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Summary 

 
Saltwater upconing is a process that occurs when salty groundwater that 

underlies fresh groundwater rises towards a pumping well. It is an important 

problem in many coastal aquifers around the world, leading to the deterioration 

in water quality of freshwater wells. Once a well is intruded by saltwater, it may 

require the well to be decommissioned, and hence, controlling bore salinisation 

through upconing is essential. In this study, the mechanisms of saltwater 

upconing are assessed to improve the current body of knowledge of the 

associated density-dependent flow and transport processes. 

Saltwater upconing is particularly difficult to measure under field situations, and 

there are no previous examples of well characterised field-scale saltwater 

upconing plumes. Prior to the current research, there were also no published 

observations of upconing under controlled laboratory experimental conditions, 

notwithstanding previous studies of lateral saltwater intrusion in which 

incidental vertical movements in saltwater plumes were observed. Laboratory 

experiments and numerical modelling analyses of saltwater upconing processes 

were undertaken to provide insight and understanding of the mechanisms 

responsible for the salinisation of freshwater wells. The research focuses mainly 

on laboratory-scale upconing, through which saltwater rise under a pumping 

well and the related impacts in terms of well salinity and plume rise and extent 

are examined. 

Firstly, saltwater upconing observations from four controlled sand-tank 

experiments were quantified and compared to an existing analytical solution of 

transient upconing. These results were subsequently extended using a numerical 

modelling analysis of the laboratory experiments to better understand the flow 

and transport processes occurring in the sand tank. An important outcome of this 

work is the numerical reproducibility of the experimentally observed temporal 

development of saltwater plumes under a pumping bore, albeit for three of the 

four experiments. The “double peak” upconing observed in one of the laboratory 

experiments was not reproduced by this model. Numerical modelling results 

were compared with an existing sharp-interface analytical solution, which 
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corresponded well with the numerical modelling results for early stages of the 

four upconing experiments. 

Secondly, additional laboratory experimentation and numerical modelling were 

undertaken to investigate double-peaked upconing that remained unresolved. 

Laboratory experiments successfully reproduced the double-peaked plume 

demonstrating that this phenomenon was not an experimental nuance in previous 

experiments. The modelling undertaken in this analysis demonstrated that 

sorption is an important consideration when using Rhodmaine WT as a visual 

aid in sand-tank experiments, especially under slow flow, density-dependent 

conditions. 

The final component of the study extended the laboratory-scale investigation to 

scales that apply to real-world settings. The aim was to define and characterize 

the “saltwater upconing zone of influence”, which is the extent of saltwater 

upconing impact, in terms of saltwater rise attributed to pumping, in a largely 

hypothetical, three-dimensional coastal setting involving a sloping regional 

freshwater-seawater interface. Both radial and three-dimensional numerical 

modelling of saltwater upconing at the field scale were undertaken. The results 

indicate that the sharp-interface approximations of SUZI, for both radial and 

three-dimensional cases, are larger compared to the numerical model 

predictions. It was also found that the lateral flow towards the coast significantly 

influences both the SUZI and the salinity of the extracted groundwater. This part 

of the study demonstrated that the three-dimensional modelling that includes 

inclined interfaces and lateral flow towards the coast is essential in studying 

SUZI in typical coastal areas. That is, radial modelling, which does not capture 

the lateral flow effects, over-estimates the SUZI extent as well as the pumped 

water salinity. 
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Chapter 1 

  

Background and objectives 
 

In coastal regions, groundwater is often the major source of freshwater, and 

hence a proper understanding of the processes leading to salinisation of wells is 

essential. There are numerous processes influencing salt movements in coastal 

systems, occurring across a wide range of scales, including buoyancy effects due 

to freshwater-saltwater density contrasts, recharge and regional flow dynamics, 

and pumping impacts. In the near vicinity of pumping wells, saltwater upconing 

may occur. Saltwater upconing is the upward vertical transport of salty 

groundwater towards a pumping well in an aquifer where freshwater is underlain 

by saltwater. It may lead to considerable deterioration in the quality of extracted 

water, and is therefore an important problem in many coastal aquifers around the 

world. Once a freshwater bore is intruded by saltwater, the pumping well is often 

abandoned (Zhou et al., 2005; Narayan et al., 2006). 

Bore salinisation due to saltwater upconing was probably first explored in the 

1910s. Pennink (1915) used a sandbox to explore patterns of saltwater 

movement below a drain and observed brackish and saltwater rise to the bottom 

of the well. He also examined the influence of lateral flows on up-coning 

behaviour, and found that these tend to push the saline water downstream of the 

well. The sand-tank set-up that Pennink (1915) adopted, led to saltwater entering 

the well from the ocean side, i.e. rather than from beneath, as occurs in the 

absence of lateral flow (e.g. Diersch et al, 1984; Reilly and Goodman, 1987; 

Zhou et al., 2005). Dagan and Bear (1968) were among the first to obtain a non-

steady solution for saltwater upconing. They adopted the method of small 

perturbations to obtain solutions for sharp-interface rise below a well, in both 

two-dimensional cross section and in radial coordinates, in an infinite aquifer. 

They compared their analytical solution to laboratory results in the form of 

interface movements inferred from sand-box salinity measurements. The 
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solution was found to be valid for interface rise approximately up to one-third 

the distance between the bottom of the well and the initial interface position. 

The sharp-interface approximation of the freshwater-saltwater mixing zone 

adopted by Dagan and Bear (1968) has been applied by others in developing 

subsequent analytical solutions (e.g. Haubold, 1975; Motz, 1992; Zhang et al., 

1997; Bower et al., 1999). In these cases, freshwater and saltwater are 

considered as immiscible fluids separated by a sharp boundary, and head losses 

and fluxes in the saltwater zone are neglected. While the sharp-interface 

assumption allows for the development of rapid, first-order methods of analysis, 

this approach neglects dispersive transport, which was shown by Reilly and 

Goodman (1987) to be important for the evaluation of well salinities, and in 

studying upconing processes more generally. 

Many studies have implemented the sharp-interface approach, using both 

analytical and numerical solutions (e.g. Chandler and McWhorter, 1975; 

Wirojanagud and Charbeneau, 1985; Aharmouch and Larabi, 2001). Based on 

the sharp-interface approach, it has been shown that, theoretically at least, the 

interface can be maintained in a position below the well (i.e. a stable saltwater 

plume can develop below the well) if freshwater extraction is kept below a 

certain critical pumping rate (e.g. Bear, 1979; Motz, 1992; Zhang et al., 1997). 

That is, the critical pumping rate can be defined as the maximum permissible 

discharge for which the interface does not encounter the well. However, the 

occurrence of stable saltwater plumes below pumping wells has not been 

demonstrated in real-world settings or under controlled laboratory conditions, 

and rather, stable upconing plumes have been produced under only idealised 

(e.g. theoretical, sharp-interface) conditions. 

Given that only 2% of seawater mixed with fresh groundwater renders a coastal 

pumping well unusable for most applications, the behaviour of the transition 

zone is an essential element of assessing upconing and its potential impacts on 

groundwater extraction in practical coastal aquifer problems. Previous studies of 

transition zone behaviour during upconing identified some important 

observations. For example, the transition zone widens as pumping draws the 

interface upwards from its initial position (Reilly and Goodman, 1987). Further, 



 

3 
 

it has been shown in lateral seawater intrusion studies that the transition zone is 

controlled by mechanical dispersion, molecular diffusion, advection, density 

effects and geological controls (Abarca and Clement, 2009; Lu et al., 2009), and 

these can affect the salinity of the pumped water. 

Diersch et al. (1984) were among the first to numerically model variable-density, 

dispersive flow and transport processes associated with saltwater upconing. 

They studied the sensitivity of dispersivity and found that the well salinity is 

strongly influenced by dispersion (i.e. higher dispersion leads to earlier 

breakthroughs of low salinity water and a longer transition to the breakthrough 

of seawater into the pumping well). Reilly and Goodman (1987) simulated a 

field situation of saltwater upconing using a numerical model of density-

dependent groundwater flow and dispersive solute transport. They compared 

sharp-interface and dispersive transport approaches and concluded that the 

dispersive transport approach is needed to reproduce upconing situations 

involving wide transition zones (e.g. under cyclic pumping). Konz et al. (2009) 

produced saltwater intrusion experimental results for benchmarking variable-

density numerical codes. Saltwater intrusion was observed occurring both 

laterally and vertically (i.e. saltwater upconing), albeit the focus of the study was 

lateral seawater intrusion. Highly-dispersive upconing was observed in both 

laboratory experiments and modelling results, i.e. only the 10% isochlor reached 

the well. The Konz et al. (2009) experiments demonstrated that dispersion may 

be an important phenomenon when considering bore salinisation processes; 

further work is needed to explore dispersive processes for a broader range of 

saltwater upconing conditions. 

Saltwater upconing is particularly difficult to measure under field situations, and 

there are no previous examples of well characterised field-scale saltwater 

upconing plumes. Prior to the commencement of this thesis, the only examples 

of published laboratory experimentation of saltwater upconing appeared to be 

the works of Dagan and Bear (1968) and Oswald (1998). Oswald (1998) 

produced saltwater upconing in a three-dimensional sand box and salinity 

plumes were delineated using geophysical interpretations (i.e. there were no 

direct visual observations of saltwater upconing). Dagan and Bear (1968) 

provided only a summarised account of their laboratory results (i.e. the shapes of 
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salt plumes were not given and experimental photography was not published), 

and therefore the salt plume behaviour leading to bore salinisation was not 

observed directly. Direct observations of saltwater upconing are required to 

complement previous modelling analyses and to extend the laboratory 

experimentation of Dagan and Bear (1968) and Oswald (1998) for a broader 

range of saltwater upconing conditions. 

The current research project commences with analyses of four saltwater 

upconing laboratory experiments undertaken as part of a previous undergraduate 

research project, which produced experimental photography and a set of 

laboratory observations. The saltwater upconing results, including water and salt 

mass balances, boundary condition observations, and saltwater upconing trends 

are critically evaluated and compared to the analytical solution of Dagan and 

Bear (1968) for transient, sharp-interface upconing. The results of the analyses 

of these four laboratory experiments provide the starting point for the remainder 

of the thesis, which examines saltwater upconing in more detail, including 

further laboratory experimentation, a closer examination of the transport 

processes observed under controlled laboratory conditions, and an extension to 

field-scale upconing problems. 

This thesis consists of seven chapters including the current chapter. Chapter 1 

provides a basic background to this research and summarises briefly each 

chapter. Chapters 2, 3, 4 and 5 are based on journal publications, and references 

to the papers are specified at the start of each chapter. Chapter 6 is not directly 

related to chapters 2, 3, 4 and 5, and can be read independently. Chapter 7 

summarises the main conclusions of this research. 

The first stage of this thesis (Chapter 2) involved the investigation of saltwater 

upconing imagery and experimental data to produce a well-characterised account 

of laboratory measurements of saltwater upconing, thereby extending the work 

of Dagan and Bear (1968) and Oswald (1998). This part of the study provided 

the first published time-series observations of saltwater upconing under 

controlled laboratory experimental conditions. Following this, a numerical 

modelling analysis of the laboratory experiments was undertaken (Chapter 3) to 

better understand the flow and transport processes occurring in the sand tank. An 
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important outcome of this work is the numerical reproducibility of the 

experimentally observed temporal development of saltwater plumes under a 

pumping bore, albeit for three of the four experiments. The “double peak” 

upconing observed in one of the laboratory experiments was not reproduced by 

this model. This led to additional laboratory experimentation and numerical 

modelling (Chapter 4) to investigate tracer adsorption effects in sand-tank 

experiments of saltwater upconing. Laboratory experiments successfully 

reproduced the double-peaked plume demonstrating that this phenomenon was 

not an experimental nuance in previous experiments. The modelling undertaken 

in this analysis demonstrated that sorption is an important consideration when 

using Rhodmaine WT as a visual aid in sand-tank experiments, especially under 

slow flow, density-dependent conditions. The previous three chapters led to a 

discussion on the relevance of the upconing criticality conditions to the current 

work (Chapter 5). That is, a short analysis was undertaken to assess whether the 

upconing criticality conditions hold for the saltwater upconing laboratory 

experiments that were carried out. This chapter aimed rather at opening 

questions on applicability of the stable plume theory to dispersive upconing. The 

final component of this study (Chapter 6) extended the laboratory-scale 

investigation to scales that apply to real-world settings. The aim was to define 

and characterise the “saltwater upconing zone of influence”, which is the extent 

of saltwater upconing impact, in terms of saltwater rise attributed to pumping. 

This concept is explored and demonstrated through three-dimensional numerical 

modelling, and as such is the first attempt to quantify saltwater upconing zone of 

influence in coastal areas and hence under the impact of lateral flow towards the 

coast. Chapter 7 provides the main conclusions of this thesis.

 


