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Abstract 

Snoring has been a prevalent sleeping disorder among the general population in Australia 

with around 20%-25% of Australians regularly snoring on most nights. Even though a lot of 

studies have been conducted to develop more accurate acoustic methods to identify and 

classify snoring signals, further investigation is still needed to advance snoring assessment 

methods. Moreover, the consensus for the objective definition of snoring is still lacking. This 

study aims to explore the information embedded in the acoustic signals of snoring and to 

examine the performance of a snoring detection algorithm. Another objective of this study is 

to advance the acoustic analytic techniques for future development that would allow for a 

more comprehensive differential diagnosis and evaluation of snoring and obstructive sleep 

apnoea in a home setting. A total of 2330 20-second audio segments from 6 participants 

were used for the acoustic analysis of snoring sounds. The performance of a snoring 

detection algorithm was evaluated by a confusion matrix, ROC curve, and other 

performance evaluation metrics. This study that indicated snoring happens in the lower 

frequency range at about 200 Hz. There were no noticeable differences between the snoring 

and non-snoring episodes at frequencies between around 200 Hz and 1000 Hz. For this 

snoring dataset, 0.62 was the best-performing cut-off relative power. Interestingly, the 

snoring and non-snoring power spectra appeared to fluctuate more in those participants who 

had a higher number of snoring events recorded. The results of this study may help in the 

development of an objective definition of snoring based on its acoustic characteristics. In 

addition, this work can be beneficial for the development of snoring detection algorithms. 

Future studies to support the conclusions of this study can be carried out by adding more 

human raters and participants. 
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1. Introduction 

1.1 Background of the study 
Snoring is prevalent among the general population with around 20%-25% of Australians 

regularly snoring on most nights (Better Health Channel, 2014; Sleep Disorders Australia, 

2020) and up to 60% of men and 40% of women snoring to at least some degree. Moreover, 

snoring becomes more common as people get older (American Academy of Sleep Medicine, 

2014). 

Snoring is a breathing sound that typically occurs during inhalation in sleep but can also 

occur during exhalation (American Academy of Sleep Medicine, 2014). Acoustically, snoring 

occurs when the patency of the upper airway is diminished, and the soft-tissue walls of the 

oropharynx begin to vibrate to produce snoring sounds (Dalmasso & Prota, 1996), which 

can range from light minimally intrusive sounds to very heavy and disruptive snorting 

(Godman, 2022). The harshness of snoring sounds is thought to largely reflect flutter of the 

soft palate (Pevernagie et al., 2010), although other soft tissues structures may also 

contribute, and snoring loudness also depends on breathing effort.  

In general, occasional snoring is considered to be a largely innocuous phenomenon with no 

significant negative effects on health (Better Health Channel, 2014). However, habitual loud 

snoring can be highly problematic, particularly for bed-partners of snorers. The American 

Academy of Sleep Medicine describe snoring as a respiratory sound that “occurs without 

episodes of apnoea, hypopnea, respiratory effort related arousals (RERAs) or 

hypoventilation” (American Academy of Sleep Medicine, 2014). Thus, loud or frequent bouts 

of snoring are widely considered to be a strong sign of significant sleep-disordered breathing 

and obstructive sleep apnoea (OSA) (Sogebi et al., 2011). People with occasional snoring 

are very likely to develop obstructive sleep apnoea with aging or weight gain (American 

Academy of Sleep Medicine, 2014), so snoring assessments may provide useful prognostic 

markers of future health risks.  

Assessments on snoring are highly dependent on the definition of snoring. Dalmasso and 

Prota (1996) emphasised that snoring should be defined based on the method of 

measurement used for sound and noise signals.  

Early work mainly focused on acoustic investigations of snoring mechanisms, loudness, and 

upper airway cross-sectional area (CSA) and sites of obstruction (Dalmasso & Prota, 1996). 

Dalmasso and Prota (1996) reported that Leq-equivalent continuous sound level, power 
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spectrum, and linear prediction code for CSA are the primary methods to analyse and 

measure snoring.  

In recent years, the acoustic study of snoring for the diagnosis of sleep disorders has gained 

a lot of popularity in sleep medicine. Many researchers have established different acoustic 

analysis techniques to distinguish between normal snoring and obstructive sleep apnoea. 

However, a major limitation of existing work to date is that current classification systems 

used to define sleep disordered breathing and obstructive sleep apnoea rely on human 

scoring of the most obvious transient complete (apnoea) or partial (hypopnoea) upper airway 

obstruction events that last at least 10 seconds and are associated with oxygen desaturation 

or brief arousals from sleep (American Academy of Sleep Medicine, 2014). This approach 

ignores individual breath-by-breath level data more relevant to snoring, including extended 

periods of snoring that do not meet current definitions for obstructed breathing events. 

Nevertheless, snoring assessments are likely to be useful for simplifying the detection of 

classically defined obstructive sleep apnoea and Wang and Peng (2017) point out that the 

performance of snoring detection and acoustic analysis can be improved by using advanced 

signal processing techniques such as wavelet transform, independent component analysis, 

and Hilbert-Huang Transform (HHT).  

Although many studies have been carried out to establish more accurate acoustic methods 

of identifying and classifying snore signals, further work remains warranted to improve 

snoring assessment techniques. In addition to an ongoing lack of information on acoustic 

features of snoring associated with particular disorders (Dalmasso & Prota, 1996), very little 

is known regarding likely relationships between snoring and the degree of upper airway 

obstruction, or the specific sites of upper airway collapse likely associated with different 

acoustic features. More research on the relationship between the physiological 

characteristics of obstructed breathing and relationships with snoring-related acoustic 

signals is required towards more effective and comprehensive assessments of obstructed 

breathing during sleep. 

 

1.1 Project Focus 
The objectives of this project were to explore information embedded in snoring acoustics 

and to evaluate the performance of a snoring detection algorithm. It was expected that more 

information on the acoustic features of snoring could provide improved methods for 

assessing sleep disordered breathing. Furthermore, this project aimed to advance methods 

towards future development of acoustic analysis amenable to more comprehensive 
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differential diagnosis and assessment of snoring and obstructive sleep apnoea in a home 

setting.  

 

1.2 Project Value 
The initiative of this project arose from the need to extract more comprehensive information 

regarding relationships between snoring, the severity of obstructed breathing during sleep 

and clinical outcomes in sleep related breathing disorders. Moreover, the project also sought 

to generate more comprehensive definitions of snoring than current methods that do not 

adequately consider the periodic and highly variable nature of upper airway tissue vibrations 

underlying snoring.  

Since the current acoustic analyses are not sufficient to correlate the acoustic features of 

snore signals to pathological indications, this project examined existing algorithms for 

snoring detection towards exploring the acoustic characteristics of snoring. In this regard, 

the results of this project have the potential to assist future acoustic approaches to identify 

underlying health problems arising from obstructed breathing in sleep and to help establish 

a more standardised method to record snoring.  

 

1.3 Structure of the Thesis 
This thesis is divided into five sections. The first section gives an introduction of the project 

which briefly describes the background of the study, project aim, and project value. The next 

section contains the literature review that presents the theoretical underpinnings of the 

research topic. A review of relevant works of literature on the definition of snoring, detection 

and classification of snoring acoustics, and the correlation between snoring and 

physiological features are covered.  

The third section details materials and methods used to obtain the necessary information, 

which consists of database properties and data preparation, ranking of snore events, and 

the selection of acoustic methods for snoring detection and classification. Then, the results 

obtained from the procedures are presented in the fourth section, which aims to provide an 

extensive analysis of the results.  

In the last section, the implications and applications of the results are explored and 

discussed for the purpose of enhancing the field of diagnostic acoustic analysis for snoring. 

Conclusions, weaknesses of the study, and recommendations for future work on snoring are 

also provided. 
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2 Literature Review 

2.1 Snoring Definition 
In general, snoring is a noisy breathing sound generated by airway tissue vibrations that 

predominantly emanate from the upper airway tissues including the soft palate, tongue, 

uvula, and tonsils during sleep. Snoring is regarded as a social nuisance not only to the 

snorers themselves but particularly to bed partners. There have been different definitions 

for snoring according to different scholars and sleep specialists. Rohrmeier et al. (2013) 

stated that “Although snoring is a common problem, no unequivocal definition yet exists for 

this acoustic phenomenon”. 

Early research had defined a healthy simple snore event as “a power spectrum of snoring 

signal with a harmonic structure and a fundamental frequency that ranged 110-190 Hz” (Fiz 

et al., 1996). However, this definition only characterised snoring signals on the basis of the 

sound frequency and the presence of harmonics. Other acoustic features, especially of 

snoring itself, had not been considered.  

In 1996, Dalmasso & Prota (1996) described snoring as “a typical inspiratory sound, even 

though a small expiratory component can be heard or recorded (especially in OSA patients) 

with different spectral features”. The authors then emphasised the importance of taking into 

account the type of acoustic measurements when it comes to defining snoring sounds 

(Dalmasso & Prota, 1996).  

More recently, Pevernagie et al. (2010) discussed the mechanism of snoring as a “vibration 

of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the 

harsh aspect of the snoring sound”. The authors found that “the pitch of the snoring sound 

is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with 

associated harmonics. The pitch of snoring is determined by vibration of the soft palate, 

while nonpalatal snoring is more ‘noise-like’, and has scattered energy content in the higher 

spectral sub-bands (>500 Hz)”. Pevernagie et al.’s research approached snoring sounds by 

employing speech analysis as the mechanisms of sound generation are similar. The 

definition had only taken account of the changes in snoring pitch and anatomic site of 

snoring. 

Swarnkar et al. 2017 defined snoring as “a ‘Breath Episode’ containing periodic packets of 

energy, even for a small portion of the episode”. In the article, a ‘Breath Episode’ is defined 

as “the sound originated from the patient from the start of an inspiration to the corresponding 

end of expiration” (Swarnkar et al., 2017). However, snoring can sometimes start from 
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expiration and can be non-consecutive and irregular across breaths so this definition by 

Swarnkar et al. (2017), like others, remains somewhat arbitrarily focussed on inspiration. 

Nevertheless, it is worth noting that the flow dependence of snoring dictates that snoring is 

periodic in nature and can occur during either inspiration or expiration in the presence of at 

least some airflow. 

Janott et al. conducted a study in 2019 with a focus on finding a more objective acoustic 

definition of snoring. In their research, the authors undertook a comprehensive acoustic and 

psychoacoustic analysis in an effort to arrive at a more robust acoustic differentiation 

between snoring and loud breathing. Although Janott et al’s findings have accelerated the 

development of an objective definition of snoring, such a definition is still built on the basis 

of the subjective impressions of 25 raters.  

Despite the fact that multiple research groups are relatively active in the study of the snoring 

acoustics, a clear definition that can be used objectively as a snoring acoustic measure is 

still lacking to date (Janott et al., 2019).  

 

2.2 Acoustic Methods of Snoring Detection and Classification 
Automatic snore detection is not a novel concept in sleep medicine. However, snoring 

detection algorithms still warrant improvements to achieve more meaningful assessments 

of upper airway obstruction severity. In this context, several investigations on acoustic 

analysis of snoring were carried out. Dalmasso & Prota (1996) highlighted three primary 

methods for the analysis of snoring which are Leq-equivalent continuous sound level, power 

spectrum (PS) and linear prediction code (LPC) for assessing upper airway cross-sectional 

area (CSA) changes. These methods have been assessed to associate snoring acoustics 

with anatomical and pathological implications. The focus of Dalmasso & Prota’s paper was 

to distinguish nasal and oral snoring patterns. There is less information about the 

differentiations between snoring and other noises such as loud breathing and environmental 

noises.  

A series of methods for snoring detection have been proposed and evaluated recently. Lee 

et al. (2013) approached the detection of snoring episodes from both acoustical and 

mechanical perspectives. In their study, a hidden Markov model-based method to detect 

snoring using a piezo snoring sensor was presented. The degree of vibrations related to 

snoring and non-snoring events were measured with the use of a piezo snoring sensor 

attached to the neck. However, this study was established on data that were subjectively 
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selected and heartbeat and breathing noises were not taken into account in their snoring 

detection model.  

Shin & Cho (2014) developed a snoring detection model that considered different types of 

noises in a standard bedroom. Shin & Cho extracted snoring parameters by characterising 

the recorded sounds. The authors then conducted a formant analysis, quadratic 

classification, and ten-fold cross-validation to identify snoring episodes. Both Lee et al. and 

Shin & Cho used formant analysis for snoring detection. Nevertheless, the lack of 

understanding of the formant frequencies and their significance remains a key unresolved 

issue (Shin & Cho, 2014). The ambiguities of the characteristics of snoring sound formants 

and acoustic properties of snoring are all due to the absence of a universally accepted 

definition of snoring.  

Wang & Peng (2017) carried out an extensive review of acoustic analysis of snoring to 

evaluate recent acoustic methods for snoring detection and classification. For snoring 

detection, Wang & Peng (2017) identified that “Wavelet Transform is able to separate the 

fine details in a signal by using the multi-scale operation of scaling and translation, which is 

a very useful tool to analyse the instantaneous and time-varying non-stationary signals”. A 

key problem with wavelet transforms is the difficulty of constructing a proper wavelet basis 

function to analyse snoring acoustics. This problem can be avoided by using Hilbert-Huang 

Transform (HHT) as HHT demonstrated higher time-frequency resolution than the time-

frequency distribution (Wang & Peng, 2017). However, HHT also has some limitations such 

as the optimization of empirical mode decomposition algorithm, and boundary problems 

(Wang & Peng, 2017). Wang & Peng (2017) further reported that “snoring detection 

algorithms are mainly divided into two categories at present: one uses signal processing 

method including the short-time energy threshold method (Xu et al., 2013), double-threshold 

end-point detection (Liu et al., 2013), snoring enhancement method based on 

autocorrelation character (Ng et al., 2008) and so on”. Depending on the snoring features, 

and category theory such as artificial neural network method, support vector machines 

method and Gaussian mixture model method, some complex algorithms are able to achieve 

higher precision for snoring detection (Wang & Peng, 2017). 

As for snoring classification, Wang & Peng (2017) have reviewed different methods to 

classify snoring by identifying the different characteristics of snoring and snoring locations. 

According to Wang & Peng (2017), Bayesian classification, Gaussian mixture model (GMM), 

and K-nearest neighbour (KNN) are the typical classification approaches. The authors noted 

that GMM performs well in terms of specificity and sensitivity, but with a complicated 
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algorithm and a slow real-time response (Wang & Peng, 2017). On the other hand, Bayesian 

classification is more straightforward and effective with good precision in the diagnosis of 

OSA and disease severity (Wang & Peng, 2017). Additionally, KNN is also a simple 

technique, but it requires a larger dataset to successfully classify snoring (Wang & Peng, 

2017). 

Sola-Soler et al. (2011) made efforts to classify snoring acoustics with the use of snore 

features in combination with apnoea-related information. Sola-Soler et al. proposed Bayes 

multi-group classification with kernel gaussian probability density function estimation to 

determine the severity of snoring related to sleep apnea hypopnea syndrome. Although 

Sola-Soler et al.’s work has advanced the research of snoring classification technology, 

further validation is still needed. 

 

2.3 Correlation between Snoring Acoustics and Physiological Features 
Snoring is viewed as a clinical sign and risk factor for several underlying medical conditions, 

most notably obstructive sleep apnoea and hypertension. Research into the clinical 

implications related to snoring has a long history.  Dalmasso & Prota (1996) investigated the 

anatomical, pathological, and acoustical aspects of snoring and provided a detailed review 

that concentrated on correlating snoring signals with physiological features using acoustic 

methods. However, the characteristics of snoring and relationships with a range of clinical 

outcomes remain poorly understood and limited by a lack of detailed acoustic data in patient 

groups at risk of adverse clinical outcomes such as hypertension, strokes and myocardial 

infarction potentially associated with snoring (Dalmasso & Prota, 1996). 

Furukawa et al. (2016) examined the correlation between snoring sound intensity and 

morning blood pressure. The authors found a relationship between morning blood pressure 

and tracheal sound intensity suggestive of a potential pathophysiological relationship. 

However, Furukawa et al.’s research did not consider the acoustic features of snoring 

related to OSA. Moreover, instead of using a clinical sample or conducting the study on the 

general population, their study was only focused on a worker population  

A more recent study by Kayabekir & Yağanoğlu (2021) found an association between delta 

waves in EEG channel C3-M2 and snoring sound waves in polysomnography (PSG) 

evaluations of sleep. Kayabekir & Yağanoğlu’s research only explored the properties of 

snoring sounds relationships with EEG signals. The research was based on people with 

primary snoring and with OSA using the apnoea-hypopnea index (AHI). Further studies in 

other sleep-breathing disorders involving hypoventilation and hypoxemia and relationships 
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with snoring characteristics such as the severity and pitch period could potentially reveal 

clinically useful snoring assessment methods. 

 

2.4 Research Gap 
Due to the lack of a universally accepted definition of snoring, the interpretation of many 

sleep health studies is problematic. Previous work has largely failed to present a clear 

unequivocal definition of snoring that can be reproduced in other studies. A fundamental 

issue is that independent objective measures of upper airway obstruction are largely lacking 

from existing studies to date. Thus, differentiation between snoring acoustics and loud 

breathing with no or minimal airway tissue obstruction and tissue vibration is not yet reliably 

possible. Despite many theories that have been accumulated over the decades, the 

fundamental origins and characteristics of snoring are still not well understood. Some 

publications utilise specific acoustic features to characterise snoring, whereas others just 

use relative or absolute sound pressure level thresholds. In light of snoring definitions 

changing depending on the acoustic measures employed, several acoustic analyses of 

snoring detection have been formulated. The current snoring detection algorithms require 

further evaluation in order to make more effective and comprehensive use of snore data.  

In addition, snoring acoustics likely contain a wealth of physiological information regarding 

the sites and severity of airway collapse. There have been numerous studies to develop and 

investigate acoustic analysis for snoring classification over the past few years. These 

techniques each have their own benefits and drawbacks. The selection of the appropriate 

acoustic method and characterisation are likely to be important for evaluating the 

mechanisms and severity of upper airway obstruction during sleep that can be helpful 

towards developing a consensus definition of snoring. Classification results are strongly 

depending on underlying methods and the information embedded in snoring acoustics may 

not be sufficiently utilised in existing methods to meaningfully evaluate airway obstruction. 

There has been a growing need for improved high-performance algorithms for evaluating 

airway obstruction during sleep for which snoring detection and assessment is likely to be 

especially useful compared to other more intrusive measurement techniques otherwise 

needed to assess airflow and pressure changes across the airway.  
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3 Materials and Methodology 

3.1 Setting 
The study was conducted in the Flinders University Adelaide Institute for Sleep Health sound 

attenuated sleep laboratory (overnight background noise levels 19dB(A)). Sleep and 

acoustic recordings were obtained as part of a study examining the effects of wind farm 

compared to traffic noise exposures during sleep. 68 study participants attended the 

laboratory for 7 consecutive nights. The first was an acclimation night, followed in random 

order by 6 different noise exposure nights including 20-sec or 3-min environmental noise 

exposures up to 48 dBA during sleep across the night, a quiet night (control), and windfarm 

noise exposure at 25 dB(A) for the full night, only during wake, or only during sleep (Liebich 

et al. 2022). Noise in the room was monitored using a PROSIG P8004 24-bit Data 

Acquisition System and a GRAS 40AZ microphone mounted ~1 meter above the 

participant’s head to monitor and record acoustic data on each night. The microphone 

dynamic range was 17 to 132 dB and from 0.5 Hz to 20 kHz (frequency range ± 2dB). Each 

recording was obtained following microphone and recording system calibration against a 94 

dB(A) noise source. Participants were also instrumented for polysomnographic sleep 

recordings, which primarily consisted of electroencephalographic channels (EEG: C3-M2, 

C4-M1), electrooculograms (EOG), submental electromyogram (EMG), nasal cannula 

pressure, thoracic and abdominal motion and oximetry signals, all acquired using 

Compumedics Grael hardware and Profusion sleep recording software according to 

recommended sleep signal acquisition guidelines (American Academy of Sleep Medicine 

2007). For the purpose of this study, the primary signals of interest were the acoustic 

recordings obtained from studies in which prominent snoring was audibly present over and 

above environmental noise exposures. The acquired signals were digitalised as CSV files 

from which audio signal processing was performed using PyCharm CE and 

MATLAB_R2022a. 

 

3.2 Data Acquisition 
The dataset used for this analysis comprised of 6 acoustic signals obtained from 6 

participants during sleep. Each audio was approximately 2 hours in length and was divided 

into 20-second segments using a Python algorithm developed for this study to provide a 

total of 2330 20-sec audio segments. The average duration of a respiratory sleep cycle is 

around 5 seconds. Cutting the audios into 20-second segments ensured that each segment 



 

- 17 - 

contained complete respiratory cycles and snoring events could be captured from 

consecutive snoring breaths. 

Further analysis was performed by randomly selecting 170 segments from each participant 

to generate a bench-mark data set from which both manual and automated scoring could 

be achieved within the practical time-constraints of this study. This random selection was 

achieved by developing a Python algorithm to extract the audio files. All segments were 

stored in wav format at 2048 Hz sampling rate, 24-bit resolution, and mono channel. In total, 

this final bench-marking dataset comprised of 1020 20 second duration data segments.  

 

3.3 Data Selection 
Segments were classified by 1 human rater. The time points of each snoring episode in a 

segment were manually labelled by using Audio Labeller APP in MATLAB shown in Figure 

1. Each snoring event was scored and labelled based on the confidence level (definitely 

snoring, probably snoring or unsure Table 1) of one human rater. The weighted confidence 

scores were used to sort out 4 different levels of confidence in terms of identifying snoring 

sounds as shown in Table 1 (Warby et al., 2014). When the audio was considered to 

definitely be a snore event, the time points where the snoring starts and ends wre labelled 

as 100%. 75% would be labelled when the rater considered the audio is probably a snoring 

sound. If the rater was only guessing or unsure, the audio was labelled with 50% confidence. 

The unlabelled sections were considered as non-snoring events.  

 

Figure 1 Audio labeler 
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Table 1 Scoring matrix 

Scores Confidence Level 

100% Definitely Snoring 

75% Probably Snoring 

50% Maybe/Guessing 

0% No Snoring 

 

3.4 Methods of Characterisation 
For characterisation, once snore events in each audio were collected and the benchmark 

dataset was created, the characteristics of the snore data were evaluated using a number 

of features. The features used in this study were: (1) event duration (seconds) (2) the 

number of snore events (3) sound frequency (Hz) (4) sound pressure level (dB).  

The extraction and acoustic characterisation of the labelled snore episodes was performed 

using MATLAB software R2022a for 64-bit MacBook system. The snore event duration is 

described in seconds. The relationship between the snore event duration and the number 

of snore events are presented in a histogram.  

The sound pressure level and frequency of the extracted snore episodes were characterised 

for each participant. The reference pressure level is 20 𝜇Pa as that is very close to what a 

normal human can hear at a sound frequency of 1000 Hz. The frequency resolution of power 

spectrum used for graph demonstration in this project is 20. The sound pressure level of 

snore events is presented as mean with the range of standard deviation for each participant. 

However, for participant WFN014A, the power spectrum also shows the sound pressure 

level of each snore event because only a few snore events were identified.  

 

3.5 Evaluation of snoring detection algorithm  
The evaluation of the snoring detection algorithm evaluated in this study was conducted by 

developing a code in MATLAB software R2022a for 64-bit MacBook system. The snoring 

detection method evaluated the relative power in the frequencies between 100 and 800 Hz. 

In 2012, Marshall et al. proposed that if the relative power surpassed 50% of the overall 

power, a snoring event would be classified (Marshall et al., 2012).  
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The relative power of a signal is defined as the ratio of the power of a frequency band to the 

total band power (Zhou et al., 2021). The formula to calculate the relative power in a power 

spectrum is:  

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝑷𝒐𝒘𝒆𝒓	(𝑹𝑷) = 𝒕𝒉𝒆	𝒂𝒓𝒆𝒂	𝒖𝒏𝒅𝒆𝒓	𝒕𝒉𝒆	𝒄𝒖𝒓𝒗𝒆	𝒊𝒏	𝒂	𝒄𝒆𝒓𝒕𝒂𝒊𝒏	𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚	𝒃𝒂𝒏𝒅
𝒕𝒉𝒆	𝒂𝒓𝒆𝒂	𝒖𝒏𝒅𝒆𝒓	𝒕𝒉𝒆	𝒄𝒖𝒓𝒗𝒆	𝒊𝒏	𝒕𝒉𝒆	𝒕𝒐𝒕𝒂𝒍	𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚	𝒃𝒂𝒏𝒅

            ( 1 ) 

In this study, the area under the curve in the frequencies between 100 and 800 Hz was 

calculated as shown in pink in Figure 2. The total band power was obtained by computing 

the entire area under the curve as indicated in grey in Figure 2.  

Based on this method, a MATLAB program was developed to calculate the relative power, 

from which confusion matrices were calculated at each relative power to determine the 

sensitivity and specificity of relative power to correctly classify snoring against human rater 

scoring at each cut-off. The plot of 1-specificity versus sensitivity was subsequently used to 

plot the receiver operating characteristic (ROC) curve of relative power to classify snoring. 

The area under the curve (AUC) is a useful measure of overall classifier performance, and 

from which the optimal cut-off for correct classification can be evaluated.  

 

Figure 2 Power spectrum 

 

Using a confusion matrix, the performance of a snoring detection algorithm can be visualised 

and summarised in a table (Singh et al., 2021). A confusion matrix is demonstrated in Table 
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2 where TN stands for True Negative, TP stands for True Positive, FP shows False Positive, 

and FN means False Negative.  

Table 2 Confusion matrix 

 

Note. Adapted from 5 - Foundations of data imbalance and solutions for a data democracy (pp. 83-106), by Kulkarni, A., 
Chong, D., & Batarseh, F. A., 2020, Academic Press. Copyright 2020 by Elsevier Inc. 

 

The representation of the TN, FN, FP, and TP, are:  

(1) True Positive (TP): TP represents the number of snoring events which have been 

properly detected by the snoring detection algorithm and the human rater.  

(2) True Negative (TN): TN represents the number of non-snoring events that are 

correctly detected by the snoring detection algorithm and the human rater.  

(3) False Positive (FP): FP represents the number of snoring events that were mis-

detected by the snoring detection algorithm, but they are actually non-snoring events.  

(4) False Negative (FN): FN represents the number of non-snoring events which were 

misclassified by the snoring detection algorithm, but they are actually considered as 

snoring events by the human rater.  

Using the numbers of TP, TN, FP, and FN, the performance metrics such as accuracy, 

precision, recall, and F1 score can be computed (Singh et al., 2021). 

The accuracy of an algorithm is defined as the ratio of correctly detected events (TP+TN) to 

the total number of events (TP+TN+FP+FN). The formula of accuracy is: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	 𝑻𝑷5𝑻𝑵
𝑻𝑷5𝑻𝑵5𝑭𝑷5𝑭𝑵

                                             ( 2 ) 

The precision of an algorithm is measured by the ratio of correctly detected snoring events 

(TP) to the total number of correctly detected snoring and non-snoring events (TP+FP). The 

precision is denoted as: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 	 𝑻𝑷
𝑻𝑷5𝑭𝑷

                                                    ( 3 ) 
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The recall metric or sensitivity is represented as the ratio of correctly identified snoring 

events (TP) to the total number of the actual snoring events (TP+FN). The formula for recall 

metric or sensitivity is denoted as: 

𝑹𝒆𝒄𝒂𝒍𝒍 = 	 𝑻𝑷
𝑻𝑷5𝑭𝑵

                                                       ( 4 ) 

The specificity is a representation of how many non-snoring events that were correctly 

detected. It is a ratio of correctly identified non-snoring events (TN) to the total number of 

the actual non-snoring events (TN+FP). The formula for specificity metric is expressed in: 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 	 𝑻𝑵
𝑻𝑵5𝑭𝑷

	                                                 ( 5 ) 

The F1 score of an algorithm represents the harmonic mean between recall and precision 

metrics. The formula to calculate the F1 score is represented as: 

𝑭𝟏	𝒔𝒄𝒐𝒓𝒆 = 𝟐∗𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏5𝑹𝒆𝒄𝒂𝒍𝒍

                                             ( 6 ) 
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4 Results 

4.1 Results of Characterisation  
The results of the data characterisation are presented in terms of the different acoustic 

features. Of 1020 20-second segments from 6 participants, a total of 3390 snoring events 

were identified. Overall, all six Participants evaluated snored at some point during the full-

night sleep study. One participant (WFN029) snored almost the entire night with 574 

identified snoring events from a total of 3390 identified snoring events. In contrast, 

WFN014A participant had mild snoring with only 8 snoring events identified from the entire 

3390 identified snoring events.  

 

4.1.1 Total Number of Snore Events and Snore Event Duration  

The first characterisation was done by comparing the total number of snore events with the 

duration of snoring. Snore event duration distribution for the entire dataset is shown in Figure 

3. As illustrated in Figure 3, the longest snore event that was detected was 18.4 seconds. 

The duration for most of the snore events was between 0.5 seconds and 2.2 seconds which 

can be seen more clearly in Figure 4. In addition, there were 40 snore events with a duration 

of around 1 second which was the largest number in this snore dataset. 

 

Figure 3 The number of snore events vs. event duration for the entire dataset 
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Figure 4 The number of snore events vs. snore event duration up to 3s 

 

4.1.2 Power Spectrum 

Snoring and non-snoring events can also be characterised by the power spectrum. In this 

study, snoring sound analysis was presented by power spectrum for each individual 

participant. 

 

4.1.2.1 Participant WFN014A 
Figure 5 illustrates the average sound pressure level of snores with the range of standard 

deviation across the entire frequency band for the participant WFN014A. As participant 

WFN014A only had 8 detected snore events, each power spectrum of a snoring event is 

also shown in Figure 5. As can be seen in Figure 5, the power spectra reveal the strongest 

energy of snore events in the lower frequency band. One snore event has the highest sound 

pressure level of 50 dB at around 100 Hz. Most of the highest sound pressure levels occur 

at the frequency of 200 Hz with a mean sound pressure level of 30 dB. A number of peaks 

can also be observed at approximately 370, 500, 600, 700, 830, and 1000 Hz with some 

harmonics. 
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The difference in power spectrum between non-snoring and snoring events is demonstrated 

in Figure 6. The most prominent differences can be seen in the frequency range from 180 

to 290 Hz and from 370 to 830 Hz. 

 

Figure 5 Average SPL with SD (WFN014A)  
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Figure 6 Average SPL for non-snoring and snoring events (WFN014A) 

 

4.1.2.2 Participant WFN029 
The average sound pressure level with a standard deviation of all the snore events identified 

from the participant WFN029 recording is demonstrated in Figure 7. It can be observed that 

the mean energy is greater than 20 dB. The strongest energy is found in the lower 

frequencies. The biggest peak has a sound pressure level of 45 dB at a frequency of about 

200 Hz. After the big peak at 200 Hz, the average sound pressure levels fluctuate around 

25 dB in the frequency range from 400 to 800 Hz. Moreover, the range of the standard 

deviation found in Figure 7 is larger compared to the standard deviation found in other 

participants, especially in the frequency band between 320 and 1020 Hz. 

On the other hand, a comparison between the sound pressure levels of snoring and non-

snoring events is shown in Figure 8. From the frequencies between 300 and 850 Hz, the 

difference in sound pressure level between snoring and non-snoring events is around 10 

dB. Furthermore, the largest differences appeared to occur within the frequency ranging 

from 100 to 300 Hz and from 850 to 900 Hz. 
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Figure 7 Average SPL with SD (WFN029) 

 

 

Figure 8 Average SPL for non-snoring and snoring events (WFN029) 
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4.1.2.3 Participant WFN054A 
As can be seen in Figure 9, the average sound pressure level of snoring in participant 

WFN054A is larger than about 25 dB in the entire frequency band. This power spectrum 

shows that the strongest energy is found at 200 Hz with around 48 dB sound pressure level. 

There are several discernible peaks at 350, 440, 520, 620, 780, and 1000 Hz. The standard 

deviation is around 5 dB for all the frequencies. 

The power spectra of the snoring and non-snoring events can be observed in Figure 10. The 

power spectrum for snoring events has several identifiable peaks whereas the power 

spectrum shows the most prominent peak at around 200 Hz.   

 

 

Figure 9 Average SPL with SD (WFN054A) 
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Figure 10 Average SPL for non-snoring and snoring events (WFN054A) 

 

4.1.2.4 Participant WFN054D 
Figure 11 shows the average sound pressure level of snoring events of participant 

WFN054D as well as the range of standard deviation. It is noticeable that the stronger 

energy was found in the lower frequency band. Similar to other participants, the highest 

peak that can be seen is at around 200 Hz with peak SPL around 50 dB, followed by several 

peaks at 350, 500, 700, 800, and 1000 Hz. Moreover, the average sound pressure level is 

larger than 20 dB for all frequencies.  

In Figure 12, the most prominent differences between non-snoring and snoring were in the 

frequencies between 100 and 400 Hz, and between 850 and 1000 Hz. In the frequencies 

from 400 to 850 Hz, the difference in sound pressure level of snoring and non-snoring events 

was around 5 dB.  
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Figure 11 Average SPL with SD (WFN054D) 

 

 

Figure 12 Average SPL for non-snoring and snoring events (WFN054D) 
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4.1.2.5 Participant WFN077A 
Figure 13 demonstrates the average sound pressure level with the range of standard 

deviation of participant WFN077A. Most of the snore events were found to have a sound 

pressure level of 10 to 40 dB. However, the strongest energy sound observed was at 100 

Hz, lower than in other participants in this study. The average sound pressure level peaks 

at 200, 450, 700 and 1000 Hz. Interestingly, a significant drop can be observed at the 

frequency of 800 Hz. 

From Figure 14, the difference in sound pressure levels between snoring and non-snoring 

events can be seen. Compared to other participants, the difference in the sound pressure 

levels appears to be larger and nearly across the entire frequency band with around a 20 

dB difference.  

 

Figure 13 Average SPL with SD (WFN077A) 

 



 

- 31 - 

 

Figure 14 Average SPL for non-snoring and snoring events (WFN077A) 

 

4.1.2.6 Participant WFN0151A 
Figure 15 illustrates the average power spectrum of participant WFN0151A's snores. The 

most intense energy was found in the snoring spectrum between 100 and 400 Hz. In 

addition, there were a number of discernible energy peaks at 200, 450, 600, 780, and 950 

Hz. For all frequencies, the energy of the snore was greater than 20 dB. 

Figure 16 exhibited pronounced variance in sound pressure levels between snoring and 

non-snoring events. As demonstrated, the prominent difference was found at the frequency 

range from 100 to 380 Hz. 
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Figure 15 Average SPL with SD (WFN0151A) 

 

 

Figure 16 Average SPL for non-snoring and snoring events (WFN0151A) 
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4.2 Results of Snoring Detection Evaluation 

4.2.1 ROC Curve 

Initially, the evaluation was conducted using the relative power of 0.5 in the frequencies 

between 100 and 800 Hz and classifying the snoring sound if the relative power surpassed 

50% of the overall power (Marshall et al., 2012). However, most of the values were greater 

than 0.5 (50%) due to the different sampling rates used in this study. Therefore, ROC 

analysis was employed to help evaluate if 0.5 or a somewhat different cut-off value may be 

optimal for this study. 

As can be observed in Figure 17 and Table 3, the ROC curves of participants WFN054A, 

WFN054D, WFN077A, and WFN0151A demonstrate high sensitivity and specificity, with 

high AUC indicating that the snoring detection algorithm performs very well compared to 

human scoring in the snore dataset in this study. 

Compared to the data of the other participants, the ROC curves of participants WFN014A 

and WFN29 show the performance of the snoring detection test was less optimal although 

specificity and sensitivity were still high above 90%. 

Overall, the average values of the area under the curve (AUC), sensitivity and specificity 

were 0.942, 0.925, and 0.899 respectively as illustrated in Table 3. The optimal cut-off value 

(closest to the top-left corner of the ROC curve) indicated in the ROC analysis was 0.620. 

Therefore, the relative power used for snoring detection in this study was 0.620 instead of 

0.5 as suggested by Marshall et al., 2012. 

Table 3 ROC curve analysis 

Participant ID Area Under Curve Specificity 1-Specificty Sensitivity 

WFN014A 0.927 0.864 0.136 0.875 

WFN0151A 0.936 0.887 0.113 0.973 

WFN029 0.901 0.857 0.143 0.889 

WFN054A 0.965 0.924 0.076 0.946 

WFN054D 0.987 0.969 0.031 0.939 

WFN077A 0.934 0.893 0.107 0.928 

Mean 0.942 0.899 0.101 0.925 

 



 

- 34 - 

 

Figure 17 ROC curves of all participants 
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4.2.2 Confusion Matrix 

The confusion matrix was utilised to compare the benchmark dataset with the results of 

deploying the snoring detection algorithm. With the application of the cut-off value of 0.62, 

the snoring detection algorithm shows great performance on the snore data as shown in 

Table 4 with a total true positive count value of 1535 and the true negative value of 1564. 

Table 4 Confusion matrix of this study 

 

From the confusion matrix, the values of accuracy, precision, recall, and F1 score can be 

computed. The calculation can be seen as follows:   

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏𝟓𝟑𝟓5𝟏𝟓𝟔𝟒
𝟏𝟓𝟑𝟓5𝟏𝟓𝟔5𝟏𝟑𝟓5𝟏𝟓𝟔𝟒

= 𝟑𝟎𝟗𝟗
𝟑𝟑𝟗𝟎

= 𝟎. 𝟗𝟏𝟒𝟐                                 ( 7 ) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 	 𝟏𝟓𝟑𝟓
𝟏𝟓𝟑𝟓5𝟏𝟓𝟔

= 𝟏𝟓𝟑𝟓
𝟏𝟔𝟗𝟏

= 𝟎. 𝟗𝟎𝟕𝟕                                           ( 8 ) 

𝑹𝒆𝒄𝒂𝒍𝒍 = 	 𝟏𝟓𝟑𝟓
𝟏𝟓𝟑𝟓5𝟏𝟑𝟓

= 𝟏𝟓𝟑𝟓
𝟏𝟔𝟕𝟎

= 𝟎. 𝟗𝟏𝟗𝟐                                      ( 9 ) 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 	 𝟏𝟓𝟔𝟒
𝟏𝟓𝟔𝟒5𝟏𝟓𝟔

= 𝟏𝟓𝟔𝟒
𝟏𝟕𝟐𝟎

= 𝟎. 𝟗𝟎𝟗𝟑                                   ( 10 ) 

𝑭𝟏	𝒔𝒄𝒐𝒓𝒆 = 𝟐∗𝟎.𝟗𝟎𝟕𝟕∗𝟎.𝟗𝟏𝟗𝟐
𝟎.𝟗𝟎𝟕𝟕5𝟎.𝟗𝟏𝟗𝟐

= 𝟎. 𝟗𝟏𝟑𝟒                                        ( 11 ) 

Accuracy is a metric that can be used to assess the performance of the classification against 

a comparator gold-standard, in this case human scoring. In this study, the accuracy was 

0.914 which indicates that snoring detection has high performance in classifying snoring and 

non-snoring data. Moreover, the recall metric calculated from the confusion matrix is 0.919 

which shows that the snoring detection algorithm can correctly identify 91.9% of snore 

events. 

In addition, the precision of the snoring detection algorithm was also high at 90.8% as was 

the F1 score (0.913) indicating high precision and recall.  
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5 Conclusion and Discussion 

5.1 Discussion 
This study was carried out with the aim of further investigating the acoustic features of 

snoring sounds and evaluating existing acoustic methods of snoring detection. Several 

techniques were used in this study to objectively evaluate the performance of a snoring 

detection algorithm. The definition of snoring is a crucial requirement to effectively develop 

algorithms that are able to reliably detect snoring episodes during sleep using acoustic 

methods. Nevertheless, no unequivocal definition yet exists for this acoustic phenomenon. 

Due to the lack of an unequivocal definition of snoring, different scholars have defined 

snoring sounds in various ways. In general, snores are regarded as relatively high frequency 

acoustic phenomena with sound intensity greater than a specific amplitude value. Some 

researchers only analysed a few characteristic snore events without looking at the full-study 

sleep cycle whereas others characterised snoring by the mechanisms of sound generation 

with the use of speech analysis. 

The approach used in this study includes generating an objective benchmark dataset and 

using comprehensive sets of metrics to assess the performance of the snoring detection 

algorithm. It was found that the performance of the snoring detection algorithm may have 

been affected by the sampling rate when the relative power in the frequencies between 100 

and 800 Hz was deployed since the best-performing cut-off relative power for this snore 

dataset was 0.62 instead of 0.5 which was stated in Marshall et al.’s research in 2012. The 

reason for the difference in the cut-off relative power value is that other recording differences 

such as different sampling ratees, type of microphones used, or recording setup could 

potentially have played a role in the detecting snoring events using this algorithm.  

One of the findings in this study showed that snoring occurs in the lower frequency band, at 

around 200 Hz. When comparing the snoring and non-snoring events, prominent differences 

were revealed at frequencies between around 200 Hz and 1000 Hz. Interestingly, those 

participants with a larger number of snoring events identified appeared to have more 

fluctuations in both non-snoring and snoring power spectra. Furthermore, the sound 

pressure levels of non-snoring and snoring events also appeared to have larger differences 

in power spectra.   

Another interesting finding was that small peaks were observed in the power spectra of non-

snoring events for the participants WFN054A and WFN054D. These small peaks might 

suggest the possibility of the misclassification caused by the manual scoring.  
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5.1.1 Limitation  

A clear limitation of this study is the small sample size. Although there were a total of 1020 

20-second segments analysed for the experiments, these segments were extracted from 

only 6 participants. Consequently, a larger sample sizes of snoring and non-snoring 

participants are required in future studies to help evaluate the generalisability of the snoring 

detection algorithm in this study. 

Another limitation of this study is that the method used to create a benchmark dataset 

remained subjective as it is based on the judgement of one human rater. Even though 

random extraction of the acoustic segments was applied to help ensure objectivity, the 

snoring identification for the benchmark dataset was still generated by listening to all the 20-

second segments and based on the human rater’s confidence level and perception of 

snoring. Furthermore, snoring classifications were determined by the assessment of a single 

rater. Increasing the number of raters would clearly be useful towards establishing 

consensus human scoring and for evaluating the level of algorithm versus human individual 

and consensus scoring agreement. 

In addition, the placement of microphones is also a limitation of this study as the microphone 

position may affect the results of the snoring detection algorithm evaluation. The relative 

power is calculated from the sound pressure level which is determined by the distance and 

the position of the microphone to the sound source. As people may move during sleep, 

different sleep positions may skew results. However, this may be an issue regardless of 

microphone positioning, so standardisation applied in this study may ultimately be the most 

reasonable and practical approach. 

 

5.1.2 Future Work  

Further investigation of the snoring acoustics should be conducted with a larger sample size 

to allow a more accurate assessment of the snoring detection algorithm. The 

representativeness of larger sample size can be easier to evaluate and generalise the 

findings. Another work that can be made in the future to improve the study is to increase the 

number of human raters. Having more raters in the study allows the study to be more 

objective. 

This study can also be improved by evaluating different snoring detection algorithms and 

comparing their performance in terms of classifying snoring and non-snoring events. Since 
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there is no unequivocal definition of snoring to date, assessing the performance of different 

snoring detection algorithms will give more information about snoring acoustics. 

 

5.2 Conclusion 
In this study, an investigation of snoring acoustics was conducted by generating a benchtop 

dataset and evaluating the snoring detection algorithm. From the results obtained, the 

following conclusions can be drawn: 

1. The duration of snoring events was around 0.5-2.2-second long.  

2. Most non-snoring sounds are less than 30 dB.  

3. The most prominent differences were revealed at a frequency of around 200 Hz. 

4. Using the relative power of 0.5 in the frequencies between 100 and 800 Hz to detect 

snoring events can be affected by the sampling rate. 

5. With the cut-off relative power value of 0.62, the performance of the snoring detection 

algorithm has a better performance on the snore dataset in this study. 

The findings obtained in this study may facilitate finding an objective definition of snoring 

using the acoustic features of snoring. This work can also contribute towards the 

development of snoring detection algorithms. Further studies are required to support the 

findings by increasing the number of human raters and recruiting more participants. 

  



 

- 39 - 

6 References 

American Academy of Sleep Medicine. (2007). The AASM Manual for the Scoring of Sleep 

and Associated Events: Rules. Terminology and Technical Specification. 1st ed. (C. 

Iber, S. Ancoli-Israel, A. L. Chesson, & S. F. Quan, Eds.). American Academy of 

Sleep Medicine – Association for Sleep Clinicians and Researchers. 

https://aasm.org/clinical-resources/scoring-manual/ 

American Academy of Sleep Medicine. (2014). The International Classification of Sleep 

Disorders - Third Edition. Darien, IL : American Academy of Sleep Medicine. 

Better Health Channel. (2014, August 30). Snoring - Better Health Channel. 

Www.betterhealth.vic.gov.au. 

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/snoring 

Çavuşoğlu, M., Poets, C. F., & Urschitz, M. S. (2017). Acoustics of snoring and automatic 

snore sound detection in children. Physiological Measurement, 38(11), 1919–1938. 

https://doi.org/10.1088/1361-6579/aa8a39 

Dalmasso, F., & Prota, R. (1996). Snoring: analysis, measurement, clinical implications 

and applications. European Respiratory Journal, 9(1), 146–159. 

https://doi.org/10.1183/09031936.96.09010146 

Fiz, J. A., Abad, J., Jane, R., Riera, M., Mananas, M. A., Caminal, P., Rodenstein, D., & 

Morera, J. (1996). Acoustic analysis of snoring sound in patients with simple 

snoring and obstructive sleep apnoea. European Respiratory Journal, 9(11), 2365–

2370. https://erj.ersjournals.com/content/9/11/2365.short 

Furukawa, T., Nakano, H., Yoshihara, K., & Sudo, N. (2016). The Relationship between 

Snoring Sound Intensity and Morning Blood Pressure in Workers. Journal of Clinical 

Sleep Medicine, 12(12), 1601–1606. https://doi.org/10.5664/jcsm.6340 

Godman, H. (2022, February 11). Is Snoring Bad? U.S. News. 

https://health.usnews.com/wellness/articles/snoring 



 

- 40 - 

Janott, C., Rohrmeier, C., Schmitt, M., Hemmert, W., & Schuller, B. (2019, July 1). Snoring 

- An Acoustic Definition. IEEE Xplore. https://doi.org/10.1109/EMBC.2019.8856615 

Kayabekir, M., & Yağanoğlu, M. (2021). The relationship between snoring sounds and 

EEG signals on polysomnography. Sleep and Breathing, 26(3), 1219–1226. 

https://doi.org/10.1007/s11325-021-02516-8 

Kulkarni, A., Chong, D., & Batarseh, F. A. (2020). 5 - Foundations of data imbalance and 

solutions for a data democracy. In F. A. Batarseh & R. Yang (Eds.), Data 

Democracy: At the Nexus of Artificial Intelligence, Software Development, and 

Knowledge Engineering (pp. 83–106). Academic Press. 

https://www.sciencedirect.com/science/article/pii/B9780128183663000058 

Lee, H.-K., Lee, J., Kim, H., Ha, J.-Y., & Lee, K.-J. (2013). Snoring detection using a piezo 

snoring sensor based on hidden Markov models. Physiological Measurement, 

34(5), N41–N49. https://doi.org/10.1088/0967-3334/34/5/n41 

Lee, J. (2022, March 26). 25 Alarming Sleep Apnea & Snoring Statistics Australia Needs 

to Know (2022) | WhatASleep. WhatASleep! https://whatasleep.com.au/blog/sleep-

apnea-snoring-statistics-australia/ 

Liebich, T., Lack, L., Hansen, K., Zajamsek, B., Micic, G., Lechat, B., Dunbar, C., Nguyen, 

D. P., Scott, H., & Catcheside, P. (2022). An experimental investigation on the 

impact of wind turbine noise on polysomnography-measured and sleep diary-

determined sleep outcomes. Sleep, 45(8), zsac085. 

https://doi.org/10.1093/sleep/zsac085 

Markandeya, M. N., Abeyratne, U. R., & Hukins, C. (2018). Characterisation of upper 

airway obstructions using wide-band snoring sounds. Biomedical Signal Processing 

and Control, 46, 201–211. https://doi.org/10.1016/j.bspc.2018.07.013 

Marshall, N. S., Wong, K. K. H., Cullen, S. R. J., Knuiman, M. W., & Grunstein, R. R. 

(2012). Snoring Is Not Associated With All-Cause Mortality, Incident Cardiovascular 



 

- 41 - 

Disease, or Stroke in the Busselton Health Study. Sleep, 35(9), 1235–1240. 

https://doi.org/10.5665/sleep.2076 

Pevernagie, D., Aarts, R. M., & De Meyer, M. (2010). The acoustics of snoring. Sleep 

Medicine Reviews, 14(2), 131–144. https://doi.org/10.1016/j.smrv.2009.06.002 

Rohrmeier, C., Herzog, M., Ettl, T., & Kuehnel, T. S. (2013). Distinguishing snoring sounds 

from breath sounds: a straightforward matter? Sleep and Breathing, 18(1), 169–

176. https://doi.org/10.1007/s11325-013-0866-8 

Section on Pediatric Pulmonology, & Subcommittee on Obstructive Sleep Apnea 

Syndrome. (2002). Clinical Practice Guideline: Diagnosis and Management of 

Childhood Obstructive Sleep Apnea Syndrome. PEDIATRICS, 109(4), 704–712. 

https://doi.org/10.1542/peds.109.4.704 

Shin, H., & Cho, J. (2014). Unconstrained snoring detection using a smartphone during 

ordinary sleep. BioMedical Engineering OnLine, 13(1), 116. 

https://doi.org/10.1186/1475-925x-13-116 

Singh, P., Singh, N., Singh, K. K., & Singh, A. (2021). Chapter 5 - Diagnosing of disease 

using machine learning. In K. K. Singh, M. Elhoseny, A. Singh, & A. A. Elngar 

(Eds.), Machine Learning and the Internet of Medical Things in Healthcare (pp. 89–

111). Academic Press. 

https://www.sciencedirect.com/science/article/pii/B9780128212295000033 

Sleep Disorders Australia. (2020). SNORING WHAT IS SNORING? 

https://www.sleepoz.org.au/_files/ugd/a1218b_523739e8468e45159e34c98f5187c4

b3.pdf 

Sogebi, O. A., Oyewole, E. A., & Olusoga-Peters, O. O. (2011). Sleep disordered 

breathing (SDB) experiences associated with snoring in adult Nigerians. African 

Health Sciences, 11(3), 309–314. 



 

- 42 - 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261016/#:~:text=Habitual%20snori

ng%20is%20one%20of 

Sola-Soler, J., Fiz, J. A., Morera, J., & Jane, R. (2011). Bayes classification of snoring 

subjects with and without Sleep Apnea Hypopnea Syndrome, using a Kernel 

method. 2011 Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, pp. 6071-6074. https://doi.org/10.1109/iembs.2011.6091500 

Solà-Soler, J., Fiz, J. A., Morera, J., & Jané, R. (2012). Multiclass classification of subjects 

with sleep apnoea–hypopnoea syndrome through snoring analysis. Medical 

Engineering & Physics, 34(9), 1213–1220. 

https://doi.org/10.1016/j.medengphy.2011.12.008 

Stuck, B. A., Dreher, A., Heiser, C., Herzog, M., Kühnel, T., Maurer, J. T., Pistner, H., 

Sitter, H., Steffen, A., & Verse, T. (2013). S2k-Leitlinie „Diagnostik und Therapie 

des Schnarchens des Erwachsenen“. HNO, 61(11), 944–957. 

https://doi.org/10.1007/s00106-013-2775-3 

Swarnkar, V. R., Abeyratne, U. R., & Sharan, R. V. (2017). Automatic picking of snore 

events from overnight breath sound recordings. 2017 39th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 

2822-2825. https://doi.org/10.1109/embc.2017.8037444 

Wang, C., & Peng, J. (2017). The Methods of Acoustical Analysis of Snoring for the 

Diagnosis of OSAHS. J Sleep Med Disord, 4(2), 1080. 

Warby, S. C., Wendt, S. L., Welinder, P., Munk, E. G. S., Carrillo, O., Sorensen, H. B. D., 

Jennum, P., Peppard, P. E., Perona, P., & Mignot, E. (2014). Sleep-spindle 

detection: crowdsourcing and evaluating performance of experts, non-experts and 

automated methods. Nature Methods, 11(4), 385–392. 

https://doi.org/10.1038/nmeth.2855 



 

- 43 - 

Wilson, K., Stoohs, R. A., Mulrooney, T. F., Johnson, L. J., Guilleminault, C., & Huang, Z. 

(1999). The Snoring Spectrum. Chest, 115(3), 762–770. 

https://doi.org/10.1378/chest.115.3.762 

Zhou, Q., Lin, J., Yao, L., Wang, Y., Han, Y., & Xu, K. (2021). Relative Power Correlates 

With the Decoding Performance of Motor Imagery Both Across Time and Subjects. 

Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.701091 

 

 

 

 

  



 

- 44 - 

7 Appendices 

7.1 Appendix 1: MATLAB Code 
 

%% count the total number of snore events 

 

clc 

num_snore = 0; 

for i = 1:170 

    % check if it's an empty cell 

    data_i = labelData.Labels.snoring{i,1}; 

    % if the cell contains data 

 

    if ~isempty(data_i) 

    ROI_i = labelData.Labels.Snoring{i,1}.Value; % extract the labelled audios 

 

        for j = 1:length(ROI_i) 

            if labelData.Labels.Snoring{i,1}.Value(j) == 'Definitely =1.0' 

                num_snore = num_snore + 1;  

            end  

 

        end 

    end  

end 

 

%% create a time array (duration) for each participant 

 

clc 

num_snore = 0; 

WFN014A_time_array = [0 0]; 

 

% extract all the definite snore events 
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for i = 1:170 

    % check if it's an empty cell 

    data_i = WFN014A.Labels.Snoring{i,1}; 

 

    % if the cell contains data 

    if ~isempty(data_i) 

    % extract all the snore events 

    ROI_i = WFN014A.Labels.Snoring{i,1}.Value;  

 

        for j = 1:length(ROI_i) 

            if WFN014A.Labels.Snoring{i,1}.Value(j) == 'Definitely =1.0' % 

extract definite snore events 

                num_snore = num_snore + 1;  

                % calculate duration 

                duration = WFN014A.Labels.Snoring{i,1}.ROILimits(j,2) -  

WFN014A.Labels.Snoring{i,1}.ROILimits (j,1); 

                WFN014A_time_array(num_snore) = duration; 

            end  

 

        end 

    end  

end 

 

%% put all the time arrays together  

  

WFN014A_time_array (9:(length(WFN0151A_time_array)+8)) = WFN0151A_time_array; 

WFN014A_time_array (122:(length(WFN029_time_array)+121)) = WFN029_time_array; 

WFN014A_time_array (696:(length(WFN054A_time_array)+695)) = WFN054A_time_array; 

WFN014A_time_array (1107:(length(WFN054D_time_array)+1106)) = WFN054D_time_array; 

WFN014A_time_array (1485:(length(WFN077A_time_array)+1484)) = WFN077A_time_array; 

 

WFN014A -> WFN0151A -> WFN029 -> WFN054A -> WFN054D -> WFN077A 
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%% normal distribution for duration 

 

 

pd = fitdist(time_array,'Normal'); 

x_value = (pd.mu-4*pd.std):0.0001:(pd.mu+4*pd.std);  % set ticks for x axis 

y = pdf(pd,x_value); 

hold on; 

grid on; 

% plot the bell curve 

plot(x_value,y,'LineWidth',2); 

 

% plot the empirical rule (3 sigma rule) 

p1 = plot([pd.mu+3*pd.std pd.mu+3*pd.std],[0 0.0031],'--

','Color',"#4DBEEE",'LineWidth',1.2); 

p2 = plot([pd.mu-3*pd.std pd.mu-3*pd.std],[0 0.0031],'--

','Color',"#4DBEEE",'LineWidth',1.2); 

p3 = plot([pd.mu+2*pd.std pd.mu+2*pd.std],[0 0.0382],'--

','Color',"#77AC30",'LineWidth',1.2); 

p4 = plot([pd.mu-2*pd.std pd.mu-2*pd.std],[0 0.0382],'--

','Color',"#77AC30",'LineWidth',1.2); 

p5 = plot([pd.mu+1*pd.std pd.mu+1*pd.std],[0 0.1713],'--

','Color',"#7E2F8E",'LineWidth',1.2); 

p6 = plot([pd.mu-1*pd.std pd.mu-1*pd.std],[0 0.1713],'--

','Color',"#7E2F8E",'LineWidth',1.2); 

p7 = plot([pd.mu pd.mu],[0 0.2825],'--','Color',"#EDB120",'LineWidth',1.2); 

title('Normal Distribution',FontSize=12) 

xlabel('Duration',FontSize=12) 

ylabel('Probability Density',FontSize=12) 

legend([p7 p5 p3 p1],{'\mu','\mu \pm 1\sigma','\mu \pm 2\sigma','\mu \pm 

3\sigma'},'Location','northwest') 

 

% to find y value from x:  

% desiredY = interp1(x_value,y,pd.mu+3*pd.std) 



 

- 47 - 

 

 

%% create time array 

time_array = xlsread ("time_array.xlsx"); 

 

%% Duration Plot 

x_value = xlsread ("duration.xlsx",'Sheet2','A1:A325'); 

y_value = xlsread ("duration.xlsx",'Sheet2','B1:B325'); 

plot (x_value,y_value) 

xlabel('Snoring Duration') 

ylabel('Number of Snore Events') 

title('Total number of snore events vs. Snoring duration') 

 

%% Frequency vs. SPL (average) 

 

clc 

num_snore = 0; 

for i = 1:170 

    % check if it's an empty cell 

    data_i = labelData.Labels.Snoring{i,1}; 

    % if the cell contains data 

 

    if ~isempty(data_i) 

    ROI_i = labelData.Labels.Snoring{i,1}.Value; % extract the labelled audios 

 

        for j = 1:length(ROI_i) 

            if labelData.Labels.Snoring{i,1}.Value(j) == 'Definitely =1.0' 

                num_snore = num_snore + 1; 

                duration = labelData.Labels.Snoring{i,1}.ROILimits(j,:); % 

extract duration 

                filename = labelData.Source{i, 1}; % extract corresponding file 

name of the audio sample 

                [y,fs] = audioread(filename); % audio signal: y is sampled data, 
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fs is sample rate 

                 

                start_point = floor(duration(1)*fs)+1;  % +1 due to index starts 

at 1 

                end_point = floor(duration(2)*fs); 

                y_i = y(start_point:end_point); % extract selected segment 

                 

                % power spectrum 

                [SPLn,fn] = f_PS(y_i,fs);  % call the f_PS function 

                SPLn_all(:,num_snore) = SPLn; 

 

%                 % plot power specturm of each snore event 

%                 p4 = plot(fn, SPLn, '-k'); 

%                 xlabel('Frequency (Hz)') 

%                 ylabel('SPL (dB), re 20e^{-6} Pa') 

%                 hold on  

 

            end  

 

        end 

    end  

end 

 

%% plot the average SPL 

sz = size(SPLn_all); 

mean_SPL(:,1) = mean(SPLn_all,2); % compute mean in each row 

p2 = plot (fn,mean_SPL,'Color',"#D95319",LineWidth=3); 

hold on 

 

% compute SD 

SD_SPL (:,1) = std (SPLn_all,0,2); % compute SD in each row 

SD1 = mean_SPL-SD_SPL; 

SD2 = mean_SPL+SD_SPL; 
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p1 = plot (fn,SD1,'-c',LineWidth=1); 

p3 = plot (fn,SD2,'-c',LineWidth=1); 

 

% shade SD in between area 

shade(fn, SD1, fn, SD2, 'FillType', [1 2;2 1],'FillColor','c') 

% FillType specifies the area between line 1 and line 2 should be filled, 

% whether line 1 is above line 2 or vice versa 

legend([p2 p1],{'Average SPL', '\pm SD'},'Location','northeast'); 

 

 

xlabel('Frequency (Hz)') 

ylabel('SPL (dB), re 20e^{-6} Pa') 

title('WFN029 Sound Pressure Level vs. Frequency') 

 

 

 

%% SPL vs. Num of snore 

 

clc 

num_snore = 0; 

for i = 1:170 

    % check if it's an empty cell 

    data_i = labelData.Labels.snoring{i,1}; 

 

    % if the cell contains data 

    if ~isempty(data_i) 

    ROI_i = labelData.Labels.snoring{i,1}.Value; % extract the labelled audios 

 

        for j = 1:length(ROI_i) 

            if labelData.Labels.snoring{i,1}.Value(j) == 'Definitely =1.0' 

                num_snore = num_snore + 1; 

                duration = labelData.Labels.snoring{i,1}.ROILimits(j,:); % 

extract duration 



 

- 50 - 

                filename = labelData.Source{i, 1}; % extract corresponding file 

name of the audio sample 

                [y,fs] = audioread(filename); % audio signal: y is sampled data, 

fs is sample rate 

                 

                start_point = floor(duration(1)*fs)+1;  % +1 due to index starts 

at 1 

                end_point = floor(duration(2)*fs); 

                y_i = y(start_point:end_point); % extract selected segment 

                 

                % power spectrum 

                [SPLn,fn] = f_PS(y_i,fs);  % call the f_PS function 

                SPLn_all(:,6) = SPLn; 

 

            end  

 

        end 

    end  

end 

 

% sz = size(SPLn_all); 

% SPLn_all (:,sz(2)+1) = mean(SPLn_all,2); 

% p1 = plot (fn,SPLn_all(:,end),'Color',"#D95319",LineWidth=3); 

% legend(p1,'Average SPL','Location','northeast'); 

% xlabel('Frequency (Hz)') 

% ylabel('SPL (dB), re 20e^{-6} Pa') 

% title('WFN014A Sound Pressure Level vs. Frequency') 

 

clear data_i 

clear duration 

clear end_point 

clear filename 

clear fn 
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clear fs 

clear i 

clear j 

clear labelData 

clear ROI_i 

clear SPLn 

clear start_point 

clear y 

clear y_i 

 

x_value = xlsread ("results.xlsx",'SPL','A1:A312'); 

y_value = xlsread ("results.xlsx",'SPL','C1:C312'); 

plot (x_value,y_value) 

xlabel('Snoring Sound Power Level') 

ylabel('Number of Snore Events') 

title('Total number of snore events vs. Snoring sound power level') 

 

 

%% create an array of relative power in the frequencies for 6 participants 

clc 

num_snore = 0; 

for i = 1:170 

    % check if it's an empty cell 

    data_i = labelData.Labels.snoring{i,1}; 

    % if the cell contains data 

 

    if ~isempty(data_i) 

    ROI_i = labelData.Labels.snoring{i,1}.Value; % extract the labelled audios 

 

        for j = 1:length(ROI_i) 

            if labelData.Labels.snoring{i,1}.Value(j) == 'Definitely =1.0' || 

labelData.Labels.snoring{i,1}.Value(j) == 'Probably = 0.75'  

                num_snore = num_snore + 1; 
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                duration = labelData.Labels.snoring{i,1}.ROILimits(j,:); % 

extract duration 

                filename = labelData.Source{i, 1}; % extract corresponding file 

name of the audio sample 

                [y,fs] = audioread(filename); % audio signal: y is sampled data, 

fs is sample rate 

                 

                start_point = floor(duration(1)*fs)+1;  % +1 due to index starts 

at 1 

                end_point = floor(duration(2)*fs); 

                y_i = y(start_point:end_point); % extract selected segment 

                 

                % power spectrum 

                [SPLn,fn] = f_PS(y_i,fs);  % call the f_PS function 

 

                % to calculate the area under a curve 

                int_all = trapz(fn, SPLn); 

                int_selected = trapz(fn(6:40,1),SPLn(6:40,1)); 

 

                % calculate the relative power in frequencies 

                relative_power = int_selected/int_all;  

                relative_power_all(num_snore,6) =  relative_power; % create an 

array of all the relative power 

 

            end  

 

        end 

    end  

end 

 

clear data_i 

clear duration 

clear end_point 

clear filename 
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clear fn 

clear fs 

clear i 

clear int_all 

clear int_selected 

clear j 

clear labelData 

clear relative_power 

clear ROI_i 

clear SPLn 

clear start_point 

clear y 

clear y_i 

 

%% Algorithm Evaluation 

clc 

snore = zeros (628,6); 

for i = 1:6 

    for j = 1:628 

        if relative_power_all (j,i) > 0.5 

            snore(j,i) = 1; 

        else  

            snore(j,i) = 0; 

        end 

    end 

end 

 

 

%% SPL vs. Frequency for averag snoring and non-snore events 

 

 

clc 
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ind = 0; 

for i = 1:170 

     

    data_i = labelData.Labels.snoring{i,1}; 

     

    % check if it's an empty cell 

    % if the cell does not contains  

    if isempty(data_i) 

        filename = labelData.Source{i, 1}; % extract corresponding file name of 

the audio sample 

        [y,fs] = audioread(filename); % audio signal: y is sampled data, fs is 

sample rate 

        % for WFN014A 

        %start_duration = [0.1, 1.1, 2.2, 3.3]; 

        %end_duration = [1.1, 2.2, 3.3, 3.9]; 

         

        % for WFN0151A, WFN077A, WFN054A, WFN029 

        start_duration = [0.1, 2.2, 4.4, 6.6, 8.8, 11, 13.2, 15.4, 17.6]; 

        end_duration = [2.2, 4.4, 6.6, 8.8, 11, 13.2, 15.4, 17.6, 20]; 

 

        % for WFN054D, WFN054A 

        %start_duration = [0.1, 2.2, 4.4, 6.6]; 

        %end_duration = [2.2, 4.4, 6.6, 8.8]; 

 

        for j = 1:4  % cut into 2.2s 

            ind = ind + 1; 

            start_point = floor(start_duration(j)*fs);  % +1 due to index starts 

at 1 

            end_point = floor(end_duration(j)*fs); 

 

            % extract selected segment 

            y_i = y(start_point:end_point);  
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            % power spectrum 

            [SPLn,fn] = f_PS(y_i,fs);  % call the f_PS function 

            SPL_NS (:,ind) = SPLn; 

 

        end 

    end  

end 

 

% randomly extract # of non-snore events (2.2s) without repeating numbers 

r = randperm(length(SPL_NS),145);  % return (1,x) matrix 

 

% extract corresponding 2.2s event (event of interest) 

for k = 1:length(r) 

    event_i(:,k) = SPL_NS (:,r(k)); 

end 

 

 

% compute mean of non events and plot 

ns_average(:,1) = mean(event_i,2); 

p1 = plot (fn,ns_average,'Color',"#D95319",LineWidth=3); 

hold on 

 

% compute SD 

SD_SPL (:,1) = std (event_i,0,2); % compute SD in each row 

SD1 = ns_average-SD_SPL; 

SD2 = ns_average+SD_SPL; 

p2 = plot (fn,SD1,'-c',LineWidth=1); 

p3 = plot (fn,SD2,'-c',LineWidth=1); 

hold on 

 

% shade SD in between area 

shade(fn, SD1, fn, SD2, 'FillType', [1 2;2 1],'FillColor','c') 
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% FillType specifies the area between line 1 and line 2 should be filled, 

% whether line 1 is above line 2 or vice versa 

legend([p1 p2],{'Average SPL' '\pm SD',},'Location','northeast'); 

 

  

xlabel('Frequency (Hz)') 

ylabel('SPL (dB), re 20e^{-6} Pa') 

title('WFN014A Sound Pressure Level vs. Frequency for Non-Snoring Events') 

 

 

 

 

 

num_snore = 0; 

for i = 1:170 

    % check if it's an empty cell 

    data_i = labelData.Labels.snoring{i,1}; 

    % if the cell contains data 

 

    if ~isempty(data_i) 

    ROI_i = labelData.Labels.snoring{i,1}.Value; % extract the labelled audios 

 

        for j = 1:length(ROI_i) 

            if labelData.Labels.snoring{i,1}.Value(j) == 'Definitely =1.0' 

                num_snore = num_snore + 1; 

                duration = labelData.Labels.snoring{i,1}.ROILimits(j,:); % 

extract duration 

                s_filename = labelData.Source{i, 1}; % extract corresponding file 

name of the audio sample 

                [y,fs] = audioread(s_filename); % audio signal: y is sampled data, 

fs is sample rate 

                 

                s_start_point = floor(duration(1)*fs)+1;  % +1 due to index starts 
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at 1 

                s_end_point = floor(duration(2)*fs); 

                y_i = y(s_start_point:s_end_point); % extract selected segment 

                 

                % power spectrum 

                [SPLn,fn] = f_PS(y_i,fs);  % call the f_PS function 

                SPLn_all(:,num_snore) = SPLn; 

 

            end  

 

        end 

    end  

end 

 

% plot the average SPL 

sz = size(SPLn_all); 

s_mean_SPL(:,1) = mean(SPLn_all,2); % compute mean in each row 

p4 = plot (fn,s_mean_SPL,'Color',"#0072BD",LineWidth=3); 

hold on 

 

% % compute SD 

% s_SD_SPL (:,1) = std (SPLn_all,0,2); % compute SD in each row 

% s_SD1 = s_mean_SPL-s_SD_SPL; 

% s_SD2 = s_mean_SPL+s_SD_SPL; 

% p5 = plot (fn,s_SD1,'-c',LineWidth=1); 

% p6 = plot (fn,s_SD2,'-c',LineWidth=1); 

 

 

legend([p1 p4],{'Average SPL for non-snoring' 'Average SPL for 

snoring',},'Location','northeast'); 

 

xlabel('Frequency (Hz)') 

ylabel('SPL (dB), re 20e^{-6} Pa') 
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title('WFN054A Sound Pressure Level vs. Frequency') 

 

 

 

 

 

 

 

 

 


