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Abstract

An outstanding problem in the theoretical formulation of the πNN system, where pion

production and absorption is included, has been obtaining the simultaneous dressing of both

nucleons in the framework of time-ordered perturbation theory. Previous descriptions of the

πNN system, such as the “Unitary NN − πNN” model, used Hilbert space truncation to

states of no more than one pion, which prevented the nucleons in two-nucleon states from

obtaining full dressing. This, in turn, gave rise to a renormalisation problem, which has

long been thought to be responsible for an inadequate description of several observables

including the T20 tensor polarisation of πd elastic scattering and the differential cross section

for pp→ π+d scattering.

A solution to this problem has been proposed through the use of convolution integrals

to sum all possible contributions occurring in disconnected processes, thereby taking into

account simultaneous nucleon dressing in the two-nucleon propagator and in other processes

where a nucleon is a spectator. These convolution integrals allow new equations to be derived

where nucleons are fully dressed. Interestingly, the use of these convolution integrals leads

to 4-dimensional πNN equations, while still being equivalent to a 3-dimensional description.

The only approximation made in the derivation of these equations is neglecting connected

three-body forces.

In this thesis, we develop the convolution approach to the coupled NN − πNN system

by deriving a set of equations that simultaneously describe πd elastic scattering, pp→ π+d

scattering and NN elastic scattering. We then proceed to solve these πNN convolution

equations and make a comparison to previously formulated equations to determine whether

this convolution approach is the long-sought-after solution to the problems of the “Unitary

NN − πNN” model. Solving the 4-dimensional πNN convolution equations, however, is

a difficult task, due to the presence of moving singularities in the integral equations. We

are successfully able to solve our 4-dimensional convolution equations using cubic spline

interpolation, however, we can only include one partial wave channel in intermediate states,

due to the computational intensity of these 4-dimensional equations.
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CHAPTER 1. INTRODUCTION

Ever since Faddeev [1] developed his formulation for a system of three particles in quan-

tum mechanics, the logical question quickly became “How can this be extended to include

the creation and annihilation of particles?” The answer to this question is important for the

study of the strong interaction, where particles are continuously created, annihilated, and

exchanged. This thesis is devoted to the long-standing attempt to help answer this question

by developing a description of the strongly interacting pion-nucleon-nucleon (πNN) system

where coupling to NN channels is included. We do this using the quantum field theoretic

framework of non-relativistic time-ordered perturbation theory (TOPT), which uses pions

and nucleons as the degrees of freedom. To put this highly simplified framework for de-

scribing strong interactions into context, we will now give a brief overview of our current

understanding of strong interactions, and summarise the various approaches that have been

adopted over the years.

Currently, the generally accepted theory for strong interactions is Quantum Chromo-

dynamics (QCD), a non-abelian gauge theory involving quarks and gluons as degrees of

freedom. The main confirmation of QCD comes from consideration of processes at high

energies and high momentum transfer [2, 3] where quarks exist in asymptotic freedom. This

allows for calculations to be performed using perturbation theory, which is often referred

to as perturbative QCD. In QCD, the effective coupling constant gives the strength of the

interaction mediated by the exchange particles and is of the order 1/ln(Q2/Λ2), where Q is

the momentum transfer of the interaction process and Λ is the QCD scale parameter [4, 5].

This results in asymptotic freedom at high energies corresponding to Q2 ∼ Λ2, and allows

for high precision of theoretical calculations to be achieved [6]. However, at low-energy re-

gions, the effective coupling constant is much greater, which leads to quark confinement and

perturbation theory is no longer applicable [7].

Due to the non-perturbative nature in this low-energy region, a number of non-perturbative

approaches have been developed. Lattice QCD, a subset of lattice gauge theory, was devel-

oped [8], in which 4-dimensional space-time is discretised onto a lattice, where quarks are

placed at the lattice points and the gauge fields are replaced by the paths between the lattice

points, often called “links” [4]. This discretisation allows for the application of various non-

perturbative techniques and has allowed for QCD calculations to be performed in low-energy

regions. While lattice QCD has allowed for a better fundamental understanding of QCD at

low energies, it requires an immense amount of computing resources. Although it is believed

that this issue of computational complexity could be resolved in the near future through
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advances in quantum information technologies, lattice QCD possesses other inherent prob-

lems including the infamous “sign-problem,” and other issues relating to its formulation in

Euclidean space-time [9].

A more phenomenological approach to low energy QCD is provided by quark or bag

models, in which hadrons are considered to be “bags” of quarks, equivalent to confining the

quarks in an infinite potential well. This idea was first proposed by Bogoliubov [10], which,

despite being able to reproduce accurate nucleon properties, was later found to violate the

conservation of energy and momentum. This led to, what is now known as, the MIT bag

model [11], which was able to incorporate quark confinement into Bogoliubov’s bag model

and overcame the violation of energy and momentum conservation. The MIT bag model

gained great success, as it was able to describe certain nucleon properties such as charge

radii, axial-vector charges, and the gyromagnetic ratios [12]. However, the MIT bag model

lacked chiral symmetry, which is an important fundamental property of QCD and allows for a

description of the long-ranged NN interaction [13]. It was later shown that chiral symmetry

could be achieved by coupling the quarks in the bag directly to an elemental pion field at

the bag surface [14]. While the original MIT bag model had success in describing certain

nucleon properties, the coupling to an external pion field caused issues with the bag’s radius

and it was no longer able to accurately predict these nucleon properties [15]. To overcome

the issues with the external field, the cloudy bag model was developed [16], in which pions

are no longer excluded from the bag’s interior and avoids the issues with the chiral bag model

while still allowing the bag model to retain chiral symmetry.

Although quarks and gluons are believed to be the correct degrees of freedom for the

description of the strong interaction, at low energies one can also consider using mesons and

baryons as the degrees of freedom, thereby representing the strong interaction by various

particle exchanges. In such descriptions, the long-ranged component of the strong interac-

tion is mediated by the exchange of pions, the lightest of mesons, while the short-ranged

component is governed by the exchange of heavier mesons such as ρ mesons. The tradi-

tional method of studying this strong interaction has been to consider all possible types

of particle exchange in an effort to study the full interaction. Despite a long and largely

successful history of analysing various nucleon processes, this traditional approach has the

disadvantage of requiring many parameters for its description, and moreover, its connection

to the underlying theory of strong interactions, QCD, is unclear. These observations led

Weinberg [17, 18] to propose a new approach that uses the most general possible Lagrangian

3



CHAPTER 1. INTRODUCTION

involving pion and nucleon fields that is consistent with the chiral symmetry of QCD, to

expand the nucleon-nucleon (NN) potential in powers of nucleon momenta. This approach,

now known as effective field theory (EFT), has been developed over the years to the point

where it now provides the standard way to analyse hadronic systems in a systematic and

model independent way [19].

Amongst these various approaches to strong interactions, the framework chosen for the

current work is that of the traditional approach using pion and nucleon degrees of freedom to

describe the coupled NN − πNN system. The major motivation for choosing this approach

is to bring to fruition a quest, started more than 50 years ago, of describing the NN −πNN

system in a way that respects two- and three-body unitarity, and where practical equations

describing this system are derived from quantum field theory (QFT) such that normalisation

due to nucleon dressing is treated consistently. Also, despite the disadvantages of the tradi-

tional approach, discussed above, it may still be useful for describing processes at energies

higher than what may be accessible by low-energy EFT. Moreover, by developing theoretical

and numerical techniques that extend a quantum mechanical three-body (Faddeev) descrip-

tion to the realm of QFT where particle creation and absorption is included, we hope to

contribute to a knowledge base that may prove to be useful in the wider context of nuclear

and particle physics.

The traditional approach has been widely used in the investigation of the πNN sys-

tem without pion absorption or creation [20–25], but ultimately a theoretically complete

description of the πNN system and reproducibility of observables depends on the inclusion

of pion absorption. Varma [26] was the earliest to study the πNN system using Faddeev

theory while trying to include pion absorption. Varma utilised the approximation scheme

of Lovelace [27], in which the Faddeev equations simplify when two-particle sub-systems are

dominated by a finite number of low-energy bound states and was able to obtain NN scat-

tering equations that preserve three-body unitarity. Varma incorporated pion absorption by

assuming that the πN system has a bound state in the P11 channel with binding energy

equal to the pion mass. This idea of assuming there is a πN bound state is known as the

Bound-State πNN model. Thomas and Afnan [28] also applied the Faddeev equations to

the πNN system, using the same model of pion absorption by assuming there is a πN bound

state in the P11 channel. This idea was later extended to include pion production in NN

scattering, pion absorption in πd scattering, and πd elastic scattering [29]. Their approach

was to consider the πNN system as a pure three-body problem interacting via two-body
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forces, in which the πNN → πNN potential V (for distinguishable nucleons), is given as a

sum of three pair-wise terms

V = V1 + V2 + V3 (1.1)

as illustrated in Figure 1.1.

=V1

=V2

=V3

Figure 1.1: Illustration of the πNN potentials Vα where α = {1, 2, 3} that are included in

the work of Afnan and Thomas [29]. The solid lines represent the nucleons and the dashed

lines represent the pions. The open circles represent all possible diagrams except for those

that lead to πNN intermediate states.

The πNN potential V1 (formally identical to V2) was constructed so that the correspond-

ing sub-system πN t−matrix contains a bound state corresponding to the formation of a

“bound-state nucleon,” denoted by N ′, while an original nucleon N is a spectator. However,

as only the nucleon that absorbed a pion, N ′, is able to emit a pion, the two nucleons in the

πNN system are not treated symmetrically. This inadequacy motivated the development of

the “Coupled NN −πNN” model [30] also known as the “Unitary NN −πNN” model [31].

The “Unitary NN − πNN” model was a very successful field-theoretic model describing

the πNN system, based on time-ordered perturbation theory, which takes into account pion

absorption. Time-ordered perturbation theory is often referred to as “old-fashioned” time-

ordered perturbation theory or simply “old-fashioned perturbation theory.” The essential
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feature of the model is that it describes all the processes

πd→ πd

πd→ πNN

NN → πNN

NN → πd

NN → NN

all within one set of coupled equations. This particular model relies on truncating the

Hilbert space to only allow states of, at most, one pion, where whole classes of perturba-

tion diagrams are summed into terms that are then described phenomenologically. This was

commonly known as the “one-pion” approximation. The derivation of coupled NN − πNN

equations in this model has been done using various methods such as classification of di-

agrams according to their irreducibility [32, 33], non-relativistic reduction techniques [34]

and Feshbach projection operators [35, 36]. These field-theoretical models introduced an

explicit πNN vertex and allowed for the inclusion of non-pair wise πNN potentials, where

one nucleon absorbs a pion and the other nucleon emits a pion. This potential together with

the pair-like potentials then make up the full πNN → πNN potential V , given as

V = V1 + V2 + V3 + V4 + V5, (1.2)

where each contribution Vα, where α ∈ {1, 2, 3, 4, 5}, is illustrated in Figure 1.2. Comparison

with Figure 1.1 illustrates the basic difference between the Bound-State πNN model and

the “Unitary NN − πNN” model.

While the models mentioned above have been partially successful in describing the πNN

system and the coupling to NN , they lack a crucial piece of physics that could have a detri-

mental effect on the reproducibility of some scattering observables. The essential problem

with the “Unitary NN − πNN” model is that the truncation of the Hilbert space to states

of at most one pion, restricts the ability of the two nucleons in the system to obtain their

full dressing, as this requires the inclusion of states where more than one pion is in flight at

the same time [37]. As we can see from the πNN potentials in Figure 1.2, iteration of this

potential would only lead to partially dressed nucleons, more specifically the nucleons would

have different-time dressing. The failure to dress both nucleons at the same time results in

a problem of nucleon wave-function renormalisation which can lead to an underestimation

of pion production cross sections and other inaccuracies [38].
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=V1 +

=V2 +

=V3

=V4

=V5

Figure 1.2: Illustration of the πNN potentials Vα, where α ∈ {1, 2, 3, 4, 5}, that are included

in field-theoretical approaches of the “Unitary NN−πNN” model. The solid lines represent

the nucleons and the dashed lines represent the pions. The smaller open circles represent the

bare πNN vertices, the larger open circles represent all possible diagrams except for those

that lead to πNN intermediate states and the dashed circles represent all possible diagrams

except for those that lead to NN and πNN intermediate states.
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Theoretically calculated scattering cross sections of the pp→ π+d reaction in the “Uni-

tary NN −πNN” model are significantly smaller than suggested by experimental data [39].

As just mentioned, a possible cause of these small cross sections is the renormalisation prob-

lem that results from the truncation of the Hilbert space to states of at most one pion. To

see this, consider the pole part of the πN scattering t-matrix, which is illustrated in Figure

1.3

Z

f f

Figure 1.3: Diagrammatic representation of the pole part of the πN t-matrix used as input

in the “Unitary NN −πNN” model. The solid dot represents the dressing of the nucleon, f

represents the dressed πNN vertex and Z is the residue of the dressed one-nucleon propagator

at the pole.

We define Z to be the residue of the dressed one-nucleon propagator. In the “Unitary

NN − πNN” model, the nucleon in the pole part of the πN t−matrix can only be dressed

when there are no other pions in flight. Thus, only the intermediate-state nucleon can be

dressed. Thus, each πNN vertex effectively obtains a normalisation of
√
Z to account for

the residue of the dressed one-nucleon propagator and the effective πNN coupling constant

becomes fπNN =
√
Zf(mN). A model is then fitted to the phase shifts and the experimental

coupling constant, as such is done by Afnan and McLeod [40]. Now consider the NN one-

pion exchange (OPE) amplitude given in Figure 1.4

ZdZd

Figure 1.4: Diagrammatic representation of the NN OPE amplitude in the “Unitary NN −

πNN” model, where Zd is the residue of the different-time dressing NN propagator. The

external legs of the NN OPE amplitude must be renormalised by Zd in order to maintain

unitarity.

Three-body unitarity is guaranteed through the iteration of the πNN → πNN potential

V , which results in a different-time dressing NN propagator whose residue is Zd. Calcula-
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tions show that Zd ≈ Z2, as one might expect from a fully dressed two-nucleon propagator.

One can see that in the NN OPE, each πNN vertex is renormalised by a factor of
√
Zd ≈ Z.

Thus, effectively, the πNN coupling constant in the NN OPE amplitude is
√
Z times than

the physical one. As the typical range of Z is approximately between the values of 0.6

and 0.8, the value of
√
Z would be less than 1, thereby resulting in smaller amplitudes for

processes, like NN → πd, that strongly depends on the strength of the dressed πNN vertex.

Sauer [38] was first to suggest this truncation of the Hilbert space is responsible for

the low cross sections, due to the problem of renormalisation, in which the effective πNN

coupling constant is significantly lower than the one used to construct the πN input [31].

It seemed that no one knew how to solve this problem at the time and it was thought that

there was no easy way of doing this without destroying the three-body unitarity. Ultimately,

unitarity is obtained at the price of having to use an effective πNN coupling constant that

is smaller than the experimental one.

Besides low pp → π+d cross sections, another inadequacy is that the spin polarisation

observable T20 for πd elastic scattering at medium energies cannot be reproduced accurately

in the “Unitary NN−πNN” model. Jennings [41] suggests that disconnected πNN → πNN

diagrams where one nucleon absorbs a pion and the other emits it must contain both NN

reducible and irreducible contributions. These diagrams are shown in Figure 1.5.

(a) NN reducible (b) NN irreducible

Figure 1.5: The NN reducible and NN irreducible diagrams where one nucleon absorbs a

pion and the other emits a pion. Diagram (b) is often referred to as the “Jennings” term.

Jennings showed that the contribution of each diagram is of a similar size and opposite

sign, thus there is a large cancellation between these diagrams which does not occur when

only the NN reducible diagram is included. The NN irreducible diagram has often been

referred to as the “Jennings” term in association with Jennings’ findings. Jennings and

Rinat [42] investigated the addition of diagrams with two pions in flight at the same time to
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the calculation of πd elastic scattering, particularly the diagram shown in Figure 1.6. They

find that the discrepancy between the T20 experimental data and the predictions using the

“Unitary NN−πNN” model is essentially removed. Similar results were found by Mizutani

et al. [43] who conclude through a simple model of numerical calculations that the mechanism

proposed by Jennings provides an improvement to the description of πd observables and in

particular, the description of T20. These findings demonstrate the need to include diagrams

with more than one pion in flight at the same time and establishes further limitations of the

“Unitary NN − πNN” model.

Figure 1.6: Second order πd → πd diagram with two pions in flight at the same time. The

addition of this diagram to πd elastic scattering drastically improves the reproducibility of

the T20 observable.

Completely independent of the work in the “Unitary NN − πNN” model was the work

of Stingl and Stelbovics [44–46] who went beyond the “one-pion” approximation and derived

a description of the coupled NN −πNN system which included states of at most two pions.

Their model is based on a πNN → πNN potential that is given by a sum of 5 terms as

in Equation 1.2, however, unlike in the “Unitary NN − πNN” model, the potentials V4

and V5 include states with two pions. The individual potentials in the model of Stingl and

Stelbovics are represented diagrammatically in Figure 1.7.

Unlike the “Unitary NN − πNN” model, where the πN and NN sub-systems consist

of all possible perturbation diagrams, the model of Stingl and Stelbovics describes the πN

potentials in πNN space (corresponding to the potentials V1 and V2) and the NN potential

in πNN space (corresponding to V3) in terms of the lowest order contributions generated by

a πNN vertex, consistent with states of at most two pions. However, the model of Stingl and

Stelbovics goes beyond the “Unitary NN − πNN” model by including the NN irreducible

contributions of V4 and V5, corresponding to the lowest order diagrams of V4 and V5 with

two-pion intermediate states.

10
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=V1 +

=V2 +

=V3 +

=V4 +

=V5 +

Figure 1.7: Illustration of the πNN potentials Vα, where α ∈ {1, 2, 3, 4, 5}, that are included

in the work of Stingl and Stelbovics [44–46]. The solid lines represent the nucleons and the

dashed lines represent the pions.

Stingl and Stelbovics classify each of their πNN potentials into a class of disconnected-

ness with an appropriate momentum-conserving function δα where α = {1, 2, 3, 4, 5}. These

authors also partially dressed their πNN propagator by including the sum of fully discon-

nected πNN states where each nucleon has a pion bubble, which leads to different-time

dressing of the nucleons. Afnan and Stelbovics [47] showed that the derived equations of

Stingl and Stelbovics reduce to the equations of Afnan and Blankleider [33], provided that

states of two-pions are neglected as in the “Unitary NN − πNN” model. While Stingl and

Stelbovics formalise an approach to go beyond the “one-pion” approximation, the problem

with the model of Stingl and Stelbovics is that it is a model that is difficult if not impossible

to solve.

A theoretical solution to the problems of the “Unitary NN −πNN” model was found by

11
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Kvinikhidze and Blankleider [48], as they were able to fully dress both nucleons at the same

time, without having to compromise the three-body nature of the overall πNN equations.

This approach involves the innovative use of convolution integrals, which they show can

be used to sum all possible relative time-orderings of disconnected diagrams in TOPT. A

convolution integral is a mathematical expression formed using two functions a(E) and b(E),

being defined as

c(E) = a⊗ b =

(
− 1

2πi

)∫ ∞
−∞

dz a(E − z)b(z). (1.3)

The summation of all different relative time-orderings through the use of convolution inte-

grals allows two nucleons to be dressed at the same time, as previously the restriction of

diagrams with at most one pion would not allow simultaneous dressing. In addition to two

nucleons being able to be simultaneously dressed, three-body disconnected diagrams can be

similarly described using convolution integrals. For example, the disconnected dressed pion-

two-nucleon vertex, where a pion is absorbed (emitted) on one nucleon and the other nucleon

is a spectator, can be described as a convolution of a πN → N (N → πN) vertex and a

dressed one-nucleon propagator, where all dressings can be retained even though more than

one pion would be in flight at the same time. From this, Kvinikhidze and Blankleider [49]

derived equations for NN → NN scattering. Theoretically, the renormalisation problems

of the equations describing the πNN system can be overcome as the effective renormali-

sation of the dressed vertices in the πN t-matrix and NN OPE amplitude are consistent.

The convolution approach also allows for the inclusion of time-ordered diagrams that were

previously neglected in the “Unitary NN −πNN” model, specifically the πd→ πd diagram

in Figure 1.6. The only approximation used in the equations of [49] is neglecting connected

three-body forces. The πNN potentials in the convolution approach are illustrated in Figure

1.8.
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=V1

=V2

=V3

=V4

=V5

Figure 1.8: Illustration of the πNN potentials Vα, where α ∈ {1, 2, 3, 4, 5}, that are included

in the convolution approach of Kvinikhidze and Blankleider [49]. The solid lines represent

the nucleons and the dashed lines represent the pions. The open circles represent all possible

diagrams except for those that lead to πNN intermediate states.

In this thesis, we aim to continue the theoretical development of the coupled NN−πNN

system through the use of the convolution approach. We complete the established work of

Kvinikhidze and Blankleider [49] by deriving a coupled set of equations describing the scat-

tering processes for NN → NN , πd→ NN , NN → πd and πd→ πd using the convolution

approach and the derived equations are shown in Equation 3.123. We refer to these derived

equations as the 3-dimensional πNN convolution equations, which have the same form as

the unitary NN−πNN equations of Afnan and Blankleider [33], but unlike the equations of

Afnan and Blankleider, all nucleons in the πNN convolution equations are fully dressed. The

3-dimensional πNN convolution equations solve the long-standing renormalisation problem

inherent in the “Unitary NN − πNN” model that has been discussed. However, as can
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be seen from Equation 3.114, these 3-dimensional πNN convolution equations involve non-

pair-like interactions corresponding to disconnected three-body forces and therefore may be

difficult to solve numerically. For this reason, an alternative formulation is also presented.

Splitting the πN t−matrix into its pole and non-pole part, then convoluting each part in-

dividually leads to a 4-dimensional (4D) version of the πNN convolution equations, which

only involve pair-like interactions. Now that we have convolution equations that involve

pair-like interactions, we require two-body input that incorporates nucleon dressing for con-

sistency. To achieve this, we create dressed πN input through the numerical solution of the

Dyson-Schwinger equations.

With the derivation of the πNN convolution equations complete, we are then tasked

with solving these equations numerically to determine their ability to reproduce experi-

mental data. It is not clear how to solve the 3-dimensional form of the πNN convolution

equations due to the non-pair-like interactions, therefore in this work, we focus on solving

the 4-dimensional form of the πNN convolution equations as we have a known method

to solve these equations. Solving 4-dimensional scattering equations is, on its own, a very

interesting problem regardless of its connection to the πNN system, and may provide ben-

efits to other areas of nuclear and particle physics. 4-dimensional equations typically de-

scribe relativistic processes, where the relativistic description of two interacting particles is

most famously given by the Bethe-Salpeter equation [50]. The difficultly in solving these

4-dimensional scattering equations is in the moving singularities in the integrals of these

equations. Common methods to avoid these moving singularities include Wick rotation [51–

54], Padé approximants [55–62], Nakanishi integral representation with light-front projection

[63–70] and spline interpolation [70–78]. However, Wick rotation can only be used for equa-

tions describing the scattering of two particles with equal mass, while Padé approximants

rely on Wick rotation. Nakanishi integral representation with light-front projection suffers

from being difficult to implement for scattering states and has only been achieved for simple

cases, such as the zero-energy limit. As noted by Carbonell et al. [63–68], the Euclidean

Bethe-Salpeter amplitude (i.e. the Wick-rotated solution to the Bethe-Salpeter equation)

does not allow for the calculation of some observables, in particular, electromagnetic form

factors due to the singularity structure in the form factor integral whose contributions are

otherwise unknown. Thus, there is a necessity to calculate the Minkowski solution (i.e. so-

lution without Wick rotation), by evaluating our integrals along the real axis. Therefore,

we use the spline interpolation to solve our 4-dimensional πNN convolution equations, as
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we are able to avoid the issues with other methods and calculate our integrals along the

real axis. In the spline interpolation method, we represent the solution of our 4-dimensional

equations as a sum over basis functions called splines. Carbonell and Karmanov [70, 72–76]

present a method for calculating a 4-dimensional Bethe-Salpeter scattering amplitude using

spline interpolation and successfully obtain results. The spline interpolation method allows

us to account for the complex singularity structure in the integrals of our 4-dimensional

equations. In this work, we adapt the method proposed by Carbonell and Karmanov to our

4-dimensional πNN convolution equations.

Through our investigation of splines and numerical methods, we are able to obtain results

for our 4-dimensional πNN convolution equations and compare these results to the “Unitary

NN − πNN” model using the Afnan and Blankleider [33] equations. We are particularly

interested in the ability of our 4-dimensional equations to reproduce the pp→ π+d differential

cross section and the T20 polarisation observable for πd elastic scattering, but also various

other scattering observables. We are also interested in the viability of the spline interpolation

method in solving 4-dimensional equations in general. The spline interpolation method

and proper handling of the complex singularities in our equations have proven to require

high-performance computing (HPC) resources to perform calculations in a timely manner.

The computational intensity of these calculations restricts our ability to perform numerical

calculations with coupling to all channels and limits the number of partial waves included

in our calculations. Due to the complex singularities, many spline interpolation points are

required in order to obtain numerically stable results that converge with an increasing amount

of interpolation points and due to the computational complexity of these calculations, we

are limited by the number of interpolation points we can include. In terms of overall results,

we were unable to make a full comparison between the πNN convolution equations and

experimental data, due to the computational intensity of the spline interpolation method

that restrict the inclusion of all coupled channels and many partial waves. We are unable

to definitively conclude whether the πNN convolution equations resolve the discrepancies

between the pp→ π+d cross sections and the T20 polarisation observable with experiments,

however, we believe we have provided the foundational work that would allow for the full

calculation of the πNN convolution equations in the future.

The structure of this thesis is as follows: In Chapter 2, we discuss time-ordered pertur-

bation theory. We show that temporarily introducing two types of nucleons and three types

of pions lead to fully dressed disconnected and connected diagrams, as done in [39, 48], and
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extend this idea to derive a fully dressed πd→ NN diagram and fully dressed NN two-pion

exchange. In Chapter 3, we extend the work of Kvinikhidze and Blankleider [49] by present-

ing a derivation of coupled scattering equations for the processes NN → NN , NN → N∆,

N∆ → N∆, NN → πd, πd → NN , πd → N∆ and πd → πd using the convolution ap-

proach. We show that the splitting of the πN t-matrix into its pole and non-pole parts

leads to a 4-dimensional version of our coupled scattering equations, which is the focus of

our numerical calculations. In Chapter 4, we discuss numerical techniques, with a particular

emphasis on the numerical techniques for solving the 4-dimensional πNN convolution equa-

tions. Chapter 5 discusses the two-body πN and NN input that is used in the calculations

of the πNN convolution equations. Chapter 6 involves the numerical results of the πNN

convolution equations where we calculate scattering observables and compare the results of

these calculations to the equations of the “Unitary NN − πNN” model. Finally, we finish

with conclusions of the overall work and discuss further work that could be achieved.
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CHAPTER 2. TIME-ORDERED PERTURBATION THEORY

2.1 Introduction

Time-ordered perturbation theory (TOPT) provides a convenient framework for describ-

ing processes involving particle creation and annihilation, in a non-relativistic 3-dimensional

setting. However, as previously discussed, a major issue in using TOPT to formulate

NN − πNN equations has been the problem of incorporating full dressing of the nucleons.

In this chapter, we describe how such full dressing can be achieved in both disconnected and

connected perturbation diagrams of TOPT, as this will form the basis for the formulation

and description of the NN − πNN system in the following chapters.

It has previously been shown that one way to obtain full nucleon dressing is to start with

the expression for a Feynman diagram of relativistic quantum field theory (RQFT), and then

integrate out the 0th (energy) components of initial and final four-momenta. This follows

the prescription of the so-called “equal time formalism” which can be shown to reduce RQFT

to TOPT in theories where the dressed vacuum and bare vacuums are identical [39]. In this

chapter, however, we would like to pursue a more general method for dressing nucleons that

does not rely on any connection to RQFT. Formulated purely within TOPT, this method

relies on the temporary introduction of two non-identical nucleons and three types of pions.

2.2 Time-ordered perturbation theory

Time-ordered perturbation theory (TOPT), also known as “old-fashioned perturbation

theory”, is an expansion of the full Green’s function operator 1/(E+ − H) of a particular

system, where H is the Hamiltonian of the system given by H = H0 + HI , where H0 is the

free Hamiltonian and HI is the interaction Hamiltonian. The expansion of the full Green’s

function is performed around the free Green’s function operator 1/(E+−H0) and results in

the expansion

1

E+ −H
=

1

E+ −H0

+
1

E+ −H0

HI
1

E+ −H0

+
1

E+ −H0

HI
1

E+ −H0

HI
1

E+ −H0

+ ...

(2.1)

We can then take matrix elements of the terms in the above expansion, which can be repre-

sented graphically as a sum of “perturbation diagrams”.
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2.3 Convolution approach for disconnected processes

Kvinikhidze and Blankleider [48] showed that in TOPT the fully dressed two-nucleon

propagator D0(E), which is the sum of all disconnected NN diagrams, can be expressed by

a convolution of two dressed one-nucleon propagators g(E) by temporarily considering the

two nucleons as distinguishable particles.

Consider a TOPT of nucleons and pions described by a quantum-field theoretic Hamil-

tonian H = H0 +HI . We define the NN → NN Green’s function operator D by

〈p′1p′2|D(E)|p1p2〉 = 〈p′1p′2|
1

E+ −H
|p1p2〉. (2.2)

The fully dressed two-nucleon propagator D0 is defined as the fully disconnected part of the

NN → NN Green’s function operator which, after taking matrix elements of the operator

between momenta states, gives the numerical form of the dressed two-nucleon propagator

D0(E,p1,p2):

〈p′1p′2|D0(E)|p1p2〉 = 〈p′1p′2|
1

E+ −H
|p1p2〉disc = δ(p′1 − p1)δ(p′2 − p2)D0(E,p1,p2). (2.3)

If we attempt to calculate D0(E,p1,p2) by performing the perturbation expansion of Equa-

tion 2.1, this would lead to complicated perturbation diagrams and detrimental simplifica-

tions are required for practical applications. However, we can obtain the fully dressed two-

nucleon propagator by temporarily treating the two nucleons as two mutually non-identical

particles, each with its own pion fields. The full Hamiltonian H can then be written as

H = H1 + H2 and where H1 and H2 are of the same form as H but are defined in terms of

their own nucleon and pion fields. This allows us to represent the operator 1/(E+ −H) by

a convolution integral

1

E+ −H
=

(
− 1

2πi

)∫ ∞
−∞

1

z+ −H1

1

E+ − z −H2

dz (2.4)

because H1 and H2 commute due to acting on different Hilbert spaces and thus allows the

use of Cauchy’s Residue Theorem. Now, using the definition of the dressed one-nucleon

propagator gi and it’s numerical form gi(E,pi)

〈p′i| gi(E) |pi〉 = 〈p′i|
1

E+ −H
|pi〉 = δ(p′i − pi)gi(E,pi) (2.5)

where i = 1, 2, the two-nucleon propagator D0(E,p1,p2) can be calculated by a convolution

of two dressed one-nucleon propagators gi

D0(E,p1,p2) =

(
− 1

2πi

)∫ ∞
−∞

g1(z,p1)g2(E − z,p2)dz (2.6)
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The use of the convolution integrals suggests a connection to relativity, as it introduces a

time-like energy variable and preserves the product-like nature of relativistic propagators.

Indeed, it can also be derived from relativistic field theory in the equal-time approach [39, 79].

No approximation is required and the Hilbert space does not need to be truncated to obtain

this result. Therefore, both nucleons are able to be dressed at the same time, potentially

resolving the problem of inconsistent nucleon dressing the “Unitary NN − πNN” model.

This convolution approach can be used for other disconnected processes, by taking dif-

ferent matrix elements of Equation 2.4. For example, if we consider the disconnected pion-

two-nucleon vertex operator F̃1, representing the process where a pion is created on nucleon

1 and nucleon 2 is a spectator (indicated by the subscript 1), this operator, as well as it’s

numerical form F̃1(k,p′1,p2), are defined as

〈p′1p′2k| F̃1(E) |p1p2〉 = 〈p′1p′2k|
1

E+ −H
|p1p2〉disc = δ(p′1 + k− p1)δ(p′2 − p2)F̃1(k,p′1,p2)

(2.7)

where k is the momentum of the pion. We define the πNN vertex Green’s function f̃i as

〈p′ik| f̃i(E) |pi〉 = 〈p′ik|
1

E+ −H
|pi〉 = δ(p′i + k− pi)f̃i(k,pi, E) (2.8)

where

f̃i(E) = D0(E)fi(E)gi(E) (2.9)

and the subscript i = 1, 2 indicates the nucleon involved in the interaction. We can now

represent F̃1(k,p′1,p2) by a convolution integral by taking matrix elements of Equation 2.4

with a πNN state on the left and an NN state on the right:

F̃1(k,p′1,p2) =

(
− 1

2πi

)∫ ∞
−∞

f̃1(k,p1, z)g2(E − z,p2) (2.10)

We have shown that disconnected processes can be represented by convolution integrals, and

no approximation or neglection of perturbation diagrams is necessary. An important aspect

of this convolution approach for disconnected processes is that it is model independent,

meaning that it is not necessary to define a specific model for the Hamiltonians in our

TOPT.
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2.4 Convolution approach for connected processes

2.4.1 Model Hamiltonian

We now want to investigate the same general approach, as above, for connected processes.

Although it might be possible to formulate expressions for connected processes in a model

independent way, as was just done for disconnected processes above, it is not clear how this

would be done, at this stage. As a result, we will define a model Hamiltonian to carry out our

investigation of connected processes. We will use the same interaction model as specified in

[39, 48]. We assume a model Hamiltonian describing the interactions of pions and nucleons

given by

H = H0 +HI

= HN
0 +Hπ

0 +HI (2.11)

where

HN
0 =

∫
(EN(p) +m0)a†N(p)aN(p)dp, (2.12a)

Hπ
0 =

∫
dk ωka

†
π(k)aπ(k), (2.12b)

Hπ
I =

∫
dk a†π(k)JN(k) + aπ(k)J†N(k), (2.12c)

JN(k) =

∫
dpdp′ δ(p + k− p′)

1
√
ωk
F0(p,p′)a†N(p)aN(p′). (2.12d)

Here, a†π(k) and aπ(k) are creation and annihilation operators for a pion of momentum k

respectively, while a†N(p) and aN(p) are creation and annihilation operators for a nucleon

of momentum p respectively. In this model, we ignore antiparticles for the nucleons. We

also have EN(p), which is the kinetic energy of a nucleon with momentum p, m0 is the

bare mass of the nucleon and ωk, which is the energy of a pion with momentum k. We use

semi-relativistic kinematics, so that EN(p) = p2/2mN and ωk = (k2 +m2
π)1/2, where mN is

the mass of the nucleon and mπ is the mass of a pion. These operators act on the vacuum

state |0〉 to produce the respective free particle states

|p〉 = a†N(p) |0〉 , |k〉 = a†π(k) |0〉 . (2.13)

In this model, the bare vacuum and dressed vacuum are identical. The operator JN(k)

describes the interaction of a nucleon and pion and includes a general form factor function
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F0(p,p′) to take into account the finite size of the nucleon. The operators a† and a obey the

following (anti)commutator relations

[aπ(k), a†π(k′)] = δ(k− k′), (2.14a)

[aπ(k), aπ(k′)] = 0, (2.14b)

{aN(p), a†N(p′)} = δ(p− p′), (2.14c)

{aN(p), aN(p′)} = 0 (2.14d)

so that

[aπ(k), Hπ
0 ] =

∫
ω′k
[
aπ(k), a†π(k′)

]
aπ(k′)dk′ = ωkaπ(k) (2.15)

and

[aπ(k), Hπ
I ] =

∫
JN(k′)[aπ(k), a†π(k′)]dk′ +

∫
J†N(k′)[a†π(k), a†π(k′)]dk′

=

∫
JN(k′)δ(k− k′)dk′ = JN(k).

(2.16)

Thus

[aπ(k), Hπ
0 ] = ωkaπ(k), (2.17a)

[aπ(k), Hπ
I ] = JN(k). (2.17b)

Similarly

JN(k) |p′〉 =
1
√
ωπ
F0(p,p′) |p〉 , (2.18a)

〈p′| J†N(k) = 〈p| 1
√
ωπ
F̄0(p′,p) (2.18b)

where p + k = p′. Thus

HI |p′〉 =

∫
δ(p + k− p′)

1
√
ωπ
F0(p,p′)|k p〉 dk dp, (2.19a)

〈p′|HI =

∫
δ(p + k− p′)〈k p| 1

√
ωπ
F̄0(p′,p) dk dp. (2.19b)

Similar to the convolution approach for disconnected processes, we temporarily introduce

two types of nucleons and three types of pions. We have two distinguishable nucleons N1

and N2 that are both dressed by their own respective pions π1 and π2 with a third pion

π that can interact with both nucleons. Hamiltonians H1 and H2, consisting of a free and

interaction Hamiltonian, are defined for the π1N1 and π2N2 systems respectively.

H1 = H0(1) +HI(1) −→ π1N1, (2.20a)

H2 = H0(2) +HI(2) −→ π2N2. (2.20b)
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We also define a similar Hamiltonian Hπ describing a pion that can interact with both

nucleons. This Hamiltonian consists of a free term and two interactions terms, corresponding

to the interaction with each individual nucleon:

Hπ = Hπ
0 +Hπ

I (1) +Hπ
I (2). (2.21)

Therefore, the full Hamiltonian H can be written as a sum of Hamiltonians defined for the

two types of nucleons and the three types of pions:

H = H1 +H2 +Hπ

= H0(1) +HI(1) +H0(2) +HI(2) +Hπ
0 +Hπ

I (1) +Hπ
I (2).

(2.22)

The explicit details for the Hamiltonians describing the π1N1 and π2N2 systems are not

required. The interaction Hamiltonians Hπ
I (1) and Hπ

I (2) are defined by

Hπ
I (1) =

∫
JN1(k)a†π(k)dk +

∫
J†N1

(k)aπ(k)dk, (2.23a)

Hπ
I (2) =

∫
JN2(k)a†π(k)dk +

∫
J†N2

(k)aπ(k)dk. (2.23b)

This also defines creation and annihilation operators, a†π(k) and aπ(k), for the pion that can

interact with both nucleons.

We note that the following commutator relations are also true, when we have two distin-

guishable nucleons

[H1, H2] = [H1, JN2 ] = [H2, JN1 ] = 0. (2.24)

2.4.2 The fully dressed NN OPE diagram

Our goal now is to obtain fully dressed connected diagrams that contain all possible

nucleon dressing contributions. We consider the procedure of Blankleider and Kvinikhidze

[39] and briefly present their derivation of the fully dressed NN one-pion exchange (OPE)

Z−diagram (NN → NN Z−diagram) from TOPT.

Consider the operator 1/(E+ − H), where the full Hamiltonian is given by H = H1 +

H2 + Hπ as detailed above. Rather than the perturbation expansion in Equation 2.1, we

will perform a perturbation expansion by expanding the Green’s function operator around

the interaction Hamiltonians Hπ
I (1) and Hπ

I (2). This leads to the perturbation expansion

1

E+ −H
=

1

E+ −H1 −H2 −Hπ
0

+
1

E+ −H1 −H2 −Hπ
0

[Hπ
I (1) +Hπ

I (2)]
1

E+ −H1 −H2 −Hπ
0

+ . . . (2.25)
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The NN OPE diagrams corresponds to the terms in the perturbation expansion, which

contain two Hπ
I in them. To save on notation, we do not write the free Green’s functions

1/(E+ −H1 −H2 −Hπ
0 ) and only consider the interaction Hamiltonians. Taking the matrix

elements of perturbation terms with two Hπ
I gives us a sum of four terms

〈p′1p′2|Hπ
I (1)Hπ

I (1) |p1p2〉+ 〈p′1p′2|Hπ
I (1)Hπ

I (2) |p1p2〉

+ 〈p′1p′2|Hπ
I (2)Hπ

I (1) |p1p2〉+ 〈p′1p′2|Hπ
I (2)Hπ

I (2) |p1p2〉
(2.26)

where p1 is the momentum of nucleon 1 and p2 is the momentum of nucleon 2. The second

term in the above perturbation expansion leads to one-pion exchange where a pion is created

on nucleon 2 then absorbed on nucleon 1. Through the definitions of Hπ
I (1) and Hπ

I (2), while

also using the commutator relations of the previous section, we obtain the expression for fully

dressed one-pion exchange

GOPE
12 =

(
− 1

2πi

)2

δ(p′1 + p′2 − p1 − p2)

∫
dzdz′g(z′,p′1)f̄(p′1,p1, z

′, z)g(z,p1)
1

z′+ − z − ωk

g(E − z′,p′2)f(p′2,p2, E − z′, E − z)g(E − z,p2).

(2.27)

We present the explicit derivation of Equation 2.27 in Appendix D. From our perturbation

expansion, we obtain two-energy vertices that differ from the usual one-energy vertices we

obtain in TOPT. These two-energy vertices are defined by the matrix elements

δ(p′ + k− p)g(z′,p′)f(p′,p, z′, z)g(z,p) = 〈p′| 1

z′+ −H
JN(k)

1

z+ −H
|p〉 . (2.28)

We define the dressed pion-nucleon vertex using the full Green’s function

δ(p′ − p + k)g(E − ωk,p′)f(k,p, E)g(E,p) = 〈k p′| 1

E+ −H
|p〉 . (2.29)

As p + k = p′, we can use a slightly different definition of the function f , where it depends

on the initial and final momentum of the nucleon

δ(p′ − p + k)g(E − ωk,p′)f(p′,p, E)g(E,p) = 〈k p′| 1

E+ −H
|p〉 . (2.30)

In this definition of the dressed pion-nucleon vertex, we are assuming the nucleons are dressed

and the pions are not. One can show that

〈p′| 1

z′+ −H
JN(k)

1

z+ −H
|p〉

= 〈k p′| 1

z+ −H
|p〉+ (z − z′ − ωk) 〈p′|

1

z′+ −H
aπ(k)

1

z+ −H
|p〉.

(2.31)
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The left side of the equation defines the two-energy vertex and the first term of the right

side defines the usual one-energy vertex. This shows that the two-energy vertex is equal to

the usual one-energy vertex when initial and final energies are equal, namely z = z′ + ωk.

We are, therefore, motivated to approximate the two-energy vertex by the one-energy vertex

f(p′,p, z′, z) ≈ f(p′,p, z), which is exact when z = z′ + ωk. Thus, we obtain our OPE

Green’s function with one-energy vertices

GOPE
12 =

(
− 1

2πi

)2

δ(p′1 + p′2 − p1 − p2)

∫
dzdz′g(z′,p′1)f̄(p′1,p1, z

′)g(z,p1)
1

z′+ − z − ωk

g(E − z′,p′2)f(p′2,p2, E − z)g(E − z,p2).

(2.32)

As a result, we obtain the Green’s function for one-pion exchange between two nucleons,

where all nucleons are fully dressed. This fully dressed NN OPE diagram is given in Figure

2.1. The dressed one-pion exchange potential V OPE
12 can therefore be calculated in the usual

way of “chopping off” the external legs of the Green’s function.

z′,p′1 z,p1

E − z′,p′2 E − z,p2

f̄(p1,p
′
1, z)

f(p′2,p2, E − z)

z′ − z,k

Figure 2.1: Diagram representation of the integrand in Figure 2.32 for the fully dressed

one-pion exchange between two nucleons.

2.4.3 Fully dressed πd→ NN Z−diagram

Since we have a derivation of the Z−diagram for NN OPE (NN → NN), we can follow

the same procedure to derive the Z−diagram for πd→ NN where all nucleons are dressed.

This differs from the derivation of the Z−diagram for NN → NN as we must introduce a

t−matrix T (E) to incorporate the deuteron. The same procedure is done for Z−diagrams

involving N∆ states, so our derivation of the Z−diagram for πd → NN will allow us to

determine the all remaining Z−diagrams. We use the same perturbation expansion given

in Equation 2.25. As we need to incorporate a deuteron state into theory, we do this by
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defining a sub-system NN t-matrix T (E) in the obvious way using Equation 2.25:

1

E+ −H
=

1

E+ −H1 −H2 −Hπ
0

+
1

E+ −H1 −H2 −Hπ
0

T (E)
1

E+ −H1 −H2 −Hπ
0

(2.33)

where

T (E) = [Hπ
I (1) +Hπ

I (2)] + [Hπ
I (1) +Hπ

I (2)]
1

E+ −H1 −H2 −Hπ
0

[Hπ
I (1) +Hπ

I (2)] + . . .

(2.34)

Equation 2.33 is simply the usual definition of a t−matrix satisfying an equation of the form

G = G0 +G0TG0. We want the Z-diagram where the initial state is πd and the pion remains

in flight as the deuteron disintegrates into two nucleons, after which the pion is absorbed by

nucleon N1. It is thus evident that the following expression will be useful:

aπ(k)
1

E+ −H
=

[
1

E+ −H1 −H2 −Hπ
0 − ωk

+
1

E+ −H1 −H2 −Hπ
0 − ωk

[Hπ
I (1) +Hπ

I (2)]
1

E+ −H1 −H2 −Hπ
0 − ωk

+ . . .

]
aπ(k)

+ . . .

=
1

E+ − ωk −H
aπ(k) + terms where aπ does not appear as the right-most operator.

(2.35)

We begin with the perturbation series for the πNN → NN Green’s function in Equation

2.25, singling out the term where a pion is absorbed on nucleon 1, thus

〈p1
′p′2|

1

E+ −H
|k p1p2〉 =

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H
|k p1p2〉+ . . .

=

∫
dk′〈p′1p′2|

1

E+ −H1 −H2 −Hπ
0

J†N1
(k′)aπ(k′)

1

E+ −H
|k p1p2〉+ . . .

=

∫
dk′〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k′)

1

E+ − ωk′ −H
aπ(k′)a†π(k)|p1p2〉+ . . .

=〈p′1p′2|
1

E+ −H1 −H2

J†N1
(k)

1

E+ − ωk −H
|p1p2〉+ . . .

=〈p′1p′2|
1

E+ −H1 −H2

J†N1
(k)

1

E+ − ωk −H1 −H2 −Hπ
0

× T (E − ωk)
1

E+ − ωk −H1 −H2

|p1p2〉+ . . .

=

∫
dp′′1dp

′′
2 〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k)

1

E+ − ωk −H1 −H2 −Hπ
0

|p′′1p′′2〉

× 〈p′′1p′′2|T (E − ωk)|p1p2〉D0(E − ωk,p1,p2) + . . .

(2.36)
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where D0(E − ωk,p1,p2) is the dressed NN propagator and

TNN(p′′1p
′′
2,p1p2;E) = 〈p′′1p′′2|T (E)|p1p2〉 (2.37)

is the t-matrix for NN scattering, and as such, has a pole at the deuteron mass, i.e.

TNN(p′′1p
′′
2,p1p2;E) = δ(p̄′′ − p̄)

〈q′′|φd〉〈φd|q〉
E+ − p̄2

2(m1+m2)
−md

(2.38)

where p̄ = p1+p2 is the total sub-system NN momentum and q = (m1p2−m2p1)/(m1+m2)

is the NN relative momentum. Note that the on-shell energy expression is

Eon =
p̄2

2(m1 +m2)
+

q2

2µ12

+m1 +m2. (2.39)

So

〈p1
′p′2|

1

E+ −H
|k p1p2〉 =∫

dp′′1dp
′′
2 〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k)

1

E+ − ωk −H1 −H2 −Hπ
0

|p′′1p′′2〉

× δ(p̄′′ − p̄)
〈q′′|φd〉〈φd|q〉

E+ − ωk − p̄2

2(m1+m2)
−md

D0(E − ωk,p1,p2) + . . .

(2.40)

Taking the residue at the deuteron pole gives the Green’s function for πd→ NN

GdN =

∫
dp′′1dp

′′
2 〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k)

1

E+ − ωk −H1 −H2

|p′′1p′′2〉δ(p̄′′ − p̄)〈q′′|φd〉

=

(
− 1

2πi

)∫ ∞
−∞

dz dp′′1dp
′′
2 〈p′1|

1

z+ −H1

J†N1
(k)

1

z+ − ωk −H1

|p′′1〉

× 〈p′2|
1

E+ − z −H2

|p′′2〉δ(p̄′′ − p̄)〈q′′|φd〉.

(2.41)

Now, we again represent the two-energy vertices by usual one-energy vertices. So, we have

〈p′1|
1

z+ −H1

J†N1
(k)

1

z+ − ωk −H1

|p′′1〉

= δ(p′1 − p′′1 − k)g(z,p′1)f̄(p′1,p
′′
1, z, z − ωk)g(z − ωk,p′′1)

≈ δ(p′1 − p′′1 − k)g(z,p′1)f̄(k,p′′1, z)g(z − ωk,p′′1).

(2.42)

Therefore

GdN =

(
− 1

2πi

)∫ ∞
−∞

dz dp′′1dp
′′
2 δ(p

′
1 − p′′1 − k)g(z,p′1)f̄(k,p′′1, z)g(z − ωk,p′′1)

× δ(p′2 − p′′2)g(E − z,p′′2)δ(p̄′′ − p̄)〈q′′|φd〉

=

(
− 1

2πi

)
δ(p̄′ − k− p̄)

∫ ∞
−∞

dz g(z,p′1)f̄(k,p′1 − k, z)g(z − ωk,p′1 − k)

× g(E − z,p′2)〈q|φd〉

(2.43)

27



CHAPTER 2. TIME-ORDERED PERTURBATION THEORY

where the Z−diagram would correspond to the Green’s function with “chopped” nucleon

legs. This Z−diagram is represented by the diagram shown in Figure 2.2.

z,p′1 ωk,k

E − z,p′2 E − ωk, p̄

f̄(k,p′1 − k, z)

φd(q)

z − ωk,p′1 − k

Figure 2.2: Diagrammatic representation of the integrand in Equation 2.43 for the fully

dressed πd→ NN Z−diagram.

2.4.4 Rules for constructing fully dressed Z−diagrams

From the derivation of the NN OPE and πd→ NN fully dressed Z−diagrams, we sug-

gest there are “Feynman rules” for constructing fully dressed 4-dimensional (4D) Z−diagrams

that are analogous to the well-known covariant rules. Our rules for constructing fully dressed

Z−diagrams are as follows:

1. Assign each external leg a 4-momentum. When we have a final or initial NN state,

we assign nucleon 1 with the 4-momentum (z,p1) and nucleon 2 with 4-momentum

(E− z,p2). For πd final or initial states, we assign the pion with 4-momentum (ωk,k)

and the deuteron with 4-momentum (E − ωk, p̄). For initial N∆ states, nucleon 1 is

the spectator and we assign it the 4-momentum (z,p1) and the ∆ particle we assign

the 4-momentum (E − z, p̄). For final N∆ states, nucleon 2 is the spectator and we

assign it the 4-momentum (E − z,p2) and the ∆ particle we assign the 4-momentum

(z, p̄)

2. Assign a 4-momentum to the exchange particle using the conversation of momentum

at the vertices

3. Allocate a dressed one-nucleon propagator for each nucleon and an undressed propa-

gator for each pion. This includes the legs and the exchange particle

4. Allocate a function for each vertex. For a vertex involving a deuteron or ∆ particle,

assign 〈q|φd〉 or 〈q|φ∆〉 respectively. For a N → πN (πN → N) vertex, allocate the
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dressed vertex function f (f̄). The energy of this dressed vertex function is equal to

the nucleon in the one particle state

5. Integrate over z and z′, remembering to include the factor (−1/2πi) for each z variable

2.4.5 Dressed two-pion exchange with full dressing

We know that our rules for constructing fully dressed diagrams are correct for one particle

exchange diagrams and now what we would like to investigate is if these rules can also be

used for higher order diagrams. For now, we will only investigate a two-particle exchange

diagram and determine the connection between our rules and time-ordered perturbation

diagrams.

Let us now consider a second order NN diagram, corresponding to two-pion exchange

(TPE) between two nucleons. In our perturbation expansion given in Equation 2.25, two-pion

exchange corresponds to perturbation terms that contain four interaction Hamiltonians Hπ
I .

Again, to save on notation, we do not write the free Green’s functions 1/(E+−H1−H2−Hπ
0 )

and only consider the interaction Hamiltonians. The matrix elements of these terms are given

by

〈p′1p′2|Hπ
I (1)Hπ

I (1)Hπ
I (2)Hπ

I (2) |p1p2〉+ 〈p′1p′2|Hπ
I (1)Hπ

I (2)Hπ
I (1)Hπ

I (2) |p1p2〉

+ 〈p′1p′2|Hπ
I (1)Hπ

I (2)Hπ
I (2)Hπ

I (1) |p1p2〉+ 〈p′1p′2|Hπ
I (2)Hπ

I (2)Hπ
I (1)Hπ

I (1) |p1p2〉

+ 〈p′1p′2|Hπ
I (2)Hπ

I (1)Hπ
I (2)Hπ

I (1) |p1p2〉+ 〈p′1p′2|Hπ
I (2)Hπ

I (1)Hπ
I (1)Hπ

I (2) |p1p2〉 .

(2.44)

Each term corresponds to a variety of different time-ordered diagrams, similar to the term

for one-pion exchange 〈p′1p′2|Hπ
I (1)Hπ

I (2) |p1p2〉. However, we are only interested in the

diagrams that correspond to pion exchange between the two nucleons. Consider the first

two terms of the above perturbation expansion, we can show that the first term will give us

the two time-ordered diagrams in Figure 2.3 (a) and the second term will give us the two

time-ordered diagrams in Figure 2.3 (b).
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+(a)

+(b)

Figure 2.3: The time-ordered diagrams corresponding to two-pion exchange, where (a) is

obtained from the first term in the sum of matrix elements in Equation 2.44 and (b) is

obtained from the second term in Equation 2.44.

However, the connection of these diagrams with convolutions is not clear. So, let us

construct a two-pion exchange diagram and use our rules of constructing fully dressed

Z−diagrams to determine its mathematical expression. This will also help us determine

the validity of our rules. The convolution diagram corresponding to two-pion exchange is

drawn in Figure 2.4.

z′,p′1 z,p1z′′,p′′1

E − z′,p′2 E − z′′,p′′2 E − z,p2

z′ − z′′,k z′′ − z,k′

N1

N2

Figure 2.4: A convolution diagram representing two-pion exchange between two nucleons.

We can consider this diagram to be same slope or parallel two-pion exchange. We will

need to extend our rules to include the intermediate state of two-pion exchange, which also

applies to higher order diagrams:

6. Assign each intermediate particle with a 4-momenta, following the same convention as

rule 1. Repeat all steps for the additional particles, integrating over each energy-like

variable z, z′, z′′, ... and intermediate momenta p′′,p′′′, ...

30



CHAPTER 2. TIME-ORDERED PERTURBATION THEORY

We can now consider our rules as rules for constructing fully dressed diagrams, not just for

one-particle exchange Z−diagrams. From these rules, we can obtain an expression for the

Green’s function with one-energy vertices and without the momentum-conserving function

δ

GTPE
12

=

(
− 1

2πi

)3 ∫
g(z′,p′1)f̄(p′1,p

′′
1, z
′)

1

z′+ − z′′ − ωk
g(E − z′,p′2)f(p′2,p

′′
2, E − z′′)

g(z′′,p′′1)g(E − z′′,p′′2)f̄(p′′1,p1, z
′′)

1

z′′+ − z − ωk′
g(z,p1)f(p′′2,p2, E − z)

g(E − z,p2)dp′′1dp
′′
2dzdz

′dz′′.

(2.45)

If we use our definitions of our vertex and the dressed one-nucleon propagator, we can reduce

this Green’s function into an expression with the JN and J†N operators,

GTPE
12

=

(
− 1

2πi

)3 ∫
〈p′1p′2|

1

z′+ −H1

J†N1
(k)

1

z′′+ −H1

1

z′+ − z′′ − ωk
1

E+ − z′ −H2

JN2(k)
1

E+ − z′′ −H2

J†N1
(k′)

1

z′′+ − z − ωk′
JN2(k′)

1

z+ −H1

1

E+ − z −H2

|p1p2〉 dkdk′dzdz′dz′′. (2.46)

Now, by using Cauchy’s Residue Theorem to evaluate the z integrals, we obtain

GTPE
12

=

∫
〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k)

1

E+ −H1 −H2 − ωk
JN2(k)

1

E+ −H1 −H2

J†N1
(k′)

1

E+ −H1 −H2 − ωk′
JN2(k′)

1

E+ −H1 −H2

|p1p2〉 dkdk′

+

∫
〈p′1p′2|

1

E+ −H1 −H2

J†N1
(k)

1

E+ −H1 −H2 − ωk
JN2(k)

1

E+ −H1 −H2 − ωk − ωk′
J†N1

(k′)
1

E+ −H1 −H2 − ωk′
JN2(k′)

1

E+ −H1 −H2

|p1p2〉 dkdk′.

(2.47)

The first term corresponds to the first time-ordered diagram in Figure 2.3 (b), while the

second term corresponds to the first time-ordered diagram in Figure 2.3 (a). What we have

shown is that our rules for constructing fully dressed diagrams give us both time orderings

of the diagram in Figure 2.4. We can similarly construct other convolution diagrams that

will give us the remaining time-ordered diagrams that are obtained from the sum of matrix

elements in Equation 2.44.
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3.1 Co-authorship statement

This chapter is adapted from a manuscript, soon to be submitted to a peer-reviewed

journal. The reference for the manuscript is:

Blankleider, B., Khvinikidze, A. N., & Wray, J. L, (2021). Convolution approach to πNN .

I. Theory. (to be submitted to Physical Review C upon completion)

The thesis author is listed as the third author in this manuscript. The relevant sections

of this chapter that this manuscript is referred to is: Section 3.3 to the end of the chapter.

This publication constitutes the full development of a theory that was first introduced

by B. Blankleider and A. N. Kvinikhidze in a conference proceeding published in: Few-Body

Syst. Suppl 7 (1994) 294. The thesis author participated equally with B. Blankleider and

A. N. Kvinikhidze in the development of this theory and the writing of the manuscript, and

the alphabetical order of the authors reflects this. It is important that this publication is

included in the body of the thesis (as Chapter 3), rather than in an Appendix, because the

theory and its numerical implementation constitutes an inseparable one body of research

work.

3.2 Introduction

Our goal in this chapter is to extend the work of Kvinikhidze and Blankleider [49] by

presenting a derivation of fully coupled NN−πNN equations for the processes NN → NN ,

NN → πd, πd→ NN and πd→ πd using the convolution approach.

The derivation starts with a three-body Lippmann-Schwinger equation for the process

πNN → πNN where all connected three-body forces are neglected, and then through the use

of a Faddeev-like rearrangement, we reformulate the disconnected πNN potentials in terms

of disconnected t−matrices, which can then be determined through the use of convolution

integrals. The resulting equations can then be represented in terms of Alt-Grassberger-

Sandhas (AGS)-like amplitudes, which lead to coupled scattering equations for the processes

NN → NN , NN → N∆, N∆ → N∆, NN → πd, πd → NN , πd → N∆ and πd → πd.

We will refer to these newly derived equations as the πNN convolution equations. These

convolution equations have the same form as the unitary NN − πNN equations of Afnan
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and Blankleider [33], however, unlike the equations of Afnan and Blankleider, all nucleons

are fully dressed.

With all nucleons fully dressed, the πNN convolution equations solve the long-standing

renormalisation problem inherent in the “Unitary NN − πNN” model. However, these

convolution equations involve non-pair-like interactions and therefore may be difficult to

solve numerically. For this reason, an alternative formulation is also presented. Splitting the

πN t−matrix into its pole and non-pole part, then convoluting each part individually leads

to a 4-dimensional (4D) version of the πNN convolution equations, which only involve pair-

like interactions. Finally, we introduce a separable potential approximation to the two-body

input potentials to obtain more easily calculable 4D equations.

3.3 Formalism for the πNN convolution equations

We consider a time-ordered perturbation theory (TOPT) described by a Hamiltonian H

acting in the Fock space of two nucleons and any number of pions. The exact model for

H need not be specified at this stage. Here we shall be concerned with the πNN system

where coupling to NN states is taken into account, and for this purpose consider the Green’s

function operator G describing the process πNN → πNN , and acting in the space of two

nucleons and one pion such that

〈p′1p′2p′3|G(E)|p1p2p3〉 = 〈p′1p′2p′3|
1

E+ −H
|p1p2p3〉, (3.1)

where pa (p′a) denote initial (final) momenta with a = 1, 2 labelling the two nucleons while

a = 3 labels the pion. Similarly, we consider the Green’s function operator D describing the

process NN → NN , and acting in the space of two nucleons and zero pions such that

〈p′1p′2|D(E)|p1p2〉 = 〈p′1p′2|
1

E+ −H
|p1p2〉. (3.2)

In Equation 3.1 and 3.2, E is the total energy of the coupled NN − πNN system. Note

that we suppress spin-isospin labels in order to save on notion, and it is assumed that the

nucleons are distinguishable since antisymmetrisation can be carried out at the end.

To label the particles of the πNN system in a general but systematic way, we shall

use the alphabetically ordered set of labels {a, b, c} to denote any cyclic permutation of

{1, 2, 3}. Additionally, we shall use letters i and j to specifically label the nucleons, thus

i, j = 1 or 2. To label a pair of particles within a given three-body system it is common
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to use the “spectator” notation whereby particle pairs {(23), (31), (12)} are labelled by the

numbers {1, 2, 3}, respectively. For the πNN system, however, it is also convenient to use

a “nucleon participation” notation whereby the pairs {(23), (31), (12)} are labelled by the

numbers {2, 1, 3}, respectively. To distinguish these two ways of labelling particle pairs

when the pairs are denoted by {(bc), (ca), (ab)}, we shall use {a, b, c} (using Roman letters)

for the “spectator” notation, and {α, β, γ} (using Greek letters) for “nucleon participation”

notation. These labelling schemes are summarised in Table 3.1. In the case of the πNN

system, the nucleon participation notation is convenient as it labels two-body operators that

act in the space of a pion and nucleon i with subscript i.

Pair (bc) (ca) (ab) (23) (31) (12)

Spectator label a b c 1 2 3

Participation label α β γ 2 1 3

Table 3.1: Labelling schemes for denoting particle pairs.

Using the nucleon participation notation, the two-body Green’s function operator that

acts in the (bc) sub-space of the πNN system is written as Dα and defined by

〈p′bp′c|Dα(e)|pbpc〉 = 〈p′bp′c|
1

e+ −H
|pbpc〉, (3.3)

where e is the energy available to the (bc) system (i.e. the total energy E minus the energy

of the spectator particle a). Similarly, the one-particle (π or N) Green’s function operator

ga acting in the space of particle a is defined by

〈p′a|ga(e)|pa〉 = 〈p′a|
1

e+ −H
|pa〉. (3.4)

where e is the energy available to particle a.

Each of the above Green’s function operators corresponds to the sum of all possible time-

ordered perturbation diagrams generated by the particular model under consideration. In

reference to these diagrams, it is clear that one can write the πNN → πNN Green’s function

operator as

G(E) = G0(E) +G0(E)T (E)G0(E), (3.5)

where G0(E) is the fully disconnected part of G(E), and T (E) is the πNN → πNN t−matrix

operator defined by this equation. Furthermore, one can write

T (E) = V (E) + V (E)G0(E)T (E), (3.6)
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where V (E) corresponds to the sum of all possible πNN -irreducible graphs excluding those

consisting of fully disconnected πNN states. It follows that

G(E) = G0(E) +G0(E)V (E)G(E). (3.7)

The key feature of this work is that all possible particle dressings, consistent with the ne-

glection of connected three-body forces, are retained. This means that the three particles

making up the propagator G0 are fully dressed. As was shown in [48], the way to achieve

such full dressing in TOPT is through convolution integrals; and in particular, for the fully

dressed πNN propagator G0(E), the convolution expression is

G0(E) =

(
− 1

2πi

)2 ∫ ∞
−∞

dz1dz2 g1(E − z1)g2(z1 − z2)g3(z2). (3.8)

Similarly expressions hold for the NN sector that is coupled to πNN space via pion absorp-

tion on a nucleon. Thus, one can express the NN → NN Green’s function operator D(E)

in terms of the NN → NN t−matrix operator TNN(E) as

D(E) = D0(E) +D0(E)TNN(E)D0(E) (3.9)

where D0(E) is the fully disconnected part of D(E). One then has the Lippmann-Schwinger

equation for NN scattering,

TNN(E) = VNN(E) + VNN(E)D0(E)TNN(E) (3.10)

where VNN(E) corresponds to the sum of all possible connected NN -irreducible graphs.

Thus

D(E) = D0(E) +D0(E)VNN(E)D(E). (3.11)

The convolution expression for the fully dressed NN propagator D0(E) is [48]

D0(E) =

(
− 1

2πi

)∫ ∞
−∞

dz g1(E − z)g2(z). (3.12)

One similarly has for sub-system πN → πN and NN → NN scattering

Dα(e) = D0α(e) +D0α(e)tα(e)D0α(e), (3.13)

where D0α(e) is the fully disconnected part of Dα and tα(e) is the corresponding two-body

t−matrix operator. One can further write

tα(e) = vα(e) + vα(e)D0α(e)tα(e) (3.14)

where vα(e) corresponds to the sum of all possible NN or πN - irreducible graphs excluding

those consisting of fully disconnected states. It follows that

Dα(e) = D0α(e) +D0α(e)vα(e)Dα(e). (3.15)
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3.3.1 Green’s functions

The formalism, so far, has been expressed in terms of operators in momentum space. To

obtain numerical results we need to take matrix elements of these operators, and for this

purpose it will be useful to define a number of different momentum variables. With free

particle momenta denoted by p′a and pa as previously discussed, we define the total final

and initial momenta of the πNN system as

P′ = p′1 + p′2 + p′3, P = p1 + p2 + p3, (3.16)

and the total momenta of the two-body (bc) sub-systems as

p̄′α = p′b + p′c, p̄α = pb + pc. (3.17)

Similarly, the relative momenta of particles b and c are defined by

q′α =
mbp

′
c −mcp

′
b

mb +mc

, qα =
mbpc −mcpb
mb +mc

, (3.18)

so that qα corresponds to the momentum of particle c in the (bc) centre of mass (c.m.)

system. Note the use of label α (rather than a) in Equation 3.17 and 3.18; that is, we

are using the nucleon participation notation to label total and relative momenta of sub-

system pairs. Thus, the state of two free sub-system particles b and c can be written in two

equivalent ways:

|pb pc〉 = |qαp̄α〉. (3.19)

Similarly, the state of three free particles can be written equivalently as

|papb pc〉 = |paqαp̄α〉 = |qαp̄αP〉. (3.20)

If all particles are treated non-relativistically, then the on-shell energy of the three free

particles can be expressed in terms of the above momentum variables (in units where c =

~ = 1) as

E =
p2
a

2ma

+
p2
b

2mb

+
p2
c

2mc

+M, (3.21a)

=
p2
a

2ma

+
p̄2
α

2(mb +mc)
+

q2
α

2µbc
+M, (3.21b)

where µbc = mbmc/(mb +mc) and M = ma +mb +mc.
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With these definitions, the 3 → 3 Green’s function G, the 2 → 2 Green’s functions Dα

and D0α, and the dressed pion or dressed nucleon propagator gα are defined as follows:

〈p′a p′b p′c|G(E)|pa pb pc〉 = 〈q′α p̄′α P′|G(E)|qαp̄αP〉

= δ(P′ −P)G(E,q′αp̄
′
α,qαp̄α,P), (3.22a)

〈p′b p′c|Dα(e)|pb pc〉 = δ(p̄′α − p̄α)Dα(e,q′α,qα, p̄α), (3.22b)

〈p′b p′c|D0α|pb pc〉 = δ(p̄′α − p̄α)δ(q′α − qα)D0α(e,qα, p̄α), (3.22c)

〈p′a|ga(e)|pa〉 = δ(p′a − pa)ga(e,pa). (3.22d)

In the above equations, we have used the same symbols for Green’s function operators and

corresponding Green’s functions; this is not likely to cause confusion as the meaning of a

symbol should be clear from the context and has the great advantage of keeping cumbersome

notation to a minimum. In the same way, we save on notation by exploiting Galilean

invariance to write

Dα(e,q′α,qα, p̄α) = Dα(e− Ēα,q′α,qα,0) ≡ Dα(e− Ēα,q′α,qα), (3.23a)

D0α(e,qα, p̄α) = D0α

(
e− Ēα −

q2
α

2µbc
,0,0

)
≡ D0α

(
e− Ēα −

q2
α

2µbc

)
, (3.23b)

ga(e,pa) = ga(e− Ea,0) ≡ ga(e− Ea), (3.23c)

where, assuming non-relativistic kinematics,

Ēα =
p̄2
α

2(mb +mc)
, Ea =

p2
a

2ma

. (3.24a)

Here we use non-relativistic kinematics for simplicity of presentation; however, in our cal-

culations, presented in later chapters, we use relativistic kinematics for the pion, where

E3 = (p2
3 +m2

3)1/2.

3.3.2 Sub-system NN and πN scattering

Special attention needs to be given to the description of the sub-system NN and πN

scattering t−matrices, as these provide the input to the convolution NN − πNN equations

being derived in this work. This we do in the following subsection.
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Sub-system NN scattering

In the πNN system, the interaction of the two nucleons while the pion is in flight, is

described by Equation 3.14 with α = 3:

t3(e) = v3(e) + v3(e)D03(e)t3(e) (3.25)

where v3(e) is an NN potential. It is to be understood that all quantities like v3(e), t3(e),

etc., are operators in momentum space. As one of the main goals of the current work is

to formulate a consistent description of nucleon dressing in the πNN system, it is essential

that the two-nucleon propagator D03(e) also consist of two fully dressed nucleons. This is

in contrast to previous works on the πNN system [33, 36, 80–83] where no explicit dressing

was included in D03(e). Thus, in the current work D03(e) is expressed by the convolution

integral

D03(e) =

(
− 1

2πi

)∫ ∞
−∞

dz g1 (e− z) g2 (z) (3.26)

where g1(e) and g2(e) are the dressed propagators of nucleons 1 and 2 respectively.

Because the NN system has a bound state, namely the deuteron (d), the sub-system NN

t−matrix 〈q′3p̄′3|t3(e)|q3p̄3〉 = δ(p̄′3−p̄3)t3(e,q′3,q3, p̄3) has a pole at energy e = Ē3+md cor-

responding to the formation a deuteron of mass md and kinetic energy Ē3 = p̄2
3/2(m1 +m2).

To preserve exact unitarity, we ignore the small difference between Ē3 and the precise expres-

sion p̄2
3/2md for the deuteron’s (non-relativistic) kinetic energy. Using Galilean invariance,

we may write

t3(e,q′3,q3, p̄3) = t3(e− Ē3,q
′
3,q3,0) ≡ t3(e− Ē3,q

′
3,q3). (3.27)

Then, defining the NN “centre of mass” t−matrix operator tcm
3 (e), which acts in the space

of relative momenta, by

〈q′3|tcm
3 (e)|q3〉 ≡ t3(e,q′3,q3), (3.28)

one can expose the deuteron pole in the NN t−matrix by writing

tcm
3 (e) =

|φ3〉〈φ3|
e+ − m̄3

+ tb3(e) (3.29)

where tb3(e) is a “background” term defined by this equation, m̄3 ≡ md is the deuteron mass,

and |φ3〉 is the deuteron bound state form factor which is related to the deuteron bound

state wave-function |ψ3〉 through

|ψ3〉 = Dcm
03 (m̄3)|φ3〉. (3.30)
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In Equation 3.30, Dcm
03 (e) is the NN “centre of mass” free propagator which acts in the space

of relative momenta such that

〈q′3p̄′3|D03(e)|q3p̄3〉 = δ(p̄′3 − p̄3)D03(e− Ē3,q
′
3,q3)

≡ δ(p̄′3 − p̄3)〈q′3|Dcm
03 (e− Ē3)|q3〉. (3.31)

Sub-system πN scattering

The t−matrix ti(e) describing pion scattering off nucleon i can be expressed in terms

of coupled equations as illustrated in Figure 3.1. First derived by Mizutani and Koltun

using Feshbach projection operators [80], these equations have also been derived in the

context of TOPT [33]. Here we give a brief derivation following the arguments used in [33].

Setting α = i in Equation 3.13, it is evident that the term D0i(e)ti(e)D0i(e) consists of all

possible connected πN → πN diagrams with ti(e) being given by the same diagrams but

with “chopped legs.” Then, defining the “background” πN t−matrix tbi(e) as the sum of all

diagrams of ti(e) that have one or more pions in every intermediate state, one can write

ti(e) = fi(e)gi(e)f̄i(e) + tbi(e) (3.32)

where fi(e) (f̄i(e)) is the “dressed vertex” consisting of all possible N → πN (πN → N)

chopped-leg diagrams with at least one pion in every intermediate state. Similarly, one

can define vi(e) as the sum of all diagrams of ti(e) that have two or more pions in every

intermediate state, in which case we can write Lippmann-Schwinger-like equations

tbi(e) = vi(e) + vi(e)D0i(e)t
b
i(e), (3.33a)

= vi(E) + tbiD0i(e)vi(e) (3.33b)

so that vi(E) plays the role of a πN → πN potential. Using a similar argument, one can

obtain the equations

fi(e) = f0i(e) + tbi(e)D0i(e)f0i(e), (3.34a)

f̄i(e) = f̄0i(e) + f̄0i(e)D0i(e)t
b
i(e), (3.34b)

where f0i(e)
(
f̄0i(e)

)
is the “bare vertex” consisting of all possible N → πN (πN → N)

chopped-leg diagrams with at least two pions in every intermediate state. Finally, one can

similarly write

gi(e) = g0i(e) + g0i(e)Σi(e)gi(e) (3.35)
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where

Σi(e) = f̄0i(e)D0i(e)fi(e), (3.36a)

= f̄i(e)D0i(e)f0i(e), (3.36b)

is the nucleon “self-energy” or “dressing” term consisting of all diagrams of gi(e) with at least

one pion in every intermediate state, but with chopped legs. The set of equations consisting

of Equations 3.32-3.36 are illustrated in Figure 3.1, and provide an exact and useful way of

expressing the πN t−matrix ti(e). Viewed as coupled equations for the dressed propagator

gi(e), the equations corresponding to the diagrams of Figure 3.1(b), (c), and (d), are often

referred to as the Dyson-Schwinger equations.

= +(a)

ti fi gi f̄i tbi

= +(b)

vitbi vi D0i tbi

= +(c)

tbifi f0i D0i f0i

= +(d)

gi g0i f0iD0i fi gig0i

Figure 3.1: Coupled equations for a pion (dashed line) scattering off nucleon i (solid line):

(a) The πN t−matrix expressed by Equation 3.32, (b) the “background” πN t−matrix as

given by Equation 3.33a, (c) the dressed πNN vertex as given by Equation 3.34a, and (d) the

dressed nucleon propagator as given by Equation 3.35 whose self-energy term Σi is expressed

as in Equation 3.36a.

We note that D0i(e) is the fully dressed πN propagator, and just like Equation 3.26 for

NN scattering, is given by a convolution expression

D0i(e) =

(
− 1

2πi

)∫ ∞
−∞

dz gi (e− z) g3 (z) (3.37)
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where gi(e) is the dressed propagator of nucleon i and g3(e) is the dressed propagator of the

pion. For the case where explicit pion dressing is neglected, but nucleon dressing is retained,

we have recently solved the above πN scattering equations while fitting to experimental πN

data using parametrised forms for the potentials vi and bare πNN vertex f0i [84].

It is well known that πN scattering gives rise to the formation of resonances, the most

prominent of which is the ∆(1232) resonance in the P33 partial wave. We shall take the

∆(1232) into account by demanding that the background πN t−matrix tbi contains a pole on

the second sheet of the complex relative momentum plane corresponding to the formation

of this resonance. We thus we write, similarly to Equation 3.28 and Equation 3.29,

〈q′ip̄′i|tbi(e)|qip̄i〉 = δ(p̄′i − p̄i)t
b
i(e− Ēi,q′i,qi)

≡ δ(p̄′i − p̄i)〈q′i|tb cm
i (e− Ēi)|qi〉 (3.38)

where

tb cm
i (e) =

|φi〉〈φi|
e+ − m̄i

+ tb
′

i (e) (3.39)

with |φi〉 being the resonance form factor and m̄i the (complex) resonance mass. It will also

be useful to define the bound state wave-function |ψi〉 through

|ψi〉 = Dcm
0i (m̄i)|φi〉. (3.40)

In Equation 3.40, Dcm
0i (e) is the πNi “centre of mass” free propagator which acts in the space

of relative momenta such that

〈q′ip̄′i|D0i(e)|qip̄i〉 = δ(p̄′i − p̄i)D0i(e− Ēi,q′i,qi)

≡ δ(p̄′i − p̄i)〈q′i|Dcm
0i (e− Ēi)|qi〉. (3.41)

3.4 3-dimensional scattering equations

3.4.1 Faddeev-like equations

Here we derive equations describing the πNN system. The starting point is Equation

3.6 which expresses the πNN → πNN t−matrix T (E) in terms of the πNN -irreducible

potential V (E) and the fully dressed πNN propagator G0(E). Similarly to the case of fully

dressed NN and πN propagators discussed above, the fully dressed πNN propagator in

TOPT is given by the convolution expression in Equation 3.8.
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Within the assumed formalism, we make just one approximation: we shall exclude con-

nected contributions to the potential V (E), one example of which is illustrated in Figure 3.2

(a). Such contributions correspond to three-body forces and will be considered elsewhere.

We note, however, that the topologically similar but πNN reducible contribution of Figure

3.2 (b) is retained in this work.

(a) (b)

Figure 3.2: (a) Example of a connected πNN -irreducible contribution to the πNN potential

V ; such contributions correspond to three-body forces and are neglected in this work. (b) A

topologically similar contribution to that of (a), which however is included in our work as it

is πNN reducible.

As discussed by Stingl and Stelbovics [44], all disconnected πNN → πNN diagrams

contributing to V (E), belong to one of five classes of disconnectedness, denoted by δα,

characterised by an appropriate momentum-space δ function. According to this classification,

V (E) can be written as the sum

V (E) =
5∑

α=1

Vα(E) (3.42)

where Vα, illustrated in Figure 1.8, is the potential of disconnectedness δα.

To generate the corresponding πNN → πNN t−matrix T (E) one cannot use Equation

3.6 directly, as its kernel is disconnected. To derive equations with a compact kernel we

proceed by analogy with the case of Faddeev equations and eliminate the potentials Vα(E)

in favour of completely summed contributions of disconnectedness δα. Let us, therefore,

denote by w̃α the set of all πNN → πNN diagrams, reducible and irreducible, belonging to

the disconnectedness class δα. By their definition, the w̃α are Green’s function operators, so

that the corresponding t−matrix operators wα are defined as

w̃α = G0wαG0. (3.43)
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Note that w̃α and wα are operators that act in πNN space. We now write the t−matrix

operator T (E) in Equation 3.6 in terms of its connected and disconnected parts. The con-

nected part we denote by T c(E), while the disconnected part is, by the above definition, just

the sum of the wα(E).

Thus
5∑

α=1

wα + T c =
5∑

α=1

Vα +
5∑

α=1

VαG0

(
5∑

β=1

wβ + T c

)
. (3.44)

Equating terms with the same disconnectedness δα, it is easy to see that

w1 = V1 + V1G0w1 + V4G0w5 (3.45a)

w2 = V2 + V2G0w2 + V5G0w4 (3.45b)

w3 = V3 + V3G0w3 (3.45c)

w4 = V4 + V4G0w2 + V1G0w4 (3.45d)

w5 = V5 + V5G0w1 + V2G0w5 (3.45e)

These agree formally with Equations 2.15 of Stingl and Stelbovics [45], but have been ob-

tained here in a much simpler way. We emphasise, however, that because we consider the

general case, our definitions of the quantities wα and Vα are different from those of Stingl

and Stelbovics. Now that we have these equations for wα, we follow Stingl and Stelbovics

[45] and represent the full t-matrix by the sum

T =
5∑

α=1

Tα (3.46)

where each Tα is defined as the sum of the terms of T which begin with a disconnectedness

δα. For example, the terms V1G0w2 and V1G0w3G0w4 both belong to T1. Each Tα consists

of a disconnected part and a connected part, where the disconnected part is obviously wα

as this is the sum of all diagrams belonging to the disconnectedness δα. This leaves the

connected part, which must be wαG0T where T is given as the sum of Tα. However, some

Tα terms are forbidden in this connected part as they contradict the definition of connected

and the definition of Tα.

For example, if we have T1, this would be given by

T1 = w1 + w1G0(T2 + T3 + T5). (3.47)

As the term, w1G0T1 would contain terms that are disconnected and the term w1G0T4

would contradict the definition of T1 as these terms would lead to terms that begin with
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a disconnectedness of δ4. The same idea is applied to the case of three particles and leads

to the traditional Faddeev equations. By implementing the same idea to the remaining Tα

terms, one finds that Tα can be written as

T =
5∑

α=1

Tα, (3.48a)

Tα = wα +
5∑

β=1

wακαβG0Tβ (3.48b)

where

κ =



0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

1 0 1 1 0

0 1 1 0 1


. (3.48c)

The first iteration of Equation 3.48b results in a compact kernel. Equations 3.48 are Faddeev-

like equations that were first derived by Stingl and Stelbovics in the context of a simple

field-theoretic model where all states containing more than two pions are neglected [44].

Here we have shown that these equations hold also in the general case of the full field theory.

This would only be a theoretical achievement if the disconnected t−matrices wα could not

be calculated in practice. Remarkably, despite there being no practical way of calculating

the disconnected potentials Vα, the corresponding t−matrices wα are easily calculated using

convolution expressions [48].

3.4.2 Convolution expressions for wα

The fact that the amplitudes wα contain all possible contributions of a particular dis-

connectedness is also the essential property needed to express these amplitudes directly in

terms of dressed sub-system amplitudes (in our case the two-body t−matrices tα, the πNN

vertex f , and the dressed one-nucleon propagator g). As has been shown previously [48], this

is done in terms of a convolution integrals which effectively sum all possible time-orderings

of interactions taking place in the disconnected processes. As the convolution integrals are

written for Green’s function quantities, we shall utilise a “tilde” notation, as in Equation

3.43, to label amplitudes with additional initial and final-state propagators. Thus, for the
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πN t−matrix (α = 1, 2), and the sub-space NN t−matrix (α = 3) we define

t̃α(e) = D0α(e)tα(e)D0α(e) (3.49)

where D0α(e) is the corresponding dressed πN or dressed NN propagator. We note fur-

ther that t̃α is the connected part of the corresponding full two-body Green’s function; for

example,

〈p′ip′3|t̃i(e)|pip3〉 = 〈p′ip′3|
1

e+ −H
|pip3〉c. (3.50)

Similarly, we write the πNN vertex Green’s functions as

f̃i(e) = D0i(e)fi(e)gi(e), (3.51a)

˜̄fi(e) = gi(e)f̄iD0i(e) (3.51b)

where

〈p′ip′3|f̃i(e)|pi〉 = 〈p′ip′3|
1

e+ −H
|pi〉, (3.52a)

〈p′i| ˜̄fi(e)|pip3〉 = 〈p′i|
1

e+ −H
|pip3〉. (3.52b)

Using Galilean invariance, we note that

〈p′ip′3|f̃i(e)|pi〉 = 〈p̄′iq′i|f̃i(e)|pi〉

= δ(p̄′i − pi)D0i

(
e− Ē ′i −

q′i
2

2µi3

)
fi(e− Ei,q′i)gi(e− Ei), (3.53)

〈p′i| ˜̄fi(e)|pip3〉 = 〈p′i| ˜̄fi(e)|p̄iqi〉

= δ(p′i − p̄i)gi(e− E ′i)f̄i(e− E ′i,qi)D0i

(
e− Ēi −

q2
i

2µi3

)
, (3.54)

where Ei, Ēi, E
′
i and Ē ′i are defined as in Equation 3.24a. Because pion production or ab-

sorption on a nucleon is inherently a relativistic process, here Galilean invariance is violated;

however, due to the mass of the pion being much smaller than that of a nucleon, we expect

the consequences of this violation to be small.

In addition to these definitions, we shall write convolution integrals in a short-hand

notation where

c = a⊗ b (3.55)

means the convolution integral

c(e) =

(
− 1

2πi

)∫ ∞
−∞

dz a(e− z)b(z). (3.56)
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Using these definitions, the amplitudes wα can be written in terms of convolution integrals

as

w̃1 = G0w1G0 = t̃1 ⊗ g2 (3.57a)

w̃2 = G0w2G0 = t̃2 ⊗ g1 (3.57b)

w̃3 = G0w3G0 = t̃3 ⊗ g3 (3.57c)

w̃4 = G0w4G0 = f̃1 ⊗ ˜̄f2 (3.57d)

w̃5 = G0w5G0 = f̃2 ⊗ ˜̄f1 (3.57e)

3.4.3 AGS-like equations

The goal now is to turn Equations 3.48 into a form that can be more easily solved

numerically. It is evident from Equation 3.48b that Tα is the sum of all diagrams that end

(on the left) with a sub-process of disconnectedness δα. In order to group together diagrams

that not only end with a sub-process of disconnectedness δα, but also start with a sub-process

of disconnectedness δβ, we follow Stingl and Stelbovics and define Alt-Grassberger-Sandhas

(AGS)-like [85] amplitudes Uαβ as satisfying

Tα = wα +
5∑

β=1

wαG0UαβG0wβ (3.58)

so that

5∑
β=1

καβTβ ≡
5∑

β=1

UαβG0wβ (3.59)

and therefore

5∑
β=1

UαβG0wβ =
5∑

β=1

καβwβ +
5∑

β=1

5∑
γ=1

καγwγG0UγβG0wβ. (3.60)

It then follows that

Uαβ = καβG
−1
0 +

5∑
γ=1

καγwγG0Uγβ (3.61)

with the full πNN → πNN t−matrix being given by

T =
5∑

α=1

wα +
5∑

α,β=1

wαG0UαβG0wβ. (3.62)
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The connected part of the full πNN → πNN t−matrix is thus

Tc =
5∑

α,β=1

wαG0UαβG0wβ. (3.63)

Although Equation 3.61 is formally a set of 5×5 equations, it can be reduced to a set of

3×3 equations by making use of the fact that in the κ matrix of Equation 3.48c, rows 1 and

5 are identical, as are rows 2 and 4, columns 1 and 4, and columns 2 and 5. This means that

Uα4 = Uα1; Uα5 = Uα2; U4β = U2β; U5β = U1β; (3.64a)

κα4 = κα1; κα5 = κα2; (3.64b)

which can be used to write Equation 3.61 as

Uαβ = καβG
−1
0 + κα1w1G0U1β + κα2w2G0U2β + κα3w3G0U3β + κα4w4G0U4β + κα5w5G0U5β

= καβG
−1
0 + (κα1w1 + κα2w5)G0U1β + (κα2w2 + κα1w4)G0U2β + κα3w3G0U3β (3.65)

where α and β are now restricted to range over 1, 2, and 3, only. Within this restricted

range, καβ = δ̄αβ where δ̄αβ ≡ 1 − δαβ, so that Equation 3.65 becomes the set of 3 × 3

equations

Uαβ = δ̄αβG
−1
0 +

3∑
γ=1

WαγG0Uγβ (3.66)

where

Wα1 = δ̄α1w1 + δ̄α2w5; Wα2 = δ̄α2w2 + δ̄α1w4; Wα3 = δ̄α3w3. (3.67)

We note that Equation 3.67 specifies the elements of the matrix W :

W =


w5 w2 w3

w1 w4 w3

w1 + w5 w2 + w4 0

 =


0 1 1

1 0 1

1 1 0




w1 w4 0

w5 w2 0

0 0 w3

 ≡ Īw (3.68)

where Ī is the matrix with elements Īαβ = δ̄αβ, and

w =


w1 w4 0

w5 w2 0

0 0 w3

 . (3.69)

With these definitions, Equation 3.66 can be written as the 3× 3 matrix equation

U = ĪG−1
0 + ĪwG0U. (3.70)
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It is interesting that Equation 3.70 has the same matrix form as the AGS equations of

standard quantum-mechanical three-body theory [85], with the only essential differences

being that: (i) the matrix of three-body disconnected amplitudes, w, possesses off-diagonal

elements (w4 and w5), (ii) every disconnected amplitude wα includes all possible dressing

terms, and (iii) the three-particle propagator G0 is fully dressed. It is of course the quantum-

field-theoretic nature of the πNN system that gives rise to these differences.

It is also interesting to note that Afnan and Stelbovics [47] have previously shown that

the πNN equations of Afnan and Blankleider and Stingl and Stelbovics can both be written

in the form of Equation 3.70, but with meanings of w and G0 that differ from each other (and

also from ours). In this way, Afnan and Stelbovics showed how the Stingl and Stelbovics

approach reduces to the one of Afnan and Blankleider upon the neglect of two-pion states.

Now we can see that the equations of Stingl and Stelbovics and Afnan and Blankleider

are actually both special cases of Equation 3.70 whose w matrix has elements given by

the convolution expressions of Equations 3.57. In particular, the equations of Stingl and

Stelbovics result from our Equation 3.70 upon the neglect of all states with more than two

pions, while the equations of Afnan and Blankleider result from our Equation 3.70 upon the

neglect of all states with more than one pion; and further, the πNN three-body equations of

Afnan and Thomas [29] result from our Equation 3.70 upon the neglect of the off-diagonal

elements w4 and w5, as well as all dressing.

One can similarly use the symmetries of Uαβ to reduce the sums in Equation 3.62 to

range from 1 to 3; in particular, one obtains

T =
3∑

α,β=1

Tαβ (3.71a)

where T is the 3× 3 matrix given by

T = w + wG0UG0w. (3.71b)

Multiplying the AGS-like Equation 3.70 on the left and right by wG0 and G0w, respectively,

one obtains Faddeev-like equations for T :

T = w + wĪG0T . (3.71c)

We note that Equations 3.71 were previously obtained by Afnan and Stelbovics in the context

of the Stingl and Stelbovics model.

49



CHAPTER 3. THE πNN CONVOLUTION EQUATIONS

3.4.4 On-shell and off-shell amplitudes

Multiplying Equation 3.71a on the left and right by G0, one obtains the expression for

the πNN → πNN Green’s function G−G0 whose connected part is given by

Gc =
3∑

α,β=1

(w̃Uw̃)αβ (3.72a)

=
3∑

α,β=1



w̃1 w̃4 0

w̃5 w̃2 0

0 0 w̃3



U11 U12 U13

U21 U22 U23

U31 U32 U33



w̃1 w̃4 0

w̃5 w̃2 0

0 0 w̃3



αβ

(3.72b)

Using this expression, the on-shell amplitudes for πd→ πd, NN → πd and NN → NN can

now be obtained by taking residues at the appropriate poles in initial and final states.

πd→ πd

To obtain the expression for the πd elastic scattering amplitude, we single out the term

involving U33:

Gc(E) = w̃3(E)U33(E)w̃3(E) + . . . , (3.73)

and seek to expose the deuteron bound state poles in w̃3(E). To facilitate this, we consider

the momentum matrix element of w̃3,

〈p′3p̄′3q′3|w̃3(E)|p3p̄3q3〉 = 〈p′3p̄′3q′3|t̃3 ⊗ g3|p3p̄3q3〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p′3p̄′3q′3|D03(E − z)t3(E − z)D03(E − z)g3(z)|p3p̄3q3〉

=

(
− 1

2πi

)
δ(p′3 − p3)δ(p̄′3 − p̄3)

∫ ∞
−∞

dz D03

(
E − z − Ē3 −

q′3
2

2µ12

)
× t3(E − z − Ē3,q

′
3,q3)D03

(
E − z − Ē3 −

q2
3

2µ12

)
g3(z − E3). (3.74)

This result can be used to expose the deuteron pole by recognising that:

(i) The sub-system NN t−matrix t3(E − z − Ē3,q
′
3,q3) has a pole corresponding to the

deuteron bound state, as previously specified by Equation 3.28 and Equation 3.29.

(ii) The (numerical) dressed pion propagator g3(e) has a pole at the physical pion mass

m3, and so can be written as

g3(e) =
Z3

e+ −m3

+ gb3(e) (3.75)
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where Z3 is the pion renormalisation constant. We shall assume that g3(e) has been

renormalised so that Z3 = 1.

With the pion propagator g3(e) expressed in the form given by Equation 3.75, the z integral

in Equation 3.74 splits into two parts, one containing the pole part of g3, the other containing

gb3. The z integral with the pole part of g3 can be carried out by closing the contour in the

lower half z plane, thus enabling us to write

〈p′3p̄′3q′3|w̃3(E)|p3p̄3q3〉 = δ(p′3 − p3)δ(p̄′3 − p̄3)

×
[
D03

(
E − E3 −m3 − Ē3 −

q′3
2

2µ12

)
t3(E − E3 −m3 − Ē3,q

′
3,q3)

× D03

(
E − E3 −m3 − Ē3 −

q2
3

2µ12

)
+ . . .

]
(3.76)

or using the definitions of Equation 3.29 and Equation 3.31,

〈p′3 p̄′3 q′3|w̃3(E)|p3 p̄3 q3〉 = δ(p′3 − p3)δ(p̄′3 − p̄3)

× [〈q′3|Dcm
03 (e3)tcm

3 (e3)Dcm
03 (e3)|q3〉+ . . .] , (3.77)

where e3 = E−E3−m3− Ē3. Upon using Equation 3.29, one obtains that as E approaches

the on-energy-shell limit E → E3 +m3 + Ē3 +md,

〈p′3p̄′3q′3|w̃3(E)|p3p̄3q3〉 = δ(p′3 − p3)δ(p̄′3 − p̄3)

× 〈q′3|
|ψd〉〈ψd|

E+ − E3 −m3 − Ē3 −md

|q3〉 (3.78)

and therefore

w̃3(E)|p3p̄3q3〉 =
|ψd〉〈ψd|

E+ − E3 −m3 − Ē3 −md

|p3p̄3q3〉. (3.79)

Using this and the corresponding equation for 〈p3p̄3q3|w̃3(E), allows us to take left and right

residues of Equation 3.73 to obtain the expression for the πd elastic scattering opertator in

(p3, p̄3) space:

Tdd(E) = 〈ψd|U33(E)|ψd〉. (3.80)

NN ↔ πd, NN → NN

On-shell: The physical on-shell NN → πd scattering amplitude is obtained by writing

Equation 3.72b as

Gc(E) = w̃3(E)U31(E) [w̃1(E) + w̃4(E)] (3.81)

+ w̃3(E)U32(E) [w̃2(E) + w̃5(E)] + . . . (3.82)
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and taking initial- and final-state residues at the poles of the singled-out terms. To expose

the initial-state two-nucleon pole terms it is sufficient to consider the momentum matrix

elements of w̃1 and w̃4 as the matrix elements of w̃2 and w̃5 then follow by symmetry.

Proceeding as for w̃3 above, one has that

〈p′2p̄′1q′1|w̃1(E)|p2p̄1q1〉 = 〈p′2p̄′1q′1|t̃1 ⊗ g2|p2p̄1q1〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p′2p̄′1q′1|D01(E − z)t1(E − z)D01(E − z)g2(z)|p2p̄1q1〉

=

(
− 1

2πi

)
δ(p′2 − p2)δ(p̄′1 − p̄1)

∫ ∞
−∞

dz D01

(
E − z − Ē1 −

q′1
2

2µ31

)
× t1(E − z − Ē1,q

′
1,q1)D01

(
E − z − Ē1 −

q2
1

2µ31

)
g2(z − E2) (3.83)

where t1(e) can be written in terms of nucleon pole and background terms as in Equation

3.32, and where, similar to Equation 3.75, one can express the (numerical) dressed nucleon

propagator g2(e) as

g2(e) =
Z2

e+ −m2

+ gb2(e). (3.84)

As for g3(e), we take g2(e) to be renormalised so that Z2 = 1. Using the pole parts of t1(e)

and g2(e), one can carry out the z integral to write Equation 3.83 as

〈p′2p̄′1q′1|w̃1(E)|p2p̄1q1〉

= δ(p′2 − p2)δ(p̄′1 − p̄1)

[
D01

(
E − EN2 −m2 − Ē1 −

q′1
2

2µ31

)
× f1(E − EN2 −m2 − EN1 ,q

′
1)g1(E − EN2 −m2 − EN1)

× f̄1(E − EN2 −m2 − EN1 ,q1)D01

(
E − EN2 −m2 − Ē1 −

q2
1

2µ31

)
+ . . .

]
(3.85)

where EN1 = p̄2
1/2m1 and EN2 = p2

2/2m1. As E approaches the on-energy-shell limit E →

EN1 +m1 + EN2 +m2, we thus have that

w̃1(E)|p2p̄1q1〉 =
D01(EN1 +m1)f1(EN1 +m1)f̄1(EN1 +m1)D01(EN1 +m1)

E+ − EN1 −m1 − EN2 −m2

|p2p̄1q1〉.

(3.86)

Interchanging the 1 and 2 indices then gives

w̃2(E)|p1p̄2q2〉 =
D02(EN2 +m2)f2(EN2 +m2)f̄2(EN2 +m2)D02(EN2 +m2)

E+ − EN1 −m1 − EN2 −m2

|p1p̄2q2〉.

(3.87)
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Similarly

〈p′2p̄′1q′1|w̃4(E)|p1p̄2q2〉 = 〈p′2p̄′1q′1|f̃1 ⊗ ˜̄f2(E)|p1p̄2q2〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p′2p̄′1q′1|D01(E − z)f1(E − z)g1(E − z)

× g2(z)f̄2(z)D02(z)|p1p̄2q2〉

=

(
− 1

2πi

)
δ(p̄′1 − p1)δ(p′2 − p̄2)

∫ ∞
−∞

dz D01

(
E − z − Ē1 −

q′1
2

2µ31

)
× f1(E − z − EN1 ,q

′
1)g1(E − z − EN1)

× g2(z − EN2)f̄2(z − EN2 ,q2)D02

(
z − Ē2 −

q2
2

2µ23

)
= δ(p̄′1 − p1)δ(p′2 − p̄2)D01

(
E − EN2 −m2 − Ē1 −

q′1
2

2µ31

)
× f1(E − EN2 −m2 − EN1 ,q

′
1)g1(E − EN2 −m2 − EN1)

× f̄2(m2,q2)D02

(
EN2 +m2 − Ē2 −

q2
2

2µ23

)
. (3.88)

As E approaches the on-energy-shell limit E → EN1 +m1 + EN2 +m2, we thus have that

w̃4(E)|p1p̄2q2〉 =
D01(EN1 +m1)f1(EN1 +m1)f̄2(EN2 +m2)D02(EN2 +m2)

E+ − EN1 −m1 − EN2 −m2

|p1p̄2q2〉.

(3.89)

Interchanging the 1 and 2 indices then gives

w̃5(E)|p2p̄1q1〉 =
D02(EN2 +m2)f2(EN2 +m2)f̄1(EN1 +m1)D01(EN1 +m1)

E+ − EN1 −m1 − EN2 −m2

|p2p̄1q1〉.

(3.90)

Recognising that |p3p̄3q3〉 = |p1p̄2q2〉 = |p2p̄1q1〉 = |p1p2p3〉, we can use the above relations

in the momentum matrix element of Equation 3.82 to take residues at the πd and NN poles

to obtain the expression for the on-shell NN → πd scattering operator

TdN(Eon) =
2∑
j=1

〈ψ3|U3j|D0j(ENj +mj)fj(ENj +mj), (3.91)

where Eon = EN1 +m1 + EN2 +m2.

Off-shell: It will also be useful to define a NN → πd scattering operator with the initial

two nucleons off shell. To do this, we introduce πNN vertex operators Fi(E) and F̄i(E) that
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describe transitions between NN and πNN spaces, defined for i 6= j as

F̃i ≡ G0FiD0 = f̃i ⊗ gj, ˜̄Fi ≡ D0F̄iG0 = ˜̄fi ⊗ gj. (3.92)

These operators have the property that, in the on-shell energy limit for NN scattering,

E → Eon = EN1 +m1 + EN2 +m2,

G0Fi(E
on) = D0i(ENi +mi)fi(ENj +mj). (3.93)

To prove this, we first consider the momentum matrix element of G0F1D0:

〈p′2p̄′1q′1|F̃1(E)|p1p2〉 = 〈p′2p̄′1q′1|f̃1 ⊗ g2(E)|p1p2〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p′2p̄′1q′1|D01(E − z)f1(E − z)g1(E − z)g2(z)|p1p2〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p̄′1q′1|D01(E − z)f1(E − z)g1(E − z)|p1〉〈p′2|g2(z)|p2〉

=

(
− 1

2πi

)
δ(p̄′1 − p1)δ(p′2 − p2)

∫ ∞
−∞

dz D01

(
E − z − Ē ′1 −

q′1
2

2µ31

)
× f1(E − z − EN1 ,q

′
1)g1(E − z − EN1)g2(z − EN2),

= δ(p̄′1 − p1)δ(p′2 − p2)D01

(
E − EN2 −m2 − Ē ′1 −

q′1
2

2µ31

)
× f1(E − EN2 −m2 − EN1 ,q

′
1)g1(E − EN2 −m2 − EN1) + . . . (3.94)

where EN1 = E1, EN2 = E2, and the z integral was taken using the pole part of g2(z−EN2).

It follows immediately that

〈p′2 p̄′1 q′1|G0F1(E)|p1p2〉 = 〈p′2 p̄′1 q′1|f̃1 ⊗ g2D
−1
0 (E)|p1p2〉

= δ(p̄′1 − p1)δ(p′2 − p2)D01

(
E − EN2 −m2 − Ē ′1 −

q′1
2

2µ31

)
× f1(E − EN2 −m2 − EN1 ,q

′
1)g1(E − EN2 −m2 − EN1)D−1

0 (E − EN1 − EN2) + . . . .

(3.95)

In the on-shell limit of E = EN1 +m1 + EN2 +m2 this gives the result

〈p′2p̄′1q′1|G0F1(E)|p1p2〉 = 〈p′2p̄′1q′1|D01(EN1 +m1)f1(EN1 +m1)|p1p2〉. (3.96)

This proves Equation 3.93 for the case i = 1 with the i = 2 case following by interchanging

1↔ 2 in the above proof.
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In view of Equation 3.91, we define the half-off shell NN → πd scattering operator as

TdN(E) =
2∑
j=1

〈ψd|U3jG0Fj, (3.97a)

noting that this definition gives the correct on-shell limit. It’s clear that one can similarly

define the half-off shell πd→ NN scattering operator as

TNd(E) =
2∑
i=1

F̄iG0Ui3|ψd〉 (3.97b)

and the fully off-shell NN → NN scattering operator as

TNN(E) =
2∑

i,j=1

F̄iG0UijG0Fj. (3.97c)

N∆↔ πd, N∆↔ NN , N∆→ N∆

The background πN t−matrix tbi contains a pole corresponding to the formation of the

∆(1232) resonances, as expressed by Equation 3.39. This fact allows us to define, at least

formally (since the ∆ mass is a complex number), the on-shell t−matrices involving N∆

states.

The on-shell N2∆1 → πd scattering amplitude is obtained by writing Equation 3.72b as

Gc(E) = w̃3(E)U31(E)w̃1(E) + . . . (3.98)

and taking initial- and final-state residues at the poles of the singled-out terms. To expose the

initial-state N2∆1 pole term we consider the momentum matrix elements of w̃1. Proceeding

as previously, one has that

〈p′2q′1p̄′1|w̃1(E)|p2q1p̄1〉 = 〈p′2 q′1p̄
′
1|t̃1 ⊗ g2(E)|p2q1p̄1〉

=

(
− 1

2πi

)∫ ∞
−∞

dz 〈p′2q′1p̄′1|D01(E − z)t1(E − z)D01(E − z)g2(z)|p2q1p̄1〉

=

(
− 1

2πi

)
δ(p′2 − p2)δ(p̄′1 − p̄1)

∫ ∞
−∞

dz D01

(
E − z − Ē1 −

q′1
2

2µ31

)
× tb1(E − z − Ē1,q

′
1,q1)D01

(
E − z − Ē1 −

q2
1

2µ31

)
g2(z − E2) + . . . (3.99)
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Using the pole parts of tb1(e) and g2(e), one can carry out the z integral to write Equation

3.99 as

〈p′2q′1p̄′1|w̃1(E)|p2q1p̄1〉

= δ(p′2 − p2)δ(p̄′1 − p̄1)

[
D01

(
E − EN2 −m2 − Ē1 −

q′1
2

2µ31

)
× 〈q′1|φ1〉〈φ1|q1〉
E+ − EN2 −m2 − Ē1 − m̄1

D01

(
E − EN2 −m2 − Ē1 −

q2
1

2µ31

)
+ . . .

]
.

(3.100)

As E approaches the on-energy-shell limit E → Ē1 + m̄1 + EN2 +m2, we thus have that

w̃1(E)|p2q1p̄1〉 =
Dcm

01 (m̄1)|φ1〉〈φ1|Dcm
01 (m̄1)

E+ − Ē1 − m̄1 − EN2 −m2

|p2q1p̄1〉 (3.101)

Taking residues at the πd and N2∆1 poles, one obtains the expression for the on-shell

N2∆1 → πd scattering operator

Td∆1(E) = 〈ψ3|U31|ψ1〉, (3.102)

where E = Ē1 + m̄1 +EN2 +m2. Similar derivations lead to the following full list of on-shell

amplitude operators:

TNN =
∑
ij

F̄iG0UijG0Fj, TN∆j
=
∑
i

F̄iG0Uij|ψj〉, TNd =
∑
i

F̄iG0Ui3|ψ3〉,

T∆iN =
∑
j

〈ψi|UijG0Fj, T∆i∆j
= 〈ψi|Uij|ψj〉, T∆id = 〈ψi|Ui3|ψ3〉,

TdN =
∑
j

〈ψ3|U3jG0Fj, Td∆j
= 〈ψ3|U3j|ψj〉, Tdd = 〈ψ3|U33|ψ3〉. (3.103)

3.4.5 Scattering equations

Coupled Lippmann-Schwinger equations

NN → NN

With the off-shell NN scattering amplitude TNN defined by Equation 3.97c, we now seek

to expose all the intermediate-state NN channels in the Uij amplitudes, with the goal of

deriving a closed scattering equation for TNN . We note, however, that it is not entirely clear

a priori whether this goal is achievable, nor whether in the process of iteration, the NN

propagators will obtain their full dressing.
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To help answer these questions, it will be convenient to use the matrix form of the

AGS-like equations, Equation 3.70, and correspondingly introduce matrices of πNN vertex

operators

FN =


F1

F2

0

 , F̄N =
(
F̄1 F̄2 0

)
, (3.104)

so that Equation 3.97c for TNN can be written in matrix form as

TNN(E) = F̄NG0UG0FN . (3.105)

The intermediate-state NN channels in the U amplitudes are hidden in the input terms

wα of Equation 3.70. To expose these, we first consider wi (i = 1, 2) and recall that the

corresponding Green’s function w̃i is defined as the set of all possible disconnected graphs

for a pion scattering on nucleon i. This means that we can define a Green’s function w̃Pi to

be the set of all two-nucleon reducible graphs belonging to w̃i and write the corresponding

amplitudes as

wi = wPi + w0
i (3.106)

where w0
i is two-nucleon irreducible. Since we consider all possible contributions, it is clear

that one can write

wPi = FiD0F̄i. (3.107)

In the same way, we can separate out the two-nucleon reducible contributions from w4 and

w5, and write

w4 = wP4 + w0
4, w5 = wP5 + w0

5 (3.108)

where

wP4 = F1D0F̄2, wP5 = F2D0F̄1. (3.109)

With the further convention that wP3 = 0 and w0
3 = w3, we can write generally

wα = wPα + w0
α (3.110)

where wPα is the NN -reducible part of wα. We can thus write the w matrix of Equation 3.69

as

w = wP + w0 (3.111)
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where

w =


w1 w4 0

w5 w2 0

0 0 w3

 , wP =


wP1 wP4 0

wP5 wP2 0

0 0 0

 , w0 =


w0

1 w0
4 0

w0
5 w0

2 0

0 0 w3

 . (3.112)

In view of Equations 3.107 and 3.109, it is apparent that

wP = FND0F̄N . (3.113)

Each element of matrix wP can be calculated directly from the fundamental inputs to the

model, as can be w3. By contrast, apart from w3 the elements of w0 are not expressible in

such a direct way, but rather, need to be determined by subtracting wP from w. Examples

of diagrams contributing to w0 are given in Figure 3.3.
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∈ w0
1

∈ w0
2

∈ w0
3

∈ w0
4

∈ w0
5

Figure 3.3: Examples of diagrams contributing to the NN -irreducible t−matrices w0
α. All

possible diagrams of disconnectedness 3 contribute to w0
3, and this is indicated by the black

circles.

As w0 is the matrix of NN -irreducible parts of the input amplitudes, it is clear that the

matrix U0, defined as the solution of the matrix AGS equation

U0 = ĪG−1
0 + Īw0G0U

0 (3.114)

has elements U0
αβ which give the NN -irreducible parts of the full AGS amplitudes Uαβ. One

can now combine Equations 3.70 and 3.114 to obtain

U = U0 + U0G0w
PG0U, (3.115)

which expresses the full amplitude U in terms of its NN -irreducible part U0. Multiplying

the above equation from the left and right by F̄G0 and G0F , respectively, and then using
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Equation 3.113, we derive the Lippmann-Schwinger equation for TNN :

TNN(E) = VNN(E) + VNN(E)D0(E)TNN(E) (3.116)

where VNN is the NN potential (sum of all NN -irreducible graphs) expressed as

VNN = F̄NG0U
0G0FN . (3.117)

This derivation shows explicitly that the NN propagator, which we did not have as an

explicit input in the πNN AGS equations, Equation 3.70, is indeed the fully dressed propa-

gator D0 which is given in terms of the convolution integral of Equation 3.12. Although it

may be clear that the amplitude Uij is made up of fully dressed component amplitudes, it is

noteworthy that the connection to the NN scattering amplitude is via the vertex functions

Fi and F̄i which themselves have all possible dressings.

NN ↔ πd, and πd→ πd

Similarly, we can derive equations for the NN ↔ πd and πd→ πd amplitudes by defining

column and row matrices

Ψd =


0

0

|ψ3〉

 , Ψ̄d =
(

0 0 〈ψ3|
)
, (3.118)

and using these to take matrix elements of Equation 3.115. Altogether, we thus arrive at

the following set of coupled πNN equations:

TNN(E) = VNN(E) + VNN(E)D0(E)TNN(E) (3.119a)

TdN(E) = VdN(E) + VdN(E)D0(E)TNN(E) (3.119b)

TNd(E) = VNd(E) + VNN(E)D0(E)TNd(E) (3.119c)

Tdd(E) = Vdd(E) + VdN(E)D0(E)TNd(E) (3.119d)

where the potentials and t−matrices are defined as

VNN = F̄NG0U
0G0FN , TNN = F̄NG0UG0FN , (3.120a)

VdN = Ψ̄dU
0G0FN , TdN = Ψ̄dUG0FN , (3.120b)

VNd = F̄NG0U
0Ψd, TNd = F̄NG0UΨd, (3.120c)

Vdd = Ψ̄dU
0Ψd, Tdd = Ψ̄dUΨd. (3.120d)
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These scattering equations have the feature that all intermediate-state NN propagators D0

are fully dressed; moreover, the D0 are defined by the convolution of two dressed nucleon

propagators, as in Equation 3.12, and thus contain all possible contributions allowed by the

underlying model of nucleon dressing. In this way, the long-standing normalisation problem

suffered by the unitary πNN equations has been overcome.

3-dimensional NN − πNN convolution equations

Using Equation 3.111 to write Equation 3.70 as

U = ĪG−1
0 + ĪFND0F̄NG0U + Īw0G0U, (3.121)

leads directly to NN − πNN equations that have the same form as those derived by Afnan

and Blankleider [33], but now with all nucleon propagators fully dressed. Indeed, defining

the amplitudes

TλN =
2∑
j=1

UλjG0Fj, (3.122a)

TNµ =
2∑
i=1

F̄iG0Uiµ, (3.122b)

Tλµ = Uλµ, (3.122c)

one can use Equation 3.104 and Equation 3.105 in Equation 3.121 to obtain the coupled

equations

TNN = ZNN (1 +D0TNN) +
∑
iλµ

F̄iδ̄iλG0w
0
λµG0TµN , (3.123a)

TλN =
∑
j

δ̄λjFj (1 +D0TNN) +
∑
µν

δ̄λµw
0
µνG0TνN , (3.123b)

TNµ =
∑
i

F̄iδ̄iµ + ZNND0TNµ +
∑
iλν

F̄iδ̄iλG0w
0
λνG0Tνµ, (3.123c)

Tλµ = δ̄λµG
−1
0 +

∑
i

δ̄λiFiD0TNµ +
∑
ην

δ̄ληw
0
ηνG0Tνµ. (3.123d)

where ZNN is the one-pion exchange term

ZNN = F̄NG0FN . (3.124)
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These equations may be viewed as the extension of the Afnan and Blankleider equations to

include fully dressed nucleons. Note that the on-shell amplitude operators are given by

TNN , TN∆j
= TNj|ψj〉, TNd = TN3|ψ3〉, (3.125a)

T∆iN = 〈ψi|TiN , T∆i∆j
= 〈ψi|Tij|ψj〉, T∆id = 〈ψi|Ti3|ψ3〉, (3.125b)

TdN = 〈ψ3|T3N , Td∆j
= 〈ψ3|T3j|ψj〉, Tdd = 〈ψ3|T33|ψ3〉. (3.125c)

We note that in order to solve Equations 3.119 for the physical amplitudes, one first needs

to construct the potentials as defined in Equations 3.120, and that means having to solve

Equation 3.114 for the matrix of NN -irreducible amplitudes U0. Despite initial appearances,

Equation 3.114 for U0 differs markedly from the standard three-body AGS equation in that

it involves input interactions, w0
4 and w0

5, which are non-pair-like. Similarly, Equations

3.123 involve these non-pair-like terms. For this reason, we devote the next section to

a formulation of πNN equations that involve only pair-like interactions, however, at the

expense of introducing an extra dimension in the NN channels.

3.5 4-dimensional scattering equations

Here we introduce an alternative decomposition of wα to that given in Equation 3.110.

Namely, for i 6= j,

wi = w̄Pi + w̄0
i (3.126)

where w̄Pi and w̄0
i are formed, respectively, from the convolution of the pole and background

parts of the πN t−matrix ti, with the spectator dressed nucleon propagator gj; thus

G0w̄
P
i G0 =

(
D0ifigif̄iD0i

)
⊗ gj, (3.127a)

G0w̄
0
iG0 =

(
D0it

b
iD0i

)
⊗ gj. (3.127b)

By also defining

w̄P3 = 0, w̄P4 = w4, w̄P5 = w5, (3.128a)

w̄0
3 = w3, w̄0

4 = 0, w̄0
5 = 0, (3.128b)

we can now write generally

wα = w̄Pα + w̄0
α. (3.129)
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Enumerating the above relations, we have for the pole parts w̄Pα

G0w̄
P
1 G0 =

(
D01f1g1f̄1D01

)
⊗ g2 (3.130a)

G0w̄
P
2 G0 =

(
D02f2g2f̄2D02

)
⊗ g1 (3.130b)

G0w̄
P
3 G0 = 0 (3.130c)

G0w̄
P
4 G0 = (D01f1g1)⊗

(
g2f̄2D02

)
(3.130d)

G0w̄
P
5 G0 = (D02f2g2)⊗

(
g1f̄1D01

)
(3.130e)

and for the background parts w̄0
α,

G0w̄
0
1G0 =

(
D01t

b
1D01

)
⊗ g2 (3.131a)

G0w̄
0
2G0 =

(
D02t

b
2D02

)
⊗ g1 (3.131b)

G0w̄
0
3G0 = (D03t3D03)⊗ g3 (3.131c)

G0w̄
0
4G0 = 0 (3.131d)

G0w̄
0
5G0 = 0. (3.131e)

By analogy with Equation 3.112, we now write the above quantities in matrix form by

defining

w = w̄P + w̄0 (3.132)

where

w =


w1 w4 0

w5 w2 0

0 0 w3

 , w̄P =


w̄P1 w̄P4 0

w̄P5 w̄P2 0

0 0 0

 , w̄0 =


w̄0

1 0 0

0 w̄0
2 0

0 0 w̄0
3

 . (3.133)

In order to help focus on the two-nucleon contributions to the convolution relations of

Equations 3.130, it is useful to introduce a short-hand notation illustrated generally by

(ab)αz = aα(z)bα(z), (3.134a)

(ab)αz̄ = aα(E − z)bα(E − z). (3.134b)
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Using this notation, we write Equations 3.130 showing the convolution integrals explicitly,

G0w̄
P
1 G0 =

(
− 1

2πi

)∫ ∞
−∞

dz (D0f)1z̄ g1(E − z)g2(z)
(
f̄D0

)
1z̄

(3.135a)

G0w̄
P
2 G0 =

(
− 1

2πi

)∫ ∞
−∞

dz (D0f)2z g1(E − z)g2(z)
(
f̄D0

)
2z

(3.135b)

G0w̄
P
3 G0 = 0 (3.135c)

G0w̄
P
4 G0 =

(
− 1

2πi

)∫ ∞
−∞

dz (D0f)1z̄ g1(E − z)g2(z)
(
f̄D0

)
2z

(3.135d)

G0w̄
P
5 G0 =

(
− 1

2πi

)∫ ∞
−∞

dz (D0f)2z g1(E − z)g2(z)
(
f̄D0

)
1z̄
. (3.135e)

Thus the Green’s function corresponding to the matrix w̄P can be written as

G0w̄
PG0 =

(
− 1

2πi

)∫ ∞
−∞

dzΨN(z)g(E − z)g(z)Ψ̄N(z) (3.136)

where ΨN(z) and Ψ̄N(z) are column and row matrices defined by

ΨN(z) =


(D0f)1z̄

(D0f)2z

0

 , Ψ̄N(z) =
[
(f̄D0)1z̄ (f̄D0)2z 0

]
. (3.137)

Note that ΨN(z) and Ψ̄N(z) depend on energy E, but we do not show this explicitly to save

on notation. Also, in Equation 3.136, we have dropped the particle labels on the propagators

g as these propagators are identical functions.

With the decomposition of the w matrix as in Equation 3.132, the AGS equations, Equa-

tion 3.70, can themselves be expressed, by analogy with Equation 3.114 and Equation 3.115,

as

Ū0 = ĪG−1
0 + Īw̄0G0Ū

0 (3.138)

and

U = Ū0 + Ū0G0w̄
PG0U. (3.139)

Using Equation 3.136 in Equation 3.139 and multiplying on the left and right by Ψ̄N(z′) and

ΨN(z), respectively, one obtains a 4D integral equation for NN scattering:

TNN(z′, z;E) = VNN(z′, z;E)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ VNN(z′, z′′;E)g(E − z′′)g(z′′)TNN(z′′, z;E) (3.140)
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where the NN potential VNN(z′, z;E) and t−matrix TNN(z′, z;E) are defined as

VNN(z′, z;E) = Ψ̄N(z′)Ū0(E)ΨN(z), (3.141)

TNN(z′, z;E) = Ψ̄N(z′)U(E)ΨN(z). (3.142)

Equation 3.140 is an operator equation in the space of momenta of the two nucleons. As such,

the “4D” label given to this equation refers to the fact that once momentum matrix elements

of this equation are taken, a numerical 4-dimensional integral equation results. Equation

3.140 is analogous to the Bethe-Salpeter equation of covariant QFT with the z variable

playing the role of the 0th component of a 4-momentum. Indeed, taking the 3-momenum

matrix element of Equation 3.140 results in the equation

TNN(p′, p;P ) = VNN(p′, p;P )

+

(
− 1

2πi

)∫
d4p VNN(p′, p′′;P )g(E − z′′,P− p′′)g(z′′,p′′)TNN(p′′, p;P ) (3.143)

where p, p′, p′′, and P are 4-momenta defined by p = (z,p), p′ = (z′,p′), p′′ = (z′′,p′′),

and P = (E,P) where P is the total momentum of the two nucleon system. Moreover, for

on-shell values of p and p′, one has that E−z = EN1 +m1, z = EN2 +m2, E−z′ = E ′N1
+m1,

and z′ = E ′N2
+m2, so that

ΨN(z) =


(D0f)1z̄

(D0f)2z

0

 =


D01(EN1 +m1)f1(EN1 +m1)

D02(EN2 +m2)f2(EN2 +m2)

0

 (on-shell)

=


G0F1(E)

G0F2(E)

0

 = G0FN(E) (3.144)

where Equation 3.93 and Equation 3.104 have been used. Similarly,

Ψ̄N(z) = F̄NG0(E) (on-shell) (3.145)

This shows that for z and z′ on-shell, the 4D NN t−matrix of Equation 3.142 coincides with

the physical NN t−matrix previously specified in Equation 3.105.

Similarly, using Equation 3.136 in Equation 3.139 and multiplying on the left and right
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by Ψ̄d and Ψd, respectively, leads to the set of equations

TNN(z′, z;E) = VNN(z′, z;E)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ VNN(z′, z′′;E)g(E − z′′)g(z′′)TNN(z′′, z;E) (3.146a)

TdN(z;E) = VdN(z;E)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′VdN(z′′;E)g(E − z′′)g(z′′)TNN(z′′, z;E) (3.146b)

TNd(z
′;E) = VNd(z

′;E)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′VNN(z′, z′′;E)g(E − z′′)g(z′′)TNd(z
′′;E) (3.146c)

Tdd(E) = Vdd(E) +

(
− 1

2πi

)∫ ∞
−∞

dz′′VdN(z′′;E)g(E − z′′)g(z′′)TNd(z
′′;E) (3.146d)

where

VNN(z′, z;E) = Ψ̄N(z′)Ū0ΨN(z), TNN(z′, z;E) = Ψ̄N(z′)UΨN(z), (3.147a)

VdN(z;E) = Ψ̄dŪ
0ΨN(z), TdN(z;E) = Ψ̄dUΨN(z), (3.147b)

VNd(z
′;E) = Ψ̄N(z′)Ū0Ψd, TNd(z

′;E) = Ψ̄N(z′)UΨd, (3.147c)

Vdd(E) = Ψ̄dŪ
0Ψd, Tdd(E) = Ψ̄dUΨd. (3.147d)

Equations 3.146 and 3.147 are 4D equations that have an identical structure to that of the

3D equations of Equation 3.119 and Equation 3.120. However, the 4D equations utilise

potentials that require the solution of an AGS equation, Equation 3.138, involving only

pair-interactions, while the potentials of the 3D equations require the solution of an AGS-

like equation, Equation 3.114, whose kernel contains complicated disconnected three-body

forces. This suggests that the 4D equations, despite their extra dimension, would be easier

to solve numerically than the otherwise equivalent 3D equations.

4-dimensional NN − πNN convolution equations

As was done for the derivation of the 3D NN − πNN convolution equations, Equa-

tion 3.123, we begin with Equation 3.70, but now use the decomposition of w specified by

Equation 3.132, so that

U = ĪG−1
0 + ĪG−1

0

(
G0w̄

PG0

)
U + ĪG−1

0

(
G0w̄

0G0

)
U. (3.148)
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Then using Equations 3.131 and Equation 3.136, we obtain the root equation from which

the 4D NN − πNN convolution equations follow,

Uλµ = δ̄λµG
−1
0 +

(
− 1

2πi

)∑
ij

δ̄λiG
−1
0

∫ ∞
−∞

dz′′ΨNi(z
′′)g(E − z′′)g(z′′)Ψ̄Nj(z

′′)Ujµ

+

(
− 1

2πi

)∑
α

δ̄λαG
−1
0

∫ ∞
−∞

dz′′D0α(E − z′′)tbα(E − z′′)D0α(E − z′′)ga(z′′)Uαµ. (3.149)

To derive 4D equations that have the same form as the 3D NN−πNN convolution equations,

Equations 3.123, we define matrices

ΦN(z) = G−1
0 (E)ΨN(z) = G−1

0 (E)


(D0f)1z̄

(D0f)2z

0

 , (3.150a)

Φ̄N(z) = Ψ̄N(z)G−1
0 (E) =

[
(f̄D0)1z̄ (f̄D0)2z 0

]
G−1

0 (E), (3.150b)

whose i’th element corresponds to a πNN vertex function where the pion is produced or

annihilated on nucleon i. We also define the amplitudes

TλN(z) =
∑
j

UλjΨNj(z), (3.151)

TNµ(z′) =
∑
i

Ψ̄Ni(z
′)Uiµ, (3.152)

Tλµ = Uλµ, (3.153)

which for on-shell values of z, z′, and E, coincide with the corresponding amplitudes in

Equations 3.122, used for the 3D formulation. Then, multiplying Equation 3.149 on the left

by Ψ̄Nλ(z
′) and on the right by ΨNµ(z), and summing over λ and µ, as appropriate, one
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obtains the set of coupled equations

TNN(z′, z) = ZNN(z′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNN(z′, z′′)g(E − z′′)g(z′′)TNN(z′′, z)

+

(
− 1

2πi

)∑
iα

Φ̄Ni(z
′)δ̄iα

∫ ∞
−∞

dz′′D0α(E − z′′)tbα(E − z′′)D0α(E − z′′)ga(z′′)TαN(z),

(3.154a)

TλN(z) =
∑
j

δ̄λjΦNj(z)

+

(
− 1

2πi

)∑
i

δ̄λi

∫ ∞
−∞

dz′′ΦNi(z
′′)g(E − z′′)g(z′′)TNN(z′′, z)

+

(
− 1

2πi

)∑
α

δ̄λαG
−1
0

∫ ∞
−∞

dz′′D0α(E − z′′)tbα(E − z′′)D0α(E − z′′)ga(z′′)TαN(z),

(3.154b)

TNµ(z′) =
∑
i

δ̄iµΦ̄Ni(z
′) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNN(z′, z′′)g(E − z′′)g(z′′)TNµ(z′′)

+

(
− 1

2πi

)∑
iα

δ̄iαΦ̄Ni(z
′)

∫ ∞
−∞

dz′′D0α(E − z′′)tbα(E − z′′)D0α(E − z′′)ga(z′′)Tαµ,

(3.154c)

Tλµ = δ̄λµG
−1
0 +

(
− 1

2πi

)∑
i

δ̄λiG
−1
0

∫ ∞
−∞

dz′′ΨNi(z
′′)g(E − z′′)g(z′′)TNµ(z′′)

+

(
− 1

2πi

)∑
α

δ̄λαG
−1
0

∫ ∞
−∞

dz′′D0α(E − z′′)tbα(E − z′′)D0α(E − z′′)ga(z′′)Tαµ,

(3.154d)

where

ZNN(z′, z) =
∑
ij

Ψ̄Ni(z
′)δ̄ijG

−1
0 (E)ΨNj(z). (3.155)

These are the 4D NN−πNN convolution equations (4D πNN convolution equations) whose

structure is formally similar to that of the 3D NN − πNN convolution equations (3D πNN

convolution equations), Equations 3.123; however, Equations 3.154 involve only pair-wise

interactions and thus may be more practical for numerical solution.
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3.5.1 4-dimensional equations for separable potentials

Despite the 4D convolution equations, Equations 3.154, appearing easier to solve than

the corresponding 3D ones, Equations 3.123, solving 4-dimensional three-body equations is

still a formidable numerical task. To reduce the complexity of their solution, one can use

a separable potential approximation for the input πN and NN interactions, which would

effectively reduce the problem down to a two-body problem, albeit still 4-dimensional.

To use the separable approximation, we first need to perform a partial wave expansion

of the background two-body t−matrices tbα. To do this we introduce the two-body partial

wave basis states |ωjαtαlαsα
〉 defined for the (bc) particle pair by

|ωjαtαlαsα
〉|mjαmtα〉 =

∑
mσb ,mσc ,mτb ,mτc

mlα ,msα

∫
dp̂α 〈lαmlαsαmsα|jαmjα〉〈σbmσbσcmσc|sαmsα〉

× 〈τbmτbτcmτc|tαmtα〉Ylαmlα (p̂α)|σbmσbσcmσc , τbmτbτcmτc , p̂α〉 (3.156)

where lα is the relative orbital angular momentum quantum number, sα is the sum of the

particle spins (σb and σc), jα is the total angular momentum of the pair, and tα is sum of

the particle isospins (τb and τc). Because of rotational invariance, the states |mjαmtα〉 do

not appear in final expressions and so may effectively be dropped at this stage. To save

on notation we shall write |ωjαtαlαsα
〉 = |ωnα〉 where nα = {lα, sα, jα, tα}. The partial wave

expansion of tbα(e) may thus be expressed as

tbα(e) =
∑
n′αnα

|ωn′α〉t
b
n′α,nα

(e)〈ωnα| (3.157)

where now the partial wave t−matrix tbn′α,nα(e) is assumed to be of separable form

tbn′α,nα(e) = |hn′α〉τn′α,nα(e)〈hnα| (3.158)

where |hnα〉 and 〈hnα| are energy-independent form factor states in radial relative momentum

(pα) space. One can thus write

tbα(e) =
∑
n′αnα

|ηn′α〉τn′α,nα(e)〈ηnα | (3.159)

where

|ηnα〉 ≡ |ωn′α〉|hn′α〉, 〈ηnα | ≡ 〈ωn′α |〈hn′α|. (3.160)
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We minimise notation further by writing Equation 3.159 in matrix form as

tbα(e) ≡ |ηα〉τα(e)〈ηα| (3.161)

where |ηα〉 is a row matrix, τα(e) is a square matrix, and 〈ηα| is a column matrix.

To help identify the type of quasiparticle implied by a separable interaction, we shall

label sub-system πNi channels by subscript ∆i and sub-system NN channels by subscript

d; for example, the quasiparticle propagator matrix τα will be written such that τi ≡ τ∆i

for i = 1, 2, and τ3 ≡ τd. Then, substituting Equation 3.161 into Equations 3.154 suggests

defining the amplitudes

XNN(z′, z) = TNN(z′, z),

X∆iN(z′, z) = 〈ηi|D0i(E − z′)TiN(z),

XdN(z′, z) = 〈η3|D03(E − z′)T3N(z),

XN∆j
(z′, z) = TNj(z

′)D0j(E − z)|ηj〉, (3.162)

XNd(z
′, z) = TN3(z′)D03(E − z)|η3〉,

X∆i∆j
(z′, z) = 〈ηi|D0i(E − z′)TijD0j(E − z)|ηj〉,

X∆id(z
′, z) = 〈ηi|D0i(E − z′)Ti3D03(E − z)|η3〉,

Xdd(z
′, z) = 〈η3|D03(E − z′)T33D03(E − z)|η3〉,
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with Equations 3.154 then being written as

XNN(z′, z) = ZNN(z′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNN(z′, z′′)gN(E − z′′)gN(z′′)XNN(z′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ ZN∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jN(z′′, z)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNd(z
′, z′′)τd(E − z′′)gπ(z′′)XdN(z′′, z), (3.163a)

X∆iN(z′, z) = Z∆iN(z′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ Z∆iN(z′, z′′)gN(E − z′′)gN(z′′)XNN(z′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ Z∆i∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jN(z′′, z)

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ Z∆id(z
′, z′′)τd(E − z′′)gπ(z′′)XdN(z′′, z), (3.163b)

XdN(z′, z) = ZdN(z′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZdN(z′, z′′)gN(E − z′′)gN(z′′)XNN(z′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ Zd∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jN(z′′, z), (3.163c)

XNd(z
′, z) = ZNd(z

′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNN(z′, z′′)gN(E − z′′)gN(z′′)XNd(z
′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ ZN∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jd(z
′′, z),

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZNd(z
′, z′′)τd(E − z′′)gπ(z′′)Xdd(z

′′, z), (3.163d)

X∆id(z
′, z) = Z∆id(z

′, z) +

(
− 1

2πi

)∫ ∞
−∞

dz′′ Z∆iN(z′, z′′)gN(E − z′′)gN(z′′)XNd(z
′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ Z∆i∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jd(z
′′, z),

+

(
− 1

2πi

)∫ ∞
−∞

dz′′ Z∆id(z
′, z′′)τd(E − z′′)gπ(z′′)Xdd(z

′′, z), (3.163e)

Xdd(z
′, z) =

(
− 1

2πi

)∫ ∞
−∞

dz′′ ZdN(z′, z′′)gN(E − z′′)gN(z′′)XNd(z
′′, z)

+

(
− 1

2πi

)∑
j

∫ ∞
−∞

dz′′ Zd∆j
(z′, z′′)τ∆j

(E − z′′)gN(z′′)X∆jd(z
′′, z). (3.163f)
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where

ZNN(z′, z) =
∑
ij

Φ̄Ni(z
′)δ̄ij(E)G0(E)ΦNj(z) (3.164a)

Z∆iN(z′, z) =
∑
j

〈ηi|D0i(E − z′)δ̄ijΦNj(z) (3.164b)

ZdN(z′, z) =
∑
j

〈η3|D03(E − z′)ΦNj(z) (3.164c)

Z∆id(z
′, z) = 〈ηi|D0i(E − z′)δ̄ijG−1

0 (E)D03(E − z)|η3〉 (3.164d)

Z∆i∆j
(z′, z) = 〈ηi|D0i(E − z′)δ̄ijG−1

0 (E)D0j(E − z)|ηj〉. (3.164e)

These kernels can be written out in more detail by using the definition of ΨN and Ψ̄N given

in Equation 3.137. Thus the kernel for NN scattering, ZNN(z′, z), is a sum of two terms:

ZNN(z′, z) = f̄1(E − z′)D01(E − z′)G−1
0 (E)D02(z)f2(z)

+ f̄2(z′)D02(z′)G−1
0 (E)D01(E − z)f1(E − z) (3.165)

and corresponds to the two time orderings of the NN one-pion-exchange potential (OPE).
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4.1 Introduction

This chapter is devoted to the development of various numerical techniques used to solve

our 4-dimensional πNN convolution equations.

In the derivation of the πNN convolution equations, it was crucial that connected three-

body forces were neglected. However, the neglection of connected three-body forces results

in missing diagrams in the πNN convolution equations that leads to connected diagrams

not being fully dressed, such as the one-pion exchange (OPE) diagram. We would now like

to determine the effect that neglecting these connected three-body forces has on the πNN

convolution equations and determine whether this missing dressing is essential. To determine

this, we numerically calculate one- and two-pion exchange amplitudes and compare these to

a numerical calculation of the amplitudes from the πNN convolution equations. We suspect

the contribution of these connected three-body forces on the πNN convolution equations to

be minimal, but it is worth exploring [86].

As discussed in the previous chapter, the 4-dimensional πNN convolution equations of

Equations 3.154 appear easier to solve than the 3-dimensional version in Equations 3.123.

Here, we focus on solving a simplified 4-dimensional NN → NN equation to provide a

framework to solve our 4-dimensional equations and to develop our numerical techniques.

This simplified 4-dimensional NN → NN equation is the same NN → NN equation given

in Equation 3.163, however we only include NN intermediate channels and only calculate

the 3S1 − 3D1 partial waves for Jπ = 1+ and T = 0. Additionally, we use a simplified NN

Born term (Z−diagram) by approximating some kinematic elements of the Z−diagram.

Due to the moving singularities in the kernel of our 4-dimensional πNN convolution

equations, these equations are still difficult to solve numerically. The approach we take in

solving these equations is the spline interpolation method, which allows us to handle these

moving singularities accurately and solve the equations through discretisation and matrix

inversion. The spline interpolation method seems to be the only practically viable method

for solving general 4-dimensional scattering equations [74].

We test the accuracy of this spline interpolation method by applying it to a 3-dimensional

NN → NN equation from the “Unitary NN−πNN” model. We compare the calculation of

the 3-dimensional equation using spline interpolation to the conventional method for solving

these equations, namely contour rotation, to determine the accuracy and validity of this

method.
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4.2 Numerical calculation of dressed one-pion exchange

4.2.1 Partial wave decomposition

We now want to introduce a partial wave decomposition of the 4-dimensional πNN

convolution equations, to reduce the number of dimensions to 2. As the extra dimension z,

does not play a role in the integration of the angles, the partial wave decomposition of our

4-dimensional equations will be the same as for the 3-dimensional equations of Afnan and

Thomas [29]. Therefore, we can follow the procedure of Afnan and Thomas, who provide

a general expression for the partial wave Born amplitude (Z−diagram) in a quasiparticle

model.

We introduce new notation that differs from the notation used by Afnan and Thomas, in

order to avoid confusion with the spectator/nucleon participation notation in Table 3.1. We

refer to this notation as “prime” notation, as it consists of a cyclic permutation of primes

(0, 1, 2) = ( , ′, ′′), where no primes refer to the initial state, one prime refers to the final

state and two primes refers to the exchange particle (or the intermediate state). We assign

the initial and final spectator the momentum p and p′ respectively, and thus the initial and

final quasiparticles will be assign the momentum −p and −p′ respectively, as we are in the

centre of mass system. However, if the final quasiparticle is a nucleon, then we assign it

the momentum p′ (essentially we make the replacement −p′ → p′). The exchange particle

is assigned the momentum p′′, though we tend to replace by a combination of p and p′

through momentum conservation at the vertices so we can use the double prime label when

we integrate over intermediate momenta. The initial quasiparticle is labelled with total spin

(isospin) j (t) and the final quasiparticle is labelled with total spin (isospin) j′ (t′), while the

initial spectator is labelled with spin (isospin) s (τ ) and the final spectator is labelled with

spin (isospin) s′ (τ ′).

The coupling scheme used is that in which the quasiparticle spin angular momentum j

is coupled to the spectator particles spin s to obtain the total spin S

S′ = j′ + s′,

S = j + s.
(4.1)

This is commonly known as LS coupling. We find the quasiparticle’s spin in the following
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way

S′ = s′′ + s,

S = s′ + s′′,

j′ = l′ + S′,

j = l + S.

(4.2)

The orbital angular momentum L is specified by the partial wave being studied. The orbital

angular momentum is then coupled to the total spin S to give the total angular momentum

J = L + S = L′ + S′. (4.3)

Similarly, the isospin of the quasiparticle t is coupled to the spectator isospin τ to give the

total isospin

T = t′ + τ ′,

T = t + τ ,
(4.4)

where the isospin of the quasiparticles are given by

t = τ ′ + τ ′′,

t′ = τ ′′ + τ .
(4.5)

For a two nucleon system, the total isospin T can either be 1 or 0. The total symmetry

factor for the system is (−1)L+S+T which must be −1, as the total wave-function has to

be antisymmetric. This allows us to determine the total isospin T for each partial wave.

Here, we use spectroscopic notation {2S+1LJ} to denote the partial waves for the scattering

process and are interested in the 3S1 − 3D1 coupled channel.

The general Z−diagram with this labelling convention is given in Figure 4.1.

−p′, j′, t′ p, s, τ

p′, s′, τ ′ −p, j, t

hk′(q
′)

hk(q)

p′′, s′′, τ

Figure 4.1: The general Z−diagram with our “prime” notation convention, whose partial

wave expansion is given Afnan and Thomas [29].

76



CHAPTER 4. NUMERICAL TECHNIQUES

The general partial wave Born amplitude corresponding to the diagram shown in Figure

4.1 can be determined by the following:

ZJT
K′,K(p′, p;E) =

∑
l′,l,L

p′lpl
′
ΓLk′,k(p

′, p;E)
l′∑
a=0

l∑
b=0

AL,a,bK′,K

(
p′

p

)a−b
(4.6)

where

ΓLk′,k(p
′, p;E) =

1

2

∫ 1

−1

q′−l
′
hk′(q

′)hk(q)q
−l

E − p′2/(2m′)− p2/2m− (p′′)2/(2m′′)
PL(x)dx (4.7)

and

q′ = ρ′p′ − p; q = ρp− p′ if the final quasiparticle is a nucleon, (4.8a)

q′ = −ρ′p′ − p; q = ρp + p′ otherwise, (4.8b)

ρ′ =
m

m+m′′
; ρ =

m′

m′ +m′′
, (4.8c)

x = p̂′ · p̂. (4.8d)

Here, m is the mass of the initial spectator, m′ is the mass of the final spectator and m′′ is

the mass of the exchange particle. The subscript K is short-hand for the quantum numbers

of the three-body system other than J and T , i.e. K = {tjSL}, while the subscript k refers

to the quantum number of the two-body sub-system. In this equation, PL(x) is the Legendre

polynomial of order L, while hk′ is the form factor for the two-body channel k′ corresponding

to relative orbital angular momentum l′ and equivalent for hk. The coefficient AL,a,bK′,K can be

determined using the procedure of Stingl and Rinat [87], given as

AL,a,bK′,K =(−1)Rt̂′t̂l̂′l̂L̂′L̂Ŝ ′Ŝĵ′ĵŜ′ŜL̂L̂ρ′aρb
[

(2l′ + 1)!(2l + 1)!

(2a)!(2l − 2b)!(2l′ − 2a)!(2b)!

]
τ τ ′′ t′

τ ′ T t

∑
f

∑
ΩΩ′

(f̂ Ω̂Ω̂′)2

S ′ S f

L L′ J



s′ S ′ S s

j′ f j sγ

S′ l′ l S

Ω′ L L

0 0 0

Ω L L′

0 0 0

l′ − a b Ω′

0 0 0

a l − b Ω

0 0 0

L′ L f

Ω′ Ω L


l′ l f

a l − b Ω

l′ b Ω′

 (4.9)

where â ≡ (2a+ 1)1/2 and the phase R is given by

R = −J + L′ + L+ S ′ + S + j′ + j − s′ + S + l′ + τ ′′ + τ ′ − t+ 2T + L. (4.10)
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The coefficient in the above expression also includes a 12j Wigner coefficient which is given

by Ord-Smith [88].

4.2.2 4-dimensional NN Z−diagram

In order to determine the effect of neglecting connected three-body forces on the πNN

convolution equations, we perform a numerical calculation of the fully dressed one-pion

exchange (OPE) diagram found in Chapter 2 and compare it to the numerical calculation of

the OPE diagram found in the πNN convolution equations. We now detail the numerical

version of the fully dressed OPE diagram in Equation 2.32. In the following calculations, we

will consider the 3S1 − 3D1 processes for Jπ = 1+ and T = 0. Using Galilean invariance on

the dressed one-nucleon propagators

g(E,p) = g

(
E − p2

2mN

,0

)
= g(E − Ep) (4.11)

where Ep = p2

2mN
. Using Galilean invariance, and assuming mπ << mN , the dressed pion-

nucleon vertices become

f(p′,p, E) ≈ f

(
p′ − p,0, E − p2

2mN

)
= f(k, E − Ep). (4.12)

Therefore, the Green’s function in Equation 2.32, without the momentum-conserving func-

tion δ, becomes

GOPE
12 =

(
− 1

2πi

)2 ∫
dzdz′g(z′ − Ep1)f̄(k, z′ − Ep1)g(z − Ep1)

1

z′+ − z − ωk

g(E − z′ − Ep2)f(k, E − z − Ep2)g(E − z − Ep2). (4.13)

The variables k′ and k denote the two-body partial wave channel of the πN . Because of

parity conservation, pion creation (annihilation) on a nucleon only occurs in the P11 channel,

so we can drop the references to k′ and k and change our notation ΓLk′,k → ΓL. Because we

are considering the P11 partial wave for πN , the relative orbital angular momentum (l′ and

l) are both equal to 1. We approximate the quantities ρ′ and ρ by assuming the mass of the

nucleon is much greater than the mass of the pion. Thus, we have

ρ′ = ρ =
mN

mN +mπ

≈ 1 (4.14)

which allows the relative momentum to be exactly equal to the pion’s momentum i.e. q′ = k

and q = −k. Our corresponding Z−diagram, which we denote as ZOPE
L′S′LS, becomes a function
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of the extra z variable due to the convolution. Thus, our 4-dimensional Z−diagram ZOPE
L′S′LS

is given by

ZOPE
L′S′LS(z′, p′, z, p;E) =

∑
L

p′pΓL(z′, p′, z, p;E)
1∑

a=0

1∑
b=0

AL,a,bL′S′LS

(
p′

p

)a−b
(4.15)

where

ΓL(z′, p′, z, p;E) =
1

2

∫ 1

−1

k−1Ṽ OPE
12 (z′, p′, z, p;E)k−1PL(x)dx (4.16)

and Ṽ OPE
12 is the OPE Green’s function with “chopped” nucleon legs

Ṽ OPE
12 (z′, p′, z, p;E) =

f̄(k, z′ − Ep1)f(k,E − z − Ep2)

z′+ − z − ωk
. (4.17)

Here, we also have k = |p′ − p| =
√
p′2 + p2 − 2p′px. We note that this is a simplified cal-

culation of the Z−diagram. When we come to calculating our different scattering processes

in the πNN system, we will be more precise with the calculation of ρ′ (ρ) and q′ (q). For

now, we only need a simple model to determine the effect of neglecting connected three-

body forces, whereas we need to be more precise in our numerical calculations of the πNN

equations, as we are interested in reproducing experimental data.

4.2.3 Calculation of the half off-shell OPE amplitude

When calculating the potential V OPE
12 , we “chop” the external legs using D0. When

we consider the initial and/or the final process to be on-shell, the one-nucleon propagators

corresponding to the external legs will be cancelled out by the corresponding D0. Thus,

choosing the initial state to be on-shell i.e. p→ p0, V OPE
12 becomes

V OPE
12 =

(
− 1

2πi

)
1

D0(E − 2Ep)

∫
dz′

f(k, z′ − Ep)f(k,mN)

z′+ − E/2− ωk
g(z′ − Ep)g(E − z′ − Ep).

(4.18)

Now, we need to calculate the z′ integral. One can see that there are two poles below the

real z′ axis, but only one above the real z′ axis. So, we choose to close the contour above the

real z′ axis, enclosing the pole belonging to the second dressed one-nucleon propagator in the

equation above. We can use the dispersion relation of the dressed one-nucleon propagator

to expose the pole, which is given by

g(E) =
Z

E+ −mN

− 1

π

∫ ∞
mN+mπ

dω
Im g(ω)

E+ − ω
=

Z

E+ −mN

+ gc(E) (4.19)
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Using Cauchy’s Residue Theorem to calculate the z′ integral, V OPE
12 becomes

V OPE
12 = f(k,mN)

1

D0(E − 2Ep)

Zg(E − 2Ep −mN)f(k,E − 2Ep −mN)

E/2− Ep −m− ωk

− 1

π
f(k,mN)

1

D0(E − 2Ep)

∫ ∞
mN+mπ

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω.

(4.20)

The first term is of no concern, however, the second term still contains the integral over ω,

so we have to proceed with caution. There will be logarithmic singularities in ω after partial

wave decomposition, due to the term in the denominator. However, this depends on our

choice of the off-shell momentum p. So, if we choose a momentum that satisfies a particular

condition, there will be no logarithmic singularities in the integral. This condition is

E/2− Ep −
√
m2
π + p2 + p2

0 ± 2pp0 < mN +mπ. (4.21)

In the absence of logarithmic singularities, the only singularity to consider is the pole due

to the dressed one-nucleon propagator, which only occurs when E − 2Ep−mN > mN +mπ.

If there is no pole present, we proceed with the integral over ω using Gaussian quadratures.

If the pole is present, we use a subtraction method to handle the singularity. Denoting the

pole as ω0, the omega integral becomes

∫ ∞
mπ+m

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

=

∫ b

a

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

+

∫ ∞
b

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

(4.22)

where a = mN + mπ and a < ω0 < b. The integral from a to b contains no pole, so there

is no issue calculating this integral. Use the dispersion relation of g(E) again, the integral

from a to b becomes∫ b

a

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

=

∫ b

a

Z Im g(ω)f(k,E − 2Ep − ω)

(E/2− Ep − ω − ωk)(E+ − 2Ep − ω)
dω

+

∫ b

a

Im g(ω)gc(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

=

∫ b

a

h(ω)

ω0 − ω
dω +

∫ b

a

Im g(ω)gc(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

(4.23)
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where

h(ω) =
Z Im g(ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
. (4.24)

Now, applying the subtraction method∫ b

a

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω =

∫ b

a

h(ω)− h(ω0)

ω0 − ω
dω

+ h(ω0)

∫ b

a

1

ω0 − ω
dω +

∫ b

a

Im g(ω)gc(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω.

(4.25)

Finally,∫ ∞
mN+mπ

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω

=

∫ b

a

Im g(ω)g(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω +

∫ b

a

h(ω)− h(ω0)

ω0 − ω
dω

+ h(ω0)

(
log

(
1− a

ω0

)
− log

(
1− b

ω0

))
+

∫ b

a

Im g(ω)gc(E − 2Ep − ω)f(k,E − 2Ep − ω)

E/2− Ep − ω − ωk
dω.

(4.26)

4.2.4 One-pion exchange from the πNN convolution equations

As detailed in Chapter 2, the fully dressed NN OPE contains all dressing contributions.

However, the dressed OPE used in the πNN convolution equations is not fully dressed,

as we neglect connected three-body forces. In Figure 4.2, we provide an example of a

contribution that is included in the OPE from the πNN convolution equations and an

example of a contribution that is missing in the OPE from the πNN convolution equations

The comparison of the fully dressed OPE and the one from the πNN convolution equations

(b)(a)

Figure 4.2: (a) Example of a dressing diagram that is included in the OPE of the πNN

convolution equations (b) a dressing diagram involving a connected three-body force, which

is not included in the OPE of the πNN convolution equations.

gives us an indication of the effect that neglecting these connected three-body forces, which

is the approximation used to derive the πNN convolution equations.
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We can calculate the OPE amplitude from the πNN convolution equations using the

OPE term defined by Equation 3.124. This OPE term in Equation 3.124 can be written as

sum of the two OPE time-orderings

ZNN = V OPE
12 + V OPE

21 . (4.27)

We consider the first time-ordering (negative slope), which is given by

V OPE
12 = F̄1G0F2. (4.28)

This is shown diagrammatically in Figure 4.3. Here, contributing diagrams that exhibit a

connected three-body force are neglected, and thereby becomes an approximation to the

fully dressed OPE amplitude. Note that in the potential given above, each term F̄1, G0 and

F2 each represent an individual convolution integral. Therefore, the OPE amplitude can be

written as

V OPE
12 = D−1

0 ( ˜̄f1 ⊗ g2)(G−1
0 )(f̃2 ⊗ g2)D−1

0 (4.29)

where G0 is the πNN propagator and represents a convolution over three individual particle

propagators. We, thus, obtain a Green’s function that is a product of three convolution

integrals. Using our “prime” notation, this expression is

GOPE
12 (p′,p, E) =

(
− 1

2πi

)[∫
dzg(z,p′)f̄(p′,p, E)g(z − ωk,p)g(E − z,p′)

]
[∫

dzg(z,p)g(E − ωk − z,−p′)

]−1

[∫
dzg(z − ωk,−p′)f(−p′,−p, E)g(z,−p)g(E − z,p)

]
.

(4.30)

4.2.5 Results

The results are given in Figure 4.4. In our numerical calculation, we use the M1 πN

interaction of Afnan and McLeod [40] for our dressed pion-nucleon vertices f(k,E). While

πNN convolution equations use two-body input that is constructed with dressed nucleons,

the input of Afnan and McLeod is much easier to calculate and reduces overall computation

time, despite being constructed with undressed nucleons. We plot the half off-shell partial

wave amplitude as a function of centre of mass energy E for the partial wave 3S1 → 3S1
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≈

z,p

E − z′,−p′E − z′,−p′ E − z′,−p′

z,pz,pz′,p′

E − z,pE − z,p

z′,p′ z,p

E − z′,−p′

z′ − z,k
z′ − z,k

Figure 4.3: Diagram representation of the dressed one-pion exchange that with neglecting

three-body forces can be represented by three individual diagrams. The black dots represent

the dressing of each nucleon before and after the process of pion exchange.

using no dressing, full dressing and dressing neglecting connected three-body forces. The

undressed OPE potential is simply given by

V OPE
12 (p′, p;E) =

1

E+ − Ep′ − Ep − 2mN − ωk
. (4.31)

For this calculation, we put the final momentum on-shell p′ → p0 where E = p2
0/mN +2mN .

The half off-shell amplitude then depends on two variables, the energy E and the off-shell

momentum p, which we choose as p = 0.1p0.

Analysing the results of Figure 4.4, we initially notice the impact that dressing has on the

OPE amplitude. One then notices the similarity between full dressing and dressing neglecting

connected three-body forces, as they are essentially overlapping plots. This suggests the effect

of neglecting connected three-body forces one the OPE amplitude is negligible, justifying its

use as an approximation to derive the πNN convolution equations.
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Figure 4.4: 3S1 → 3S1 partial wave amplitudes for half off-shell NN one-pion exchange. The

solid line represents the partial wave amplitude for the fully dressed one-pion exchange with

full nucleon dressing, while the dashed line represents the partial wave amplitude for one-

pion exchange from the πNN convolution equations, which neglects connected three-body

forces. The dot dashed line represents the partial wave amplitude for one-pion exchange

without any dressed nucleons.
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4.3 Numerical calculation of dressed two-pion exchange

Now, we want to perform a numerical calculation of the dressed two-pion exchange (TPE)

amplitude using the two-pion exchange Green’s function in Equation 2.45 and compare it

to the TPE amplitude of the πNN convolution equations. The numerical calculation of the

TPE amplitude is more difficult than the OPE amplitude of the previous section, due to

the extra z′′ integral that we now have to evaluate. We find that there are two methods

for evaluating this z′′ integral; an analytical method by evaluating the integral by taking

residues at the poles or evaluating the integral numerically.

4.3.1 Analytical form of dressed two-pion exchange

After partial wave decomposition, the expression for fully dressed TPE in Equation 2.45,

with our earlier defined “prime” notation, becomes

ZTPE(z′, p′, z, p;E) =∑
L′′S′′

∫
ZOPE
L′S′L′′S′′(z

′, p′, z′′, p′′;E)g(z′′ − Ep′′)g(E − z′′ − Ep′′)ZOPE
L′′S′′LS(z′′, p′′, z, p;E)p′′2dp′′dz′′

(4.32)

where the Z−diagram ZOPE
L′S′LS(z′, p′, z, p;E) is the same Z−diagram used in the calculation

of the one-pion exchange amplitude, given in Equation 4.15.

We concern ourselves primarily with how to perform the z′′ integral. For simplicity, we

focus only on terms that contain z′′ and ignore everything else, which can easily be added

back in later. This leaves us with(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2

∫ ∞
−∞

dz′′

f(k,mN)f (k,E − z′′ − Ep′′)
E/2 + iε− z′′ − ωk

g (z′′ − Ep′′) g (E − z′′ − Ep′′)
f (k′, z′′ − Ep′′) f(k′,mN)

z′′ + iε− E/2− ωk′
.

(4.33)

Notice that f(k,mN) and f(k′,mN) do not contain z′′, so we take them out of the z′′ integral,(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,mN)f(k′,mN)

∫ ∞
−∞

dz′′

f (k,E − z′′ − Ep′′)
E/2 + iε− z′′ − ωk

g (z′′ − Ep′′) g (E − z′′ − Ep′′)
f (k′, z′′ − Ep′′)

z′′ + iε− E/2− ωk′
.

(4.34)
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We now perform the z′′ integral using Cauchy’s Residue Theorem by taking the residues of

the poles. We choose to take the residue of the poles below the real z′′ axis. As can be seen

from the above equation, there are 3 possible poles below the real z′′ axis; one due to the

nucleon propagator, one due to the dressed vertex function and the last one due to the pion

propagator. To expose the poles in the nucleon propagator and dressed vertex, we use the

analytical structure of both functions. We use a reduced form to save on notation and also

choose the +iε for convenience to our calculation, as they need not equal. Our analytical

structure in reduced form becomes

f(k,E) = f0(k) +
X (ω1)

E + 3iε− ω1

,

g(E) =
Z

E + 2iε−mN

+
Y (ω2)

E + 2iε− ω2

.

(4.35)

Putting these equation into our integral for the functions that contain the poles and ex-

panding, we would then proceed with calculating the residue at each of the poles. The full

derivation of this expression and calculation of the z′′ integral is given in Appendix D. The

final expression after performing the z′′ integral is given as∫ ∞
0

dp′′(p′′)2f(k,mN)f(k′,mN)

f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)
2iε− ωk − ωk′

× g (E/2− Ep′′ + ωk′) f (k′, E/2− Ep′′ + ωk′)

+
Zf (k,E − 2Ep′′ + 2iε−mN) g (E − 2Ep′′ + 2iε−mN)

(E/2− Ep′′ + 3iε−mN − ωk) (−E/2 + Ep′′ − iε+mN − ωk′)
f(k′,mN)

+
f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)
g∗ (ω1)

+
f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)
f (k′, ω2) .

(4.36)

While we have gone through a rather “lengthy” derivation to evaluate the z′′ integral, we

mention particular issues that arise with calculating the z′′ integral analytically:

1. Just to obtain the expression above required much algebra and there seems to be

no obvious and systematic way to obtain this expression without going through the

tedious derivation. While we now have the expression for TPE, the same procedure

would need to be repeated for higher pion exchange with the task being foreseeably

much more difficult.

2. Our overall goal is to solve the scattering equations derived in the previous chapter.

One could solve the equation numerically by iterating the equation and calculating each
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term individually, until the amplitude converges. However, per point 1, the second-

order term is difficult enough to calculate. One cannot simply perform the z′′ integral

in the scattering equations by hand using Cauchy’s Residue Theorem, as the analytic

structure of the πNN convolution equations is not clear and it is unknown whether the

equations contain poles in the contour of integration. We would also have to repeat

this process when we consider the scattering processes other than NN → NN .

3. Evaluation of the z′′ integral is not the end of the calculation, the p′′ integral and the ω

integrals still need to be calculated. Because of the singularities in the p′′ integral, we

have to be a bit careful about how we handle this numerically. We can use a standard

contour rotation of the p′′ integral to avoid these singularities. This is no problem for

the first, second and fourth term in Equation 4.36. However, a problem arises with the

third term, which we have confirmed numerically cannot be calculated using contour

rotation. The problem is the technique of contour rotation is a consequence of Cauchy’s

integral theorem, which requires the function to be analytic in the complex plane and

the third term is not analytic because of the X(ω). For a function f(z) of a complex

value z = x+ iy to be analytic, it must satisfy the Cauchy-Riemann equations, which

for a complex-valued function represented as f(z) = f(x, y) = u(x, y) + iv(x, y) where

u(x, y) and v(x, y) are real-valued functions, must satisfy:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

(4.37)

Now, the X(ω) is not analytic as it does not satisfy the Cauchy-Riemann equations.

As X(ω) = Im f(q, ω), this function is real and hence v(x, y) = 0. The only way for

this function to satisfy the Cauchy-Riemann equations is if Im f(q, ω) is constant for

both x and y. This is not possible as it would imply that Im f(q, ω) is not dependent

on the complex variable p′′, which it clearly is as it is explicitly dependent on q,

which contains the complex value p′′. Therefore, this function is not analytic and

hence, contour rotation cannot be used to evaluate the integral over the third term in

Equation 4.36.

We have determined that the p′′ integral in Equation 4.36 cannot be calculated using con-

ventional methods, such as contour rotation, due to the term 3 not being analytic. We

could, however, calculate the other terms using contour rotation and calculate the term 3
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being integration along the real p′′ momentum axis. But, if we were to go through this

effort, we could just as easily calculate the p′′ integral in Equation 4.32 along the real axis,

and then calculate the z′′ integral numerically rather than analytically. The opportunity to

calculate the z′′ integral numerically avoids the problems that were mentioned previously

concerning the difficulties in the analytic evaluation of the z′′ integral. For our calculation

of the two-pion exchange amplitude, we choose this method of evaluating the integrals along

the real axis. As a result, we must consider the numerical singularities in the integrals that

are commonly avoided when using contour rotation.

4.3.2 Numerical handling of the logarithmic singularities

Our expression for the full convolution of TPE contains two ZOPE terms, which each

contain the function ΓL given below

ΓL(z′, p′, z, p;E) =
1

2

∫ 1

−1

k−1f(k, z′ − Ep′)f(k,E − z − Ep)k−1

z′+ − z −
√
k2 +m2

π

PL(x)dx. (4.38)

When we integrate over the angle x in ΓL, logarithmic singularities at the end points (when

x = ±1) arise from the pion propagator term as integration results in a logarithmic function.

To see this explicitly, consider the x integral in ΓL,

f(x)

b+ iε+
√
a− cx

(4.39)

where

f(x) =
1

2
k−1f(k, z′ − Ep′)f(k,E − z − Ep)k−1PL(x),

b = z′ − z,

a = m2
π + p′2 + p2,

c = 2p′p.

(4.40)

We suppress the integral over x to save notation. Now, we exploit the square-root in the

denominator to expose the pole

f(x)

b+ iε+
√
a− cx

b+ iε−
√
a− cx

b+ iε−
√
a− cx

=
f(x)(b+ iε−

√
a− cx)

(b+ iε)2 − (a− cx)
=
f(x)(b+ iε−

√
a− cx)

b2 − 2bεi− ε2 − a+ cx
.

(4.41)
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Therefore,

h(x)

b2 − 2bεi− ε2 − a+ cx
=

1

c

h(x)

x− x0 + iε′
(4.42)

where

h(x) = f(x)(b+ iε−
√
a− cx),

x0 =
1

c
(a− b2),

ε′ = 2bε/c.

(4.43)

It is important that we have this new definition of ε, as a change in sign may occur because

the values of b and c vary. It is vital that we have the correct sign for the iε, as this we

change the analytic nature of the function. Since ε is already small, we can simply neglect

ε2. Now, we want to use a pole subtraction but we need to be careful about how we use this

pole subtraction. We could simply write

1

c

∫ 1

−1

h(x)

x− x0 + iε′
dx =

1

c

(∫ 1

−1

h(x)− h(x0)

x− x0 + iε′
dx+ h(x0)

∫ 1

−1

1

x− x0 + iε′
dx

)
(4.44)

and therefore

1

c

∫ 1

−1

h(x)

x− x0 + iε′
dx

=
1

c

(∫ 1

−1

h(x)− h(x0)

x− x0 + iε′
dx+ h(x0)(log(1− x0 + iε′)− log(−1− x0 + iε′))

)
.

(4.45)

One can now see that evaluating the x integral introduces logarithmic singularities in the

ZOPE term, which occur when x0 = ±1.

If the poles x0 is outside of the integral limits, then the pole subtraction should not be

necessary. In practice, it is numerically advantageous to always use a pole subtraction as

there can be a large numerical error when x0 is close to −1 or 1. Though, this issue could

be avoided by using the pole subtraction method when the x0 is within a larger interval

(say x0 ∈ [−2, 2]). However, there is a possible error in using the pole subtraction method

when the pole is outside of the integral limits as it can cause the input of the dressed vertex

function f(k,E) to be complex. As these vertex functions are essentially 1/(k2 + β2), it is

possible for there to be a pole if k is complex.

To avoid a possible pole in the dressed vertex function, we adapt the method described

by Liu et al. [89] who suggest replacing the function h(x0) by the function ĥ(x0) which has

the condition

ĥ(x0) =

 h(x0) if |x0| ≤ 1

h
(
x0

|x0|

)
if |x0| > 1

. (4.46)
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Our pole subtraction then becomes

1

c

∫ 1

−1

h(x)

x− x0 + iε′
dx

=
1

c

(∫ 1

−1

h(x)− ĥ(x0)

x− x0 + iε′
dx+ ĥ(x0)(log(1− x0 + iε′)− log(−1− x0 + iε′))

)
.

(4.47)

This should avoid the possibility of a pole in the dressed vertex function while allowing us

to use the pole subtraction all the time. Our pole subtraction is slightly different to the one

detailed by Liu et al. [89], as the authors have not accounted for the possibility that iε can

change sign as a result of the rearrangement to expose the x integral pole, as ε is now a

function of z′, z, p′ and p.

These logarithmic singularities can be found by solving

z′ − z −
√
m2
π + p′2 + p2 ± 2pp′ = 0. (4.48)

These logarithmic singularities are not as detrimental as pole singularities, so the momen-

tum integral can still be calculated with “brute force,” by using many quadrature points.

However, one would require an enormous amount of quadrature points to obtain sufficient

accuracy, so it is better practice to account for these logarithmic singularities. Since these

singularities are discontinuities along the p axis, instead of using quadrature points along the

entire integration interval, we should split the integration interval at each logarithmic singu-

larity and calculate each interval using quadrature points. In practice, this method reduces

the overall amount of quadrature points needed to accurately calculate the p integral.

Standard Gauss-Legendre quadrature points will suffice in when handling the logarithmic

singularities by splitting the interval. But if one wants greater accuracy of the p integral,

one can use the modified Gaussian quadratures of Pachucki et at. [90] who have created

quadrature points specifically to integrate intervals with an end-point logarithmic singularity.

The authors provide the Mathematica code used to calculate these modified quadrature

points (which we refer to as Gauss-Log points) for the interval [0, 1], which are used to

calculate integrals with a logarithmic singularity at 0. These quadratures can be transformed

to any finite interval and modified to account for when the end-point singularities is on the

left side or right side of the interval. We can do this by using a linear transform to map

[0, 1] → [a, b] if the interval we are integrating has a logarithmic singularity at a and we

map [0, 1]→ [b, a] if the interval we are integrating has a logarithmic singularity at b. If we

denote the Gauss-log quadrature points as {xlogi } and the associated weights as {wlogi }, the
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transformation for a logarithmic singularity on the left is given by

x̄log = (b− a)xlog + a,

w̄log = (b− a)wlog,
(4.49)

where we use the bar notation to denote the quadrature points and weight on the interval

[a, b]. The transformation for a logarithmic singularity on the right is given by

x̄log = Reverse((a− b)xlog + b),

w̄log = (b− a)wlog,
(4.50)

where “Reverse” denotes the process of reversing the order of the quadrature points.

These Gauss-Log quadrature points only work when there is only one end-point singu-

larity on the integration interval, so intervals with a singularity at both ends will have to be

subdivided in order for the Gauss-Log quadrature point to be effective.

When we evaluate the p′′ integral, we adapt the method describe by Matsuyama [91],

where a change of variables is adopted to handle the logarithmic singularity. If we integrate

a function f(p) in the interval [a, b] and a logarithmic singularity denoted by plog exists in

this interval, our integral becomes∫ b

a

f(p)dp =

∫ 0

−t1
f(plog + t3)3t2dt+

∫ t2

0

f(plog + t3)3t2dt (4.51)

where t1 = (plog−a)1/3 and t2 = (b−plog)1/3. We calculate the integrals in the above method

using the Gauss-log quadrature points described before. If we are integrating in an interval,

which has two or more logarithmic singularities within it, we split the full interval half-way

between adjacent singularities and perform the above method to handle them. We denote

this method as the “change of variable” method.

4.3.3 Numerical handling of the poles

The first method in trying to calculate a full convolution is an analytic method, using

Cauchy’s Residue Theorem to determine the residue of the amplitude at the poles. This

is a tedious task requiring much algebra in order to obtain an amplitude that is suitable

for numerical evaluation. Another difficulty is that the intermediate momentum must be

integrated over for convolution diagrams of higher order than OPE, where the amplitude

contains singularities. A technique to avoid these singularities is the method of rotating the

quadratures off the real axis by a small angle, which is a consequence of Cauchy’s Residue
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Theorem. However, because of its relation to Cauchy’s Residue Theorem, we can only use

this rotation of quadratures technique when we have analytic functions. In most situations,

this is the case anyway, though often we encounter functions that are either real or purely

imaginary. In this case, the function is not analytic as it does not satisfy the Cauchy-

Riemann equations. This cannot be guaranteed for all functions that may appear in this

calculation, therefore integration must be carried out on the real axis.

Though, because of the +iε protecting the pole in the dressed one-nucleon propagator,

one can use the Sokhotski-Plemelj theorem stating for a complex function f(x), that is

defined and continuous on the real axis:∫ b

a

f(x)

x− x0 + iε
dx = PV

∫ b

a

f(x)

x− x0

dx− iπf(x0) (4.52)

where PV refers to the Cauchy principal value integral. Following the procedure of Noble

[92], the principal value integral can be calculated numerically using Gaussian quadratures

by making quadrature intervals of equal length around the pole.

Kolm and Rokhlin [93] present a different approach to Noble to evaluate these principal

value integrals. The authors use a modified version of the quadrature weights, which can

be used rather than creating quadrature intervals of equal length around the pole. Further,

Kolm and Rokhlin present a numerical method to calculate integrals with a pole of order 2,

which cannot be achieved by Noble’s method. Though, we tend to the method specified by

Noble, as we do not have to change the functional form of our numerical equations as we

would using the quadratures of Kolm and Rokhlin. This makes it easier to implement the

method of Noble into our equations.

One can also use a subtraction method, similar to the subtraction method used to handle

the x integral. Though, since the integration interval is [0,∞), we would not use the adapted

method of Liu mentioned above. Handing the poles using either the Sokhotski-Plemelj

theorem or pole subtraction method should be equivalent, however, using the Sokhotski-

Plemelj theorem is a bit more involved as we would need to calculate the principal value

integral. While this is not such a difficult procedure as we would simply choose quadrature

points within equal intervals around the pole, it becomes more difficult when we also have to

consider the logarithmic singularities as now we have to be more careful about how we choose

our quadrature points. Because of this, the pole subtraction method can be often favoured as

we only need to choose the quadrature points based on the logarithmic singularities, rather

than worrying about the pole.
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4.3.4 Numerical handling of the singularities in the z′′ integral

We have mentioned above about the difficulties in calculating the z′′ integral analyti-

cally using Cauchy’s Residue Theorem. Here, we discuss how to calculate the z′′ integral

numerically, which becomes advantageous in calculations in later chapters.

We want to calculate the z′′ integral numerical using quadrature points, however we

suspect there might be singularities like in the p′′ integral. However, looking at the functional

form at the Z−diagrams in Equation 4.32, the singularities in the z′′ integral are not obvious,

in comparison to the pole and logarithmic singularities in the p′′ integral. To determine if

there are any singularities in the z′′ integral and their position, we can plot the p′′ integral

of Equation 4.32 as a function of z′′. We represent this function by Ip(z
′′), which is given

explicitly by Equation 4.53

Ip(z
′′)

=
∑
L′′S′′

∫
ZOPE
L′S′L′′S′′(z

′, p′, z′′, p′′;E)g(z′′ − Ep′′)g(E − z′′ − Ep′′)ZOPE
L′′S′′LS(z′′, p′′, z, p;E)p′′2dp′′.

(4.53)

We plot the p′′ integral as a function of z′′ in Figure 4.5 at a fixed energy of E = 2.2 GeV,

while using the M1 πN interaction of Afnan and McLeod [40] for our dressed pion-nucleon

vertices f(k,E).

As we can see from the plot of the p′′ integral as a function of z′′, there are two distinct

structures corresponding to sharp spikes. One of these structures seems to occur just below

z′′ = 5 and the other seems to occur just above z′′ = 6. After some investigation, we

determine that the main peak in the real part of the plot occurs at z′′ = E/2 = 5.57445 and

that the sharp spikes occur at z′′ = E/2 − mπ = 4.87866 and z′′ = E/2 + mπ = 6.27024.

These singularities in the z′′ integral must occur due to the presence of the logarithmic

singularities in the p′′ integral, as the points z′′ = E/2±mπ correspond to the boundaries of

logarithmic singularity on-set in the p′′ integral. So, now that we know there are singularities

in the z′′ and we know the location of these singularities, we can calculate the z′′ integral

using Gaussian quadrature points. We construct these quadrature points on the interval

[−∞,∞], while splitting the interval at z′′ = E/2−mπ and z′′ = E/2 +mπ. Therefore, our

integration intervals are [−∞, E/2−mπ], [E/2−mπ, E/2 +mπ] and [E/2 +mπ,∞] and we

population each interval with quadrature points to calculate the full z′′ integral.
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Figure 4.5: Plot of the real and imaginary parts of the 3S1 → 3S1 two-pion exchange partial

wave amplitude of Equation 4.53 against the energy-like variable z′′ at a fixed energy of

E = 2.2 GeV. The function Ip(z
′′) is Equation 4.32 as a function of the variable z′′, after the

p′′ integral has been performed.
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4.3.5 Two-pion exchange from the πNN convolution equations

≈

Figure 4.6: Diagram representation of the dressed two-pion exchange that with neglecting

three-body forces can be represented by three individual diagrams as in the πNN convolution

equations.

Similarly to the case of one-pion exchange, two-pion exchange can be determined from

the πNN convolution equations and is given as

V TPE
12 = F̄1w5F2 (4.54)

which is given diagrammatically in Figure 4.6. This corresponds to the convolutions

V TPE
12 = D−1

0 ( ˜̄f1 ⊗ g2)G−1
0 (f̃2 ⊗ ˜̄f1)G−1

0 (f̃2 ⊗ g1)D−1
0 . (4.55)

We, thus, obtain the Green’s function

GTPE
12 (p′,p, E) =

(
− 1

2πi

)∫
dp′′[∫

dz′g(z′,p′)f̄(p′,p′′, E)g(z′ − ωk,p′′)g(E − z′,−p)

]
[∫

dz′g(z′ − ωk,p′′)g(E − z′,−p′)

]−1

[∫
dz′′g(z′′,p′′)f̄(p′′,p, E)g(z′′ − ωk′ ,p)g(E − z′′ − ωk,−p′)f(−p′,−p′′, E)g(E − z′′,−p′′)

]
[∫

dzg(z,p)g(E − z − ωk′ ,−p′′)

]−1

[∫
dzg(z,p)g(E − z − ωk′ ,−p′′)f(−p′′,−p, E)g(E − z,−p)

]
.

(4.56)

But, as we are only consider fully on-shell TPE, the external legs in this Green’s function

will be cancelled out by the external two-nucleon propagators. Therefore, by “chopping off”

these external legs and setting the z variables on-shell (z′ = z = E/2), our expression for
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the TPE amplitude becomes

V TPE
12 (p′,p, E) =

(
− 1

2πi

)∫
dp′′

f̄(p′,p′′, E)g(E/2− ωk,p′′)D−1
0 (E − ωk,p′,p′′)[∫

dz′′g(z′′,p′′)f̄(p′′,p, E)g(z′′ − ωk′ ,p)g(E − z′′ − ωk,−p′)f(−p′,−p′′, E)g(E − z′′,−p′′)

]
D−1

0 (E − ωk′ ,p′′,p)g(E/2− ωk′ ,−p′′)f(−p′′,−p, E).

(4.57)

Now, presented in a “ready-to-calculate” form where we put both sides on-shell (p′ = p = p0)

V TPE
12 (E) =

(
− 1

2πi

)∫
dp′

f̄(k,mN)g(E/2− Ep′′ − ωk)D−1
0 (E/2 +mN − Ep′′ − ωk)[∫

dz′′g(z′′ − Ep′′)f̄(k′, z′′ − Ep′′)g(z′′ − E/2 +mN − ωk′)

g(E/2− z′′ +mN − ωk)f(k, z′′ − Ep′′)g(E − z′′ − Ep′′)]

D−1
0 (E/2 +mN − ωk′ − Ep′′)g(E/2− Ep′′ − ωk′)f(k′,mN).

(4.58)

The results for parallel (same slope) two-pion exchange is given in Figure 4.7. Again, we

use the M1 πN interaction of Afnan and McLeod [40] for our dressed pion-nucleon vertices

f(k,E). Comparing the full calculation with all nucleons fully dressed to the calculation

neglecting connected three-body forces obtained from the πNN convolution equations, we

see a similar shape across the energy range. The amplitudes start at the minimal energy

essentially overlapping and begin to diverge slightly as the energy increases, however, this

difference in the amplitudes at higher energies is minimal. From the trend seen in Figure 4.7,

it is expected that connected three-body forces have more of an effect on the amplitude for

higher pion exchanges. The effect of connected three-body forces on the two-pion exchange

amplitude tends to be more significant at higher energies, but these energies are beyond

the energies we will use in our three-body πNN calculations, so we do not expect that

neglecting these connected three-body forces will have a significant effect on our three-body

πNN calculations.
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Figure 4.7: 3S1 → 3S1 partial wave amplitudes for same slope fully on-shell NN two-pion

exchange. The solid line represents the partial wave amplitude for the calculation with fully

dressed nucleons, while the dashed line represents the partial wave amplitude from the πNN

convolution equations, which neglects connected three-body forces.
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4.3.6 Two-pion exchange with different slopes

We repeat the same procedure for different slope two-nucleon exchange to determine if

the effect of neglecting connected three-body forces is minimal for a different time-ordering.

z′,p′ z,pz′′,p′′

E − z′,−p′ E − z′′,−p′′ E − z,−p

z′′ − z′,k z′′ − z,k′

N1

N2

Figure 4.8: Convolution diagram corresponding to different slope dressed two-nucleon ex-

change.

The diagram for different slope two-nucleon exchange in given in Figure 4.8, while the di-

agram representing the product of convolutions representation for different slope two-nucleon

exchange is given in Figure 4.9. The equation for different slope two-nucleon exchange with

full nucleon dressing and after partial wave decomposition is given as(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,mN)f(k′,mN)

∫ ∞
−∞

dz′′

f (k, z′′ − Ep′′)
z′′ + iε− E/2− ωk

g (z′′ − Ep′′) g (E − z′′ − Ep′′)
f (k′, z′′ − Ep′′)

z′′ + iε− E/2− ωk′
.

(4.59)

Again, we ignore everything including the terms corresponding to the partial wave decom-

position to illustrate the functional form of the amplitude. The equation for different slope

two-nucleon exchange from the πNN convolution equations is given as

V TPE
12 = F̄2w

P
1 F2. (4.60)

Explicitly showing the convolutions, we obtain

V TPE
12 = D−1

0 ( ˜̄f2 ⊗ g1)G−1
0 ((gπNfgf̄gπN)1 ⊗ g2)G−1

0 (f̃2 ⊗ g1)D−1
0 . (4.61)

Now explicitly showing the energy and momentum variables as well as the convolution inte-
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grals

V TPE
12 (p′,p, E) =

(
− 1

2πi

)∫
dp′′

f̄(−p′,−p′′, E)g(E/2− ωk,p′′)D−1
0 (E − ωk,p′,p′′)[∫

dz′′g(z′′ − ωk,p′)f(p′,p′′, E)g(z′′,p′′)f̄(−p′,−p′′, E)g(z′′ − ωk′ ,p)g(E − z′′,−p′′)

]
D−1

0 (E − ωk′ ,p′′,p)g(E/2− ωk′ ,p′′)f(−p′′,−p, E).

(4.62)

The results for different slope two-nucleon exchange is given in Figure 4.10. Again, we see

a similar trend to the two-pion exchange amplitude for parallel slopes, in which the two

graphs essentially overlap, over to diverge at higher energies. In conjunction with our results

comparing the one-pion exchange amplitude with and without connected three-body forces,

we have sufficient evidence to suggest that these connected three-body forces will have a

neglectable effect on the overall πNN convolution equations.

≈

Figure 4.9: Diagram representation of the dressed two-pion exchange that with neglecting

three-body forces can be represented by three individual diagrams as in the πNN convolution

equations.
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Figure 4.10: 3S1 → 3S1 partial wave amplitudes for different slope fully on-shell two-pion

exchange. The solid line represents the partial wave amplitude for the calculation with fully

dressed nucleons, while the dashed line represents the partial wave amplitude from the πNN

convolution equations, which neglects connected three-body forces.
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4.4 A brief review of solving 4-dimensional scattering

equations

While we have a set of coupled 4-dimensional equations that are non-relativistic, 4-

dimensional equations typically describe relativistic processes, where the relativistic descrip-

tion of two interacting particles is most famously given by the Bethe-Salpeter equation [50],

given diagrammatically in Figure 4.11

= +

Figure 4.11: Diagrammatic representation of the Bethe-Salpeter equation for scattering

states. The open circles represent all possible contributions, while the dashed circle rep-

resents all two-particle irreducible contributions. The Bethe-Salpeter equation for bound

states is the same for scattering states, without the inhomogeneous term.

Salpeter and Bethe [50] discuss that the kernel of the Bethe-Salpeter equation, which

involves all two-particle irreducible processes, can be simplified by only considering the

simplest two-particle irreducible process, namely one particle exchange. This approximation

leads to the inclusion of only reducible graphs and is known as the “ladder” approximation

or “ladder” model, and is given by the diagram in Figure 4.12

= +

Figure 4.12: Diagrammatic representation of the Bethe-Salpeter equation for scattering

states in the “ladder” approximation.

A partial wave decomposition is performed to reduce the Bethe-Salpeter equation from

a 4-dimensional equation to a 2-dimensional equation. However, solving the partial wave

Bethe-Salpeter equation in the ladder approximation is still difficult, due to the 4 singu-

larities in the equation kernel that result from the poles of the two-particle propagator. In

addition to these 4 pole singularities, the partial wave decomposition also introduces loga-

rithmic singularities in the kernel of the Bethe-Salpeter equation. If the precise location of
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these singularities is known, one can create quadrature points that incorporate the location of

the singularities, thereby discretising and solving the equation using matrix inversion. How-

ever, as the pole singularities and logarithmic singularities are dependent on both equation

variables, the singularities are not a fixed location, rather the location of the singularities

in one variable moves with respect to the other variable and discretisation using quadrature

points becomes difficult.

The seminal papers by Wick [51] and Cutkosky [52] showed that bound state solutions

could be obtained by analytically continuing the “relative” time variable ω to the imaginary

time axes, thereby avoiding all the singularities in the kernel. This famously become known

as Wick rotation. For bound states, Wick rotation can be easily implemented as two pole

singularities lie above the negative Re [ω] axis in the 4th quadrant and the remaining 2

singularities lie below the positive Re [ω] axis in the second quadrant. However, Wick

rotation is more difficult to implement in scattering states as there is a pole singularity in each

quadrant of the complex ω plane and “pinches” the ω integration contour, which prevents

a simple analytical continuation and the residues of the poles must be included. The most

detrimental case is where two of the poles will “pinch” the integration contour, in which two

poles overlap at the imaginary ω axis. This occurs when the integrated momentum is equal

to the on-shell momentum p0. In order to obtain a non-singular Bethe-Salpeter equation for

scattering states, Levine et al. [53, 54] adapted the factorisation method of Noyes [94], in

which they factor the off-shell contribution to the half off-shell Bethe-Salpeter amplitude

T (ω, p, ω0, p0) = f(ω, p)T (ω0, p0, ω0, p0) = f(ω, p)T on (4.63)

where T on = T (p0, ω0, p0, ω0) is the fully on-shell Bethe-Salpeter amplitude. Inserting this

factorisation into the Bethe-Salpeter equation, one can obtain an integral equation for the

function f(p, ω) in order to determine the Bethe-Salpeter amplitude. This factorisation

introduces a zero into the potential of the equation’s kernel at the on-shell momentum,

thereby handling the “pinching” of the integration contour that occurs when the integrated

momentum is equal to the on-shell momentum [94, 95].

The methods of Levine et al. only describe a system of two particles with equal masses,

whereas, in the πNN system, we have scattering processes for two particles of unequal mass

i.e. πd elastic scattering. In the study of the πN system with a covariant formulation, Lahiff

and Afnan [96, 97] found that they could perform a Wick rotation without any additional

manipulation or factorisation, provided that the cutoff masses in the form factors are not too

102



CHAPTER 4. NUMERICAL TECHNIQUES

small. Though, it is not clear that their approach could be applied to πd elastic scattering

or NN → πd scattering.

The Wick rotation method requires the inversion of large matrices, which, at the time,

was very computationally intensive. This led to the use of Padé approximants as an alter-

native method to solving the Bethe-Salpeter equation, as it was the only feasible method to

avoid matrix inversion [57]. Padé approximants allow for faster convergence of a series by

approximating the series by a ratio of polynomials. For m ≥ 1 and n ≥ 1, the [m/n] Padé

approximant is given by the rational function R(x)

R(x) =

∑m
j=0 ajx

j

1 +
∑n

k=1 bkx
k
. (4.64)

To solve the Bethe-Salpeter equation using Padé approximants, a Taylor expansion is used

on this rational function R(x) and the coefficients of the expansion are equated with the

iterated Bethe-Salpeter equation by setting x = 1. The use of Padé approximants is also

valid if the sum of iterated terms of the Bethe-Salpeter were divergent, which makes it a

powerful numerical tool. To perform a [m/n] Padé approximation, we would need to calculate

m+n terms in the iterated Bethe-Salpeter equation explicitly. Nuttall [55] found that a [1/1]

Padé approximant was a sufficient approximation for scalar particles of equal mass. However,

Nieland and Tjon [56] found that when solving the Bethe-Salpeter equation for πN scattering

using Padé approximants, a [1/1] Padé approximant provided a bad approximation and much

more convergent approximations required a [3/3] or higher Padé approximants.

In the case of our 4-dimensional equations, we would struggle to numerically calculate

terms due to the compounding singularities. While it may not be an issue for NN scattering,

as suggested by Nuttall’s findings, our 4-dimensional equations for πd elastic scattering and

NN → πd scattering would require higher order Padé approximants. However, the iterations

of the Bethe-Salpeter equation can be calculated using Wick rotation, as opposed to calcu-

lating the integrals along the real axis which was done in the previous chapter. This hybrid

Wick rotation and Padé approximant method have had a rich history in the calculation of

the Bethe-Salpeter equation for NN scattering in intermediate energies and including heav-

ier meson exchanges [57–62]. Despite Padé approximants being a well established method

for solving the Bethe-Salpeter equation, at the current time, matrix inversion is no longer

as computationally intensive.

The 4-dimensional Bethe-Salpeter equation can be reduced to a 3-dimensional equation

using various reduction techniques that often allow the equation to be more easily solved.

103



CHAPTER 4. NUMERICAL TECHNIQUES

There is no unique method of reducing the Bethe-Salpeter equation and we mention a few

notable methods here. The Gross Spectator model was first introduced by Gross [98] and is

based on the idea that one of the particles, typically a non-interacting spectator, is restricted

to being on its mass shell. The Blankenbecler-Sugar reduction [99] is based on replacing the

free Green’s function in the Bethe-Salpeter equation by a function that is only singular when

both external legs are on-shell. Lastly, the equal time approach is based on the idea of two

particles beginning their propagation at equal times and ending their propagation at equal

time. The idea was introduced early by Logunov and Tavkhelide [79], with the approach

used by several authors over the years [39, 86, 100–106].

While Wick rotation tends to be an effective and efficient method for solving the Bethe-

Salpeter equation, there has been recent investigations into calculating the Bethe-Salpeter

equation along the real axis. Carbonell et al. [63–68] find that the Euclidean Bethe-Salpeter

amplitude (i.e. the Wick-rotated solution to the Bethe-Salpeter equation) provides the same

binding energy as the Minkowski solution (i.e. solution without Wick rotation). However,

Euclidean Bethe-Salpeter amplitude does not allow for the calculation of some observables,

in particular, electromagnetic form factors due to the unknown singularity structure. The

Euclidean Bethe-Salpeter amplitude can only be used to calculate the form factors approxi-

mately, which is called the static approximation. Carbonell et al. suggest that the off-shell

Bethe-Salpeter scattering amplitude is important for many different physical aspects, such

as the transition electromagnetic form factors or solving three-body Bethe-Salpeter-Faddeev

equations [70]. The authors proceed to calculate the Minkowski solution to the homogeneous

Bethe-Salpeter equation using an approach based on the Nakanishi integral representation

[71], in which the bound state solution is represented by an integral over a non-singular

Nakanishi weight function. The Bethe-Salpeter equation is then transformed using light-

front projection [69], which allows the equation to become non-singular. Solving the Bethe-

Salpeter equation using a Nakanishi integral representation and light-front projection has

also been extended to the case of scattering by Frederico et al. [77, 78], however, only a

simple solution could be obtained (the solution in the zero-energy limit) despite a rather

lengthy derivation. Therefore, these methods are not ideal for solving the inhomogeneous

Bethe-Salpeter equation for scattering states, especially for realistic scattering equations.

While the Nakanishi integral representation and light-front projection method of solving

the Bethe-Salpeter equation for scattering states may be unviable for realistic scattering

equations, a more straightforward method has been proposed. Carbonell and Karmanov
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[70, 72–76] detail a method to calculate the Bethe-Salpeter equation for scattering states, by

transforming the equation into a form that does not contain the original pole singularities

through the use of the Sokhotski-Plemelj theorem. The authors proceed to solve the resulting

equation using splines and handle the singularities in the solution by factoring out the

inhomogeneous term from the solution, which we discussed in more detail later in the chapter.

We adapt the method of Carbonell and Karmanov for solving our 4-dimensional πNN

convolution equations by using splines and a factorisation method, however, we handle the

pole singularities numerically rather than using the Sokhotski-Plemelj theorem. We discuss

the method of Carbonell and Karmanov, as well as its application to our 4-dimensional NN

convolution equation in greater detail later in the chapter.

4.5 Spline interpolation

4.5.1 Introduction to splines

Let us introduce the concept of splines by applying the concept to NN scattering equa-

tions.

Firstly, we have the NN → NN Lippmann-Schwinger equation, which is 3-dimensional

(3D), given by

T (p′, p;E) = Z(p′, p;E) +

∫ ∞
0

Z(p′, p′′;E)D0(E − Ep′′)T (p′′, p;E)p′′2dp′′ (4.65)

where Ep′′ = p′′/(2mN), while our 4-dimensional (4D) NN → NN equation is

T (z′, p′, z, p;E) = Z(z′, p′, z, p;E)

+

(
− 1

2πi

)∫ ∞
−∞

∫ ∞
0

Z(z′, p′, z′′, p′′;E)g(E − z′′)g(z′′)T (z′′, p′′, z, p;E)p′′2dp′′dz′′. (4.66)

As these equations have moving singularities in the kernel, discretisation using quadrature

points cannot be used to solve the equations. Methods to avoid these singularities, such

as contour rotation and Wick rotation, rely on a thorough understanding of the analytic

properties of the equation as these methods analytically continue the integrand into the

complex plane. As a result, it can be advantageous to solve Equation 4.65 and 4.66 by

calculating the integrals along the real axis, which can be done using the method of spline

interpolation. The idea of this spline interpolation method is to approximate the unknown
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solution T (p′, p;E) by the sum

T (p′, p;E) =
∑
i

Si(p
′)T (pi, p;E) (4.67)

where Si(p) are known functions called splines. These splines are piecewise cubic polynomials

defined on a set of points {pi} called knots along the interval of integration. The idea of

splines is to have a set of functions which allows the approximation in Equation 4.67 to agree

with the function at the knots (T (pj, p;E) =
∑

i Si(pj)T (pi, p;E)). Essentially the spline

functions act as a Kronecker delta at the knots (Si(pj) = δij). Not only can they agree on the

function value at each knot, but we can use certain spline functions so that the first derivative

and higher order derivatives also agree at the knots. Since, we are interested in calculating

the fully on-shell amplitude, we let p = p0 where p0 is the on-shell NN momentum. By using

the approximation of Equation 4.67 in our Lippmann-Schwinger equation and calculating

this equation at each knot {pi}, we obtain a discretised Lippmann-Schwinger equation, given

as

T (pi, p0;E) = Z(pi, p0;E) +
∑
i′

T (pi′ , p0;E)

∫ ∞
0

Z(pi, p
′′;E)D0(E − Ep′′)Si′(p′′)p′′2dp′′.

(4.68)

Now, the collection of points T (pi, p0;E) are independent of the p′′ integral and this inte-

gral can now be calculated as accurately as possible, while accounting for the logarithmic

singularities in Z(pi, p
′′;E) and the pole in the two-nucleon propagator D0(E − Ep′′). This

discretisation allows us to perform a matrix inversion and solve for the points T (pi, p0;E),

despite the presence of singularities in the integral. This can be extended to the 4D NN

equation by having a spline interpolation for both the p and z integral, which we label as

Spi(p) and Szj(z) respectively.

However, there is a difficulty in using this spline approximation to solve these equations.

As has been reported in literature, the half off-shell solution of Equation 4.65, given as

T (p, p0;E), contains a singularity in the off-shell momentum variable p. In the literature,

these singularities in the half off-shell solution are known as a square-root type singularity,

which results from the logarithmic singularities of the kernel in Equation 4.65. This makes

it difficult to use the spline interpolation method, as the approximation in Equation 4.67

relies on the unknown function being a continuously smooth function with respect to p. We

now present a brief review of spline interpolation and discuss the attempts to overcome the

square-root type singularity present in the half off-shell solution.
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4.5.2 An overview of splines

Different functions can be used to construct the interpolating spline functions Si(p) and

according to Matsuyama et al. [107], the choice of splines should be decided based on the

function that is to be interpolated. Larson and Hetherington [108] were early investigators

of alternative approaches for solving three-body equations without contour rotation, who

noted the presence of this square-root type singularity and used Lagrange polynomials as

a basis for their interpolation. This is considered to be polynomial interpolation rather

than spline interpolation, as splines are typically piecewise cubic polynomials whereas the

order of the interpolating polynomial in polynomial interpolation is typically dependent

on the number of interpolation points. Deltuva et al. [109] investigated nucleon-deuteron

scattering while using Chebyshev polynomials to interpolate their two-baryon transition

matrix and deuteron wave-function. Their justification for using Chebyshev polynomials

comes from the so-called Moral Principle 1 described by Boyd [110]. There are also certain

benefits with using Chebyshev interpolation including ease of implementation due to the

simplicity of the polynomials, but also the choice of knots becomes trivial as one simply

chooses the zeros of the Chebyshev polynomials as the knots. The only major disadvantage

of Chebyshev interpolation is suggested by Liu [111], in which the kernel of the equation

and the inhomogeneous term must be continuous in order to obtain convergence. However,

discontinuous integral kernels can be calculated by splitting the integration interval at the

discontinuities and populating the intervals with Gaussian quadrature points. The issue with

using Chebyshev polynomials is that for higher orders, the Chebyshev polynomial becomes

highly oscillatory, which makes it difficult to integrate using Gauss-Legendre quadrature

points.

Matsuyama et al. [107] also suggest that spline interpolation is numerically better than

polynomial interpolation for the three-body problem as a change in a small region may cause

a global effect when using polynomial interpolation. Therefore, it is better practice to use

spline interpolation as the splines depend locally on the knots. They also suggest that spline

interpolation is known to be less oscillating compared to polynomial interpolation.

There has been much work devoted to using B-splines to solve three-body equations

particularly by Alaylioglu et al. [112] and by Huizing and Bakker [113]. Alaylioglu et al.

explain that if simple knots are used to construct the B-splines (i.e. t−2 ≤ t−1 ≤ ... ≤ tN+2 ≤

tN+3), then one obtains C2 continuity everywhere. However, this continuity is lost where
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multiple knots are introduced and, therefore a triple knot should be placed at the location of

the square-root singularity to ensure the interpolation has a C0 continuity (C1 discontinuity)

at the location of the singularity, which thereby models the behaviour of the square-root

singularity. Matsuyama [91] has previously used the modified spline interpolation of Glöckle

[114], which have been given the name “natural” splines, and have continuous first and second

derivatives at the chosen grid points. Matsuyama suggests one should distribute the knots

in such a way as to properly represent the behaviour of the square-root singularity, however,

Huizing and Bakker showed numerical errors using these “natural” splines. Matsuyama et al.

[107] also suggest these splines are not suitable for such an interpolation and suggest using

the Hermitean splines of Hüber et al. [115] in which only the first derivatives are continuous

at the knots. These Hermitean splines are also a local spline in the sense that the spline

function Si(p) depends on four knot points {pi−1, pi, pi+1, pi+2}, as opposed to the “natural”

splines which are a global spline since they depend on all the knots. To overcome the square-

root singularity, Matsuyama et al. suggests dividing the whole integration region [0,∞] into

two regions [0, pc] and [pc,∞] where pc is the location of the square-root singularity and

using separate Hermitean splines in each region.

4.5.3 Application to a one-dimensional equation

We now use the spline interpolation method on the NN → NN Lippmann-Schwinger

equation and compare it to the calculation using contour rotation, in order to determine

the accuracy of spline interpolation. Our NN → NN Lippmann-Schwinger equation in

Equation 4.65, with partial wave indices is given by

TK′,K(p′, p;E) = ZK′,K(p′, p;E)

+
∑
Kγ

∫ ∞
0

ZK′,Kγ (p
′, p′′;E)D0(E − Ep′′)TKγ ,K(p′′, p;E)p′′2dp′′

(4.69)

where

ZK′,K(p′, p;E) =
∑
L

p′pΓL(p′, p;E)
1∑

a=0

1∑
b=0

AL,a,bK′,K

(
p′

p

)a−b
(4.70)

and the function Γ is given as

ΓL(p′, p;E) =
1

2

∫ 1

−1

k−1f(k,mN)f(k,mN)k−1

E+ − p′2

2mN
− p2

2mN
− 2mN −

√
m2
π + p′2 + p2 − 2p′px

PL(x)dx. (4.71)

Here, f is the dressed πNN vertex function and all other symbols are defined in Chapter 2

and earlier in this chapter. While we use Equation 4.69 in our calculations, for the proposes
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of illustrating the numerical techniques of spline interpolation, we drop the partial wave

indices in the subsequent use of Equation 4.69 and we will simply use Equation 4.65.

For the spline interpolation method, we will use the Hermitean splines of Hüber et al.

[115] and use the suggestion of Matsuyama et al. [107] to account for the square-root

singularity in the solution. While we refer to these equations as 3-dimensional, they reduce

to one-dimension through the partial wave decomposition of Afnan and Thomas [29], which

we have discussed earlier in the chapter. So, our equation is a partial wave equation, but we

suppress any partial wave indices to save on notation.

As previously mentioned, the Hermitean splines of Hüber et al. are local splines and

depend only on the neighbouring knots and provide a set of spline function {Si0, Si1, Si2, Si3}

where

fi(x) =
3∑
j=0

Sij(x)f(xj). (4.72)

We seek a spline interpolation of the form

f(x) =
n∑
i=1

Si(x)f(xi) (4.73)

where Si(x) is an alternate spline function to the Hermitean splines of Hüber et al., n is the

number of interpolating points (knots) given by x1, x2, ..., xn. For the interval [xi−1, xi+1],

the function interpolation in that interval is given by

f(x) =
3∑
j=0

Sij(x)f(xi−1+j)

= Si0(x)f(xi−1) + Si1(x)f(xi) + Si2(x)f(xi+1) + Si3(x)f(xi+2). (4.74)

Comparing this with our desired spline interpolation

f(x) = ...+ Si−1(x)f(xi−1) + Si(x)f(xi) + Si+1(x)f(xi+1) + Si+2(x)f(xi+2) + ... (4.75)

one can we that we can write our spline functions as

Si−1 = Si0 for xi−1 ≤ x ≤ xi+1,

Si = Si1 for xi−1 ≤ x ≤ xi+1,

Si+1 = Si2 for xi−1 ≤ x ≤ xi+1,

Si+2 = Si3 for xi−1 ≤ x ≤ xi+1.

(4.76)
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Therefore, by swapping the index i, we obtain

Si = Si+1
0 for xi+1 ≤ x ≤ xi+2,

Si = Si1 for xi−1 ≤ x ≤ xi+1,

Si = Si−1
2 for xi−1 ≤ x ≤ xi,

Si = Si−2
3 for xi−2 ≤ x ≤ xi−1,

Si = 0 otherwise.

(4.77)

Notice now that these new spline functions Si interpolate over the interval [xi−2, xi+2]. We

proceed with these splines in an attempt to solve Equation 4.65.

The main effort is put into calculating the kernel of the Lippmann-Schwinger equation,

in which we need to properly handle the poles and logarithmic singularities. A property of

splines is that each spline is only non-zero on a finite interval, for example, the Hermitean

splines of Hüber et al. are only non-zero on the interval [xi−1, xi+2] and zero everywhere

else. This allows us to reduce the integration intervals to greatly improve computation time.

Generally, for a spline with the spline index i, which is interpolating the variable x, would

only be non-zero on the interval [ximin
, ximax ], thus the kernel of Equation 4.65 becomes

Kij(p
′, p;E) =

∫ pimax

pimin

Z(p′, p′′;E)D0(E − Ep′′)Spi(p)p′′2dp′′. (4.78)

In this way, the full integral becomes only an integral over the region in which the spline

is non-zero, which would also increase the accuracy of the overall integral as we take into

account the structure of the spline itself. The integrand of Equation 4.78 exhibits a pole

singularity and logarithmic singularities, which arise due to converting the amplitude to a

partial wave. The pole singularity corresponds to the on-shell momentum p0 and can be

handled by the subtraction method. Rearranging the kernel equation

Kij(p
′, p;E) =

∫ pimax

pimin

Z(p′, p′′;E)D0(E − Ep′′)Spi(p′′)p′′2dp′′

=

∫ pimax

pimin

Z(p′, p′′;E)Spi(p
′′)p′′2

E+ − p′′2

mN
− 2mN

dp′′ =

∫ pimax

pimin

mNZ(p′, p′′;E)Spi(p
′′)p′′2

(p0 + p′′)(p0 − p′′)
dp′′

=

∫ pimax

pimin

h(p′′)

p0 − p′′
dp′′

(4.79)

where

h(p′′) =
mNZ(p′, p′′;E)Spi(p

′′)p′′2

p0 + p′′
. (4.80)
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Now, we apply the subtraction method

Kij(p
′, p;E) =

∫ pimax

pimin

h(p′′)

p0 − p′′
dp′′

=

∫ pimax

pimin

h(p′′)− h(p0)

p0 − p′′
dp′′ + h(p0)

∫ pimax

pimin

1

p0 − p′′
dp′′

=

∫ pimax

pimin

h(p′′)− h(p0)

p0 − p′′
dp′′ + h(p0) log

(
pimin

− p0

p0 − pimax

)
.

(4.81)

As the integral is over each individual spline region, the subtraction method is only needed

when pimin
< p0 < pimax . If the pole lies outside the integral region, we can simply carry out

the integral without any modification. The logarithmic singularities can be determined by

solving the equation

E+ − p2

2mN

− p′2

2mN

− 2mN −
√
m2
π + (p− p′)2 = 0. (4.82)

We split the interval of integration at the location of these logarithmic singularities and

proceed with the numerical integration using Gaussian quadrature points in each interval.

We can then use matrix inversion to solve Equation 4.65 by converting it into a matrix

equation using the set of knots. Specifically,

T̃i = Z̃i + K̃ijT̃j (4.83)

where

Z̃i = Z(pi, p0;E),

K̃i = K(pi, p0;E),

T̃i = T (pi, p0;E).

(4.84)

Here, the set of points {pi} correspond to the knots of Si(p). We specify the indices of the

matrices for clarification, where i would correspond to the knots and i′ would correspond to

the spline index. So, the solution becomes

T̃i = (δi − K̃ij)
−1Z̃i (4.85)

and in matrix form

T̃ = (Ĩ − K̃)−1Z̃ (4.86)

where Ĩ is the identity matrix. The matrix T̃ gives the off-shell amplitude, but only at the

values of the specified knots. However, we can use the splines to interpolate any value of p
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Energy

(MeV)
Method

Partial Wave Amplitude

3S1
3D1

2mN + 0.001

Contour

3S1 0.0776803− 0.00311859i 0.000417875− 0.0000167257i

3D1 0.000417875− 0.0000167257i −5.577× 10−6 − 9.05077× 10−8i

Spline

3S1 0.0776586− 0.00311429i 0.000418118− 0.0000167658i

3D1 0.000418118− 0.0000167658i −5.57964× 10−6 − 9.0289× 10−8i

2mN + 0.25mπ

Contour

3S1 0.0458811− 0.0353082i 0.0407862− 0.0133179i

3D1 0.0407862− 0.0133179i −0.0144786− 0.0155977i

Spline

3S1 0.0458756− 0.0353073i 0.0407944− 0.0133166i

3D1 0.0407944− 0.0133166i −0.0144856− 0.0156033i

2mN +mπ

Contour

3S1 −0.0173664− 0.0620648i 0.0123891− 0.0160232i

3D1 0.0123891− 0.0160232i −0.0288525− 0.0472092i

Spline

3S1 −0.0173607− 0.0620492i 0.0124041− 0.0160077i

3D1 0.0124041− 0.0160077i −0.0288553− 0.0472093i

Table 4.1: Comparison of the on-shell NN → NN amplitude calculated using the con-

tour rotation method and Hermitian spline interpolation for energies below pion production

threshold. We use 100 knots in the interval [0,∞], constructed using Gaussian quadrature

points.

as long as these values lie within the whole interval which the splines are defined on. To do

this, we use the equation

T (p, p0;E) =
∑
i

Spi(p)T̃i. (4.87)

If the solution is smooth and does not exhibit any singularities, then we can simply construct

knots using Gaussian quadrature points on the interval [0,∞]. However, an issue arises if the

solution exhibits a singularity in the off-shell momentum. For energies below E = 2mN +mπ

we find that there is no singularity in the solution and there is no difficulty in obtaining a

numerically stable answer with respect to the spline knots. We present the results of the

spline interpolation method in comparison to the result of contour rotation for energies below

E = 2mN +mπ in Table 4.1.

For energies greater than E = 2mN + mπ, we find a single square-root singularity and

it’s location can be determined as follows: our OPE driving term contains a denominator of
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the form

E+ − p2

2mN

− p′2

2mN

− 2mN −
√
m2
π + (p− p′)2 (4.88)

and the logarithmic singularities that occur in the p′′ integral are found by solving the roots

of this equation. There is some critical momentum pc for which there are no solutions

for this equations and no logarithmic singularities occur, corresponding to the on-set of

the logarithmic singularities. This value of pc corresponds exactly to the square-root type

singularity in the half off-shell amplitude and can be found by simultaneously solving the

above equation with it’s first derivative with respect to p. Now that we know the location of

this square-root singularity, we will need to choose our knots to incorporate this singularity

in the solution. Matsuyama et al. [107] suggests to divide the whole integration [0,∞]

into two regions [0, pc] and [pc,∞] where pc is the location of the square-root singularity.

We construct the knots by populating each interval with Gaussian quadrature points and

compare the results with the method of contour rotation. We present a comparison of these

results in Table 4.2. We see from the results in Table 4.1 and 4.2 that the spline interpolation

method provides an accurate alternative to contour rotation. While contour rotation may

be easier to implement and computationally less intensive, the fact that splines can be used

as an alternative to contour rotation gives us hope that we can use them to calculate our

4-dimensional equations, where contour rotation cannot be used.
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Energy

(MeV)
Method

Partial Wave Amplitude

3S1
3D1

2mN + 1.1mπ

Contour

3S1 −0.0244948− 0.0563061i 0.00660919− 0.0116121i

3D1 0.00660919− 0.0116121i −0.0307488− 0.0453217i

Spline

3S1 −0.0244953− 0.0563064i 0.00661011− 0.0116094i

3D1 0.00661016− 0.0116094i −0.0307492− 0.0453261i

2mN + 1.5mπ

Contour

3S1 −0.0351513 + 0.000352941i −0.00436341 + 0.027995i

3D1 −0.00436341 + 0.027995i −0.0311666− 0.0203163i

Spline

3S1 −0.0351516 + 0.000348961i −0.00436306 + 0.0279952i

3D1 −0.00436293 + 0.0279953i −0.0311675− 0.0203209i

2mN + 2mπ

Contour

3S1 0.00767697 + 0.210377i 0.0220606 + 0.173076i

3D1 0.0220606 + 0.173076i −0.00575005 + 0.0799615i

Spline

3S1 0.00764185 + 0.210273i 0.0220353 + 0.173005i

3D1 0.0220354 + 0.173005i −0.00576792 + 0.0799114i

Table 4.2: Comparison of the on-shell NN → NN amplitude calculated using the con-

tour rotation method and Hermitian spline interpolation for energies above pion production

threshold. We use 100 knots in each sub-interval [0, pc], [pc,∞], constructed using Gaussian

quadrature points.
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4.6 Application of splines to 2-dimensional scattering

equations

We now attempt to solve our 4-dimensional NN → NN equation using spline interpola-

tion. Here, we solve for the half off-shell scattering amplitude by letting the initial momentum

p and energy-like variable z be on-shell (p = p0 =
√
mN(E − 2mN), z = z0 = E/2).

4.6.1 Using Hermitian splines of Hüber et al.

The main effort in the calculation of our 4-dimensional NN equation using splines is the

calculation of the kernel, in which we need to properly handle the poles and logarithmic

singularities. As mentioned previously, a property of splines is that each spline is only

non-zero on a finite interval, for example the Hermitean splines of Hüber et al. are only

non-zero on the interval [xi−1, xi+2] and zero everywhere else. This allows us to reduce the

integration intervals to greatly improve computation time and increases the accuracy of the

overall integral as we take into account the structure of the spline itself. Generally, a spline

with the index i, which is interpolating the variable x, would only be non-zero on the interval

[ximin
, ximax ], thus the kernel of our 4-dimensional NN equation becomes

Kij(z
′, p′, z, p;E)

=

(
− 1

2πi

)∫ zjmax

zjmin

∫ pimax

pimin

Z(z′, p′, z′′, p′′;E)g(E − z′′)g(z′′)Spi(p)Szj(z)p′′2dp′′dz′′.

(4.89)

We then proceed to calculate Equation 4.89 using the methods we have previously de-

veloped, namely using a subtraction method to handle the nucleon poles and splitting the

interval where a logarithmic singularity occurs for the p′′ integral. We then, calculate the

integral over [pimin
, pimax ] depending on the singularities that are within the interval. If there

are no singularities present within the interval, we simply use Gaussian quadrature points to

numerically calculate the integral. If the logarithmic singularities appear within the inter-

val, we split the interval where the singularity occurs and use Gauss-log quadrature points

discussed in the previous chapter to calculate the integral. This requires knowing the precise

location of the logarithmic singularities, which is also discussed below. If a pole singularity

occurs, then we are required to use the subtraction method as shown below.
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To handle the pole singularities caused by the dressed propagators, we can either use the

Sokhotski-Plemelj theorem or a subtraction method. Here, we choose to use a subtraction

method, but we will have to consider the cases where there is only one pole present or if

both poles are present. We have the integral∫ pmax

pmin

dp f(p)g1 (z − Ep) g2 (E − z − Ep) (4.90)

where f(p) is a function of the momentum p which we are integrating over and contains both

the Z term and the spline. If there is one pole present, say, due to the propagator g1, then

we split the propagator up as follows∫ pmax

pmin

dp f(p)g1 (z − Ep) g2 (E − z − Ep)

=

∫ pmax

pmin

dp

(
Zf(p)g2 (E − z − Ep)

Ep1 − Ep + iε
+ f(p)g1c (z − Ep) g2 (E − z − Ep)

) (4.91)

where Ep1 = z −m and g1c is the cut term of the dressed propagator and contains no pole.

The second term of the integral is not a problem, so we only need to worry about the first

term. Applying the subtraction method∫ pmax

pmin

dp f(p)g1 (z − Ep) g2 (E − z − Ep)

=

∫ pmax

pmin

dp
Zf(p)g2 (E − z − Ep)− Zf(p1)g2 (E − z − Ep1)

Ep1 − Ep + iε

+ Zf(p1)g2 (E − z − Ep1)

∫ pmax

pmin

dp
1

Ep1 − Ep + iε

+

∫ pmax

pmin

dpf(p)g1c (z − Ep) g2 (E − z − Ep) .

(4.92)

The final expression we obtain is∫ pmax

pmin

dp f(p)g1 (z − Ep) g2 (E − z − Ep)

=

∫ pmax

pmin

dp
Zf(p)g2 (E − z − Ep)− Zf(p1)g2 (E − z − Ep1)

Ep1 − Ep + iε

+ Zf(p1)g2 (E − z − Ep1)
mN

p1

(
log+

1 − log−1
)

+

∫ pmax

pmin

dpf(p)g1c (z − Ep) g2 (E − z − Ep)

(4.93)

where

log+
1 = log(p1 + pmax + iε)− log(p1 + pmin + iε), (4.94a)

log−1 = log(p1 − pmax + iε)− log(p1 − pmin + iε). (4.94b)
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and we used∫ pmax

pmin

dp
1

Ep1 − Ep + iε
=

∫ pmax

pmin

dp
2mN

p2
1 − p2 + iε

=

∫ pmax

pmin

dp
2mN

(p1 + p) (p1 − p) + iε

=
mN

p1

∫ pmax

pmin

dp

[
1

(p1 + p) + iε
+

1

(p1 − p) + iε

]
=
mN

p1

(
log+

1 − log−1
)
.

(4.95)

Similarly, if the pole is due to the propagator g2. Now, if both poles contribute,∫ pmax

pmin

dp f(p)g1 (z − Ep) g2 (E − z − Ep)

=

∫ pmax

pmin

dp f(p)g1c (z − Ep) g2c (E − z − Ep) +

∫ pmax

pmin

dp
f(p)Zg2c (E − z − Ep)

Ep1 − Ep + iε

+

∫ pmax

pmin

dp
f(p)g1c (z − Ep)Z
Ep2 − Ep + iε

+

∫ pmax

pmin

dp
f(p)Z2

(Ep1 − Ep + iε) (Ep2 − Ep + iε)
.

(4.96)

The last term of this expansion we split up using partial fractions, which we can then combine

with the other terms of the same denominator,

=

∫ pmax

pmin

dp f(p)g1c (z − Ep) g2c (E − z − Ep)

+

∫ pmax

pmin

dp
f(p)Zg2c (E − z − Ep)

Ep1 − Ep + iε
+

∫ pmax

pmin

dp
f(p)g1c (z − Ep)Z
Ep2 − Ep + iε

+

∫ pmax

pmin

dp
f(p)Z2

Ep2 − Ep1

(
1

Ep1 − Ep + iε
− 1

Ep2 − Ep + iε

)
=

∫ pmax

pmin

dp f(p)g1c (z − Ep) g2c (E − z − Ep)

+

∫ pmax

pmin

dp
f(p)Z

(
g2c (E − z − Ep) + Z

Ep2−Ep1

)
Ep1 − Ep + iε

+

∫ pmax

pmin

dp
f(p)Z

(
g1c (z − Ep)− Z

Ep2−Ep1

)
Ep2 − Ep + iε

.

(4.97)

We now apply the subtraction method

=

∫ pmax

pmin

dp f(p)g1c (z − Ep) g2c (E − z − Ep)

+

∫ pmax

pmin

dp
f(p)Z

(
g2c (E − z − Ep) + Z

Ep2−Ep1

)
− f(p1)Z

(
g2c (E − z − Ep1) + Z

Ep2−Ep1

)
Ep1 − Ep + iε

+

∫ pmax

pmin

dp
f(p)Z

(
g1c (z − Ep)− Z

Ep2−Ep1

)
− f(p2)Z

(
g1c (z − Ep2)− Z

Ep2−Ep1

)
Ep2 − Ep + iε

+ f(p1)Z

(
g2c (E − z − Ep1) +

Z

Ep2 − Ep1

)∫ pmax

pmin

dp
1

Ep1 − Ep + iε

+ f(p2)Z

(
g1c (z − Ep2)− Z

Ep2 − Ep1

)∫ pmax

pmin

dp
1

Ep2 − Ep + iε
.

(4.98)
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The final expression that we obtain is

=

∫ pmax

pmin

dp f(p)g1c (z − Ep) g2c (E − z − Ep)

+

∫ pmax

pmin

dp
f(p)Z

(
g2c (E − z − Ep) + Z

Ep2−Ep1

)
− f(p1)Z

(
g2c (E − z − Ep1) + Z

Ep2−Ep1

)
Ep1 − Ep + iε

+

∫ pmax

pmin

dp
f(p)Z

(
g1c (z − Ep)− Z

Ep2−Ep1

)
− f(p2)Z

(
g1c (z − Ep2)− Z

Ep2−Ep1

)
Ep2 − Ep + iε

+ f(p1)Z

(
g2c (E − z − Ep1) +

Z

Ep2 − Ep1

)
mN

p1

(
log+

1 − log−1
)

+ f(p2)Z

(
g1c (z − Ep2)− Z

Ep2 − Ep1

)
mN

p2

(
log+

2 − log−2
)
.

(4.99)

where log+
2 and log−2 are similarly defined by Equation 4.94. The logarithmic singularities

are easily obtained by solving the equation

z′ − z′′ −
√
m2
π + (p′ ± p′′)2 = 0. (4.100)

We also need to take into account singularities or discontinuities that occur in the z′′

integral. To find the location of these singularities or discontinuities, we can consider Equa-

tion 4.89 as a function of z′′ after the p′′ integral is calculated and plot this function against

z′′ to visually see the discontinuities.

In our investigation of kernel singularities, we often refer to the singularities as strong

singularities and minor singularities based on their effect in the numerical calculation of

the kernel. It is critical that we properly account for strong singularities when calculating

the kernel integrals, as it is detrimental to the numerical accuracy if not handled properly.

Minor singularities in the kernel integral, on the other hand, can be handled by simple “brute

force” i.e. many quadratures points, and are not as detrimental to numerical accuracy as

strong singularities. However, for more numerical accuracy, it is advantageous for the minor

singularities to be accounted for as well.

The strongest singularities have been determined and mimic the square-root singularities

that were seen when considering the NN Lippmann-Schwinger equation, where the singu-

larity occurs at the value of z′′ for which there are no more logarithmic singularities in the

p′′ integral i.e. the on-set of the logarithmic singularities. Therefore, the singularity in z′′

can be found by simultaneously solving the equation of the logarithmic singularities with
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it’s first derivative with respect to p′′

p′ ± p′′√
m2
π + (p′ ± p′′)2

= 0,

z′ − z′′ −
√
m2
π + (p′ ± p′′)2 = 0.

(4.101)

Solving these equations simultaneously gives the location of the square-root like singularity

z′′ = z′ −mπ. (4.102)

This supports the splitting of the z′′ integral for the case of the fully on-shell dressed two-

pion exchange (TPE) amplitude that was calculated earlier, as when z′ = E/2 and p′ = p0

the singularity corresponds to a value of z′′ = E/2 −mπ. We have an extra singularity in

the case of the dressed TPE amplitude as we have two ZOPE terms as opposed to one in

Equation 4.89. For dressed TPE amplitude, the denominator of one ZOPE term is z′− z′′−√
m2
π + (p′ ± p′′)2 while the other is z′′ − z′ −

√
m2
π + (p′ ± p′′)2, so this extra singularity is

found by interchanging z′ and z′′ in Equation 4.101 and we find corresponds to a value of

z′′ = E/2 +mπ.

Other strong singularities can be seen at the nucleon mass z′′ = mN and at the total

energy minus the nucleon mass z′′ = E − mN . These values come from the poles due to

the propagators and correspond to the minimum/maximum value for a pole singularity to

exist in the p′′ integral. More explicitly, if z′′ < mN , only the pole which is a solution of

E − z′′ − p′′2/2mN −mN = 0 exists, whereas if z′′ > E −mN , then only the pole which is a

solution of z′′ − p′′2/2mN −mN = 0 exists. If mN < z′′ < E −mN , then both poles exist, so

the values for z′′ = mN and z′′ = E−mN are in essence, the boundaries of poles existence in

the p′′ integral. The analytical structure of the z′′ integrand changes rapidly when the pole

structure in the p′′ integral changes, which manifests as a discontinuity.

There are also minor singularities in the z′′ variable and have been determined to be

when a logarithmic singularity and a pole occur at the same location in the p′′ integration.

We, therefore, solve the simultaneous equations

z′ − z′′ −
√
m2
π + (p′ ± p′′)2 = 0,

z′′ − p′′2

2mN

−mN = 0,
(4.103)

and we solve

z′ − z′′ −
√
m2
π + (p′ ± p′′)2 = 0,

E − z′′ − p′′2

2mN

−mN = 0,
(4.104)
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which to obtain values for p′′ and z′′. We denote these as ‘minor’ singularities, as we believe

they do not contribute to the convergence of the z′′ integral, as greatly as the singularities

mentioned previously. It may be that the contribution of these singularities may be min-

imised or even neglected if the p′′ integral is calculated with high accuracy by using many

Gauss-Legendre quadrature points, which may be the reason we did not encounter these

singularities when calculating the fully on-shell dressed TPE amplitude. Nevertheless, we

treat them in the same way as the other singularities, in case their contribution is greater

than initially anticipated.

We then proceed with the integration over z′′ in a similar way to the p′′ integral. If there

are no singularities present within the interval, we simply use Gaussian quadrature points

to numerically calculate the integral. However, if there are singularities present, we split the

interval where the singularity occurs and used Gaussian quadrature points in each interval

(we do not use Gauss-log quadrature points for the z′′ integral, as the singularities are not

explicitly logarithmic singularities like in the p′′ integral).

We can then use matrix inversion to solve Equation 4.66 by converting it into a matrix

equation using the set of knots. Specifically,

T̃ij = Z̃ij + K̃iji′j′T̃i′j′ (4.105)

where

Z̃ij = Z(zj, pi, z0, p0;E),

K̃ij = K(zj, pi, z0, p0;E),

T̃ij = T (zj, pi, z0, p0;E).

(4.106)

Here, the set of points {zj} correspond to the knots of Szj , while the points {pi} correspond

to the knots of Spi . We specify the indices of the matrices for clarification, where i, j would

correspond to the knots and i′, j′ would correspond to the spline index. So, the solution

becomes

T̃ij = (δii′δjj′ − K̃iji′j′)
−1Z̃ij (4.107)

and in matrix form

T̃ = (Ĩ − K̃)−1Z̃ (4.108)

where Ĩ is the identity matrix. The matrix T̃ gives the off-shell amplitude, but only at the

values of the specified knots. However, we can use the splines to interpolate any value of p
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and z as long as these values lie within the whole interval which the splines are defined on.

To do this, we use the equation

T (z, p, z0, p0;E) =
∑
ij

Spi(p)Szj(z)T̃ij. (4.109)

We proceed with the calculation without any modification to the knots, in an attempt to

see if there are any singularities present in the solution. We try to find the singularities in

the p variable by having a relativity low number of z knots and a high number of p knots.

We then plot the calculated off-shell amplitude for a fixed z knot against the p knots. What

we find is that when the z knot is below a value of E/2, there are no visible singularities

and the amplitude is smooth. When the z knot is between E/2 and E−mN , there seems to

be a single singularity. Finally, when the z knot is greater than E −mN , there seem to be

multiple singularities. The singularities for z > E−mN correspond to the same singularities

found in the inhomogeneous term of our 4-dimensional NN equation Z(z, p, z0, p0;E) in the

p variable. This makes sense, as the inhomogeneous term is part of the solution and its

singularities only occur when z > E −mN . These singularities are found by solving

z − z0 −
√
m2
π + (p± p0)2 = 0. (4.110)

So, unfortunately, it seems like the solution of our 4-dimensional NN equation has singular-

ities in it, similar to the square-root singularities that we encountered for our 3-dimensional

Lippmann-Schwinger. The issue with the 4-dimensional (numerically 2-dimensional after

partial wave decomposition) is that these singularities could exist for both p and z variables.

So there is no systematic method to choose knots, which avoid the singularities in both

variables. This is a big problem and we need to explore a method that can overcome these

singularities in the solution.

4.6.2 The approach of Carbonell and Karmanov

We now examine the method for solving the Bethe-Salpeter for scattering states proposed

by Carbonell and Karmanov [70, 72–76]. While the Bethe-Salpeter equation is fully rela-

tivistic, the problem that they present directly correlates to ours, as the authors describe the

problem as difficulty in computing the off-shell scattering amplitude due to the singular na-

ture of the kernel. They also suggest that the singularities are integrable in the mathematical

sense, due to iε in the denominators of propagators, but their integration is quite a delicate

121



CHAPTER 4. NUMERICAL TECHNIQUES

task and requires the use of appropriate analytical as well as numerical methods. In order

to handle the 4 pole singularities of the Bethe-Salpeter equation, Carbonell and Karmanov

use the Sokhotski-Plemelj theorem. With the Sokhotski-Plemelj theorem and a subtraction

method, they obtain a full expression of the off-shell Bethe-Salpeter equation for scattering

states, which does not contain the pole singularities due to the propagators. Carbonell and

Karmanov also suggest that the logarithmic singularities can be integrated over numerically

using a “brute force” method of using an excessive number of Gaussian quadrature points.

However, it is an advantage to determine the precise location of these singularities to improve

precision, as one can use a change of variable to carry out the integration.

The authors outline their use of splines in earlier work [116], saying they use Hermitean

splines of Payne [117], which differ from the explicit splines that are used by Hüber et al.

The property of Hermitean splines is that they agree with the function at each knot and

they also agree with the first derivative at each knot. We denote the function interpolation

denoted as fi(x) on the interval [xi−1, xi+1], which is given by

fi(x) = f(xi)φ1(x) + f(xi)φ2(x) + f ′(xi)φ3(x) + f ′(xi)φ4(x) (4.111)

where φ1, φ3 interpolate the region [xi−1, xi] and φ2, φ4 interpolate the region [xi, xi+1]. This

is true for both cases, but Hüber et al. approximate the derivatives by using a quadratic

polynomial. The reason is that the spline interpolation becomes dependent only on the

function itself and independent of its derivative, meaning that the coefficients that are solved

for are simply the value of the function at the knots. However, approximating the derivatives

adds an extra level of approximation which may lead to inaccuracy. Carbonell and Karmanov

explain how to apply these Hermitean splines without approximating the derivative of the

unknown function, which require an alternative method of “collocation”. We will apply this

method to our case of the 4-dimensional NN equation of Equation 4.66.

We approximate the half off-shell amplitude by the spline interpolation

T (z, p, z0, p0;E) =
∑
ij

ãijSpi(p)Szj(z) (4.112)

where ãij are unknown coefficients that we solve for. The splines are defined on the intervals

[0, pmax] and [zmin, zmax], which we divide at the points {pi} and {zj} into Np and Nz intervals

respectively. The set of knots {pi} and {zj} correspond to the knots for which the set of

splines are defined on. Here, we have i = 0, Np and j = 0, Nz where p0 = 0, pNp = pmax and

z0 = zmin, zNz = zmax (let us not confused p0 and z0 here with the on-shell values for p and
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z). The spline function are given as

Spi(p) =

 φp(
i
2
, p) if i is even

ξp(
i−1

2
, p) if i is odd

(4.113)

Szj(z) =

 φz(
j
2
, z) if j is even

ξz(
j−1

2
, z) if j is odd

(4.114)

where, for a general variable x

φxi(x) =


3
(
x−xi−1

xi−xi−1

)2

− 2
(
x−xi−1

xi−xi−1

)3

if x ∈ [xi−1, xi]

3
(
xi+1−x
xi+1−xi

)2

− 2
(
xi+1−x
xi+1−xi

)3

if x ∈ [xi, xi+1]

0 otherwise

(4.115)

ξxi(x) =



[
−
(
x−xi−1

xi−xi−1

)2

+
(
x−xi−1

xi−xi−1

)3
]

(xi − xi−1) if x ∈ [xi−1, xi][(
xi+1−x
xi+1−xi

)2

−
(
xi+1−x
xi+1−xi

)3
]

(xi+1 − xi) if x ∈ [xi, xi+1]

0 otherwise

. (4.116)

Here, φxi correspond to φ1 and φ2 in Equation 4.111, while ξxi correspond to φ3 and φ4. As

we essentially have 2 splines for every knot (φxi corresponding to the value of the function

at the knot and ξxi corresponding to the first derivative at the knot), we will need to run our

spline indices over i = 0, 2Np + 1 and j = 0, 2Nz + 1. We will choose two sets of points {p̄i}

and {z̄j} called collocation points within the intervals [0, pmax] and [zmin, zmax], for which we

have 2Np + 2 points in [0, pmax] and 2Nz + 2 points in [zmin, zmax]. These will be the points,

for which we collect the unknown spline coefficients ãij, rather then using the knots for the

case of Hüber et al. and Matsuyama. Now, inserting our spline interpolation of Equation

4.112 into Equation 4.66 ∑
i′j′

Ũij,i′j′ ãi′j′ = Z̃ij +
∑
i′j′

K̃ij,i′j′ ãi′j′ (4.117)

where

Z̃ij = Z(z̄j, p̄i, z0, p0;E),

K̃ij = K(z̄j, p̄i, z0, p0;E),

Ũij,i′j′ = Spi′ (p̄i)Szj′ (z̄j).

(4.118)

and K(z′, p′, z′′, p′′;E) is the same kernel in Equation 4.89 using the splines defined above.

Again, we use the tilde notation with subscript indices to denote the matrix elements where
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ij correspond to the collocation points and i′j′ correspond to the spline indices. We then

proceed to solve for the coefficients ãij by solving matrix equation

ã = (Ũ − K̃)Z̃. (4.119)

Once the spline coefficients are known, any value of p and z within the interval [0, pmax] and

[zmin, zmax] can be determined using Equation 4.112.

We are now ready to calculate the off-shell amplitude using the procedure outlined by Car-

bonell and Karmanov, however they suggest that the amplitude has many non-analyticities

due to the inhomogeneous term and due to the interaction kernel. This is similar to what

was found earlier using the splines of Hüber et al., as we saw singularities in the solution

corresponding to the singularities present in the inhomogeneous term. They suggest because

of these singularities, it is difficult to represent the off-shell amplitude on a basis of non-

singular functions, namely the splines in which we approximate the amplitude with. They

suggest to factor out the inhomogeneous term by making the replacement

T (z, p, z0, p0;E) = Z(z, p, z0, p0;E)χ(z, p;E)t(z, p, z0, p0;E) (4.120)

where t will now be a smoother function and χ is an arbitrary but suitable scalar function

introduced to provide a convenient inhomogeneous term. Upon this factorisation, our 4-

dimensional NN equation will become

Z(z, p, z0, p0;E)χ(z, p;E)t(z, p, z0, p0;E) = Z(z, p, z0, p0;E)

+

(
− 1

2πi

)∫ ∞
−∞

∫ ∞
0

Z(z, p, z′′, p′′;E)g(E − z′′)g(z′′)Z(z′′, p′′, z0, p0;E)

× χ(z′′, p′′;E)t(z′′, p′′, z0, p0;E)p′′2dp′′dz′′.

(4.121)

Now, taking the inverse of Z(z, p, z0, p0;E)χ(z, p;E),

t(z, p, z0, p0;E) =
1

χ(z, p;E)
Z(z, p, z0, p0;E)−1Z(z, p, z0, p0;E)

+

(
− 1

2πi

)
1

χ(z, p;E)
Z(z, p, z0, p0;E)−1

∫ ∞
−∞

∫ ∞
0

Z(z, p, z′′, p′′;E)g(E − z′′)g(z′′)

× Z(z′′, p′′, z0, p0;E)χ(z′′, p′′;E)t(z′′, p′′, z0, p0;E)p′′2dp′′dz′′.

(4.122)

Our final expression is

t(z, p, z0, p0;E) =
1

χ(z, p;E)
I +

∫ ∞
−∞

∫ ∞
0

KF (z, p, z′′, p′′;E)t(z′′, p′′, z0, p0;E)p′′2dp′′dz′′.

(4.123)
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where

KF (z, p, z′′, p′′;E) =

(
− 1

2πi

)
1

χ(z, p;E)
Z(z, p, z0, p0;E)−1Z(z, p, z′′, p′′;E)

× g(E − z′′)g(z′′)Z(z′′, p′′, z0, p0;E)χ(z′′, p′′;E).

(4.124)

We now use the spline interpolation method on the smooth function t. We refer to this

method as Carbonell-Karmanov (CK) factorisation.

While the CK factorisation has theoretically removed the singularities in the solution, in

practice, this factorisation is numerically unviable. This is because the kernel function in

Equation 4.124 becomes much larger than the original kernel of Equation 4.89, due to the

inverse Z−diagram. As the inverse Z−diagram contains a term of the form 1/p, the kernel

function approaches infinity when the p knots as calculated close to zero.

To overcome this, instead of performing the CK factorisation, we could factor out a scalar

function from the solution which has the same functional form as a Z-diagram (we will call

this scalar function Zl), instead of factoring out the whole Z−diagram. As we keep the same

functional form, this scalar function will contain the same singularities as a Z-diagram, but

we avoid this problem of having an inverse Z-diagram in the kernel function. However,

it can be shown that the function Z−1
l Z still possesses the singularities of Z. This would

most likely be because the magnitude of the singularities in Zl and Z are not equal, so the

singularities do not exactly cancel each other out. Therefore, a factorisation of Zl from the

solution would not result in a smooth function and the spline interpolation would still be

difficult. Thus, we must factor out the whole Z−diagram from the solution, in order to

eliminate the singularities in the solution. The only other way to avoid the issue with using

an inverse Z-diagram would be to truncate the interval [0, pmax], so the 0 is not one of the

p knots. We suggest choosing knots on the interval [0.1, pmax]. In practice, this truncation

provides ensures the kernel of Equation 4.124 is not extremely large at the first few p knots,

while also not being a sufficient truncation in which would impact the interpolation of the

interval [0,∞].

This factorisation introduces new singularities in the kernel function as the inhomoge-

neous term must be integrated in the kernel. Though, as they are the same singularities, we

already know their location. In the p′′ integral, the singularities introduced by the inhomo-

geneous term are obtained by solving the equation
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z′′ − z0 −
√
m2
π + (p′′ ± p0)2 = 0. (4.125)

Similarly, in the z′′, we find a square-root like singularity when

z′′ = z0 −mπ. (4.126)

We also find minor singularities, due to the interaction of the pole singularities and logarith-

mic singularities in the p′′ integral. We find these singularities in the z′′ integral by solving

the simultaneous equations

z′′ − z0 −
√
m2
π + (p′′ ± p0)2 = 0,

z′′ − p′′2

2mN

−mN = 0,
(4.127)

and we solve

z′′ − z0 −
√
m2
π + (p′′ ± p0)2 = 0,

E − z′′ − p′′2

2mN

−mN = 0.
(4.128)
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5.1 Co-authorship statement

This chapter is adapted from a manuscript, that has been published in a peer-reviewed

journal. The reference for this publication is:

Blankleider, B., Wray, J. L., & Khvinikidze, A. N, (2021). Dyson–Schwinger approach

to pion–nucleon scattering using time-ordered perturbation theory. AIP Advances, 11(2),

1-11. [025204]. https://doi.org/10.1063/5.0034753

The thesis author is listed as the second author in this manuscript. The relevant sections of

this chapter that this manuscript is referred to is: Section 5.4 to the end of the chapter.

The content of this manuscript relates to the πN scattering in the framework of time-

ordered perturbation theory, where all nucleons are fully dressed. The essential goal of

this thesis is to formulate the πNN system where all nucleons are fully dressed, where the

equations derived from this formulation, namely the πNN convolution equations, rely on

πN t−matrices with fully dressed nucleons as input. Therefore, it is essential to include

a description of πN scattering with fully dressed nucleons in this thesis. The primary

content and research ideas were formulated and discussed between the first author and the

thesis author (second author). The thesis author was responsible for producing the results,

including writing the computer code to conduct the calculations, producing the table of

values, and producing the graphs. The thesis author has also significantly contributed to

the editing of the manuscript.

5.2 Introduction

As solving 4-dimensional three-body equations is a difficult numerical task, we can use a

separable potential approximation to the two-body processes, which will reduce the problem

of solving 4-dimensional equations to, effectively, a two-body problem. In this case, the

general 4-dimensional form of the πNN convolution equations given in Equations 3.154 can

be reduced, after partial wave decomposition, to the 2-dimensional form given in Equation

3.163. A notable aspect of these equations is that the input separable two-body t−matrices

have dressed nucleons in the intermediate states. Therefore, two-body t−matrices with

dressed nucleons would need to be constructed as the previously constructed πN and NN
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separable t−matrices readily available in the literature all use undressed nucleons in the

intermediate states.

We create dressed πN input by numerically solving the Dyson-Schwinger equations given

in Equation 5.10a, Equation 5.11a, and Equation 5.12.

The importance of accurate NN potentials as input in few-body problems led to the

development of accurate NN potentials, such as the Bonn [118, 119], Argonne [120, 121],

Nijmegen [122, 123], Paris [124, 125] and the Reid [126] potentials. Of course, it is ad-

vantageous to have a separable approximation to these accurate NN potentials, such as

the separable approximations constructed in [127–132]. However, for our purposes, these

potentials are constructed using undressed nucleon propagators, whereas we require input

that is constructed using dressed nucleon propagators. Due to the lack of accurate NN

potentials that incorporate nucleon dressing in the literature, and no other way to construct

a realistic separable NN potential that incorporates dressing, we will use NN input that is

constructed using undressed nucleon propagators, such as the input given by Bhatt et al.

[133] and Mongan [134, 135].

In the absence of NN input that incorporates nucleon dressing, we will only use our

Dyson-dressed πN inputs in calculations of the πNN convolution equations, where we only

have πN two-body processes. For example, we use Dyson-dressed πN inputs in calculations

of NN elastic scattering where NN is the only intermediate channel. For calculations

containing both πN and NN two-body processes, we use two-body inputs constructed using

undressed nucleon propagators, such as the NN input mentioned previously and πN input

given by Afnan and McLeod [40] and Thomas [22]. We refer to this input as “undressed

input” and specify this input below.

5.3 The undressed inputs

5.3.1 The NN potentials

For the coupled 3S1 − 3D1 channel, we will use a unitary pole approximation (UPA) of

the Reid Soft Core potential. The form factor of the UPA is given by Equation 5.1

hUPA
l (k) =

∑
i

Cil
kl

(k2 + β2
i )

l+2
2

(5.1)
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where l is the orbital angular momentum (l = 0 corresponding to the 3S1 and l = 2 corre-

sponding to the 3D1). The parameters for the UPA are given in Table 5.1. The 3S1 − 3D1

channel is the only coupled two-body channel that we consider in our calculations.

i βi (fm−1) Ci0 (fm−1) Ci2 (fm−1)

1 0.7 1.76363× 10−2 −5.89573× 10−3

2 1.4 −1.53401× 100 2.21753× 10−1

3 2.1 4.26244× 101 −1.24662× 101

4 2.8 −3.42140× 102 7.79072× 101

5 3.5 1.22668× 103 −2.26824× 102

6 4.2 −1.59317× 103 2.20502× 102

7 5.6 9.22828× 102 −5.00828× 101

8 8.4 −3.19981× 102 −2.04641× 101

9 12.6 6.54176× 101 1.18944× 101

Table 5.1: Parameters for the form factors of the unitary pole approximation of the Reid

Soft Core potential to the coupled 3S1 − 3D1 NN potential. The fits were performed by

Bhatt et al. [133].

For the πN channels other than the coupled 3S1 − 3D1 channel, the form factor is given

by

hli(k) =
Clik

l

(k2 + β2
li)
γ

(5.2)

and the parameters are given in Table 5.2
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NN channel γ Cl1 (fm1+l−2γ) βl1 (fm−1) λl1 Cl2 (fm1+l−2γ) βl2 (fm−1) λl2

1S0 1 21.49867 6.157 +1 1.945558 1.786 −1

1P1 3/2 35.59382 2.951 +1

3P0 2 94.60838 5.000 +1 1.922066 1.462 −1

3P1 2 14.25889 2.661 +1

3P2 2 8.72049 2.720 −1

1D2 2 1.50135 1.944 −1

3D2 2 1.46647 1.468 −1

3D3 2 35.15246 6.558 +1 0.549284 1.451 −1

Table 5.2: The parameters of the form factors of the uncoupled NN channels given by

Mongan [134, 135].

5.3.2 The πN potentials

When the two body process involves pion creation or annihilation, the form factor is the

dressed vertex function (f(k,E) for creation and f̄(k,E) for annihilation). The form factor

for s-wave πN input is given by

h(k) =
S1

α2
1 + k2

+
S2

α2
2 + k2

, (5.3a)

while the form factor for p-wave πN input is given by

h(k) =
S1k

(α2
1 + k2)2

+
S2k

3

(α2
2 + k2)2

. (5.3b)

The parameters for the πN input are given in Table 5.3.

πN channel S1 α1 (fm−1) S2 α2 (fm−1) λ

S11 1.7826 3.188 0.0894 0.8225 −1

S31 6.0786 3.382 −0.1661 1.107 +1

P33 0.5403 1.475 1.0583 3.400 −1

P31 4.290 2.059 +1

P13 1.557 1.244 3.659 1.945 +1

Table 5.3: The parameters of the form factors for the πN channel given by Thomas [22].
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The πN scattering length is given as

aπN ∼ −πµTπN(k0, k0) as k0 → 0 (5.4)

for s−waves and

aπN ∼ −πµ
TπN(k0, k0)

k2
0

as k0 → 0 (5.5)

for p−waves, where µ is the reduced mass of the πN system and k0 is the on-shell πN

momentum.

5.4 Constructing πN input that incorporates nucleon

dressing

5.4.1 Pion-nucleon equations

With the model describing the interactions of pions and nucleon given in Chapter 2, we

can define the Green’s function G that shall be used to describe pion-nucleon scattering, as

δ (k + p− k′ − p′)G(p′,k,p, E) = 〈k′ p′| 1

E+ −H
|k p〉. (5.6)

As the Green’s function G(p′,k,p, E) describing πN scattering can be equated to a

complete sum of perturbation diagrams, this provides the opportunity to rearrange this

sum so as to express it completely in terms of useful quantities like potentials, t−matrices,

and other Green’s functions, thereby generating scattering equations of a similar nature

to those found in Quantum Mechanics (e.g. the Lippmann-Schwinger equation). Such a

rearrangement leads to a set of coupled equations for πN scattering illustrated in Figure 5.1.
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= +(a)

t f g f̄ tb

= +(b)

vtb v G0 tb

= +(c)

tbf f0 G0 f0

= +(d)

g g0 f̄0 G0 f gg0

Figure 5.1: Illustration of the πN scattering equations: (a) The πN t−matrix expressed

by Equation 5.9, (b) the “background” πN t−matrix as given by Equation 5.10a, (c) the

dressed πNN vertex as given by Equation 5.11a, and (d) the dressed nucleon propagator as

given by Equation 5.12 whose self-energy term Σ is expressed as in Equation 5.13a.

First derived by Mizutani and Koltun using Feshbach projection operators [80], these

equations were later derived in the same context of TOPT as used here [33] and also in

the context of relativistic quantum field theory (RQFT) [136]. Here we shall give a brief

derivation following the arguments used in [33].

We start by writing the Green’s function G(p′,k,p, E) in operator form as

G(E) = G0(E) +G0(E)t(E)G0(E) (5.7)

where G0(E) is the “dressed πN propagator” consisting of all the disconnected diagrams of

G(E), and t(E) is the πN → πN t−matrix which is defined by this equation. Note that each

quantity in Equation 5.7 is an operator acting in subspace HπN , with G(E) being specifically

defined such that

〈k′ p′|G(E)|k p〉 = 〈k′ p′| 1

E+ −H
|k p〉. (5.8)

It is evident that the term G0(E)t(E)G0(E) in Equation 5.7 consists of all possible connected

πN → πN diagrams and that t(E) consists of the same diagrams but with no attached initial-

and final-state πN propagators, colloquially referred to as diagrams with “chopped legs”.
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Further progress can be made by defining a “background” πN t−matrix tb(E) as the

sum of all diagrams of t(E) that have one or more pions in every intermediate state, as one

can then write

t(E) = f(E)g(E)f̄(E) + tb(E) (5.9)

where f(E) (f̄(E)) is the “dressed vertex” consisting of all possible N → πN (πN → N)

chopped-leg diagrams with at least one pion in every intermediate state. Similarly, one can

define t−matrix t(2)(E) as the sum of all diagrams of t(E) that have two or more pions in

every intermediate state, in which case we can write Lippmann-Schwinger-like equations

tb(E) = v(E) + v(E)G0(E)tb(E), (5.10a)

= v(E) + tbG0(E)v(E) (5.10b)

where v(E) ≡ t(2)(E) plays the role of a πN → πN potential. Using a similar argument,

one can obtain the equations

f(E) = f0(E) + tb(E)G0(E)f0(E), (5.11a)

f̄(E) = f̄0(E) + f̄0(E)G0(E)tb(E), (5.11b)

where f0(E) ≡ f (2)(E) (f̄0(E) ≡ f̄ (2)(E)) is the “bare vertex” consisting of all possible

N → πN (πN → N) chopped-leg diagrams with at least two pions in every intermediate

state. Finally, one can similarly write

g(E) = g0(E) + g0(E)Σ(E)g(E) (5.12)

where

Σ(E) = f̄0(E)G0(E)f(E), (5.13a)

= f̄(E)G0(E)f0(E), (5.13b)

is the nucleon “self-energy” or “dressing” term consisting of all diagrams of g(E) with at least

one pion in every intermediate state, but with chopped legs. The set of equations consisting

of Equations 5.9-5.13 are illustrated in Figure 5.1, and provide an exact and useful way of

expressing the πN t−matrix t(E).

In the context of RQFT, Equation 5.12 (illustrated in Figure 5.1 (d)) is known as the

Dyson equation, while the coupled set of equations Equation 5.10a, Equation 5.11a, and

Equation 5.12, illustrated in Figure 5.1 (b)-(d), are known as the Dyson-Schwinger (DS)
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equations, and that is how we shall refer to the TOPT versions of these equations here. A

feature of the Dyson equation is the fact that the dressed nucleon propagator g is expressed in

terms of the self-energy term Σ which itself is expressed in terms of g via the πN propagator

G0(E). Such self-referencing also occurs for the background t−matrix tb and the dressed

vertex f in the Dyson-Schwinger equations, a feature that makes these equations embody

a lot of physics even in the case where the bare vertex f0 and background potential v are

modelled phenomenologically, as will be the case in the next section.

5.5 Solving the Dyson-Schwinger equations

Here we shall follow an often used procedure where the bare πNN vertex f0 and the

“background” πN potential v are modelled by energy-independent parametrized phenomeno-

logical functions; however, unlike in all such previous models [33, 36, 80–83], we shall not be

using the approximation where the exact πN propagator G0(E,k,p), defined as

δ(k′ − k)δ(p′ − p)G0(E,k,p) = 〈k′ p′| 1

E+ −H
|k p〉disc, (5.14)

is modelled by the pole term 1/[E+ − EN(p) − m − ωπ(k)]; rather, we shall retain its full

exact form, which in the model specified by the Hamiltonian defined in Equations 2.12, is

given by

G0(E,k,p) = g[E − EN(p)− ωπ(k)]. (5.15)

As mentioned above, it is this exact form for G0 which gives the Dyson-Schwinger equations

the property of retaining a rich amount of physics despite what may be lost by taking

phenomenological forms for f0 and v.

5.5.1 Partial wave equations

It is convenient to solve the Dyson-Schwinger set of equations, given in operator form in

Equations 5.10-5.13, in the centre of mass (c.m.) of the πN system, so that k+p = k′+p′ =

0, in which case Equation 5.15 can be expressed as

G0(E,k) = g(E − ωk) (5.16)

where

ωk = EN(k) + ωπ(k). (5.17)
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In order to reduce the dimension of these equations from 3 to 1, we shall work in the partial

wave representation using the basis states

|lsjt,mjmt,k〉 =
∑

mt1mt2
mlms

(lmlsms|jmj)(t1mt1t2mt2|tmt)

∫
dk̂ Ylml(k̂) |t1mt1t2mt2 ,k〉 (5.18)

where t1 = 1 is the isospin of the pion, t2 = 1/2 is the isospin of the nucleon, s = 1/2 is

the spin of the nucleon, l specifies the πN relative orbital angular momentum, t is the total

isospin, and j is the total angular momentum. By construction, the model Hamiltonian of

Equation 2.12 is invariant under rotations, which implies that all matrix elements using the

above partial wave basis states will not depend on the magnetic quantum numbers mj and

mt. Similarly, the model Hamiltonian is chosen to be invariant under space inversion, thus

ensuring parity is conserved in our model which in turn, leads to πN partial wave matrix

elements that preserve the value of l. We shall refer to the partial wave specified by the

quantum numbers {ljt} using the usual (for πN scattering) spectroscopic notation of the

form “L(2t)(2j)”. Because the nucleon has quantum numbers t = j = 1/2 and the pion has

intrinsic parity of −1, it follows that the first term on the right hand side (RHS) of Equation

5.9, the so-called nucleon pole term, contributes only in the P11 partial wave. Likewise,

the background πN t−matrix tb appearing in the expression for the dressed πNN vertices

of Equations 5.11 is the one in the P11 partial wave. Thus, restricting the discussion to

πN scattering in the P11 partial wave, we can write the numerical form of the partial wave

equations corresponding to Figure 5.1 as

t(k′, k, E) = f(k,E)g(E)f̄(k,E) + tb(k′, k, E) (5.19a)

tb(k′, k, E) = v(k′, k) +

∫ ∞
0

dq q2 v(k′, q)g(E − ωq)tb(q, k, E) (5.19b)

f(k,E) = f0(k) +

∫ ∞
0

dq q2 tb(k, q, E)g(E − ωq)f0(q) (5.19c)

g(E) =
1

E+ −m0 − Σ(E)
(5.19d)

Σ(E) =

∫ ∞
0

dq q2 f0(q)g(E − ωq)f(q, E) (5.19e)

where partial wave labels have been omitted to save on notation. For scattering in partial

waves other than P11, essentially the same equations would apply, the only differences being

that the pole term in Equation 5.19a would not appear, and one would need to distinguish

the tb appearing in Equation 5.19a from the P11 partial wave tb appearing in Equation 5.19c

.
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In order to help solve these equations numerically, it is useful to know the analytic

structure of the dressed nucleon propagator g(E). As a basic requirement of theory, g(E)

must have a pole at the physical nucleon mass m. To ensure this, the bare mass is set to

the value m0 = m− Σ(m) so that

g(E) =
1

E+ −m− Σ(E) + Σ(m)
(5.20)

and therefore

g(E) ∼
E→m

Z

E+ −m
(5.21)

where Z is the wave function renormalization constant given by

Z =
1

1− Σ′(m)
(5.22)

where the prime indicates a derivative with respect to E. To evaluate Σ′(m), one can use

the identity

Σ′(E) =

∫ ∞
0

dq q2 f̄(q, E)g′(E − ωq)f(q, E). (5.23)

which can be easily proved using the operator form of Equations 5.19. In this work we do

not consider nucleon resonances in the P11 channel as these lie beyond the energies that we

consider. Thus, in our model, there are no further poles in the complex energy plane.

Besides a nucleon pole, it can be shown that g(E) also contains a cut starting at E = m+

mπ and extending to +∞, and that this analytic structure implies the following “dispersion

relation” [48]

g(E) =
Z

E+ −m
− 1

π

∫ ∞
m+mπ

Img(ω)

E+ − ω
dω. (5.24)

As we shall see, this relationship between g(E) and its imaginary part will prove very useful

in the numerical solution of the Dyson-Schwinger equations. This expression for g(E) is also

convenient for the evaluation of Equation 5.23 as

g′(E) = − Z

(E+ −m)2
+

1

π

∫ ∞
m+mπ

Img(ω)

(E+ − ω)2
dω. (5.25)

5.5.2 Separable potential model

To keep this model as simple as possible, we choose a separable form for the partial wave

potential v:

v(k′, k) = h(k′)λh(k), (5.26)
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where h(k) is a phenomenological form factor and λ specifies the sign of the potential (for

the P11 partial wave under consideration here, λ = −1). The use of separable potentials

to describe the strong interactions of a pion and a nucleon has a long and rich history. In

1967, Varma [26] used such potentials to perform the first three-body calculation of the

πNN system; since then, they have been used extensively to investigate effects of pion

absorption [33, 36, 80–82], pion-nucleus scattering [137–140], three-body forces [141, 142],

pion photoproduction [143, 144], dibaryons [145, 146], and also to facilitate solutions of

relativistic equations [147–150]. The motivation for their widespread use is their convenience,

often leading to significant simplifications in both analytic and numerical work. Although

short-range interactions are naturally separable at energies close to resonance poles, they can

also be well approximated through the use of low-rank separable potentials at energies away

from scattering poles, as long as the underlying realistic potential is energy independent

[151–157]. For πN scattering at the considered energies (0 < Tπ < 390 MeV), much of

the low-energy energy dependence of the underlying interaction is due to the nucleon pole

term, which only contributes to the P11 partial wave. As we treat the pole term separately,

it is reasonable to assume that the P11 background term and the rest of the partial wave

interactions can be reasonably modelled with separable potentials [158]. Nevertheless, the

neglect of residual energy dependence and the lack of crossing symmetry in our model [159]

suggests that the separable potentials developed in this work would be most useful as input

to calculations that do not rely critically on the accuracy of the off-shell behaviour of the

πN interaction.

In the case of a separable potential, Equation 5.19b can be solved algebraically, giving

also a separable form for the background πN t−matrix:

tb(k′, k, E) = h(k′) τ(E)h(k) (5.27)

where

τ(E) =

[
1− λ

∫ ∞
0

dq q2 h(q)g(E − ωq)h(q)

]−1

λ. (5.28)

Defining the four dressing terms

Σij(E) =

∫ ∞
0

dq q2 φi(q)g(E − ωq)φj(q), (i, j = 1, 2) (5.29)

where φ1(q) ≡ f0(q) and φ2(q) ≡ h(q), the Dyson-Schwinger equations can be conveniently
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expressed as the set of three equations

g(E) =
1

E+ −m− Σ(E) + Σ(m)
(5.30a)

Σ(E) = Σ11(E) + Σ12(E)τ(E)Σ21(E) (5.30b)

τ(E) = [1− λΣ22(E)]−1 λ, (5.30c)

which determine the dressed nucleon propagator g(E), together with the additional two

equations

t(k′, k, E) = f(k,E)g(E)f̄(k,E) + h(k′)τ(E)h(k) (5.31a)

f(k,E) = f0(k) + h(k)τ(E)Σ21(E), (5.31b)

that determine the consequent dressed πNN vertex f and πN t−matrix t.

Numerical procedure

In our approach, modelling πN scattering with Equations 5.19 begins by choosing parametrised

analytic functions for the form factors f0(k) and h(k). These form factors need to fulfil the

requirement of providing a momentum cutoff that ensures finite values for the integrals defin-

ing the Σ functions of Equation 5.13, and they must behave linearly with k in the limit of low

momenta in order to be consistent with the l = 1 nature of a P11 partial wave amplitude. We

shall follow a previous work where separable potentials were used to model πN scattering,

and choose the following analytic forms [83]

f0(k) =
k C0√
ωπ(k)

1

(k2 + Λ2)n0
, (5.32a)

h(k) =
k C1√
ωπ(k)

[
1

(k2 + β2
1)n1

+
C2k

2n2

(k2 + β2
2)n3

]
, (5.32b)

where C0, C1, C2, β1, β2,Λ are free parameters, and the powers n0, n1, n2, n3 are integers that

can be chosen to change the functional form of the form factors.

For any given set of parameters, the first task is to solve the Dyson-Schwinger equations

in the form of Equations 5.30 for the dressed nucleon propagator g(E). We do this by

following an iterative procedure where an approximation to g(E) is used in Equation 5.29 to

calculate all the functions Σij(E), which are then used to calculate a new (and hopefully more

accurate) version of g(E) using Equations 5.30. The process is repeated until convergence
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for g(E) is achieved. By construction, the resulting propagator g(E) satisfied the Dyson-

Schwinger equations and can be then used to generate the dressed vertex f and the πN

t−matrix t using Equations 5.31.

Technical Aspects

To carry out the integral in Equation 5.29 numerically, we use Gaussian quadratures, and

to avoid the singularity coming from the pole of g(E), we rotate the integration contour from

the positive real axis, into the 4th quadrant of the complex q plane. However, a practical

problem remains in carrying out these integrals because in order to generate a propagator

g(E) at any iteration, one needs to know the previous iteration’s propagators g(E −ωqi) for

each of the rotated quadrature points qi. Thus the number of energies at which one needs to

know g quickly escalates as the iteration proceeds. To get around this problem, we make use

of the fact that the dressed nucleon propagator g(E), at each step of the iteration, satisfies

the dispersion relation of Equation B.20. This allows us to evaluate Equation 5.29 as

Σij(E) =

∫ ∞
0

dq q2 Zφi(q)φj(q)

E+ − ωq −mN

− 1

π

∫ ∞
mN+mπ

Img(ω)

∫ ∞
0

dq q2 φi(q)φj(q)

E+ − ωq − ω
dω (5.33)

which requires knowledge of g(E) only at a number of fixed values of E corresponding to

the Gaussian integration points ωi used to evaluate the ω integral in Equation 5.33. The

iterative process thus proceeds according to the following steps:

1. For any given set of form factor parameters, begin the iteration by generating the

“non-Dyson” dressed nucleon propagator g(0)(E) defined by Equations 5.30 but where

the nucleon in the πN propagator used in the dressing terms Σij, is not explicitly

dressed; that is, by using

Σij(E)→
∫ ∞

0

dq q2 φi(q)φj(q)

E+ − ωq −mN

. (5.34)

It is just this g(0)(E) that has been used in previous works [40, 83] to model πN

scattering.

2. Having constructed the “0th iteration” of g(E) as above, we now use this g in Equation

5.33 to generate new dressing terms Σij(E).

3. Using these newly constructed Σij(E)’s in Equations 5.30 generates the next iteration

of the dressed nucleon propagator g(E).
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5.5.3 Numerical results

After constructing the dressed nucleon propagator g(E) as prescribed by the 3 steps

outlined above, we now repeat steps 2 and 3 over and over, thus generating successive

iterations of g(E), denoted as g(1)(E), g(2)(E), g(3)(E), . . . until the values of g(r)(E) converge

according to the criterion
∣∣[g(r)(ωi)− g(r−1)(ωi)]/g

(r)(ωi)
∣∣ < ε for all ω integration points ωi,

where ε is some chosen tolerance value. We have found that the iterated dressed propagators

g(r)(E) converge for all considered models using a convergence tolerance of ε = 10−4, and

that correspondingly, the resulting numerical values of the converged g(E) functions are

stable to at least 5 significant figures with respect to variations in the number of quadrature

points used for all integrals, and in the contour rotation angle used for all the q momentum

integrals. We note that the convergence of g(E) also provides a self-consistency check that

no resonance poles have been generated by the assumed separable potentials.

With the Dyson-Schwinger equations of Equations 5.19 solved in this way, it is inter-

esting to compare the resulting fully dressed “Dyson” nucleon propagator g(E) with the

“non-Dyson” one where the coupled equations of Figure 5.1 are solved in the “one-pion” ap-

proximation where nucleon dressing in πN states is neglected. We present this comparison

in Figure 5.2 for the case where the parameters of the input bare πNN vertex and back-

ground πN potential are those of model M1 in [83]. For ease of comparison, we have plotted

the corresponding real and imaginary values of (E − mN)g(E)/Z, being the renormalised

nucleon propagators with the nucleon pole term factored out. As can be seen, there is a

substantial difference between the two propagators, suggesting the importance of retaining

nucleon dressing in πN states.

To obtain a variety of models of nucleon dressing, we have carried out fits to the WI08 P11

πN phase shifts [160] (for pion laboratory energies up to 390 MeV) by using the functional

forms of Equations 5.32 for a range of cutoff values Λ for the bare πNN vertex function

f0(k). Each such fit was constrained to reproduce the πNN coupling constant f 2
πNN = 0.079

in the way described in [83]. The parameters of four such fits are given in Table 5.4 with the

corresponding values of (E − mN)g(E)/Z plotted in Figure 5.3. Unsurprisingly, the large

number of parameters in this model allows one to fit πN data equally well for a wide range

of cutoff parameters Λ. Although this flexibility of the model can be viewed as one of its

weaknesses, it does allow one to accommodate the wide variety of πNN vertex cutoffs, in

the range 300 < Λ < 2200 MeV, used in the literature [161–171].
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Figure 5.2: (a) Real and (b) imaginary parts of gR(E)(E −mN) where gR(E) = g(E)/Z is

the renormalised dressed nucleon propagator. The solid curves are for the Dyson propagator

(resulting from the solution of the Dyson-Schwinger equations), while the dashed curves are

for the non-Dyson propagator (resulting from the use of the one-pion-approximation).
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Figure 5.3: (a) Real and (b) imaginary parts of gR(E)(E −mN) where gR(E) is the renor-

malised dressed Dyson nucleon propagator, for the four models specified in Table 5.4. The

solid curves represent the M6 model, the dashed curves represent the M7 model, the dot-

dashed curves represent the M8 model and the dotted curves represent the M9 model.

Finally we show that Equations 5.19, which use the fully dressed Dyson propagators, are

able to be used to fit all s - and p -wave πN phase shifts for pion lab kinetic energies in the

range 0 < Tlab < 390 MeV. To demonstrate this explicitly, we have chosen the M7 model of

Table 5.4 whose cutoff parameter is Λ = 800 MeV, a value suggested by an investigation of

Quantum Chromodynamic sum rules [172]. For the non-P11 partial wave πN potentials, we

use the separable forms of Thomas [22] whose form factors are parametrised as

h(k) =
S1

α2
1 + k2

+
S2

α2
2 + k2

, (5.35a)

for s-waves and

h(k) =
S1k

(α2
1 + k2)2

+
S2k

3

(α2
2 + k2)2

, (5.35b)
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for p -waves. These form factors were used by Thomas to describe pion-deuteron scattering

in a calculation using semi-relativistic kinematics [22].

Λ β1 β2 C0 C1 C2 m0 Z

Potential (fm−1) (fm−1) (fm−1) (fm−1)

M9 1.71991 1.14162 1.88154 0.64225 0.23808 8.9632 5.00289 0.90054

M8 2.72329 1.26878 1.78328 1.1778 0.32923 6.2150 5.33579 0.79369

M7 4.04994 1.4176 1.77246 1.7827 0.42271 4.8618 5.69286 0.69481

M6 10.8023 1.62718 1.8684 4.7174 0.58264 3.5638 6.29540 0.60027

Table 5.4: Parameters of four fits (labelled as models M9, M8, M7, and M6) to the P11

πN phase shifts through the solution of the Dyson-Schwinger equations of Equation 5.32.

The first 9 parameters refer to the form factors of while m0 is the bare nucleon mass and Z

is the nucleon wave-function renormalisation constant.

Our partial wave phase shift fits using the M7 model for the Dyson propagator g(E) are

shown in with the corresponding parameters listed (under the rows labelled M7) in Table

5.5. Equally good fits to all the phase shifts can be obtained using the other models for

g(E) (M9, M8 and M6) with the corresponding parameters being given in Table 5.4 for

the P11 and Table 5.5 for the other partial waves. It should be noted, however, that equally

good fits can also be obtained using non-Dyson propagators. Thus, even though we are able

to demonstrate the importance of nucleon dressing, the large number of parameters in our

model does not allow us to identify any features of the phase-shift data that may prefer the

“Dyson” over the “non-Dyson” dressed nucleon propagators.
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πN λ P11 S1 α1 S2 α2

Partial wave model (fm−1) (fm−1)

S11 −1

M9 −11.557 10.057 −0.12483 0.85466

M8 −11.715 9.9173 −0.13350 0.85973

M7 −11.818 9.7449 −0.14334 0.86536

M6 −12.046 9.6221 −0.15518 0.87236

S31 +1

M9 3.8017 1.9930 −1.0897 1.3266

M8 4.2003 2.0120 −1.1815 1.3292

M7 4.7214 2.0350 −1.3090 1.3365

M6 5.4998 2.0668 −1.5227 1.3574

P31 +1

M9 9.5578 2.5488

M8 10.339 2.5549

M7 11.250 2.5620

M6 12.370 2.5704

P13 +1

M9 3.6208 1.8244 1.5209 3.2380

M8 3.5755 1.8022 1.4249 3.0757

M7 3.5051 1.7801 1.3111 2.9082

M6 3.3855 1.7492 1.1932 2.7126

P33 −1

M9 0.74876 1.7551 1.2295 4.9512

M8 0.80133 1.7535 1.2212 4.8276

M7 0.86060 1.7519 1.2126 4.7019

M6 0.93047 1.7501 1.2041 4.5665

Table 5.5: Parameters of fits to the s - and p -wave πN phase shifts (other than P11) for

each of the four models (M9, M8, M7, and M6) for the dressed Dyson nucleon propagator

g(E) used in the coupled πN equations of Equation 5.19. The parameters refer to the form

factors of Equation 5.35. The s -wave strengths are in fm−1, for p -waves S2 is dimensionless

and S1 is in fm−1.
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CHAPTER 6. NUMERICAL RESULTS

6.1 Co-authorship statement

This chapter is adapted from a manuscript, soon to be written and submitted to a peer-

reviewed journal. The reference for the manuscript is:

Wray, J. L., Blankleider, B., & Khvinikidze, A. N, (2021). Convolution approach to πNN .

II. Numerical solution. (to be submitted to Physical Review C upon completion)

The thesis author is listed as the first author in this manuscript. The relevant sections

of this chapter that this manuscript is referred to is: the whole chapter including elements

from Chapter 4 and Chapter 5.

The numerical design and solution of the convolution model whose theory is developed

in Chapter 3, was done almost exclusively by the thesis author, and constitutes the content

of Chapters 4, 5, and 6 of the thesis. The journal article is an account of this work and the

author order reflects the relative contribution to this part of the research. The manuscript

is as yet unwritten, but it is planned that the thesis author will be writing the majority of

the paper.

6.2 Introduction

Now that we have discussed the method for solving our 4-dimensional (4D) scattering

equations and developed numerical techniques, we present the numerical results of the 4-

dimensional πNN convolution equations. We perform a numerical calculation of Equations

3.163, representing the processes of πd elastic scattering, pp → π+d scattering and NN

scattering. From this numerical calculation, we calculate observables associated with each

process with a particular interest in the pp→ π+d scattering cross sections and the T20 polar-

isation observable for πd elastic scattering. We are interested in these particular observables

as the πNN convolution equations are the first πNN equations to include full dressing of

the nucleons, while the inadequacy of the “Unitary NN−πNN” model in reproducing these

observables has long been attributed to the underdressing of nucleons in this model. While

our primary goal would be to see if the πNN convolution equations are able to overcome

the limitations of the “Unitary NN − πNN” model, the computational intensity of our

numerical calculations limits our ability to achieve this goal. However, we are still able to
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make some preliminary observations about the potential of the πNN convolution equations.

With our calculation of the 4-dimensional πNN convolution equations, our goals are as

follows:

1. Compare the observables calculated using the πNN convolution equations with those

obtained using the equations of the “Unitary NN − πNN” model, to determine the

effect of consistent dressing.

2. Compare the observables calculated using the πNN convolution equations with exper-

imental data, to determine whether the convolution equations provide a better pre-

diction of experiments in comparison to the equations of the “Unitary NN − πNN”

model.

3. Investigate the viability of the spline interpolation method as a method for solving 4-

dimensional scattering equations with moving singularities in the kernel of the integral

equations.

While we provide the numerical results to the πNN convolution equations, solving these

4-dimensional equations has turned out to be a computationally intensive task. As a result,

it has only been viable to include just one coupled channel when performing our numerical

calculations.

6.3 Numerical 4-dimensional πNN convolution equa-

tions

We will now explicitly express the equations we solve and their functional form. Solving

these 4D equations using spline interpolation requires many interpolation points (or knots)

to obtain numerical stability. The need for many interpolation points, in combination with

many quadrature points needed to converge the z′′ and p′′ integrals, demands significant

computational power. For this reason, we calculate our 4D results with only one coupled

channel. This means that, in our numerical calculations, we only include one intermediate

channel in our scattering equations.

For NN → πd scattering (pp → π+d scattering), we couple our equations only to the

P33 channel (N∆ channel) with the lowest relative orbital angular momentum value L. By

coupling only to the P33 channel, only N∆ states are allowed in the intermediate states i.e.
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NN → N∆ → N∆ → ... → N∆ → πd. When calculating results for πd scattering, we

also couple only to the P33 channel with the lowest L value. The coupling to P33 is chosen

as this channel is dominant due to the ∆(1232) resonance. In a separate calculation, we

also calculate results for πd elastic scattering with coupling only to NN with the lowest

orbital angular momentum value L. This will allow us to include the diagram referenced

by Jennings [42], shown in Figure 1.6, who suggested that the inclusion of this diagram

will improve the reproducibility of the T20 polarisation observable. We calculate results for

elastic NN scattering without coupling to any other channel. In a separate calculation, we

also calculate results for NN scattering coupled only the P33 channel with the lowest orbital

angular momentum value L.

Here, we detail the numerical form of our equations describing πd elastic scattering,

as equivalent numerical equations and diagrammatic representations can be obtained for

NN → πd scattering and NN scattering, by following the same conventions. In the fol-

lowing numerical scattering equations that we present, we omit partial wave indices and

antisymmetry labels to save on notation.

The fully on-shell partial wave πd t−matrix (coupled only to the P33 channel) is given as

Xdd(E) =

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2Zd∆(z′′, p′′;E)g

(
z′′ − p′′2

2mN

)
× τ∆

(
E − z′′ − p′′2

2(mN +mπ)

)
X∆d(z

′′, p′′;E).

(6.1)

To distinguish between the fully on-shell, half off-shell and fully off-shell quantities, fully

on-shell quantities will only be a function of E, half off-shell quantities will be a function of

energy and one 4-momentum (E, z, p) and fully off-shell quantities will be a function of energy

and two 4-momenta (E, z′, p′, z, p). This numerical equation is represented diagrammatically

in Figure 6.1.

=

z′,p′ z,p

E − z′,−p′ E − z,−p

z′,p′ E − z′′,−p′′ z,p

E − z′,−p′ z′′,p′′ E − z,−p

E − z − z′′
−p′ − p′′

Figure 6.1: The πd elastic scattering amplitude where N∆ is the only coupled channel.

To calculate the full πd scattering t−matrix, we will first have to calculate the half
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off-shell N∆→ πd t−matrix X∆d(z
′′, p′′;E), which is given by

X∆d(z
′′, p′′;E) = Z∆d(z

′′, p′′;E) +

(
− 1

2πi

)∫ ∞
−∞

dz′′′
∫ ∞

0

dp′′′(p′′′)2Z∆∆(z′′, p′′, z′′′, p′′′;E)

× g
(
z′′′ − p′′′2

2mN

)
τ∆

(
E − z′′′ − p′′′2

2(mN +mπ)

)
X∆d(z

′′′, p′′′;E).

(6.2)

This numerical equation is represented diagrammatically in Figure 6.2.

E − z′′,−p′′ z,p

z′′,p′′ E − z,−p

=

E − z′′,−p′′ z,p

z′′,p′′ E − z,−p

+

E − z′′,−p′′ z′′′,p′′′

z′′,p′′ E − z′′′,−p′′′

z,p

E − z,−p

E − z − z′′
−p′′ − p

E − z′′ − z′′′
−p′′ − p′′′

Figure 6.2: The N∆ → πd scattering amplitude where N∆ is the only coupled channel.

This amplitude is used in order to calculate the πd elastic scattering amplitude.

Now, when we couple our πd elastic scattering equations to the NN channel, the fully

on-shell 4D πd→ πd t−matrix is given as

Xdd(E) =

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2ZdN(z′′, p′′;E)g

(
z′′ − p′′2

2mN

)
× g

(
E − z′′ − p′′2

2mN

)
XNd(z

′′, p′′;E),

(6.3)

which is given diagrammatically in Figure 6.3.

=

z′,p′ z,p

E − z′,−p′ E − z,−p

z′,p′ z′′,p′′ z,p

E − z′,−p′ E − z′′,−p′′ E − z,−p

z′′ − z′
p′′ − p′

Figure 6.3: The πd elastic scattering amplitude where NN is the only coupled channel.
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The half off-shell NN → πd t−matrix XNd(z
′′, p′′;E), is given by

XNd(z
′′, p′′;E) = ZNd(z

′′, p′′;E) +

(
− 1

2πi

)∫ ∞
−∞

dz′′′
∫ ∞

0

dp′′′(p′′′)2ZNN(z′′, p′′, z′′′, p′′′;E)

× g
(
z′′′ − p′′′2

2mN

)
g

(
E − z′′′ − p′′′2

2mN

)
XNd(z

′′′, p′′′;E).

(6.4)

This numerical equation is represented diagrammatically in Figure 6.4.

z′′,p′′ z,p

E − z′′,−p′′ E − z,−p

=

z′′,p′′ z,p

E − z′′,−p′′ E − z,p

+

z′′,p′′ z′′′,p′′′

E − z′′,−p′′ E − z′′′,−p′′′

z,p

E − z,−p

z′′ − z
p′′ − p

z′′ − z′′′
p′′ − p′′′

Figure 6.4: The NN → πd scattering amplitude where NN is the only coupled channel.

This amplitude is used in order to calculate the πd elastic scattering amplitude.

6.3.1 4-dimensional Z-diagram

One of the key components in the numerical calculation of the πNN convolution equa-

tions is the calculation of the Z−diagrams (Born terms) in Equation 3.164. These Z−diagrams

give rise to a difficult computational task as the presence of the fully dressed propaga-

tors D0α and G0 drastically increases computation time. We find that our fully dressed

Z−diagrams obtained from time-ordered perturbation theory (TOPT) are, surprisingly, eas-

ier to calculate than their corresponding diagram in the πNN convolution equations. The

numerical Z−diagram we use in our calculation of the 4-dimensional πNN convolution equa-

tions are given by the rules for constructing fully dressed Z−diagrams given in Chapter 2,

with “chopped” nucleon legs. The only difference is that, if the exchanged particle in the

Z−diagram is a nucleon, we use an undressed nucleon propagator rather than a dressed one-

nucleon propagator. As discussed in the previous chapter, we do not include NN two-body

input that incorporates nucleon dressing in our calculations and therefore, there is no need

to dress the exchange nucleon in the Z−diagrams.
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The Z−diagrams in Figures 6.1-6.4 are numerically the same as Equation 4.6, but ac-

quires an extra dimension. After partial wave decomposition, as detailed in Chapter 4, the

general 4-dimensional Z−diagram, with our “prime” notation, is given by

ZJT
K′,K(z′, p′, z, p;E) =

∑
l′,l,L

p′lpl
′
ΓLk′,k(z

′, p′, z, p;E)
l′∑
a=0

l∑
b=0

AL,a,bK′,K

(
p′

p

)a−b
(6.5)

where

ΓLk′,k(z
′, p′, z, p;E) =

1

2

∫ 1

−1

q′−l
′
hk′(q

′)hk(q)q
−l

D(x, z′, p′, z, p;E)
PL(x)dx. (6.6)

The other quantities are similarly defined in the previous chapters, except for the denom-

inator function which is given below. When the Z−diagram involves an NN channel, the

form factor hk becomes the dressed vertex function f , thus acquires an energy dependence.

The denominator function also acquires an extra dimension and is now given explicitly by:

1. For N∆→ N∆ Z−diagrams

D(x, z′, p′, z, p;E) = E+ − z′ − z −
√
m2
π + p′2 + p2 + 2p′p x (6.7a)

2. For N∆→ πd Z−diagrams

D(x, z′, p′, z, p;E) = E+ − z′ − z − p′2 + p2 + 2p′p x

2mN

−mN (6.7b)

3. For NN → πd Z−diagrams

D(x, z′, p′, z, p;E) = z+ − z′ − p′2 + p2 − 2p′p x

2mN

−mN (6.7c)

4. For πd→ NN Z−diagrams

D(x, z′, p′, z, p;E) = z′+ − z − p′2 + p2 − 2p′p x

2mN

−mN (6.7d)

5. For NN → N∆ Z−diagrams

D(x, z′, p′, z, p;E) = z′+ − z −
√
m2
π + p′2 + p2 − 2p′p x (6.7e)

For NN → NN Z−diagrams, we must include both time-orderings of one-pion exchange

(OPE). Therefore, we have one Z−diagram with the denominator D(x, z′, p′, z, p;E) =

z′+ − z −
√
m2
π + p′2 + p2 − 2p′p x (negative slope Z−diagram) and the other Z−diagram
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with the denominator D(x, z′, p′, z, p;E) = z+− z′−
√
m2
π + p′2 + p2 − 2p′p x (positive slope

Z−diagram).

When the Z-diagram corresponds to pion exchange, we calculate the x integral using

the same method as described in Chapter 4 where we expose the pole in the x integral by

manipulating the square roots and use a pole subtraction. When the Z-diagram corresponds

to nucleon exchange, we must use a slightly different rearrangement as the denominator does

not contain a square root like pion exchange. For nucleon exchange, the Γ function in the

Z-diagram has the form

f(x)

b+ iε− p′2+p2±2p′px
2mN

−mN

(6.8)

where b is either z′− z, z− z′ or E − z− z′ depending on the specific Z-diagram. Now with

some algebra

f(x)

b+ iε− p′2+p2±2p′p x
2mN

−mN

=
2mNf(x)

2mN(b−mN) + 2mN iε− (p′2 + p2 ± 2p′p x)

=
2mNf(x)

2mN (b−mN )−p′2−p2

±2p′p
+ 2mN ε
±2p′p

i− x

=
h(x)

x0 + iε′ − x

(6.9)

where

h(x) = 2mNf(x),

x0 =
2mN(b−mN)− p′2 − p2

±2p′p
,

ε′ =
2mNε

±2p′p
.

(6.10)

Now we can use the same pole subtraction method specified in Chapter 4 to calculate the

integral.

6.3.2 Solving the scattering equations using splines

To solve our 4D scattering equations, we use the spline interpolation method developed

in the previous chapter and apply it to our other scattering equations, not just NN . To

illustrate this, we detail the application of spline interpolation to solving the 4D πd elastic

scattering equation of Equation 6.1.

Firstly, we need to solve Equation 6.2, in which we would approximate the solution

as a sum over spline functions that interpolate each dimension. However, because of the
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inhomogeneous term of the equation, the solution will have singularities, which makes it

difficult to perform the spline interpolation as the solution is not a smooth continuous curve.

We overcome this problem by using the suggestion by Carbonell and Karmanov [74] (which

we denote as the Carbonell-Karmanov (CK) factorisation) and factor out the inhomogeneous

term from the solution

X∆d(z, p;E) = Z∆d(z, p;E)χ(z, p;E)W∆d(z, p;E) (6.11)

where W should be smooth without any singularities and χ is a scalar function used to

aid the convergence of the solution. Now, instead of using splines to approximate the full

solution X, we will use them to approximate the function W as it is smooth, so there should

be no problem using splines. Applying our factorisation on Equation 6.2

W∆d(z
′′, p′′;E) =

1

χ(z′′, p′′;E)

+

(
− 1

2πi

)
1

Z∆d(z′′, p′′;E)χ(z′′, p′′;E)

∫ ∞
−∞

dz′′′
∫ ∞

0

dp′′′(p′′′)2Z∆∆(z′′, p′′, z′′′, p′′′;E)

× g
(
z′′′ − p′′′2

2mN

)
τ∆

(
E − z′′′ − p′′′2

2(mN +mπ)

)
× Z∆d(z

′′′, p′′′;E)χ(z′′′, p′′′;E)W∆d(z
′′′, p′′′;E).

(6.12)

Notice that there is now an extra Z−diagram and χ function in the kernel of this equation

as a result of the CK factorisation. Now, approximating the function W∆d using the splines,

rather than the full solution X∆d, our spline interpolation becomes

W∆d(z, p;E) =
∑
i′j′

ai′j′Si′(p)Sj′(z). (6.13)

Inserting this sum into Equation 6.12, we obtain∑
i′j′

ai′j′Si′(p
′′)Sj′(z

′′) =
1

χ(z′′, p′′;E)

+
∑
i′j′

ai′j′

(
− 1

2πi

)
1

Z∆d(z′′, p′′;E)χ(z′′, p′′;E)

∫ ∞
−∞

dz′′′
∫ ∞

0

dp′′′(p′′′)2Z∆∆(z′′, p′′, z′′′, p′′′;E)

× g
(
z′′′ − p′′′2

2mN

)
τ∆

(
E − z′′′ − p′′′2

2(mN +mπ)

)
× Z∆d(z

′′′, p′′′;E)χ(z′′′, p′′′;E)Si′(p
′′′)Sj′(z

′′′).

(6.14)

We now calculate the equation at the collocation points where {p̄i} are the p collocation

points and {z̄j} are the z collocation points. With condensed summation notation, the
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equation becomes

Uiji′j′ai′j′ = χij +Kiji′j′ai′j′ (6.15)

where

Uiji′j′ = Si′(p̄i)Sj′(z̄j), (6.16a)

χij =
1

χ(z̄j, p̄i;E)
, (6.16b)

Kiji′j′ =

(
− 1

2πi

)
1

Z∆d(z̄j, p̄i;E)χ(z̄j, p̄i;E)∫ ∞
−∞

dz′′′
∫ ∞

0

dp′′′(p′′′)2Z∆∆(z̄j, p̄i, z
′′′, p′′′;E)g

(
z′′′ − p′′′2

2mN

)
τ∆

(
E − z′′′ − p′′′2

2(mN +mπ)

)
× Z∆d(z

′′′, p′′′;E)χ(z′′′, p′′′;E)Si′(p
′′′)Sj′(z

′′′).

(6.16c)

and we want to solve for the coefficients ai′j′ . This can be represented as the matrix equation

UUU.aaa = χχχ+KKK.aaa. (6.17)

This equation allows us to solve for the unknown coefficients ai′j′ , which will allow us to

calculate the πd t−matrix. Using the same spline approximation as before and inserting this

into Equation 6.1, we obtain

Xdd(E) =
∑
i′j′

ai′j′

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2Zd∆(z′′, p′′;E)g

(
z′′ − p′′2

2mN

)
× τ∆

(
E − z′′ − p′′2

2(mN +mπ)

)
Z∆d(z

′′, p′′;E)χ(z′′, p′′;E)Si′(p
′′)Sj′(z

′′).

(6.18)

Again, with condensed summation notation, this equation becomes

Xdd(E) = K0,i′j′ai′j′ = KKK0.aaa (6.19)

where

K0,i′j′ =

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2Zd∆(z′′, p′′;E)g

(
z′′ − p′′2

2mN

)
× τ∆

(
E − z′′ − p′′2

2(mN +mπ)

)
Z∆d(z

′′, p′′;E)χ(z′′, p′′;E)Si′(p
′′)Sj′(z

′′).

(6.20)

Therefore, πd t−matrix has been calculated using the spline interpolation method. The

same expression can subsequently be obtained for the 4D NN → πd and 4D NN scattering

equations.
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6.3.3 Singularities in the z′′ integral

We have discussed in the previous chapter about possible singularities in the z′′ integral,

however, this was only applicable to NN scattering. We have continued our investigation of

singularities in the z′′ integral and extended it to the scattering processes other than NN .

We present a “general recipe” for singularities in the z′′ integral that we have found in our

investigation, that we used in our calculations of the πNN convolution equations. Be aware

that this “general recipe” is purely based on the singularities that we were able to find in

our investigation. In general, it is very difficult to accurately predict singularities in the z′′

integral as there are many different factors contributing to the calculation.

Our “general recipe” for singularities in the z′′ integral is:

1. A square-root type singularity for the logarithmic singularity that comes from each

Z-diagram. When we say “square-root type” singularity, we refer to the value of z′′, in

which there are no longer logarithmic singularities in the p′′ integral i.e. the z′′ value

corresponding to the on-set of the logarithmic singularities. This z′′ singularity can

be found by solving the equation used to determine the logarithmic singularities with

its first derivative. The term “square-root type” singularity is used in cubic spline

literature and we will continue to use the term here

2. Interaction between the pole singularities and the logarithmic singularities that comes

from each Z-diagram. These singularities can be determined by solving for the value

of z′′ for which the pole singularity and logarithmic singularity occurs for the same

value of p′′

3. Interaction between the logarithmic singularities of separate Z-diagrams (this is the

result of the CK factorisation method, as the Z-diagram corresponding to the inho-

mogeneous term enters the kernel)

4. The value of z′′ for which the p′′ singularities are below the minimum value of p′′.

Usually this would be where p′′ = 0, but because we are using splines, the p′′ interval

is [pmin, pmax]. The minimum value of p′′ corresponds to the first knot, which is not

exactly equal to zero for reasons to do with the construction of the Z−diagram. How-

ever, if the minimum value of p′′ was p′′ = 0, this singularity would not exist. These

singularities can be determined by setting p′′ to the first p knot in the singularity
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equation i.e. we would solve the following equation for z′′

E − z′ − z′′ −
√
m2
π + p′2 + p2

min ± 2p′pmin = 0 (6.21)

to find these singularities due to the p′′ logarithmic singularities and we would solve

z′′ − p2
min

2mN

−mN = 0 (6.22)

to determine the singularity due to the nucleon pole. Here, pmin is the first (or 0th)

knots in our set of knots {pi}

As noted in the previous section, the square-root type singularities tend to be the major

singularities as it is essential for numerical accuracy of the z′′ integral that these singular-

ities are handled. The singularities corresponding to the interaction of singularities of the

p′′ integral are considered to be minor singularities. For the best result from numerically

integrating the z′′ integral, it is best to include all the singularities listed above.

6.3.4 Numerical details

We briefly detail the specific numerical details used to calculate our 4D scattering am-

plitudes, before we present the results for our calculations.

Knots and collocation points

For the p knots, we choose pmin = 0.1 and pmax = 16. We discussed in the previous

chapter that we cannot choose pmin = 0 as, due to the CK factorisation, the kernel of the

integral equation has 1/Z where Z is a Z−diagram and this results in a division by zero.

In general, we find that the integral becomes more difficult to evaluate as pmin → 0, so we

choose pmin = 0.1 so that it is close enough to zero without the issues mention previously.

The solution of our equations should tend towards 0 as p → ∞, so we choose pmax = 16,

as this pmax should be a more than sufficient truncation of the semi-infinite p interval. A

good test of an appropriate pmax is to run a few calculations will a small number of knots

(to reduce the computational intensity), while increasing pmax and having the same knot

density (knot density = (pmax − pmin)/N where N is the number of knots). Using similar

logic, for the z knots, we choose zmin = −15 and zmax = 15 for NN scattering coupled to

the P33 channel and we use zmin = 0 and zmax = 15 for all other processes. To construct the

knots for p and z, we divide the full interval by the number of knots used in the calculation
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and place a knot at each division point (thereby, splitting the full interval into N equal

subintervals) and place a knot at start and end of the full interval.

For collocation points, we use 2 Gaussian quadrature points in each subinterval that we

define before. This is essential for the accuracy of the calculation [173].

χ function

We have detailed previously that as part of the CK factorisation, we include the function χ

as a smooth scalar function to improve the convergence of our spline interpolation method. In

general, the solution of Lippmann-Schwinger type equations (or Fredholm integral equations

of the second kind), tend to have a similar structure as the inhomogeneous term of the

equation. This is why the CK factorisation is necessary and should theoretically remove

the singularities from the solution. In the CK factorisation, the new inhomogeneous term

becomes 1/χ, so theoretically one should pick a χ that has the proprieties one desires in the

solution of the integral equation (such as tending towards zero as p → ∞, z → ±∞). As a

result, we suggest the following χ

χ(z, p;E) =
1

pe−pze−|z|
(6.23)

as the function f(x) = xe−x has this property that we desire. However, in actual numer-

ical calculations, we find no added benefit of using any χ in comparison to using χ = 1.

Therefore, in our calculation, we just choose χ = 1 for simplicity. This should also improve

computational time.

Quadrature points

We know that the logarithmic singularities in the p′′ integral are given by finding the roots

of the denominator of Z−diagram’s Γ function for x = ±1. After finding the logarithmic

singularities, we calculate the p′′ integral using the change of variable method mentioned in

Chapter 4 and the Gauss-log quadrature points in [90]. We also need to take into account

the complex pole in the P33 t−matrix. Find the complex pole m∆ (around 1232 MeV) and

solve the equation E − z − p2/(2(mN +mπ))− Re(m∆) = 0 for p. We then treat this value

of p as if it were a logarithmic singularity. We have found this offers the best numerical

accuracy of the p integral, while also being easy to implement into our calculation code. In

each interval defined in the change of variable method, we use 32 quadrature points.
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The singularities in the z′′ interval are described in the previous section. We split the

interval in which we are integrating at the singularities in the interval and use 32 Gaussian

quadrature points in each sub-interval.

6.4 NN phase shifts

For elastic scattering, the partial wave scattering matrix S (simply referred to as the S

matrix) is given as

S = I − 2iµp0T (6.24)

where µ is the reduced mass, p0 is the on-shell momentum and T is the partial wave t-matrix.

For coupled waves, S and T are 2 × 2 matrices. For NN scattering, the reduced mass is

µ = m2
N/(mN +mN) = mN/2, so the S matrix becomes

S = I − imNp0XNN . (6.25)

Since the scattering equation satisfies two-body unitarity, the S matrix satisfies the following

relation:

S†S = I. (6.26)

For uncoupled partial waves, the NN → NN S matrix can be expressed as

S = e2iδ (6.27)

where δ is the partial wave phase shift, which is real below pion production threshold. For

coupled partial waves it is usual to use the Stapp parametrisation [174] of the S matrix

Sjtl′s′,ls(E) =

 eiδj−1 0

0 eiδj+1

 cos 2εj i sin 2εj

i sin 2εj cos 2εj

 eiδj−1 0

0 eiδj+1

 (6.28)

where εj is known as the mixing parameter.

While we are primarily interested in how our equations describe πd elastic scattering and

pp→ π+d scattering, our three-body equations also include a description of NN scattering.

However, we do not expect our three-body equations to accurately reproduce NN phase

shifts as we couple our equations to only one partial wave channel.

During our calculation of the 4D NN scattering amplitudes, we can use some numerical

checks to confirm the results of our calculation. Firstly, the NN phase shifts will be real
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values below pion production threshold (in the lab frame, the pion production threshold is

Elab = 284.639 MeV). Another numerical check is that the t−matrix for coupled channels

should also be a symmetric 2× 2 matrix (the off-diagonal elements of the matrix should be

equal).

Results

As explained previously, we do not expect accurate reproduction of the phase shifts,

regardless of whether dressing has been included. As the inclusion of Dyson-dressed πN input

greatly increases computation time, we investigated whether there is a significant difference

between the NN phase shifts with Dyson-dressed πN input and with undressed πN inputs.

We find that there is not a significant difference between the two results. As a result, a

comparison of 3-dimensional (3D) phase shifts and 4D phase shifts with Dyson-dressed πN

inputs should provide an indication of the effect of the consistent nucleon dressing introduced

by the convolutions. We would expect to see a similar result if we included Dyson-dressing

into our equations for πd elastic scattering and pp→ π+d scattering, despite not performing

such a calculation due to the lack of a proper dressed NN input.

In Figure 6.5, we plot the 4D NN phase shifts coupled only to the NN channel for

different partial waves and Dyson-dressed πN input corresponding to out M7 model. For

comparison, we compare our results to the fits of experimental data by Workman et al.

[175] and use their SW16 solution. This data was obtained from the SAID partial wave

analysis database [176]. We note that including this Dyson-dressing into our computer

code substantially increases the computation time, on top of the length of time it takes

to calculate the 4-dimensional convolution equations using spline interpolation. We have

reduced the computation time by using the Wick rotation method described by Levine et

al. [54] for particles of equal mass, which we have compared with the phase shifts calculated

using spline interpolation and find that the two methods agree. One can see in Figure 6.5 that

the 4D phase shifts have a similar curvature to the fitted solution. One can see that there is

a discrepancy towards Tp = 0 in the plot of the 1S0 phase shifts between both calculated NN

phase shifts and the fitted solution data. We have investigated this discrepancy by examining

a 3D calculation of the NN phase shifts, as we are able to include more partial waves and

coupled channels without the computational intensity. By investigating the inclusion of

many partial waves and different coupled channels in the 3D calculation, we attribute this

discrepancy to the missing P33 channel. There is a significant difference between the 4D

159



CHAPTER 6. NUMERICAL RESULTS

phase shifts and the SW16 solution in the lower partial waves (i.e. 3P0,
1S0,

3P1 and 1D2) at

higher energies, however, they tend to agree more closely at very low energies, particularly

3P0. Comparing the 3D and 4D phase shifts, we see that the dressing makes a notable

contribution to the lower partial waves. In particularly, 3P0,
3P1 and 1D2 are significantly

closer to the SW16 solution, especially for lower energies. For the higher partial waves, such

as 3F3,
3H5 and 1I6, the addition of dressing makes a noticeable difference for high energies.
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Figure 6.5: Comparison of the 4D NN phase shifts coupled to the NN channel with Dyson-

dressing for different partial waves, calculated using the Wick rotation method of Levine et

al. [54], compared with the 3D NN phase shifts, calculated using contour rotation. The

dots represent the SW16 solution [175] obtained using the SAID database [176].
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Figure 6.5: (cont.) Comparison of the 4D NN phase shifts coupled to the NN channel

with Dyson-dressing for different partial waves, calculated using the Wick rotation method

of Levine et al. [54], compared with the 3D NN phase shifts, calculated using contour

rotation. The dots represent the SW16 solution [175] obtained using the SAID database

[176].
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Because of the drastic increase in computation time with the addition of Dyson-dressing,

we only present results for one partial wave with 16 spline knots when we calculate 4D NN

phase shifts coupled to the P33 channel. We calculate the 4D 3P1 phase shifts with Dyson-

dressed πN inputs in Figure 6.6 and compare it to the 3D NN phase shifts when coupled

to the P33. We see a similar trend as in Figure 6.5 when coupled only to the NN channel,

in which the consistent dressing pushes the phase shifts towards the SW16 solution and is

able to more accurately reproduce the data at very low energies. We also notice that the

3D phase shifts deflect towards 0 degrees and away from the experimental data at higher

energies, while the 4D phase shifts do not exhibit this property.
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-40
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Figure 6.6: Comparison of the 4D 3P1 NN phase shifts coupled to the P33 channel with

Dyson-dressing, calculated using the spline interpolation method using 16 knots for p and

z (Np = Nz = 16), compared to the 3D NN phase shifts, calculated with contour rotation.

The solid curve represents the phase shift with our 4D phase shifts with our M7 Dyson-

dressing model, while the dashed curve represents the 3D phase shifts. The dots represent

the SW16 solution [175] obtained using the SAID database [176].
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6.5 πd→ πd observables

In this section, we calculate the observables for πd elastic scattering for unpolarised states

and a polarised final state deuteron. It is possible to calculate the observables corresponding

to polarised deuteron in the final and initial state using the procedure outlined by Blankleider

and Afnan [177], however, we restrict our investigation to observables with a polarised final

state deuteron as we are particularly interested in the T20 observable calculated from a

polarised final state deuteron state.

Most experimental data for πd elastic scattering is given for the reaction π+d → π+d.

There is a Coulomb interaction between the charged pion and the deuteron, which can be

included in our calculation of the differential scattering cross using the methods of [22, 178].

However, the Coulomb effect should be mostly neglectable in comparison to the contribution

of the strong interaction, except at scattering angles close to zero. In our calculations, we

do not include the Coulomb effect.

As mentioned before, we only calculate results with one coupled channel, due to the

computational intensity of our 4-dimensional equations. However, we do calculate fully

coupled results for the 3-dimensional scattering equations using all the channels listed in

Appendix G, in order to give a prediction of the 4-dimensional scattering equation results if

we were to include full coupling rather than just coupling to one channel. By comparing the 3-

dimensional results with many partial waves and all coupled channels with the 3-dimensional

results containing only one coupled channel, we can explore the effect of including many

partial waves and all coupled channels, to obtain an idea of what one might expect the

4-dimensional results would look like.

A good numerical check of our calculation for πd elastic scattering is that the off-diagonal

elements of the t−matrix (l = 0, l′ = 2 and l = 2, l′ = 0 contributions) should be equal.

6.5.1 S-wave scattering length

For πd elastic scattering, we usually consider the scattering amplitude fJLfLi which is

given as

fJLfLi = −πµd(q0)Tdd (6.29)
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where

µd(q0) =
(q2

0 +m2
π)1/2md

(q2
0 +m2

π)1/2 +md

(6.30)

where md is the mass of the deuteron. The physical πd t−matrix Tdd is related to the

numerical t−matrix Xdd through normalisation of the deuteron wave-function for separable

potentials. Here, q0 is the on-shell pion-deuteron momentum, which is calculated by solving

the equation:

E − (q2
0 +m2

π)1/2 − q2
0

2md

−md = 0. (6.31)

The S-wave πd scattering amplitude fSπd is given by

fSπd =
eiδ0 sin δ0

q0

(6.32)

which, as the on-shell pion-deuteron momentum goes to zero, approaches the S-wave πd

scattering length aπd

fSπd ∼ aπd as q0 → 0. (6.33)

There has been recent interest in studying πd scattering lengths as one can determine the

πN S−wave isoscalar (a+) and isovector (a−) scattering lengths [179, 180], which are given as

a linear combination of the S11 and S31 πN scattering lengths. These πN scattering lengths

are of current interest as a confirmation of recent effective field theories, as well as tests of

symmetries in QCD [181]. As such, there has been recent experimental interest in pionic

atoms, such as pionic hydrogen [182] and pionic deuterium [183] for the study of scattering

lengths. Strong interactions in the Standard Model includes a description of isospin violation,

which according to Weinberg [184] can be tested by investigating πN scattering lengths.

The most generally accepted value of the πd S−wave scattering length comes from Hauser

et al. [185] which is

aπd = −0.0261(±0.0005) + i0.0063(±0.0007)m−1
π (6.34)

with a more recent measurement being provided by Strauch et al. [183]

aπd = −0.02499± 0.00033 + i0.00622+0.12
−0.26 m

−1
π . (6.35)

Without dressing and including all partial waves and couplings of Appendix G included, we

calculate the S-wave scattering length for the Unitary equations using contour rotation. Our

result is

aπd = −0.0288503 + 0.00124728i m−1
π . (6.36)
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This result is already in good agreement with the experimental scattering lengths above.

Despite not being within the uncertainty values, the real part of scattering length is in

excellent agreement with the experimental results, whereas the imaginary is approximately

twice the value of our calculated result.

Calculating the 4D πd scattering length tends to be more difficult than calculating the

3D scattering length, due to the singularity structure of the 4D Z-diagram as Elab → 0. If

we are coupling only to P33, consider the πd→ N∆ Z-diagram, given in Figure 6.7

z0,q0 E − z,−p

E − z0,−q0
z,p

E − z − z0

−q0 − p

Figure 6.7: The half off-shell πd→ N∆ Z−diagram.

The integrand of the x integral in this Z−diagram has the denominator

E+ − z0 − z −
q2

0 + p2 + 2q0 p x

2mN

−mN (6.37)

where E is the centre of mass energy and z0 = (q0 +m2
π)1/2. Now, as q0 → 0 when Elab → 0,

the x dependence in the denominator vanishes and the denominator becomes

E+ − z0 − z −
p2

2mN

−mN . (6.38)

So the x integral in the Z−diagram can be calculated without a pole subtraction as previously

specified, however, there is now a pole in the p integral which can be found by solving

Equation 6.38. So now we have to deal with two poles, one coming from the dressed one-

nucleon propagator and the other coming from the Z−diagram itself. This is not such a big

issue, as the two poles should not exist at the same time, given that the nucleon pole exists

when z > mN = 4.7581 and the pole from the Z−diagram exists when z < E − z0 −mN =

4.7469. So there is no value of z for which both poles exist at the same time and we can use

our conventional methods of pole subtraction to calculate the integral.

The more alarming issue is that due to the CK factorisation, there are two Z-diagrams

in the half off-shell kernel which both have this pole, which results in a double pole (pole of

order two). In Appendix F, we detail a method for handling this double pole using modified
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quadrature points constructed by Kolm and Rokhlin [93], while providing a re-derivation

of their quadrature points due to an error in the original publication. We can also use a

modification of the suggestion by Carley [186] and calculate the integral using a subtraction

method. One can check that the pole subtraction method for an integral on a finite interval

with a double pole is given by∫ b

a

f(t)

(x− t+ iε)2
dt =

∫ b

a

f(t)− f(x) + f ′(x)(x− t)
(x− t)2

dt

+ f(x)

∫ b

a

1

(x− t)2
dt− f ′(x)

∫ b

a

1

x− t
dt

=

∫ b

a

f(t)− f(x) + f ′(x)(x− t)
(x− t)2

dt

+ f(x)

(
1

x− b
− 1

x− a

)
− f ′(x) (log(x− a)− log(x− b)) .

(6.39)

While we do present two methods to overcome this double pole due to the CK factorisation,

in practice we find these processes to be a difficult numerical task. As an alternative, we

calculate the 4D πd scattering amplitude using our spline interpolation method at energies

near Elab = 0 and extrapolate the results to determine the S−wave scattering length.

Elab (MeV) Np = Nz = 16 Np = Nz = 24 Np = Nz = 32

1 0.000911094− 7.3686× 10−6i 0.000923448 + 2.49209× 10−6i 0.000925901− 5.69164× 10−6i

2 0.000833089− 6.10674× 10−6i 0.000837432− 6.54377× 10−7i 0.000850326− 9.56478× 10−6i

3 0.000762563− 3.56948× 10−6i 0.000788488 + 6.69259× 10−6i 0.000780933− 0.0000103081i

4 0.000703435− 2.24347× 10−6i 0.000656963− 0.0000864888i 0.000721251− 8.78417× 10−6i

5 0.000651034− 2.01173× 10−6i 0.000645531− 5.36741× 10−6i 0.00066678− 8.16304× 10−6i

Extrapolated 0.000967175− 8.6331× 10−6i 0.000991264 + 0.0000138008i 0.000983233− 7.25369× 10−6i

aπd (m−1
π ) 0.000672953− 6.00685× 10−6i 0.000689714 + 9.60252× 10−6i 0.000684126− 5.04706× 10−6i

Table 6.1: Results of the πd extrapolation to determine the S−wave πd scattering length

calculated using the spline interpolation method for different numbers of p and z spline

knots, Np and Nz respectively. These results include the extrapolated amplitude for Elab = 0

calculated using a linear data fit and the corresponding S−wave scattering length for the

respective knot number. The amplitudes are given in units of fm−1, while the scattering

length aπd is given in units of m−1
π .

If we examine the results of Table 6.1 and compare the amplitudes for the different

number of spline knots, we see that we have good convergence of the splines, particularly

as the amplitudes are quite small themselves. This is excluding the imaginary part of the
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amplitudes, which is neglectable and may be oscillating due to “numerical noise,” such as

not enough Gaussian quadrature points to converge the amplitudes to an accuracy of 10−6.

It is particularly impressive to obtain this degree of convergence in a πd amplitude, as the

entire πd amplitude relies on the accuracy of the spline interpolation method, due to the

fact that there is no inhomogeneous first-order term that contributes to the amplitude. One

would also expect that as Elab → 0, then the p and z integrals become more difficult to

evaluate as the logarithmic singularities in the kernel of the equations gradually become

closer together. This might be a testament to the change of variable method we use to

calculate the p integral, which essentially stretches the integration interval and would push

the logarithmic singularities further away from each other, allowing the integral to be more

easily calculated.

Without dressing and only coupled to the P33 channel, the 3D S-wave scattering length

is 0.000687359− 1.96619× 10−9i m−1
π . If we compare this value to the results of Table 6.1,

one can see that results are quite similar, which may indicate that the effect of dressing at

low energies may be small. This comparison would indicate that the 4D calculation with

full coupling and all partial waves would give a similar result to our 3D results presented in

Equation 6.36, however, the contribution of consistent dressing may be greater if we were to

couple our equations to the other channels such as NN .

6.5.2 Scattering cross section

The differential scattering cross section is given by

dσ

dΩ
(πd→ πd) =

1

3

∑
L

∑
Lf ,Li
L′f ,L

′
i

∑
JJ ′

L̂f L̂iL̂
′
f L̂
′
i(Ĵ Ĵ

′L̂)2

Li L′i L

0 0 0

Lf L′f L

0 0 0


J J ′ L

L′i Li 1


 J J ′ L

L′f Lf 1

 fJLfLif
J ∗
L′fL

′
i
PL(cos θ)

(6.40)

where PL is the Legendre polynomial of order L and fJLfLi are the partial wave amplitudes

given by Equation 6.29 [178]. The elastic and total scattering cross sections can be calculated

using

σel =
4

3
π
∑
LiLf
J

(2J + 1)|fJLfLi |
2, (6.41)
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σtot =
4π

3k

∑
L

(2J + 1)|fJLL|2. (6.42)

In Table 6.2, we index the partial wave πd→ πd amplitudes that we calculate, by assigning

a label to each amplitude and state the values of L′, L and Jπ for each amplitude. We recall

that we calculate separate results for our πd equations when coupled to the P33 channel and

when our equations are coupled to the NN channel. When we coupled our equations to the

NN channel only, we see that for some values of Jπ there are no NN channels, so there will

be πd amplitudes that are equal to zero in our results.
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fJL′L L′ L Jπ

1 1 1 0+

2 0 0 1−

3 0 2 1−

4 2 2 1−

5 1 1 1+

6 2 2 2−

7 1 1 2+

8 1 3 2+

9 3 3 2+

10 2 2 3−

11 2 4 3−

12 4 4 3−

13 3 3 3+

14 4 4 4−

15 3 3 4+

16 4 4 5−

17 3 5 4+

18 5 5 4+

19 4 6 5−

20 6 6 5−

21 5 5 5+

22 6 6 6−

23 5 5 6+

24 5 7 6+

25 7 7 6+

26 6 6 7−

27 6 8 7−

28 8 8 7−

29 7 7 7+

Table 6.2: The partial wave channels considered in the calculation of πd scattering, in which

we consider the same channels as Blankleider [178].
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Results

Comparing the πd amplitudes when coupled to the P33 channel in Table 6.3, it seems

that these amplitudes show decent convergence with respect to the number of spline knots.

Though, the 24 knot amplitude tends to be dissimilar to the other knot amplitudes, which

can also be seen in Figure 6.8 as the 24 knot differential cross section is quite different from

the other knot cross sections. It is understood that approximations using splines tend to

have an oscillatory convergence rather than monotonic convergence, which might be what

these results indicate. We expect to see this oscillation continue when we compare subsequent

results of the spline interpolation method. The amplitudes corresponding to higher Jπ values

also demonstrate less convergence with respect to the number of knots. This may be because

the amplitudes for higher Jπ values are significantly smaller than the amplitudes for lower

Jπ values, so convergence to a certain degree of accuracy is more difficult. It may also be

that the amount of quadrature points is not sufficient to obtain accurate amplitudes when

the amplitudes are so small.

171



CHAPTER 6. NUMERICAL RESULTS

fJ
L′L Jπ Np = Nz = 16 Np = Nz = 24 Np = Nz = 32

1 0+ 0.0703378 + 0.0353787i 0.0880965 + 0.0368853i 0.0699699 + 0.0430382i

2 1− 0.0242919 + 0.022262i 0.034581 + 0.0298201i 0.0323945 + 0.0269061i

3 1− 0.0161016 + 0.0142354i 0.0146456 + 0.0131041i 0.0171475 + 0.0152682i

4 1− 0.00934522 + 0.00807751i 0.00878834 + 0.00788704i 0.0100211 + 0.00834243i

5 1+ 0.115105 + 0.0812473i 0.112574 + 0.08301i 0.109428 + 0.0831255i

6 2− 0.0318256 + 0.0217924i 0.0322715 + 0.02379i 0.0317824 + 0.0228841i

7 2+ 0.279476 + 0.295451i 0.292993 + 0.300808i 0.325917 + 0.297074i

8 2+ −0.00381991− 0.00976864i −0.00686136− 0.00561729i −0.00845083− 0.00889393i

9 2+ 0.000492191 + 0.000731081i 0.000514627 + 0.000380899i 0.000638729 + 0.000658836i

10 3− 0.0999778 + 0.0791449i 0.0766122 + 0.088906i 0.0991982 + 0.0821599i

11 3− −0.00298241− 0.00216326i −0.00241378− 0.00264355i −0.00251177− 0.00233414i

12 3− 0.000138193 + 0.000126512i 0.000125289 + 0.00010754i 0.0000858394 + 0.000110164i

13 3+ 0.00688968 + 0.00572318i 0.0074061 + 0.0052256i 0.00747385 + 0.00586564i

14 4− 0.00201836 + 0.0018664i 0.0015342 + 0.00152044i 0.00212713 + 0.00164115i

15 4+ 0.0354388 + 0.0229207i 0.0274218 + 0.026857i 0.0286946 + 0.0207052i

16 5− 0.00978766 + 0.00437859i 0.00973628 + 0.00563732i 0.00737586 + 0.00671715i

17 4+ −0.00106873− 0.00171062i −0.000623899− 0.000633385i −0.00068926− 0.000626805i

18 4+ 0.0000490762 + 0.00005981i 0.0000269838 + 0.0000348341i 0.000016719 + 0.0000207514i

19 5− −0.000141056− 0.000133697i −0.000154072− 0.000192413i −0.000124489− 0.000160862i

20 5− 3.13457× 10−6 + 7.09162× 10−6i 2.22905× 10−6 + 0.0000110905i −2.43377× 10−6 + 0.0000130584i

21 5+ 0.000239023 + 0.000135896i 0.000438378 + 0.00085439i 0.000625103 + 0.000419687i

22 6− 0.0000676568− 0.000726753i 0.000100426 + 0.0000439709i 0.0000969336 + 0.000247073i

23 6+ −0.00555732 + 0.00282856i −0.0000138326 + 0.00145672i 0.00231244 + 0.00258703i

24 6+ −0.0000653513− 0.000121492i −0.0000412388− 0.000031335i 1.51326× 10−6 − 0.0000345944i

25 6+ −1.99515× 10−7 + 4.62629× 10−6i 2.53895× 10−6 + 6.96504× 10−7i 1.25692× 10−6 − 4.61597× 10−7i

26 7− 0.000893976− 0.0000970802i −0.000584324− 0.000373124i 0.000193451− 0.00002102i

27 7− −0.00021358 + 0.0000182866i −7.5152× 10−6 − 0.0000205169i −0.0000347223− 0.0000402964i

28 7− −0.0000183426− 0.000020772i 3.22497× 10−7 + 8.34259× 10−8i 5.34916× 10−6 − 0.0000129373i

29 7+ −0.000283474 + 0.0000114585i 0.0000231676− 0.0000188949i 0.000161902 + 0.000199575i

Table 6.3: 4D elastic πd scattering amplitudes when coupled to the P33 channel calculated

using the spline interpolation method for different numbers of p and z spline knots, Np and

Nz respectively. The lab energy of the incident pion is equal to 140 MeV.

If we look at the differential cross sections for different spline knots in Figure 6.8, we can

see that the curves are quite similar, indicating that the amplitudes already exhibit a good

level of convergence, as we initially observed. The only major deviation is the minimum

around θcm = 90 degrees, where the 32 knot cross section has a higher minimum point. In

Figure 6.9, we present a comparison of the 3D and 4D πd differential cross sections with

the experimental data. The differential cross section with dressing is quite similar to the

cross section without same-time dressing, indicating that the effect of consistent same-time

dressing does not have a significant contribution to the πd different cross section with coupled
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only to P33. Both differential cross sections overlap at lower angles, then start to slightly

diverge at higher angles. Again, it would be best to have results with a larger amount of

spline knots, to confirm the accuracy of this differential cross section. We can also see that

both the 3D and 4D cross sections are able to reproduce the experimental cross sections

fairly well, in particularly the results are superb from θcm = 40 degrees to θcm = 70 degrees.
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Figure 6.8: Comparison of the 4D πd differential cross section when coupled to the P33

channel with the lab energy of the incident pion equal to 140 MeV. The three curves in

this graph each represent a different number of spline knots used in the calculation: the

dot-dashed curve represents 16 knots, the dashed curve represents 24 knots and the solid

curve represents 32 knots.
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Figure 6.9: Comparison of the 3D πd and 4D πd (Np = Nz = 32) differential cross section

when coupled to the P33 channel with the lab energy of the incident pion equal to 140 MeV,

also compared with the experimental data points provided by Gabathuler et al. [187]. The

solid curve represents the 4D differential cross section, while the dashed curve represents the

3D differential cross section.

If we turn our attention to the results of πd scattering when the equations are coupled

to the NN channel, we see that the 4D amplitudes in Table 6.4 have decent convergence

with respect to the spline knots. However, this convergence tends to become worse as the

value for Jπ increases, particular when Jπ = 3+ we begin to see a decline in convergence of

the amplitudes. From our previous results for the 4D πd scattering amplitudes, we do not

expect excellent convergence for this number of spline knots, which is also evident from these

results. The lack of convergence in the higher Jπ values may not have a significant effect on

the observables as Figure 6.10 shows that the differential cross section for different numbers

of spline knots is quite similar. Comparing the NN coupled 4D πd differential cross section

to the experimental data and the 3D cross section in Figure 6.11, we see that both cross

sections are significantly smaller than the experimental cross section. We would not expect

an accurate reproduction of the differential cross section, as these results are only coupled

to the NN channel, however, we do see a significant difference between the 3D and 4D cross

sections, which suggested the contribution of consistent dressing is more significant when we

coupled our equations to the NN channel.
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fJ
L′L Jπ Np = Nz = 16 Np = Nz = 24 Np = Nz = 32

1 0+ −0.349444− 0.124758i −0.338941− 0.12523i −0.343877− 0.129752i

2 1− −0.0524484− 0.00853924i −0.0710012− 0.0246773i −0.0456308− 0.0193147i

3 1− −0.0392496− 0.0144713i −0.0324809− 0.0120805i −0.0331899− 0.0113803i

4 1− −0.0222812− 0.00823246i −0.0189179− 0.00695923i −0.0191067− 0.00674675i

5 1+ 0 0 0

6 2− −0.0493888− 0.018336i −0.0515573− 0.0190166i −0.051241− 0.0193418i

7 2+ −0.021057 + 0.0130252i −0.00916982− 0.00255334i −0.0108524− 0.00175822i

8 2+ 0.00997128 + 0.00447703i 0.00957425 + 0.00339182i 0.00974292 + 0.00340803i

9 2+ −0.0116696− 0.00604436i −0.010824− 0.00429911i −0.0113917− 0.0046737i

10 3− 0.000639151− 0.00160377i 0.000414727− 0.00039288i −0.00293574− 0.00143929i

11 3− 0.00485675− 0.00339194i −0.000971641− 0.000851919i −0.00127236− 0.00272045i

12 3− 0.00505723− 0.00495975i −0.0014293− 0.000926761i −0.00202302− 0.00269229i

13 3+ 0 0 0

14 4− −0.00255986− 0.000867961i −0.00362847− 0.00146849i −0.00304665− 0.00104296i

15 4+ −0.000161003− 0.000291577i −0.000379692 + 0.000353997i −0.00105564− 0.0000961879i

16 5− 7.2344× 10−6 + 1.05151× 10−6i 1.63729× 10−6 + 0.000300338i −0.0000328837 + 0.000161622i

17 4+ 0.0000303582− 0.0000581496i 0.000897096 + 0.000293644i 0.000996101 + 0.000173711i

18 4+ 0.0000103629 + 0.000110879i −0.00101286− 0.000367735i −0.00106912− 0.000296538i

19 5− −0.0000141965 + 0.0000397467i −0.000064138 + 0.000211293i −0.000127916− 0.0000391972i

20 5− −0.0000123674 + 0.0000358142i −0.0000936847 + 0.000150553i −0.000131892− 0.0000623894i

21 5+ 0 0 0

22 6− −0.0000583385− 0.000132893i −0.000322076− 0.000123056i −0.000303506− 0.000145356i

23 6+ −0.0000149595− 0.0000441658i −0.0000476734− 0.0000967574i −0.000126962− 0.000179949i

24 6+ 1.86977× 10−6 + 0.0000510366i −0.000319394 + 0.0000694768i 0.0000936657 + 0.000140969i

25 6+ 0.0000303315− 0.0000665235i 0.0000714907 + 0.0000958909i −0.0000711239− 0.000101474i

26 7− 0.0000174282− 9.3329× 10−6i 0.0000616101 + 0.0000453491i 0.000114012− 0.000174147i

27 7− 0.0000264184− 0.0000130679i −0.0000112335 + 0.000102362i 0.0000291877− 0.0000736024i

28 7− 0.000027628− 0.0000290564i 0.0000294317 + 2.54616× 10−6i −0.0000194489− 0.00014709i

29 7+ 0 0 0

Table 6.4: 4D elastic πd scattering amplitudes when coupled to the NN channel calculated

using the spline interpolation method for different numbers of p and z spline knots, Np and

Nz respectively. The lab energy of the incident pion is equal to 140 MeV.
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Figure 6.10: Comparison of the 4D πd differential cross section when coupled to the NN

channel with the lab energy of the incident pion equal to 140 MeV. The three curves in

this graph each represent a different number of spline knots used in the calculation: the

dot-dashed curve represents 16 knots, the dashed curve represents 24 knots and the solid

curve represents 32 knots.
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Figure 6.11: Comparison of the 3D πd and 4D πd (Np = Nz = 32) differential cross section

when coupled to the NN channel with the lab energy of the incident pion equal to 140 MeV,

also compared with the experimental data points provided by Gabathuler et al. [187]. The

solid curve represents the 4D differential cross section, while the dashed curve represents the

3D differential cross section.
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We suggest that the 4D πd differential cross section would be able to more faithfully

reproduce the experimental data if full coupling to the other channels was included by

analysing the results of Figure 6.12, as opposed to only coupling to the P33 channel. In

particular, the full coupling is able to better reproduce the differential cross section at angles

closer to zero and at higher angles above 100 degrees. As the 3D and 4D differential cross

sections are very similar in Figure 6.9, we would expect the 4D differential cross section with

full coupling to be very similar to the curve shown in Figure 6.12.
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Figure 6.12: The 3D πd differential cross section with full coupling for the lab energy of the

incident pion equal to 140 MeV, also compared with the experimental data points provided

by Gabathuler et al. [187].

Table 6.5 lists the calculated values for the total cross section for the Unitary equations

and the 4D equations for different spline knots. We see that the 4D cross sections are not

numerically stable with respect to the knots, due to the variation for the results, despite

being within the values for 111-120 mb. This suggests that we have not obtained adequate

convergence with the number of spline knots used and more knots are needed to obtain a

stable answer. Due to this variation, it is difficult to directly compare the 4D results to the

3D results, but it seems that both results agree to a certain extent. This would suggest that

the addition of consistent same-time dressing do not have a significant effect on πd elastic

scattering when coupled to the P33, as we have seen with the differential cross section.

Pedroni et al. [188] provide the experimental value for the total πd cross section. At a lab

energy of 133.9 MeV, the experimental total πd cross section is 162.4 ± 1.8 mb when they
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used a 20 cm target and at lab energy of 135.7 MeV, the experimental total πd cross section

is 168.6± 1.1 mb when they used a 10 cm target. By analysing the results of the total cross

section in Table 6.5, we can see that when the equations are only coupled to P33, the total

cross section is unable to be reproduced accurately. However, we also see that the 3D cross

section with full coupling is, in fact, able to accurately reproduce the total scattering cross

section, which suggests that it is simply the lack of more coupled channels that is preventing

our 4D results from agreeing with the experimental value.

σ 3DFC 3DP33 Np = Nz = 16 Np = Nz = 24 Np = Nz = 32

σel 51.4336 47.8044 43.4895 45.1365 49.4721

σtot 169.094 115.384 111.704 118.372 114.967

Table 6.5: The total and elastic πd scattering cross section for lab energy of the incident

pion equal to 140 MeV, comparing the result from the Unitary equations and the results

from the 4D equations for a different number of spline knots. The results from the 3D

scattering equation with full coupling are also presented (we denote 3DFC as the results

with full couplings and 3DP33 as the results with coupling only to P33).
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6.5.3 Tensor observables

We now look at the observables that can be determined when the final state deuteron’s

spin is observed. We are looking at the scattering process

πd→ π~d. (6.43)

In general, for the scattering of spin-0 particles off spin-1 particles, one can define four

independent observables: one vector observable (vector analysing power) iT11 and three

tensor observables (tensor analysing powers), T21, T22 and T20. We have previously discussed

that the observable T20 cannot be accurately reproduced in πNN models such as the “Unitary

NN −πNN” model. It was suggested by Jennings [41] that this is due to a lack of πd→ πd

diagrams that contained two pions in flight at the same time, which are neglected in the

“Unitary NN − πNN” model. These four independent observables can be calculated using

the centre of mass πd spin amplitudes of Kubodera et al. [189] given by

Fν′ν = 4π
∑
JL′L

Y ∗L′0(k̂′)YLM(k̂) 〈L′01ν ′|Jv′〉 〈LM1ν|Jv′〉 fJL′L (6.44)

where M = ν ′−ν. The four independent polarisation observables can be be calculated using

iT11 = −
√

6Im(F01F
∗
−11 + F11F

∗
01 + F10F

∗
00)/Σ, (6.45)

T20 =
√

2(|F−11|2 + |F10|2 + |F11|2 − |F00|2 − 2|F01|2)/Σ, (6.46)

T21 =
√

6Re(F10F
∗
00 + F11F

∗
01 − F−11F

∗
01)/Σ, (6.47)

T22 =
√

3(2ReF11F
∗
−11 − |F10|2)/Σ, (6.48)

where

Σ =
∑
ν′ν

|Fν′ν |2 = 3
dσ

dΩ
. (6.49)

The same πd spin amplitudes and expressions for the polarisation observables are derived by

Blankleider [178]. Using Equation 6.49, we can also calculate the differential cross section of

the unpolarised scattering process. This provides a good numerical check of the calculation

of the differential cross section using Equation 6.40.

The four independent observables can be used to calculate subsequent polarisation ob-

servables. Following the definitions in Ottermann et al. [190]

τ22 =

√
1

6
T20 + T22, (6.50)

τ21 = T21 +
1

2
τ22 = T21 +

1

2

√
1

6
T20 +

1

2
T22. (6.51)
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It is common to see to use lowercase and uppercase letters interchangeably to represent these

polarisation observables in literature. We want to be clear about the observables that we are

calculating. We follow the convention of Ottermann et al. [190] to define that uppercase T

are used to represent scattering where the target’s spin is observed and lowercase t are used

to represent scattering where the recoiled particle’s spin is observed. These observables are

in the centre of mass frame unless otherwise stated that they are in the laboratory frame of

reference. Grein and Locher [191] also define the relationship between the lab and centre of

mass quantities, and because of time reversal invariance the following relationships between

the observables can be determined:

iT lab
11 = iT11 = it11 (6.52)

and

T lab
2j = T2j = (−1)jt2j. (6.53)

So in general, the lab, centre of mass and the uppercase/lowercase observables are equal,

up to a phase. The exception is the tlab
2j observables, in which one can derive the following

expression:

tlab
20 =

3 cos2 θR − 1

2
T20 +

√
6 sin θR cos θRT21 +

√
3

2
sin2 θRT22, (6.54)

tlab
21 =

√
3

2
sin θR cos θRT20 + (1− 2 cos2 θR)T21 − sin θR cos θRT22, (6.55)

tlab
22 =

1

2

√
3

2
sin2 θRT20 − sin θR cos θRT21 +

1 + cos2 θR
2

T22. (6.56)

where θR is deuteron recoil angle in the lab frame. In our analysis, we only present the

results for tlab
20 from our tlab

2j observables, due to the lack of data for the other tlab
2j observables

and most literature being more commonly interested in tlab
20 .
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Results

Comparing the πd polarisation observables when coupled to the P33 channel for a different

number of spline knots in Figure 6.13, we see that the observables all essentially overlap

with the exception of iT11. This supports the claim that these amplitudes exhibit sufficient

convergence with respect to the spline knots. Figure 6.13 also shows that iT11 is very sensitive

to the accuracy of the πd amplitudes and we need many more spline knots to obtain a decent

result for this observable, which is evident by the very dissimilar curves for iT11.

The curves of the polarisation observables representing the 3D and 4D calculations in

Figure 6.14 all essentially overlap, except for iT11. This indicates that the nucleon dressing

causes a minimal effect on the πd polarisation observables when coupled to P33. Again the

exception is the iT11 observable, in which we cannot make any conclusive remarks regarding

the effect of consistent dressing as we are not convinced that sufficient convergence has been

achieved for the πd amplitudes. A calculation with more spline knots should be performed

to determine the effect on this observable.

Now turning our attention to the polarisation observables when our πd equations are

coupled to the NN channel. In Figure 6.15, we compare the 4D polarisation observables for

a different number of spline knots, where we can see that there is numerical instability in

our results. This is opposed to the results of Figure 6.13 when we coupled our πd equations

to the P33 channel, as the polarisation observables show much better numerical stability

with respect to the spline knots. It may be that it is more difficult to obtain numerical

stability for processes that involve pion creation and annihilation. Nevertheless, much more

knots are required to obtain convergence of the πd amplitudes when we coupled to the NN

channel. Comparing the 4D polarisation observables to experimental data in Figure 6.16, we

see that coupling to the NN channel has more of an effect on the polarisation observables

than coupling to the P33 channel. If we examine the T20 observables particularly, we see

that the 4D result passes through three experimental uncertainty bars, as opposed to the

3D result which only passes through two uncertainty bars. As coupling to NN allows us to

include the diagram described by Jennings [42], our results indicate that the addition of this

diagram does, indeed, allow for a more faithful reproduction of the T20 observable. However,

it seems evident from Figure 6.15 that our results have a high degree of numerical instability,

so it is difficult to make definite remarks regarding the 4D polarisation observables.

The plots in Figure 6.17 show the polarisation observables for 3D with full coupling.
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These plots should give us an indication of how the 4D results would differ if we included full

coupling. We can see in Figure 6.17 that the iT11 observable can be much better reproduced,

in comparison to the experimental, when the equations include full coupling. Thus, one

would expect the 4D results with full coupling to agree with the experimental data closer in

Figure 6.14, however as we have just discussed, it is difficult to make conclusive claims due to

the numerical instability we see in the 4D iT11 observable. Looking at the other observables in

6.17, it seems that the inclusion of full coupling has a detrimental effect on the observables to

more accurately reproduce the experimental data. While most of the observables for coupling

to P33 and NN tend through some of the experimental uncertainty bars, the observables

for the full coupling tend away from the experimental data. Particularly, we can see that

T20 avoids the data completely, which supports the claims of inability to be reproduced

in the literature (we will not mention the discrepancies for T21 and T22, due to the lack

of experimental data). It might be that the effect of neglecting diagrams with more than

one pion has a more prevalent effect when more partial waves and all coupled channels are

included. As we have seen in Figure 6.14, the difference between the 3D and 4D observables

is quite minimal (with the exception of iT11), so by analysing the results of full coupling, we

expect the 4D results with full coupling with not be able to more accurately reproduce the

experimental data.
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Figure 6.13: Comparison of the 4D πd polarisation observables when coupled to the P33

channel with the lab energy of the incident pion equal to 140 MeV. The three curves in

this graph each represent a different number of spline knots used in the calculation: the

dot-dashed curves represent 16 knots, the dashed curves represent 24 knots and the solid

curves represent 32 knots.
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Figure 6.14: Comparison of the 3D πd and 4D πd (Np = Nz = 32) polarisation observables

when coupled to the P33 channel with the lab energy of the incident pion equal to 140 MeV,

also compared with experimental data points (T20 and τ21 from [192], T21 and T22 from [193],

iT11 and τ22 from [190] and tlab
20 from [194]). The solid curves represent the 4D polarisation

observables, while the dashed curves represent the 3D polarisation observables.
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Figure 6.15: Comparison of the 4D πd polarisation observables when coupled to the NN

channel with the lab energy of the incident pion equal to 140 MeV. The three curves in

this graph each represent a different number of spline knots used in the calculation: the

dot-dashed curves represent 16 knots, the dashed curves represent 24 knots and the solid

curves represent 32 knots.
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Figure 6.16: Comparison of the 3D πd and 4D πd (Np = Nz = 32) polarisation observables

when coupled to the NN channel with the lab energy of the incident pion equal to 140 MeV,

also compared with experimental data points (T20 and τ21 from [192], T21 and T22 from [193],

iT11 and τ22 from [190] and tlab
20 from [194]). The solid curves represent the 4D polarisation

observables, while the dashed curves represent the 3D polarisation observables.
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Figure 6.17: The 3D πd polarisation observables with full coupling for the lab energy of the

incident pion equal to 140 MeV, also compared with experimental data points (T20 and τ21

from [192], T21 and T22 from [193], iT11 and τ22 from [190] and tlab
20 from [194]).
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6.6 Pion production (pp→ π+d observables)

In this section, we calculate the observables for pion production from the scattering of two

nucleons, i.e. the reaction NN → πd. Generally in the literature, observables are determined

for the reaction pp→ π+d, however, we have discussed that similarly to πd elastic scattering,

the Coulomb effect should be minimal in comparison to the effect of the strong interaction.

As a result, we will tend to neglect the charge of the pion. Similar to the πd observables,

we calculate the pp→ πd observables using the 3-dimensional scattering equations and the

4-dimensional scattering equations that we have obtained using convolution integrals. We

also calculate the results for 3-dimensional scattering equations with full coupling, in order

to determine how our 4-dimensional results would differ if we were to include all the partial

wave and couplings.

The unpolarised differential cross section for pp→ πd is given by [178]

dσ

dΩunpol
(pp→ πd) = (2π)4kf

ki
µi(ki)µf (kf )|Mfi|2unpol (6.57)

where

|Mfi|2unpol =
1

(4π)2

∑
L

BLPL(cos θ) (6.58)

with

BL =
1

(2s1 + 1)(2s2 + 1)

∑
SfSi

∑
LfLiL

′
fL
′
i

∑
JJ ′

(−1)Sf−SiL̂f L̂iL̂
′
f L̂
′
i(Ĵ Ĵ

′L̂)2

Li L′i L

0 0 0

Lf L′f L

0 0 0

J J ′ L

L′i Li Si


 J J ′ L

L′f Lf Sf


XJT
LfSfLiSi

XJ ′T ∗
L′fSfL

′
iSi
.

(6.59)

Here, ki is the initial on-shell momentum (the on-shell NN momentum) and kf is the final

on-shell momentum (the on-shell πd momentum). The reduced masses µi and µf are given

as

µi(ki) =
(k2
i +m2

N)1/2(k2
i +m2

N)1/2

(k2
i +m2

N)1/2 + (k2
i +m2

N)1/2
; µf (kf ) =

(k2
f +m2

π)1/2(k2
f +m2

d)
1/2

(k2
f +m2

π)1/2 + (k2
f +m2

d)
1/2
. (6.60)

We are particularly interested in this differential cross section, as it has been commonly

suggested in the literature that the differential cross section for pp → πd calculated the

“Unitary NN−πNN” model is significantly smaller compared to experiments. This was said

188



CHAPTER 6. NUMERICAL RESULTS

to be because there was an inconsistency with renormalisation in the “Unitary NN−πNN”

model due to neglecting diagrams with more than one pion in flight at a time, which lead

to the πNN coupling constant being significantly smaller than the experimental value. This

renormalisation problem has been theoretically overcome through our use of convolution

integrals, which allows us to sum all time-ordered perturbation diagrams, including diagrams

that were previously neglected.

We also calculate the polarisation observables when both proton are polarised (~p ~p→ πd).

Following the procedure of Blankleider and Afnan [177], if we denote the polarisation of the

beam by P(a) and the polarisation of the target by P(b), then the differential cross section

for the reaction ~p ~p→ πd in terms of partial cross sections σij is given by

dσ

dΩ
= σ00 +

3∑
i=1

P
(a)
i σi0 +

3∑
j=1

P
(j)
j σ0j +

3∑
i,j=1

P
(a)
i P

(b)
j σij (6.61)

where σ00 is the spin-averaged cross section, which is equivalent to the unpolarised differential

cross section defined before. Being able to calculate the differential cross section in multiple

ways provides a good numerical check. Equation 6.61 leads to the usual definition of the

correlation tensor Aij

Aij =
σij
σ00

. (6.62)

There are 16 possible Aij (including the trivial A00 = 1), but because of parity invariance,

only eight are non-zero. In addition, as the two polarised particles are identical, the number

of independent correlations reduces to six (A00 = σ00, Ay0, Azx, Axx, Ayy and Azz). The

expressions for these six independent correlations are given in Blankleider and Afnan [177]

for the choice of coordinate frame having the z axis along the beam direction.

Similarly to πd elastic scattering, we list and assign a label to each pp → πd amplitude

in Table 6.6.

189



CHAPTER 6. NUMERICAL RESULTS

aI Jπ
Pion

wave

Lf

(πd)

Sf

(πd)

Li

(pp)

Si

(pp)

pp

state

a0 0+ p 1 1 0 0 1S0

a1 1− s 0 1 1 1 3P1

a2 2+ p 1 1 2 0 1D2

a3 1− d 2 1 1 1 3P1

a4 2− d 2 1 1 1 3P2

a5 2− d 2 1 3 1 3F2

a6 3− d 2 1 3 1 3F3

a7 2+ f 3 1 2 0 1D2

a8 4+ f 3 1 4 0 1G4

a9 3− g 4 1 3 1 3F3

a10 4− g 4 1 3 1 3F4

a11 4− g 4 1 5 1 3H4

a12 5− g 4 1 5 1 3H5

a13 4+ h 5 1 4 0 1G4

a14 6+ h 5 1 6 0 1I6

Table 6.6: The partial wave channels considered in the calculation of pion production, in

which we consider the same channels as Blankleider [178].
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Results

Looking at the amplitudes in Table 6.7 and comparing the results for a different number

of spline knots, we can see that these amplitudes show relatively good convergence. This is

with the exception of the second amplitude for Jπ = 2+, which has unexpectedly terrible

convergence with respect to the spline knots. We notice that for Jπ values with multiple

deuteron states except for Jπ = 1− (Jπ = 2+, 3−, 4+), the convergence of the second am-

plitude tends to show poor convergence, with the worse offender being Jπ = 2+. We have

investigated why the second amplitude of Jπ = 2+, in particular, has poor convergence and

has not found any conclusive evidence or justification for this observation. There are no A

coefficients for the corresponding half off-shell N∆↔ πd Z−diagram for the larger L value

3S1 channel, so one might expect that this may contribute to the lack of convergence. This

would be because the second amplitude would be dependent purely on the 3D1 state, which

may not be as dominant as the 3S1 and may cause numerical instability in the calculations.

As such, one could calculate the pp→ πd amplitudes using a 3S1 deuteron potential, similar

to the potential by Mongan [134, 135]. However, it is not entirely clear whether this is the

definite cause of the poor convergence. One would hope that this poor convergence in the

second amplitude does not cause many issues to the observables, as it is not as large as some

of the other amplitudes in Table 6.7, but this is to be determined.
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aI Jπ Np = Nz = 16 Np = Nz = 24 Np = Nz = 32

0 0+ −0.00502389 + 0.000192979i −0.00502861 + 0.000166469i −0.00503407 + 0.000150901i

1 1− −0.00285001 + 0.00107868i −0.00283846 + 0.00106023i −0.00284458 + 0.00106043i

2 2+ −0.0230487− 0.0165657i −0.024932− 0.0178315i −0.026161− 0.0171651i

3 1− 0.000756171 + 0.000580918i 0.000751178 + 0.000585263i 0.000750864 + 0.000589203i

4 2− −0.000398274 + 0.0000316655i −0.000402727− 2.26507× 10−6i −0.000405418− 9.90466× 10−6i

5 2− −0.00264307− 0.000397686i −0.00262748− 0.000401962i −0.00264804− 0.000399326i

6 3− 0.00774937 + 0.00177407i 0.00768678 + 0.00182931i 0.00774077 + 0.00180424i

7 2+ 0.000808073− 0.0000794356i −0.000268574− 0.000216726i −0.00161075− 0.00116797i

8 4+ −0.00155936− 0.000205007i −0.00152656− 0.000206277i −0.00154662− 0.000206835i

9 3− −0.000130079− 0.0000318553i −0.000130248− 0.0000675877i −0.00011812− 0.0000397418i

10 4− −0.000139424− 1.07945× 10−6i −0.000140325− 4.67164× 10−6i −0.000140984− 1.19775× 10−6i

11 4− −0.0000971984− 7.88704× 10−6i −0.0000966732− 7.88521× 10−6i −0.0000966518− 7.83165× 10−6i

12 5− 0.000412301 + 0.0000408623i 0.000418195 + 0.0000411949i 0.000418656 + 0.0000413198i

13 4+ 0.0000366134 + 3.51005× 10−7i 0.000030066 + 9.06293× 10−6i 0.0000347493 + 2.25112× 10−6i

14 6+ −0.0000666239− 7.7292× 10−6i −0.0000876814− 5.71702× 10−6i −0.0000878971− 6.13754× 10−6i

Table 6.7: 4D pp → πd scattering amplitudes calculated using the spline interpolation

method for different numbers of p and z spline knots, Np and Nz respectively. The lab

energy of the incident proton equal is to 560 MeV.

In Figure 6.18, we plot the 4D pp → πd differential cross section for different number

of spline knots. We note that the 32 knot curve in Figure 6.18 has a noticeable concave

shape, whereas the cross sections corresponding to the 16 and 24 knots amplitudes have all

had a linear shape. This may be due to the unstable second amplitude of Jπ = 2+ that we

commented on earlier.

We plot the 3D and 4D differential cross section in Figure 6.19 with the experimen-

tal data and see that the addition of consistent same-time nucleon dressing and consistent

renormalisation as a result of the convolution integral allows the differential cross section to

be more faithfully reproduced. This support the findings in the literature that the renor-

malisation inconsistency found in the “Unitary NN − πNN” model is the reason for the

noticeably small theoretical cross sections for pp→ πd. This is further supported by the fact

that, despite not showing absolute numerical stability, all the 4D differential cross sections

in Figure 6.18 are all larger than the 3D cross section shown in Figure 6.19.

The addition of full coupling to the scattering equation also significantly reproduces the

differential cross section with respect to the experimental data, as one can see in Figure

6.20. This implies that a 4D calculation with full coupling would increase the differential

cross sections shown in Figure 6.18 and could possibly reproduce the cross section quite

accurately. One could verify that by taking a ratio of the 3D cross section in Figure 6.19
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Figure 6.18: Comparison of the 4D pp → πd differential cross section with the lab energy

of the incident proton equal to 560 MeV. The three curves in this graph each represent a

different number of spline knots used in the calculation: the dot-dashed curve represents 16

knots, the dashed curve represents 24 knots and the solid curve represents 32 knots.
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Figure 6.19: Comparison of the 3D and 4D (Np = Nz = 32) pp → πd differential cross

section with the lab energy of the incident proton equal to 560 MeV, also compared with

the experimental data points provided by Hoftiezer et al. [195]. The solid curve represents

the 4D differential cross section, while the dashed curve represents the 3D differential cross

section.
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Figure 6.20: The 3D differential cross section with full coupling for the lab energy of the

incident proton equal to 560 MeV, also compared with the experimental data points provided

by Hoftiezer et al. [195].

with the 3D cross section that includes full coupling shown in 6.20 and multiplying the 4D

cross sections in Figure 6.18 by this ratio.

Finally, we look at the polarisation observables for pp→ πd. Comparing the 4D observ-

ables with a different amount of spline knots in Figure 6.21 we see that there is minimal

difference in the Azx and the Ay0 observable. Comparing these observables with their 3D

counterpart and the experimental data in Figure 6.22, we see that our calculations are able

to reproduce the data well. If we look at the 3D calculation with full coupling in Figure

6.23, one would expect that the addition of more coupled channels might provide the 4D ob-

servables with a more definite structure and push the results more towards the experimental

data. The more concerning results are the Axx, Ayy and Azz observable. In particular, the

curve corresponding to 32 knots is of the opposite curvature, in comparison to the 16 and

24 knot curves. This is similar to what we saw for the differential cross section, which had

an unexpected concave shape. This concern is also emphasised when we look at the data in

Figure 6.22, which has the opposite curvature than the calculated 4D observable. We also

notice that the 3D observables without full coupling have the correct shape, so we are confi-

dent to stay the 32 knot result of the 4D calculation has major numerical instability and is

not accurate. We suspect the second amplitude Jπ = 2+ again, due to its poor convergence.
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Figure 6.21: Comparison of the 4D pp → πd polarisation observables with the lab energy

of the incident proton equal to 560 MeV. The three curves in this graph each represent a

different number of spline knots used in the calculation: the dot-dashed curve represents 16

knots, the dashed curve represents 24 knots and the solid curve represents 32 knots.
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Figure 6.22: Comparison of the 3D and 4D (Np = Nz = 32) polarisation observables with

the lab energy of the incident proton equal to 560 MeV, also compared with the experimental

data points (Ay0 from [196], Axx, Ayy and Azz from [197, 198] and Azx from Hoftiezer et al.

[199]). The solid curve represents the 4D observable, while the dashed curve represents the

3D observable.
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Figure 6.23: The 3D pp→ πd polarisation observables with full coupling for the lab energy

of the incident proton equal to 560 MeV, also compared with the experimental data points

(Ay0 from [196], Axx, Ayy and Azz from [197, 198] and Azx from Hoftiezer et al. [199]).
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The overall goal of this thesis was to develop the convolution approach to the πNN

system, and determine whether its property of a consistent formulation of nucleon wave-

function renormalisation, can resolve the inadequacies of previous few-body descriptions of

the coupled NN −πNN system in describing experimental data. The convolution approach

can successfully overcome the long-standing renormalisation problem due to inconsistent

nucleon dressing in the “Unitary NN − πNN” model, and therefore it is a primary goal of

this thesis to determine whether the convolution approach can improve the reproducibility

of particular scattering observables, such as the pp → π+d differential cross section and

the T20 polarisation observable in πd elastic scattering. Using the convolution approach,

we extend the approach of Kvinikhidze and Blankleider [49] to derive coupled NN − πNN

equations in two equivalent forms: (i) a 3-dimensional form that is expressed in a similar

way to the equations of Afnan and Blankleider [33], but differing from these equations in

that all nucleon propagators are fully dressed, as well as containing non-pair-like terms in

the kernel and (ii) a 4-dimensional form, which involves only pair-like interactions.

To achieve our overall goal, we concentrated on the solution of the 4-dimensional form of

our coupled NN − πNN convolution equations, as it avoids the complications of including

non-pair-like interactions. This, nevertheless, presented many interesting but demanding

challenges, having to evaluate our integrals along the real axes in the presence of moving

singularities. The difficulty of this task has required extraordinarily large computation times

that have limited the number of partial waves and the number of coupled channels that can

be included, as well as affecting the numerical stability of the numerical results due to the

limitation of spline interpolation points.

After partial wave decomposition, 4-dimensional equations reduce to 2-dimensional equa-

tions, and the kernel of these 2-dimensional equations involve an integral over the interme-

diate momentum p′′ and the intermediate energy-like variable z′′. The difficulty in solving

these equations is due to the presence of moving singularities in these integral equations.

The complex singularity structure of our 4-dimensional equations also restricts our ability to

include more than one coupled channel at a time. To include all coupled channels, one must

account for the numerous logarithmic singularities in the p′′ integral for each Z−diagram

given in Equation 6.5. Additionally, the solution of our 4-dimensional equations also con-

tain singularities, which makes it difficult to interpolate using splines, as the solution is not

smooth due to these singularities. As these singularities in the solution originate from the

inhomogeneous term of our 4-dimensional equations, we factor out the inhomogeneous term
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from the solution and perform the spline interpolation on the factorised solution. We refer

to this factorisation process as Carbonell-Karmanov (CK) factorisation, as these authors

suggested such a factorisation in [73, 74]. This CK factorisation also further complicates the

singularity issue in the equation kernel, as the factorisation introduces the inhomogeneous

term into the kernel’s integral, thereby introducing additional singularities. Despite an in-

crease in computational time, accounting for the singularities in the p′′ integral is not an

extremely difficult task. The difficulty is in handling the singularities in the z′′ integral, as

it is the interaction of the singularities in the p′′ integral which gives rise to the singularities

in the z′′ integral. Because of all the Z−diagrams in fully coupled equations in addition

to the Z−diagrams introduced as a result of CK factorisation, the task of accounting for

each singularity in the z′′ integral becomes extremely cumbersome and difficult to implement

based on our “general recipe” for determining the location of singularities in the z′′ integral

discussed in Chapter 6. In essence, calculating the integrals of our 4-dimensional πNN con-

volution equations with coupling to all channels is not feasible, due to the copious amount

of singularities in the integrals.

After obtaining solutions to our 4-dimensional πNN convolution equations, we find that

the consistent dressing improves the reproducibility of the NN phase shifts, in comparison

to the fitted solution of experimental data, when the equations are coupled to either to the

NN or P33 channel. While we do not expect to accurately reproduce the NN phase shifts as

we include only one-pion exchange and only one coupled channel, it is reassuring to observe

that the consistent nucleon dressing has a positive effect on the phase shifts.

If we look at our results for πd elastic scattering, we find that our 4-dimensional πNN

convolution equations do not have a significant contribution to the scattering observables

when we couple our equations to the P33 channel. This may be unsurprising as the only

additional nucleon dressing comes from the intermediate N∆ state, as the spectator nu-

cleon is represented by a dressed propagator. More of a significant difference between the

3-dimensional and 4-dimensional results may be present if we were to dress the exchanged

nucleon in the Z−diagrams which involve a πd state. We also calculate πd elastic scattering

observables when our equations are coupled to the NN channel, which we do in order to

include the diagram described by Jennings [42]. This diagram is shown in Figure 1.6. It

was suggested by Jennings that the inclusion of this diagram was necessary for an accurate

description of the T20 polarisation observable in πd elastic scattering. We find that the equa-

tions coupled to NN have much greater numerical instability than the equations coupled
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to P33 and much more spline knots would be required to obtain adequate convergence of

the equations coupled to NN . Though there tends to be a greater difference between the

3-dimensional and 4-dimensional πd observables when we coupled to NN , so this is a good

indication that the nucleon dressing has some significance in the 4-dimensional equations.

While our 4-dimensional results with the included Jennings diagram can slightly reproduce

the T20 polarisation observable better than the 3-dimensional equations, the numerical in-

stability of the 4-dimensional results prevents us from making a definitive conclusion from

our calculated results.

The πNN convolution equations solve the long-standing renormalisation problem in the

“Unitary NN − πNN” model, which we see in the calculation of the pp → πd differential

scattering cross section. Moreover, our calculation for the 3-dimensional equations of the

“Unitary NN−πNN” model with full coupling to other scattering channels and inclusion of

many partial waves convinces us that a calculation of the 4-dimensional pp→ πd differential

cross section with full coupling would be able to reproduce the experimental cross section, in

comparison to experimental data. However, the pp→ πd polarisation observables tend not to

be reproduced significantly better using the 4-dimensional πNN convolution equations. We

expect this may be due to a lack of partial waves used in our calculations and the numerical

instability that we have encountered due to the spline interpolation method, particularly in

the second amplitude of Jπ = 2+ (a7 amplitude of Table 6.6).

The solution to our 4-dimensional scattering equations are found using spline interpo-

lation and one of our goals has been to determine whether a spline interpolation method

is a viable numerical method for solving these equations. Ultimately, we conclude that the

spline interpolation method may be a viable solution to these scattering equations, pro-

vided a large number of spline knots are used in the calculation, beyond what was possible

in this investigation. We have had difficulty making definitive conclusions based on our

calculated results for our 4-dimensional equations, as we are not convinced that we have

obtained satisfactory numerical stability. It is also difficult to determine whether our results

are converging with respect to the number of spline knots, as the splines tend to exhibit an

oscillatory convergence rather than a linear convergence.

It is also uncertain whether the CK factorisation has effectively removed the singularities

in the solution. If our solution were completely smooth, then we should have no issue

obtaining a numerically stable solution with a relatively low number of knots. However,

the lack of convergence in our 4-dimensional results leads us to believe this is not the case.
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The CK factorisation relies on the idea that the singularities in the solution are the same

as the singularities of the inhomogeneous term of the equation (let us call this term Z), so

one should be able to eliminate the singularities in the solution by dividing the solution by

Z. However, we make a remark in Chapter 4 that if we divide Z by a scalar function that

possesses the same singularities as Z (which we call Zl), the singularities are not entirely

eliminated. This is why we are required to divide by Z in the CK factorisation to obtain a new

inhomogeneous term that has no singularities, as the inhomogeneous term becomes 1. But in

the CK factorisation, we divide the solution of the equation by Z, so the singularities in the

solution cannot be fully eliminated. One can see this by simply plotting the function Z/Zl.

We can also use a simple Fredholm equation such as f(x) = log(x− 0.5)+
∫ 2

0
log(y − 0.5)f(y)

and plot the solution f(x) = (0.5715− 1.615i) + log(x− 0.5) divided by the inhomogeneous

term. We believe this is why we are not seeing adequate convergence of our 4-dimensional

results and one still requires much more spline knots in order to obtain a numerically stable

answer. Though, the “brute force” method of using many knots may achieve numerical

stability, regardless of singularities in the solution. However, a tremendous amount of knots

would be required to obtain numerical stability and a calculation with a tremendous amount

of knots is far beyond our available computing resources. Our lack of convergence with

respect to the number of knots also leads us to believe that there might be other singularities

or discontinuities in the solution that are not due solely to the inhomogeneous term of our

scattering equations.

Part of our goal of trying to obtain consistent dressing in our three-body πNN scattering

equations is the inclusion of dressed two-body inputs for πN and NN . We calculate the

dressed πN inputs using the Dyson-Schwinger equations and develop the numerical proce-

dure to calculate these inputs. To construct NN input that incorporates dressed nucleons,

we should take an accurate NN potential from the literature and perform a separable ap-

proximation to obtain dressed NN input. However, as all accurate NN potentials in the

literature are constructed using undressed nucleon propagators, there is no viable method

for creating a realistic separable NN potential that incorporates nucleon dressing. As a re-

sult, we use undressed NN input in the calculations of our 4-dimensional πNN convolution

equations.

The inclusion of Dyson-dressed inputs drastically increases the computational time of

the calculations, in addition to the already computationally intense process of solving 4-

dimensional equations. For this reason, and due to the lack of a realistic separable NN
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potential that incorporates nucleon dressing as described above, we only include Dyson-

dressed inputs in calculations of 4-dimensional NN scattering. For calculations of πd elastic

scattering and pp→ πd scattering, we use undressed two-body inputs for both πN and NN .

We suspect that the Dyson-dressed πN inputs should have a minimal effect on these results as

we have compared calculations of NN elastic scattering with Dyson-dressed inputs and with

undressed input, finding no significant difference between the two results. So, even though

we demonstrate the importance of nucleon dressing in our two-body inputs and provide a

theoretically complete and consistent model that includes all dressing contributions, there

should be a minimal difference to using dressed or non-dressed two-body input in πNN

equations. Though, further investigations into the inclusion of dressed two-body inputs in

the πNN convolution equations should be explored, including the effect of including Dyson-

dressed πN inputs in calculations of πd elastic scattering and pp→ πd scattering.

The only approximation used in the derivation of the πNN convolution equations is the

neglection of connected three-body forces (connected πNN → πNN irreducible diagrams).

We investigate the validity of this approximation by calculating the NN one-pion and two-

pion exchange amplitudes as formulated in the πNN convolution equations and compare

these amplitudes to the NN one-pion and two-pion exchange amplitudes that can be calcu-

lated with all contributions using TOPT. We find that the effect of connected three-body

forces on the NN one-pion exchange amplitudes to be minimal, with graphs of the amplitude

with and without connected three-body forces essentially overlapping one another. The NN

two-pion exchange amplitude has a more noticeable difference when we compare the ampli-

tudes with and without connected three-body forces, however, the difference is still minimal

and deviation only occurs at high energies, above the energies we use in the calculation of

our three-body equations. Therefore, we expect that the neglect of connected three-body

forces to have a minimal contribution to the πNN convolution equations.

Further work

As pointed out by Sauer et al. [38], any attempt to describe the many-nucleon problem

in terms of interactions mediated by pions, while truncating the Hilbert space to states of

at most one pion, will encounter a renormalisation problem whose severity grows exponen-

tially with A, the number of nucleons. Such a problem is encountered, for example, in the

formulation of the coupled NNN − πNNN system by Canton and Cattapan [200]. The

convolution approach developed in this thesis could be extended to overcome the renormal-
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isation problem in Canton and Cattapan [200] where A = 3, and possibly to any value of

A.

Afnan and Blankleider [201] have also derived a set of Faddeev-type equations, referred to

as the BB−πBB equations, allowing a generalisation of the previous “Unitary NN−πNN”

model to include excited baryon states. The authors allow the nucleon and ∆ particles to

be treated on an equal footing, while also including the contribution of “backward going

mesons,” which was also thought to be a possible mechanism, whose neglect is responsible

for the small cross section in the pp → π+d reaction in the “Unitary NN − πNN” model.

However, the renormalisation problem was seen to have a bigger effect in the BB − πBB

equations than it did on the NN − πNN equations [31]. Convolution equations describing

a πBB system would be a logical extension and could be used, for example, to investigate

the possible formation of di-baryons [145]. As suggested by Wessler et al. [202] it may also

be important to include heavy meson exchange.

One of the main issues with our numerical results from the 4-dimensional πNN convo-

lution equations is that we are not convinced we have obtained numerically stable results

with respect to the spline knots. With the ever increasing power of computers, it should,

with time, be possible to calculate our equations with more spline knots to see if one can

obtain results that are more numerically stable. One should calculate our equations with

increasing intervals of spline knots, as this will give a good indication of whether the results

are converging and one can determine the minimum number of knots needed for adequate

convergence. One should also perform the calculations with more coupled channels. It may

be possible that the effect of dressing is more prevalent in channels other than the N∆ (as

we have seen when we coupled our πd equations to the NN channel), so one might see a

more noticeable contribution to the scattering observables. From our calculations of the

3-dimensional scattering equations with full coupling to other channels, we do not expect

that the 4-dimensional equations with full coupling would significantly change the scattering

observable (particularly for πd elastic scattering), but it is difficult to know the full effect

of dressing until a full calculation is performed. These suggestions rely on having sufficient

computational power, which we have lacked during this investigation and has prevented this

further work.

Despite the benefits and intellectual interest in solving 4-dimensional scattering equa-

tions, one should investigate the possibility of solving the 3-dimensional versions of the

πNN convolution equations in Equation 3.123 as it may be possible to use contour rotation
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rather than spline interpolation to solve the 3-dimensional equations. As done by Blanklei-

der et al. [203], one can calculate the convolution integral in the amplitudes wα using the

dispersion relation of g(E), then calculate the omega integral using Gaussian quadrature

points. Using quadrature points and applying a separable approximation of the two-body

input discretises the equations and allows the equations to be solved by matrix inversion. We

have attempted to solve the 3-dimensional πNN convolution equations using this method,

however the main issue is that Blankleider et al. [203] have a pure three-body problem and

thus, only have disconnected Faddeev-like πNN → πNN amplitudes w1, w2 and w3, which

represent the interaction between two particles while the other spectates. In our work, we

include πNN → πNN amplitudes w4 and w5, which involve disconnected pair-like interac-

tions, and therefore, are not of the same from as w1, w2, w3. Thus, it is not clear whether

this approach of Blankleider et al. [203] can be applied to our equations and we would need

to determine a method that incorporates the πNN → πNN amplitudes w4 and w5.

It may be worth investigating the other forms of spline interpolation that could be ap-

plied to our equations and hopefully provide greater numerical stability. We have noted in

the main text about the use of Chebyshev polynomials, which seem to have a very good rep-

utation for fast convergence. These polynomials are easy to implement and should be a less

intensive computational task. It was noted that the problem with using these polynomials

is that they cannot be used for disconnected kernels, which we have in our equations due

to the presence of singularities in the kernel. This is not a definite property of Chebyshev

polynomial, merely an observation, and the more concerning issue would be that the Cheby-

shev polynomials oscillate highly as the order of the polynomial increases. This would make

it much more difficult to evaluate the integrals as the order of the Chebyshev polynomials

increase but could be overcome by using quadrature points for oscillatory integrals such as

Filon-Clenshaw-Curtis quadratures [204].

The spline interpolation method has proved to be quite an intense computational task,

without the guarantee of numerical stability. Therefore, it would be worth exploring more

viable methods to solve our 4-dimensional scattering equations, especially if we want to

include more coupled channels and partial waves. A possible method that has already been

discussed is Wick rotation, which we use to calculate our NN scattering equation with

Dyson-dressed inputs. This was possible as the method is described in detail by Levine et

al. [54], however it is not clear how to use Wick rotation for our other scattering processes

and coupled channels. In particular, it is unknown how to handle the nucleon pole crossing
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the imaginary z axis for processes other than NN , as this is handled by an innovative

factorisation method that is suitable only for the case of equal mass scattering.

On top of an investigation into better choices for spline functions, one could also inves-

tigate an alternative method to the CK factorisation to eliminate the singularities in the

solution of our scattering equations, as the CK factorisation is not completely effective at

eliminating the singularities in the solution. This would allow for better convergence of the

amplitudes with respect to the spline knots, as the solution will be smooth.
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Chapter A

Pion-nucleon theory



APPENDIX A. PION-NUCLEON THEORY

A.1 Pion-nucleon model

The pion-nucleon model we consider involves only pion and nucleon degrees of freedom,

and is defined by the Hamiltonian

H = H0 +HI = HN
0 +Hπ

0 +HI (A.1)

where

HN
0 =

∫
(Ep +m0) a†N(p)aN(p)dp (A.2)

Hπ
0 =

∫
ωka

†
π(k)aπ(k)dk (A.3)

HI =

∫
JN(k)a†π(k)dk +

∫
J†N(k)aπ(k)dk (A.4)

JN(k) =

∫
δ(p + k− p′)

1
√
ωk
F0(p,p′)a†N(p)aN(p′)dpdp′ (A.5)

where the a† and a states are creation and destruction operators act upon a Hilbert space

of multi-pion and nucleon states; in particular,

|p〉 ≡ a†N(p)|0〉, |k〉 ≡ a†π(k)|0〉 (A.6)

represent states of a bare nucleon of momentum p and a pion of momentum k. Note that

the bare and dressed vacua are identical in this model. We use semi-relativistic kinematics,

non-relativistic kinematics for the nucleons and relativistic kinematics for the pion. So that

Ep =
p2

2m
, ωk =

(
k2 +mπ

2
)

1/2 (A.7)

We note the commutation relations[
aπ(k), a†π(k′)

]
= δ(k− k′) (A.8)

[aπ(k), aπ(k′)] = 0 (A.9){
aN(p), a†N(p′)

}
= δ(p− p′) (A.10)

{aN(p), aN(p′)} = 0 (A.11)

With these commutator relations, we find that HN
0 acting on a nucleon state with momentum

p

HN
0 |p〉 ≡

∫
dp′ (Ep′ +m0) a†N(p′)aN(p′)a†N(p)|0〉

=

∫
dp′ (Ep′ +m0) a†N(p′)

{
aN(p′)a†N(p)

}
|0〉

= (Ep +m0) |p〉

(A.12)
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as expected. Using these commutator relations, we can also find new commutator relations,

which become useful later on.

[aπ(k), Hπ
0 ] =

∫
ω′k
[
aπ(k), a†π(k′)

]
aπ(k′)dk′ = ωkaπ(k) (A.13)

Likewise[
a†π(k), Hπ

0

]
=

∫
ωk′
[
a†π(k), a†π(k′)aπ(k′)

]
dk′

=

∫
ωk′
([
a†π(k), a†π(k′)

]
aπ(k′) + a†π(k′)

[
a†π(k), aπ(k′)

])
dk′

=

∫
ωk′a

†
π(k′)

[
a†π(k), aπ(k′)

]
dk’

= −
∫
ωk′a

†
π(k′)

[
aπ(k′), a†π(k)

]
dk′

= −ωka†π(k)

(A.14)

Therefore, we obtain the commutator relation[
a†π(k), Hπ

0

]
= −ωka†π(k) (A.15)

Similarly,

[aπ(k), Hπ
I ] =

∫
JN(k′)[aπ(k), a†π(k′)]dk′ +

∫
J†N(k′)[a†π(k), a†π(k′)]dk′

=

∫
JN(k′)δ(k− k′)dk′ = JN(k)

(A.16)

We can do this as aN , a
†
N and aπ, a

†
π act on different Hilbert spaces, so they commute.

Therefore, we have

[aπ(k), Hπ
I ] = JN(k) (A.17)

A.2 The πN t-matrix

Consider the system of one nucleon and one pion. The πN t-matrix is the connected

part of the full πN Green’s function

〈k′,p′| tπN(E) |k,p〉 = 〈k′,p′| 1

E+ −H
|k,p〉c (A.18)

where the disconnected part of the full t-matrix is equal to the dressed pion-nucleon propa-

gator

〈k′,p′| gπN(E) |k,p〉 = 〈k′,p′| 1

E+ −H
|k,p〉d (A.19)
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=
+

t
b

Figure A.1: The πN t represented diagrammatically as its pole and non-pole parts.

The full πN t-matrix can be written in terms of nucleon pole and non-pole parts, shown

diagrammatically as

which corresponds to the equation

tπN(E) = f(E)g(E)f̄(E) + tb(E) (A.20)

where tb(E) is the background term, given in terms of the integral equation:

tb(E) = vb(E) + vb(E)gπN(E)tb(E) (A.21)

where vb(E) represents the sum of all one-particle irreducible graphs for πN scattering and

gπN(E) is the fully dressed pion-nucleon propagator.

=v
b

Figure A.2: Diagram for vb representing the sum of all one-particle irreducible πN graphs.

A.3 The dressed pion-nucleon vertex

The dressed pion-nucleon vertex is given diagrammatically below and a perturbation

expansion, beginning with the bare vertex f0

= +

π

N
k

f(k,E) f0(k)

k

π

tNP

Figure A.3: Diagram representation of the dressed vertex function f(k,E), shown as a finite

sum of Figure

With all the propagators, we can see that

gπNfg = gπNf0g + gπNv
bgπNf0g + gπNv

bgπNv
bgπNf0g + ... (A.22)
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and with the final/initial propagators removed

f = f0 + vbgπNf0 + vbgπNv
bgπNf0 + ... (A.23)

and since we know that the background term tb is given by

tb(E) = vb(E) + vb(E)gπN(E)vb(E) + vb(E)gπN(E)vb(E)gπNv
b(E) + ... (A.24)

we can express the dressed pion-nucleon vertex as

f(k,E) = f0(k) + tb(E)gπNf0(k) (A.25)

where k is the momentum of the pion.

Now, the dressing amplitude is given diagrammatically by

v
b

v
b

v
b

+ + +...

Figure A.4: Iteration of vb.

But, if a cut is made in the middle of the first bubble of each diagram, one obtains

( )v
b

v
b

v
b

+ + +...

Figure A.5: Diagram showing how a cut in the bubble of the iterated vb can lead to factorising

a f0 term.

where the first diagram corresponds to the bare pion-nucleon vertex f0 (technically f̄0,

but this is equal to f0) and the bracketed terms correspond to the dressed vertex f . So this

becomes

Σ =

Figure A.6: Diagrammatic representation of the dressing amplitude Σ(E).

which is given by the matrix element

Σ(E) = 〈f0|gπN(E)|f(E)〉 (A.26)
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B.1 The dressed one-nucleon propagator

With this model defined, we can define the undressed and dressed one-nucleon propaga-

tors such that

δ(p− p′)g0(E,p) = 〈p′| 1

E+ −H0

|p〉 (B.1)

δ(p− p′)g(E,p) = 〈p′| 1

E+ −H
|p〉 (B.2)

where, as we have just shown, the bra and ket nucleon states are eigenstates of H0. Note

that, H0 contains the Hamiltonian for both nucleon and pion. However, after during a

perturbation theory expanding about Hπ
0 , all terms with this Hamiltonian would be equal

to zero as it would be acting on a nucleon state.

After perturbation theory, the dressed one-nucleon propagator is given as the following

iteration

g(E) = g0(E) + g0(E)Σ(E)g(E) (B.3)

where Σ(E) is the dressing amplitude. This equation is given diagrammatically as This

= + + +...

Figure B.1: The dressing of a single nucleon, shown as a perturbation expansion of diagrams,

where the dashed lines represent the propagation of pions and the solid lines represent the

propagation of the nucleon.

equation can be rearranged to give

g(E)−1 = g0(E)−1 − Σ(E) = E+ −H0 − Σ(E) (B.4)

Therefore, we obtain an expression for the dressed one-nucleon propagator

g(E) =
1

E+ −H0 − Σ(E)
(B.5)
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B.2 Calculating the dressed one-nucleon propagator

In bra-ket notation, we have

Σ(E) = 〈f0|gπN |f(E)〉 (B.6)

|f(E)〉 = |f0〉+ tb(E)gπN(E)|f0〉 (B.7)

tπN(E) = |f(E)〉+ tb(E)gπN(E)|f0〉 (B.8)

We now introduce separable potentials for vb(E), and for numerical calculations, we shall

take a P11 interaction using NN−πNN calculation of Afnan and McLeod [40]. In particular,

we use their M1 interaction which is specified by the equations

vb(q′, q) = h(q′)λh(q) (B.9)

where λ = −1. In bra-ket notation

vb(q′, q) = 〈q′|vb|q〉 = 〈q′|h〉λ〈h|q〉vb = |h〉λ〈h| (B.10)

Putting this in our equation for the non-pole part of tb(E)

tb(E) = vb(E) + vb(E)gπN(E)vb(E) + vb(E)gπN(E)vb(E)gπN(E)vb(E) + ...

= |h〉λ〈h|+ |h〉λ〈h|gπN(E)|h〉λ〈h|+ |h〉λ〈h|gπN(E)|h〉λ〈h|gπN(E)|h〉λ〈h|+ ...

= |h〉 (λ+ λ〈h|gπN(E)|h〉λ+ λ〈h|gπN(E)|h〉λ〈h|gπN(E)|h〉λ+ ...) 〈h|

= |h〉
(
λ+ λ〈h|gπN(E)|h〉+ λ2〈h|gπN(E)|h〉2 + ...

)
〈h|

(B.11)

Now, one can see the middle term(s) form a power series

λ+ λ〈h|gπN(E)|h〉+ λ2〈h|gπN(E)|h〉2 + ... + ...

= λ
1

1− λ〈h|gπN(E)|h〉
= λ

λ−1

λ−1

1

1− λ〈h|gπN(E)|h〉
=

1

λ−1 − 〈h|gπN(E)|h〉
= τ(E)

(B.12)

So, the non-pole part becomes

tb(E) = |h〉τ(E)〈h| (B.13)

where

τ(E) =
1

λ−1 − 〈h|gπN(E)|h〉
(B.14)

Here, we are using the free pion-nucleon propagator

gπN(E,p) =
1

E+ − EN(p)− ωk
(B.15)
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure B.2: Real and imaginary parts of the dressed one-nucleon propagator g(E).

B.3 Analytical Structure of g(E)

The analytical structure of the dressed one-nucleon propagator g(E) is implied directly

from its definition. The dressed one-nucleon propagator must have a pole at the physical

nucleon mass m where E = m + iε and it must also have a cut along the positive real axis

due to the momentum integration required in Σ(E), resulting in unitary cuts for multi-pion

production, as shown in Figure B.3. Consider an arbitrary function argument z to be inside

the contour. Cauchy’s Residue Theorem can then be used to obtain the following expression∫
C

g(ω)

z+ − ω
dω = 2πi

Z

z+ −m
− 2πig(z) (B.16)

as the integral in the contour C has a pole at ω = z+ iε. Now, taking the integration around

the contour C, we obtain∫
C

g(ω)

z+ − ω
dω =

∫ m+mπ

∞

g(ω−)

z+ − ω
dω +

∫ ∞
m+mπ

g(ω+)

z+ − ω
dω =

∫ ∞
m+mπ

g(ω+)− g(ω−)

z+ − ω
dω (B.17)

Across the cut, the imaginary part of g(z) changes sign. Therefore

g(ω+)− g(ω−) = g(ω+)− g∗(ω+) = 2i Im g(ω+) (B.18)

Hence, ∫
C

g(ω)

z+ − ω
dω = 2i

∫ ∞
m+mπ

Im g(ω+)

z+ − ω
dω (B.19)

Now, by equating Equations B.16 and B.19, an expression for g(E) is obtained

g(E) =
Z

E+ −m
− 1

π

∫ ∞
mN+mπ

dω
Im g(ω)

E+ − ω
(B.20)
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m− iε

m+mπ − iε

Im z

Re z

Figure B.3: The contour enclosing the pole at m+ iε and that forms around the branch cut

beginning at m+mπ − iε present in the dressed one-nucleon propagator.

Thus, assuming that the dressed one-nucleon propagator has no other poles or discontinuities

in the complex E plane, one can display the analytic structure of g(E) by exposing the pole

at the physical nucleon mass m and one-pion unitary cut, as given by Equation B.20 [205].

Knowing this analytical structure of g(E), we can also find the value of the bare mass m0

as it cannot be determined experimentally. We know that g(E) has a pole at the physical

mass m. Hence,

m−m0 − Σ(m) = 0 (B.21)

−→ m0 = m− Σ(m) (B.22)

B.3.1 Calculating the dressed two-nucleon propagator

Galilean Invariance of the dressed one-nucleon propagator implies that

g(E,p) = g

(
E − p2

2mN

,0

)
(B.23)

which implies that for the dressed two-nucleon propagator

D0(E,p1,p2) = D0

(
E − p2

1

2mN

− p2
2

2mN

,0,0

)
(B.24)
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From simplicity, we consider p1 = p2 = 0, so that D0(E,0,0) = D0(E), without loss of

generality. Hence, the following expression is obtained:

D0(E) =

(
− 1

2πi

)∫ ∞
−∞

dz g(E − z)g(z) (B.25)

Using the dispersion relation of g(E), one obtains:

D0(E) =

(
− 1

2πi

)∫ ∞
−∞

dz

(
Z

E+ − z −mN

− 1

π

∫ ∞
mN+mπ

dω1
Im g(ω1)

E+ − z − ω1

)
(

Z

z+ −mN

− 1

π

∫ ∞
mN+mπ

dω2
Im g(ω2)

z+ − ω2

)
(B.26)

Using Cauchy’s Residue Theorem to evaluate the integrals by taking the residues at the

poles that are enclosed in the contour in the lower half plane, we obtain

D0(E) =
Z2

E+ − 2mN

− 2

π

∫ ∞
mN+mπ

dω
Z Im g(ω)

E+ −mN − ω

+
1

π2

∫ ∞
mN+mπ

dω1

∫ ∞
mN+mπ

dω2
Im g(ω1) Im g(ω2)

E+ − ω1 − ω2

(B.27)

For numerical calculations, the analytical structure of g(E) is used to write this expression

as:

D0(E) = 2Zg(E −mN)− Z2

E+ − 2mN

+
1

π

∫ ∞
mN+mπ

dω

[
Z

E+ − ω −mN

− g(E − ω)

]
Im g(ω)

(B.28)

The input parameters required to numerically calculate the dressed one-nucleon propaga-

tor and hence, subsequently the dressed two-nucleon propagator is presented by Afnan and

McLeoad [40]. The authors provide such parameters as form factor functions and the model

of πN elastic scattering used in this formulation. The multiple models presented by these

authors has been previously used in calculations and has shown to be an effective model

of πN elastic scattering. The author have obtained their constants and functions through

comparison with experimental results, where we focus specifically on their M1 interaction,

which is specified by the partial wave equations

vb(q′, q) = −h(q′)h(q) (B.29a)

h(q) =
c1q

(q2 +m2
π)1/4

[
1

q2 + b2
1

+
c2q

4

(q2 + b2
2)3

]
(B.29b)

f0(q) =
c0

(q2 +m2
π)1/4

q

q2 + b2
0

(B.29c)
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where c0 = 1.0726, b0 = 2.7703, c1 = 0.3433, b1 = 1.4422, c2 = 7.4026 and b2 = 2.1982.

Blankleider and Kvinikhidze [39, 48] have used this model in their previous numerical work.

Here, we will also use this model in our subsequent numerical calculations. For compari-

son and in order to see the effect of full nucleon dressing, we consider other two-nucleon

propagators. First, we consider the pole term of the dressed two-nucleon propagator, given

by

GPT (E) =
Z2

E+ − 2mN

(B.30)

Next, we consider an approximation of the dressed two-nucleon propagator, by removing

the integral from the derived expression. We denote this approximation by Gπ(E) which is

given by

Gπ(E) = 2Zg(E −mN)− Z2

E+ − 2mN

(B.31)

Lastly, we consider the no dressing at the same time or different-time propagator GDT (E)

given by

GDT (E) =
1

E+ − 2m0 − 2Σ(E −mN)
(B.32)

This different-time dressing propagator is an important propagator, as we will use it to cal-

culate our three-body equations without same time dressing. This will allow us to determine

the effect of same time consistent dressing on three-body equations in the main body. We

plot each of the renormalised four propagators in Figure B.4. It should be noted that while

we renormalised each of the four propagators by Z2 to obtain unit residues, we should not do

this for the different-time dressing propagator of Equation B.32. The residue is not Z2 for

the different-time dressing propagator, rather it is equal to 1/(1 + 2Σ′(mN)). However, we

simply renormalise this propagator by Z2 in Figure B.4 to be consistent with [48]. In future

calculations with this propagator, we will use the correct residue in our renormalisation.
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Figure B.4: Real and Imaginary parts of the dressed two-nucleon propagator and two-nucleon

propagator approximations. The solid line represents the dressed two-nucleon propagator

D0(E), the long dash represents GPT (E), dot dashed represents Gπ(E) and the short dashed

line represents GDT (E). To be consistent with the results of Blankleider and Kvinikhidze

[48], these graphs are normalised by a factor of Z2 so that each propagator has a unit residue.
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C.1 Time independent formulation

Given a Hamiltonian H, we want to solve the Schrödinger equation

H |ψ〉 = E |ψ〉 (C.1)

where the Hamiltonian is given as a sum of a free Hamiltonian H0 and a scattering potential

V given by

H = H0 + V (C.2)

We can rewrite Equation C.1 into the following integral equation

(H0 + V ) |ψ〉 = E |ψ〉

−→ V |ψ〉 = (E −H0) |ψ〉 (C.3)

Now say, we know the solution to the eigenvalue problem

H0 |φ〉 = E |φ〉 (C.4)

where E is the eigenvalue for both the free and full Hamiltonian. We can write this equation

into

(E −H0) |φ〉 = 0 (C.5)

Now, the addition of Equations C.3 and C.5 gives

V |ψ〉+ (E −H0) |φ〉 = (E −H0) |ψ〉 (C.6)

and dividing through by E −H0

|ψ〉 = |φ〉+
1

E −H0

V |ψ〉 (C.7)

However, the operator (E − H0)−1 is singular, as E is the eigenvalue of the operator H0.

This can be fixed by adding a small imaginary number to E, which wields∣∣ψ(±)
〉

= |φ〉+
1

E ± iε−H0

V
∣∣ψ(±)

〉
(C.8)

where ε > 0 and ε → 0. This equation is known as the Lippmann – Schwinger equation.

This equation contains, what is known as, the free Green’s function or free Green’s operator

G0(E) and its hermitian operator G†0(E), defined as

G0(E) =
1

E −H0 + iε
=

1

E+ −H0

(C.9)
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and

G†0(E) =
1

E −H0 − iε
(C.10)

So, the Lippmann-Schwinger equation can be written as

∣∣ψ(+)
〉

= |φ〉+G0(E)V
∣∣ψ(+)

〉
(C.11)

We choose
∣∣ψ(+)

〉
as it obeys the correct boundary conditions for scattering. However, this

is merely a convention, allowing us to be more precise with the physics and mathematics.

This notation will be continued briefly for this section, but it is not entirely necessary for

what we wish to achieve.

C.2 The t−matrix operator

Now, consider

V
∣∣ψ(+)

〉
= T (E) |φ〉 (C.12)

where the operator T (E) is referred to as the t-matrix operator. Putting this into Equation

C.11, one obtains

∣∣ψ(+)
〉

= |φ〉+G0(E)T (E) |φ〉 (C.13)

Now, we have the ket
∣∣ψ(+)

〉
written as a linear combination of |φ〉, which is an eigenket of

the free Hamiltonian. Multiplying on the left by V

V
∣∣ψ(+)

〉
= V |φ〉+ V G0(E)T (E) |φ〉 (C.14)

−→ T (E) |φ〉 = V |φ〉+ V G0(E)T (E) |φ〉 (C.15)

Hence, we have that the t-matrix operator T (E) can be written as

T (E) = V + V G0(E)T (E) (C.16)

Thus, this shows that T (E) can be expanded in a perturbation series consisting of V and

G0

T (E) = V + V G0(E)V + V G0(E)V G0(E)V + V G0(E)V G0(E)V G0(E)V + ... (C.17)
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By taking Equation C.16 between initial and final momentum states, |k〉 and |k′〉 respectively,

while also introducing the completeness relation or a complete set of momentum states

I =

∫
dk′′ |k′′〉 〈k′′| (C.18)

we can write the t-matrix operator as

〈k′|T (E) |k〉 = 〈k′|V |k〉+

∫
dk′′
〈k′|V |k′′〉 〈k′′|T (E) |k〉

E −H0 + iε
(C.19)

We also recall the way we have defined G0(E) in Equation C.9. Hence, the matrix element

becomes a function of energy E, and the initial and final momentum states, k and k′ re-

spectively. The function T (k′,k, E) = 〈k′|T (E) |k〉 is known as the t-matrix. Therefore, the

t-matrix can be expressed as

T (k′,k, E) = V (k′,k, E) +

∫
dk′′

V (k′,k′′, E)T (k′′,k, E)

E −H0 + iε
(C.20)

C.3 Separable potential model of NN scattering

We assume that the potential V is a separable potential, meaning the potential V can be

written as

V = |h〉λ〈h| (C.21)

For uncoupled partial waves, the rank-1 separable potential operator (in 1D momentum

space) is

V jt
ls = |h〉λ〈h| (C.22)

and a rank-2 is

V jt
ls = |h1〉λ1〈h1|+ |h2〉λ2〈h2| = (|h1〉|h2〉)

 λ1 0

0 λ2

 〈h1|

〈h2|

 (C.23)

For coupled partial waves, a separable potential operator is

V jt
l′s′,ls = |hjtl′s′〉λ

jt
l′s′,ls〈h

jt
ls| (C.24)

where λjtl′s′,ls are adjustable “strength” parameters . The quantum numbers l′s′ and ls can

be considered as row and column indices of a 2× 2 matrix, thus V11 V12

V21 V22

 =

 |h1〉 0

0 |h2〉

 λ11 λ12

λ21 λ22

 〈h1| 0

0 〈h2|

 (C.25)
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or

V = |h〉λ〈h| (C.26)

where all quantities are square matrices with |h〉 and 〈h| being diagonal. Using a separable

potential allows us to calculate the t−matrix analytically

T (E) = V + V G0(E)T (E) = V + V G0(E)V + V G0(E)V G0(E)V + ...

= |h〉λ〈h|+ |h〉λ〈h|G0(E)|h〉λ〈h|+ ...

= |h〉
(
λ+ λ2〈h|G0(E)|h〉+ ...

)
〈h|

= |h〉τ(E)〈h|

(C.27)

where

τ(E) = [I − λ〈h|G0(E)|h〉] −1λ (C.28)

The scattering S matrix is given by

S(E) = I − 2πik0µT (k0, k0) (C.29)

where k0 is the on-shell two-nucleon momentum

E =
k0

2

2m
(C.30)

and µ is the reduced mass

µ =
mm

m+m
=
m

2
(C.31)

For uncoupled partial waves, one has that

Sjtls (E) = e2iδl (C.32)

where δl are the phase shifts. For coupled partial waves it is usual to use the Stapp parametri-

sation of the S matrix

Sjtl′s′,ls(E) =

 eiδj−1 0

0 eiδj+1

 cos 2εj i sin 2εj

i sin 2εj cos 2εj

 eiδj−1 0

0 eiδj+1

 (C.33)

where εj is known as the mixing parameter.

C.4 Separable potential model of the NN bound state

The bound state wave-function |ψb〉 is given by the equation

H|ψb〉 = Eb|ψb〉 (C.34)
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where Eb < 0 is the bound state energy. It follows that

|ψb〉 = G0 (Eb)V |ψb〉 (C.35)

The NN system has only one bound state in the coupled 3S1−3D1 channel, which corresponds

to the deuteron. Experimentally, the binding energy of the deuteron is Eb = −2.225 MeV.

Our goal now is to calculate this binding energy. If we represent the potential as a separable

potential

|ψb〉 = G0 (Eb) |h〉λ 〈h |ψb 〉

〈h |ψb 〉 = 〈h|G0 (Eb) |h〉λ 〈h |ψb 〉

[I − 〈h|G0 (Eb) |h〉λ] 〈h |ψb 〉 = 0

(C.36)

So, to solve for the binding energy, we can solve the following equation

det [I − 〈h|G0 (Eb) |h〉λ] = 0 (C.37)

When doing calculation involving the deuteron, such as πd scattering, we require the nor-

malisation constants F . We can calculate these normalisation constants using the bound

state equation for 3S1 −3 D1. This equation is given as

|ψb〉 = G0 (Eb) |h〉F (C.38)

where

F ≡ λ 〈h |ψb 〉 (C.39)

Here, F is a column vector of length 2.

The bound state is normalised such that

〈ψb|ψb〉 = 1 (C.40)

Therefore,

〈ψb|ψb〉 = F †〈h|G0 (Eb)
2|h〉F = 1 (C.41)

so that

〈h1|G0 (Eb)
2|h1〉F 2

1 + 〈h2|G0 (Eb)
2|h2〉F 2

2 = 1 (C.42)

If we multiply our bound state equation on the left by λ〈h|

λ 〈h |ψb 〉 = λ〈h|G0 (Eb) |h〉F (I − λ〈h|G0 (Eb) |h〉)F = 0 (C.43)

We now have two equations and two unknowns F1 and F2, which we can solve simultaneously

to find the normalisation constants.
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C.4.1 Finding the binding energy and normalisation constants us-

ing Reid Soft Core UPA

The binding energy can be found be solving the following equation for Eb

det [I − 〈h|G0 (Eb) |h〉λ] = 0 (C.44)

where

〈h|G0 (Eb) |h〉 =

 〈h0|G0 (Eb) |h0〉 0

0 〈h2|G0 (Eb) |h2〉

 (C.45)

and

〈h0|G0 (Eb) |h0〉 =

∫
dk

h0(k)2k2

Eb − k2

2m
− 2m

(C.46)

Similarly for 〈h2|G0 (Eb) |h2〉. Here, Eb is in the centre of mass, so we will need to account

for the rest masses. The form factor functions are defined in Chapter 5. For UPA, the λ

matrix is given as

λ =

 −1 −1

−1 −1

 (C.47)

We can calculate this integral using standard contour rotation methods and will result in a

binding energy of Eb = −2.21082 MeV. To calculate the normalisation constants F , we solve

the following equations simultaneously

〈h1|G0 (Eb)
2|h1〉F 2

1 + 〈h2|G0 (Eb)
2|h2〉F 2

2 = 1 (C.48)

(I − λ〈h|G0 (Eb) |h〉)F = 0 (C.49)

where

〈h0|G0 (Eb)
2|h0〉 =

∫
dk

h0(k)2k2(
Eb − k2

2m
− 2m

)
2

(C.50)

By numerically solving these equations, we obtain

F1 = 0.352715, F2 = 0.352715 (C.51)

or

F1 = −0.352715, F2 = −0.352715 (C.52)
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APPENDIX D. DRESSED ONE-PION AND TWO-EXCHANGE FOR NN

D.1 Dressed one-pion exchange from perturbation the-

ory

When considering NN → NN , we have found that the first term in the perturbation

theory gives us the dressed two-nucleon propagator as a convolution of dressed one-nucleon

propagators. If we consider the next two terms in the perturbation theory, corresponding to

a single Hπ
I , these two terms become zero for NN → NN , as annihilation operators for pion

states will operate on two nucleon states in both cases. In this chapter, we are interested in

the next terms in the perturbation theory, corresponding to two Hπ
I , given as

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H1 −H2 −Hπ
0

|p1p2〉

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H1 −H2 −Hπ
0

Hπ
I (2)

1

E+ −H1 −H2 −Hπ
0

|p1p2〉

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (2)

1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H1 −H2 −Hπ
0

|p1p2〉

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (2)

1

E+ −H1 −H2 −Hπ
0

Hπ
I (2)

1

E+ −H1 −H2 −Hπ
0

|p1p2〉

(D.1)

By inspection, we can determine the corresponding diagram for each of these terms. Consider

term 1 and term 3, which corresponds to a pion being created by one nucleon and then

absorbed by the same nucleon. These terms just corresponds to nucleon dressing, but this

is already included as we considered each nucleon to be dressed by its own pion. Thus,

these terms are of no interest and we now consider term 2 and 4. These terms correspond

to the creation of a pion on one nucleon and absorption of that pion on the other nucleon.

Therefore, these term correspond to one-pion exchange (OPE) for both time-orderings, which

is shown diagrammatically in Figure D.1.

Figure D.1: Diagram representation of both time-ordering of one-pion exchange between two

nucleons

Our goal now is to show the explicit calculation for OPE and we consider only the first

time-ordering, whose Green’s function we denote as GOPE
12 and corresponds to the following
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term

GOPE
12 =

〈p′1p′2|
1

E+ −H1 −H2 −Hπ
0

Hπ
I (1)

1

E+ −H1 −H2 −Hπ
0

Hπ
I (2)

1

E+ −H1 −H2 −Hπ
0

|p1p2〉

(D.2)

We choose to ignore the momentum conversing functions δ in order to space on notation.

We now use the definitions of Hπ
I to introduce the creation and annihilation operators for

the exchange pion. For simplicity, we ignore the left hand side and the final and initial

momentum states, as well as suppress the operator 1/(E+−H1−H2−Hπ
0 ) and the integrals,

just for now. So, expanding these terms gives

a†π(k)JN1(k)a†π(k′)JN2(k′) + a†π(k)JN1(k)J†N2
(k′)aπ(k′)

+J†N1
(k)aπ(k)a†π(k′)JN2(k′) + J†N1

(k)aπ(k)J†N2
(k′)aπ(k′)

Again, we have pion annihilation operators acting on two-nucleon states and we can see

that the only remaining term would correspond to term 3. Hence, using this 3rd term and

returning the operator 1/(E+ −H1 −H2 −Hπ
0 ), as well as the integrals

GOPE
12 =

∫
dkdk′ 〈p′1p′2|

1

E+ −H1 −H2 −Hπ
0

J†N1
(k)aπ(k)

1

E+ −H1 −H2 −Hπ
0

× a†π(k′)JN2(k′)
1

E+ −H1 −H2 −Hπ
0

|p1p2〉

(D.3)

Using the commutator relation between aπ(k) and Hπ
0 , we move the aπ(k) next to the a†π(k′)

in an attempt to form a commutator relation between the creation and annihilation operator

GOPE
12 =

∫
dkdk′ 〈p′1p′2|

1

E+ −H1 −H2 −Hπ
0

J†N1
(k)

1

E+ −H1 −H2 − ωk

× aπ(k)a†π(k′)JN2(k′)
1

E+ −H1 −H2 −Hπ
0

|p1p2〉 (D.4)

A rearrangement of the commutator relation between aπ(k) and a†π(k′) shows

aπ(k)a†π(k′) = δ(k− k′)− a†π(k′)aπ(k) (D.5)

for which, we could insert into the above equation and obtain two seperate integrals, one

containing the delta function and the other containing a†π(k′)aπ(k). However, the integral

containing a†π(k′)aπ(k) would become zero as the final states do not contain any pions.
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Leaving us with

GOPE
12 =

∫
dk 〈p′1p′2|

1

E+ −H1 −H2 −Hπ
0

J†N1
(k)

1

E+ −H1 −H2 −Hπ
0

× JN2(k)
1

E+ −H1 −H2 −Hπ
0

|p1p2〉 (D.6)

We can then separate the H1 and H2 contributions by introducing two convolution integrals

GOPE
12 =

(
− 1

2πi

)2 ∫
dkdz′dz 〈p′1p′2|

1

z′+ −H1

J†N1
(k)

1

z+ −H1

1

z′+ − z − ωk
1

E+ − z′ −H2

JN2(k)
1

E+ − z −H2

|p1p2〉 (D.7)

Now, both Hamiltonians for each nucleon are represented by individual terms. This allows

us to take the matrix elements using the momentum states of nucleon 1 and nucleon 2

individually. Therefore,

GOPE
12 =

(
− 1

2πi

)2 ∫
dkdz′dz 〈p′1|

1

z′+ −H1

J†N1
(k)

1

z+ −H1

|p1〉
1

z′+ − z − ωk

〈p′2|
1

E+ − z′ −H2

JN2(k)
1

E+ − z −H2

|p2〉 (D.8)

The matrix elements define the two-energy dependent vertices f(p′,p, z′, z) where

δ(p′ + k− p)g(z′,p′)f(p′,p, z′, z)g(z,p) = 〈p′| 1

z′+ −H
JN(k)

1

z+ −H
|p〉 (D.9)

Now, using the definition of the dressed one-nucleon propagator and without the momentum-

conserving functions, we obtain

GOPE
12 =

(
− 1

2πi

)2 ∫
dzdz′g(z′,p′1)f̄(p′1,p1, z

′, z)g(z,p1)
1

z′+ − z − ωk

g(E − z′,p′2)f(p′2,p2, E − z′, E − z)g(E − z,p2) (D.10)

From this convolution approach, we obtain two-energy vertices, which differ from the usual

one-energy vertices we obtain in “old-fashioned” perturbation theory. So, we seek to relate

the matrix element to that of a usual one-energy vertex, thus require

〈k p′| 1

z+ −H
|p〉 (D.11)

to be obtained from Equation D.9. For this, we need a aπ(k), which will act to the left. We

can write

〈p′| 1

z′+ −H
JN(k)

1

z+ −H
|p〉

= 〈k p′| 1

z+ −H
|p〉+ 〈p′| 1

z′+ −H
(
JN(k)− (z′+ −H)

) 1

z+ −H
|p〉

(D.12)
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We can simplify this last term, using the commutator relations we found in Chapter 2

〈p′| 1

z′+ −H
(
JN(k)−

(
z′+ −H

)
aπ(k))

1

z+ −H
|p〉

= 〈p′| 1

z′+ −H
(
aπ(k)Hπ

I + (−z′+ +H −Hπ
I )aπ(k)

) 1

z+ −H
|p〉

= 〈p′| 1

z′+ −H
(
aπ(k)Hπ

I + (−z′+ +HN
0 +Hπ

0 )aπ(k)
) 1

z+ −H
|p〉

= 〈p′| 1

z′+ −H
aπk)

(
Hπ
I − z′+ +HN

0 +Hπ
0 − ωk

) 1

z+ −H
|p〉

= 〈p′| 1

z′+ −H
aπ(k)

(
H − z′+ − ωk

) 1

z+ −H
|p〉

= (z − z′ − ωk) 〈p′|
1

z′+ −H
aπ(k)

1

z+ −H
|p〉

(D.13)

Therefore, we obtain

〈p′| 1

z′+ −H
JN(k)

1

z+ −H
|p〉

= 〈k p′| 1

z+ −H
|p〉+ (z − z′ − ωk) 〈p′|

1

z′+ −H
aπ(k)

1

z+ −H
|p〉

(D.14)

This shows that the two-energy vertex is equal to the usual one-energy vertex when initial

and final energies are equal, namely z = z′ + ωk. We are, thus, motivated to approximate

the two-energy vertex by the one-energy vertex f(p′,p, z′, z) ≈ f(p′,p, z), which is exact

when z = z′ + ωk. Thus, we obtain our Green’s function with one-energy vertices

GOPE
12 =

(
− 1

2πi

)2 ∫
dzdz′g(z′,p′1)f̄(p′1,p1, z

′)g(z,p1)
1

z′+ − z − ωk

g(E − z′,p′2)f(p′2,p2, E − z)g(E − z,p2) (D.15)

Therefore, we obtain the Green’s function for one-pion exchange between two nucleons,

which defines this new type of connected diagram in Figure D.2 [39]. The dressed one-pion

exchange potential V OPE
12 can therefore be calculated in the usually way of “chopping off”

the external legs of the Green’s function

V OPE
12 = D−1

0 GOPE
12 D−1

0 (D.16)

ωk

z,p1

E − z,p2E − z′,p′2

z′,p′1

f̄(p1,p
′
1, z
′)

f(p′2,p2, E − z)

N1

N2

Figure D.2: Diagram representation of the one-pion exchange between two nucleons
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We can take this one step further by including Galilean invariance and obtain a more

calculable form. Using Galilean invariance on the dressed one-nucleon propagators

g(E,p) = g

(
E − p2

2m
,0

)
= g(E − Ep) (D.17)

where Ep = p2

2m
and m is the mass of the nucleon. Using Galilean invariance, and assuming

mπ << m

f(p′,p, E) ≈ f

(
p′ − p,0, E − p2

2m

)
= f(k, E − Ep) (D.18)

Therefore,

GOPE
12 =

(
− 1

2πi

)2 ∫
dzdz′g(z′ − Ep1)f̄(k, z′ − Ep1)g(z − Ep1)

1

z′+ − z − ωk

g(E − z′ − Ep2)f(k, E − z − Ep2)g(E − z − Ep2) (D.19)

D.2 Full derivation of the analytical form for dressed

two-pion exchange

We concern ourselves primarily with how to perform the z′′ integral. For simplicity, we

focus only on terms that contain z′′ and ignore everything else, which can easily be added

back in later. This leaves us with(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2

∫ ∞
−∞

dz′′

f(k,m)f (k,E − z′′ − Ep′′)
E/2 + iε− z′′ − ωk

g (z′′ − Ep′′) g (E − z′′ − Ep′′)
f (k′, z′′ − Ep′′) f(k′,m)

z′′ + iε− E/2− ωk′
(D.20)

Notice that f(k,m) and f(k′,m) do not contain z′′, so we take them out of the z′′ integral(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

f (k,E − z′′ − Ep′′)
E/2 + iε− z′′ − ωk

g (z′′ − Ep′′) g (E − z′′ − Ep′′)
f (k′, z′′ − Ep′′)

z′′ + iε− E/2− ωk′
(D.21)

We now perform the z′′ integral using Cauchy’s Residue Theorem by taking the residues of

the poles. We choose to take the residue of the poles below the real z′′ axis. As can be seen

from the above equation, there are 3 possible poles below the real z′′ axis; one due to the

nucleon propagator, one due to the dressed vertex function and the last one due to the pion
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propagator. To expose the poles in the nucleon propagator and dressed vertex, we use the

analytical structure of both functions. We use a reduced form to save on notation and also

choose the +iε for convenience to our calculation, as they need not equal. Our analytical

structure in reduced form becomes

f(k,E) = f0(k) +
X (ω1)

E + 3iε− ω1

g(E) =
Z

E + 2iε−m
+

Y (ω2)

E + 2iε− ω2

(D.22)

Putting these equation into our integral for the functions that contain the poles and expand-

ing(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

Zf (k,E − Ep′′ − z′′) f0(k′)g (E − Ep′′ − z′′)
(−Ep′′ + 2iε−m+ z′′) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

+

Z f (k,E − Ep′′ − z′′) g (E − Ep′′ − z′′)X (ω1)

(−Ep′′ + 2iε−m+ z′′) (−Ep′′ + 3iε+ z′′ − ω1) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

+
f (k,E − Ep′′ − z′′) f0(k′)g (E − Ep′′ − z′′)Y (ω2)

(−Ep′′ + 2iε+ z′′ − ω2) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)
+

f (k,E − Ep′′ − z′′) g (E − Ep′′ − z′′)X (ω1)Y (ω2)

(−Ep′′ + 3iε+ z′′ − ω1) (−Ep′′ + 2iε+ z′′ − ω2) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)
(D.23)

Now, we focus on each term individually and sE that each term either has 2 or 3 poles below

the real z′′ axis. The z′′ integral thus, becomes a sum of residues.

Term 1

(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

Zf (k,E − Ep′′ − z′′) f0(k′)g (E − Ep′′ − z′′)
(−Ep′′ + 2iε−m+ z′′) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 2iε−m) f0(k′)g (E − 2Ep′′ + 2iε−m)

(E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

+
Zf (k,E/2− Ep′′ + iε− ωk′) f0(k′)g (E/2− Ep′′ + iε− ωk′)

(2iε− ωk − ωk′) (E/2− Ep′′ + iε−m+ ωk′)

(D.24)
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Term 2

(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

Zf (k,E − Ep′′ − z′′) g (E − Ep′′ − z′′)X (ω1)

(−Ep′′ + 2iε−m+ z′′) (−Ep′′ + 3iε+ z′′ − ω1) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 2iε−m) g (E − 2Ep′′ + 2iε−m)X (ω1)

(iε+m− ω1) (E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

+
Z f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(−iε−m+ ω1) (E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)

+
Zf (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)X (ω1)

(2iε− ωk − ωk′) (E/2− Ep′′ + iε−m+ ωk′) (E/2− Ep′′ + 2iε− ω1 + ωk′)

(D.25)

Term 3

(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

f (k,E − Ep′′ − z′′) f0(k′)g (E − Ep′′ − z′′)Y (ω2)

(−Ep′′ + 2iε+ z′′ − ω2) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 2iε− ω2) f0(k′)g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

+
f (k,E/2− Ep′′ + iε− ωk′) f0(k′)g (E/2− Ep′′ + iε− ωk′)Y (ω2)

(2iε− ωk − ωk′) (E/2− Ep′′ + iε− ω2 + ωk′)

(D.26)
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Term 4

(
− 1

2πi

)∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

∫ ∞
−∞

dz′′

f (k,E − Ep′′ − z′′) g (E − Ep′′ − z′′)X (ω1)Y (ω2)

(−Ep′′ + 3iε+ z′′ − ω1) (−Ep′′ + 2iε+ z′′ − ω2) (E/2 + iε− z′′ − ωk) (−E/2 + iε+ z′′ − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)Y (ω2)

(−iε+ ω1 − ω2) (E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)

+
f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)X (ω1)Y (ω2)

(iε− ω1 + ω2) (E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

+
f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)X (ω1)Y (ω2)

(2iε− ωk − ωk′) (E/2− Ep′′ + 2iε− ω1 + ωk′) (E/2− Ep′′ + iε− ω2 + ωk′)

(D.27)

We now, want to reduce the amount of terms we have by combining terms and using our

analytical structure of g(E) and f(k,E).
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Factorisation (1)

We group all terms which have 2iε− ωk − ωk′ in the denominator∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E/2− Ep′′ + iε− ωk′) f0(k′)g (E/2− Ep′′ + iε− ωk′)
(2iε− ωk − ωk′) (E/2− Ep′′ + iε−m+ ωk′)

+
Zf (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)X (ω1)

(2iε− ωk − ωk′) (E/2− Ep′′ + iε−m+ ωk′) (E/2− Ep′′ + 2iε− ω1 + ωk′)

+
f (k,E/2− Ep′′ + iε− ωk′) f0(k′)g (E/2− Ep′′ + iε− ωk′)Y (ω2)

(2iε− ωk − ωk′) (E/2− Ep′′ + iε− ω2 + ωk′)

+
f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)X (ω1)Y (ω2)

(2iε− ωk − ωk′) (E/2− Ep′′ + 2iε− ω1 + ωk′) (E/2− Ep′′ + iε− ω2 + ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)
2iε− ωk − ωk′(

Zf0(k′)

(E/2− Ep′′ + iε−m+ ωk′)
+

ZX (ω1)

(E/2− Ep′′ + iε−m+ ωk′) (E/2− Ep′′ + 2iε− ω1 + ωk′)

+
f0(k′)Y (ω2)

(E/2− Ep′′ + iε− ω2 + ωk′)
+

X (ω1)Y (ω2)

(E/2− Ep′′ + 2iε− ω1 + ωk′) (E/2− Ep′′ + iε− ω2 + ωk′)

)
=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)
2iε− ωk − ωk′(

Z

E/2− Ep′′ + iε−m+ ωk′
+

Y (ω2)

E/2− Ep′′ + iε− ω2 + ωk′

)
(
f0(k′) +

X (ω1)

E/2− Ep′′ + 2iε− ω1 + ωk′

)
=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)
2iε− ωk − ωk′

g (E/2− Ep′′ + ωk′) f (k′, E/2− Ep′′ + ωk′)

(D.28)
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Factorisation (2)

We group all terms which have (E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

in the denominator∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 2iε−m) f0(k′)g (E − 2Ep′′ + 2iε−m)

(E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

+
Zf (k,E − 2Ep′′ + 2iε−m) g (E − 2Ep′′ + 2iε−m)X (ω1)

(iε+m− ω1) (E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 2iε−m) g (E − 2Ep′′ + 2iε−m)

(E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)

(
f0(k′) +

X (ω1)

iε+m− ω1

)
=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 2iε−m) g (E − 2Ep′′ + 2iε−m)

(E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)
f(k′,m)

(D.29)

Factorisation (3)

We group all terms which have (E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)

in the denominator∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

Zf (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(−iε−m+ ω1) (E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)

+
f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)Y (ω2)

(−iε+ ω1 − ω2) (E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)(
Z

−iε−m+ ω1

+
Y (ω2)

−iε+ ω1 − ω2

)
=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)
g∗ (ω1)

(D.30)
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Factorisation (4)

We group all terms which have (E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

in the denominator∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 2iε− ω2) f0(k′)g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

+
f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)X (ω1)Y (ω2)

(iε− ω1 + ω2) (E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)

(
f0(k′) +

X (ω1)

iε− ω1 + ω2

)
=

∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)
f (k′, ω2)

(D.31)

Final expression

Therefore, our final expression consists of four terms in our p′′ integral∫ ∞
0

dp′′(p′′)2f(k,m)f(k′,m)

f (k,E/2− Ep′′ + iε− ωk′) g (E/2− Ep′′ + iε− ωk′)
2iε− ωk − ωk′

× g (E/2− Ep′′ + ωk′) f (k′, E/2− Ep′′ + ωk′)

+
Zf (k,E − 2Ep′′ + 2iε−m) g (E − 2Ep′′ + 2iε−m)

(E/2− Ep′′ + 3iε−m− ωk) (−E/2 + Ep′′ − iε+m− ωk′)
f(k′,m)

+
f (k,E − 2Ep′′ + 3iε− ω1) g (E − 2Ep′′ + 3iε− ω1)X (ω1)

(E/2− Ep′′ + 4iε− ω1 − ωk) (−E/2 + Ep′′ − 2iε+ ω1 − ωk′)
g∗ (ω1)

+
f (k,E − 2Ep′′ + 2iε− ω2) g (E − 2Ep′′ + 2iε− ω2)Y (ω2)

(E/2− Ep′′ + 3iε− ω2 − ωk) (−E/2 + Ep′′ − iε+ ω2 − ωk′)
f (k′, ω2)

(D.32)
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APPENDIX E. UNITARY NN − πNN EQUATIONS

E.1 Numerical Unitary NN − πNN equations

One of our goals in the numerical calculation of the 4-dimensional πNN convolution

equations is to determine the effect of consistent nucleon dressing. We also want to deter-

mine whether the 4-dimensional πNN convolution equations are able to better reproduce

experimental data in comparison to equations without nucleon dressing. In order to make

these comparisons, we will use the Afnan and Blankleider equations [33], which we will refer

to as the 3D πNN equations or simply as the 3D equations.

For scattering processes with an initial NN state, the antisymmetrised partial wave 3D

πNN equations with separable potentials are:

XJT
K′N ,KN

(p′, p;E) = ZJT
K′N ,KN

(p′, p;E)

+
∑
K′′N

∫
dp′′p′′2ZJT

K′N ,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,KN

(p′′, p;E)

+
∑
K′′d

∫
dp′′p′′2ZJT

K′N ,K
′′
d
(p′, p′′;E)τK′′d (ed,p′′)X

JT
K′′d ,KN

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′N ,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,KN

(p′′, p;E),

(E.1)

XJT
K′∆,KN

(p′, p;E) = ZJT
K′∆,KN

(p′, p;E)

+
∑
K′′N

∫
dp′′p′′2ZJT

K′∆,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,KN

(p′′, p;E)

+
∑
K′′d

∫
dp′′p′′2ZJT

K′∆,K
′′
d
(p′, p′′;E)τK′′d (ed,p′′)X

JT
K′′d ,KN

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′∆,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,KN

(p′′, p;E),

(E.2)

XJT
K′d,KN

(p′, p;E) = ZJT
K′d,KN

(p′, p;E)

+
∑
K′′N

∫
dp′′p′′2ZJT

K′d,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,KN

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′d,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,KN

(p′′, p;E).

(E.3)

For scattering processes with a initial πd state, the 3D πNN equations are given as

XJT
K′d,Kd

(p′, p;E) =
∑
K′′N

∫
dp′′p′′2ZJT

K′d,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,Kd

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′d,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,Kd

(p′′, p;E),

(E.4)
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XJT
K′∆,Kd

(p′, p;E) = ZJT
K′∆,Kd

(p′, p;E)

+
∑
K′′N

∫
dp′′p′′2ZJT

K′∆,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,Kd

(p′′, p;E)

+
∑
K′′d

∫
dp′′p′′2ZJT

K′∆,K
′′
d
(p′, p′′;E)τK′′d (ed,p′′)X

JT
K′′d ,Kd

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′∆,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,Kd

(p′′, p;E),

(E.5)

XJT
K′N ,Kd

(p′, p;E) = ZJT
K′N ,Kd

(p′, p;E)

+
∑
K′′N

∫
dp′′p′′2ZJT

K′N ,K
′′
N

(p′, p′′;E)
1

2
τK′′N (eN,p′′)X

JT
K′′N ,Kd

(p′′, p;E)

+
∑
K′′d

∫
dp′′p′′2ZJT

K′N ,K
′′
d
(p′, p′′;E)τK′′d (ed,p′′)X

JT
K′′d ,Kd

(p′′, p;E)

+
∑
K′′∆

∫
dp′′p′′2ZJT

K′N ,K
′′
∆

(p′, p′′;E)τK′′∆(e∆,p′′)X
JT
K′′∆,Kd

(p′′, p;E),

(E.6)

where τKN is the different-time dressing propagator in [48] with the proper renormalisation.

The energy inputs into the τ functions are given as

eN,p = E − p2

mN

, (E.7a)

e∆,p = E − p2

2mN

− p2

2(mN +mπ)
−mN , (E.7b)

ed,p = E − (p2 +m2
π)1/2 − p2

4mN

. (E.7c)

It should be clear that these equations are not the 3-dimensional πNN convolution equations

of Equation 3.123, and the only nucleon dressing is present in the different-time dressing

propagator.

E.1.1 3-dimensional Z-diagram

The 3-dimensional Z−diagram is similarly defined in Equation 4.6 in Chapter 4, where

we modify the Γ function to be

ΓLk′,k(p
′, p;E) =

1

2

∫ 1

−1

q′−l
′
hk′(q

′)hk(q)q
−l

D(x, p′, p;E)
PL(x)dx. (E.8)

In this equation, PL(x) is the Legendre polynomial of order L, while hk′(q
′) is the form

factor for the two-body channel k′ corresponding to relative orbital angular momentum l′

and equivalent for hk(q). When hk corresponds to the dressed vertex function f e.g. the

254



APPENDIX E. UNITARY NN − πNN EQUATIONS

nucleon channel, hk has an energy dependence. To account for the momentum component,

we use Galilean invariance of the dressed vertex and shift the energy by the energy of the

spectator nucleon. As a result, the energy dependence is E − p2

mN
−mN , where p is either p′

or p depending on which channel is the nucleon channel. The function D(x, p′, p;E) we refer

to as the denominator function and is dependent on the initial and final state described by

the Z-diagram:

1. Initial 6= πd and final 6= πd

D(x, p′, p;E) = E+ − p′2

2mN

− p2

2mN

− 2mN −
√
m2
π + p′2 + p2 + 2p′p x (E.9)

2. Initial = πd and final 6= πd

D(x, p′, p;E) = E+ − p′2

2mN

− (p2 +m2
π)1/2 − 2mN −

√
m2
π + p′2 + p2 + 2p′p x (E.10)

3. Initial 6= πd and final = πd

D(x, p′, p;E) = E+ − (p′2 +m2
π)1/2 − p2

2mN

− 2mN −
p′2 + p2 + 2p′p x

2mN

(E.11)

We use contour rotation to calculate the scattering amplitudes and as a result, we can

calculate the x integral of the 3D Z−diagram directly as the pole in the x integral is avoided

due to the contour rotation.

E.2 Antisymmetry

Let us discuss the antiysymmetry of the πNN equations. The formalism of antisymmetry

for the 3D πNN equations is equivalent to the πNN convolution equations, despite us

describing the antisymmetry using the 3D equations.

The formula given by Afnan and Thomas [29] gives

〈(βγ)α|G0(E) |(γα)β〉 (E.12)

which has assumed cyclic ordering where α, β and γ are a cyclic permutation of 1, 2 and

3. We adopt the scheme where we want the pion to coupled first in the πN system and

for nucleon 1 to be coupled first in the NN system. We also would the quasiparticle to be

coupled first. In the πNN system, there are 9 possible Z−diagrams

1. Zdd = 0
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2. Z∆d = 〈(πN2)N1|G0(E) |(N1N2)π〉

3. ZNd = 〈(πN2)N1|G0(E) |(N1N2)π〉

4. Zd∆ = 〈(N1N2)π|G0(E) |(πN2)N1〉

5. Z∆∆ = 〈(πN1)N2|G0(E) |(πN2)N1〉

6. ZN∆ = 〈(πN2)N1|G0(E) |(πN1)N2〉

7. ZdN = 〈(N1N2)π|G0(E) |(πN2)N1〉

8. Z∆N = 〈(πN2)N1|G0(E) |(πN1)N2〉

9. ZNN = 〈(πN2)N1|G0(E) |(πN1)N2〉

These amplitudes should not have a cyclic ordering if we were to label α as the first spectator,

β as the second spectator and γ as the exchange particle. We also use the labelling convention

N1 = 1, N2 = 2 and π = 3. Thus we must introduce a phase to obtain cyclic ordering.

For example, consider the 2nd Z−diagram, where α = 1, β = 3 and γ = 2. This would

correspond to 〈(32)1|G0(E) |(12)3〉 = 〈(βγ)α|G0(E) |(αγ)β〉. To obtain the cyclic ordering

consistent with Afnan and Thomas, we need to introduce a phase which with swap α with γ in

the ket on the right-hand side 〈(32)1|G0(E) |(12)3〉 = 〈(βγ)α|G0(E) |(αγ)β〉 = (phase α↔

γ) 〈(βγ)α|G0(E) |(γα)β〉. Therefore, the phases for the remaining Z−diagrams are as follows

2. Z∆d = 〈(32)1|G0(E) |(12)3〉 = 〈(βγ)α|G0(E) |(αγ)β〉

= (phase α↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

3. ZNd = 〈(32)1|G0(E) |(12)3〉 = 〈(βγ)α|G0(E) |(αγ)β〉

= (phase α↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

4. Zd∆ = 〈(12)3|G0(E) |(32)1〉 = 〈(βγ)α|G0(E) |(αγ)β〉

= (phase α↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

5. Z∆∆ = 〈(32)1|G0(E) |(31)2〉 = 〈(γβ)α|G0(E) |(γα)β〉

= (phase β ↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

6. ZN∆ = 〈(32)1|G0(E) |(31)2〉 = 〈(γβ)α|G0(E) |(γα)β〉

= (phase β ↔ γ) 〈(βγ)α|G0(E) |(γα)β〉
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7. ZdN = 〈(12)3|G0(E) |(32)1〉 = 〈(βγ)α|G0(E) |(αγ)β〉

= (phase α↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

8. Z∆N = 〈(32)1|G0(E) |(31)2〉 = 〈(γβ)α|G0(E) |(γα)β〉

= (phase β ↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

9. ZNN = 〈(32)1|G0(E) |(31)2〉 = 〈(γβ)α|G0(E) |(γα)β〉

= (phase β ↔ γ) 〈(βγ)α|G0(E) |(γα)β〉

One can see that when the amplitude contains a πd state, then the phase involves the

switching of α↔ γ, otherwise the phase involves the switching of β ↔ γ. Therefore we must

introduce the phase,

phase = (−1)lβ+sγ+sα−Sβ+τγ+τα−tβ if the amplitude involves πd,

phase = (−1)lα+sγ+sβ−Sα+τγ+τβ−tα otherwise.
(E.13)

We can now discuss antisymmetry, in which we follow the antisymmetry procedure of Blan-

kleider [178]. We represent the wave-function of the two-body state as Ψ, while χ(p) is the

plane wave of the appropriate spectator particle. We also denote χN(σ, σ′; p) as the two

nucleon plane wave with nucleon 1 having internal quantum numbers and momentum given

by (σ,p) and with nucleon 2 similarly specified by (σ′,−p). Therefore, with explicit particle

labelling we write the states for πd,N∆ and NN as

|Ψd(12), χπ(p)〉 , (E.14a)∣∣Ψ∆j
(j3), χNi(p)

〉
, (E.14b)

|χN(σ, σ′; p)〉 . (E.14c)

Now, if we introduce separable potentials for the two-body interactions, we can write our

antisymmetric states in terms of the two-body form factors h as the form factors are directly

proportional to the wave-function. We must also consider the form factor f(i), which will

give us our πNN vertex

|f(1)〉 = f(1) |χN(σ, σ′; p)〉 =
∣∣fσN1

, χN2(σ′,−p)
〉
, (E.15a)

|f(2)〉 = f(2) |χN(σ, σ′; p)〉 =
∣∣∣fσ′N2

, χN1(σ,p)
〉
. (E.15b)

We now define our antisymmetric states. First, defining the NN antisymmetric state as

|χN〉AS ≡ 1√
2

(|χN(σ, σ′; p)〉 − |χN(σ′, σ;−p)〉) . (E.16)
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The antisymmetric states that we explicitly use to calculate our antisymmetric Z−diagrams

are

|hdπ〉AS ≡ |hd(12), χπ(p)〉 , (E.17a)

|h∆N〉AS ≡ 1√
2

(|h∆2(23), χN1(p)〉 − |h∆1(13), χN2(p)〉) , (E.17b)

|f(1)〉AS ≡ f(1) |χN〉AS =
1√
2

(f(1) |χN(σ, σ′; p)〉 − f(1) |χN(σ′, σ;−p)〉)

=
1√
2

(∣∣fσN1
, χN2(σ′,−p)

〉
−
∣∣∣fσ′N1

, χN2(σ,p)
〉)

, (E.17c)

|f(2)〉AS ≡ f(2) |χN〉AS =
1√
2

(f(2) |χN(σ, σ′; p)〉 − f(2) |χN(σ′, σ;−p)〉)

=
1√
2

(∣∣∣fσ′N2
, χN1(σ,p)

〉
−
∣∣fσN2

, χN1(σ′,−p)
〉)
. (E.17d)

We now define the antisymmetric Z-diagrams

ZAS
Nd =

∑
i

AS 〈f(i)|G0(E) |hdπ〉AS , (E.18a)

ZAS
N∆ =

∑
i

AS 〈f(i)|G0(E) |h∆N〉AS , (E.18b)

ZAS
∆d = AS 〈h∆N |G0(E) |hdπ〉AS , (E.18c)

ZAS
∆∆ = AS 〈h∆N |G0(E) |h∆N〉AS , (E.18d)

ZAS
NN =

∑
ij

AS 〈f(i)|G0(E) |f(j)〉AS , (E.18e)

with the reverse processes similarly defined. Now we can use our definition of the antisym-

metric states in these Z-diagrams. For example, for ZAS
Nd

ZAS
Nd =

∑
i

AS 〈f(i)|G0(E) |hdπ〉AS

=
1√
2

(〈
fσN1

, χN2(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉
−
〈
fσ
′

N1
, χN2(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
+
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
−
〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉)
.

(E.19)

Our goal is to now represent ZAS
Nd in terms of one of these 4 matrix elements. We want ZAS

Nd to

be in terms of the Z-diagram with the specific ordering that was discussed earlier. This means

we would want ZAS
Nd to be represented in terms of

〈
fσ
′

N2
, χN1(σ,p′)

∣∣G0(E)
∣∣hd(12), χπ(p)

〉
. By

interchanging the nucleon labels and applying the antisymmetry property of the deuteron of
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the 1st and 2nd matrix element

ZAS
Nd

=
1√
2

(〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(21), χπ(p)
〉
−
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(21), χπ(p)

〉
+
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
−
〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉)

=
1√
2

(
−
〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉

+
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
+
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
−
〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉)

=
√

2
(〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
−
〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E)

∣∣hd(12), χπ(p)
〉)
.

(E.20)

Now the only difference between the two matrix elements is the momenta and quantum num-

bers for the NN state. We can interchange the momenta of the two nucleons by introducing

a factor of (−1)L, while introducing a factor of (−1)S−s1−s2 for the spin quantum numbers

and (−1)T−t1−t2 for the isospin quantum numbers. But, since the two nucleons are identical,

they obviously have identical spin and isospin quantum numbers. As the spin and isospin of

a nucleon is 1/2, the sum of s1, s2, t1 and t2 will result in −2, which will contribute a factor

of (−1)−2 = 1 to the overall factor. Therefore, the interchange of the momenta and quantum

numbers is done by introducing a factor of (−1)L+S+T . Thus〈
fσN2

, χN1(σ′,−p′)
∣∣G0(E) |hd(12), χπ(p)〉

= (−1)L+S+T
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
.

(E.21)

However, (−1)L+S+T = −1 as the nucleons obey Fermi-Dirac statistics and must be anti-

symmetric. Therefore, ZAS
Nd acquires a factor of 2

√
2. Following the same procedure for the

remaining Z-diagrams,

ZAS
Nd = 2

√
2
〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣hd(12), χπ(p)

〉
, (E.22a)

ZAS
N∆ = −2

〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣h∆1(13), χN2(p)

〉
, (E.22b)

ZAS
∆d =

√
2 〈h∆2(23)χN1(p′)|G0(E)|hd(12)χπ(p)〉 , (E.22c)

ZAS
∆∆ = −〈h∆2(23)χN1(p′)|G0(E)|h∆1(13)χN2(p)〉 , (E.22d)

ZAS
NN = −4

〈
fσ
′

N2
, χN1(σ,p′)

∣∣∣G0(E)
∣∣∣fσN1

, χN2(σ′,p)
〉
. (E.22e)

Equivalent expressions and factors can be derived for the reverse processes, e.g. the Z-

diagram ZAS
dN will acquire a factor of 2

√
2.
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These antisymmetry factors are equivalent for both the 3-dimensional or 4-dimensional

equations, except for the case of NN scattering. In the 4-dimensional equations, the extra

dimension forces us to include both time-orderings of NN . We find that in the 4-dimensional

equations, each time-ordering of NN acquires an antisymmetry factor of −2.

Now if we focus on NN scattering, regardless of whether the equations are 3-dimensional

or 4-dimensional, the Lippmann-Schwinger equation has the form

T = Z + ZG0T. (E.23)

For NN scattering, the completeness relation for antisymmetric NN states is

1

2
|χN〉AS AS 〈χN | = I (E.24)

which is easy to see by acting on the antisymmetric state |χN〉. If we “sandwich” our

Lippmann-Schwinger equation antisymmetric NN states and use the above completeness

relation, we obtain

TAS = ZAS +
1

2
ZASG0T

AS (E.25)

where TAS = AS 〈χN |T |χN〉AS and ZAS is the same as ZAS
NN defined earlier. Now, only the

original Lippmann-Schwinger equation satisfies unitarity whereas our new equation does not

due to the extra factor of 1
2
. So we will need to find a way to convert our antisymmetrised

equation to have the same form as the original Lippmann-Schwinger equation. If we multiply

our antisymmetrised equation by 1
2

1

2
TAS =

1

2
ZAS +

1

2
ZASG0

1

2
TAS. (E.26)

We can see that we obtain an equation that has the same form as the original Lippmann-

Schwinger equation. Therefore, the true physical t−matrix is half of the antisymmetric

t-matrix.
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F.1 Unitary pole expansion (UPE) method

F.1.1 Application to 1S0 UPA in momentum space

We now present the simplest UPE, the unitary pole approximation (UPA), for a 1S0 and

3S1 − 3D1 potential to illustrate the method. Conventionally, we would exploit the (real)

pole of the potential to perform a UPA. However for 1S0, the pole resides on the second

energy sheet and the use of which would require that we analytically continue our analysis

onto the second energy sheet. So, we will take E = 0 for the 1S0 channel rather than the

anti-bound state pole [206].

If we want to do a UPA to the 1S0 potential, then N = 1 and l = l′ = 0. So the eigenvalue

problem reduces to

|φ〉 = −λK|φ〉 (F.1)

Now using the expression for the form factors |χ〉 in this eigenvalue problem

G
1/2
0 |χ〉 = −λG1/2

0 V G
1/2
0 G

1/2
0 |χ〉

|χ〉 = −λV G0|χ〉
(F.2)

Our normalisation condition also becomes∑
l

〈
φml |φm

′

l

〉
= δmm′ → 〈φ|φ〉 = 1→ 〈χ|G0|χ〉 = 1 (F.3)

We want to follow the work of Afnan and Gibson [206] by having an analytic form for the

form factors, so we assume that the form factors have the form

〈k |χl 〉 =
∑
j

bljgl (k; βj) (F.4)

where

gl(k; β) =
kl

(k2 + β2)(l+2)/2
(F.5)

For our application to the 1S0 potential, l = 0 so this reduces to

〈k|χ〉 =
∑
j

bjg (k; βj) =
∑
j

bjgj(k) (F.6)

where

g(k; β) =
1

(k2 + β2)
(F.7)
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Solving the eigenvalue problem

Now, we convert the eigenvalue problem into a numerical form

〈k|χ〉 = −λ〈k|V G0|χ〉

〈k|χ〉 = −λ
∫
dk′(k′)2〈k|V G0|k′〉〈k′|χ〉

〈k|χ〉 = −λ
∫
dk′(k′)2〈k|V |k′〉G0(k′)〈k′|χ〉

χ(k) = −λ
∫
dk′(k′)2V (k, k′)G0(k′)χ(k′)

(F.8)

Now we can use our analytic expression for the form factors in the eigenvalue problem and

solve for the constants bj and the eigenvalue λ. We can do this in two ways:

1. A collocation method, where we calculate the eigenvalue problem at different values of

k (the set of k values is called collocation points {ki}). The number of values of k we

choose must equal the number of bj as we require a square matrix

gj(k)bj = −λ
(∫

dk′(k′)2V (k, k′)G0(k′)gj(k
′)

)
bj

gj (ki) bj = −λ
(∫

dk′(k′)2V (ki, k
′)G0(k′)gj(k

′)

)
bj

(F.9)

This gives use the generalised eigenvalue problem

GbGbGb = −λVVV bbb (F.10)

where the matrices in the above eigenvalue problem are

[GGG]ij = gj (ki) (F.11)

[VVV ]ij =

∫
dk′(k′)2V (ki, k

′)G0(k′)gj(k
′) (F.12)

2. Follow the method for Afnan and Gibson by multiplying the left side by gi(k) and

integrating over k

gj(k)bj = −λ
(∫

dk′(k′)2V (k, k′)G0(k′)gj(k
′)

)
bj

gi(k)gj(k)bj = −λgi(k)

(∫
dk′(k′)2V (k, k′)G0(k′)gj(k

′)

)
bj∫

dkk2gi(k)gj(k)bj = −λ
(∫

dkk2gi(k)

(∫
dk′(k′)2V (k, k′)G0(k′)gj(k

′)

))
bj

(F.13)
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which gives us the same generalised eigenvalue problem as for the collocation method,

where the matrices are

[GGG]ij =

∫
dkk2gi(k)gj(k) (F.14)

[VVV ]ij =

(∫
dkk2gi(k)

(∫
dk′(k′)2V (k, k′)G0(k′)gj(k

′)

))
(F.15)

The matrix GGG can be calculated analytically∫ ∞
0

1

k2 + βi2
1

k2 + βj2
k2dk =

π

2 (βi + βj)
(F.16)

Once we find the constants bj, we can use the normalisation condition to normalise these

constants. The strength matrix becomes

C = A−1BA−1 = B (F.17)

as A = 〈φ|φ〉 = 1 by our normalisation condition. We can show that B is given as

B = 〈φ|K|φ〉 = λ−1〈φ|λK|φ〉 = −λ−1〈φ|φ〉 = −λ−1 (F.18)

F.1.2 Application to 3S1 − 3D1 UPA in momentum space

If we were to calculate a UPA for the 3S1− 3D1 potential, we would still have no m index

(as we are only doing a UPA), but l′ and l take on the values 0 and 2. So the eigenvalue

problem is

|χl〉 = −λ
∑
l′

Vll′G0|χl′〉 (F.19)

with the normalisation condition ∑
l

〈φl|φl〉 = 1 (F.20)

Again, we want an analytic form for the form factors, so we assume that the form factors

have the form

〈k |χl 〉 =
∑
j

bljgl (k; βj) (F.21)

where

gl(k; β) =
kl

(k2 + β2)(l+2)/2
(F.22)
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Solving the eigenvalue problem

We convert the eigenvalue problem into a numerical form

〈k |χl 〉 = −λ
∑
l′

〈k|Vll′G0|χl′〉

〈k |χl 〉 = −λ
∑
l′

∫
dk′〈k|Vll′ |k′〉〈k′|G0|χl′〉

χl(k) = −λ
∑
l′

∫
dk′Vll′(k, k

′)G0(k′)χl′(k
′)

(F.23)

Using the method of collocation

bljgl (k, βj) = −λ
∑
l′

∫
dk′Vll′(k, k

′)G0(k′)bl
′

j gl′ (k
′, βj)

bljgl (βi, βj) = −λ
∑
l′

∫
dk′Vll′ (βi, k

′)G0(k′)bl
′

j gl′ (k
′, βj)

(F.24)

This will give us the generalised eigenvalue problem Gl=0 0

0 Gl=2

 b0

b2

 = −λ

 V00 V02

V20 V22

 b0

b2

 (F.25)

and in more condensed notation

GbGbGb = −λVVV bbb (F.26)

If we were to follow the method of Afnan and Gibson by multiplying the left side by gi(k)

and integrating over k

bljgl (k, βj) = −λ
∑
l′

∫
dk′Vll′(k, k

′)G0(k′)bl
′

j gl′ (k
′, βj)

blj

∫
dkk2gl (k, βi) gl (k, βj) = −λ

∑
l′

(∫
dkk2gl (k, βi)

(∫
dk′Vll′(k, k

′)G0(k′)gl′ (k
′, βj)

))
bl
′

j

(F.27)

which will give us the same generalised eigenvalue problem as the collocation method.

Normalisation

Recall the normalisation condition∑
l

〈φl|φl〉 = 1

∑
l

〈χl|G0|χl〉 = 1
(F.28)
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Let us assume that the original coefficients b will not satisfy the above normalisation condi-

tion. We introduce a normalisation constant N such that

N2
∑
l

∑
ij

blib
l
j

∫
dkk2gl (k, βi)G0(k)gl (k, βj) = 1 (F.29)

We can introduce new coefficients c given by

cli = bliN (F.30)

that will satisfy the normalisation condition. The normalisation constant is given as

N = 1

/√∑
l

∑
ij

blib
l
j

∫
dkk2gl (k, βi)G0(k)gl (k, βj) (F.31)

Calculating the coefficients

For 3S1 − 3D1, the strength parameters are given as

CCC ll′(N) = AAA−1
l BBBll′AAA

−1
l′ (F.32)

in terms of the N ×N matrices AAAl and BBBll′

AAAl = 〈φl|φl〉 = 〈χl|G0|χl〉

AAAl =

∫
dkk2 〈χl| k〉G0(k) 〈k |χl 〉

=
∑
ij

blib
l
j

∫
dkk2gl (k, βi)G0(k)gl (k, βj)

(F.33)

Notice that because of the normalisation condition∑
l

AAAl = 1 (F.34)

and

BBBll′ = 〈φl|Kll′ |φl′〉 = 〈χl|G0Vll′G0|χl′〉

BBBll′ =
∑
ij

blib
l′

j

∫
dkdk′k2(k′)2gl (k, βi)G0(k)Vll′(k, k

′)G0(k′)gl′ (k, βj)
(F.35)

F.2 Handling a double pole

Firstly, let us consider our integral with the double pole∫ ∞
0

f(p)

(p− a+ iε)2
dp (F.36)
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where a is the pole (0 < a <∞). This integral is equal to the following limit

lim
η→0

∫ ∞
0

f(p)

(p− (a+ η) + iε)(p− a+ iε)
dp (F.37)

where η is some arbitrarily small parameter. Separating this integral into separate terms

lim
η→0

1

η

(∫ ∞
0

f(p)

p− (a+ η) + iε
dp−

∫ ∞
0

f(p)

p− a+ iε
dp

)
(F.38)

Now using the Sokhotski–Plemelj theorem to handle the +iε in the denominator

lim
η→0

1

η

(
P

∫ ∞
0

f(p)

p− (a+ η)
dp− P

∫ ∞
0

f(p)

p− a
dp

)
− iπ lim

η→0

(
f(a+ η)− f(a)

η

)
(F.39)

One can see that the second term is the derivative of f(p) at the point p = a. Now using

the definition of the principal value integral

lim
η→0

lim
ε→0

1

η

(∫ a+η−ε

0

f(p)

p− (a+ η)
dp+

∫ ∞
a+η+ε

f(p)

p− (a+ η)
dp

−
∫ a−ε

0

f(p)

p− a
dp−

∫ ∞
a+ε

f(p)

p− a
dp

)
− iπf ′(a)

(F.40)

We note that the ε is different from the ε used in the original integral, but it is not so

important to distinguish the difference between these parameters. We split the first two

integrals, so we have integrals with the same limits as the last two integrals

lim
η→0

lim
ε→0

1

η

(∫ a−ε

0

f(p)

p− (a+ η)
dp+

∫ a+η−ε

a−ε

f(p)

p− (a+ η)
dp+

∫ ∞
a+ε

f(p)

p− (a+ η)
dp

−
∫ a+η+ε

a+η

f(p)

p− (a+ η)
dp−

∫ a−ε

0

f(p)

p− a
dp−

∫ ∞
a+ε

f(p)

p− a
dp

)
− iπf ′(a)

(F.41)

Splitting the integrals this way is true for any η > 0 and ε > 0 regardless if η > ε or vice

versa. Now combining the integrals with the same limits

lim
η→0

lim
ε→0

(∫ a−ε

0

f(p)

(p− (a+ η))(p− a)
dp+

∫ ∞
a+ε

f(p)

(p− (a+ η))(p− a)
dp

−1

η

∫ a+η+ε

a+η

f(p)

p− (a+ η)
dp+

1

η

∫ a+η−ε

a−ε

f(p)

p− (a+ η)
dp

)
− iπf ′(a)

(F.42)

Now because η is arbitrarily small, the last two integrals can be calculated using an Riemann

sum. We choice an upper Riemann sum, which gives us

lim
η→0

lim
ε→0

(∫ a−ε

0

f(p)

(p− (a+ η))(p− a)
dp+

∫ ∞
a+ε

f(p)

(p− (a+ η))(p− a)
dp

−1

η

f(a+ η + ε)

a+ η + ε− (a+ η)
η +

1

η

f(a+ η − ε)
a+ η − ε− (a+ η)

η

)
− iπf ′(a)

(F.43)
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We can now take the limit as η → 0

lim
ε→0

(∫ a−ε

0

f(p)

(p− a)2
dp+

∫ ∞
a+ε

f(p)

(p− a)2
dp− 2f(a)

ε

)
− iπf ′(a) (F.44)

The remaining limit is the definition of a finite part integral. Therefore, our original integral

is given by ∫ ∞
0

f(p)

(p− a+ iε)2
dp = f.p.

∫ ∞
0

f(p)

(p− a)2
dp− iπf ′(a) (F.45)

where f.p. corresponds to the finite part integral.

F.2.1 The quadratures of Kolm and Rokhlin

So calculating our integral with a double pole comes down to calculating the finite part

integral, as the derivative of the function without the pole can be calculated numerically

using a finite difference method. We have discussed in Chapter 4 that there exists modified

quadrature points by Kolm and Rokhlin [93] which can be used to handle a pole of order

two. However, the expression for the modified quadrature points presented by Kolm and

Rokhlin has a slight error in it as calculating this expression does not lead to the quadrature

point given in Table 1 of their paper. So we need to re-derive the expression to understand

the error.

Kolm and Rokhlin give the following quadrature rule in Theorem 3.1∫ 1

−1

ω(x)φ(x)dx ≈
N∑
n=1

ω̃nφ(xn) (F.46)

where the modified weights are given by

ω̃n = ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(∫ 1

−1

ω(x)Pj(x)dx

))
(F.47)

where Pn(x) is a Legendre polynomial. In this case, the weight function is ω(x) = 1
(y−x)2

where y is the double pole and −1 < y < 1. In Theorem 2.7, the authors give the follow

expression

f.p.

∫ 1

−1

Pn(x)

(y − x)2
dx = p.v.

∫ 1

−1

P ′n(x)

x− y
dx+

1

y − 1
− (−1)n

y + 1
(F.48)

where f.p. denotes a finite part integral and p.v. denotes a Cauchy principal value integral.
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Inserting this expression into Equation F.47

ω̃n = ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx+

1

y − 1
− (−1)j

y + 1

))

= ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx

))

+ ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
1

y − 1
− (−1)j

y + 1

))
(F.49)

We could leave this expression as it is and calculate the modified weights, however this

can be a computationally intense task due to the principal value integral. The expression

will also break down for larger values of j if the principal value integral is not calculated

precisely. Let us focus on the term that contains the principal value integral and try to

reduce the expression to a more computationally friendly expression. From Theorem 2.4 of

[93], a polynomial defined on [−1, 1] can be represented by the formula

p(x) =
N ′−1∑
n=0

anPn(x) (F.50)

where N ′ is some natural number, which we distinguish from the number of quadrature

points N . The derivative of this polynomial can also be represented by

p′(x) =
N ′−2∑
l=0

blPl(x) (F.51)

where the coefficient bl is given by the expression

bl = (2l + 1)

[
N′+l−3

2

]∑
k=l

a2k+1−l, n = 0, 1, ..., N ′ − 2 (F.52)

and
[
N ′+l−3

2

]
denotes the integer part of N ′+l−3

2
. Now, if we were to let the polynomial

p(x) be equal to the Legendre polynomial Pj(x), we can see that the coefficient an becomes

a Kronecker delta, specifically an = δnj. By combining our formulas, we can obtain an

expression for the Legendre polynomial derivative

P ′j(x) =
N ′−2∑
l=0

(2l + 1)

[
N′+l−3

2

]∑
k=l

δ2k+1−l,jPl(x) (F.53)

If we return to our term containing the Legendre polynomial derivative and insert the above

269



APPENDIX F. VARIOUS NUMERICAL METHODS

expression

ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx

))

= ωn

N−1∑
j=0

N ′−2∑
l=0

[
N′+l−3

2

]∑
k=l

(
2j + 1

2
Pj(xn)(2l + 1)δ2k+1−l,j

∫ 1

−1

Pl(x)

x− y
dx

) (F.54)

By Theorem 2.6 of [93] ∫ 1

−1

Pj(x)

y − x
dx = 2Qj(y) (F.55)

where Qn(x) is a Legendre polynomial of the second kind. The principal value integral is

Equation F.54 reduces to

ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx

))

= −ωn
N−1∑
j=0

N ′−2∑
l=0

[
N′+l−3

2

]∑
k=l

(2j + 1)Pj(xn)(2l + 1)δ2k+1−l,jQl(y)

(F.56)

Now by performing the sum over j with the Kronecker delta, we obtain

ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx

))

= −ωn
N ′−2∑
l=0

[
N′+l−3

2

]∑
k=l

(4k + 3− 2l)P2k+1−l(xn)(2l + 1)Ql(y)

(F.57)

For consistency with Kolm and Rokhlin, let us change the index l in our expression to the

index j

ωn

N−1∑
j=0

(
2j + 1

2
Pj(xn)

(
p.v.

∫ 1

−1

P ′j(x)

x− y
dx

))

= −ωn
N ′−2∑
j=0

[
N′+j−3

2

]∑
k=j

(4k + 3− 2j)P2k+1−j(xn)(2j + 1)Qj(y)

(F.58)

This expression looks like the same expression presented by Kolm and Rokhlin, however

there are some important differences. Firstly, the natural number N ′ is not the same as

the number of quadrature points N as N ′ comes from our representation of the Legendre

polynomials in Equations F.50 and F.51. Notice that Equations F.50 and F.51 is true for

any integer N ′, so if we let N ′ = N + 1, this will always allow us to ensure these equations
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are always satisfied in our expression for the modified weights. Secondly, we point out the

use of the index n in the term 4k+ 3− 2n and the Legendre polynomial P2k+1−n. The index

n is used to denote the specific quadrature point/quadrature weight and is not the correct

index in this expression as seen from our derived expression. Our final expression for the

modified quadrature weights is

ω̃n = ωn

−N−1∑
j=0

[N+j−2
2 ]∑

k=j

(4k + 3− 2j)P2k+1−j(xn)(2j + 1)Qj(y)

+
N−1∑
j=0

2j + 1

2
Pj(xn)

(
1

y − 1
− (−1)j

y + 1

)) (F.59)

These quadrature are only defined on the interval [−1, 1], so we will need a transformation

from [−1, 1] to a finite interval [a, b]. We can use the transformation

x̃ =
b− a

2
(x− 1) + b (F.60)

Now, if we consider the integral ∫ b

a

1

(ỹ − x̃)2
f(x̃)dx̃ (F.61)

and apply our transformation∫ 1

−1

1

( b−a
2

(y − x))2
f

(
b− a

2
(x− 1) + b

)
b− a

2
dx

=

∫ 1

−1

(
2

b− a

)2
1

(y − x)2
f̄(x)

b− a
2

dx

=

∫ 1

−1

(
2

b− a

)
1

(y − x)2
f̄(x)dx

≈
(

2

b− a

) N∑
n=1

ω̃nf̄(xn)

(F.62)

Therefore, due to our transformation from [−1, 1] to a finite interval [a, b], the integral

acquires a factor of 2
b−a , which we accomodate by absorbing this factor into the quadrature

weights.
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F.3 Solving the NN scattering equations using Wick

rotation

To perform a Wick rotation for our 4D NN scattering equation, we will need to perform

a change of the z variables: z → z + E/2

XNN(E) = ZNN(E) +

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2Z0,NN(z′′ + E/2, p′′;E)

× g
(
E/2 + z′′ − p′′2

2mN

)
g

(
E/2− z′′ − p′′2

2mN

)
X0,NN(z′′ + E/2, p′′;E)

(F.63)

The reason for this change of variable is two-fold:

1. Our equation becomes equivalent to the Bethe-Salpeter equation considered by Levine

et al., so we can simply apply their method to our convolution equation

2. The change of variables is necessary to avoid the logarithmic cuts present in Z0,NN ,

which would interfere with the Wick rotation

The only issue from this change of variable is that we now have “pinching” of the nucleon

poles at z′′ = 0 when p′′ = p0. However since our problem is now equivalent to Levine et al.,

the “pinching” can be handled using the same factorisation technique of the half off-shell

t−matrix

X0,NN(z, p;E) = f(z, p)XNN(E) (F.64)

Inserting this factorisation in Equation F.63 and solving the equation for the fully on-shell

amplitude XNN(E), we obtain an expression for XNN(E) is terms of the function f(z, p)

XNN(E) =
ZNN(E)

1− INN
(F.65)

where

INN =

(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2Z0,NN(z′′ + E/2, p′′;E)

× g
(
E/2 + z′′ − p′′2

2mN

)
g

(
E/2− z′′ − p′′2

2mN

)
f(z′′, p′′)

(F.66)

With this expression for XNN(E), we can determine an expression for the function f(z, p)

f(z, p) =
Z0,NN(z, p;E)

ZNN(E)

+

(
− 1

2πi

)∫ ∞
−∞

dz′
∫ ∞

0

dp′(p′)2g

(
E/2 + z′ − p′2

2mN

)
g

(
E/2− z′ − p′2

2mN

)
× Zf (z, p, z′, p′;E)

(F.67)
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where

Zf (z, p, z
′, p′;E) = ZNN(z + E/2, p, z′ + E/2, p′;E)

− Z0,NN(z + E/2, p;E)Z0,NN(z′ + E/2, p′;E)

ZNN(E)

(F.68)

One can see that when the “pinching” of the nucleon poles occur (when z′ = 0, p′ = p0), the

term Zf is equal to zero, allowing the Wick rotation to be performed.

Now we perform the Wick rotation on Equation F.67 by closing the contour around the

first and third quadrants of the complex z′ plane and analytically continuing the interval

of integration to the imaginary z′ axis. The z variable will undergo the transform z → iz

and we will need to include the residue of both nucleon poles. Both nucleon pole only exist

within the contour when p′ < p0, so the p′ integral of the residue terms with only be on the

interval [0, p0]. Performing the Wick rotation and adding the residues of each nucleon pole,

we obtain

f(iz, p) =
Z0,NN(iz, p;E)

ZNN(E)

+ i

(
− 1

2πi

)∫ ∞
−∞

dz′
∫ ∞

0

dp′(p′)2g

(
E/2 + iz′ − p′2

2mN

)
g

(
E/2− iz′ − p′2

2mN

)
× Zf (iz, p, iz′, p′;E)

+

∫ p0

0

dp′(p′)2g

(
E − p′2

mN

−mN

)
Zf

(
iz, p,

p′2

2mN

+mN − E/2, p′;E
)

+

∫ p0

0

dp′(p′)2g

(
E − p′2

mN

−mN

)
Zf

(
iz, p, E/2− p′2

2mN

−mN , p
′;E

)
(F.69)

There is now an end-point pole in the residue terms at p′ = p0, which tends to be difficult

to evaluate. However, the term Zf is zero when p′ = p0, so we can evaluate the integrals

of the residue term without any issues. This factorisation of the half-off shell t−matrix is

a powerful numerical tool, as it has the benefit of handling the “pinching” of the poles and

the end-point pole in the residue terms. We can now solve this equation for the function

f(iz, p) by discretising the z and p variables using quadrature points.

Once we obtain a solution of f(iz, p), we will need to use Equation F.65 to determine

the fully on-shell amplitude. However, the integral in the denominator of Equation F.65

suffers from the same “pinching” problem as earlier, so we will need to determine a method

to handle this problem. We can add and subtract an integral term in order to introduce a

term that will make INN zero at z′′ = 0, p′′ = p0. The extra integral term is then calculated
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explicitly. The term that is added is not unique, and we have two suggestions from the

literature:

Phillips :(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2g

(
E/2 + iz′ − p′2

2mN

)
g

(
E/2− iz′ − p′2

2mN

)
(F.70a)

Levine et al. :(
− 1

2πi

)∫ ∞
−∞

dz′′
∫ ∞

0

dp′′(p′′)2g

(
E/2 + iz′ − p′2

2mN

)
g

(
E/2− iz′ − p′2

2mN

)
× Z0,NN(z′′ + E/2, p′′;E)2

ZNN(E)
(F.70b)

While the suggestion of Phillips [207] is similar to calculate explicitly, we find it is much

more accurate to use the suggestion of Levine et al. The Levine et al. term corresponds

to the fully dressed two-pion exchange amplitude that we calculated in Chapter 4 (with a

division by ZNN(E)), so there is no issue using the suggestion of Levine et al.
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We now list the possible three-body channels for a fixed total angular momentum J and

parity π, which in combination we represent by Jπ. To generate a finite amount of channel

for each Jπ, we have restricted the orbital angular momentum l and total angular momentum

j of the interacting pair to a maximum value. In this case, lmax is 1 for a πN interacting pair

and 2 for a NN interacting pair, while jmax is 3
2

for a πN interacting pair and 2 for a NN

interacting pair.For the notation used in the following tables, the lowercase letters (and S)

represent the angular momenta of the interacting pair (quasiparticle), while the uppercase

letters represent the angular momenta of the interacting pair with the spectator. We use

standard spectator notation for the partial wave label for the interacting pair: 2S+1lj for

NN , l2t,2j for πN and we denote the nucleon channel by NUC.
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Jπ = 0−

Channel Number Interacting Pair Partial Wave t l S j S L

1 1S0 1 0 0 0 0 0

2 1P1 0 1 0 1 1 1

3 3P1 1 1 1 1 1 1

4 3D2 0 2 1 2 2 2

5 1D2 1 2 0 2 2 2

6 S11 1/2 0 1/2 1/2 0 0

7 S31 3/2 0 1/2 1/2 0 0

8 P11 1/2 1 1/2 1/2 1 1

9 NUC 1/2 1 1/2 1/2 1 1

10 P13 1/2 1 1/2 3/2 1 1

11 P31 3/2 1 1/2 1/2 1 1

12 P33 3/2 1 1/2 3/2 1 1

Jπ = 0+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P0 1 1 1 0 0 0

2 3S1 0 0 1 1 1 1

3 3D1 0 2 1 1 1 1

4 3P2 1 1 1 2 2 2

5 P11 1/2 1 1/2 1/2 0 0

6 NUC 1/2 1 1/2 1/2 0 0

7 P31 3/2 1 1/2 1/2 0 0

8 S11 1/2 0 1/2 1/2 1 1

9 S31 3/2 0 1/2 1/2 1 1

10 P13 1/2 1 1/2 3/2 2 2

11 P33 3/2 1 1/2 3/2 2 2
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Jπ = 1−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3S1 0 0 1 1 1 0

2 3D1 0 2 1 1 1 0

3 3P0 1 1 1 0 0 1

4 1P1 0 1 0 1 1 1

5 3P1 1 1 1 1 1 1

6 3P2 1 1 1 2 2 1

7 3S1 0 0 1 1 1 2

8 3D1 0 2 1 1 1 2

9 3D2 0 2 1 2 2 2

10 1D2 1 2 0 2 2 2

11 3P2 1 1 1 2 2 3

12 S11 1/2 0 1/2 1/2 1 0

13 S31 3/2 0 1/2 1/2 1 0

14 P11 1/2 1 1/2 1/2 0 1

15 P31 3/2 1 1/2 1/2 0 1

16 P11 1/2 1 1/2 1/2 1 1

17 NUC 1/2 1 1/2 1/2 1 1

18 P13 1/2 1 1/2 3/2 1 1

19 P31 3/2 1 1/2 1/2 1 1

20 P33 3/2 1 1/2 3/2 1 1

21 P13 1/2 1 1/2 3/2 2 1

22 P33 3/2 1 1/2 3/2 2 1

23 S11 1/2 0 1/2 1/2 1 2

24 S31 3/2 0 1/2 1/2 1 2

25 P13 1/2 1 1/2 3/2 2 3

26 P33 3/2 1 1/2 3/2 2 3
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Jπ = 1+

Channel Number Interacting Pair Partial Wave t l S j S L

1 1P1 0 1 0 1 1 0

2 3P1 1 1 1 1 1 0

3 1S0 1 0 0 0 0 1

4 3S1 0 0 1 1 1 1

5 3D1 0 2 1 1 1 1

6 3D2 0 2 1 2 2 1

7 1D2 1 2 0 2 2 1

8 1P1 0 1 0 1 1 2

9 3P1 1 1 1 1 1 2

10 3P2 1 1 1 2 2 2

11 3D2 0 2 1 2 2 3

12 1D2 1 2 0 2 2 3

13 P11 1/2 1 1/2 1/2 1 0

14 P13 1/2 1 1/2 3/2 1 0

15 P31 3/2 1 1/2 1/2 1 0

16 P33 3/2 1 1/2 3/2 1 0

17 S11 1/2 0 1/2 1/2 0 1

18 S31 3/2 0 1/2 1/2 0 1

19 S11 1/2 0 1/2 1/2 1 1

20 S31 3/2 0 1/2 1/2 1 1

21 P11 1/2 1 1/2 1/2 1 2

22 P13 1/2 1 1/2 3/2 1 2

23 P31 3/2 1 1/2 1/2 1 2

24 P33 3/2 1 1/2 3/2 1 2

25 P13 1/2 1 1/2 3/2 2 2

26 P33 3/2 1 1/2 3/2 2 2
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Jπ = 2−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 0

2 1D2 1 2 0 2 2 0

3 1P1 0 1 0 1 1 1

4 3P1 1 1 1 1 1 1

5 3P2 1 1 1 2 2 1

6 1S0 1 0 0 0 0 2

7 3S1 0 0 1 1 1 2

8 3D1 0 2 1 1 1 2

9 3D2 0 2 1 2 2 2

10 1D2 1 2 0 2 2 2

11 1P1 0 1 0 1 1 3

12 3P1 1 1 1 1 1 3

13 3P2 1 1 1 2 2 3

14 3D2 0 2 1 2 2 4

15 1D2 1 2 0 2 2 4

16 P11 1/2 1 1/2 1/2 1 1

17 NUC 1/2 1 1/2 1/2 1 1

18 P13 1/2 1 1/2 3/2 1 1

19 P31 3/2 1 1/2 1/2 1 1

20 P33 3/2 1 1/2 3/2 1 1

21 P13 1/2 1 1/2 3/2 2 1

22 P33 3/2 1 1/2 3/2 2 1

23 S11 1/2 0 1/2 1/2 0 2

24 S31 3/2 0 1/2 1/2 0 2

25 S11 1/2 0 1/2 1/2 1 2

26 S31 3/2 0 1/2 1/2 1 2

27 P11 1/2 1 1/2 1/2 1 3

28 NUC 1/2 1 1/2 1/2 1 3

29 P13 1/2 1 1/2 3/2 1 3

30 P31 3/2 1 1/2 1/2 1 3

31 P33 3/2 1 1/2 3/2 1 3

32 P13 1/2 1 1/2 3/2 2 3

33 P33 3/2 1 1/2 3/2 2 3
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Jπ = 2+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 0

2 3S1 0 0 1 1 1 1

3 3D1 0 2 1 1 1 1

4 3D2 0 2 1 2 2 1

5 1D2 1 2 0 2 2 1

6 3P0 1 1 1 0 0 2

7 1P1 0 1 0 1 1 2

8 3P1 1 1 1 1 1 2

9 3P2 1 1 1 2 2 2

10 3S1 0 0 1 1 1 3

11 3D1 0 2 1 1 1 3

12 3D2 0 2 1 2 2 3

13 1D2 1 2 0 2 2 3

14 3P2 1 1 1 2 2 4

15 P13 1/2 1 1/2 3/2 2 0

16 P33 3/2 1 1/2 3/2 2 0

17 S11 1/2 0 1/2 1/2 1 1

18 S31 3/2 0 1/2 1/2 1 1

19 P11 1/2 1 1/2 1/2 0 2

20 NUC 1/2 1 1/2 1/2 0 2

21 P31 3/2 1 1/2 1/2 0 2

22 P11 1/2 1 1/2 1/2 1 2

23 P13 1/2 1 1/2 3/2 1 2

24 P31 3/2 1 1/2 1/2 1 2

25 P33 3/2 1 1/2 3/2 1 2

26 P13 1/2 1 1/2 3/2 2 2

27 P33 3/2 1 1/2 3/2 2 2

28 S11 1/2 0 1/2 1/2 1 3

29 S31 3/2 0 1/2 1/2 1 3

30 P13 1/2 1 1/2 3/2 2 4

31 P33 3/2 1 1/2 3/2 2 4
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Jπ = 3−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 1

2 3S1 0 0 1 1 1 2

3 3D1 0 2 1 1 1 2

4 3D2 0 2 1 2 2 2

5 1D2 1 2 0 2 2 2

6 3P0 1 1 1 0 0 3

7 1P1 0 1 0 1 1 3

8 3P1 1 1 1 1 1 3

9 3P2 1 1 1 2 2 3

10 3S1 0 0 1 1 1 4

11 3D1 0 2 1 1 1 4

12 3D2 0 2 1 2 2 4

13 1D2 1 2 0 2 2 4

14 3P2 1 1 1 2 2 5

15 P13 1/2 1 1/2 3/2 2 1

16 P33 3/2 1 1/2 3/2 2 1

17 S11 1/2 0 1/2 1/2 1 2

18 S31 3/2 0 1/2 1/2 1 2

19 P11 1/2 1 1/2 1/2 0 3

20 P31 3/2 1 1/2 1/2 0 3

21 P11 1/2 1 1/2 1/2 1 3

22 NUC 1/2 1 1/2 1/2 1 3

23 P13 1/2 1 1/2 3/2 1 3

24 P31 3/2 1 1/2 1/2 1 3

25 P33 3/2 1 1/2 3/2 1 3

26 P13 1/2 1 1/2 3/2 2 3

27 P33 3/2 1 1/2 3/2 2 3

28 S11 1/2 0 1/2 1/2 1 4

29 S31 3/2 0 1/2 1/2 1 4

30 P13 1/2 1 1/2 3/2 2 5

31 P33 3/2 1 1/2 3/2 2 5
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 3+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 1

2 1D2 1 2 0 2 2 1

3 1P1 0 1 0 1 1 2

4 3P1 1 1 1 1 1 2

5 3P2 1 1 1 2 2 2

6 1S0 1 0 0 0 0 3

7 3S1 0 0 1 1 1 3

8 3D1 0 2 1 1 1 3

9 3D2 0 2 1 2 2 3

10 1D2 1 2 0 2 2 3

11 1P1 0 1 0 1 1 4

12 3P1 1 1 1 1 1 4

13 3P2 1 1 1 2 2 4

14 3D2 0 2 1 2 2 5

15 1D2 1 2 0 2 2 5

16 P11 1/2 1 1/2 1/2 1 2

17 P13 1/2 1 1/2 3/2 1 2

18 P31 3/2 1 1/2 1/2 1 2

19 P33 3/2 1 1/2 3/2 1 2

20 P13 1/2 1 1/2 3/2 2 2

21 P33 3/2 1 1/2 3/2 2 2

22 S11 1/2 0 1/2 1/2 0 3

23 S31 3/2 0 1/2 1/2 0 3

24 S11 1/2 0 1/2 1/2 1 3

25 S31 3/2 0 1/2 1/2 1 3

26 P11 1/2 1 1/2 1/2 1 4

27 P13 1/2 1 1/2 3/2 1 4

28 P31 3/2 1 1/2 1/2 1 4

29 P33 3/2 1 1/2 3/2 1 4

30 P13 1/2 1 1/2 3/2 2 4

31 P33 3/2 1 1/2 3/2 2 4

283



APPENDIX G. THREE-BODY CHANNELS

Jπ = 4−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 2

2 1D2 1 2 0 2 2 2

3 1P1 0 1 0 1 1 3

4 3P1 1 1 1 1 1 3

5 3P2 1 1 1 2 2 3

6 1S0 1 0 0 0 0 4

7 3S1 0 0 1 1 1 4

8 3D1 0 2 1 1 1 4

9 3D2 0 2 1 2 2 4

10 1D2 1 2 0 2 2 4

11 1P1 0 1 0 1 1 5

12 3P1 1 1 1 1 1 5

13 3P2 1 1 1 2 2 5

14 3D2 0 2 1 2 2 6

15 1D2 1 2 0 2 2 6

16 P11 1/2 1 1/2 1/2 1 3

17 NUC 1/2 1 1/2 1/2 1 3

18 P13 1/2 1 1/2 3/2 1 3

19 P31 3/2 1 1/2 1/2 1 3

20 P33 3/2 1 1/2 3/2 1 3

21 P13 1/2 1 1/2 3/2 2 3

22 P33 3/2 1 1/2 3/2 2 3

23 S11 1/2 0 1/2 1/2 0 4

24 S31 3/2 0 1/2 1/2 0 4

25 S11 1/2 0 1/2 1/2 1 4

26 S31 3/2 0 1/2 1/2 1 4

27 P11 1/2 1 1/2 1/2 1 5

28 NUC 1/2 1 1/2 1/2 1 5

29 P13 1/2 1 1/2 3/2 1 5

30 P31 3/2 1 1/2 1/2 1 5

31 P33 3/2 1 1/2 3/2 1 5

32 P13 1/2 1 1/2 3/2 2 5

33 P33 3/2 1 1/2 3/2 2 5
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 4+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 2

2 3S1 0 0 1 1 1 3

3 3D1 0 2 1 1 1 3

4 3D2 0 2 1 2 2 3

5 1D2 1 2 0 2 2 3

6 3P0 1 1 1 0 0 4

7 1P1 0 1 0 1 1 4

8 3P1 1 1 1 1 1 4

9 3P2 1 1 1 2 2 4

10 3S1 0 0 1 1 1 5

11 3D1 0 2 1 1 1 5

12 3D2 0 2 1 2 2 5

13 1D2 1 2 0 2 2 5

14 3P2 1 1 1 2 2 6

15 P13 1/2 1 1/2 3/2 2 2

16 P33 3/2 1 1/2 3/2 2 2

17 S11 1/2 0 1/2 1/2 1 3

18 S31 3/2 0 1/2 1/2 1 3

19 P11 1/2 1 1/2 1/2 0 4

20 NUC 1/2 1 1/2 1/2 0 4

21 P31 3/2 1 1/2 1/2 0 4

22 P11 1/2 1 1/2 1/2 1 4

23 P13 1/2 1 1/2 3/2 1 4

24 P31 3/2 1 1/2 1/2 1 4

25 P33 3/2 1 1/2 3/2 1 4

26 P13 1/2 1 1/2 3/2 2 4

27 P33 3/2 1 1/2 3/2 2 4

28 S11 1/2 0 1/2 1/2 1 5

29 S31 3/2 0 1/2 1/2 1 5

30 P13 1/2 1 1/2 3/2 2 6

31 P33 3/2 1 1/2 3/2 2 6
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 5−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 3

2 3S1 0 0 1 1 1 4

3 3D1 0 2 1 1 1 4

4 3D2 0 2 1 2 2 4

5 1D2 1 2 0 2 2 4

6 3P0 1 1 1 0 0 5

7 1P1 0 1 0 1 1 5

8 3P1 1 1 1 1 1 5

9 3P2 1 1 1 2 2 5

10 3S1 0 0 1 1 1 6

11 3D1 0 2 1 1 1 6

12 3D2 0 2 1 2 2 6

13 1D2 1 2 0 2 2 6

14 3P2 1 1 1 2 2 7

15 P13 1/2 1 1/2 3/2 2 3

16 P33 3/2 1 1/2 3/2 2 3

17 S11 1/2 0 1/2 1/2 1 4

18 S31 3/2 0 1/2 1/2 1 4

19 P11 1/2 1 1/2 1/2 0 5

20 P31 3/2 1 1/2 1/2 0 5

21 P11 1/2 1 1/2 1/2 1 5

22 NUC 1/2 1 1/2 1/2 1 5

23 P13 1/2 1 1/2 3/2 1 5

24 P31 3/2 1 1/2 1/2 1 5

25 P33 3/2 1 1/2 3/2 1 5

26 P13 1/2 1 1/2 3/2 2 5

27 P33 3/2 1 1/2 3/2 2 5

28 S11 1/2 0 1/2 1/2 1 6

29 S31 3/2 0 1/2 1/2 1 6

30 P13 1/2 1 1/2 3/2 2 7

31 P33 3/2 1 1/2 3/2 2 7
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 5+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 3

2 1D2 1 2 0 2 2 3

3 1P1 0 1 0 1 1 4

4 3P1 1 1 1 1 1 4

5 3P2 1 1 1 2 2 4

6 1S0 1 0 0 0 0 5

7 3S1 0 0 1 1 1 5

8 3D1 0 2 1 1 1 5

9 3D2 0 2 1 2 2 5

10 1D2 1 2 0 2 2 5

11 1P1 0 1 0 1 1 6

12 3P1 1 1 1 1 1 6

13 3P2 1 1 1 2 2 6

14 3D2 0 2 1 2 2 7

15 1D2 1 2 0 2 2 7

16 P11 1/2 1 1/2 1/2 1 4

17 P13 1/2 1 1/2 3/2 1 4

18 P31 3/2 1 1/2 1/2 1 4

19 P33 3/2 1 1/2 3/2 1 4

20 P13 1/2 1 1/2 3/2 2 4

21 P33 3/2 1 1/2 3/2 2 4

22 S11 1/2 0 1/2 1/2 0 5

23 S31 3/2 0 1/2 1/2 0 5

24 S11 1/2 0 1/2 1/2 1 5

25 S31 3/2 0 1/2 1/2 1 5

26 P11 1/2 1 1/2 1/2 1 6

27 P13 1/2 1 1/2 3/2 1 6

28 P31 3/2 1 1/2 1/2 1 6

29 P33 3/2 1 1/2 3/2 1 6

30 P13 1/2 1 1/2 3/2 2 6

31 P33 3/2 1 1/2 3/2 2 6
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Jπ = 6−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 4

2 1D2 1 2 0 2 2 4

3 1P1 0 1 0 1 1 5

4 3P1 1 1 1 1 1 5

5 3P2 1 1 1 2 2 5

6 1S0 1 0 0 0 0 6

7 3S1 0 0 1 1 1 6

8 3D1 0 2 1 1 1 6

9 3D2 0 2 1 2 2 6

10 1D2 1 2 0 2 2 6

11 1P1 0 1 0 1 1 7

12 3P1 1 1 1 1 1 7

13 3P2 1 1 1 2 2 7

14 3D2 0 2 1 2 2 8

15 1D2 1 2 0 2 2 8

16 P11 1/2 1 1/2 1/2 1 5

17 NUC 1/2 1 1/2 1/2 1 5

18 P13 1/2 1 1/2 3/2 1 5

19 P31 3/2 1 1/2 1/2 1 5

20 P33 3/2 1 1/2 3/2 1 5

21 P13 1/2 1 1/2 3/2 2 5

22 P33 3/2 1 1/2 3/2 2 5

23 S11 1/2 0 1/2 1/2 0 6

24 S31 3/2 0 1/2 1/2 0 6

25 S11 1/2 0 1/2 1/2 1 6

26 S31 3/2 0 1/2 1/2 1 6

27 P11 1/2 1 1/2 1/2 1 7

28 NUC 1/2 1 1/2 1/2 1 7

29 P13 1/2 1 1/2 3/2 1 7

30 P31 3/2 1 1/2 1/2 1 7

31 P33 3/2 1 1/2 3/2 1 7

32 P13 1/2 1 1/2 3/2 2 7

33 P33 3/2 1 1/2 3/2 2 7
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 6+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 4

2 3S1 0 0 1 1 1 5

3 3D1 0 2 1 1 1 5

4 3D2 0 2 1 2 2 5

5 1D2 1 2 0 2 2 5

6 3P0 1 1 1 0 0 6

7 1P1 0 1 0 1 1 6

8 3P1 1 1 1 1 1 6

9 3P2 1 1 1 2 2 6

10 3S1 0 0 1 1 1 7

11 3D1 0 2 1 1 1 7

12 3D2 0 2 1 2 2 7

13 1D2 1 2 0 2 2 7

14 3P2 1 1 1 2 2 8

15 P13 1/2 1 1/2 3/2 2 4

16 P33 3/2 1 1/2 3/2 2 4

17 S11 1/2 0 1/2 1/2 1 5

18 S31 3/2 0 1/2 1/2 1 5

19 P11 1/2 1 1/2 1/2 0 6

20 NUC 1/2 1 1/2 1/2 0 6

21 P31 3/2 1 1/2 1/2 0 6

22 P11 1/2 1 1/2 1/2 1 6

23 P13 1/2 1 1/2 3/2 1 6

24 P31 3/2 1 1/2 1/2 1 6

25 P33 3/2 1 1/2 3/2 1 6

26 P13 1/2 1 1/2 3/2 2 6

27 P33 3/2 1 1/2 3/2 2 6

28 S11 1/2 0 1/2 1/2 1 7

29 S31 3/2 0 1/2 1/2 1 7

30 P13 1/2 1 1/2 3/2 2 8

31 P33 3/2 1 1/2 3/2 2 8
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 7−

Channel Number Interacting Pair Partial Wave t l S j S L

1 3P2 1 1 1 2 2 5

2 3S1 0 0 1 1 1 6

3 3D1 0 2 1 1 1 6

4 3D2 0 2 1 2 2 6

5 1D2 1 2 0 2 2 6

6 3P0 1 1 1 0 0 7

7 1P1 0 1 0 1 1 7

8 3P1 1 1 1 1 1 7

9 3P2 1 1 1 2 2 7

10 3S1 0 0 1 1 1 8

11 3D1 0 2 1 1 1 8

12 3D2 0 2 1 2 2 8

13 1D2 1 2 0 2 2 8

14 3P2 1 1 1 2 2 9

15 P13 1/2 1 1/2 3/2 2 5

16 P33 3/2 1 1/2 3/2 2 5

17 S11 1/2 0 1/2 1/2 1 6

18 S31 3/2 0 1/2 1/2 1 6

19 P11 1/2 1 1/2 1/2 0 7

20 P31 3/2 1 1/2 1/2 0 7

21 P11 1/2 1 1/2 1/2 1 7

22 NUC 1/2 1 1/2 1/2 1 7

23 P13 1/2 1 1/2 3/2 1 7

24 P31 3/2 1 1/2 1/2 1 7

25 P33 3/2 1 1/2 3/2 1 7

26 P13 1/2 1 1/2 3/2 2 7

27 P33 3/2 1 1/2 3/2 2 7

28 S11 1/2 0 1/2 1/2 1 8

29 S31 3/2 0 1/2 1/2 1 8

30 P13 1/2 1 1/2 3/2 2 9

31 P33 3/2 1 1/2 3/2 2 9
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APPENDIX G. THREE-BODY CHANNELS

Jπ = 7+

Channel Number Interacting Pair Partial Wave t l S j S L

1 3D2 0 2 1 2 2 5

2 1D2 1 2 0 2 2 5

3 1P1 0 1 0 1 1 6

4 3P1 1 1 1 1 1 6

5 3P2 1 1 1 2 2 6

6 1S0 1 0 0 0 0 7

7 3S1 0 0 1 1 1 7

8 3D1 0 2 1 1 1 7

9 3D2 0 2 1 2 2 7

10 1D2 1 2 0 2 2 7

11 1P1 0 1 0 1 1 8

12 3P1 1 1 1 1 1 8

13 3P2 1 1 1 2 2 8

14 3D2 0 2 1 2 2 9

15 1D2 1 2 0 2 2 9

16 P11 1/2 1 1/2 1/2 1 6

17 P13 1/2 1 1/2 3/2 1 6

18 P31 3/2 1 1/2 1/2 1 6

19 P33 3/2 1 1/2 3/2 1 6

20 P13 1/2 1 1/2 3/2 2 6

21 P33 3/2 1 1/2 3/2 2 6

22 S11 1/2 0 1/2 1/2 0 7

23 S31 3/2 0 1/2 1/2 0 7

24 S11 1/2 0 1/2 1/2 1 7

25 S31 3/2 0 1/2 1/2 1 7

26 P11 1/2 1 1/2 1/2 1 8

27 P13 1/2 1 1/2 3/2 1 8

28 P31 3/2 1 1/2 1/2 1 8

29 P33 3/2 1 1/2 3/2 1 8

30 P13 1/2 1 1/2 3/2 2 8

31 P33 3/2 1 1/2 3/2 2 8
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