Effect of growth factors on Tlymphocyte induced keratinocyte apoptosis

Ilse Sofia Daehn

Department of Medicine-Biotechnology

Flinders University of South Australia

A thesis submitted for the degree of

Doctor of Philosophy

January 2007

For my family and Tom

"Happy is he who gets to know the reasons for things."

Virgil (70-19 BCE) Roman poet.

Table of Contents

Т	Thesis summary:17	
	Abbreviatons	. 15
	Publications arising from this project	. 14
	Acknowledgements	. 12
	Declaration	. 11

CHAPTER 1

Introduction

1.1	The skin's barrier function	20
1.2	Keratinocyte differentiation	22
1.2.1	1 Keratinocyte cell death	24
1.3	Death receptor pathways	26
1.3.1	1 Fas induced apoptosis	26
1.3.2	2 The Caspase Cascade	27
1.4	Atopic eczema	28
1.4.1	1 Impact of atopic eczema	30
1.4.2	2 Prevalence and diagnosis of atopic eczema	30
1.4.3	3 T-lymphocyte response	33
1.4.4	4 The T-lymphocyte response in atopic eczema	35

1.4.5	Dysregulated immune response in atopic eczema
1.4.6	Keratinocyte apoptosis in atopic eczema
1.4.7	The role of keratinocytes in atopic eczema
1.5 Cu	rrent therapies for atopic eczema
1.5.1	Anti-inflammatory therapies targeting T-lymphocyte activation 42
1.5.2	Can keratinocyte apoptosis be a therapeutic target?
1.6 Gr	owth Factors in skin homeostasis44
1.6.1	The role of IGF-I in skin
1.6.2	The role of TGF β in skin
1.6.3	Growth factor effects in keratinocyte apoptosis
1.6.4	Whey growth factor extract (WGFE) as source of IGF-I and TGF β 51
1.7 Th	esis Hypothesis
1.7.1	Thesis aims

MATERIALS AND METHODS

2.1	Buffers and solutions	54
2.1.	1 Phosphate buffered saline (PBS)	54
2.2	Antibodies and staining reagents	57
2.3	Cell culture	62
2.3.	1 HaCaT Keratinocytes	62
2.3.	2 Normal human epidermal keratinocytes	62

2.3.	.3 Jurkat T-lymphocytes	63
2.3.	.4 Primary T-lymphocytes	64
2.3.	.5 Cryopreservation	65
2.4	Functional studies co-culture experiments	66
2.4.	.1 Mitogen activation of T-lymphocyte	66
2.4.	.2 Jurkat T-lymphocyte conditioned media	66
2.4.	.3 Jurkat T-lymphocyte and HaCaT co-culture	67
2.4.	.4 Primary T-lymphocyte co-culture with HaCaTs or NHEKs	67
2.5	Flow cytometry	67
2.5.	.1 Cell viability and apoptosis	68
2.5.	.2 Cell surface immunofluorescence staining	68
2.5.	.3 Intracellular Immunofluorescence staining	70
2.6	DNA fragmentation studies	70
2.6.	.1 HOECHST staining	70
2.7	Caspase activity assay	71
2.8	Western blotting	72
2.8.	.1 Protein quantification - Bradford Assay	73
2.8.	.2 SDS-PAGE Separating Gels	74
2.9	Slot blot	74
2.10	Cytospins	75
2.11	Quantification of cytokines	75
2.12	Statistics	76

Sodium butyrate induced HaCaT apoptosis

3.1 I	ntroduction
3.2 N	Aethods
3.2.1	Butyrate treatment of HaCaT 82
3.2.2	Measurements of apoptosis
3.2.3	3.2.3 Measurements of differentiation
3.3 F	Results
3.3.1	Induction of HaCaT apoptosis by Sodium butyrate
3.3.2	Sodium butyrate induced morphological features of apoptosis and
nuclea	r fragmentation
3.3.3	Activation of the caspase cascade by sodium butyrate treated HaCaTs
	89
3.3.4	Sodium butyrate induced Fas expression HaCaTs94
3.3.5	Caspase 3 inhibitor did not inhibit butyrate induced apoptosis94
3.3.6	Sodium butyrate did not induce HaCaT differentiation
3.4 S	ummary

Chapter 4

Jurkat induced HaCaT apoptosis

4.2	Methods 110
4.2.	1 Jurkat conditioned media
4.2.	2 Jurkat T-lymphocyte and HaCaT co-cultures 110
4.2.	3 Assessment of HaCaT apoptosis 111
4.2.	4 Mechanistic assessments
4.3	Results
4.3.	1 Jurkat activation 112
4.3.	2 Jurkat co-culture induced HaCaT apoptosis 112
4.3.	3 Jurkat co-culture induced HaCaT caspase 3 activity 117
4.3.	4 Jurkat induced HaCaT apoptosis by Fas
4.3.	5 Effect of IFNγ on Jurkat induced HaCaT apoptosis
4.3.	6 Effect of IFNγ on HaCaT Fas expression 124
4.3.	7 Jurkat co-culture induced HaCaT ICAM-1 expression 124
4.4	Summary

Primary T-lymphocyte induced keratinocyte apoptosis

5.1	Intro	oduction	133
5.2	Met	hods	137
5.2	.1	Primary CD4+ T-lymphocyte and HaCaT co-culture	137
5.2	.2	Primary CD4+ T-lymphocyte and primary keratinocyte co-culture.	138
5.2	.3	Cytokine measurement	138

5.2.4	Keratinocyte differentiation
5.3	Results
5.3.1	Primary CD4+ T-lymphocytes induced HaCaT apoptosis 140
5.3.2	FasL expression by CD4+ T-lymphocytes increases with activation 145
5.3.3	T-lymphocyte induced HaCaT apoptosis was mediated by Fas 145
5.3.4	Co-culture induced adhesion molecule expression 146
5.3.5	T-lymphocytes induced Fas mediated apoptosis of normal human
epide	rmal keratinocytes151
5.3.6	IFNγ is release during co-culture155
5.3.7	IFNy increased T-lymphocyte induced keratinocyte apoptosis 156
5.3.8	IFNy potentiated T-lymphocyte induced Fas expression of HaCaTs 159
5.3.9	T-lymphocyte co-culture induced HaCaT early differentiation 162
5.3.1	0 T-lymphocyte induced keratinocyte apoptosis was associated with $\alpha 6$ -
dim e	expression
5.4	Summary

TGF β and IGF-I effects on T-lymphocyte induced keratinocyte apoptosis

6.1	Introduction	173
6.2	Methods	176
6.2.	1 Co-culture treatment with IGF-1, TGF β_1 or LR3-IGF	176
6.3	Results	177

	6.3.1	Effect of growth factors on T-lymphocyte induced HaCaT apoptosis
		177
	6.3.2	A combination of $TGF\beta_1$ and IGF-I decreased T-lymphocyte induced
	HaCaT a	poptosis
	6.3.3	Post-treatment with $TGF\beta_1$ and IGF-I did not rescue T-lymphocyte
	induced]	HaCaT apoptosis
	6.3.4	$TGF\beta_1$ and IGF-I inhibited the release of IFN γ in co-culture
	6.3.5	Effect of TGF β and IGF-I on HaCaT Fas expression
	6.3.6	$TGF\beta_1$ and $IGF-I$ prevented T-lymphocyte induced keratinocyte
	different	iation 192
	6.3.7	IGF-I prevents T-lymphocyte induced apoptosis of NHEKs 199
	6.3.8	Effect of IGF-I on NHEK Fas expression and early differentiation . 202
6.4	4 Sun	1mary

Effects of WGFE on T-lymphocyte induced keratinocyte apoptosis

7.1	Introduction	
7.2	Methods	
7.2.	.1 WGFE	
7.3	Results	
7.3.	.1 WGFE prevented T-	lymphocyte induced HaCaT apoptosis 213
7.3.2	.2 Effect of WGFE on	FNγ release and Fas expression

7.3.	WGFE prevents T-lymphocyte induced early differentiation	
7.3.4	WGFE did not prevent T-lymphocyte induced apoptosis of NHEKs 221	
7.3.:	5 Effect of IGF-I enriched WGFE (UFO2N010) on T-lymphocyte	
induced NHEK apoptosis		
7.3.	5 UFO2N010 prevents T-lymphocyte induced early differentiation of	
normal human epidermal keratinocytes		
7.4	Summary	

DISCUSSION

8.1 T-ly	mphocyte induced keratinocyte apoptosis		
8.1.1	T-lymphocyte induced Fas mediated apoptosis of keratinocyte 230		
8.1.2	T-lymphocyte induced keratinocyte apoptosis is mediated by IFN γ		
stimulated upregulation of keratinocyte Fas and subsequent activation of caspase			
3	231		
8.2 Growth factors protected keratinocytes from T-lymphocyte induced			
apoptosis			
8.2.1	Growth factors effects Fas		
8.2.2	Potential pathways mediating keratinocyte survival induced by growth		
factors	238		
8.3 T-ly	mphocyte induced early keratinocyte differentiation		
8.3.1	Loss of α6 integrin by apoptotic keratinocytes		

8.3.2 α6 integrin mediated survival of keratinocytes		α6 integrin mediated survival of keratinocytes
8.4	Gro	wth factor mediated keratinocyte survival
8.5	App	plication of thesis outcomes and future work
8.5	.1	Growth factor based therapies as potential treatments for inflammatory
skin disorders		
8.5	.2	Milk derived growth factor based therapies as potential treatments for
atopic eczema		
8.6	Con	clusion

Appendices

BIBLIOGRAPHY......267

Declaration

" I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text"

Ilse S. Daehn January 2007

Acknowledgements

I would like to take this opportunity to thank a number of people without whose help and support this thesis would have never been possible. A special acknowledgment to my supervisor Dr Tim Rayner, for the valuable guidance and support over these last few years, without whose knowledge and assistance this study would not have been successful. I will take the upside down triangle $\mathbf{\nabla}$ approach wherever I go! I would like to thank Dr Antiopi Varelias for the encouragement, advice and friendship. I also express my gratitude for Dr Peter Macardle and Dr Allison Cowin who have provided valuable advice and feedback to this thesis. In addition I would like to thank Dairy Australia and The Queen Elizabeth Hospital Research Foundation for providing me with financial support to conduct my studies.

Special thanks to Mrs Silvia Nobbs for her invaluable expertise and help with the flow cytometry work. I also thank WCH Haematology department for bleeding me, yes there is literally blood, sweat and tears in the making of this thesis... My appreciation also goes to the staff at CHRI and TGR-Biosciences for their allowing me to perform experiments using their equipment, for their valuable intellectual input and constructive criticism.

A special acknowledgment to Ken and Adrian from the TQEH animal house, as well as Madeline and Ashley, for making the days at TQEH so much fun. A super thanks to the CHRI crew: Marko, Prodell, Mic, Donato, Pallave, Naoms, Rogy, Walter and LJ with whom we shared so many funny moments including those unforgettable conversations..., the Torrens runs, coffee schemes, the pub o'clocks, those crazy pubcrawls... I would like to also thank everyone involved in the making of the CHRI calendar! Thanks to the BioHazardous and the Sand-Sationals. Special thank you to those close friends who I can always count on and have contributed to my sanity in so many ways; my Vec, Dave and Olgi... I love you guys.

I cannot end without thanking my parents, whose courage and determination in life will always inspire me. To my sisters whom I love and finally to my husband Tom, who's constant support, encouragement and love, helped me finish this thesis. A part of you all is in here, in some form, somewhere... I am extremely grateful, I could not have done it with out you, so it is to you that I dedicate this work.

Publications arising from this project

(see Appendix)

Daehn I, Varelias A, Rayner T. Sodium butyrate induced keratinocyte apoptosis. *Apoptosis*. 2006 Aug;11(8):1379-90.

Ruzehaji G, Daehn I, Varelias A, Rayner T. Exploring cellular interactions relevant to wound healing. *Primary Intention*. 2006 Feb;14(1):22-30.

Abbreviatons

α6	alpha-6 integrin
ACD	allergic contact dermatitis
AE	atopic eczema
BSA	bovine serum albumin
DNA	deoxyribonucleic acid
DMSO	dimethyl sulfoxide
DMEM	dulbecco's modified eagle's medium
FACS	fluorescence activated cell sorter
FBS	fetal bovine serum
FasL	Fas ligand
FITC	fluorescein isothiocyanate
HLDA	human cell differentiation antigens
HDI	histone deacetylase inhibitor
hrs	hours
ICAM-1	intracellular adhesion molecule
IGF-I	insulin-like growth factor-I
IGFBP	IGF-binding proteins
IFNγ	interferon γ
Ig	immunoglobulin
IL	interleukin

LFA-1	lymphocyte function-associated antigen-1
LR3-IGF	LONG TM R3 IGF-I
mAb	monoclonal antibody
mins	minutes
MFI	mean fluorescence intensity
NF-κβ	nuclear factor κβ
NHEK	normal human epidermal keratinocytes
PARP	poly (ADP-ribose) polymerase
PBS	phosphate buffered saline
PE	phycoerythrin
PI	propidium iodide
РМА	phorbol myristate acetate
PS	phosphotidylserine
RT	room temperature
rpm	revolutions per minute
TGFβ	transforming growth factor β
Th	T helper cell
TIMs	topical macrolide immunomodulators
TNFα	tumour necrosis factor α
TRAIL	tumour necrosis related apoptosis-inducing ligand
WGFE	whey growth factor extract
x g	relative centrifugal force (g-force)

THESIS SUMMARY

Atopic eczema is a T-lymphocyte mediated chronic inflammatory skin disorder. The interaction of CD4+ T-lymphocytes with epidermal keratinocytes results in dysregulated, chronic inflammation and altered barrier function. T-lymphocyte induced keratinocyte apoptosis has been proposed as a mechanism by which epidermal integrity is impaired in eczema. Apoptosis of keratinocytes is thought to result from T-lymphocyte associated Fas ligand (FasL) binding to the death receptor Fas on keratinocytes. The primary aim of this project was to characterize the induction of keratinocyte apoptosis by T-lymphocytes and address the hypothesis that insulin-like growth factor-I (IGF-1), transforming growth factor β_1 (TGF β_1) and a milk derived growth factor extract containing TGF β and IGF-I (whey growth factor extract; WGFE) protect keratinocytes from T-lymphocyte mediated apoptosis.

To address the aims of this project, an *in vitro* co-culture model was developed combining T-lymphocytes with keratinocytes. Co-cultures were initially established using human Jurkat T-lymphocytes and human HaCaT keratinocytes with more extensive characterisation undertaken using primary CD4+ T-lymphocytes together with HaCaTs or normal human epidermal keratinocytes (NHEK). Annexin V and propidium iodide staining was established as the primary method for measuring keratinocyte apoptosis with this validated using sodium butyrate a known inducer of apoptosis. Changes in nuclear fragmentation and cell morphology were also examined as a key feature of apoptosis. The involvement of the Fas pathway was investigated by assessing T-lymphocyte FasL expression, keratinocyte Fas expression and downstream caspase activation. Inflammatory cytokines IFN γ and TNF α were also examined due to their ability to induce Fas expression.

Studies performed with T-lymphocytes demonstrated that keratinocyte apoptosis was induced, with this due primarily to direct T-lymphocytes and keratinocytes interactions, rather than soluble mediators in the co-culture milieu. Activated T-lymphocytes were found to have high levels of FasL and to upregulate keratinocyte Fas expression. The increased keratinocyte Fas was associated with increased IFN γ levels in the co-culture media and activation of the caspase cascade. A Fas blocking antibody prevented T-lymphocyte induced keratinocyte apoptosis demonstrating that this was a Fas dependent event.

As the primary function of keratinocytes is to terminally differentiate, the differentiation status of the cells induced to undergo apoptosis was examined. It was demonstrated that T-lymphocytes decrease the intensity of $\alpha 6$ integrin expression by the keratinocytes. This marker identifies undifferentiated basal cells as high expressors of $\alpha 6$, with cells in the early stages of differentiation pathway found to be low expressors of $\alpha 6$. Co-staining with Annexin V demonstrated that the apoptotic keratinocytes were low expressors of $\alpha 6$ and thus cells committed to the early stages of differentiation. This suggested that the T-lymphocytes initiated the onset of keratinocyte terminal differentiation with this linked

to the cells being more susceptible to death induced by T-lymphocyte by activation of the Fas pathway.

The ability of TGF β_1 , IGF-I and WGFE to inhibit T-lymphocyte induced keratinocyte apoptosis was examined. A combination of recombinant TGF β (10ng) & IGF-I (100ng) was able to significantly inhibit keratinocyte apoptosis. A similar result was obtained with WGFE, and although these growth factor treatments were able to reduce the elevated IFN γ levels in the co-culture media, they did not reduce T-lymphocyte induced Fas upregulation. The TGF β_1 and IGF-I combination as well as WGFE did however prevent the T-lymphocyte induced shift from α 6 bright to dim expressing keratinocytes. As such, the growth factor combinations appeared to protect the keratinocytes from Tlymphocyte mediated apoptosis by preventing them from committing to terminal differentiation.

The studies in this thesis have characterised the Fas associated mechanisms by which Tlymphocytes induce keratinocyte apoptosis and suggest specific growth factor combinations may have the potential to ameliorate the reduced barrier function associated with inflammatory skin conditions such as atopic eczema.