulation is largely dependent on the physical quality, familiarity, or semantic clarity 

of the stimulus, and on the skill (Dutilth, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009), 

physiological state (Ratcliff & Dongen, 2009), and attentional focus (Ratcliff & Strayer, 2014) of 

the participant. Therefore, regarding the dot probe task, if the dot is behind a stimulus that has 

captured attention, an individual may respond more quickly as the evidence accumulation for that 

location would be faster. 

Finally, there is non-decision time (t0), which consists of pre-decisional encoding processes 

(e.g., transmission of neural signals from the retina to the visual cortex) and post-decisional 

response processes (e.g., execution of a motor response). The non-decision component can identify 

between-subjects’ differences in processes outside of the evidence accumulation. For example, 

individuals with depression are believed to have motor slowing, so their non-decision time may be 



 
 

29 

longer than that of individuals without depression. Together, these four components (boundary 

separation, starting point, drift rate, and non-decision time) determine the RTs and error rates.  

Work from Ratcliff, Thapar, and McKoon (2006) provides an elegant demonstration of the 

way that evidence accumulation models can inform our theoretical understanding of cognitive 

processes. Older adults are generally slower on speeded decision tasks than young adults, and this 

difference has often been interpreted as evidence of generalised age-related slowing in cognitive 

processes (e.g. Myerson, Ferraro, Hale, & Lima, 1992). However, contrary to this suggestion, 

evidence accumulation models have suggested that older adults’ long RTs are the result of high 

response threshold and slowing of non-decisional processes, rather than to a reduction of evidence 

accumulation rates (Ratcliff et al., 2006). That is, older adults may not be slower in their cognitive 

processing than young adults, they may just be more cautious, and slower in their sensory encoding 

or motor execution. Thus, by separating out the decisional components involved in fast decision-

making, Ratcliff and colleagues challenged and advanced the understanding of cognitive aging.  

Recently, White, Ratcliff, Vasey, and McKoon, (2010a) used the DDM (Ratcliff & 

McKoon, 2008) to demonstrate the benefits of using an accumulator model to analyse clinical data 

over and above analysis of RTs alone. Specifically, they examined behavioural data from a lexical 

decision task for three separate samples consisting of high and low trait anxious individuals. The 

data showed only weak, nonsignificant trends hinting at a threat bias for anxious participants when 

analysed using RTs alone. When these data were analysed with the DDM, White and colleagues 

found a clear threat bias for high-anxious participants that was not identified by traditional analysis. 

Thus, the evidence accumulation model identified effects that analysis of mean RTs overlooked.  

Traditional dot probe analysis uses only correct RTs, whereas evidence accumulation 

models use RT distributions for both correct and error responses, localising differences in RTs 

and/or accuracy to the component(s) of processing that are responsible. This statistical separation of 

the parameters reduces variance and provides better statistical sensitivity than traditional analyses of 

mean RTs, which conflate variance from multiple underling cognitive processes (White et al., 
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2010a; White, Ratcliff, Vasey, & McKoon, 2010b). Further, as demonstrated by White and 

colleagues (2010a) using the data from a lexical decision task, evidence accumulation models can 

identify processing differences even when there are no apparent differences in the behavioural data. 

This is particularly relevant to the mixed results obtained from the dot probe task. Within an 

evidence accumulation model, attentional bias may mean any of three things: (1) individuals with a 

negative attentional bias adopt a lower threshold for interpreting something as a threat or as 

dysphoric, or for responding to threats and dysphoric stimuli, than do people without the bias; (2) 

individuals with negative attentional bias accumulate evidence more quickly from negative 

stimuli—threats in the case of individuals with anxiety, dysphoric items in the case of individuals 

with depression—than those who do not have a bias, i.e., they find negative stimuli more engaging 

and/or stronger in intensity; or (3) individuals with negative attentional bias show shorter non-

decision times—most likely due to faster motor execution—for processing negative items than do 

non-biased individuals.  

Notably, Mathews and McLeod posited in 2005 that attention to threat seems to depend on 

some intensity or urgency threshold. Below this threshold danger signals can be ignored but above 

it they are actively attended. This hypothesis, which in effect interprets negative attentional bias as a 

higher drift rate, is one that evidence accumulation models can test directly. 

Clinical Implications 

The clinical benefit of analysing data from the dot probe task using evidence accumulation 

models is two-fold. First, it would enable us to identify the decisional component or components 

that are responsible for an attentional bias for negative information. In doing so, we would be able 

to determine whether there is a specific, implicit cognitive profile that represents attentional bias 

trans-diagnostically, or rather whether there are profiles that are unique to different disorders. 

Second, the use of evidence accumulation models would enable us to identify which decisional 

component or components are targeted by the modified dot probe, and which decisional 

components underlie successful attentional change. This would enable us to identify those 
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individuals for whom ABM would be most successful. In addition, if there were any decisional 

components, as evident from an attentional bias profile, that the dot probe training task does not 

target, we could move to develop tasks that do target those components.  

Furthermore, the use of ABM as a preventative tool could become an option. If we were 

able to identify the implicit cognitive profile of individuals with an attentional bias for negative 

information, ABM may provide a useful tool for modifying the bias prior to the development of 

symptoms. By identifying the specific cognitive profile/s involved in attentional bias and its 

modification, we would be able to tailor treatment more effectively to the individual.  

Implicit mechanisms are hard to target by current explicit treatments (Mobini et al., 2012). 

Therefore, a treatment that targets the implicit causal and maintenance mechanisms of anxiety and 

depression has the potential to be a stand-alone treatment, or a beneficial adjunct therapeutic 

approach. CBT relies on the individual’s capacity for strategic and voluntary processing. An 

implicit processing style characterised by a strong attentional bias toward negative affective 

information may interfere with an individual’s ability to maintain a more neutral or positive focus 

that is needed to effectively engage in therapy. Successful ABM therefore has the potential to make 

traditional CBT sessions more constructive.  

Conclusion 

Anxiety and depression have the highest prevalence rates of all mental health disorders, and 

have high rate of relapse. An implicit attentional preference for disorder-specific negative emotional 

stimuli has been hypothesised in the aetiology and maintenance of both disorders. As a result, a new 

therapeutic approach that targets this attentional bias, known as attentional bias modification 

(ABM), has been devised. Some research findings indicate that ABM has therapeutic effects on the 

symptoms of both anxiety and depression. However, questions remain as to the ability of the 

primary measure of attentional bias, the dot probe task, to reliably detect an attentional bias, and 

any changes in this bias. In this paper, we have argued that before discounting the dot probe task as 

unreliable, evidence accumulation models be used to analyse the data from this task to yield a more 



 
 

32 

comprehensive interpretation than traditional methods allow. Evidence accumulation models have 

the capacity to identify the implicit decisional components that underpin an attentional bias to 

negative information and can identify differences in these decisional components even when there 

are no apparent differences in the behavioural data. This information can offer novel insights into 

the underlying implicit cognitive mechanisms of attentional bias and its successful modification. An 

advanced understanding of attentional bias in anxiety and depression, as well as its mechanisms for 

change, would enable clinicians to tailor ABM to individual client differences. In so doing, ABM 

has potential as an effective preventative measure, stand-alone treatment, or a tool to complement 

current CBT practices.  
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Abstract 

The dot probe task is the primary method used to investigate the link between attentional 

bias for mood congruent stimuli and anxiety and depression. However, the reliability of the 

attentional bias score derived from mean RTs falls well below recommended levels for clinical 

research. In this paper, we applied a more sophisticated model of analysis, the Diffusion decision 

model (DDM), to data from the dot probe task. Our aim was to assess the suitability of DDM 

parameters as alternative measures of attentional bias. Participants (N = 91) performed a 

conventional dot probe task with faces as stimuli. While neither form of analysis showed an overall 

attentional bias, both were related to scores on clinical measures of anxiety, depression, and 

emotion regulation difficulties. Traditional RT analysis showed that an avoidance of emotion was 

linked to clinical symptoms; however, by breaking down RTs into parameters, the DDM revealed 

more specifically that speed of information uptake was linked to clinical symptoms, whereas 

decision caution was a protective factor. The information returned by the DDM supports attentional 

control theory, and partially supports the content specificity hypothesis. This is the first study to 

apply the DDM to data from the dot probe task.   
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Reliability of the attentional bias score: A diffusion model approach to analysis 

Errors in information processing drive individuals to seek out and attend to mood congruent 

stimuli, resulting in an attentional bias (Beck, 1976), and an increased difficulty regulating strong 

emotion (Cisler & Olatunji, 2012; Joormann & Quinn, 2014). Attentional bias is theorised to be a 

causal factor in the aetiology and maintenance of anxiety and depression (Beck, 1976; Bar-Haim, 

Lamy, Pergamin, Bakermans-Kranenburg, & Van Ijzendoorn, 2007; Mathews & Mackintosh, 1998; 

Mathews & MacLeod, 2005; Mogg & Bradley, 2005; Pergamin-Hight, Naim, Bakermans-

Kranenburg, Van Ijzendoorn, & Bar-Haim, 2015; Williams, Watts, MacLeod, & Mathews, 1997). 

Specifically, in line with Beck’s content specificity hypothesis (Beck, 1976), anxiety has been 

associated with an implicit attentional preference for threatening information (e.g. Koster, 

Verschuere, Crombez, & Van Damme, 2005; Mathews & MacLeod, 1985; Pergamin-Hight, Naim, 

Bakermans-Kranenburg, van, & Bar-Haim, 2015; Shechner et al., 2012), whereas depression has 

been associated with an implicit attentional preference for dysphoric information (e.g. Gotlib, 

Krasnoperova, Yue, & Joormann, 2004; Mogg & Bradley, 2005; Peckham, McHugh, & Otto, 

2010). By contrast, non-depressed and non-anxious individuals typically prioritize positive over 

negative emotional information (e.g. Švegar, Kardum, & Polič, 2013). 

Similarly, the inability to self-regulate strong emotion is linked with the onset and 

maintenance of anxiety and depression (Gross, 2013). The ability to regulate strong emotion, either 

implicitly or explicitly, is an important part of social functioning and good mental health (Gross, 

2013). Emotion regulation typically aims to decrease negative emotion and increase positive 

emotion (Gross, 2013). Emotion regulation processes can be explicit, e.g. consciously trying to 

calm one’s nerves before a performance, or implicit, e.g. unconsciously diverting one’s gaze from 

threatening stimuli (Gross, 2013). For individuals who are unable to effectively self-regulate, 

attentional bias to disorder-congruent stimuli works to increase experiences of negative emotion, 

which can exacerbate disorder-relevant symptoms.  
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The dot probe task is the primary task used to measure biased attentional processes in 

anxiety and depression (Pergamin-Hight et al., 2015). The dot-probe task was developed by 

MacLeod and Mathews (1986) based on a paradigm by Posner (1980), and was later modified by 

Koster and colleagues (2004). But, in recent years, the reliability of the attentional bias score 

produced by the dot probe task has been questioned (Cisler, Bacon, & Williams, 2009; Schmukle, 

2005; Staugaard, 2009), casting doubt on the validity of the measure. The current paper applies a 

novel form of analysis to data from the dot probe task. Specifically, we applied the diffusion model 

(Ratcliff & McKoon, 2008), a mathematical model of choice response time (RT), to ascertain if this 

was a more robust method of analysing data from the dot probe task. 

Measurement of Attentional Bias 

To understand reliability issues that surround attentional bias measurement it is important to 

first understand how the measure of attentional bias is derived from the dot-probe task. The task 

asks participants to focus on a fixation cross in the centre of a computer screen. The fixation 

interval is followed by the brief presentation of two stimuli, typically images or words, side-by-side 

or vertically aligned. One stimulus is emotional and the other is neutral in valence. After the stimuli 

disappear, one is replaced by a dot, and the participant is required to execute a speeded response 

indicating which of the two potential positions the probe appeared in (Koster, Crombez, 

Verschuere, & De Houwer, 2004; MacLeod, Mathews, & Tata, 1986). The participant is instructed 

to ignore the stimuli and focus only on the location of the probe. Trials on which the dot replaces 

the emotional stimulus are called congruent trials, and trials on which the dot replaces the neutral 

stimulus are called incongruent trials. If the participant’s attention has been captured by a specific 

stimulus, it is assumed to be reflected by faster RTs when the dot appears in that location. An 

estimate of attentional bias for emotional stimuli is calculated by subtracting the mean RT for 

congruent trials from the mean RT for incongruent trials. Positive scores result from faster RTs to 

the probe behind the emotional stimuli, and are taken to indicate an attentional bias toward that 

emotion.  
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The task may also incorporate trials that include only neutral stimuli. These trials, termed 

non-critical trials, provide a baseline RT measure, with no influence of emotion on attentional 

capture. Trials that consist of a target-relevant item (e.g., an emotional stimulus) and a neutral item 

are termed critical trials. Mean RTs for probes appearing behind the emotional stimuli in critical 

trials (i.e., congruent trials) are subtracted from mean RTs for non-critical trials to calculate a 

measure of vigilance, also referred to as speeded detection. Speeded detection is considered a 

measure of how strongly a target stimulus captures an individual’s attention relative to their 

baseline engagement. Positive scores indicate increased vigilance (Koster et al., 2004), which is 

referred to as a detection bias. Conversely, mean RTs for probes appearing behind the neutral 

stimulus in critical trials (i.e., incongruent trials) are subtracted from baseline RTs to calculate a 

measure of slowed disengagement. Slowed disengagement is considered a measure of how long it 

takes an individual to take attention away from the emotional stimulus and redirect it to the probe 

that appears behind the neutral stimulus. Negative scores indicate increased difficulty disengaging 

(Koster et al., 2004), or disengagement bias. To date, much of the reliability analysis of the dot-

probe task has been done with the overall attentional bias score and as such, that will remain our 

focus in this paper.  

Issues of Reliability of the Attentional Bias Score 

The reliability of the attentional bias score derived from the dot probe task has become a 

focus of concern in recent years due to the task being used in treatment studies. Efforts to mitigate 

the onset, and alleviate symptomology, of anxiety and depression have led researchers to try to 

modify attentional biases. This approach is known as cognitive bias modification (CBM), and 

primarily uses the dot-probe task both to shift bias and to measure the success of any shift. 

However, in treatment studies, reliability of the measure used to assess outcomes is required to be 

much higher than for research identifying statistical association or differences between groups 

(Rodebaugh et al., 2016). Consequently, concerns have arisen that the current literature base may be 
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a biased representation of the efficacy of ABM, such that the effect seems stronger and more robust 

than it is (Beard, Sawyer, & Hofmann, 2012; Hakamata et al., 2010; Peckham et al., 2010). 

Rodebaugh et al. (2016), in discussing attentional bias toward threat, noted that most studies 

that use the dot probe task do not report psychometric properties of the attentional bias measure, 

and those that do typically report poor reliability. Two primary methodological worries arise from 

poor reliability of the attentional bias measure. These concern the sensitivity and specificity of 

participant selection based on individual differences, and the validity of mediation analyses linking 

attentional bias to clinical disorders via a third variable (Rodebaugh et al., 2016).  

Sensitivity and specificity of a measure are important when deciding who is (and is not) 

suitable to be targeted by a treatment, and even more so when assessing the efficacy of that 

treatment. Rodebaugh et al. (2016) report that internal consistency of at least .90 is needed to be 

confident that decisions about individuals — for example, decisions about whether a certain 

individual is a good candidate for ABM, or whether treatment has been successful in shifting bias—

are accurate. Thus, confidence in the apparent success of modification training is limited by the 

reliability of the measure. To date, measures of internal consistency of the attentional bias score 

from the dot-probe task fall well below the recommended level of at least .90, hovering around .45 

(see Rodebaugh et al., 2016, for a review). 

Additionally, without adequate reliability of the bias measure, confidence in concluding that 

a third variable (i.e., the modification training) was the mechanism for change is compromised. 

Specifically, if the reliability of the attentional bias measure cannot be established, alternative 

explanations for a shift in bias scores, such as random error or regression to the mean, could be 

responsible for changes in scores across time (Rodebaugh et al., 2016). Hence, adequate reliability 

is important to draw firm conclusions as to the efficacy of ABM.  

Several authors have attempted to improve the reliability of the dot-probe task, from adding 

more trials (Price et al., 2015), to exploring different stimuli such as words and images (Schmukle, 

2005; Staugaard, 2009), to making modifications to the task such as changing stimulus duration 
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(Schmukle, 2005), to creating new bias scores (Price et al., 2015; Zvielli, Bernstein, & Koster, 

2015). The results of these efforts have been mixed, and none have achieved a level of reliability 

required for a clinical assessment task. Alternative suggestions to address the reliability issues of 

the attentional bias score derived from the dot-probe task have included (a) finding a new task, (b) 

being open to the possibility that the theory that attentional bias is a stable construct is flawed, and 

(c) applying a more sophisticated analysis technique that may have better sensitivity to reliably 

detect change. It is this last suggestion that we address in this paper.  

Traditional analysis techniques for the dot-probe task are based on mean RTs for correct 

responses, from which inferences are made about how the pattern of results map onto constructs. In 

addition to issues of reliability surrounding the current bias score, traditional analysis is unable to 

identify with any certainty the underlying reasons behind the patterns of RTs that are observed. For 

example, a slow response could indicate that the task is difficult but could also reflect a more 

cautious decision style. White, Ratcliff, Vasey, and McKoon (2010) postulated that the current 

analysis of correct mean RTs derived from the dot probe task may not be sensitive enough to 

reliably detect effects. They suggested that a more comprehensive form of analysis, by way of an 

evidence accumulation model, may be more sensitive due to the model’s ability to statistically 

separate parameters of the decision process. 

Evidence accumulation models use a small number of parameters to explain and reproduce 

the patterns of RTs and error rates seen in speeded-choice decision making. The model parameters 

represent well-defined and theoretically meaningful psychological constructs. By isolating and 

quantifying the components of cognition that underlie speeded decision making, evidence 

accumulation models can provide information about cognitive processes that are hidden from 

traditional analysis (Voss, Rothermund, & Voss, 2004; Voss & Voss, 2007). One of the most 

broadly applied of the evidence accumulation models is the diffusion decision model (Ratcliff, 

1978; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2015). The interpretational validity of the model 

has been confirmed (Voss, Rothermund & Voss, 2004), as has the ability of the model to robustly 
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detect moderate changes to the response distribution across trials (Ratcliff, 2013). Ratcliff’s 

diffusion model fits behavioural data as well as or better than competing models (Ratcliff & Smith, 

2015, 2004; White et al., 2010). 

Evidence accumulation models of analysis can be difficult to fit to data, and as such, until 

recently, have not received much attention in the analysis of clinical disorders. However, with 

several methods of fitting the models to data now available to researchers (Fast-dm, Voss & Voss, 

2007; EZ diffusion, Wagenmakers, van der Maas, & Grasman, 2007; DMAT, Vandekerckhove & 

Tuerlinckx, 2008), the models are becoming easier to use and apply. This study applied the 

diffusion decision model using one of these programs, Fast-dm 30 (Voss & Voss, 2007), to data 

from the dot probe task to assess fit, reliability of parameters across the task, and explore whether 

the data returned offer any further insight into the cognitive processes of attentional bias.  

The Diffusion Decision Model 

The diffusion decision model posits that an individual deciding between two options 

accumulates evidence for one or the other option until a decision threshold is reached and a 

response is executed. The model transforms behavioural data - accuracy, mean response times, and 

response time distributions – from two-choice decision making tasks into meaningful components 

of cognitive processing resulting in four parameters: boundary separation, relative starting point, 

drift rate and non-decision time (see Figure 1 and Table 1; For a detailed explanation of how 

behavioural data is transformed into these components see Voss, Rothermund & Voss, 2004; Voss 

& Voss, 2007; or Ratcliff & McKoon, 2008).  
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Figure 1. Diffusion decision model response parameters, boundary separation (a), relative 

starting point (zr), drift rate (v), non-decision time (t0) for a decision where the response alternatives 

are congruent and incongruent, as per the dot-probe task. (Diagram adapted from Voss & Voss, 

2007; Reproduced with permission.) 

 

Boundary separation (a). The participant’s response caution is reflected in the separation 

between a lower limit decision boundary (0) and an upper decision boundary (a), each of which 

corresponds to one of the two available choices. Because the value of the lower boundary is fixed at 

0, a larger value of a indicates a larger boundary separation, meaning that the individual requires 

more evidence to reach a decision (Pergamin-Hight et al., 2015). The result of a larger boundary 

separation, holding all else equal, will be responses that are on average slower but more accurate. 

Relative starting point (zr) Relative starting point is the point between the decision 

boundaries from which evidence accumulation starts, measured as a proportion of boundary 

separation. This parameter reflects the decisional bias an individual has for one response option 

over another. The closer the starting point is to either boundary, the shorter the processing time will 

be for the corresponding response. An unbiased starting point will be returned as 0.5, indicating an 

equal distance from either decision boundary. 
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Table 1 

Typical parameter values of the drift-diffusion model as returned by fast-dm(Voss, Voss, & Lerche, 

2015). 

Parameter Typical range Description 

Boundary separation (a) 0.5 < a < 2 Larger values equate to a more conservative 

decision style 

Relative Starting Point (zr) 0.3 < zr < 0.7 Deviations from 0.5 indicate that different 

amounts of evidence are required to make a 

decision for the alternative responses. 

Drift rate (v) -5 < v < 5 The rate of evidence accumulation. Values 

further from zero indicate stronger 

evidence. Positive values indicate evidence 

for the upper threshold response, negative 

values indicate evidence for the lower 

threshold response.  

Non-decision time (t0) 0.1 < t0 < 0.5 Average duration of all non-decisional 

processes (encoding and response 

execution). 

 

Drift rate (v). Drift rate is the mean rate of evidence accumulation toward one choice or the 

other, that is, the rate of approach to the decision threshold. A higher drift rate means faster 

accumulation of evidence. Drift rate is generally a function of stimulus or evidence quality. The 

easier a stimulus is to identify, the higher the drift rate. 
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Non-decision time (t0). The final parameter of relevance is non-decision time, t0, the time 

needed for sensory encoding prior to the evidence accumulation process and for response execution 

once a decision boundary has been crossed. 

Thus, differences in mean RT can be due to faster accumulation of evidence from the 

stimulus, a lower decision threshold, a biased relative starting point, faster non-decision 

components, or a combination of the four. Conversely, equal mean RTs may result from different 

combinations of values for these parameters. By separating the influence of multiple psychological 

constructs, the analysis of drift diffusion parameters isolates sources of performance variance that 

are conflated in mean RTs. Therefore, the diffusion decision model has the potential to enhance our 

understanding of the decision components that are captured by the dot-probe task, and to increase 

the sensitivity and reliability of attentional bias measures. 

Mapping Parameters onto Current Theory 

We mapped data from the dot probe task to the diffusion model response thresholds by 

congruence. For example, congruent responses are represented by the upper threshold, and 

incongruent responses are represented by the lower threshold. Mapping the data this way enables 

direct feedback of the impact of trial type (congruent/incongruent), such that the parameters directly 

reflect bias toward or away from congruent stimulus/dot pairings. This is based on the premise that 

if attentional bias is consistent, when negative information is displayed, attention should be 

captured by the negative information, and thus, the equivalent processes in the opposite direction 

for the other stimulus should shift also (Rodebaugh et al., 2016). 

Mapping the parameters to the task in this format means that boundary separation (a) 

represents how much evidence is required of the existence of the probe before responding, and start 

point (zr) represents an expectation for the probe to appear more on congruent or incongruent trials. 

Drift rate (v) represents the rate at which evidence accumulates for congruent or incongruent 

responses. If evidence accumulates more quickly for congruent responses, this will result in a 

positive drift rate, whereas if evidence accumulates more quickly for incongruent responses, this 
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results in a negative drift rate. As non-decisional times (t0) represent the speed of processes outside 

the decisional components of responding, they are theoretically not affected by how the parameters 

are mapped. 

In modelling data from the dot probe task with Fast-dm 30, we expected that an attentional 

bias would manifest in the drift rate parameter, v. During congruent trials, if attention has been 

captured by the stimulus, i.e., an attentional bias, the participant’s attention will already be deployed 

to the probe location by the time the probe appears. Therefore, evidence accumulation for the 

existence of the probe on the corresponding side will be faster than if the probe appears at the 

opposite, unattended, location. For incongruent trials, we conversely expected that if attention has 

been captured by the emotional stimulus the rate of evidence accumulation will be slower as it will 

require the individual to shift attention to the opposite side of the screen. Thus, a bias toward 

emotional stimuli would be evident from a positive drift rate, whereas an avoidance of emotional 

stimuli would be evident from a negative drift rate. If, however, there is no difference between the 

congruent and incongruent drift rates, we surmised that neither the emotional stimuli nor the neutral 

stimuli captured attention, and thus no bias was evident for that emotion. Given current theories of 

psychopathology, we expected that drift rate for angry trials (angry facial expression paired with 

neutral expression) would be linked to scores on anxiety, whereas drift rate for sad trials (sad facial 

expression paired with neutral expression) would be linked to scores on depression. 

Furthermore, it is possible that the non-decision time, t0, may vary for different emotions. 

For example, anxiety has been associated with hypervigilance (Eysenck, Derakshan, Santos, & 

Calvo, 2007), which may manifest in faster non-decisional processes. Therefore, we might expect to 

see faster non-decision time to the presentation of threatening stimuli (e.g., angry faces) in 

individuals with higher anxiety scores. In the same way, depression has been associated with motor 

slowing (Sobin & Sackeim, 1997); therefore, we might expect to see that non-decision time is 

longer for sad stimuli in individuals with higher depression scores. Thus, we expected that non-
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decision time for angry faces would correlate with anxiety scores, and non-decision time for sad 

faces would correlate with depression scores.  

Finally, as attentional bias has been associated with difficulty regulating strong emotion 

(Cisler & Olatunji, 2012; Joormann & Quinn, 2014), and emotion regulation difficulty is associated 

with both anxiety and depression, we expected to see a correlation between the diffusion model 

parameters and difficulty regulating emotion. Specifically, we hypothesised that drift rates and non-

decision time for sad and angry trials would be associated with increased difficulty regulating 

emotion, whereas drift rate and non-decision time for happy trials (happy facial expression paired 

with neutral expression) would be associated with better emotion regulation. Further, we expected 

that smaller boundary separation may be associated with more impulsive decision making, and thus 

increased emotion regulation difficulties. Due to the equal number of congruent and incongruent 

trials, we had no theoretical reason to expect starting point to differ between emotions, or to be 

related to clinical measures. In the same way, due to the presentation of all combinations of critical 

and non-critical trials in each block of the task, boundary separation cannot vary between emotion 

as participants had no way of knowing which emotion would be presented next. However, it is 

plausible that there is a link between overall decision style (i.e., mean boundary separation across 

all trials) and emotion regulation and anxiety and depression. Both emotion regulation and cautious 

responding require top down, frontal lobe processing (Etkin, Büchel, & Gross, 2015; Sakagami & 

Pan, 2007), and this can be impeded in individuals with anxiety and depression (Snyder, 2013; 

Tovote, Fadok, & Lüthi, 2015). Therefore, we also expected that boundary separation may correlate 

with emotion regulation, depression and anxiety such that a less conservative boundary setting 

would be related to higher scores on clinical measures, i.e., poorer frontal lobe activation results in 

impulsive responding. 
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Method 

This study received ethics approval from the Flinders University Social and Behavioural 

Research Ethics Committee (Project number 6259: Investigating cognitive mechanisms 

underpinning emotional cognitive biases in individuals with varying levels of emotional disorders). 

Participant Characteristics and Exclusion Criteria 

One hundred undergraduate women were recruited through the university’s research 

participation program. Fifty participants received course credit for a first-year psychology topic, and 

fifty participants received AU$15 remuneration. Seven participants were excluded from the final 

data set for failing attention checks in the self-report measures, and a further two participants were 

excluded during the data cleaning process. Thus, data from 91 participants, with a mean age of 22 

years (min 17, max 47, median 20), were used in the final analysis. 

Design 

A 4 (emotion: happy, sad, angry) x 2 (trial type: congruent, incongruent) repeated measures 

design was used. Dependent measures were RT, and Fast-dm 30 parameters v and t0. RT and all the 

Fast-dm 30 parameters (a, sz, v, t0) were also used to explore their relationship with scores on the 

clinical measures of depression, anxiety, stress, and emotion regulation difficulties.  

Materials  

Facial stimuli were used because emotional images are more salient than words (Bradley, 

Mogg, & Millar, 2000). Additionally, facial expressions are universally understood (Ekman & 

Friesen, 1986), whereas words can have different meanings for different people. In line with other 

research in this area (Arndt & Fujiwara, 2012; Niles, Mesri, Burklund, Lieberman, & Craske, 2013; 

Paulewicz, Blaut, & Kłosowska, 2012; Nim Tottenham, Hare, & Casey, 2011), we selected facial 

stimuli from the NimStim database (Tottenham et al., 2009). This database consists of 646 facial 

expression stimuli across 43 faces of different gender and race. The database has expressions 

consisting of fearful, happy, sad, angry, surprised, calm, neutral, and disgusted, each with validity 

ratings (Tottenham et al., 2009). There are two sets of each expression. One set consists of the 
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expressions with models’ mouths open, and the other set consists of expressions with mouths 

closed. In this study, faces with angry, happy, sad, and neutral expressions were used. They were 

selected from the set with mouths closed. Three faces were excluded as the models did not present 

with all four (angry, happy, sad, neutral) expressions. All pictures were presented in a black 

rectangular frame and cropped to just around the face to remove distinguishing external features, 

allowing the focus to be on the expression. All images were of equal size (332x458 pixels), 

resolution (120 pixels/inch), and RGB colour depth (8bpc).  

Procedure 

Data for the dot-probe task were collected at the same time as data for another study 

investigating an alternative task, the yes/no task (in preparation). Both tasks were completed on a 

Dell desktop computer with a standard QWERTY keyboard in one testing session that lasted 

approximately 45 minutes. The cognitive tasks (dot probe and yes/no task; counterbalanced) were 

presented first to avoid any mood induction that might result from the question content of the self-

report measures. The dot probe task was run using Neurobehavioral Systems Inc. software. The 

clinical measures were collected in Qualtrics, an online survey program. The clinical measures were 

presented in the same order for each participant with the Difficulties with Emotion Regulation Scale 

(DERS) presented first, followed by the Depression, Anxiety and Stress Scale (DASS).  

Attentional bias. The dot probe task as modified by Koster and colleagues (2004) to 

include neutral baseline trials was used. The task consisted of 280 trials in total. For each trial, a 

central white fixation cross was displayed for 500ms on a black background, followed by a picture 

pair for another 500ms. Picture pairs comprised either a neutral and emotional (happy, sad, angry) 

facial expression of the same individual, or two of the same neutral faces. Pictures were presented 

to the left and right of the fixation cross, centred horizontally, and 6.87cm from both the centre and 

the perimeter of the screen. A white dot, 3mm in diameter, was presented immediately afterwards in 

the location previously occupied by either the left or right image, centred horizontally. Presentation 

of the dot was terminated by the participant pressing a response key to report on which side (left or 



 
 

57 

right) the dot appeared. Response keys were the Z key for left, and the / key for right (labelled L 

and R). A 500ms inter-trial interval followed the participant’s response, after which the next trial 

began automatically.  

There were 80 trials per emotion (happy, sad, angry), divided equally between congruent 

(probe behind emotion) and incongruent (probe behind neutral) trials, as well as 40 neutral/baseline 

(both neutral pictures) trials. As we were only interested in the traditional attentional bias score, we 

did not use the baseline trials in our analysis. The task was split into two blocks of 140 trials, 

allowing participants a self-determined break between blocks. A randomization algorithm 

determined stimulus presentation to ensure that expression, trial type (congruent, incongruent, 

baseline), and dot location (left, right) occurred with equal frequency in each block, and such that 

consecutive response presses on either side were limited to 3 to prevent response bias.  

Clinical Measures 

Difficulties with emotion regulation scale (DERS; Gratz & Roemer, 2004). This 36-item 

self-report questionnaire consists of six dimensions of emotion regulation: (a) non-acceptance of 

emotional reactions; (b) difficulty engaging in goal-directed behaviour; (c) difficulty controlling 

impulses; (d) lack of emotional awareness; (e) limited access to emotion-regulation strategies; and 

(f) lack of emotional clarity. The DERS begins each item with the phrase, “When I’m upset…”. 

Participants rate each item on a five-point Likert scale from “almost never” (1) to “almost always” 

(5). Eleven items are reverse scored, and the total score can range from 36 to 180 with a higher 

score representing increased difficulty with emotion regulation. In non-clinical samples of adults, 

the DERS has an average total score of 75-80 (Gratz & Roemer, 2004). Only the total score was 

used in this study. The DERS has high internal consistency (=.93), good test-retest reliability 

(ρI=.88), and satisfactory construct and predictive validity (Gratz & Roemer, 2004). Within this 

sample, Cronbach’s alpha was .95.  

Depression Anxiety and Stress Scale short form (DASS-21; Lovibond & Lovibond, 

1996). This self-report questionnaire consists of 21 items divided into three subscales, each 
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consisting of 7 four-point Likert rating items measuring depression, anxiety and stress. The 

questionnaire asks the respondent to rate how much each statement applied to them over the past 

week. The rating scale ranges from 0 (did not apply to me at all) to 3 (applied to me very much, or 

most of the time). The DASS-21 has high internal consistency and moderate levels of concurrent 

validity (r =.46-.85; Antony et al., 1998). Within the current sample, Cronbach’s alpha was .95. The 

depression subscale was used to measure depressive symptoms. To measure symptoms of anxiety 

both the anxiety and stress subscales were used, as the anxiety subscale loads onto diagnostic 

criteria for the various anxiety disorders except generalised anxiety disorder (GAD), whereas the 

stress subscale loads onto diagnostic criteria for GAD (Lovibond & Lovibond, 1995). This allowed 

us to differentiate between GAD and other types of anxiety. Scores range from 0-28+ for depression 

(0-4 normal, 5-6 mild, 7-10 moderate, 11-13 severe, 14+ extremely severe), 0-20+ for anxiety (0-3 

normal, 4-5 mild, 6-7 moderate, 8-9 severe, 10+ extremely severe), and 0-32+ for stress (0-7 

normal, 8-9 mild, 10-12 moderate, 13-16 severe, 17+ extremely severe), with higher scores 

indicating increased level of symptom severity.  

Analysis 

Data cleaning and preparation. 

Dot Probe task.  

Traditional analysis. As per previous research (e.g. MacLeod et al., 1986; Koster et al., 

2004) error responses were removed from analysis of RT data. On average, participant accuracy 

rates were 99.98%. As two participants had error rates at near chance level (52 and 58%) their data 

were removed from analysis. For each trial type (congruent/incongruent) within each emotion 

(happy, sad, angry), RTs that were 3 or more standard deviations above each participant’s mean RT 

were removed, as were responses faster than 150ms. This resulted in 1.72% of total responses being 

removed. For each emotion, an overall bias score for each participant was calculated by taking the 

mean RT for congruent trials and subtracting it from the mean RT for incongruent trials. Thus, 

positive scores indicate an attentional bias toward emotional stimuli, whereas negative scores 
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indicate a bias toward neutral stimuli and away from emotional stimuli. Reliability analyses of the 

overall bias score identified Spearman-Brown split half reliability to be .52, and Guttman Split-Half 

.51, both well below acceptable levels of .90. 

Fast-dm 30 analysis. Data were cleaned in the same way as for the traditional analysis with 

the exception that errors were not excluded. The data were coded such that congruent responses 

were mapped to the upper response threshold and incongruent responses were mapped to the lower 

threshold, and neutral trials were removed. Fast-dm 30 was run in line with recommendations from 

Voss, Voss, and Lerche's (2015) tutorial paper. The fast-dm 30 control file was set to allow drift 

rate and non-decision time to vary based on emotion across participants, and start point and 

boundary separation were free to vary across participants but not across emotion. Additional 

parameters of variability in starting point, drift rate, and non-decision time can also be introduced 

into model analysis. While more parsimonious models can be preferable to more complex models 

(Lerche & Voss, 2016), it has been recommended to include non-decision time variability in the 

model in order to achieve stable parameter estimates (Voss et al., 2015; Lerche and Voss, 2016). 

Therefore, inter-trial variability of non-decision time (st0) was also allowed to vary across 

participants. Split half analysis was carried out by taking an odd/even split of the trials from the dot-

probe task, and running these two datasets using fast-dm. The resultant parameters from each data 

set were compared using correlational analysis. Starting point did not correlate between the two 

halves of the data, however the remaining parameters were significantly related. Boundary 

separation was highly correlated (r = .89), non-decision time was also highly correlated between 

halves (angry r =  .88, happy r = .89, sad r =  .88). However, drift rate was negatively correlated 

between halves (angry r =  -.38, happy r =  -.52, sad  r = -.49), which indicates minimal 

consistency between the two halves of data for the drift rate parameter.  

Model fit was assessed by the Kolmogorov–Smirnow (KS) statistic provided by the fast-dm 

30 software. The KS statistic assesses whether the distribution of observed data differs significantly 

from a predicted distribution. The KS fit statistic returned by fast-dm 30 did not reveal any 
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significant deviations between empirical and estimated RT distributions for any of the participants. 

As Voss et al. (2015) caution against relying solely on the fit statistic returned by fast-dm 30 and 

recommend plotting the data graphically, comparison of empirical and predicted response time 

distributions for each expression (happy, angry, sad, neutral) were plotted, along with quantile 

probability plots comparing empirical and predicted response times for the 25th, 50th, and 75th 

percentiles of each expression (happy, sad, angry). These plots are displayed in Appendix 1. 

DERS and DASS. Clinical measures were checked for skewness and kurtosis, and were 

within acceptable limits (+/- 2). There were no outliers. 

Inferential analysis of cognitive measures. Repeated measures ANOVAs were performed 

to analyse differences between both response times and parameters. Bonferroni correction was 

applied, and where sphericity tests indicated it applicable, the Greenhouse Geisser correction was 

also applied. 

Relationships between cognitive and clinical measures. Correlations were carried out to 

explore whether bias scores or the cognitive components of implicit decision-making were related 

to scores on the clinical outcome measures of DERS and DASS.  

 Results 

Dot Probe Task  

Response times. Correct trial mean RTs for congruent and incongruent trials across the 

emotions (happy, sad, angry) are plotted in Figure 2. 

Attentional Bias. A 2 (trial type: congruent, incongruent) x 3 (emotion: happy, sad, angry) 

repeated measures ANOVA identified a main effect of emotion, F(2,180) = 3.35, p = .04, 2
partial = 

.07. Pairwise comparisons revealed that happy responses were 4 ms faster than sad responses (p = 

.045), but revealed no significant difference between happy and angry (3 ms, p = .16), or angry and 

sad (1 ms, p = 1.00), responses. Analysis showed no main effect of trial type, F(1,90) = 3.80, p 

=.054, 2
partial = .04, nor a significant trial type × emotion interaction, F(1.84,165.40) = 0.64, p 

=.52, 2
partial < .007, indicating that while RTs for happy trials were modestly faster than sad trials 
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overall, this did not differ significantly by congruence. As such, the data provided no evidence for 

an attentional bias to any specific emotion.  

 

 

Figure 2. Dot probe RTs (seconds) by trial type for correct trials. Congruent trials = probe 

behind emotional face, incongruent trials = probe behind neutral face. Error bars represent within-

subjects 95% confidence intervals2. 

 

Diffusion Model parameters. One-way (emotion: happy, sad, angry) repeated measures 

ANOVAs revealed no effect of emotion on drift rate (v), F(2, 180) = 2.06, p =.13, 2
partial = .02, or 

non-decision time (t0), F(2, 180) = 2.53, p =.08, 2
partial = .03. One sample t-tests indicated that drift 

rate was positive for all three emotions (M= 0.15, SD = 0.27, t(90)=5.32, p<.001, d=0.56 for happy; 

M=0.07, SD=0.29 t(90)=2.39, p=.019, d=0.24 for sad; M=0.13, SD=0.27, t(90)=4.43, p<.001, 

d=0.48 for angry), indicating a slightly faster drift rate for congruent than for incongruent trials. 

However, evidence did not accumulate more quickly for one emotion over another. The ANOVA 

identified that there was also no difference in non-decision time across emotions (M=0.30, SD=0.04 

                                                
2 All confidence intervals throughout this paper were calculated using the Cousineau-Morey method (Morey, 

2008). 
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for happy; M=0.31, SD=0.04 for sad; M=0.13, SD=0.04 for angry), indicating no evidence of 

disorder congruent non-decisional processes – i.e., motor slowing or hyperactivity across the 

sample. 

Clinical measures. Means and standard deviations for the clinical measures are shown in 

Table 2. Mean scores on the clinical measures are at the lower end of the clinical range; however, 

the standard deviations indicate that there is a reasonable amount of variance within the sample, 

indicating a reasonable distribution of clinically significant scores. 

Correlations (Table 3) revealed that attentional bias toward happy faces and attentional bias 

toward angry faces were correlated with emotion regulation scores, such that stronger attentional 

biases toward happy and angry emotions were associated with better emotion regulation. In 

addition, angry attentional bias scores were associated with lower scores of depression and stress 

(GAD).  

None of the attentional bias scores correlated with scores on the anxiety subscale (other 

anxiety disorders). These results do not support the hypothesis that biases toward negative 

emotional stimuli are associated with increased emotional regulation difficulty. Instead they suggest 

that avoidance of emotion, rather than a focus on emotion, is more symptomatic of emotional 

difficulties. It is important to note that these correlational values are prior to Bonferroni correction. 

Whilst in the expected direction, once correction is applied, results become non-significant, so we 

must interpret these results with caution.  

Boundary separation was negatively correlated with scores on the DERS, such that a more 

conservative decision style was associated with better emotion regulation. Drift rate for angry faces 

was correlated with depression and stress scores, such that a higher drift rate for congruent stimuli 

(positive drift) in the angry condition was linked to higher depression and stress scores. This 

suggests that individuals whose attention was captured by angry stimuli tended to have higher 

clinical scores. This is in the opposite direction to the findings of the RT analysis.  
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Table 2.  

Clinical Measures  

 N Minimum Maximum Mean Std. Deviation 

DERS Total 91 47 155 91.76 23.52 

Depression 91 0 40 10.46 9.92 

Anxiety 91 0 34 7.65 7.85 

Stress 91 0 38 14.13 9.17 

 

Table 3 

Correlations between cognitive and clinical measures (N=91) 

  Depression Anxiety Stress DERS 

Response Times 
     

Attentional Bias happy -.123 -.120 -.153 -.246* 

 
sad .035 .055 .093 .021 

 
angry -.277** -.105 -.216* -.255* 

Fast-dm 30 parameters 
     

Boundary separation -.163 -.072 -.152 -.237* 

Drift rate happy .015 .137 .097 .145 

  
sad -.056 -.076 -.031 -.027 

  
angry .282** .199 .233* .195 

Non-decision time happy -.09 -.127 -.122 -.305** 

  
sad -.081 -.155 -.153 -.282** 
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angry -.059 -.127 -.121 -.231* 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

Discussion 

The aim of this paper was to assess whether the diffusion decision model, as applied via 

fast-dm 30, provides a more sensitive and reliable way to measure attentional bias in the dot probe 

task than the bias score derived from correct mean RTs. Additionally, we were interested in whether 

the diffusion model parameters could offer greater insight into the relationship between cognitive 

processes that underlie attentional bias and clinical symptoms than the traditional bias score. To this 

end, we explored the relationships between the parameter values returned by fast-dm 30 and scores 

on the DERS and DASS. 

Traditional RT analysis of the dot probe task did not reveal an overall attentional bias for 

happy, sad, or angry emotional expressions. Given the non-clinical nature of the sample, this overall 

effect is perhaps not surprising. However, correlational analyses suggested that attentional biases 

for happy and angry faces may be associated with better emotion regulation, and attentional bias for 

angry faces may be linked to lower scores on the stress (GAD) and depression scales. Additionally, 

attentional bias for sad faces did not correlate with scores on depression. These trends are contrary 

to theoretical expectations that biased attention toward emotional stimuli is a risk factor for 

psychopathology (Beck, 1976), and instead suggest that the ability to attend to emotional 

information may be a protective factor. In this sample, it seems that individuals who have difficulty 

regulating emotion avoid emotion rather than seek it out.  

Analysis of diffusion model parameters for the dot probe task revealed that drift rate was 

slightly positive for all conditions, indicating a tendency to engage with emotional faces more 

strongly than neutral faces. While this result was significant, it is important to note that this was a 

small to medium effect (Cohen’s d ranging from 0.24 -0.56). Additionally, evidence did not 

accumulate more quickly for one emotion over another, and there was no difference in non-decision 

times for any emotion. This mirrors the lack of attentional bias captured through traditional RT 
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analysis, and may reflect the recruitment of a non-clinical sample. However, drift rate was linked to 

depression and stress scores such that a faster rate of evidence accumulation for angry faces was 

indicative of higher levels of self-reported depression and generalised anxiety. These results are in 

line with Beck’s content specificity hypothesis (1976) to the extent that evidence for angry 

information accumulated more quickly for those with higher levels of generalised anxiety. 

According to the content specificity hypothesis, however, depression should be associated with 

increased evidence accumulation of sad faces, which was not the case here. It may be that the 

current sample did not have a high enough proportion of individuals with clinical levels of 

depression to capture the relationship, or it may be that depression is not as strongly associated with 

an attentional bias toward sad information. To this end, the link between attentional bias for sad 

stimuli and depression has typically been found in studies that use stimulus presentation times of 

1000ms (Bradley, Mogg, & Lee, 1997; Gotlib et al., 2004). Some researchers suggest that 

attentional bias for sad stimuli is more strongly related to a difficulty disengaging attention rather 

than attentional capture, which is argued to account for the longer stimulus presentation times 

required to observe an attentional bias for sad stimuli (e.g., Joorman, 2010). If the relationship 

between depression and attention is more strongly related to disengagement difficulties, drift rate 

would not identify this relationship at the present stimulus presentation time of 500ms.  

While neither boundary separation nor non-decision time for any emotional expression were 

correlated with anxiety or depression specifically, both boundary separation and non-decision time 

for all emotions were negatively correlated with emotion regulation scores.3 These results imply 

that a more conservative decision style is linked with better emotion regulation, and faster non-

decisional processes are related to an increased difficulty regulating emotion. Theoretically, these 

findings are in line with Eysenck et al.'s (2007) attentional control theory, which states that 

cognitive control is inhibited during a hyper-vigilant response to emotion and as such, the ability to 

regulate responses to emotion is hindered.  

                                                
3 Importantly, scores on the DASS were significantly correlated with scores on the DERS (r= .64, .54, .65 for 

depression, anxiety and stress subscales, respectively). 
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Taken altogether, our results suggest that the traditional bias score and the results of the 

diffusion model are conflicting in their relationship with clinical measures. The relationship 

between mean RTs and clinical measures suggests that an avoidance of emotion, rather than a focus 

on emotion, is more indicative of emotional difficulties. The parameters of the diffusion model, 

however, were linked to clinical measures such that a faster accumulation of evidence for angry 

stimuli was linked with depression and GAD, while slower non-decisional processes and more 

cautious responding were a protective factor to emotion regulation difficulties. The only 

theoretically plausible explanation that can account for these conflicting results is the notion of a 

suppression effect as identified by the separation of the diffusion parameters.  

The results from the diffusion decision model are in line with Beck’s (1976) content 

specificity hypothesis for anxiety, and support Eysenck et al.’s (2007) attentional control theory. 

While the results do not support the content specificity hypothesis for depression in that sad 

expressions did not capture attention as expected, capture by angry expressions was linked to both 

anxiety and depression, suggesting a broader connection between negative emotion and emotional 

disorders. Based on these findings, the fast-dm 30 parameters seem to be a more promising account 

of the data than traditional bias scores. However, the internal consistency of the drift rate parameter 

in the current sample was inadequate.  

There are several possible reasons that the drift rate parameter demonstrated low reliability. 

It may be that the way the data were mapped using fast-dm does not offer internal stability of the 

drift rate parameter. Alternatively, it may be that attentional bias is not a function of drift-rate. Or it 

may be that the low reliability found in both the traditional attentional bias score, and the drift rate 

parameter is simply due to the absence of an attentional bias in the current sample. This is the first 

time, to our knowledge, that the diffusion decision model has been applied to data from the dot-

probe task. Therefore, replication of these results is needed to confirm the fit of the model, as well 

as the pattern of results obtained, before we can have high confidence in the conclusions. In the 

interim, we can tentatively conclude that the acceptable fit statistics of the diffusion model, and the 



 
 

67 

results supporting current theoretical understanding, offer more insight into the cognitive processes 

underlying attentional bias as identified by the diffusion model, than RT analysis alone.  

As more attentional bias researchers apply the diffusion model to their existing data, we will 

have a wider evidence base to draw from, and we can begin to draw firmer conclusions as to the 

efficacy of the model as applied to dot probe data. If our tentative findings are replicated, and thus, 

deemed reliable, then the diffusion model can be considered a more comprehensive form of 

analysis.  We will be able to confidently identify the cognitive processes responsible for attentional 

bias and offer more insight into the cognitive processes that underlie attentional bias to affective 

stimuli and its link to psychopathological symptoms. If the suppression effect holds up, it may 

account for the conflicting results that have been seen in attentional bias modification research. 

Specifically, there may be changes in some of the underlying cognitive processes that cannot be 

detected by traditional bias score analysis alone.  

Applying the diffusion model to attentional bias modification data has implications for 

clinical research. Specifically, such application will enable us to identify how successful bias 

modification works, i.e., which parameters shift from pre-training to post training. Additionally, by 

applying the model to data from the control group of a modification study (pre- and post-training 

measures), test-retest reliability of the fast-dm 30 parameters could be assessed, increasing 

confidence in the model’s suitability as a method of analysis for the dot probe task. From there, we 

could use the model to identify suitable candidates for attentional bias modification treatment. 

Further, we can devise paradigms that target one or more of the specific cognitive processes that are 

determined to be responsible for attentional biases with the aim of improved treatment outcomes.  

For example, the parameters of the diffusion model tentatively confirm that the bias found in raw 

RTs for depression does not seem to be occurring during the first 500ms of decision processing. 

Therefore, by exploring when it is best to target a bias, i.e., how long to present stimuli for, could 

enhance the efficacy of training.  Additionally, the current results suggest that more cautious 

responding, which is related to better cognitive control, may mitigate depression and anxiety 
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onset/severity by its link with better emotion regulation. As such, tasks that strengthen cognitive 

control may provide another beneficial treatment approach.  

Conclusion 

The aim of this research was to explore whether Ratcliff’s diffusion model, as applied using 

fast-dm 30, could provide reliable, and more comprehensive information, than the current 

attentional bias measure of mean RTs. Our results, while exploratory, do indicate acceptable fitting 

of the data as well as trends that are in line with current theory. Specifically, links between fast-dm 

30 parameters and clinical measures were in line with both the content specificity hypothesis and 

attentional control theory. These findings indicate that cognitive control may be a protective factor 

for emotion regulation difficulties, and in turn, anxiety and depression. Importantly, our results 

suggest that the application of the diffusion decision model to attentional bias is an area that 

warrants further research. In so doing, application of the diffusion model to existing dot probe data 

could provide extensive exploratory and confirmatory analysis.  
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Abstract 

Efforts to modify cognitive biases in anxiety and depression to alleviate symptoms is a 

burgeoning area of research. Knowing which cognitive processes to target will help with treatment 

outcomes. Our aim was to use drift diffusion analysis to identify which cognitive processes are 

affected by interpretation of ambiguous stimuli. Participants (N = 93) performed a yes/no task to 

classify, and thus interpret, whether a presented facial expression belonged to the target category. 

One group of participants were presented with  intense facial expressions (n = 48), and another 

group were presented with a mix of both intense and milder, more ambiguous facial expressions (n 

= 45). Results indicate that both perceptual bias (drift rate) and decisional bias (starting point) were 

affected by the inclusion of ambiguous stimuli. The participants presented with the ambiguous 

stimuli had lower drift rates and reduced starting point bias than the participants presented with the 

non-ambiguous stimuli. Thus, perceptual bias and decisional biases are affected by interpreting 

ambiguous expressions. Application in a clinical sample may offer insight into the processes 

responsible for interpretation bias in anxiety and depression. This knowledge would aid in devising 

and applying more targeted bias modification treatments, in efforts to alleviate symptoms of these 

disorders.   

 

 

Key words: Interpretation bias, Diffusion decision model, Emotion regulation difficulties, Yes/No 

task. 
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The impact of stimulus strength on capturing affective interpretation and emotion regulation 

as measured by the yes/no task: A diffusion model analysis 

An implicit tendency to interpret benign, ambiguous, or mild affective information in a 

heightened emotional manner is known as interpretation bias (Beck, 1976). Anxiety has been 

associated with a tendency to interpret ambiguous information with an inflated perception of threat 

(e.g. Eysenck, Mogg, May, Richards, & Mathews, 1991). In the same way, depression has been 

associated with a stronger implicit dysphoric interpretation of ambiguous information (e.g., Gotlib 

& Joormann, 2010). These interpretation biases are linked with increased difficulty regulating 

strong emotion, which in turn, intensifies symptoms of anxiety and depression (Cisler & Olatunji, 

2012; Joormann & Quinn, 2014). Consequently, interpretation bias and difficulty regulating 

emotion are theorized to increase vulnerability to anxiety and depression (Cisler & Olatunji, 2012; 

Joormann & Quinn, 2014). 

Emotion regulation is the ability to monitor, evaluate, and modify the magnitude and 

duration of one’s emotional reactions in order to achieve desired personal goals (Svaldi et al., 

2012).  The most common emotion regulation goals in everyday life are to decrease negative 

emotion and increase positive emotion (Gross, 2013). Emotion regulation strategies incorporate 

intrinsic (self-regulated) and extrinsic (regulated by others) processes that provide awareness, 

understanding and acceptance of our emotional states. Individuals learn to regulate their emotions 

during infant development through extrinsic processes (Gross & Thompson, 2007), i.e., co-

regulation from parents and caregivers. A well-regulated emotional system enables an individual to 

act in the desired manner regardless of emotional state (Svaldi et al., 2012). Emotion regulation 

processes can be explicit, e.g. consciously trying to calm one’s nerves before a performance, or 

implicit, e.g. unconsciously diverting one’s gaze from threatening stimuli (Gross, 2013).   

The ability to regulate strong emotion, either implicitly or explicitly, is an important part of 

social functioning and good mental health (Gross, 2013). Reacting impulsively to emotion is 

detrimental to social connectedness, as it can alienate others and increase feelings of isolation, and 
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consequently, increase negative emotion (Gross, 2013). As a result, emotion regulation difficulties 

are transdiagnostic in nature, that is, they exist across many psychological diagnoses and underlie a 

number of emotional disorders (Aldao, Nolen-Hoeksema, & Schweizer, 2010). Specifically, the 

inability to self-regulate is associated with experiences of increased negative emotion, which can 

exacerbate disorder-relevant symptoms, leading to the onset and maintenance of affective disorders 

such as anxiety and depression (Gross, 2013).  

Emotion Generation and Emotion Regulation 

Gross and Thompson (2007) developed the process model of emotion regulation (Figure 1), 

an evidence processing model that treats each step in the generation of emotion as a potential target 

for regulation. In the model, emotion generation starts with a situation which the individual 

perceives as relevant to their goals. The individual pays attention to the situation, and because it has 

specific meaning to them, it elicits a multi-system (physiological, behavioural, and subjective 

experiential) response. In other words, the appraisals the individual makes while attending to the 

situation result in an emotional response. That response then changes the individual’s perception of 

the situation, which results in a new process of evaluation and the potential to generate new 

emotions, creating a cycle of emotion generation and response.   

 

  

 

 

 

 

 

Figure 1. Process model of emotion regulation (Gross & Thompson, 2007) 

One phase of the emotion 
generation cycle 

Emotion regulatory processes 
that can be activated at different 
points of emotion generation 
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During a single phase of the emotion generation cycle there are five points at which 

regulation can occur: situation selection, situation modification, attentional deployment, cognitive 

change, and response modulation. At each of these points a specific process can be employed to 

intrinsically or extrinsically regulate emotion. This regulation attempts to dampen, intensify, or 

maintain the emotion, depending on the individual’s goal. Emotion regulation strategies employed 

during each of these processes have a different consequence, and each of these consequences will 

change the course of the individual’s response to the situation, in turn modifying the emotional 

experience.   

Generally, individuals regulate their emotions using a number of strategies concurrently 

along different points of the emotional processing continuum (Gross & Thompson, 2007).  

However, in some individuals, aberrant deployment of attention toward emotional stimuli, difficulty 

disengaging from such stimuli, or mistakes processing them can generate emotion that is 

overwhelming for the individual. It is these biased cognitive processes that are hypothesised to 

underlie attentional and interpretation biases. Such biases impact the regulation processes of 

attention deployment and cognitive change, fostering dysfunctional emotion regulation strategies 

that increase difficulty coping with emotion rather than decrease it. When faced with overwhelming 

emotion and a lack of functional emotion regulation skills, it can be very difficult to regulate 

emotion effectively, and it is this combination of dysfunctional emotional processing and lack of 

regulatory skills that is thought to be a causal process in a number of psychological disorders such 

as anxiety and depression (Browning, Holmes, & Harmer, 2010).   

Attention deployment entails looking away from something to alleviate the emotional 

response it arouses (distraction) or focusing attention towards something to increase or maintain the 

emotional response it arouses (concentration). Concentration on stimuli that evoke negative 

emotions is referred to as rumination, and is known to increase depressive symptoms (Gross & 

Thompson, 2007). In someone with an adaptive regulatory process, the initial response to negative 
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information is to avoid it. However, for someone for whom this process has been disrupted, it can 

lead to maladaptive behaviours such as fixation and rumination.  As maladaptive strategies are often 

implicit, the awareness of, and ability to regulate them is usually not within the individual’s control, 

and as such increases the negative emotion the individual experiences (Gross & Thompson, 2007).   

Cognitive change refers to the process of reappraisal. Reappraising a situation can alter its 

emotional impact, making it more, or less, significant. For example, if an individual with a negative 

interpretation bias has an ambiguous or benign interaction with someone they would prefer to 

avoid, their initial appraisal of the situation will be negative. Instead of reappraising the situation in 

a positive way (i.e., “Okay, that wasn’t so bad.”), they may continue to interpret the situation 

negatively (i.e., “That was horrible!”). This maladaptive interpretation works to increase negative 

emotion rather than to alleviate it, and may result in overwhelming emotion that requires response 

modulation.  

Interpretation bias has its strongest impact in the attention and appraisal stages of emotion 

generation. The content specificity hypothesis suggests that individuals are drawn to information 

that reflects their current mood (Beck, 1976). Therefore, when an individual with a negative 

interpretation bias is in a negative mood, they will interpret environmental stimuli as negative, and 

be drawn to this information. Attentional control theory (Eysenck & Calvo, 1992) posits that 

attention shifting difficulties can result in fixating on self-referent stimuli. Thus, an inability to shift 

attention from self-referent information can result in fixation and rumination. Further, if an 

individual’s cognitive control is inhibited, their ability to regulate their emotional response is also 

inhibited. As a result, fixation and rumination without cognitive control result in difficulty 

regulating strong emotion (Joormann & Siemer, 2011) and cause a heightened emotional response, 

i.e., exacerbated symptomology. Hence, a bias toward negative information can impede successful 

emotion regulation. 
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Measurement and Analysis of Interpretation Bias and Cognitive Control 

Interpretation bias is typically measured using ambiguous written scenarios. Participants are 

presented with a series of ambiguous phrases or scenarios with a final word presented as a fragment 

that they must solve. The valence of the ambiguous scenario is determined by this final word. For 

example, “You’ve just started reading a new book that you bought and you find it to be …”, with 

results being scored as negative (e.g. “boring”) or positive (e.g. “interesting”) (Hallion & Ruscio, 

2011). These scores for positive and negative interpretations are then analysed to examine 

differences between clinical groups, and while they identify group differences, they do not offer 

insight into the cognitive processes that underlie the decision making.  

Cognitive control is primarily measured using computer tasks that evoke a Stroop effect or 

Simon effect. These tasks employ a stimulus-stimulus (Stroop effect) or stimulus-response (Simon 

effect) conflict that requires cognitive control to inhibit an automatic behaviour and execute the 

response correctly (O’Leary & Barber, 1993).  These tasks are typically timed tasks from which 

response times for differing stimuli, for example affective versus neutral, are compared between 

groups. When analysed comparing response time alone, these tasks do not allow for inferences to be 

made about the cognitive processes that underlie the decision making.   

Thus, the aim of the current study was to examine the cognitive processes that underlie 

interpretation bias and cognitive control, and their relationship to emotion regulation using an 

evidence accumulation model of analysis. Evidence accumulation models can tease apart the 

cognitive processes that are responsible for interpretation bias and cognitive control. These models 

separate the underlying cognitive processes in speeded binary decision tasks using a small number 

of parameters. The parameters of the models represent well-defined and theoretically meaningful 

psychological constructs, and offer inferences into the cognitive processes that are hidden from 

traditional analysis (Donkin, Brown & Heathcote, 2011; Voss, Rothermund & Voss, 2004; Voss & 

Voss, 2007). By isolating and quantifying the components of cognition that underlie speeded 



 
 

82 

decision making, evidence accumulation models can provide evidence about cognitive processes 

that are hidden from traditional analysis (Voss, Rothermund, & Voss, 2004; Voss & Voss, 2007).  

However, as evidence accumulation models can only map data from speeded binary 

decision tasks, the data from popular measures of interpretation bias are not suited to this kind of 

analysis. Therefore, we have chosen to use an alternative, two choice speeded response task to 

measure interpretation bias in this study. By using a yes/no task based on an affective go/no-go 

paradigm (Tottenham, Hare, & Casey, 2011) we were able to measure both interpretation bias and 

cognitive control using the same task.   

The go/no-go association task (GNAT; Nosek & Banaji, 2001) uses mean RTs and signal 

detection measures to evaluate automatic preferences to stimuli that may reveal individual 

differences in attitude or interpretation. Traditionally used to discern social bias toward in-groups 

and out-groups, the GNAT was designed to assess judgments that reflect automatically activated 

evaluation without the participant’s conscious awareness or control (Nosek & Banaji, 2001). More 

recently the GNAT has also been used within clinical research to assess the role of cognitive control 

in attentional processes (e.g. Erickson et al., 2005; Gole et al., 2012), as well as the ability to 

discriminate mood congruent emotional stimuli from mood incongruent stimuli (e.g. Tottenham et 

al., 2010).  

The GNAT requires participants to identify a stimulus that is presented on the screen as 

belonging to a target category (go) or not (no-go). Stimuli that belong to the category in question 

are termed targets, and stimuli that do not belong are termed distractors. Targets are presented at a 

higher rate than distractors to instigate a propensity for “go” responses, increasing the cognitive 

effort needed to inhibit responses to distractor stimuli. This increased cognitive load on executive 

functioning is hypothesised to tax an individual’s inhibitory control (Schulz et al., 2007), that is, their 

ability to inhibit the “go” response that is expected. When the target is presented, participants press 

a key, and when a distractor is presented, they make no overt response. The yes-no version of the 

GNAT is very similar except that response keys are labelled “yes” and “no”, and participants are 
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required to respond to the distractor stimuli by pressing a different button to identify them. When 

the stimulus presented is strongly associated with an attribute in line with the participant’s own 

implicit beliefs, response times will be faster, indicating the presence of an interpretation bias. 

Interpretation bias is primarily identified through judgments of ambiguous stimuli. 

Emotional expressions of stronger intensity are easier to identify than ambiguous expressions. Thus, 

the latter result in longer response times (RTs) and increased error rates (Palmer, Huk, & Shadlen, 

2005). As such, if strongly emotive stimuli are used, a ceiling effect can mask differences between 

participants of different clinical status. In contrast, when the stimuli are more ambiguous, 

individuals with an interpretation bias will identify the ambiguous stimuli as emotive more quickly 

than those without an interpretation bias. This is hypothesised to be a function of inhibited cognitive 

control, which is associated with impulsive responding and decision making, the same processes 

hypothesised to underlie emotion regulation difficulties (Joormann & Quinn, 2014).  

To obtain measures of cognitive bias from the GNAT family of tasks, some researchers use 

mean response times, and omission and commission errors (e.g. Erickson et al., 2005; Gole et al., 

2012; Waters & Valvoi, 2008). Others use signal detection analysis (Nosek and Banaji, 2001; 

Pacheco-Unguetti et al., 2012; Redick et al., 2011; Schulz et al., 2007; Tottenham et al., 2011), 

which separates perceptual bias from decisional bias. Signal Detection theory categorizes D prime 

(d') as a measure of perceptual bias that captures an individual’s sensitivity to the stimuli (Nosek 

and Banaji, 2001; Pacheco-Unguetti et al., 2012; Redick et al., 2011; Schulz et al., 2007), and 

response caution (C) as a measure of decisional bias that identifies whether individuals are more 

conservative or liberal in their responding (Lynn & Barrett, 2014). Perceptual bias is a function of 

the properties of the stimulus, such as physical quality, or semantic clarity, and thus is dependent on 

elements beyond an individual’s control. Whereas, decisional bias is based on an individual’s 

inclination to identify a stimulus as belonging to the target category, which is often based on 

experience and expectation. In this study, we used a different method of analysis derived from 

evidence accumulation models that can separate cognitive processes in a similar, but more specific 
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manner than Signal Detection theory, by also considering the time course of the decision process 

(White et al., 2016). 

We have chosen to use the diffusion decision model (Ratcliff, 1978; Ratcliff & McKoon, 

2008; Ratcliff & Smith, 2015) because it is one of the most broadly applied of the evidence 

accumulation models. The diffusion decision model has been shown to account well for the data 

from two-choice yes-no tasks (Ratcliff & McKoon, 2008), and the two-choice version of the go/no go 

task can be more easily mapped with the diffusion model than the traditional go/no go version 

(Gomez, Ratcliff, & Perea, 2007). Importantly, the addition of an inhibitory response button (i.e., the 

“no” button as opposed to a timed-out non-response) does not affect the integrity of the cognitive 

processes being measured (Shanoy & Angela, 2012). The interpretational validity of the diffusion 

decision model has been confirmed (Voss, Rothermund & Voss, 2004), as has the ability of the 

model to robustly detect moderate changes to the response distribution across trials (Ratcliff, 2013). 

Ratcliff’s diffusion model fits behavioural data as well as, or better than, competing models 

(Ratcliff & Smith, 2015, 2004; White et al., 2010). 

Evidence accumulation models of analysis can be difficult to fit to data, and as such, much 

of the work analysing clinical disorders using evidence accumulation models has come from 

researchers with a strong mathematical psychology background (e.g. Heathcote et al., 2015; White, 

Ratcliff, Vasey, & McKoon, 2010; White, Skokin, Carlos, & Weaver, 2016).  However, with 

several methods of fitting the models to data now available to researchers (Fast-dm, Voss & Voss, 

2007; EZ diffusion, Wagenmakers, van der Maas, & Grasman, 2007; DMAT, Vandekerckhove & 

Tuerlinckx, 2008), the models are becoming easier to use and apply for researchers without a 

mathematical psychology background.   

This study applied the diffusion decision model using the program fast-dm (Voss & Voss, 

2007), to measurement data from the yes-no task to explore the cognitive processes that are 

responsible for interpretation bias in response to facial expressions, and emotion regulation 

difficulties. We have chosen to use facial stimuli as opposed to written words due to the salience 
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and universality of facial expressions (Bradley, Mogg, & Millar, 2000; Ekman & Friesen, 1986). In 

line with Beck's (1976) content specificity hypothesis linking attentional processes to mood, the link 

between emotional disorders and threatening and dysphoric information, we have chosen to use 

happy, sad, and angry expressions. By comparing judgments of non-ambiguous expressions with 

judgments of mild, and thus ambiguous expressions, we aimed to examine which cognitive 

processes are affected by ambiguous information in a non-clinical sample, i.e., which processes are 

responsible for interpretation bias.  

In identifying the processes that underlie interpretation bias, we can better understand how 

we may be able to more effectively target treatments to minimise the negative impact of 

interpretation bias in everyday life.  Further, we explored the concurrent validity of cognitive 

control as a measure of emotion regulation difficulty. To date, research into emotion regulation 

difficulties has commonly used self-report measures such as the Difficulties with Emotion 

Regulation Scale (DERS; Gratz & Roemer, 2004a). While the DERS itself has good psychometric 

properties, the inability to remove response bias for socially acceptable answers, and a lack of self-

awareness of emotions in some populations (i.e. alexithymia), are a concern with all self-report 

measures. Therefore, the benefit of a cognitive measure that can capture emotion regulation 

difficulties irrespective of an individual’s desire to respond in a socially acceptable manner or their 

lack of awareness of their emotions offers a potential increase in construct validity. 

The Diffusion Decision Model  

The diffusion decision model is based on the theory that when an individual chooses 

between two options, they accumulate evidence for one or the other option until a decision 

threshold is reached, and a response is executed. The model decomposes behavioural data - 

accuracy, mean response times, and response time distributions – obtained from speeded two-choice 

decision making performance into four parameters: boundary separation, relative starting point, 

drift rate and non-decision time (see Figure 2 and Table 1).  
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Figure 2. Diffusion decision model response parameters, boundary separation (a), relative 

starting point (zr), drift rate (v), non-decision time (t0) for a decision where the response alternatives 

are yes and no, as per the yes-no task. (Diagram adapted from Voss & Voss, 2007; used with 

permission) 

 

Boundary separation (a). The participant’s response caution is reflected in the separation 

between a lower decision boundary (0) and an upper decision boundary (a), each of which 

corresponds to one of the two available choices, “yes” and “no”. Because the value of the lower 

boundary is fixed at 0, a larger value of a indicates a larger boundary separation, meaning that the 

individual requires more evidence to reach a decision (Voss & Voss, 2007). A larger boundary 

separation, holding all else equal, will result in responses that are on average slower but more 

accurate. Boundary separation is our measure of cognitive control.  

Relative starting point (zr). Relative starting point is the point between the decision 

boundaries from which evidence accumulation starts, measured as a proportion of boundary 

separation. This parameter reflects the bias an individual has for one response option over another 

based on their expectancy of that response derived from past experiences (White et al., 2016). For 

example, if an individual has learnt that one kind of emotion is more likely than others, they may 

have a biased expectation, and thus a biased start point, for responding “yes” to that emotion.  
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Table 1. 

Typical parameter values of the drift-diffusion model as returned by fast-dm.(Voss, Voss, & Lerche, 

2015) 

Parameter Typical range Description 

Boundary separation (a) 0.5 < a < 2 Larger values equate to a more 

conservative decision style 

Relative Starting Point (zr) 0.3 < zr < 0.7 Deviations from 0.5 indicate that different 

amounts of evidence are required to make 

a decision for the alternative responses. 

Drift rate (v) -5 < v < 5 The rate of evidence accumulation. Values 

further from zero indicate stronger 

evidence. Positive values indicate 

evidence for the upper threshold response, 

negative values indicate evidence for the 

lower threshold response.  

Non-decision time (t0) 0.1 < t0 < 0.5 Average duration of all non-decisional 

processes (encoding and response 

execution). 

 

The closer the starting point is to either boundary, the shorter the processing time will be for the 

corresponding response, and thus indicative of a decisional bias. An unbiased starting point will be 

returned as 0.5, indicating an equal distance from either decision boundary. 
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Drift rate (v). Drift rate is the mean rate of evidence accumulation toward one choice or the 

other, that is, the rate of approach to the decision threshold. A higher drift rate means faster 

accumulation of evidence. Drift rate is generally a function of stimulus or evidence quality. The 

easier an individual finds a stimulus to identify, the higher the drift rate. A higher drift rate for one 

emotion relative to others indicates a perceptual bias for that emotion. 

Non-decision time (t0). The final parameter of relevance is non-decision time, t0, the time 

needed for sensory encoding prior to the evidence accumulation process and for response execution 

once a decision boundary has been crossed. This parameter is the component of response time that 

is not related to decisional processes.  

Mapping Parameters onto Current Theory 

Interpretation bias may be the result of numerous cognitive processes: perceptual bias, 

decisional bias, cognitive control, and/or non-decisional components of decision making. We 

hypothesised that perceptual and decisional biases are the most likely cognitive processes to 

underlie interpretation bias. To assess this, we examined the processes responsible for interpreting 

ambiguous stimuli in a non-clinical sample. We compared the fast-dm parameters returned from 

analysing two sets of data from the yes/no task. Data came from two groups of participants. One 

group was exposed to stimuli consisting of only clearly identifiable facial expressions, and the other 

group was exposed to clearly identifiable facial expressions intermixed with mild/ambiguous 

emotional expressions. Our goal was to identify which parameters are responsible for interpretation 

of affective stimuli of an ambiguous nature. Additionally, because cognitive control is related to 

inhibition difficulties, i.e., impulsiveness and difficulty regulating strong emotion, we explored the 

relationship between diffusion model parameters with scores on the difficulties with emotion 

regulation scale. Both the total score as well as the more specific impulsiveness sub scale was used 

for this purpose. From this, we aimed to explore the suitability of the yes/no task as a cognitive 

measure of emotion regulation difficulties.  
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We expected that increased cognitive control would be represented by a larger boundary 

separation, which we operationalised as a potential indicator of emotion regulation capacity. Given 

the non-clinical sample, we do not expect this parameter to differ between groups. However, as 

wider boundary separation indicates more conservative responding we expect decreased boundary 

separation to be associated with inhibited cognitive control, and thus to correlate with emotion 

regulation difficulties scores. 

Due to the increased proportion of yes responses relative to no responses in the yes-no task, 

we expect to see a start point bias toward yes across all participants. This start point bias is expected 

to be moderated by the inclusion of ambiguous stimuli as the ambiguity of the expressions may 

drive down the subjective probability of a yes response in the emotion conditions, and conversely it 

may drive up the subjective probability of a yes response in the neutral conditions. As a result, 

differences in start point across conditions are indicative of a decisional bias for that emotion.  

Drift rate represents the rate at which evidence accumulates for whether the stimulus 

belongs to the target group. As the evidence derived from the ambiguous stimuli is poorer, we 

expect that drift rates would be higher for the group that is presented with only stronger intensity 

emotional stimuli than the group that is also presented with ambiguous stimuli. A higher drift rate 

for one emotional condition relative to the other emotional conditions indicates a perceptual bias.  

Given the non-clinical nature of the sample, there was no theoretical reason to expect 

differences between groups in non-decision time. However, non-decision time may correlate with 

emotion regulation difficulties if the emotional stimuli evoke a hyper-vigilant response in 

individuals with poor cognitive control/difficulty regulating emotion. Additionally, as negative 

interpretation bias has been linked to emotion regulation difficulties, we also explored the 

relationship between drift rate and starting point with scores on the difficulties with emotion 

regulation scale. As we expect interpretation bias to be captured by starting point and drift rate, and 

interpretation bias has been associated with emotion regulation difficulties, we expected that 
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starting point and drift rate for angry and sad emotional facial expressions would correlate with 

emotion regulation scores.  

Method 

This study received ethics approval from the Flinders University Social and Behavioural 

Research Ethics Committee (Project number 6259: Investigating cognitive mechanisms 

underpinning emotional cognitive biases in individuals with varying levels of emotional disorders). 

Participant Characteristics and Exclusion Criteria 

One hundred undergraduate women were recruited through the university’s research 

participation program. Fifty participants received course credit for a first-year psychology topic, and 

fifty participants received $15 remuneration. Seven participants were excluded from the final data 

set for failing attention checks in the self-report measures. Thus, data from 93 participants, with a 

mean age of 22 years (min 17, max 47, median 20), were used in the final analysis. 

Design 

A 4 (emotion: happy, sad, angry, neutral) x 2 (response: yes, no) x 2 (stimuli: strong, mixed) 

mixed design was used, with stimulus type as the between subjects’ factor. Dependent measures 

were fast-dm 30 parameters a, sz, v, and t0. The fast-dm 30 parameters for each emotional 

condition, happy, sad, angry, neutral, were used to explore their relationship with scores on the 

clinical measure of emotion regulation difficulties (total score and impulsiveness subscale). 

Materials  

In line with other research in this area (Arndt & Fujiwara, 2012; Niles et al., 2013; 

Paulewicz et al., 2012; Nim Tottenham et al., 2011), we selected facial stimuli from the NimStim 

database (Tottenham et al., 2009). This database consists of 646 facial expression stimuli across 43 

faces of different gender and race. The database has expressions consisting of fearful, happy, sad, 

angry, surprised, calm, neutral, and disgusted, each with validity ratings (Tottenham et al., 2009). 

There are two sets of each expression. One set consists of the expressions with models’ mouths 

open, and the other set consists of expressions with mouths closed. In this study, faces with angry, 
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happy, sad, and neutral expressions were selected from the set with mouths closed. The mouths-

closed stimuli were chosen to ease the morphing process that was used to create a mild subset of 

happy, sad and angry expressions. Three faces were excluded as the models did not present with all 

four (angry, happy, sad, neutral) expressions. The remaining stimuli consisted of digital 

photographs of 40 individuals (18 females and 22 males), depicting each of the four expressions 

(happy, sad, angry, neutral). All pictures were presented in a black rectangular frame and cropped to 

just around the face to remove distinguishing external features, allowing the focus to be on the 

expression. All images were of equal size (332x458 pixels), resolution (120 pixels/inch), and RGB 

colour depth (8bpc). A subset of mild emotions was created by morphing faces of each valence with 

the corresponding neutral faces using the Fantamorph (Abrosoft, 2013) software program. These 

mild faces were morphed to a strength of 50%, exactly halfway between the original stronger 

intensity emotion and the corresponding neutral face.  

Procedure 

Data for the yes/no task were collected at the same time as data for another study 

investigating an alternative task, the dot probe task (Manuel, Kemps & McCarley, under review). 

Both tasks were completed on a Dell desktop computer with a standard QWERTY keyboard in one 

testing session that lasted approximately 45 minutes. The cognitive tasks (dot probe and yes/no 

task; counterbalanced) were presented first to avoid any mood induction that might result from the 

question content of the self-report measures. The yes/no task was run using Neurobehavioral 

Systems Inc. software. The clinical measures were collected in Qualtrics, an online survey program. 

The clinical measures were presented in the same order for each participant with the Difficulties 

with Emotion Regulation Scale (DERS) presented first, followed by the Depression, Anxiety and 

Stress Scale (DASS); only the DERS was used in this study.  

Interpretation Bias/cognitive control: Yes/no task. (Tottenham et al., 2011). The yes/no 

task consisted of four blocks of 80 trials. For each trial, a single face appeared centred horizontally 

and vertically on a black background, and remained until the participant made a response indicating 
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that the expression did or did not match a target emotion. Participants were instructed to respond as 

quickly and accurately as possible. Response keys were the up arrow for “yes” and the down arrow 

for “no”, labelled accordingly. A 500ms inter-stimulus interval followed the participant’s response, 

after which the next trial began automatically.  

At the beginning of each block, participants were asked, “Are the following faces 

neutral/happy/sad/angry?” The stimulus face matched the target valence on 2/3 (56 trials) of the 

trials within each block, to encourage a “yes” bias and the subsequent load on cognitive control 

when needing to inhibit the “yes” response on presentation of a distractor stimulus. On the 

remaining trials (24 trials), the stimulus faces expressed one of the three distractor emotions for that 

block. For example, if happy was the target emotion, distractor emotions were angry, sad and 

neutral. Target and distractor stimuli were generated randomly using a randomization algorithm. 

The order of the blocks was counterbalanced between participants.  

The task had two stimulus sets. One group were shown emotional expressions of the original 

strength (“Strong” group; 48 participants), while the other group were shown emotional expressions 

that consisted of an equal mix of the original stronger intensity expressions and the morphed, 

milder, more ambiguous expressions (“Mixed” group; 45 participants).  

Difficulties with emotion regulation scale (DERS; (Gratz & Roemer, 2004a). This 36-item 

self-report questionnaire consists of six dimensions of emotion regulation: (a) non-acceptance of 

emotional reactions; (b) difficulty engaging in goal-directed behaviour; (c) difficulty controlling 

impulses; (d) lack of emotional awareness; (e) limited access to emotion-regulation strategies; and 

(f) lack of emotional clarity. The DERS begins each item with the phrase, “When I’m upset…”. 

Participants rate each item on a five-point Likert scale from “almost never” (1) to “almost always” 

(5). Eleven items are reverse scored. Both the total score and the difficulty controlling impulses 

subscale were used in this study (hereafter referred to as the impulsiveness subscale). The total 

score can range from 36 to 180, and the impulsiveness subscale score ranges from 6-30, with a 

higher score representing increased difficulty with emotion regulation. In non-clinical samples of 
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adults, the DERS has an average total score of 75-80 (Gratz & Roemer, 2004). There are no 

published norms for the subscales. The DERS has high internal consistency (=.93), good test-

retest reliability (ρI=.88), and satisfactory construct and predictive validity (Gratz & Roemer, 2004). 

Within this sample, Cronbach’s alpha was .95.  

Analysis 

Data Cleaning and preparation. 

Yes/No task. RTs less than 150ms and more than 3 standard deviations from each 

participant’s mean RT for each response by condition and strength were removed, accounting for 

.02% of total responses. Fast-dm 30 was run in line with recommendations from Voss, Voss, and 

Lerche's (2015) tutorial paper. The fast-dm 30 control file was set to allow non-decision time, start 

point, and boundary separation to vary across participants. Drift rates for “yes” and “no” were 

mapped separately, with trials for the strong and ambiguous “yes” facial expressions for the mixed 

stimuli group also mapped separately. These values were combined to provide an average drift rate. 

Additional parameters examining variability in starting point, drift rate, and non-decision time can 

also be introduced into model analysis. While more parsimonious models can be preferable to more 

complex models (Lerche & Voss, 2016), it has been recommended to include non-decision time 

variability in the model in order to achieve stable parameter estimates (Voss et al., 2015; Lerche and 

Voss, 2016). Therefore, inter-trial variability of non-decision time (st0) was also allowed to vary 

across participants.  

Model fit was assessed by the Kolmogorov–Smirnow (KS) statistic provided by the fast-dm 

30 software. The KS statistic assesses whether the distribution of observed data differs significantly 

from a predicted distribution. The KS fit statistic returned by fast-dm 30 did not reveal any 

significant deviations between empirical and estimated RT distributions for any of the participants. 

As Voss et al. (2015) caution against relying solely on the fit statistic returned by fast-dm 30 and 

recommend plotting the data graphically. Comparison of empirical and predicted response time 

distributions for each expression (happy, angry, sad, neutral) were plotted, along with quantile 
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probability plots comparing empirical and predicted response times for the 25th, 50th, and 75th 

percentiles of each expression (happy, sad, angry). These plots are displayed in Appendix 2. 

DERS. DERS responses were checked for skewness and kurtosis, and were within 

acceptable limits (+/- 2). There were no outliers. 

Fast-dm 30 analysis. A mixed ANOVA was conducted to analyse differences in parameters 

between the two stimulus subsets. Bonferroni correction was applied, and where sphericity tests 

indicated it applicable, the Greenhouse Geisser correction was applied. 

Relationship between fast-dm parameters and DERS. Correlations were used to explore 

whether fast-dm 30 parameters were associated with the clinical outcome measures of the DERS 

total score and impulsiveness subscale.  

 Results 

Response Times 

Response times for yes and no responses are displayed in Figure 2. A 4 (emotion: happy, 

sad, angry, neutral) x 2 (response: yes, no) x 2 (stimuli: strong, mixed) mixed ANOVA was used to 

examine the effect of stimulus strength on response times for each emotional expression and 

response type. There were main effects of emotion F(2.69, 91) = 45.89, p < .001, 2
partial = .34, and 

response F(1, 91) = 51.48, p < .001, 2
partial = .36, but not of stimuli F(3, 91) = .24, p = .62, 2

partial 

= .003. Pairwise comparisons revealed that mean response times to stimuli in the happy condition 

were the fastest, with response times 73ms faster than responses in the neutral condition (p = .001), 

169ms faster than the angry condition (p < .001), and 237ms faster than the sad condition (p < 

.001). Responses in the neutral condition were second fastest, on average 96ms faster than the angry 

condition (p < .001) and164ms faster than the sad condition (p < .001). Responses in the angry 

condition were an average of 68ms faster than the sad condition (p = .03), with responses in the sad 

condition the slowest. Pairwise comparisons for response type revealed that “yes” responses were 

an average of 94ms slower than “no” responses (p < .001). Additionally, there was a significant 3 

way interaction F(2.74, 249.66) = 4.54, p = .005, 2
partial = .05. Post hoc analyses using a series of 
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independent samples t-tests showed that the only group difference was for “yes” responses in the 

neutral condition. The group that had been presented with a mix of stronger intensity and  

 

Figure 2. Mean response times (ms) for each stimulus type (strong, mixed) and emotion (neutral, 

sad, happy, angry); error bars are within subjects’ standard errors. 

Strong n=48, Mixed n=45 

 

ambiguous expressions among the distractor stimuli were significantly faster (M = 779, SD = 174) 

to respond “yes” than the group that had been presented with only stronger intensity distractor 

stimuli (M = 923, SD = 347), t(70.16) = 2.57, p = .012, d = 0.52. There were no significant 

differences between groups for the other emotion-response combinations (all p values >.05).  Thus, 

the inclusion of ambiguous information did not appear to affect response times in this sample.  

Diffusion Model Parameters 

Boundary separation (a). A 4 (emotion: happy, sad, angry, neutral) x 2 (stimuli: strong, 

mixed) mixed ANOVA was used to examine differences between boundary separation values (a; 

figure 3) across emotions and stimulus types. There was no effect of emotion, F(3, 273) = 1.99, p = 
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.12, 2
partial = .02, indicating no significant difference for a across emotions.  However, there was a 

main effect of stimulus type, F(1,91) = 3.94, p = .05, 2
partial = .04, indicating that boundary 

separation was smaller, and thus decisions were less conservative with the inclusion of ambiguous 

expressions (M = 1.55, SD = .34) relative to clearer, more intense expressions (M = 1.68, SD = .45). 

There was a significant interaction between emotion and stimulus type, F(3,273) = 5.33, p = .001, 

2
partial = .06. Independent samples t-tests identified that stimulus type only influenced the 

identification of neutral faces, such that boundary separation was smaller, and thus less 

conservative, for the group presented with both ambiguous and strong expressions (M = 1.42, SD = 

.25), than the group presented with only strong expressions (M = 1.70, SD = .49, t(71.58)= 3.56, p 

=.001, d = 0.72). There was no difference between groups for happy (mixed M = 1.64, SD = .41, 

strong M = 1.60, SD = .41, t(91)= 0.52, p =.61, d = 0.10), sad (mixed M = 1.58, SD = .35, strong M 

= 1.73, SD = .45, t(91)= 1.74, p =.09, d = 0.37), or angry (mixed M = 1.54, SD = .35, strong M = 

1.70, SD = .47, t(86.71)= 1.79, p =.08, d = 0.39) emotional expressions. These results indicate that 

the inclusion of ambiguous stimuli resulted in less conservative decision-making in the neutral 

condition. This was contrary to our expectation that stimuli strength would not impact boundary 

separation.  

 

 

0.50

0.75

1.00

1.25

1.50

1.75

2.00

happy sad angry neutral

a

Expression

Strong

Mixed



 
 

97 

Figure 3. Boundary separation for each emotion by stimulus type; error bars are within subjects’ 

standard errors. 

 

Relative starting point (zr). A 4 (emotion: happy, sad, angry, neutral) x 2 (stimuli: strong, mixed) 

mixed ANOVA was used to examine differences between relative starting point values (zr; figure 4) 

for each expression and stimulus type. A main effect of emotion, F(3,273) = 20.27, p < .001, 2
partial 

= .18, indicated a significant difference for zr across emotions. Pairwise comparisons revealed that 

the mean relative starting point value for the happy condition (M = .65, SD = .10) was higher than 

for the neutral (M = .53, SD = .13, p <.001) and sad (M = .60, SD = .11. p = .40) conditions, 

indicating a “yes” bias for happy relative to neutral and sad facial expressions. Additionally, the 

starting points for the sad and angry (M = .63, SD = .13) conditions were also significantly higher 

than for the neutral condition (both p values < .001).  There were no significant differences between 

the starting points of happy and angry (p = 1.00), or sad and angry (p = .37) emotional expressions. 

There was a main effect of stimulus type, (mixed M = .56, SD = .12, strong M = .62, SD = .11), 

F(1,91) = 5.89, p = .02, 2
partial = .06, indicating that the starting point for the strong expression 

group was higher than the mixed expression group. The interaction between emotion and stimulus 

type approached significance, F(3,273) = 2.45, p = .06, 2
partial = .03. Independent samples t-tests 

identified a significant difference between groups for the sad condition, t(91)= 2.15, p =.03, 

approaching significance for the angry, t(91)= 1.90, p =.06, and neutral, t(91)= 1.98, p =.051, 

conditions, with no difference between groups in the happy condition, t(91)= 1.10, p =.27. Thus, 

starting point differed across expressions and between stimulus type, and indicated a trend toward 

those differences being more prominent for the sad, angry, and neutral conditions.  
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Figure 4. Relative starting point for each emotion by stimulus strength; error bars are within 

subjects’ standard errors.  

 

Drift rate (v). A 4 (emotion: happy, sad, angry, neutral) x 2 (stimuli: strong, mixed) mixed 

ANOVA was used to examine differences between drift rate values (v, figure 5) for each expression 

and stimulus type. A main effect of emotion, F(3, 273) = 21.23, p < .001, 2
partial = .19, indicated a 

significant difference for v across emotions. Pairwise comparisons revealed that happy (M = -0.49, 

SD = 0.96) was easier to identify than angry (M = -0.84, SD = 0.78, p  = .03), neutral (M = 0.02, SD 

= 0.82) was easier to identify than happy (p  < .001), sad (M = -0.31, SD = 0.79) was easier to 

identify than angry (p < .001), but more difficult than neutral (p = .01), and neutral was easier to 

identify than angry (p <.001). Only the drift rates for happy and sad did not differ (p = .91). One 

sample t-tests revealed that the drift rates for happy, t(92) = 4.88, p < .001, sad, t(92) = 3.83, p < 

.001, and angry, t(92) = 10.30, p < .001, were all significantly different from zero, indicating that 

drift rate was stronger for distractor stimuli than the target stimuli. The drift rate for the neutral 

condition did not significantly differ from zero, t(92) = 0.18, p = .86, indicating that there was no 

difference in drift rate for emotional distractor stimuli or neutral stimuli.  

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

happy sad angry neutral

zr

Expression

Strong

Mixed



 
 

99 

There was no main effect of stimulus type, F(1,91) = 0.02, p = .90, 2
partial < .001, but there 

was a significant interaction between emotion and stimulus type, F(3, 273) = 8.80, p < .001, 2
partial 

= .09. Independent samples t-tests identified that drift rate differed between groups for the neutral 

condition, t(91) = 4.93, p < .001, but not for happy, t(91) = 1.84, p = .07, sad, t(91) = 1.16, p = .25, 

or angry, t(80.95) = 0.50, p = .62, signifying that the inclusion of ambiguous stimuli only impacted 

the neutral condition. To further examine the impact of the inclusion of ambiguous expressions on 

participants’ ability to identify the more intense expressions, a 3 (emotion: happy, sad, angry) x 2 

(stimuli: strong, mixed) mixed ANOVA was used to compare the drift rate for only the “strong” 

expressions in each group (figure 6). There was no main effect of group, F(1.73, 157.38) = 1.08, p = 

.33, 2
partial = .01, indicating that drift rates for the strong stimulus “yes” trials did not differ 

between groups. However, there was a significant interaction, F(1, 91) = 12.16, p = .001, 2
partial = 

.12. Independent samples t-tests identified that in the happy condition drift rates were faster for the 

intense emotions in the mixed stimuli group (M = 3.27, SD = 1.87) than in the strong stimuli group 

(M = 2.43, SD = 1.21), t(91) = 2.58, p = .01, d = 0.53. There was no difference between groups for 

drift rates in the sad (mixed M = 1.74, SD = 1.17, strong M = 1.37, SD = 0.81, t(77.71) = 1.74, p = 

.09, d = 0.37) or angry (mixed M = 1.42, SD = 1.18, strong M = 1.03, SD = 0.97, t(91) = 1.78, p = 

.08, d = 0.36) conditions. This suggests that the inclusion of ambiguous stimuli seems to have a 

rebound effect – making the “strong” stimuli easier to identify. 
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Figure 5. Drift rates for each emotion; error bars are within subjects’ standard errors. 

 

Figure 6. Drift rates for the strong expression stimuli within each group; error bars are within 

subjects’ standard errors. 

 

Non-decision time (t0). A 4 (emotion: happy, sad, angry, neutral) x 2 (stimuli: strong, mixed) 

mixed ANOVA was used to examine differences between non-decision time values (t0, figure 7) 

for each expression and stimulus type. A main effect of emotion, F(2.75, 250.13) = 12.30, p < .001, 

2
partial = .12, indicated a significant difference for t0 across emotions. Pairwise comparisons 

revealed that non-decision time for the happy condition (M = .43, SD = .07) was significantly faster 

than for the sad (M = .48, SD = .10, p <.001), angry (M = .48, SD = .09, p <.001), and neutral (M = 

.49, SD = .08, p < .001) conditions. However, non-decision time did not significantly differ between  
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Figure 7. Non-decision time for each emotion; error bars are within subjects’ standard errors. 

 

neutral and angry, neutral and sad, or sad and angry expressions (all p values = 1.00). There was no 

main effect of stimulus type, F(1, 91) = 2.03, p = .16, 2
partial = .02, nor was there a significant 

interaction between emotion and stimulus type, F(2.75, 250.13) = 0.05, p = .98, 2
partial = .001. 

Therefore, non-decision time was faster when identifying happy expressions than it was when 

identifying sad, angry, or neutral expressions.  

Clinical Measures.  The mean total score of the DERS (M = 92.60, SD = 23.52) was slightly 

above the non-clinical range of 75-80 identified by Gratz and Roemer (2004), indicating that the 

sample included a range of individuals with clinically significant scores. The mean score of the 

impulsiveness subscale (M = 14.10, SD = 5.53) was around the mid-point of the scale, indicating 

that impulsiveness difficulties across the sample were reported to occur “about half the time”.  

As can be seen in table 2, the total score on the DERS was negatively correlated with boundary 

separation, indicating that a more conservative response criterion in the face of angry stimuli is 

indicative of better emotion regulation skills; however, this result was no longer significant 
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Table 2 

Correlations between fast-dm parameters and DERS total score and impulsiveness subscale 

  Total score  Impulsiveness 

 
Happy Sad Angry Neutral Happy Sad Angry Neutral 

zr -0.08 0.05 -0.01   -0.06 0.09 0.10 -0.02 -0.06 

a -0.17 -0.13 -0.23*  -0.15 -0.34** -0.28** -0.36** -0.27** 

vyes 0.03 0.08 0.27**  0.09 0.10 0.03 0.17 0.08 

vno 0.08 0.10 0.11  0.12 0.00 -0.03 0.05 0.08 

t0 -0.01 -0.12 -0.05  -0.09 -0.09 -0.13 -0.04 -0.08 

Note: * = significant at the .05 level; ** = significant at the .001 level. 

 

after Bonferroni correction and thus must be taken with caution. By contrast, the boundary 

separation and DERS impulsiveness subscale were negatively correlated across all emotions, with 

the relationship between impulsiveness and the angry condition remaining significant after 

Bonferroni correction. These results indicate that more conservative responding may be related to 

impulse control.   

Discussion 

Biased interpretation of affective information and difficulty regulating emotion have been 

linked to the onset and maintenance of clinical disorders such as anxiety and depression. However, 

popular measures of interpretation bias that involve ambiguous written scenarios are unable to 

identify the cognitive processes that are responsible for interpretation bias. Further, one of the most 

commonly used measures of emotion regulation difficulties, the difficulties with emotion regulation 

scale (Gratz & Roemer, 2004a), is a self-report measure. Self-report measures are open to response 
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bias and imprecise responding from individuals who lack of awareness of their own emotions, and 

thus can have compromised validity. As such, our aim was to investigate the decision-making 

processes that are responsible for interpretation of ambiguous stimuli in a non-clinical sample by 

analysing data from an affective yes-no task using the diffusion decision model (Ratcliff, 1978). We 

also explored the suitability of the decision-making parameters returned from the diffusion model 

analysis as an alternative cognitive measure of emotion regulation difficulties.  

We hypothesised that perceptual bias and decisional bias would be the most likely 

candidates underlying interpretation bias. Therefore, we expected that the inclusion of ambiguous 

stimuli would affect start point and drift rate, but not boundary separation or non-decision time. Our 

expectations were supported in that both start point and drift rate were affected by stimulus type. 

The increased ratio of “yes” to “no” trials resulted in a start point (decisional) bias toward “yes” for 

the emotion conditions in the strong stimuli group, indicating the stimulus ratio produced the effect 

that was expected.  

Further, we expected that the increased ambiguity of the emotional expressions might 

reduce the perceived ratio of “yes” to “no” responses in the emotional conditions, and increase the 

perceived ratio of “yes” to “no” responses in the neutral condition. There were indication of this 

trend in the sad and angry conditions, as the inclusion of ambiguous stimuli reduced the start point 

bias in the sad and angry conditions, but it did not affect the bias in the happy condition, and the 

reverse effect was not found for the neutral condition. The relatively higher start point in the happy 

condition for the mixed stimuli group indicates a decisional bias for positive emotion in that group. 

This indicates that ambiguous stimuli were interpreted more positively in this condition. As this 

study used a non-clinical sample, this finding is consistent with the content specificity hypothesis 

(Beck, 1976) which states that non-clinical individuals tend to interpret ambiguous information in a 

positive light, whereas individuals with depression are more likely to interpret information in a 

dysphoric manner, and those with anxiety are more likely to interpret information in a threatening 

manner. 
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We expected that the presence of a perceptual bias, as identified by the drift rate, would be 

more noticeable when using the ambiguous stimuli due to their equivocal categorisation. The 

inclusion of ambiguous expressions resulted in lower drift rates for the mixed group than the 

stronger intensity group overall. Additionally, differences existed across emotion such that in the 

neutral condition, participants accumulated evidence for neutral expressions more quickly than they 

did for emotional expressions. Conversely, in the angry condition, participants accumulated 

evidence more slowly for angry expressions than the mix of happy, sad, and neutral distractor 

expressions. However, this pattern was not dependent on stimulus strength. This finding indicates 

that lower drift rates resulting from the addition of ambiguous emotive stimuli in a non-clinical 

sample offers the potential to reduce ceiling effects that can result from stronger intensity emotive 

stimuli. Therefore, in a clinical sample, interpretation bias may result in higher drift rates, enabling 

us to identify perceptual bias.  

We did not expect boundary separation or non-decision time to differ between groups as a 

function of stimulus strength. This was not the case for boundary separation but was for non-

decision time. Contrary to our expectations, boundary separation differed between groups in the 

neutral condition. There was no effect of stimulus strength in the other conditions, however, 

inclusion of ambiguous stimuli in the neutral condition reduced decision caution. Non-decision time 

did not differ between groups, however non-decision times for happy expressions were faster than 

non-decision times for the other expressions, all of which did not differ from each other. This was 

unexpected as we did not expect any difference in non-decision time across conditions. As this was 

a non-clinical sample, this faster non-decisional time for happy expressions, is consistent with the 

content specificity hypothesis. This suggests that preference for mood congruent stimuli may also 

be a function of non-decision processes.  

As hypothesised, boundary separation was related to emotion regulation; however, this 

relationship was not strong. Increased impulsivity was related to less conservative responding 

across all emotions, and total difficulty with emotion regulation scores were related to smaller 
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boundary separation for the angry condition. While these relationships were found to exist, they 

were relatively weak, and many became non-significant after Bonferroni correction. There was no 

link between emotion regulation difficulties and starting point (decisional bias), suggesting that 

although a decisional bias toward happy emotional expressions was found, it was not a protective 

factor for emotion regulation difficulties. Further, drift rate parameters did not identify a link 

between perceptual bias and emotion regulation difficulties, and there was no link between non-

decision time and emotion regulation difficulties. Thus, although there are benefits to a cognitive 

measure that can capture emotion regulation difficulties irrespective of a social desirability bias or 

limited emotional self-awareness, the yes-no task did not identify a link with self-reported emotion 

regulation difficulties in a non-clinical sample.  

Taken altogether, drift diffusion analysis has identified the cognitive processes that underlie 

interpretation of ambiguous information in a way that RT analysis cannot. The inclusion of 

ambiguous stimuli identified a difference in both perceptual bias and decisional bias between the 

identification of stronger intensity and ambiguous expressions. This indicates that in a non-clinical 

sample, it appears that perceptual bias and decisional biases are affected by interpreting ambiguous 

expressions. Additionally, decision boundary and non-decision time are both affected by 

interpretation of different emotions irrespective of stimulus strength. Future research using clinical 

samples will need to confirm whether interpretation bias in individuals with anxiety and depression 

is based on perceptual bias, decisional bias, or both, and whether decision boundary and non-

decision time play a role in clinical group differences.  

As negative expressions are posited to be easier to discriminate for those with a negative 

bias, and ambiguous emotion is interpreted in a mood-congruent manner, this perceptual advantage 

may manifest in a perceptual bias. In this case, a threat bias (anxiety-related) may result in a higher 

drift rate for angry facial expressions than for sad or happy expressions, whereas and a dysphoric 

bias (depression-related) may result in a higher drift rate for sad facial expressions than for angry or 

happy expressions. Additionally, as individuals with anxiety and depression commonly have in their 
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history pertinent negative life events, they may possess an increased expectation that disorder-

congruent affect is more prevalent, resulting in a decisional bias. In this case, the bias would be 

evident in a higher start point reflecting the individual’s expectation of negative information. 

Diffusion model analysis would enable us to identify whether both perceptual and decisional biases 

underlie anxiety and depression, whether one is more prevalent for one disorder than another, or 

whether there are individual differences amongst individuals experiencing the disorders.  

In conclusion, the current study has demonstrated that diffusion decision model analysis can 

differentiate between the cognitive processes responsible for interpretation of ambiguous stimuli, 

and therefore has the potential to identify the underlying processes of interpretation biases involved 

in the onset and maintenance of clinical disorders. Such knowledge will benefit researchers in 

offering a better understanding of the underlying cognitive processes, and facilitate the development 

of more targeted methods of bias modification. It would also aid clinicians to more effectively 

formulate their treatment plans and provide more tailored interventions.    
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Abstract 

Efforts to modify cognitive biases in anxiety and depression to alleviate symptoms is a 

growing area of research. However, the cognitive processes responsible for successful bias 

modification are still not well understood. Therefore, the aim of this study was to use diffusion 

model analysis to identify which cognitive processes are affected by attentional bias modification 

training. An intervention study was carried out to assess the cognitive processes that underlie 

successful attentional bias modification for participants with a history of anxiety and depression, 

relative to those without. Participants (N = 252) performed an active or sham training paradigm, and 

their scores of attentional bias (using a dot probe task), and interpretation bias (using a yes/no task), 

were compared pre and post training. Results did not identify an attentional or interpretation bias at 

pre- training, and as such, there were no effects of training found. Therefore, the ability to identify 

the processes responsible for successful bias modification was impeded. Diffusion model analysis 

did identify differences in decisional processes for individuals with a history of anxiety and 

depression, relative to those without. The findings presented in this paper support the growing 

notion that attentional bias may not be a stable trait. To identify the processes responsible for 

successful attentional bias modification, recommendations are made to apply diffusion model 

analysis to data from an attentional bias modification dataset that has already established a 

successful change in attentional bias using mean RTs, and examine the effects of training that way.  

 

 

Key words: Attentional Bias Modification (ABM), Diffusion decision model, Anxiety, Depression, 

Fast-dm 30 
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Evidence accumulation analysis of attentional bias modification in anxiety and depression: 

 A failure to find attentional bias 

Anxiety and depression have the highest prevalence rates of all mental health disorders, and have 

high rates of relapse (Burcusa & Iacono, 2007; Scholten et al., 2013). One of the difficulties in 

treating these disorders has been attributed to the existence of implicit cognitive biases for disorder-

relevant information, which have long been posited to contribute to the onset and maintenance of 

anxiety and depression (Beck, 1976). Beck’s content specificity hypothesis states that anxiety is 

associated with an implicit preferential attention for threat-related information (attentional bias), 

and interpretation of ambiguous information in a threatening manner (interpretation bias). Similarly, 

depression is associated with an attentional bias for dysphoric information, and a dysphoric 

interpretation bias (Beck, 1976). These biased cognitive processes are hypothesised to exacerbate 

disorder-relevant symptoms through increasing emotion regulation difficulties (Cisler & Olatunji, 

2012; Joormann & Quinn, 2014).  

Emotion regulation is the ability to monitor, evaluate, and modify the magnitude and 

duration of one’s emotional reactions (Svaldi et al., 2012). Being able to regulate strong emotion is 

an important part of social functioning and good mental health (Gross, 2013). The inability to 

regulate strong emotional reactions can result in impulsive responding, which is detrimental to 

social connectedness. Reacting impulsively to emotion can alienate others and increase feelings of 

isolation (Gross, 2013). As a result, these experiences of increased negative emotion can exacerbate 

disorder-relevant symptoms, leading to the onset and maintenance of affective disorders such as 

anxiety and depression (Cisler & Olatunji, 2012; J. Joormann & Quinn, 2014).  

Attentional Bias Modification 

Because of the hypothesised role of cognitive biases in the development and maintenance of 

anxiety and depression, researchers have turned to exploring ways to modify these biases. The goal 

of bias modification is to alleviate the affective symptoms of the targeted psychological disorders. 

One form of modification is known as attentional bias modification (MacLeod et al., 2002). The 
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goal of ABM is to shift implicit attention away from disorder-congruent negative information. 

ABM is hypothesised to be able to train individuals to implicitly attend away from negative stimuli, 

and thus reduce their attention to disorder-congruent stimuli. This shift in attention is hypothesised 

to alleviate the negative affective experiences that are associated with attending to negative 

information. It is hypothesised that by disrupting an individual’s attention to negative information, 

the subsequent process of interpretation is also modulated, and thus the strong emotions that 

commonly follow from negative attention and interpretation are prevented (Gross & Thompson, 

2007).  

Some research findings indicate that ABM has therapeutic effects on the symptoms of both 

anxiety and depression (e.g., Amir, Beard, Burns, & Bomyea, 2009; Brosan, Hoppitt, Shelfer, 

Sillence, & Mackintosh, 2011; See, MacLeod, & Bridle, 2009), and research has started to explore 

whether training individuals away from negative stimuli, or training them toward happy stimuli is 

more effective (e.g., Shechner et al., 2012; Taylor, Bomyea, & Amir, 2011; Waters, Pittaway, 

Mogg, Bradley, & Pine, 2013). This research is in its infancy, but may nevertheless offer interesting 

insight into training efficacy. Bar-Haim (2010) posited that while there is evidence for success of 

training away from negative information, there is evidence of deficits in processing of positive 

information, and therefore recommends the exploration of training toward positive stimuli to assess 

the therapeutic effects.   

The ABM training paradigm is derived from the same task that is primarily used to measure 

attentional bias, the dot probe task. This computerised task instructs participants to focus on a 

fixation cross in the centre of a computer screen. The fixation interval is followed by the brief 

presentation of two stimuli, typically images or words, side-by-side or vertically aligned. One 

stimulus is emotional and the other is neutral in valence. In the task’s simplest form, after the 

stimuli disappear, a dot appears in the location previously occupied by one of the stimuli, and the 

participant is required to execute a speeded response indicating in which of the two positions the 

probe appeared (Koster, Crombez, Verschuere, & De Houwer, 2004; MacLeod, Mathews, & Tata, 
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1986). In alternative versions of the task, different probes are used, e.g., two letters, or two arrows 

pointing in opposite directions, and participants are required to identify which probe appears (Mogg 

& Bradley, 1999). The participant is instructed to ignore the stimuli and focus only on the 

location/identity of the probe. Trials on which the probe replaces the emotional stimulus are called 

congruent trials, and trials on which the probe replaces the neutral stimulus are called incongruent 

trials. There are equal numbers of congruent and incongruent trials for all emotional categories 

across the task. If the participant’s attention has been captured by a specific emotional stimulus, it is 

assumed to be reflected by faster RTs when the probe appears in the location previously occupied 

by that stimulus. An estimate of attentional bias for emotional stimuli is calculated by subtracting 

the mean RT for congruent trials from the mean RT for incongruent trials. Positive scores result 

from faster RTs to congruent trials, and are taken to indicate an attentional bias toward that 

emotion.  

The training version of the dot probe task is similar, and was devised by MacLeod and 

colleagues (2002). Task instructions are the same, however, the range of stimuli is limited to the 

stimulus type being trained toward, e.g., neutral/happy, and the stimulus type being trained away 

from, e.g., negative/neutral. While in the assessment version of the dot probe task, probes are 

presented equally often following each stimulus type, in the training variant, the probe appears most 

often at the location of the stimulus type that is the focus of training (e.g., neutral/happy), and only 

infrequently at the location of the stimulus type that is the target of modification (e.g., 

negative/neutral). For example, if training away from negative stimuli, the probe will appear behind 

the neutral stimulus on most of the trials and only appears behind the negative stimulus on a 

minimal number of trials to inhibit awareness of training contingency. Similarly, if training toward 

happy stimuli, the probe will appear behind the happy stimuli on most of the trials, and behind the 

neutral stimulus on a minimal number of trials. This format is hypothesised to implicitly train 

attention toward the target emotion.  



 
 

118 

To ensure subsequent changes in bias scores can be attributed to this training paradigm, a 

control training condition (sham training) is implemented. The sham training consists of the same 

stimuli as the training paradigm, and the same number of trials, however the probe is presented 

behind each stimulus type with equal frequency. Following this protocol, shifts in attentional bias in 

the active training group that differ from the sham training group, are hypothesised to be a function 

of the training contingency. While numerous reviews in the past decade have praised ABM as a 

potentially effective treatment for anxiety and depression (e.g., Baert, Koster, & De Raedt, 2011; 

Hertel & Mathews, 2011; MacLeod, 2012; MacLeod & Mathews, 2012), how exactly successful 

bias modification works remains unclear. It is hypothesised that training attention toward or away 

from a given emotion works at an implicit level, however the current attentional bias score can only 

reveal that something has happened, not what has happened or when (Cisler et al., 2009).  

Another, and more concerning limitation of the dot probe task is that the psychometric 

properties of the attentional bias score are inadequate (Schmukle, 2005; Cisler et al., 2009; Price et 

al., 2015). Specifically, the attentional bias score has low internal consistency (split half and 

Cronbach’s alpha) and poor test-retest reliability (see Schmukle, 2005). Without adequate 

psychometric rigour, the data derived from the dot probe task can only be presented with a level of 

confidence on par with the properties of the task. In intervention studies specifically, reliability of a 

measure is a particularly important factor. The reliability of the measure used to assess outcomes is 

required to be much higher than for research identifying statistical association or differences 

between groups (Rodebaugh et al., 2016). 

MacLeod and Clarke (2015) have argued that while the dot probe task is not a satisfactory 

measure of inter-individual differences, the dot probe task can reliably detect group differences 

(e.g., clinical versus non-clinical; Bar-Haim et al., 2007) as well as the success of ABM training 

conditions (e.g., active versus placebo training; Hakamata et al., 2010). Price and colleagues (2015), 

while acknowledging the instances where the dot probe task did differentiate between groups, noted 

the published exceptions where no group differences were found (e.g., Mohlman, Price, & Vietri, 
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2013; Price et al., 2013; Waters, Lipp, & Spence, 2004). They further highlighted the risk of a file 

drawer effect, which means that there are likely numerous studies that did not find differences and 

thus were not published. In addition to this, Rodebaugh et al. (2016) point out that most attentional 

bias modification studies do not present reliability coefficients of the task with the results, and those 

that do fall well short of the recommended level of at least .90, hovering around .45 (see Rodebaugh 

et al., 2016, for a review). Without adequate reliability of the bias measure, confidence in 

concluding that a third variable (i.e., the modification training) was the mechanism for change is 

compromised. Specifically, if the reliability of the attentional bias measure cannot be established, 

alternative explanations for a shift in bias scores, such as random error, or regression to the mean, 

could be responsible for changes in scores across time (Rodebaugh et al., 2016). 

Consequently, other ways of analysing the data from the dot probe task have been 

recommended to try to improve both the task’s test-retest reliability, and the ability to identify 

which cognitive processes are affected by successful bias modification. One such method of 

analysis that is in the early stages of application in this area is the diffusion decision model 

(Ratcliff, 1978). In this study, we apply this model to data from an attentional bias modification task 

to explore its ability to address issues of reliability, as well as its ability to identify cognitive process 

that are responsible for successful bias modification.  

The Diffusion Decision Model 

The diffusion decision model is based on the theory that when an individual chooses 

between two options, they accumulate evidence for one or the other option until a decision 

threshold is reached, and a response is executed. The model decomposes speeded two-choice 

decision making performance into four parameters: boundary separation, relative starting point, 

drift rate and non-decision time (see Figure 2 and Table 1). This study applied the diffusion 

decision model using the program fast-dm 30 (Voss & Voss, 2007), in line with the prior research 

by Manuel et al. (under review).  
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Figure 2. Diffusion decision model response parameters, boundary separation (a), relative starting 

point (zr), drift rate (v), non-decision time (t0) for a decision where the response alternatives are 

congruent and incongruent, as per the dot probe task. (Diagram adapted from Voss & Voss, 2007; 

used with permission) 

 

Boundary separation (a) reflects the participant’s response caution. The two available 

choices are reflected by a lower decision boundary (0) and an upper decision boundary (a). Because 

the value of the lower boundary is fixed at 0, a larger value of a indicates a larger boundary 

separation, meaning that the individual requires more evidence to reach a decision (Voss & Voss, 

2007). A larger boundary separation, holding all else equal, will result in responses that are on 

average slower but more accurate. This parameter is reflective of cognitive control, an important 

factor in response inhibition and emotion regulation.  

Relative starting point (zr) is the point between the decision boundaries from which 

evidence accumulation starts, measured as a proportion of boundary separation. This parameter 

reflects the bias an individual has for one response option over another based on their expectancy of 

that response derived from past experiences (White et al., 2016). The closer the starting point is to 

either boundary, the shorter the processing time will be for the corresponding response, and thus is 

indicative of a decisional bias. An unbiased starting point will be returned as 0.5, indicating an 

equal distance from either decision boundary.  
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Table 1. 

Typical parameter values of the drift-diffusion model as returned by fast-dm.(Voss et al., 2015) 

Parameter Typical range Description 

Boundary separation (a) 0.5 < a < 2 Larger values equate to a more 

conservative decision style 

Relative Starting Point (zr) 0.3 < zr < 0.7 Deviations from 0.5 indicate that different 

amounts of evidence are required to make 

a decision for the alternative responses. 

Drift rate (v) -5 < v < 5 The rate of evidence accumulation. Values 

further from zero indicate stronger 

evidence. Positive values indicate 

evidence for the upper threshold response, 

negative values indicate evidence for the 

lower threshold response.  

Non-decision time (t0) 0.1 < t0 < 0.5 Average duration of all non-decisional 

processes (encoding and response 

execution). 

 

Drift rate (v) is the mean rate of evidence accumulation toward one choice or the other. Drift 

rate reflects the rate of approach to the decision threshold. A higher drift rate means faster 

accumulation of evidence. Drift rate is generally a function of stimulus or evidence quality. The 

easier an individual finds a stimulus to identify, the higher the drift rate. A higher drift rate for one 

emotion relative to others indicates a perceptual preference for that emotion.  

Non-decision time (t0) is the time needed for sensory encoding prior to the evidence 

accumulation process, and for response execution once a decision boundary has been crossed. This 

parameter is the component of response time that is not related to decisional processes, and is 
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plausibly affected by hypervigilance or motor slowing, both of which are sometimes evident in 

individuals with anxiety and depression respectively. 

Diffusion Analysis of Attentional and Interpretation Processes 

Recently, Manuel, Kemps and McCarley, (under review; in preparation), used the diffusion 

decision model to analyse attentional and interpretation processes in a non-clinical sample. In one 

study, they analysed data returned from the dot probe task to explore the cognitive processes that 

underlie attentional bias. They hypothesised that attentional bias may be a function of the perceived 

strength of the stimulus that captures an individual’s attention, as well as an implicit hypervigilant 

phasic response to that stimuli. Therefore, they examined the impact that presentation of different 

emotional stimuli had on the diffusion model parameters of drift rate and non-decision time in a 

non-clinical sample. Using facial stimuli that consisted of either a happy, sad, or angry expression 

paired with a neutral expression, they identified a tendency for evidence to accumulate more 

quickly for the existence of the probe when behind emotional faces rather than neutral faces. This 

was indicated by a slightly positive drift rate across all three emotional expressions. They did not 

find that evidence accumulated more quickly for one emotion over another. However, they did find 

that the parameters of the diffusion model were linked to clinical measures of anxiety and 

depression. Faster accumulation of evidence for angry stimuli was associated with depression and 

generalised anxiety, while slower non-decisional processes and more cautious responding were a 

protective factor to emotion regulation difficulties. Additionally, they found that a more 

conservative decision style was linked to better emotion regulation, and faster non-decisional 

processes were related to an increased difficulty regulating emotion.  

In another study exploring the processes underlying interpretation bias, Manuel et al. (in 

preparation) used the diffusion decision model to analyse data from a yes/no task. As interpretation 

bias is primarily identified through judgments of ambiguous stimuli, they examined differences in 

cognitive processes that stem from identifying clearly identifiable emotional expressions, and 

milder, more ambiguous expressions. Because emotional expressions of a stronger intensity are 
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easier to identify than ambiguous expressions, a ceiling effect can mask differences between 

participants of different clinical status. In contrast, when the stimuli are more ambiguous, 

individuals who show an interpretation bias are hypothesised to identify the ambiguous stimuli as 

emotive more quickly than individuals who do not show an interpretation bias. Using a yes/no 

paradigm to explore the processes that underlie interpretation of ambiguous facial expressions 

relative to stronger intensity facial expressions, they identified that both perceptual (drift rate) and 

decisional (starting point) processes were affected. The participants presented with the ambiguous 

stimuli had lower drift rates and reduced starting point bias than the participants presented with the 

non-ambiguous stimuli. Thus, perceptual bias and decisional biases are affected by interpreting 

ambiguous expressions. Consequently, we can surmise that higher drift rates, and a starting point 

more strongly biased toward “yes” when presented with ambiguous information is an indicator of 

interpretation bias.  

In our intervention study (see figure 2), we adopt the yes/no paradigm, using the mix of 

clear and ambiguous stimuli to identify any flow-on effects of attentional bias modification on the 

processes underlying interpretation bias. The yes/no paradigm is a simple computer task that 

requires participants to identify whether a single stimulus presented on a computer screen belongs 

to a target category. Stimuli that belong to the category in question are termed targets, and stimuli 

that do not belong to that category are termed distractors. The participant responds by pressing a 

corresponding key on the keyboard labelled “yes” or “no”. When the stimulus presented is strongly 

associated with an attribute in line with the participant’s implicit beliefs, response times for “yes” 

will be faster, indicating the presence of an interpretation bias.  

Using an attentional bias task, the yes/no task, and an ABM training paradigm, we aim to 

identify how ABM impacts the cognitive processes that underlie attention and interpretation in 

individuals with a history of anxiety and depression. Further, we aim to provide insight into how the 

cognitive processes that are responsible for shifts in attentional and interpretation biases may differ 

between anxiety and depression, and individuals with no clinical history.  
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Figure 2. Training protocol for intervention study 
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We also explore links between these cognitive processes and scores on clinical measures of anxiety, 

depression, and emotion regulation difficulties. In addition, we explore whether training toward 

happy stimuli versus away from negative stimuli has a stronger impact on cognitive change, and 

ultimately, mood. Finally, we examine the reliability of diffusion model parameters to ascertain 

whether the diffusion model is a more reliable way to detect attentional bias than the current 

attentional bias score. We do this by assessing the test-retest reliability of the parameters of the 

diffusion model and comparing them with test-retest reliability of attentional bias scores.  

To achieve these aims, we recruited individuals with a history of anxiety, depression, and 

individuals with no history of either disorder into our intervention study. We used an attentional 

bias modification paradigm to train individuals to attend toward happy stimuli, or to attend away 

from disorder-congruent negative stimuli (i.e., angry, sad). We also included a control condition for 

both the anxiety and depression cohorts who received sham training. It is the data from the control 

conditions that were used to assess stability of attentional bias scores and diffusion model 

parameters across time. We took measures of attentional and interpretation bias at pre-training to 

establish the existence of an attentional and/or interpretation bias and check for any group 

differences. We then administered the training paradigm, after which we took the pre- training 

measures again. The post-training scores were analysed against the pre-training scores.    

Based on previous attentional bias research, we expect that individuals with a history of 

anxiety would have an attentional bias for angry faces, and individuals with a history of depression 

would have an attentional bias for sad faces. We hypothesise that this would be evident from 

attentional bias scores, as well as the diffusion model parameter of drift rate. We also hypothesise 

that there may be associated non-decisional differences due to hypervigilance or motor slowing, 

known symptoms of anxiety and depression, respectively (DSM-V; American Psychiatric 

Association, 2014). Further, we hypothesise that interpretation bias to disorder congruent stimuli 

would be evident from faster response times to “yes”, and higher drift rates and starting point values 

for angry and sad faces for individuals with a history of anxiety and depression, respectively. While 



 
 

126 

the investigation into the processes that change because of attentional bias training is exploratory, it 

is these same parameters that we expect to see shift over time in the groups who receive active 

training. We also expect that the groups that are trained toward happy stimuli may see an increase in 

mood relative to the groups who are trained to avoid negative stimuli.  

Method 

This study received ethics approval from the Flinders University Social and Behavioural 

Research Ethics Committee (Project number 6259: Investigating cognitive mechanisms 

underpinning emotional cognitive biases in individuals with varying levels of emotional disorders). 

Participant Characteristics and Exclusion Criteria 

Two hundred and seventy participants were recruited through the university’s research 

participation program SONA. Eighty-four participants were undergraduate students who received 

course credit for a first-year psychology topic, and 186 participants received $20 remuneration. 

Eighteen participants were excluded from the final data due to incomplete data (8), performing at 

chance on the cognitive tasks (4), or disproportionate number of responses removed during data 

cleaning (6). Thus, data from 252 participants, were used in the final analysis. There were 199 

females and 53 males with a mean age of 23 years (min 17, max 64, median 20). One hundred and 

twenty-eight participants identified as having no history of anxiety or depression, 66 reported a 

history of both anxiety and depression, 35 reported only anxiety, and 23 reported only depression.  

Design 

Two 6-factor mixed designs were used with between subjects’ factors of disorder (anxiety, 

depression), training type (toward happy, away from negative) and training condition (active, 

sham), with the dot-probe and yes/no cognitive tasks containing the within subjects’ factors. The 

dot probe task incorporated a 3 (emotion: happy, sad, angry) x 2 (probe: congruent, incongruent) x 

2 (time: pre-training, post-training) repeated measures design, with dependent measures of RT and 

fast-dm parameters. The yes/no task incorporated a 4 (emotion: happy, sad, angry, neutral) x 2 

(response: yes, no) x 2 (time: pre-training, post training) repeated measures design with dependent 
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measures of RT and fast-dm parameters. The dependent measures were also used to explore their 

relationships with scores on the clinical measures of depression, anxiety, rumination, and emotion 

regulation difficulties. 

Materials  

Stimuli. In line with other research in this area (Arndt & Fujiwara, 2012; Niles et al., 2013; 

Paulewicz et al., 2012; Tottenham et al., 2011), we selected facial stimuli from the NimStim 

database (Tottenham et al., 2009). This database consists of 646 facial expression stimuli across 43 

faces of different gender and race. The database has expressions consisting of fearful, happy, sad, 

angry, surprised, calm, neutral, and disgusted, each with validity ratings (Tottenham et al., 2009). 

There are two sets of each expression. One set consists of the expressions with models’ mouths 

open, and the other set consists of expressions with mouths closed. In line with the previous two 

studies in this thesis, faces with angry, happy, sad, and neutral expressions were used, and selected 

from the set with mouths closed. The mouths-closed stimuli were used to ease the morphing process 

that was used to create a mild subset of happy, sad and angry expressions. Three faces were 

excluded as the models did not present with all four (angry, happy, sad, neutral) expressions. The 

remaining stimuli consisted of digital photographs of 40 individuals (18 females and 22 males), 

each depicting each of the four expressions (happy, sad, angry, neutral). All pictures were presented 

in a black rectangular frame and cropped to just around the face to remove distinguishing external 

features, allowing the focus to be on the expression. All images were of equal size (332x458 

pixels), resolution (120 pixels/inch), and RGB colour (8bpc). A subset of mild emotions was 

created by morphing each valence with its corresponding neutral face using the Fantamorph 

(Abrosoft, 2013) software program.  

These mild faces were morphed to a strength of 50%, exactly halfway between the original 

stronger intensity emotion and the corresponding neutral face. This mild subset was incorporated 

into the yes-no task in line with previous research by Manuel et al. (in preparation). 
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Attentional bias assessment task: Dot probe task. (MacLeod & Mathews, 1998). The 

visual probe task consisted of 280 trials. For each trial, a centrally located fixation cross was 

displayed for 500ms, followed by the addition of a picture pair for another 500ms. Picture pairs 

comprised either a neutral and emotive (happy, sad, angry) facial expression of the same individual, 

or two of the same neutral facial expressions. Pictures were presented to the left and right of the 

fixation cross, centred horizontally, and equidistant from the centre of the screen. An arrow probe 

pointing up or down was presented in the location previously occupied by either the left or right 

image, centred horizontally. Presentation of the arrow was terminated by the participant pressing a 

corresponding directional response key. Response keys were the up and down arrow keys. A 500ms 

inter-stimulus interval followed the participant’s response, after which the next trial began 

automatically.  

The task was split into two blocks of 140 trials, allowing participants a self-determined 

break between blocks. A randomization algorithm determined stimulus presentation with 

constraints such that valence, trial type (congruent, incongruent, baseline), probe location (left, 

right) and probe direction (up, down) were counter-balanced within and across blocks, and that 

there were no more than three consecutive response presses on the one side to prevent response 

bias. There were 80 trials per valence (happy, sad, angry), with 40 congruent (probe behind 

valence) and 40 incongruent (probe behind neutral) trials, as well as 40 neutral/baseline (both 

pictures neutral) trials.  

Interpretation bias: Yes/No task. (Manuel et al., in preparation). The Yes/No task 

consisted of four blocks of 80 trials. For each trial, a single face appeared on a black background 

centred horizontally and vertically, and remained until the participant made a response indicating 

that the expression did or did not match a target emotion. Participants were instructed to respond 

using the keyboard, as quickly and accurately as possible. Response keys were the home key for 

“yes” and the end key for “no”, labelled accordingly. A 500ms inter-stimulus interval followed the 

participant’s response, after which the next trial began automatically. At the beginning of each 
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block participants were asked, “Are the following faces neutral/happy/sad/angry?” The stimulus 

face matched the target valence on 2/3 (56 trials) of the trials within each block, to encourage the 

“yes” bias. On remaining trials (24 trials), the stimulus faces expressed one of the 3 distractor 

emotions for that block, for example, if happy was the target emotion, distractor emotions were 

angry, sad and neutral. Target and distractor stimuli were generated randomly using a 

randomization algorithm, with mild and stronger intensity expressions generated equally. The order 

of the blocks was counterbalanced between participants. Stimuli consisted of a mix of milder, more 

ambiguous facial expressions, as well as clearly identifiable facial expressions.  

Training paradigm. The dot probe training paradigm used the same task and instructions as 

the dot probe task. However, in the training paradigm, there were 320 trials in total, split into two 

blocks of 160 trials. Participants were presented with either happy and neutral stimulus pairs 

(training toward happy condition) or neutral and angry/sad stimulus pairs (training away from 

negative condition). In the active training conditions, the probe was behind the happy (training 

toward happy condition) or neutral (training away from negative condition) expression for 90% of 

trials, and appeared behind the neutral (training toward happy condition) or angry/sad (training 

away from negative condition) expression for the remaining trials. In the sham training conditions, 

the probe appeared behind each expression an equal 50% of trials. The choice to use a 90/10 

training ratio was used, as opposed to a 100/0 ratio, to ensure participants maintained concentration 

and to reduce the obviousness of the contingency (Schoenmakers, Wiers, Jones, Bruce, & Jansen, 

2007). 

Clinical measures. 

Difficulties with emotion regulation scale (DERS; Gratz & Roemer, 2004). This 36-item 

self-report questionnaire consists of six dimensions of emotion regulation: (a) Non-acceptance of 

emotional reactions; (b) Difficulty engaging in goal-directed behaviour; (c) Difficulty controlling 

impulses; (d) Lack of emotional awareness; (e) Limited access to emotion-regulation strategies; and 

(f) Lack of emotional clarity. The DERS begins each item with the phrase, “When I’m upset…”. 
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Participants rate each item on a five-point Likert scale from “almost never” (1) to “almost always” 

(5). Eleven items are reverse scored, and the total score can range from 36 to 180 with a higher 

score representing increased difficulty with emotion regulation. In non-clinical samples of adults, 

the DERS has an average total score of 75-80, there are no specific established norms for clinical 

groups, however, scores above this average are considered indicative of emotion regulation 

difficulties (Gratz & Roemer, 2004b). Both the total score and the difficulty controlling impulses 

subscale were used in this study (hereafter referred to as the impulsiveness subscale). The DERS 

has high internal consistency (α =.93), good test-retest reliability (ρI=.88), and satisfactory construct 

and predictive validity (Gratz & Roemer, 2004). Within this sample, Cronbach’s alpha was .95.  

Depression Anxiety and Stress Scale short form (DASS-21; Lovibond & Lovibond, 1996). 

This self-report questionnaire consists of 21 items that divide into three subscales, each consisting 

of 7 four-point Likert rating-scales measuring depression, anxiety and stress. The questionnaire asks 

the respondent to rate how much each statement applied to them over the past week. The rating 

scale ranges from 0 (Did not apply to me at all) to 3 (Applied to me very much, or most of the 

time). The DASS-21 has high internal consistency (α ranging from .82-.93; Antony et al., 1998; 

Henry & Crawford, 2005) and moderate levels of concurrent validity (r =.46-.85; Antony et al., 

1998). Within the current sample, alpha was .93. The depression subscale was used to measure 

depressive symptoms. The anxiety subscale loads onto diagnostic criteria for various anxiety 

disorders except generalised anxiety disorder (GAD), whereas the stress subscale loads onto 

diagnostic criteria for generalised anxiety disorder (Lovibond & Lovibond, 1995). As we are 

interested in generalised anxiety, we used the stress subscale in this study. Scores range from 0-28+ 

for depression, and 0-32+ for stress, with higher scores indicating increased level of symptom 

severity.  

Visual analogue mood scale. (VAMS; Ahearn, 1997). This measure is a single line, 

typically 10cm long), ordinal scale that is anchored by two statements or images reflecting opposite 

extremes of a single mood construct.  For example, in this study, the VAMS was presented on the 
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computer screen asking participants to rate their mood. Positioned to the left-hand side of the line 

was the depiction of a simple sad-face emoticon, whereas to the right-hand side of the line was a 

simple happy-face emoticon. Participants were required to identify their current mood by clicking 

on the line. Score range from 0-100, with higher score indicative of more positive mood.  

Procedure 

At the time of signing up to the study, participants completed a pre-survey, which took 

approximately 5 minutes. This screening survey asked for demographic information, included the 

DASS-21 screening tool, and asked if the participants had a history of anxiety, depression, both, or 

neither. Based on this answer alone, participants were then randomly allocated to a training 

condition. Individuals with a history of anxiety were randomly allocated to either the active or sham 

training condition for the anxiety group, likewise, individuals with a history of depression were 

randomly allocated to the sham or active training condition in the depression group. Participants 

who reported a history of both, or no history at all were randomly allocated to group and condition. 

The DASS-21 from the screening survey was only used in final analysis to compare the groups.  

When arriving at the lab for their allocated time slot, all other tasks were completed in one 

session that lasted approximately 80 minutes. Each task was displayed on a computer screen. A 

visual analogue mood scale was used to capture snapshots of mood throughout the session, to assess 

changes in mood between groups. The visual analogue mood scale was presented four times. It was 

presented first, followed by the dot-probe and yes/no measurement tasks to obtain pre-training 

scores. The order of these first assessment tasks was counterbalanced between participants. The 

visual analogue mood scale was presented again, followed by the training task and another mood 

scale. The dot probe and yes/no tasks, counter balanced between participants, were again 

administered to obtain post training scores. A final visual analogue mood scale was presented again, 

followed by the clinical measures. Clinical measures were presented in Qualtrics, an online survey 

program. They were presented in the same order for each participant with the DASS presented first, 

followed by the DERS.  
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Analysis 

Data cleaning and preparation. 

Dot Probe task. As per MacLeod and colleagues (1986), all error responses were removed 

from analysis of RT data from the pre- and post-training assessment tasks. On average, accuracy 

rates were 96.26% at pre-training and 94.08% at post-training. For each trial type 

(congruent/incongruent) within each valence (happy, sad, angry, neutral), RTs that were 3 or more 

standard deviations above each subject’s mean RT were removed, as were responses less than 

150ms. This resulted in an additional 1.41% of responses being removed from the pre-training data 

set, and 1.85% from the post-training data set. For each valence, an overall bias score for each 

participant was calculated by taking the mean RT for congruent trials and subtracting it from the 

mean RT for incongruent trials. Thus, positive scores indicate an attentional bias toward the 

emotional stimuli, whereas negative scores indicate a bias toward neutral stimuli and away from the 

emotional stimuli.  

Fast-dm analysis. Data were cleaned in the same way as for the traditional analysis with the 

exception that errors were not excluded. The data were coded such that congruent responses were 

mapped to the upper response threshold and incongruent responses were mapped to the lower 

threshold, and neutral trials were removed. Fast-dm 30 was run in line with recommendations from 

Voss, Voss, and Lerche's (2015) tutorial paper. The fast-dm 30 control file was set to allow drift 

rate and non-decision time to vary based on emotion across participants, and starting point and 

boundary separation were free to vary across participants but not across emotions. Additional 

parameters of variability in starting point, drift rate, and non-decision time can also be introduced 

into model analysis. While more parsimonious models can be preferable to more complex models 

(Lerche & Voss, 2016), it has been recommended to include non-decision time variability in the 

model to achieve stable parameter estimates (Voss et al., 2015; Lerche and Voss, 2016). Therefore, 

inter-trial variability of non-decision time (st0) was also allowed to vary across participants.  
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Model fit was assessed by the Kolmogorov–Smirnow (KS) statistic provided by the fast-dm 

30 software. The KS statistic assesses whether the distribution of observed data differs significantly 

from a predicted distribution. The KS fit statistic returned by fast-dm 30 did not reveal any 

significant deviations between empirical and estimated RT distributions for any of the participants. 

As Voss et al. (2015) caution against relying solely on the fit statistic returned by fast-dm 30 and 

recommend plotting the data graphically. Comparison of empirical and predicted response time 

distributions for each expression (happy, angry, sad, neutral) were plotted, along with quantile 

probability plots comparing empirical and predicted response times for the 25th, 50th, and 75th 

percentiles of each expression (happy, sad, angry). These plots are displayed in Appendix 3. 

Yes/No task. On average, participant accuracy rates were 87.82% at pre-training and 84.61% 

at post-training. RTs less than 150ms and more than 3 standard deviations from each participant’s 

mean RT for each response (yes, no) within each emotional condition (happy, sad, angry, neutral) 

and by strength (strong, mild, neutral) were removed. This accounted for 1.45% of responses for 

both pre-training and post-training data sets.  

Fast-dm analysis. Cleaning was as per traditional analysis. Responses were coded as per their 

button responses: “Yes” responses for the upper threshold, “no” responses for the lower threshold. 

Fast-dm was run separately for each emotion (Voss, Voss & Lerche, 2015), and the fast-dm 30 

control file was set to allow drift rate to vary based on stimulus type (yes strong, yes ambiguous, 

and no – the average of which was computed and used in the final drift rate analysis), starting point, 

boundary separation, non-decision time, and non-decision time variability to vary across 

participants. As with the dot-probe analyses, model fit was assessed by the Kolmogorov–Smirnow 

(KS) statistic provided by the fast-dm 30 software. The KS fit statistic returned by fast-dm 30 did 

not reveal any significant deviations between empirical and estimated RT distributions for any of 

the participants. Similarly, comparison of empirical and predicted response time distributions for 

each expression (happy, angry, sad, neutral) were plotted, along with quantile probability plots 
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comparing empirical and predicted response times for the 25th, 50th, and 75th percentiles of each 

expression (happy, sad, angry). These plots are displayed in Appendix 3. 

DASS, DERS & RSS. Clinical measures were checked for skewness and kurtosis, and were 

within acceptable limits (+/- 2). There were no outliers. 

Examination of group differences pre-training 

Cognitive measures. Mixed ANOVAs were performed to analyse differences between 

response times and fast-dm parameters at pre-training for individuals with self-reported history of 

anxiety or depression and individuals with no such history. Data were analysed separately for 

anxiety and depression. Bonferroni correction was applied, and where sphericity tests indicated it 

applicable, the Greenhouse Gausser correction was applied. 

Relationships between cognitive and clinical measures. To assess the relationships between 

attentional bias and interpretation bias, and the clinical measures correlations were used. We 

examined the relationships between traditional bias scores and fast-dm parameters for both tasks at 

pre-training and scores on the clinical outcome measures of depression/stress and the DERS. 

Training effects.  

Cognitive measures. Data were analysed separately for anxiety and depression. Mixed 

ANOVAs were performed to analyse training differences between training condition (active, sham), 

training type (toward happy, away sad/angry), and history (history, no history) across time (pre-

training, post-training). For traditional dot-probe analysis we examined these group effects across 

time, emotion (happy, sad, angry) and response type (congruent/incongruent). For the fast-dm 

parameters of drift rate and non-decision time derived from the dot-probe data, we examined the 

group differences across time and emotion (happy, sad, angry), whereas for start-point and 

boundary separation, we analysed the group differences across time. For RT analysis of the 

interpretation bias task we also examine these group differences across time, emotion (happy, sad, 

angry, neutral), and response (yes, no). For the fast-dm parameters, we analysed the group 



 
 

135 

differences across time and emotion (happy, sad, angry, neutral). Bonferroni correction was applied, 

and where sphericity tests indicated it applicable, the Greenhouse Gausser correction was applied.  

Relationships between cognitive and clinical measures. Correlations were carried out to 

identify whether changes in bias scores or fast-dm parameters were related to scores on the clinical 

outcome measures of anxiety/depression and the DERS. We also explored the impact of training on 

mood ratings using a mixed ANOVA comparing the impact of training, training type, history and 

time. 

Reliability analysis. To assess reliability of the attentional bias measure and the fast-dm 

measures, correlations were conducted on the pre-test and post-test scores for participants in the 

sham training conditions. 

 Results 

Group characteristics prior to assessment and training are presented in Table 2. The mean 

age was similar across groups, and the clinical scores for both anxiety, t(124) = 6.24, p = .001, and 

depression, t(124) = 5.06, p < .001, were significantly higher for individuals with a self-reported 

history than those without such a history.  

 

Table 2 

Pre- study group characteristics by reported history of anxiety and depression.  

 
Anxiety 

 
Depression 

 

 
History 

n = 63 

No history 

n=63 

History 

n=61 

No History 

n=65 

Age 22.94 (7.48) 22.49 (8.31) 24.21 (8.48) 22.15 (6.02) 

M/F 8 55 15 48 14 47 16 49 

Clinical score* 9.57 (3.75) 5.38 (3.78) 8.77 (5.09) 4.71 (3.89) 

*Clinical score is the Stress subscale for the anxiety condition (corresponds to generalised anxiety 

disorder), and the Depression subscale for the depression condition.  
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Pre-training measures 

To be able to assess the efficacy of an attentional bias modification study on attentional and 

interpretation biases, we first needed to establish that attentional and interpretation biases were 

captured in the current sample. We examined RTs and diffusion model parameters to identify if 

there was evidence of these biases in the current sample.  

 

Attentional bias. 

Anxiety. 

Response times. Correct trial mean RTs for congruent and incongruent trials for each 

emotion (happy, sad, angry) of the dot probe task are plotted for each group (history/no history) in 

Figure 2. 

 

 

Figure 2. Dot probe RTs (seconds) by trial type and history for correct trials. Congruent trials = 

probe behind emotional face; incongruent trials = probe behind neutral face. Error bars represent 

within-subjects 95% confidence intervals4. 

                                                
4 All confidence intervals throughout this paper were calculated using the Cousineau-Morey method (Morey, 

2008). 
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Attentional Bias. A 2 (group: history, no history) x 2 (trial type: congruent, incongruent) x 3 

(emotion: happy, sad, angry) mixed ANOVA did not identify an interaction between RTs for group, 

trial, and emotion, F(1.54,191.27) = 2.78, p =.08, 2
partial = .02, indicating no evidence for an 

attentional bias that differed by history of anxiety. Additionally, there was no attentional bias across 

the sample, F(1.54,191.27) = 1.02, p =.35, 2
partial = .01, and RTs did not differ by group, F(1,124) 

= 1.16, p =.28, 2
partial = .01. 

Further, for the group with a history of anxiety, attentional bias scores did not differ from 

zero for any emotion (ps >.05). In contrast, the group with no clinical history showed a small 

attentional bias for happy stimuli, t(62) = 2.22, p = .03, d = 0.27, but not for angry or sad stimuli (ps 

>.05). Therefore, our hypothesis that we would find an attentional bias for angry expressions in the 

group of participants with a history of anxiety was not supported.  

Diffusion Model parameters. To assess whether there was a group difference identified by 

the diffusion model parameters, we conducted two 2 (group: history, no history) x 3 (emotion: 

happy, sad, angry) mixed ANOVAs for drift rate and non-decision time. To examine the differences 

between groups for starting point and boundary separation, we ran independent samples t-tests. 

Drift rate. There was no interaction between group and emotion on drift rate, F(2, 248) = 

0.76, p =.47, 2
partial = .006, indicating that our hypothesis that drift rate would be higher for the 

probe behind angry stimuli for individuals with a history of anxiety was also not supported. One 

sample t-tests showed that drift rate was positive for all three emotions in the group with a self-

reported history of anxiety (happy t(62) = 2.99, p = .004, d = 0.36; sad t(62) = 2.64, p = .01, d = 

0.35, angry t(62) = 3.29, p = .002, d = 0.41), indicating that evidence accumulated slightly faster for 

the probe on congruent trials than on incongruent trials. For individuals with no history of anxiety, 

rate of evidence accumulation for the probe on congruent versus incongruent trials did not differ (p 

values > .05), but the difference in drift rate between groups was not significant, F(1, 124) = 3.34, p 

=.07, 2
partial = .03.  
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Non-decision time. There was no interaction between group and emotion, F(2, 248) = 0.01, 

p = .99, 2
partial < .001, indicating no differences in non-decision time across emotions between 

individuals with a history of anxiety and individuals without such a history. Nor did non-decision 

time differ between group F(1, 124) = 0.09, p =.77, 2
partial = .001.  

Starting point and boundary separation. There was no difference between groups for 

starting point, t(124)=0.79, p =.43, d < 0.001, or boundary separation, t(124)=0.001, p 1.00, d < 

0.001, which is what we had anticipated. 

Depression. 

Response times. Correct trial mean RTs for congruent and incongruent trials for each 

emotion (happy, sad, angry) of the dot probe task are plotted for each group (history/no history) in 

Figure 3. 

 

Figure 3. Dot probe RTs (seconds) by trial type and history for correct trials. Congruent trials = 

probe behind emotional face; incongruent trials = probe behind neutral face. Error bars represent 

within-subjects 95% confidence intervals. 

 

Attentional Bias. A 2 (group: history, no history) x 2 (trial type: congruent, incongruent) x 3 

(emotion: happy, sad, angry) mixed ANOVA found no interaction between RTs for history, 

emotion, and trial type, F(1.83, 226.42) = 0.06, p =.93, 2
partial = .001, indicating no evidence for an 
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attentional bias that differed by history of depression. There was no attentional bias across the 

sample, F(1.83, 226.42) = 1.03, p =.35, 2
partial = .01, and no attentional bias score differed from 

zero (ps >.05).  However mean RTs were 50ms slower for the group with a history of depression 

than the group with no such history, F(1,124) =11.53, p = .001, 2
partial = .09. Therefore, our 

hypothesis that we would find an attentional bias for sad expressions in the group of participants 

with a history of depression was not supported.  

Diffusion Model parameters. To assess whether there was a group difference identified by 

the diffusion model parameters, we conducted two 2 (group: history, no history) x 3 (emotion: 

happy, sad, angry) mixed ANOVAs for drift rate and non-decision time. To examine the differences 

between groups for starting point and boundary separation, we ran independent samples t-tests. 

Drift rate. There was no interaction between emotion and group, F(2, 248) = 2.40, p = .09, 

2
partial = .02 on drift rate (v), indicating no difference in drift rate between groups based on 

emotion. However, there was a main effect of group, F(1, 124) = 6.17, p =.01, 2
partial = .05, 

indicating that drift rate was higher for individuals with a self-reported history of depression than 

individuals without this history. One sample t-tests for each group indicated that for individuals 

with a history of depression, drift rate was positive for all three emotions (happy t(60)=3.47, p 

=.001, d = 0.46, sad t(60)=3.38, p = .001, d = 0.44, angry, t(60) = 5.05, p < .001, d = 0.67), but for 

individuals with no history of depression, drift rate was only positive for sad facial expressions, 

t(60)=2.12, p = .04, d = 0.28. Therefore, drift rate for individuals with a history of depression was 

faster for congruent than incongruent trials across all emotions, suggesting that attention was 

captured by emotional stimuli in general. Thus, our hypothesis that individuals with a history of 

depression would have a stronger processing bias for sad stimuli was not supported.  

Non-decision time. There was no interaction between group and emotion, F(1.87, 232.18) = 

1.05, p = .35, 2
partial < .008, indicating no differences in non-decision time across emotions 

between individuals with a history of depression and individuals without such a history. The group 

with a history of depression had a slightly faster non-decision time than the group with no history, 
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F(1, 124) = 7.28, p =.008, 2
partial = .06, suggesting that rather than motor slowing, individuals with 

a history of depression have a more hypervigilant response than individuals with no history of 

depression.  

Starting point and boundary separation. There was no difference in starting point between 

individuals with a history of depression and individuals without this history, t(124)=1.89, p = .06, d 

= 0.13, nor was there a difference between groups for boundary separation, t(124) = 0.25, p = .80, d 

< 0.001. Taken all together, the analysis of the dot-probe task did not capture a disorder-congruent 

bias for anxiety or depression by RTs or diffusion parameters.  

Interpretation bias 

Anxiety 

Response times. Response times for yes and no responses are displayed in Figure 5. A 4 

(emotion: happy, sad, angry, neutral) x 2 (response: yes, no) x 2 (group: history, no history) mixed 

ANOVA found no interaction for RTs between history, emotion and trial type, F(2.82, 349.10) = 

2.59, p = .06, 2
partial = .02, indicating no difference in interpretation bias between groups. There 

was an interaction between emotion and trial type, F(2.82, 349.10) = 5.36, p = .002, 2
partial = .04. A 

post hoc repeated measures ANOVA revealed that RTs for yes responses differed by emotion, 

F(2.70, 337.18) = 11.16, p < .001, 2
partial = .08, with yes responses to happy stimuli the fastest.  
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Figure 5. Mean response times (ms) for each response (yes, no) and emotion (neutral, sad, happy, 

angry) for individuals with a self-reported history of anxiety and individuals without; error bars 

represent within-subjects 95% confidence intervals. 

 

 

Diffusion parameters. To assess whether there was a group difference identified by the 

diffusion model parameters, we ran a series of 4 (emotion: happy, sad, angry, neutral) x 2 (group: 

history, no history) mixed ANOVAs.  

Boundary separation (a). There was no interaction between emotion and group, F(3, 372) = 

0.18, p = .91, 2
partial = .001, and there was no main effect of group, F(1, 124) = 2.54, p = .11, 

2
partial = .02. Therefore, our hypothesis that boundary separation would be smaller for the angry 

condition for individuals with a history of anxiety than those with no such history was not 

supported.  

Relative starting point. There was no interaction between emotion and group, F(2.75, 

341.30) = 0.12, p = .94, 2
partial = .001, or main effect of group, F(1,124) = 0.71, p = .79, 2

partial = 

.001, indicating that relative starting point did not differ between groups. We had predicted that 

starting point would be higher in the angry condition for individuals with a history of anxiety than 

individuals without this history. However, this was not supported.  

Drift rate (v). There was no interaction between emotion and group, F(2.58, 319.79) = 1.83, 

p = .15, 2
partial = .01; or group, F(1,124) = 0.60, p = .44, 2

partial = .01, indicating no differences in 

the rate of evidence accumulation for individuals with a self-reported history of anxiety than for 

individuals with no such history. We had expected that individuals with a history of anxiety would 

have accumulated evidence more quickly for angry stimuli, and thus our hypothesis was not 

supported.  
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Non-decision time (t0). There was no interaction between emotion and group, F(3, 372) = 

0.44, p = .72, 2
partial = .004, nor was there a main effect of group, F(1, 124) = 0.38, p = .57, 2

partial 

= .003. This did not support our hypothesis of a hypervigilant response in the group with a history 

of anxiety. 

Depression 

Response times. Response times for yes and no responses are displayed in Figure 6. A 4 

(emotion: happy, sad, angry, neutral) x 2 (response: yes, no) x 2 (group: history, no history) mixed 

ANOVA found no interaction between RTs for history, emotion and trial type, F(2.74, 339.45) = 

1.35, p = .23, 2
partial = .01, indicating no difference in interpretation bias between groups. There 

was a main effect of group F(1, 124) = 22.31, p = .001, 2
partial = .09, such that mean response times 

were on average 130ms slower in the group with a self-reported history of depression than the 

group with no such history. However, our hypothesis that “yes” responses in the sad condition 

would be faster for the group with a history of depression than the group without this history, was 

not supported.  

 

Figure 6. Mean response times (ms) for each response (yes, no) and emotion (neutral, sad, happy, 

angry) for individuals with a self-reported history of depression and individuals without; error bars 

represent within-subjects 95% confidence intervals. 
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Diffusion parameters. To assess whether there was a group difference identified by the 

diffusion model parameters, we ran a series of 4 (emotion: happy, sad, angry, neutral) x 2 (group: 

history, no history) mixed ANOVAs. 

Boundary separation (a). There was no interaction between emotion and stimulus type, F(3, 

372) = 0.21, p = .89, 2
partial = .002; however, there was a main effect of group, F(1, 124) = 9.39, p 

= .003, 2
partial = .07, indicating a more conservative response style for the group with a history of 

depression than the group with no such history.  

Relative starting point (zr). The interaction between emotion and group was not significant, 

F(3,372) = 1.38, p = .25, 2
partial = .01, and there was no main effect of group, F(1, 124) = 2.23, p = 

.14, 2
partial = .02. These findings did not support our hypothesis that individuals with depression 

would have a higher starting point for sad expressions than individuals with no such history. 

Drift rate (v). There was no interaction between emotion and group, F(2.78, 345.08) = 0.45, 

p = .72, 2
partial = .004, nor was there a main effect of group, F(1,124) = 0.35, p = .56, 2

partial = 

.003, on drift rate. Therefore, there was no evidence to support our hypothesis that individuals with 

a history of depression would have a faster drift rate for sad stimuli than individuals without a 

history of depression.  

Non-decision time (t0). There was no interaction between emotion and stimulus type, 

F(2.81, 348.34) = 0.67, p = .56, 2
partial = .005, nor was there a main effect of group, F(1, 124) = 

1.42, p = .24, 2
partial = .01; thus, there was no indication of motor slowing in the group with a 

history of depression. As with the dot probe task, the results of the interpretation bias analyses 

revealed that there was no disorder-congruent interpretation bias captured in the current sample.  

Training Effects 

Attentional bias. Descriptive statistics for the anxiety cohort are presented in Tables 3 and 

4. Table 3 reports the mean RTs and fast-dm 30 parameter values and SDs for training away from 

angry at pre- and post-training; Table 4 reports the mean RTs and fast-dm 30 parameter values and 

SDs for training toward happy at pre- and post-training. Similarly, descriptive statistics for the 
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depression cohort are presented in Tables 5 and 6. Table 5 reports the mean RTs and fast-dm 30 

parameter values and SDs for training away from sad at pre- and post-training; Table 6 reports the 

mean RTs and fast-dm 30 parameter values and SDs for training toward happy at pre- and post-

training. 
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Table 3 

 

Pre- and post-training descriptive statistics for the dot probe for individuals in the anxiety cohort who were given the “away from angry” training 

paradigm    
Active 

 
Sham    

History n=15 No History n=15  History n=15 No History n=16 

 
 

Pre Post Pre Post  Pre Post Pre Post 

  
 

M SD M SD M SD M SD  M SD M SD M SD M SD 

RTs                     
Happy Con 0.57 0.09 0.58 0.08 0.54 0.08 0.52 0.05  0.55 0.05 0.56 0.06 0.55 0.09 0.54 0.08   

Inc 0.56 0.09 0.59 0.08 0.54 0.07 0.53 0.06  0.56 0.05 0.56 0.05 0.56 0.09 0.54 0.08  
Sad Con 0.56 0.08 0.57 0.08 0.54 0.07 0.54 0.06  0.56 0.05 0.55 0.05 0.55 0.09 0.54 0.07   

Inc 0.56 0.08 0.59 0.08 0.54 0.07 0.52 0.06  0.56 0.05 0.57 0.06 0.55 0.07 0.54 0.09  
Angry Con 0.57 0.09 0.58 0.07 0.54 0.07 0.54 0.07  0.56 0.05 0.57 0.05 0.56 0.07 0.55 0.09   

Inc 0.57 0.10 0.57 0.06 0.53 0.07 0.52 0.05  0.56 0.06 0.56 0.05 0.55 0.09 0.54 0.08 

Fast-dm parameters 
    

             

a 
  

0.71 0.12 0.76 0.12 0.70 0.15 0.73 0.11  0.72 0.13 0.81 0.20 0.73 0.10 0.80 0.14 

zr 
  

0.48 0.03 0.49 0.03 0.48 0.02 0.48 0.03  0.48 0.03 0.49 0.04 0.49 0.02 0.48 0.03 

v Happy 
 

0.15 0.22 -0.01 0.19 0.10 0.20 0.06 0.17  0.11 0.27 0.01 0.28 -0.01 0.20 -0.01 0.24 
 Sad 

 
0.07 0.27 0.09 0.20 0.01 0.13 0.05 0.15  0.09 0.22 0.03 0.27 0.12 0.22 -0.01 0.24 

 Angry 
 

0.15 0.30 0.01 0.25 0.13 0.14 0.09 0.27  0.06 0.24 -0.01 0.20 0.04 0.24 0.14 0.27 

t0 Happy 
 

0.42 0.05 0.41 0.06 0.43 0.05 0.40 0.04  0.47 0.09 0.44 0.07 0.44 0.09 0.41 0.06 
 Sad 

 
0.43 0.05 0.41 0.07 0.43 0.05 0.40 0.05  0.46 0.09 0.43 0.08 0.44 0.08 0.40 0.07 

 Angry 
 

0.43 0.04 0.41 0.07 0.43 0.05 0.41 0.05  0.47 0.09 0.44 0.07 0.45 0.08 0.40 0.07 
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Table 4 

 

Pre- and post-training descriptive statistics for the dot probe for individuals in the anxiety cohort who were given the “toward happy” training 

paradigm 
   Active  Sham 

   History n=16 No History n=16  History n=15 No History n=16 
  Pre Post Pre Post  Pre Post Pre Post 

   M SD M SD M SD M SD  M SD M SD M SD M SD 

RTs                    
 Happy Con 0.59 0.11 0.58 0.08 0.54 0.08 0.52 0.05  0.55 0.05 0.56 0.06 0.55 0.09 0.54 0.08 
  Inc 0.59 0.11 0.59 0.08 0.54 0.07 0.53 0.06  0.56 0.05 0.56 0.05 0.56 0.09 0.54 0.08 
 Sad Con 0.58 0.11 0.57 0.08 0.54 0.07 0.54 0.06  0.56 0.05 0.55 0.05 0.55 0.09 0.54 0.07 
  Inc 0.59 0.11 0.59 0.08 0.54 0.07 0.52 0.06  0.56 0.05 0.57 0.06 0.55 0.07 0.54 0.09 
 Angry Con 0.59 0.11 0.58 0.07 0.54 0.07 0.54 0.07  0.56 0.05 0.57 0.05 0.56 0.07 0.55 0.09 
  Inc 0.59 0.12 0.57 0.06 0.53 0.07 0.52 0.05  0.56 0.06 0.56 0.05 0.55 0.09 0.54 0.08 

Fast-dm parameters                  

a   0.72 0.13 0.76 0.12 0.70 0.15 0.73 0.11  0.72 0.13 0.81 0.20 0.73 0.10 0.80 0.14 

zr   0.47 0.02 0.49 0.03 0.48 0.02 0.48 0.03  0.48 0.03 0.49 0.04 0.49 0.02 0.48 0.03 

v Happy  0.11 0.18 -0.01 0.19 0.10 0.20 0.06 0.17  0.11 0.27 0.01 0.28 -0.01 0.20 -0.01 0.24 
 Sad  0.08 0.12 0.09 0.20 0.01 0.13 0.05 0.15  0.09 0.22 0.03 0.27 0.12 0.22 -0.01 0.24 
 Angry  0.10 0.14 0.01 0.25 0.13 0.14 0.09 0.27  0.06 0.24 -0.01 0.20 0.04 0.24 0.14 0.27 

t0 Happy  0.43 0.07 0.41 0.06 0.43 0.05 0.40 0.04  0.47 0.09 0.44 0.07 0.44 0.09 0.41 0.06 
 Sad  0.42 0.06 0.41 0.07 0.43 0.05 0.40 0.05  0.46 0.09 0.43 0.08 0.44 0.08 0.40 0.07 
 Angry  0.43 0.06 0.41 0.07 0.43 0.05 0.41 0.05  0.47 0.09 0.44 0.07 0.45 0.08 0.40 0.07 
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Table 5 

 

Pre- and post-training descriptive statistics for the dot probe for individuals in the depression cohort who were given the “away from sad” training 

paradigm    
Active 

 
Sham    

History n=16 No History n=17  History n=15 No History n=16 
  

Pre Post Pre Post  Pre Post Pre Post 

   M SD M SD M SD M SD  M SD M SD M SD M SD 

                   

RTs Happy  Con 0.61 0.12 0.58 0.08 0.54 0.08 0.52 0.05  0.55 0.05 0.56 0.06 0.55 0.09 0.54 0.08   
Inc 0.60 0.12 0.59 0.08 0.54 0.07 0.53 0.06  0.56 0.05 0.56 0.05 0.56 0.09 0.54 0.08  

Sad Con 0.61 0.13 0.57 0.08 0.54 0.07 0.54 0.06  0.56 0.05 0.55 0.05 0.55 0.09 0.54 0.07   
Inc 0.61 0.14 0.59 0.08 0.54 0.07 0.52 0.06  0.56 0.05 0.57 0.06 0.55 0.07 0.54 0.09  

Angry Con 0.61 0.14 0.58 0.07 0.54 0.07 0.54 0.07  0.56 0.05 0.57 0.05 0.56 0.07 0.55 0.09   
Inc 0.61 0.12 0.57 0.06 0.53 0.07 0.52 0.05  0.56 0.06 0.56 0.05 0.55 0.09 0.54 0.08 

Fast-dm parameters 
  

               

a 
  

0.67 0.10 0.76 0.12 0.70 0.15 0.73 0.11  0.72 0.13 0.81 0.20 0.73 0.10 0.80 0.14 

zr 
  

0.47 0.03 0.49 0.03 0.48 0.02 0.48 0.03  0.48 0.03 0.49 0.04 0.49 0.02 0.48 0.03 

v Happy 
 

0.12 0.26 -0.01 0.19 0.10 0.20 0.06 0.17  0.11 0.27 0.01 0.28 -0.01 0.20 -0.01 0.24 
 Sad 

 
0.14 0.22 0.09 0.20 0.01 0.13 0.05 0.15  0.09 0.22 0.03 0.27 0.12 0.22 -0.01 0.24 

 Angry 
 

0.18 0.22 0.01 0.25 0.13 0.14 0.09 0.27  0.06 0.24 -0.01 0.20 0.04 0.24 0.14 0.27 

t0 Happy 
 

0.44 0.06 0.41 0.06 0.43 0.05 0.40 0.04  0.47 0.09 0.44 0.07 0.44 0.09 0.41 0.06 
 Sad 

 
0.44 0.06 0.41 0.07 0.43 0.05 0.40 0.05  0.46 0.09 0.43 0.08 0.44 0.08 0.40 0.07 

 Angry 
 

0.44 0.06 0.41 0.07 0.43 0.05 0.41 0.05  0.47 0.09 0.44 0.07 0.45 0.08 0.40 0.07 
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Table 6 

 

Pre- and post-training descriptive statistics for the dot probe for individuals in the depression cohort who were given the “toward happy” training 

paradigm    
Active 

 
Sham    

History n=14 No History n=17  History n=15 No History n=16 

 
 

Pre Post Pre Post 
 

Pre Post Pre Post    
M SD M SD M SD M SD  M SD M SD M SD M SD 

RTs                     
Happy Con 0.59 0.08 0.58 0.08 0.54 0.08 0.52 0.05  0.55 0.05 0.56 0.06 0.55 0.09 0.54 0.08   

Inc 0.59 0.08 0.59 0.08 0.54 0.07 0.53 0.06  0.56 0.05 0.56 0.05 0.56 0.09 0.54 0.08  
Sad Con 0.58 0.09 0.57 0.08 0.54 0.07 0.54 0.06  0.56 0.05 0.55 0.05 0.55 0.09 0.54 0.07   

Inc 0.58 0.08 0.59 0.08 0.54 0.07 0.52 0.06  0.56 0.05 0.57 0.06 0.55 0.07 0.54 0.09  
Angry Con 0.60 0.09 0.58 0.07 0.54 0.07 0.54 0.07  0.56 0.05 0.57 0.05 0.56 0.07 0.55 0.09   

Inc 0.59 0.10 0.57 0.06 0.53 0.07 0.52 0.05  0.56 0.06 0.56 0.05 0.55 0.09 0.54 0.08 

Fast-dm parameters 
    

             

a 
  

0.70 0.11 0.76 0.12 0.70 0.15 0.73 0.11  0.72 0.13 0.81 0.20 0.73 0.10 0.80 0.14 

zr 
  

0.47 0.03 0.49 0.03 0.48 0.02 0.48 0.03  0.48 0.03 0.49 0.04 0.49 0.02 0.48 0.03 

v Happy 
 

0.16 0.26 -0.01 0.19 0.10 0.20 0.06 0.17  0.11 0.27 0.01 0.28 -0.01 0.20 -0.01 0.24 
 Sad 

 
0.17 0.19 0.09 0.20 0.01 0.13 0.05 0.15  0.09 0.22 0.03 0.27 0.12 0.22 -0.01 0.24 

 Angry 
 

0.13 0.24 0.01 0.25 0.13 0.14 0.09 0.27  0.06 0.24 -0.01 0.20 0.04 0.24 0.14 0.27 

t0 Happy 
 

0.43 0.05 0.41 0.06 0.43 0.05 0.40 0.04  0.47 0.09 0.44 0.07 0.44 0.09 0.41 0.06 
 Sad 

 
0.43 0.05 0.41 0.07 0.43 0.05 0.40 0.05  0.46 0.09 0.43 0.08 0.44 0.08 0.40 0.07 

 Angry 
 

0.43 0.05 0.41 0.07 0.43 0.05 0.41 0.05  0.47 0.09 0.44 0.07 0.45 0.08 0.40 0.07 
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There were no effects of training on attentional bias for either the anxiety (Table 7), or 

depression (Table 8) cohorts.  The diffusion model parameters did not identify a significant effect of 

training on decision boundary, starting point, drift rate, or non-decision time in either cohort.  

 

Table 7 

Training effects: ANOVA results from the dot probe task in the anxiety cohort 

DV IVs df F p 2
partial 

RT TT, TC, Hist, Emo, 

Trial, Time 

1.76, 

207.24 

0.62 n.s. .01 

 TC, Hist, Emo, Trial, 

Time 

1.76, 

207.24 

0.51 n.s. .004 

a TT, TC, Hist, Time 1, 118 0.57 n.s. .005 

 TC, Hist, Time 1, 118 0.37 n.s. .003 

zr TT, TC, Hist, Time 1, 118 0.02 n.s. <.001 

 TC, Hist, Time 1, 118 0.23 n.s. .002 

v TT, TC, Hist, Emo, 

Time 

2, 236 0.14 n.s. .003 

 TC, Hist, Emo, Time 2, 236 0.19 n.s. .002 

t0 TT, TC, Hist, Emo, 

Time 

2, 236 0.23 n.s. .002 

 TC, Hist, Emo, Time 2, 236 2.04 n.s. .01 

TT = Training type (toward happy, away angry), TC = Training condition (active, sham), Hist = History (history, no 

history), Emo = Emotion (happy, sad, angry), Trial = Trial type (congruent, incongruent), Time = Time (pre-training, 

post training) 

* n.s.  = not significant at the .05 level 
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Table 8 

Training effects: ANOVA results from the dot probe task in the depression cohort 

DV IVs df F p 2
partial 

RT TT, TC, Hist, Emo, 

Trial, Time 

2, 236 1.34 n.s. .01 

 TC, Hist, Emo, 

Trial, Time 

2, 236 0.41 n.s. .003 

a TT, TC, Hist, Time 1, 118 0.001 n.s. < .001 

 TC, Hist, Time 1, 118 0.69 n.s. .01 

zr TT, TC, Hist, Time 1, 118 1.36 n.s. .01 

 TC, Hist, Time 1, 118 0.42 n.s. .004 

v TT, TC, Hist, Emo, 

Time 

2, 236 0.61 n.s. .005 

 TC, Hist, Emo, Time 2, 236 1.22 n.s. .01 

t0 TT, TC, Hist, Emo, 

Time 

2, 236 1.89 n.s. .02 

 TC, Hist, Emo, Time 2, 236 0.99 n.s. .01 

TT = Training type (toward happy, away sad), TC = Training condition (active, sham), Hist = History (history, no 

history), Emo = Emotion (happy, sad, angry), Trial = Trial type (congruent, incongruent), Time = Time (pre-training, 

post training) 

* n.s.  = not significant at the .05 level 
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Interpretation bias. Descriptive statistics for the anxiety cohort are presented in Tables 9 

and 10. Table 9 reports the mean RTs and fast-dm 30 parameters values and SDs for training away 

from angry at pre- and post-training; Table 10 reports the mean RTs and fast-dm 30 parameters 

values and SDs for training toward happy at pre- and post-training. Similarly, descriptive statistics 

for the depression cohort are presented in Tables 11 and 12. Table 11 reports the mean RTs and 

fast-dm 30 parameters values and SDs for training away from sad at pre- and post-training; Table 

12 reports the mean RTs and fast-dm 30 parameters values and SDs for training toward happy at 

pre- and post-training.
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Table 9 

 

Pre- and post-training descriptive statistics for the yes/no interpretation bias task for individuals in the anxiety cohort who were given the “away from 

angry” training paradigm    
Active 

 
Sham    

History n=15 No History n=15 
 

History n=17 No History n=16 

 
  

Pre Post Pre Post 
 

Pre Post Pre Post 

 
  

M SD M SD M SD M SD 
 

M SD M SD M SD M SD 

RTs                     
Happy Yes 0.86 0.14 0.70 0.16 0.76 0.18 0.68 0.18 

 
0.98 0.45 0.68 0.18 1.02 0.48 0.81 0.33   

No 0.81 0.17 0.73 0.16 0.81 0.17 0.80 0.18 
 

0.87 0.24 0.80 0.35 0.80 0.15 0.74 0.16  
Sad Yes 1.10 0.39 0.81 0.20 0.99 0.27 0.86 0.30 

 
1.24 0.53 0.89 0.38 1.05 0.43 0.87 0.30   

No 1.03 0.26 0.96 0.25 1.05 0.23 0.89 0.22 
 

1.17 0.58 0.95 0.27 1.14 0.41 0.90 0.22  
Angry Yes 0.89 0.20 0.73 0.14 0.98 0.34 0.76 0.17 

 
1.06 0.39 0.84 0.35 1.03 0.61 0.85 0.42   

No 1.06 0.32 0.87 0.15 0.91 0.21 0.85 0.21 
 

1.06 0.39 0.91 0.25 1.11 0.41 0.87 0.21  
Neutral Yes 0.91 0.19 0.83 0.31 0.91 0.23 0.67 0.15 

 
1.05 0.45 0.78 0.37 1.06 0.73 0.88 0.43   

No 0.92 0.19 0.82 0.18 1.04 0.42 0.83 0.17 
 

1.03 0.31 0.79 0.26 1.00 0.34 0.85 0.21 

Fast-dm parameters 
                 

a Happy 
 

1.77 0.37 1.45 0.39 1.48 0.30 1.41 0.27 
 

1.73 0.53 1.38 0.31 1.71 0.54 1.57 0.52  
Sad 

 
1.70 0.42 1.58 0.34 1.62 0.41 1.34 0.40 

 
1.87 0.58 1.56 0.54 1.75 0.55 1.52 0.56  

Angry 
 

1.78 0.45 1.52 0.36 1.66 0.53 1.48 0.37 
 

1.72 0.48 1.62 0.57 1.84 0.63 1.53 0.48  
Neutral 

 
1.62 0.36 1.56 0.47 1.69 0.46 1.36 0.19 

 
1.72 0.55 1.31 0.50 1.79 0.48 1.49 0.48 

zr Happy 
 

0.63 0.09 0.61 0.10 0.61 0.09 0.64 0.09 
 

0.61 0.09 0.61 0.13 0.61 0.12 0.60 0.09  
Sad 

 
0.57 0.12 0.65 0.12 0.56 0.09 0.58 0.11 

 
0.57 0.13 0.61 0.12 0.61 0.11 0.62 0.07  

Angry 
 

0.60 0.09 0.68 0.09 0.57 0.13 0.64 0.08 
 

0.58 0.13 0.63 0.12 0.57 0.11 0.65 0.09  
Neutral 

 
0.49 0.10 0.58 0.14 0.48 0.15 0.58 0.12 

 
0.54 0.12 0.54 0.12 0.49 0.16 0.53 0.14 

v Happy 
 

-0.11 0.98 0.45 0.71 0.36 0.56 0.32 0.84 
 

0.12 0.80 0.39 1.00 -0.42 1.02 0.18 0.94  
Sad 

 
-0.11 0.60 0.21 0.72 -0.01 0.80 0.19 1.02 

 
-0.21 0.40 0.20 0.89 -0.12 0.65 0.15 0.76  

Angry 
 

0.46 1.02 0.23 0.71 0.43 2.82 0.12 1.09 
 

-0.19 0.71 0.03 0.92 0.13 0.89 -0.21 0.84  
Neutral 

 
-0.14 0.71 -0.22 0.62 0.05 0.67 0.48 0.83 

 
-0.26 1.05 0.01 0.59 0.01 0.60 -0.06 0.91 

t0 Happy 
 

0.44 0.09 0.40 0.08 0.47 0.10 0.43 0.13 
 

0.48 0.12 0.44 0.10 0.47 0.09 0.42 0.10 
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Sad 

 
0.56 0.12 0.47 0.13 0.51 0.12 0.50 0.09 

 
0.52 0.14 0.45 0.12 0.50 0.13 0.46 0.09  

Angry 
 

0.46 0.14 0.45 0.10 0.47 0.08 0.45 0.08 
 

0.53 0.11 0.46 0.12 0.46 0.10 0.45 0.04  
Neutral 

 
0.47 0.09 0.42 0.16 0.47 0.08 0.40 0.12 

 
0.52 0.20 0.45 0.13 0.46 0.09 0.43 0.08 

 

Table 10 

 

Pre- and post-training descriptive statistics for the yes/no interpretation bias task for individuals in the anxiety cohort who were given the “toward 

happy” training paradigm    
Active 

 
Sham    

History n=16 No History n=16 
 

History n=15 No History n=16    
Pre Post Pre Post 

 
Pre Post Pre Post    

M SD M SD M SD M SD 
 

M SD M SD M SD M SD 

RTs                     
Happy Yes 0.81 0.27 0.69 0.15 0.89 0.41 0.65 0.12 

 
0.97 0.24 0.88 0.28 0.76 0.17 0.68 0.17   

No 0.86 0.27 0.78 0.18 0.80 0.23 0.74 0.14 
 

0.82 0.17 0.91 0.41 0.71 0.12 0.72 0.15  
Sad Yes 1.01 0.27 0.81 0.20 0.95 0.29 0.74 0.15 

 
1.02 0.26 0.92 0.22 0.89 0.26 0.82 0.35   

No 1.01 0.21 0.94 0.26 1.02 0.28 0.86 0.20 
 

1.03 0.21 0.99 0.24 0.89 0.15 0.83 0.18  
Angry Yes 0.90 0.32 0.76 0.13 0.88 0.15 0.70 0.15 

 
0.99 0.25 0.80 0.10 0.85 0.22 0.74 0.16   

No 1.07 0.32 0.87 0.20 0.90 0.20 0.81 0.25 
 

0.98 0.21 0.95 0.24 0.91 0.26 0.78 0.16  
Neutral Yes 1.08 0.36 0.79 0.25 0.91 0.29 0.69 0.12 

 
1.10 0.41 0.91 0.30 0.83 0.22 0.69 0.13   

No 1.03 0.35 0.87 0.20 0.94 0.19 0.74 0.07 
 

1.01 0.30 0.94 0.26 0.90 0.25 0.75 0.14 

Fast-dm parameters 
                 

a Happy 
 

1.60 0.46 1.55 0.35 1.74 0.62 1.33 0.31 
 

1.65 0.34 1.72 0.64 1.42 0.40 1.40 0.32  
Sad 

 
1.81 0.43 1.65 0.56 1.62 0.45 1.44 0.29 

 
1.64 0.34 1.52 0.42 1.46 0.32 1.27 0.28  

Angry 
 

1.78 0.54 1.53 0.39 1.55 0.38 1.44 0.36 
 

1.65 0.44 1.51 0.34 1.51 0.40 1.36 0.49  
Neutral 

 
2.00 0.58 1.44 0.32 1.60 0.46 1.38 0.30 

 
1.69 0.48 1.50 0.36 1.55 0.54 1.35 0.39 

zr Happy 
 

0.60 0.10 0.61 0.09 0.61 0.11 0.58 0.11 
 

0.56 0.11 0.57 0.11 0.60 0.08 0.61 0.11  
Sad 

 
0.59 0.10 0.60 0.11 0.59 0.12 0.63 0.11 

 
0.59 0.12 0.59 0.10 0.58 0.08 0.62 0.11  

Angry 
 

0.59 0.10 0.59 0.09 0.59 0.13 0.58 0.11 
 

0.59 0.12 0.62 0.11 0.64 0.11 0.60 0.11  
Neutral 

 
0.53 0.13 0.56 0.10 0.50 0.11 0.57 0.12 

 
0.48 0.09 0.52 0.09 0.54 0.13 0.59 0.10 

v Happy 
 

0.50 0.85 0.68 0.73 0.14 0.90 0.63 0.97 
 

-0.29 0.73 0.01 0.58 -0.05 0.77 0.26 0.72  
Sad 

 
0.05 0.50 0.27 0.74 0.10 0.67 0.16 1.05 

 
-0.06 0.69 -0.08 0.64 0.05 0.62 -0.03 0.71 
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Angry 

 
0.36 0.91 0.42 0.86 -0.23 0.68 0.62 1.11 

 
-0.22 0.56 0.10 0.57 -0.28 0.76 -0.02 0.95  

Neutral 
 

-0.49 0.98 -0.05 0.82 0.23 0.67 -0.07 0.82 
 

-0.21 0.81 -0.21 0.50 0.02 0.87 -0.21 1.00 

t0 Happy 
 

0.44 0.09 0.40 0.09 0.43 0.10 0.43 0.07 
 

0.49 0.11 0.42 0.12 0.48 0.07 0.43 0.05  
Sad 

 
0.44 0.09 0.41 0.08 0.50 0.13 0.44 0.10 

 
0.53 0.10 0.49 0.11 0.48 0.09 0.50 0.09  

Angry 
 

0.41 0.08 0.43 0.07 0.50 0.08 0.41 0.11 
 

0.51 0.12 0.48 0.09 0.48 0.08 0.46 0.07  
Neutral 

 
0.45 0.15 0.42 0.07 0.47 0.15 0.39 0.06 

 
0.48 0.07 0.46 0.11 0.44 0.11 0.44 0.08 

 

Table 11 

 

Pre- and post-training descriptive statistics for the yes/no interpretation bias task for individuals in the depression cohort who were given the “away 

from sad” training paradigm    
Active 

 
Sham    

History n=16 No History n=17 
 

History n=14 No History n=16 

 
  

Pre Post Pre Post 
 

Pre Post Pre Post    
M SD M SD M SD M SD 

 
M SD M SD M SD M SD 

RTs                     
Happy Yes 0.91 0.38 0.68 0.20 0.75 0.18 0.72 0.18 

 
0.84 0.27 0.71 0.13 0.77 0.18 0.68 0.15   

No 0.84 0.19 0.72 0.14 0.73 0.14 0.73 0.13 
 

0.84 0.18 0.72 0.17 0.77 0.15 0.73 0.17  
Sad Yes 1.03 0.31 0.71 0.22 0.94 0.21 0.83 0.14 

 
1.06 0.26 0.82 0.25 0.89 0.20 0.75 0.11   

No 1.20 0.58 0.89 0.28 0.99 0.29 0.95 0.23 
 

1.07 0.26 0.97 0.33 0.87 0.16 0.81 0.17  
Angry Yes 1.05 0.30 0.71 0.18 0.83 0.15 0.79 0.18 

 
0.98 0.19 0.74 0.20 0.85 0.13 0.73 0.12   

No 0.96 0.23 0.87 0.26 0.89 0.18 0.86 0.17 
 

0.90 0.19 0.88 0.22 0.90 0.18 0.79 0.15  
Neutral Yes 0.91 0.25 0.76 0.25 0.87 0.28 0.78 0.21 

 
1.01 0.39 0.78 0.20 0.82 0.20 0.69 0.20   

No 1.05 0.33 0.86 0.18 0.92 0.23 0.82 0.12 
 

0.95 0.31 0.85 0.18 0.87 0.17 0.78 0.13 

Fast-dm parameters 
                 

a Happy 
 

1.78 0.53 1.41 0.41 1.59 0.46 1.43 0.41 
 

1.59 0.45 1.47 0.28 1.52 0.33 1.33 0.26  
Sad 

 
1.83 0.68 1.32 0.40 1.58 0.44 1.46 0.38 

 
1.73 0.32 1.61 0.44 1.45 0.36 1.35 0.36  

Angry 
 

1.74 0.52 1.46 0.43 1.51 0.43 1.50 0.46 
 

1.61 0.39 1.53 0.43 1.54 0.33 1.38 0.38  
Neutral 

 
1.66 0.57 1.54 0.54 1.65 0.58 1.44 0.36 

 
1.72 0.44 1.48 0.29 1.42 0.29 1.26 0.27 

zr Happy 
 

0.62 0.12 0.55 0.11 0.61 0.12 0.63 0.10 
 

0.54 0.14 0.57 0.15 0.63 0.12 0.61 0.10  
Sad 

 
0.57 0.09 0.63 0.09 0.57 0.14 0.57 0.07 

 
0.59 0.11 0.60 0.13 0.55 0.10 0.54 0.15  

Angry 
 

0.61 0.12 0.62 0.11 0.62 0.06 0.64 0.11 
 

0.55 0.11 0.59 0.15 0.62 0.12 0.62 0.11 
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Neutral 

 
0.49 0.13 0.53 0.14 0.51 0.14 0.53 0.11 

 
0.45 0.11 0.56 0.12 0.53 0.13 0.51 0.12 

v Happy 
 

0.07 0.72 0.65 0.61 0.22 0.81 0.23 1.03 
 

0.20 0.82 0.31 1.16 -0.11 0.70 0.32 1.02  
Sad 

 
0.15 0.55 -0.09 0.82 0.09 0.91 0.07 0.83 

 
0.00 0.64 0.40 0.93 -0.01 0.57 0.40 0.66  

Angry 
 

-0.28 0.69 0.18 0.69 -0.14 0.58 0.00 0.80 
 

-0.15 0.73 0.56 0.87 -0.24 0.52 0.24 0.85  
Neutral 

 
0.22 0.84 0.24 1.00 0.12 0.64 0.15 0.58 

 
0.07 0.81 -0.17 0.77 -0.17 0.87 0.30 0.97 

t0 Happy 
 

0.44 0.08 0.40 0.09 0.44 0.07 0.45 0.07 
 

0.48 0.13 0.42 0.12 0.46 0.07 0.42 0.05  
Sad 

 
0.45 0.12 0.44 0.13 0.52 0.07 0.48 0.06 

 
0.53 0.09 0.42 0.15 0.47 0.11 0.45 0.06  

Angry 
 

0.48 0.10 0.41 0.12 0.46 0.06 0.45 0.08 
 

0.53 0.12 0.41 0.10 0.47 0.06 0.44 0.08  
Neutral 

 
0.47 0.12 0.38 0.13 0.44 0.11 0.42 0.08 

 
0.48 0.13 0.45 0.12 0.48 0.10 0.41 0.08 

Table 12 
 

Pre- and post-training descriptive statistics for the yes/no interpretation bias task for individuals in the depression cohort who were given the “toward 

happy” training paradigm    
Active 

 
Sham    

History n=14 No History n=17 
 

History n=17 No History n=15 

 
  

Pre Post Pre Post 
 

Pre Post Pre Post    
M SD M SD M SD M SD 

 
M SD M SD M SD M SD 

RTs                     
Happy Yes 0.81 0.30 0.70 0.12 0.85 0.40 0.65 0.18 

 
0.92 0.34 0.71 0.17 0.71 0.14 0.66 0.16   

No 0.86 0.14 0.84 0.11 0.73 0.14 0.74 0.20 
 

0.89 0.35 0.75 0.15 0.72 0.11 0.87 0.41  
Sad Yes 0.91 0.26 0.81 0.25 0.91 0.35 0.78 0.23 

 
1.21 0.45 0.97 0.26 0.90 0.19 0.80 0.17   

No 1.03 0.21 0.94 0.13 0.99 0.30 0.86 0.19 
 

1.19 0.68 1.02 0.35 0.92 0.12 0.87 0.18  
Angry Yes 0.89 0.19 0.80 0.13 0.87 0.22 0.70 0.18 

 
1.06 0.31 0.86 0.24 0.87 0.21 0.74 0.14   

No 0.95 0.21 0.91 0.13 0.91 0.21 0.82 0.20 
 

1.06 0.24 0.99 0.39 0.91 0.17 0.82 0.13  
Neutral Yes 0.92 0.31 0.78 0.25 0.78 0.20 0.65 0.14 

 
1.07 0.35 0.83 0.21 0.85 0.16 0.71 0.14   

No 1.00 0.24 0.89 0.14 0.96 0.32 0.83 0.17 
 

1.05 0.33 0.92 0.24 0.87 0.18 0.81 0.21 

Fast-dm parameters 
                 

a Happy 
 

1.82 0.52 1.67 0.16 1.58 0.53 1.51 0.31 
 

1.74 0.53 1.50 0.40 1.50 0.40 1.46 0.45  
Sad 

 
1.70 0.38 1.59 0.37 1.56 0.46 1.43 0.31 

 
1.75 0.57 1.77 0.95 1.60 0.35 1.39 0.26  

Angry 
 

1.66 0.40 1.62 0.44 1.55 0.43 1.40 0.37 
 

1.88 0.47 1.70 0.48 1.55 0.34 1.42 0.21  
Neutral 

 
1.72 0.47 1.52 0.39 1.49 0.39 1.37 0.33 

 
1.91 0.67 1.64 0.42 1.49 0.34 1.33 0.34 

zr Happy 
 

0.65 0.11 0.64 0.15 0.60 0.14 0.66 0.13 
 

0.58 0.09 0.55 0.12 0.60 0.10 0.57 0.11 
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Sad 

 
0.63 0.13 0.66 0.09 0.59 0.13 0.60 0.15 

 
0.56 0.09 0.56 0.15 0.57 0.09 0.57 0.10  

Angry 
 

0.65 0.06 0.67 0.11 0.62 0.11 0.67 0.06 
 

0.57 0.10 0.55 0.12 0.62 0.12 0.67 0.09  
Neutral 

 
0.51 0.10 0.55 0.18 0.53 0.07 0.56 0.12 

 
0.47 0.15 0.49 0.09 0.51 0.13 0.56 0.13 

v Happy 
 

0.48 1.14 0.56 0.84 -0.01 0.92 0.16 1.10 
 

0.23 0.65 0.95 0.96 0.24 0.94 0.82 0.96  
Sad 

 
0.21 1.30 0.49 1.53 0.18 0.53 0.11 0.85 

 
-0.15 0.57 -0.01 0.81 0.11 0.80 0.09 0.74  

Angry 
 

-0.21 0.53 -0.13 0.94 -0.24 0.75 0.11 1.03 
 

0.02 0.72 0.52 1.19 -0.10 0.83 -0.20 0.76  
Neutral 

 
0.05 0.74 0.34 1.28 0.39 0.53 0.37 0.68 

 
0.07 0.84 0.24 0.55 -0.17 0.77 -0.04 1.10 

t0 Happy 
 

0.45 0.06 0.42 0.10 0.47 0.10 0.42 0.09 
 

0.44 0.11 0.42 0.10 0.43 0.08 0.39 0.10  
Sad 

 
0.50 0.08 0.46 0.09 0.46 0.12 0.48 0.08 

 
0.52 0.12 0.48 0.08 0.44 0.10 0.43 0.14  

Angry 
 

0.49 0.09 0.48 0.09 0.50 0.10 0.44 0.08 
 

0.47 0.12 0.41 0.10 0.48 0.11 0.45 0.07  
Neutral 

 
0.45 0.12 0.44 0.09 0.44 0.07 0.41 0.07 

 
0.48 0.11 0.40 0.12 0.46 0.08 0.41 0.12 
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Analysis of RTs in the anxiety cohort identified an interaction between training, history, 

emotion, response and time (Table 13). However, follow-up analyses did not identify a training 

effect on yes responses that indicated a shift in bias. An interaction between training type, 

condition, history, emotion and time was also identified for boundary separation. However, as with 

RT analysis, follow-up analyses did not identify a training effect on boundary separation. There was 

no effect of training on starting point, drift rate, or non-decision time.  

 

Table 13 

Training effects: ANOVA results from the yes/no interpretation bias task in the anxiety cohort 

DV IVs df F p 2
partial 

RT TT, TC, Hist, Emo, 

Resp, Time 

3, 354 0.24 n.s. <.001 

 TC, Hist, Emo, 

Trial, Time 

3, 354 3.16 = .03 .03 

a TT, TC, Hist, Emo, 

Time 

3, 354 2.85 = .04 .02 

 TC, Hist, Emo, Time 3, 354 1.19 n.s. .01 

zr TT, TC, Hist, Emo, 

Time 

3, 354 0.66 n.s. .001 

 TC, Hist, Emo, Time 3, 354 0.18 n.s. .001 

v TT, TC, Hist, Emo, 

Time 

2.70, 

318.04 

2.31 n.s. .02 

 TC, Hist, Emo, Time 2.70, 

318.04 

1.36 n.s. .01 

t0 TT, TC, Hist, Emo, 

Time 

3, 354 1.06 n.s. .01 
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 TC, Hist, Emo, Time 3, 354 1.70 n.s. .01 

TT = Training type (toward happy, away angry), TC = Training condition (active, sham), Hist = History (history, no 

history), Emo = Emotion (happy, sad, angry, neutral), Trial = Trial type (yes, no), Time = Time (pre-training, post 

training) 

* n.s.  = not significant at the .05 level 

 

 

 

 

For the depression cohort, there were no effects of training on interpretation bias. (Table 

14). Additionally, the diffusion model parameters did not identify a significant effect of training on 

decision boundary, starting point, or drift rate. While there was a significant interaction detected for 

raining type, condition, history, emotion and time on non-decision time, follow-up analyses failed 

to identify any effect of training on non-decision time. 

 

Table 14 

Training effects: ANOVA results from the yes/no interpretation bias task in the depression cohort 

DV IVs df F p 2
partial 

RT TT, TC, Hist, Emo, 

Trial, Time 

3, 354 0.68 n.s. .01 

 TC, Hist, Emo, 

Trial, Time 

3, 354 0.39 n.s. < .001 

a TT, TC, Hist, Emo, 

Time 

2.69, 

317.58 

0.93 n.s. .01 

 TC, Hist, Emo, Time 2.69, 

317.58 

1.04 n.s. .01 

zr TT, TC, Hist, Emo, 

Time 

3, 354 0.35 n.s. .003 
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 TC, Hist, Emo, Time 3, 354 1.22 n.s. .01 

v TT, TC, Hist, Emo, 

Time 

2.80, 

330.76 

1.14 n.s. .01 

 TC, Hist, Emo, Time 2.80, 

330.76 

1.46 n.s. .01 

t0 TT, TC, Hist, Emo, 

Time 

3, 354 3.28 = .02 .03 

 TC, Hist, Emo, Time 3, 354 1.46 n.s. .01 

TT = Training type (toward happy, away sad), TC = Training condition (active, sham), Hist = History (history, no 

history), Emo = Emotion (happy, sad, angry, neutral), Trial = Trial type (yes, no), Time = Time (pre-training, post 

training) 

*n.s. = not significant at the .05 level 

 

Reliability Analyses 

To examine the test-retest reliability of the traditional attentional bias scores, and diffusion 

model parameters from the dot probe task, we conducted correlational analyses between the values 

obtained at pre-training and post training for individuals in the sham training condition. As can be 

seen in table 15, correlations for the attentional bias score were not positively correlated from pre- 

to post-training, revealing no evidence of test-retest reliability. For the diffusion model parameters, 

non-decision time values for pre- and post-training were highly correlated for all conditions. The 

boundary separation values for pre- and post-training were moderately correlated. Starting point and 

drift rate values for pre- and post-training were not correlated. 

 

Table 15 

Test-retest correlation coefficients obtained from the dot probe task for the sham training groups  

 
Anxiety Depression 
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Attentional Bias 
 

Happy -.1 -.15 

Sad  -.44** -.09 

Angry -.13 -.11 

zr  .12  .18 

a  .67**  .49** 

v Happy -.04  .07 

v Angry  .06  .04 

v Sad  .11 -.01 

t0 Happy  .83**  .82** 

t0 Sad  .75**  .82** 

t0 Angry  .80**  .80** 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 

 

 

Discussion 

The aim of this study was two-fold. The first aim was to try to identify the cognitive 

processes that underlie negative attentional and interpretation biases in individuals with anxiety and 

depression. The second aim was to identify which cognitive processes shift after successful 

attentional bias modification. Based on previous attentional bias research, we expected that 

individuals with a history of anxiety would have an attentional bias for angry faces, while 

individuals with a history of depression would have an attentional bias for sad faces. We expected 

that these would be evident from attentional bias scores, as well as the diffusion model parameter of 

drift rate. We also hypothesised that there may be associated non-decisional differences due to 

hypervigilance and motor slowing, which are symptoms of anxiety and depression, respectively 
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(DSM-V; American Psychiatric Association, 2014). Further, we expected that interpretation bias to 

disorder congruent stimuli would be evident from faster response times to “yes” responses, and 

from higher drift rates and starting point values for angry and sad faces for individuals with a 

history of anxiety and depression, respectively.  

The Absence of Attentional Bias 

The results derived from the dot probe assessment task and the yes/no task did not identify 

disorder-congruent attentional or interpretation biases in participants with a history of anxiety or 

depression. Therefore, our expectation that we would identify disorder-congruent attentional and 

interpretation biases in individuals with a history of anxiety and depression was not supported. 

Further, to identify the cognitive processes of change that occur because of successful attentional 

bias modification, an attentional bias must be captured in the first instance. In line with the gold 

standard of intervention studies, the condition that is under investigation must be present prior to 

assessing success of treatment. Given the premise is that individuals with anxiety and/or depression 

possess these cognitive biases, not seeing them in the first instance makes any changes thereafter 

irrelevant therapeutically. As a result, our goal to identify the cognitive processes of change was 

unable to be achieved. There are several possibilities that we need to consider as to why we did not 

find an attentional bias in our sample. The first is sample characteristics. The second is stimulus 

properties. The third is that the dot probe task may be an unreliable measure of attentional bias. The 

fourth is that attentional bias may not be a stable trait. Finally, attentional bias may not be able to be 

effectively, or consistently, measured with the dot-probe task in clinical populations. We address 

each of these explanations in turn. 

A non-clinical sample was recruited for this study. To classify participants into the 

respective clinical groups, we asked participants if they had a history of anxiety or depression; 

however, we did not clarify how long ago they had experienced the disorder, or its severity. 

Therefore, we need to consider whether our sample did not have enough clinical severity to identify 

an attentional bias. The pre-training DASS scores demonstrate that participants who reported a 
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history of anxiety or depression had higher levels of anxiety, depression and emotion regulation 

difficulties than participants who reported no such history. However, the mean scores on the anxiety 

and depression measures for those with a history of anxiety and depression were in only in the 

moderate to high range. Scores above 12 on the stress subscale and scores above 10 on the 

depression subscale would be needed to classify symptoms in the severe range. There is some 

evidence that attentional bias is difficult to capture, or does not exist, in mild to moderate cases (e.g. 

Broadbent & Broadbent, 1988). To check whether this could account for the lack of bias scores 

found in our sample, we examined attentional bias in participants who had clinical scores in the 

severe range. The subsample of 35 participants who had an anxiety (stress subscale) score of 13 or 

above showed no attentional bias for angry stimuli, nor did the bias for this subsample differ from 

that of those who had no or low levels of anxiety. Similarly, the 39 participants who had a 

depression score of 11 and above, showed no attentional bias for sad stimuli, nor did the bias for 

this subsample differ from that of those who had no or low levels of depression. Considering the 

limitations of lower power associated with smaller sample sizes, the lack of an attentional bias 

identified in these subsamples indicates that the reason we did not find an attentional bias does not 

appear to be due to low clinical scores resulting from recruiting a non-clinical sample.    

Additionally, effects of attentional bias are generally small to moderate (eg. Bar Haim, 

2010; Browning et al, 2010), as are effects of attentional bias modification. As there was no 

attentional bias captured in the current study, nor was there an effect of training detected, it may be 

that a larger sample size is required to detect small to moderate effects in clinical populations than 

was presented here.   

Turning to the stimuli we used, physical properties, such as colour, shape, and configuration, 

of the stimuli chosen can affect attentional responding (Turatto & Galfano, 2000). For example, 

stimulus location (top/bottom, left/right), and stimulus-type (pictures, words, abstract) can moderate 

the strength of attentional bias (Beard et al., 2012). We used faces from the NimStim database, 

which have successfully captured attention in other studies (e.g. Arndt & Fujiwara, 2012; Niles, 
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Mesri, Burklund, Lieberman, & Craske, 2013; Paulewicz, Blaut, & Kłosowska, 2012). Therefore, 

stimulus properties cannot explain the lack of an attentional bias in our sample. 

The attentional bias score derived from the dot probe task has poor reliability (Cisler et al., 

2009; Rodebaugh et al., 2016; Schmukle, 2005), and could account for the lack of an attentional 

bias in this sample based on RT measures. However, the lack of reliability of the score cannot 

account for not capturing attentional bias with the diffusion model parameters. Assuming the bias is 

there, and the unreliability of the attentional bias score is the problem, as the diffusion model 

parameters separate out the cognitive processes captured by the RT score,  reducing noise in the 

data, theoretically, it should offer a more precise account of attentional bias. Thus, if an attentional 

bias was there but simply not captured due to a lack of reliability of the attentional bias score the 

diffusion model should be able to identify it. As it did not, we turn to the consideration that 

attentional bias may not be a stable trait. 

The variability in the successful capture of attentional bias in clinical populations may 

indicate that attentional bias is not a stable trait, but rather a dynamic process that fluctuates over 

time (Rodebaugh et al., 2016). This theory of a dynamic attentional bias proposes that attentional 

bias presents in phasic bursts, oriented towards and then away from salient stimuli (Zvielli, 

Bernstein, & Koster, 2015). Further, this dynamic process has been posited to account for the lack 

of reliability often found in the attentional bias score (Rodebaugh et al., 2016). That is, an 

attentional bias may be captured at one time point, but not another, depending on the dynamic 

processes that are activated at the time of assessment, and thus the two attentional bias scores do not 

correlate. This explanation may account for the lack of an attentional bias in this sample.  

If attentional bias is a stable trait with a causal or maintaining role in anxiety and depression, 

we would have found it in the subset of particiapnts with high levels of anxiety and depression. 

Additionally, if attentional bias was a stable trait and it was the reliability of the attentional bias 

score that was the issue, we would still have captured attentional bias through the diffusion model 

parameters. Given that neither the diffusion model parameters or the attentional bias score captured 
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an attentional bias, it appears that a dynamic temporal of attentional bias is the most plausible 

explanation for why we did not find an attentional bias in our sample.  

However, there is a more sobering explanation that must be considered. It may be that the 

dot-probe task is unable to accurately or reliably detect attentional bias effects in disorders with 

such broad manifestations as anxiety and depression. If the effect is not able to be detected in the 

behavioural data captured by the task, it will not be identified by any form of computational model, 

no matter how stringent. 

Differences in Attentional and Interpretation Processes Between Anxiety and Depression 

The lack of an attentional bias in our sample has voided our primary aim of identifying the 

cognitive processes responsible for attentional and interpretation bias. Therefore, our attention now 

turns to the findings of the cognitive processes that differ between anxiety and depression. Analysis 

of fast-dm data demonstrated activation of slightly different cognitive processes for these two 

disorders. Importantly, these processes were not detected by RTs, demonstrating the sensitivity of 

the diffusion model parameters. We first examine how attentional processes differ between anxiety 

and depression, as well as the added information we obtained from fast-dm 30 analysis relative to 

RT analysis.  

RTs from the dot probe task did not identify any difference between congruent responses 

and incongruent responses for any emotion, irrespective of clinical history. This finding would lead 

us to conclude that there was no capture by emotional stimuli in our sample. However, the diffusion 

model analysis identified that in the groups with a history of anxiety and a history of depression, 

that evidence for the probe was stronger when presented behind an emotive stimulus than when 

presented behind a neutral stimulus, indicating that attention was captured by emotion. 

Additionally, individuals with a history of depression had slower RTs than individuals with no 

history of depression, which we may have hypothesised to be a function of motor slowing, a 

common symptom of depression. However, fast-dm 30 analysis identified that individuals with a 

history of depression had faster non-decisional processes than individuals with no history of 
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depression. This finding informs us that the slower RTs for individuals with a history of depression 

is not because of motor slowing, and that they in fact appear to have a phasic response to emotional 

stimuli. Therefore, diffusion model analysis identified faster emotional capture of attention in 

individuals with a history of anxiety and depression than individuals with no such history. 

Additionally, individuals with depression appear to have a phasic response to emotion.  

Turning our focus to the processes identified in the interpretation of stimuli, response times 

from the yes/no task did not identify differences in the interpretation of emotional stimuli based on 

clinical history. RTs did identify a tendency across all participants to respond more quickly to 

happy stimuli. The parameters returned by fast-dm 30 identified that these faster RTs were a result 

of less conservative responding, and faster non-decisional processes. Individuals with a history of 

depression had slower mean RTs than individuals with no history of depression, for which diffusion 

model parameters identified to be a result of more conservative decision-making than individuals 

with no history of depression; an alternative account for their longer RTs than the motor slowing 

hypothesis. Additionally, and unexpectedly, individuals with a history of depression had less 

expectancy for angry information than individuals with no history of depression. While the function 

of this result is not clear, one potential explanation for this is that depression is often associated with 

an avoidant coping style. For individuals with depression, anger can be associated with rejection, 

rather than threat (Leyman, De Raedt, Schacht, & Koster, 2007), and as such, the lower starting 

point may be indicative of efforts to avoid engaging with angry information.  

The decisional processes for interpretation of emotion for individuals with a history of 

anxiety were slightly different. While RTs identified no differences between individuals with a 

reported history of anxiety and those with no such history, the parameters returned from fast-dm 30 

analysis identified that individuals with anxiety had a propensity to accumulate evidence more 

quickly across all emotions than individuals without a history of anxiety. This could be a function 

of hypervigilance. Individuals with anxiety may analyse and interpret the stimuli in their 

environment more quickly than individuals with no such history due to a heightened fear of threat.  
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Therefore, there were two primary differences in the decision-making processes associated 

with interpreting affective material for individuals with a history of anxiety and depression. 

Individuals with depression were slower to respond due to more cautious responding, i.e., they need 

more evidence before they will execute a decision, whereas individuals with a history of anxiety 

were faster to gather evidence to make their decision. While we were unable to identify any effects 

of training on attentional and interpretation bias in this study, we did demonstrate that the diffusion 

model can identify differences in cognitive processing between individuals with anxiety and 

depression in a way that RTs cannot.  

Reliability of the Diffusion Model Parameters for the Attentional Bias Task 

Our second goal of this study was to assess the test-retest reliability of the attentional bias 

parameters of the diffusion model returned by Fast-dm. We wanted to assess whether the diffusion 

model parameters returned for the dot probe task could be a more stable and reliable measure of 

attentional bias than the dot probe score. To do so, we used test/re-test reliability, which may be 

open to practise effects. This is a potential limitation of this method of reliability assessment. We 

found that neither the attentional bias score, starting point, or drift rate values correlated from pre-

training to post training. However, values from pre- to post training were highly correlated for non-

decision time, and moderately correlated for boundary separation.  

We have hypothesised that attentional bias is likely a processing bias, which would be 

captured by the drift rate parameter, therefore, high test-retest reliability of the drift rate value is 

paramount. However, before we dismiss the diffusion model analysis as being unsuitable based on 

the correlations presented above, we consider how the lack of variability of drift rate values in our 

sample may account for the lack of correlation for these values at pre- and post-training. A lack of 

variability in data points can reduce the likelihood of a correlation, or decrease its strength 

(Goodwin & Leech, 2006). Drift rate values can typically range from -5 to +5, which is a range of 

10. In our sample, the range for drift rate values was just above 1. This small range is primarily 

because we did not capture an attentional bias in this sample. Whether this is due to poor quality 
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stimuli, the potential dynamic variability of attentional bias (both discussed above), or because 

attentional bias is not a function of perceptual bias, the low values, and small variance obtained 

from the drift rate parameter, have decreased the likelihood of a meaningful correlation. Therefore, 

to determine whether the drift rate is reliable across time, analysis of data that did identify an 

attentional bias would be needed to determine which of these factors is responsible for the lack of 

correlation found in this study.  

Theoretical and Clinical Implications 

The findings presented in this study have several important theoretical implications. The 

first is that our results support Zvielli, Bernstein, and Koster's (2015) notion that attentional bias 

may not be a stable trait, but instead is dynamic in nature. Despite the high levels of anxiety and 

depression reported by some participants, we found no evidence of an attentional bias through RT 

analysis.  

Second, our results illustrate the potential for the diffusion model to identify processes in 

attentional and interpretation bias that are not captured by RTs alone. Specifically, we identified 

that the processes involved in attention and interpretation differ slightly for individuals with a 

history of anxiety and depression. Further, these processes differ from those of individuals with no 

such history. The identification of differences in decisional processes for attention and 

interpretation means that if the diffusion model was used to analyse data that has captured an 

attentional bias, the decisional processes responsible for that bias could be identified.  

The clinical implications of these findings are promising. Enhanced understanding of the 

decisional processes that are responsible for affective cognitive biases offers the opportunity to 

develop and implement more targeted strategies for cognitive change. This, in turn, has the potential 

to alleviate the emotional distress that often accompanies these distorted cognitive processes.  

Conclusion 

Our goal of identifying the processes involved in successful attentional bias modification, 

and the impact ABM may have on interpretation bias for individuals with anxiety and depression, 
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was not met. We did not identify any disorder-congruent biases. However, our analyses did identify 

that the parameters of fast-dm 30 have the capacity to identify cognitive processes that are masked 

by RTs alone. Further, differences were identified in cognitive processes between clinical cohorts. 

The implications of this for enhancing our theoretical understanding of the decisional processes that 

are hypothesised to contribute to the onset and maintenance of anxiety and depression is promising. 

However, the test-retest reliability of the parameters for both the dot-probe task and the yes/no task 

were mixed. Further research needs to ensure that the methodological issues that can impact on 

reliability are accounted for before we can make firm conclusions as to the diffusion model’s 

viability as an alternative, more reliable, way to analyse data from the dot probe task.   
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Chapter 6: Conclusion 

The aims of this thesis were threefold. The first aim was to successfully fit the diffusion model to 

data from the dot probe task. The second was to contribute to the broader understanding of the 

cognitive processes underlying attentional and interpretation biases in anxiety and depression. The 

third and final aim was to compare the test retest reliability of the parameters returned by fast-dm 

analysis against the attentional bias score to determine whether fast-dm has the capacity to be a 

more sensitive, and reliable, alternative means of analysis.  

Assessing Model Fit 

For each of the measures used in this thesis, the diffusion model appeared to fit the data 

well. However, it must be cautioned that as a non-mathematical psychologist, the fits were assessed 

based on the fit statistic returned by fast-dm 30, in combination with graphical inspection as 

recommended by Voss, Voss, & Lerche (2015). The models chosen for the dot probe and yes/no 

tasks were based on a theoretical understanding of the processes most likely to be responsible for 

attention and interpretation bias.  

At the outset, the hypothesis was that attentional bias could be the result of three implicit 

decisional processes. First, individuals who show an attentional bias for disorder-specific negative 

emotion may have a lower threshold for responding to threats and dysphoric stimuli than those who 

do not show such a bias. Second, it may be that evidence for negative stimuli accumulates more 

quickly for individuals who show an attentional bias for negative emotion than those who do not 

show such a bias. Or, third, individuals who show an attentional bias for negative stimuli may have 

faster motor execution for processing negative items than individuals who do not show such a bias, 

which would result in shorter non-decision times. Therefore, we were looking for differences in 

starting point, drift rate, and non-decision time.  

There were two ways we could map the data from the dot probe task to the diffusion model. 

In most circumstances, the model is mapped to the response keys. The response keys for the studies 

in this thesis were either left/right, or up/down, depending on the study. Therefore, the upper and 
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lower response thresholds represent each of the available response choices (i.e., left/right, 

up/down). Mapping the data in this manner means the parameters are based on evidence for the 

probe appearing on the left or right, or for the arrow pointing up and down. To examine the impact 

of affective stimuli, parameters would be compared based on trial type (congruent/incongruent) and 

emotion (happy/sad/angry). Differences based on trial type and emotion would then offer insight 

into how the emotive stimuli impacted the implicit decision-making parameters separated by the 

diffusion model.  

An alternative way to map data from the dot probe task to the diffusion model is to map the 

response thresholds by congruence. For example, congruent responses are represented by the upper 

threshold, and incongruent responses are represented by the lower threshold. This is the way in 

which the parameters were mapped in the research in this thesis. Mapping the data this way enables 

direct feedback of the impact of trial type (congruent/incongruent), such that the parameters directly 

reflect bias toward or away from congruent stimulus/dot pairings. This is based on the premise that 

if attentional bias is consistent, when negative information is displayed, attention should be 

captured by the negative information, and thus, the equivalent processes in the opposite direction 

for the other stimulus should shift also (Rodebaugh et al., 2016). 

Mapping the parameters to the task in this format means that boundary separation (a) 

represents how much evidence is required of the existence of the probe before responding, and start 

point (zr) represents an expectation for the probe to appear more on congruent or incongruent trials. 

Drift rate (v) represents the rate at which evidence accumulates for congruent or incongruent 

responses. If evidence accumulates more quickly for congruent responses, this will result in a 

positive drift rate, whereas if evidence accumulates more quickly for incongruent responses, this 

results in a negative drift rate. As non-decisional times (t0) represent the speed of processes outside 

the decisional components of responding, they are theoretically not affected by how the parameters 

are mapped. 
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Choosing which parameters to allow to vary within the model is another theoretical 

consideration. The way the dot probe task is constructed in the current studies, different affective 

stimuli are presented intermixed in the same block, and there are equal numbers of congruent and 

incongruent trials, presented randomly within each block of the task. Therefore, there was no 

emotional priming prior to stimulus presentation. As such, there was no theoretical reason to expect 

that participants would adopt different boundary separation or starting point values for the existence 

of the probe from trial to trial, based on the valence of the emotion presented. However, there are 

individual differences in caution and decision bias. Some people require more evidence to execute a 

decision, whereas others need less evidence, and some individuals have a subconscious expectation 

for emotional (congruent trials) relative to neutral information (incongruent trials). For these 

reasons, boundary separation and starting point were permitted to vary by participant, but not 

emotion. Drift rate (v) and non-decision time (t0), however, are direct responses to the stimulus 

presented on each trial. As such, they may differ depending on the valence of the expression. One 

expression may elicit a stronger amount of evidence than others, which would present in drift rate. 

Alternatively, a specific expression may evoke a phasic response, which would present in non-

decision time. As such, drift rate and non-decision time were free to vary between conditions and 

participants.  

Turning now to the yes/no task, the data were mapped according to response: “Yes” was 

mapped to the upper boundary, “no” was mapped to the lower boundary. Therefore, boundary 

separation (a) represents how much evidence is required for the existence of the target emotion 

before responding. Start point (zr) represents an expectation for the target emotion to appear more 

frequently than the distractor emotion. Drift rate (v) represents the rate at which evidence 

accumulates for the target or distractor emotions. A positive drift rate represents evidence 

accumulating more quickly for the target emotion; conversely, a negative drift rate results from 

evidence accumulating more quickly for distractor responses.  
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 All four parameters were free to vary across participants, and trials. In the yes/no task, 

stimuli are presented in blocks, with a question to prime the expectation of the target valence for 

that block, e.g., Are these faces happy? This priming meant that both decision caution and 

decisional bias could vary depending on target expression in addition to drift rate and non-decision 

time. For example, an individual may require less evidence to interpret a stimulus as happy than as 

sad. As such, the boundary separation parameter would be smaller for the happy condition than the 

sad condition. In addition, an individual with a decisional bias for angry emotion would expect that 

angry expressions occur more frequently, and thus would have a starting point bias for the angry 

condition, but not the alternative conditions. Therefore, for the yes/no task, all parameters were free 

to vary by emotional condition, and between participants.  Each condition was run through the 

model separately, as recommended by Voss, Voss, and Lerche (2015). 

The final step was assessing model fit. This is one of the more challenging aspects of using 

evidence accumulation models for the non-specialist. It is laborious and time consuming. Using the 

cumulative density function that accompanies the fast-dm 30 package, predicted data is obtained 

from the parameters returned from the fast-dm 30 analysis. These return a set of predicted RTs that 

are plotted against the empirical data to inspect visually. If the predicted data align closely with the 

actual data, the fits are considered good. For the dot probe task, the fits appeared to be very good. 

For the yes/no task, there was some expectation by the predicted data that RTs at the lower end of 

the RT distribution would be faster than the empirical data demonstrated, however the response 

times at the upper end of the RT distribution appeared to fit well.  

One of the biggest challenges to model fitting is finding the balance between theoretical 

premise and how well the model replicates the data. If a model replicates the data perfectly, but 

does not fit with any theoretical premise, then it is as limited as trying to use a model that does not 

replicate the data well. For this reason, when first fitting the model, basing it on theoretical premise, 

followed by graphical inspection of the resultant fit indices, is advised (Voss, Voss & Lerche, 

2015). From there, alternative models can be examined, if necessary.  
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This thesis presents research that, to my knowledge, has for the first time fit the diffusion 

decision model to data from the dot probe task. As the graphical inspection of the fits look good, the 

first aim of this thesis was achieved, namely successful fitting of the dot probe task. Despite the 

challenges that can arise from the complexity of model fitting, the parameters of the diffusion 

model have provided more detail than RTs, which benefits our understanding of the cognitive 

processes that underlie implicit decision making, and are, arguably, worth the effort.   

Cognitive Processes Underlying Attention and Interpretation in Anxiety and Depression 

While this thesis was unable to answer the specific question of which processes are 

responsible for attentional bias and interpretation bias based on the study findings, it did identify 

some differences in the implicit decisional processes associated with anxiety and depression.  

Attentional bias. Diffusion model analysis identified that both anxiety and depression are 

associated with a processing bias for emotional information. In Study 3, this was identified through 

faster accumulation of evidence for the probe when it is behind emotive information than when it is 

behind neutral information for individuals with a history of anxiety and depression. This pattern 

was not found in individuals with no such history. Additionally, individuals with a history of 

depression demonstrated a phasic response to emotional stimuli, which was evident from faster non-

decision times compared to individuals with a non-clinical history. This was not extant for 

individuals with anxiety.  

A processing bias for emotional information was also identified in Study 1. This was 

initially attributed to a non-clinical population, as there was no disorder-congruent preference for 

one emotion over another, which we had hypothesised. However, considering the findings from 

Study 3, further inspection of the results from Study 1 identified that the mean scores on the DASS 

and DERS were higher for the non-clinical sample recruited in Study 1 than they were for the 

participants with a history of anxiety or depression in Study 3. Study 1 also found that drift rate was 

related to increased anxiety and depression, while slower non-decisional processes and more 

cautious responding were a protective factor to emotion regulation difficulties. Therefore, taking the 
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between-groups differences in processing from Study 3, which identified a processing bias for 

emotion only in individuals with a clinical history, with the correlational analyses from Study 1, the 

findings suggest that implicit engagement with emotion may be a key underlying factor in anxiety 

and depression.  

Theoretically, these findings are in line with Beck’s (1967) hypothesis that attentional 

capture by emotional information is linked with affective disorders. However, in contrast to Beck’s 

theory, our findings are not content-specific. Beck’s content specificity hypothesis postulates that 

individuals with anxiety and depression attend to disorder-congruent stimuli in the environment. 

Specifically, those with anxiety attend to threat, and those with depression notice dysphoric 

information more saliently than individuals without these disorders. In the studies presented in this 

thesis, there were no disorder-congruent attentional biases identified. However, as outlined above, 

there does seem to be an attentional engagement with emotive stimuli in general.  

Attentional bias to disorder-congruent stimuli was initially theorised to be a stable trait in 

individuals with affective disorders (see Mogg & Bradley, 2016, for a review of the theoretical 

accounts of attentional bias). However, more and more research is examining the possibility of the 

dynamic nature of attentional biases. The fact that we did not find disorder-congruent attentional 

biases in Study 3, even in those who have high levels of anxiety and depression symptoms, provides 

support for the proposition that attentional bias may be dynamic in nature (e.g. (Zvielli et al., 2015).  

Interpretation bias. Diffusion model analysis identified that interpreting more ambiguous 

information impacts rate of evidence accumulation (drift rate) and decision bias (starting point). 

Further, individuals with a history of anxiety have a propensity to accumulate evidence more 

quickly across all emotions when interpreting the category of an emotion than individuals without a 

history of anxiety. This may be a function of hypervigilance in that they are quicker to analyse and 

interpret the stimuli in their environment due to a heightened fear of threat. In contrast, individuals 

with a history of depression demonstrated a more conservative decision criterion in their responding 
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than individuals with no history of depression. Thus, individuals with depression required more 

evidence to classify emotional information. 

The broader implications of these findings are that there do appear to be different, and 

specific, processes responsible for implicit decision making in anxiety and depression. Therefore, 

the primary benefit of using the diffusion decision model in this area of research is that it can 

identify these specific decisional processes, and broaden our understanding of how decisional 

processes differ between individuals with affective disorders and those without. This broader 

understanding enables the development of interventions targeted at the specific underlying 

processes, with the diffusion model providing the capacity to assess the efficacy of such 

interventions. Further, by using the diffusion model to analyse existing data that have been 

successful in capturing attentional bias through RTs, the specific processes of change can be 

identified. This will help identify individuals whose biases are a result of those same processes that 

are targeted by ABM, and thus for whom ABM will be most effective.  

Test-Retest Reliability of the Diffusion Model Parameters 

The final aim of this thesis was to compare the test-retest reliability of the parameters 

returned by fast-dm analysis against the attentional bias score. The goal was to assess whether fast-

dm has the capacity to be a more sensitive, reliable alternative. While the results throughout this 

thesis demonstrate the increased sensitivity of diffusion model analysis relative to RT analysis, the 

test-retest reliability of the parameters derived from fast-dm-30 was mixed. There was no 

correlation between the traditional attentional bias score at pre-training and post training, for any 

valence. For the fast-dm parameters, the pre- and post-training values for starting point and drift 

rate did not correlate.  However, non-decision time values from pre- and post-training were highly 

correlated across time for all emotions, and boundary separation demonstrated moderate test-retest 

reliability. While these results do not offer unequivocal support for the test-retest reliability of fast-

dm parameters, there are some methodological factors to consider before concluding that these 

reliability coefficients may mean the model is not suitable.  
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In particular, lack of variability in data points can reduce the likelihood of a correlation 

(Goodwin & Leech, 2006). The drift rate values throughout the studies in this thesis had minimal 

variability. This may be a function of the lack of perceptual bias identified generally, or it may be a 

function of how the dot probe task was mapped to the diffusion model. I chose to map the model so 

that the drift rate represents a difference in evidence accumulation for congruent and incongruent 

trials. It may be that mapping the model to the responses (as outlined above) would offer more 

variability, and thus better test-retest stability. Alternatively, it may be that attentional bias is not a 

function of perceptual bias, and thus is not captured by drift rate, or that the parameters of the 

diffusion model, specifically the drift rate, are not a more reliable way to assess attentional bias.  

One way to assess these possibilities is to apply fast-dm 30 to data derived from an existing 

dataset that has already found an attentional bias with RT at two time-points. If there is no capture 

of the bias by drift rate, we can hypothesise that attentional bias is not a function of perceptual bias. 

If attentional bias is captured by drift rate, then correlating the values of drift rate at two time-points 

will identify its test-retest reliability. If so, then the cognitive processes that are modified by ABM 

can be explored.  

Summary 

This thesis has presented the successful application of diffusion decision model analysis to 

data from the dot probe task for the first time. In doing so, the research presented has demonstrated 

the capacity for the diffusion model to identify implicit decisional processes that differ between 

anxiety and depression that are not captured by RTs alone. While the test-retest reliability of the 

fast-dm 30 parameters was mixed, guidance has been provided for future research to gain clarity on 

the reliability of the diffusion model parameters, and their suitability as an alternative measure of 

attentional bias. Finally, the research in this thesis has demonstrated the value of adopting a 

mathematical psychology analytical approach to the field of applied clinical psychology. 

Specifically, the ability to identify differences in decisional processing between anxiety and 

depression provides a platform for research to more effectively identify and target the processes that 
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underlie clinical disorders. By doing so, the benefits to clinical psychology are increased awareness 

of causal factors, and enhanced treatment options, and hopefully, outcomes.  
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Appendix 1 

 

Study 1 Supplementary material 

Comparison of empirical and predicted response time distributions for each expression (happy, sad, 

angry) are shown below. Times for congruent trials are represented in the right side of the graph, 

incongruent trials have been mirrored on the zero point of the time axis, represented in the left part 

of the graph.  The darker line is the accumulated probability function computed according to the 

diffusion model. The lighter line shows the cumulative probability of empirical response times. 

Note that both cumulative functions must converge to 1. The flat portion of the line at 0.5 P cum is 

an absence of response times, as response times were generally slower than 200ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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Appendix 2 

Study 2 Supplementary material 

Comparison of empirical and predicted response time distributions for each expression (happy, 

angry, sad, neutral) are shown below. Times for “Yes” responses are represented in the right side of 

the graph, “No” responses have been mirrored on the zero point of the time axis, represented in the 

left part of the graph.  The darker line is the accumulated probability function computed according 

to the diffusion model. The lighter line shows the cumulative probability of empirical response 

times. Note that both cumulative functions must converge to 1. The flat portion of the line at 0.3 P 

cum is an absence of response times, as response times were generally slower than 500ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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Appendix 3 

Study 3 Supplementary material 

Dot Probe Pre-Training 

Comparison of empirical and predicted response time distributions for each expression (happy, sad, 

angry) are shown below. Times for congruent trials are represented in the right side of the graph, 

incongruent trials have been mirrored on the zero point of the time axis, represented in the left part 

of the graph.  The darker line is the accumulated probability function computed according to the 

diffusion model. The lighter line shows the cumulative probability of empirical response times. 

Note that both cumulative functions must converge to 1. The flat portion of the line at 0.5 P cum is 

an absence of response times, as response times were generally slower than 200ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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Yes/No Pre-training 

Comparison of empirical and predicted response time distributions for each expression (happy, 

angry, sad, neutral) are shown below. Times for “Yes” responses are represented in the right side of 

the graph, “No” responses have been mirrored on the zero point of the time axis, represented in the 

left part of the graph.  The darker line is the accumulated probability function computed according 

to the diffusion model. The lighter line shows the cumulative probability of empirical response 

times. Note that both cumulative functions must converge to 1. The flat portion of the line at 0.3 P 

cum is an absence of response times, as response times were generally slower than 500ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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Dot Probe Post-Training 

Comparison of empirical and predicted response time distributions for each expression (happy, sad, 

angry) are shown below. Times for congruent trials are represented in the right side of the graph, 

incongruent trials have been mirrored on the zero point of the time axis, represented in the left part 

of the graph.  The darker line is the accumulated probability function computed according to the 

diffusion model. The lighter line shows the cumulative probability of empirical response times. 

Note that both cumulative functions must converge to 1. The flat portion of the line at 0.5 P cum is 

an absence of response times, as response times were generally slower than 200ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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Yes/No Post Training 

Comparison of empirical and predicted response time distributions for each expression (happy, 

angry, sad, neutral) are shown below. Times for “Yes” responses are represented in the right side of 

the graph, “No” responses have been mirrored on the zero point of the time axis, represented in the 

left part of the graph.  The darker line is the accumulated probability function computed according 

to the diffusion model. The lighter line shows the cumulative probability of empirical response 

times. Note that both cumulative functions must converge to 1. The flat portion of the line at 0.3 P 

cum is an absence of response times, as response times were generally slower than 500ms.  
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Quantile probability plots comparing empirical and predicted response times for the 25th, 50th, and 

75th percentiles of each expression (happy, sad, angry) are presented below.  
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