

Submitted to Flinders University, South Australia Faculty of Health Sciences, Department of Gastroenterology AOU: Professor Graeme P. Young

CONSEQUENCES OF THE REGULATION OF DNA DAMAGE AND OTHER HOST RESPONSES BY FISH OIL FOR COLORECTAL ONCOGENESIS.

A Ph.D. Thesis By Laura Sophia Nyskohus, B.S (Hons)

5th January 2009

TABLE OF CONTENTS

	PAGE
Table of contents	2
Abstract	
Declaration	
Acknowledgments	10
List of figures	
List of tables	
List of abbreviations	
List of abstracts and publications	

<u>CHAPTER 1</u> Introduction and literature review

Ration	ale	19
1.1.1.	The burden of colorectal cancer	19
1.1.2.	The effect of diet on colorectal cancer	21
1.1.3.	Omega-3 polyunsaturated fatty acids and chemoprevention	23
The de	velopment of colorectal cancer	24
1.2.1.	The biology of tumour formation	24
1.2.2.	Genomic instability in the adenoma-carcinoma sequence	26
1.2.3.	Types and causes of genomic instability	28
DNA a	adducts	29
1.3.1.	What is an adduct?	29
1.3.2.	The O ⁶ methyldeoxyGuanosine DNA adduct	30
	1.3.2.1. Formation of O ⁶ medG	31
	1.3.2.2. Mispair and mutational properties of <i>O</i> ⁶ medG	32
	1.3.2.3. <i>O</i> ⁶ medG levels in human and animal studies	35
	1.3.2.4. <i>O</i> ⁶ medG as an early biomarker for CRC	36
1.3.3.	The removal and repair of DNA adducts	39
	1.3.3.1. Apoptosis	39
	1.3.3.2. Methylguanine methyltransferase (MGMT)	40
	1.3.3.3. Base excision repair (BER)	42
	1.3.3.4. The mismatch repair pathway (MMR)	43
Diet ar	nd disease interactions	44
1.4.1.	Dietary fats and CRC	45
1.4.2.	Omega-3 polyunsaturated fatty acids	46
1.4.3.	Potential mechanisms of chemoprevention via omega-3 PUFAs	48
	 1.1.1. 1.1.2. 1.1.3. The definition of the second second	 1.1.1. The burden of colorectal cancer

		1.4.3.1. Inhibition of unfavourable eicosanoid biosynthesis	48
		1.4.3.2. Influence on COX-2 Expression	50
		1.4.3.3. Influence on gene expression and transcription factors	50
		1.4.3.4. Formation of lipid peroxidation products and apoptosis	51
	1.4.4.	Population, cohort and case control studies and omega-3 PUFAs.	52
	1.4.5.	In vivo studies and omega-3 PUFAs	54
		1.4.5.1. Acute animal studies	54
		1.4.5.2. Long-term animal studies	56
	1.4.6.	In vitro studies and omega-3 PUFAs	59
1.5.	Novel	food technologies involving omega-3 PUFAs	60
	1.5.1.	Microencapsulation of fish oil	60
1.6.	Resear	ch questions and aims	61
	1.6.1.	The pattern of acute homeostatic responses in rat colonic	
		epithelium following an insult of alkylating carcinogen	61
	1.6.2.	The effect of both free and encapsulated tuna oil on the	
		lipid profile in animal tissue	63
	1.6.3.	Regulation of acute homeostatic responses in rat colonic	
		epithelium following an insult of alkylating carcinogen	
		using dietary fish oil	65
	1.6.4.	The regulation of acute homeostatic responses in rat colonic	
		epithelium and possible consequences for the development	
		of colorectal carcinogenesis	66

<u>CHAPTER 2</u> Methodology

2.1.	The Az	coxymethane-Rat model of Colorectal Carcinogenesis	68
2.2.	Anima	ls	70
2.3.	Ethics		70
2.4.	Chemi	cals	70
2.5.	Diets		71
	2.5.1.	Encapsulation of fish oil	72
2.6.	Additio	onal assays	73
	2.6.1.	Apoptosis (Haematoxylin staining)	73
	2.6.2.	Apoptosis (TUNEL staining)	74
	2.6.3.	Cell Proliferation ki-67 assay	75
	2.6.4.	Short chain fatty acid assay	75
	2.6.5.	Long chain fatty acid assay	76

	2.6.6.	ACF Methylene blue assay	77
2.7.	Statisti	cal analysis	77

<u>CHAPTER 3</u> Establishing the *O*⁶methyldeoxyGuanosine immunohistochemical assay

3.1.	Aim		78
3.2.		mental rationale	78
3.3.	O^6 med	G immunohistochemical protocol	79
3.4.	Quanti	fication of O ⁶ medG immunoassay results	81
	3.4.1.	Scoring by eye	81
	3.4.2.	Image analysis system	83
		3.4.2.1. Capturing the image	83
		3.4.2.2. Generating the data	85
		3.4.2.3. Organising the data	90
3.5.	Camera	a comparison	93
3.6.	Summa	ury	95

CHAPTER 4

Study of acute homeostatic responses to a carcinogen in colonic epithelium

4.1.	Time c	ourse study	97
	4.1.1.	Aims	97
	4.1.2.	Experimental rationale	97
	4.1.3.	Study design	99
	4.1.4.	Results	101
		4.1.4.1. Rat weights	101
		4.1.4.2. Time course of apoptosis	102
		4.1.4.3. Time course of crypt cellularity	103
		4.1.4.4. Apoptotic Index	104
		4.1.4.5. Confirmation of apoptosis using TUNEL	105
		4.1.4.6. Time course of cell proliferation	107
		4.1.4.7. Proliferative index	108
		4.1.4.8. Time course of O^6 medG DNA adduct formation	109
		4.1.4.9. The distribution of host responses along the colonic crypt	111
		4.1.4.10. Data summary	118
	4.1.5.	Discussion	119
4.2.	Methor	xyamine study	125
	4.2.1.	Aim	125

4.2.2.	Experimental rationale	125
4.2.3.	Study design	127
4.2.4.	Results	129
	4.2.4.1. Apoptosis	129
4.2.5.	Discussion	130

Study of the effect of free and microencapsulated fish oil on the omega-3 PUFA content in tissue phospholipid

5.1.	Dietary	intervention study	133
	5.1.1.	Aims	133
	5.1.2.	Experimental rationale	134
	5.1.3.	Study design	137
	5.1.4.	Results	140
		5.1.4.1. Rat Weights	140
		5.1.4.2. Caecal short chain fatty acid profile	140
		5.1.4.3. Faecal short chain fatty acid profile	142
		5.1.4.4. Faecal pH levels	144
		5.1.4.5. Long chain fatty acid phospholipid profiles	145
		5.1.4.6. Omega-6: omega-3 ratio	158
	5.1.5.	Discussion	159

CHAPTER 6

Study of the regulatory effects on acute apoptosis, cell proliferation and colonic O^6 medG by dietary fish oil

6.1.	Dietary	intervention study	162
	6.1.1.	Aims	162
	6.1.2.	Experimental rationale	162
	6.1.3.	Study design	165
	6.1.4.	Results	166
		6.1.4.1. Dietary effect on apoptosis	166
		6.1.4.2. Dietary effect on crypt cellularity and the apoptotic index.	167
		6.1.4.3. Dietary effect on cell proliferation and the proliferative	
		index	168
		6.1.4.4. Dietary effect on O ⁶ medG DNA adduct	169
		6.1.4.5. Dietary effects on the distribution of apoptosis, cell	
		proliferation and O^6 medG throughout the colonic crypt	170

	6.1.5.	Discussion	173
6.2.	N7me	G study	177
	6.2.1.	Aims	177
	6.2.2.	Experimental rationale	177
	6.2.3.	Study design	179
	6.2.4.	Results	180
		6.2.4.1. N7meG DNA adduct levels	180
	6.2.5.	Discussion	181

Study of the regulatory effects on colonic ACF lesions by dietary fish oil

7.1.	ACF st	tudy	183
	7.1.1.	Aims	183
	7.1.2.	Experimental rationale	184
	7.1.3.	Study design	185
	7.1.4.	Results	188
		7.1.4.1. Progressive rat weights	188
		7.1.4.2. Dietary effect on caecal and faecal contents	189
		7.1.4.3. Dietary effect on ACF formation	191
	7.1.5.	Discussion	193

CHAPTER 8

Conclusions and future directions

8.1.	Introduction	196
8.2.	Summary of aims and hypothesis of thesis	197
8.3.	The acute host responses in rat colonic epithelium in response to an	
	insult of alkylating agent	199
8.4.	Benefits of the encapsulation of fish oil	204
8.5.	The regulation of acute homeostatic responses by fish oil	205
8.6.	The consequences of regulation of acute homeostatic	
	responses by fish oil for colorectal oncogenesis	209
8.7.	Implications of this research and future steps	211
Appen	dix	214
Refere	nces	215

ABSTRACT

The acute cellular responses to DNA damaging agents are critical in determining the long term outcome of disease. A cell's susceptibility to damage, or its capacity to remove or repair this damage, all contributes to the eventual health or disease of tissues. This process is especially crucial in colonic epithelial cells and in the development of colorectal oncogenesis. The colonic lumen is constantly subjected to different environmental compounds that may have genotoxic properties that can initiate mutational events and possibly carcinogenesis. Therefore, the study of a regulatory dietary agent that improves the colonic cells ability to withstand damage, improve repair and retain its general health is a significant and practical tool in the fight against colorectal cancer.

The health benefits of fish oil, including its potential chemopreventative properties, have been reported in numerous studies. However, the mechanism by which this protective effect occurs remains unclear. A gap in current literature exists that fails to explore the effect of fish oil on the early cellular responses to carcinogenic agents. Therefore, this thesis aims to firstly, better understand the specific host responses to an insult of carcinogen *in vivo*; secondly, to determine if regulation of these responses can be achieved by dietary fish oil; and lastly, to explore the potential consequences of this regulation for colorectal oncogenesis.

All experimental work was carried out using a rat – azoxymethane (AOM) animal model of colorectal carcinogenesis. The key host responses to the carcinogen that were measured included the formation of acute O^6 methyldeoxyGuanosine (O^6 medG) DNA damage, the acute apoptotic response to genotoxic carcinogen (AARGC) and cell proliferation rates. A novel immunochemical assay was designed to detect both the levels and distribution of O^6 medG in colonic cells. With this established, a pattern of these host responses were mapped out over time. A dietary intervention study trialling a range of fish oil diets containing different doses and forms was then carried out to determine if modulation of responses occurred. This study was then followed on by a longer term study that explored the consequences of regulation by fish oil on pre-neoplastic lesions in the colon.

The acute host responses to an insult of AOM showed that colonic *O*⁶medG formation began 2h post AOM administration and peaked at 6h. The AARGC response followed

the pattern of O^6 medG by a 2h delay, peaking at 8h post AOM administration, while cell proliferation rates decreased significantly after 6h.

The inclusion of tuna oil in the diet did not affect either the AARGC or cell proliferation rates when given in any form or at any dose. Animals fed a diet with 15% free tuna oil and 7% encapsulated tuna oil did however have significantly reduced levels of O^6 medG DNA damage in the distal colon (p<0.05). This reduction in O^6 medG levels did not translate into a reduction of ACF lesion, with a protective effect against ACF lesions only being observed in animals fed the high dose fish oil groups.

Analysis of the data suggest that the acute host responses to an insult of DNA damaging agent appear to be closely related, all reaching their peak level of response 6-8h after the insult. The short time frame between both O^6 medG and apoptosis also did not support the current popular theory which explains O^6 medG mediated apoptosis. An alternate hypothesised BER mediated apoptotic pathway was also not supported.

Regulation of the acute apoptotic response or the cell proliferation rate was not achieved by dietary fish oil. However, a high dose fish oil diet did regulate the level of O^6 medG in colonic epithelial cells by significantly reducing the total O^6 medG DNA damage load. This reduction of O^6 medG by a high fish oil diet however, was not translated into a protective effect against the formation of pre-neoplastic lesions. These data suggests that regulation of the acute O^6 medG response to a damaging agent does not necessarily imply protection for longer term colorectal oncogenesis. Additional studies exploring both the effect of fish oil on AOM metabolising enzymes and also a longer term cancer study may help to answer some pertinent questions evolving from this thesis.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another other person except where due reference is made in the text.

Laura Sophia Nyskohus

January, 2009.

ACKNOWLEDGMENTS

I would like to express my gratitude and deepest thanks to the following people for their ongoing help and support during the completion of my research;

Professor Graeme Young, my principle supervisor, who gave me the opportunity to undertake this research in a supportive and enjoyable environment. Thank you for all of your guidance and support.

Dr Ying Hu, Dr Richard LeLeu and Dr Michael Michael whose time, advice and expertise was greatly appreciated and provided me with new insights into my research.

Olga and Jean – thank you for your ongoing encouragement and support. Our lab discussions provided me with countless insights into my research and life in general.

Richard Head and Trevor Lockett from the P-Health National Flagship Programme for their financial assistance and the many thought provoking discussions and ideas.

Luz Sanguansri and Maryanne Augustin from Food Sciences Australia for your help and assistance in the preparation of the encapsulated material.

CSIRO staff including Paul Jackway, Ian Saunders, Mahinda Abeywardena, and Michael Adams. Your help with the implementation of software and statistical advice was much appreciated, as was the technical help and advice with regard to fish oil.

Geoff Margison and Mandy Watson from the Patterson Institute of Cancer Research. Thankyou for your encouragement and willingness to provide support and advice whenever needed.

Thank you to all my friends and family, especially to my parents, for all of your endless love and support.

Finally, to my husband Alan; for your patience, your belief and your encouragement in everything I do, thank you.

LIST OF FIGURES

CHAPTER 1

Figure 1:	The multi-staged development of colorectal cancer and accompanying
	affected genes.
Figure 2:	From O^6 medG adduct to mutation – the mispairing properties of
	<i>O</i> ⁶ medG
Figure 3:	The pathway of omega-6 and omega-3 PUFA synthesis
Figure 4:	Metabolism of AA and EPA via cyclooxygenase and 5-Lipoxygenase

CHAPTER 2

Figure 5: The metabolism of AOM

Figure 6:	O^6 medG staining intensity counted by eye of a rat 6h post AOM
Figure 7:	Comparing the mean O^6 medG count done in duplicate along the colonic
	crypt of a rat 6h post AOM
Figure 8:	An image of a colonic crypt deemed suitable for image analysis
Figure 9:	CSV data file automatically created after identifying line of interest in a
	crypt
Figure 10:	O^6 medG image analysis red, green and blue raw data and luminescence
	counts
Figure 11:	O^6 medG image analysis red, green and blue counts adjusted for
	luminescence
Figure 12:	O^6 medG image analysis RoB and BoR ratio data and the measured RoB
	average
Figure 13:	Repeated counts from a line drawn through the centre of nuclei from a
	crypt stained for O^6 medG
Figure 14:	Adjusted RoB counts using the 'fmeasure' function with 5 different
	average boundaries
Figure 15:	XLS template
Figure 16:	A CSV file pasted into the XLS template
Figure 17:	Average RoB data for each nucleus along the crypt length combined
	with the scatter of individual RoB counts for each nuclei
Figure 18:	Comparison of RoB ratio from saline control colonic crypt for different
	camera settings

Figure 19:	Comparison of RoB ratio from AOM treated colonic crypt for different
	camera settings
CHAPTER 4	
Figure 20:	Time course study time line
Figure 21:	Rat weights
Figure 22:	Number of apoptotic cells per crypt over 48h following an insult of
	AOM
Figure 23:	Crypt cellularity over 48h following an insult of AOM
Figure 24:	Apoptotic index over 48h following an insult of AOM
Figure 25:	Comparison of TUNEL Vs Haematoxylin apoptotic counts
Figure 26:	Scatter plot of TUNEL Vs Haematoxylin apoptotic counts
Figure 27:	Number of proliferating cells per crypt over 48h following an insult of
	AOM
Figure 28:	Proliferative index over 48h following an insult of AOM
Figure 29:	Images of O^6 medG negative and positive staining in rat colonic crypt
	using the immunochemical assay.
Figure 30:	Total O^6 medG adduct load over 48h following an insult of AOM
Figure 31A:	O^6 medG distribution along the colonic crypt length at different time
	point
Figure 31B:	Apoptotic distribution along the colonic crypt length at different time
	points
Figure 31C:	Distribution of proliferative cells along the colonic crypt length at
	different time points
Figure 32A.1:	Change in O^6 medG over time by crypt compartment
Figure 32A.2:	Trend of O^6 medG levels represented by crypt compartment over 48h
Figure 32B.1:	Change in the apoptotic response over time by crypt compartment
Figure 32B.2:	Trend of apoptosis represented by crypt compartment over 48h
Figure 32C.1:	Change in cell proliferation over time by crypt compartment
Figure 32C.2:	Trend of cell proliferation represented by crypt compartment over 48h
Figure 33:	Apoptosis, O ⁶ medG and cell proliferation levels over 48h following an
	insult of AOM
Figure 34:	MX Study timeline
Figure 35:	MX Study Apoptosis counts
CHAPTER 5	

Figure 36:	Acute dietary study time line
Figure 37:	Caecal SCFA levels

Figure 38:	Caecal Butyrate levels
Figure 39:	Faecal SCFA levels
Figure 40:	Faecal Butyrate levels
Figure 41:	DHA and EPA levels in Heart phospholipid
Figure 42:	DHA and EPA levels in Liver phospholipid
Figure 43:	DHA and EPA levels in Kidney phospholipid
Figure 44:	DHA and EPA levels in Adipose phospholipid
Figure 45:	DHA and EPA levels in Small Intestine phospholipid
Figure 46:	DHA and EPA levels in Proximal Colonic phospholipid
Figure 47:	DHA and EPA levels in Distal Colonic phospholipid
Figure 48:	DHA and EPA levels in Plasma
Figure 49:	DHA and EPA levels in Faeces
Figure 50:	Polyunsaturated n6: n3 ratio across all diets in all samples measured

Figure 51:	Modulation of AARGC and O^6 medG contributing to a reduction in CRC
Figure 52:	Number of apoptotic cells per crypt
Figure 53:	Crypt cellularity
Figure 54:	Apoptotic Index
Figure 55:	Number of proliferating cells per crypt
Figure 56:	Cell proliferative index
Figure 57:	Total O ⁶ medG adduct load over 48h
Figure 58:	Effect of diet on the apoptotic response by crypt compartment
Figure 59:	Effect of diet on cell proliferation over time by crypt compartment
Figure 60:	Effect of diet on O^6 medG load over time by crypt compartment
Figure 61:	N7meG levels in Liver DNA

Figure 62:	ACF study time line
Figure 63:	Progressive rat weights
Figure 64:	Caecal acetate, propionate and butyrate levels
Figure 65:	Faecal acetate, propionate and butyrate levels
Figure 66:	Total ACF count

LIST OF TABLES

CHAPTER 2

Table 1:	Composition of Control diet
----------	-----------------------------

CHAPTER 4

Table 2:	Apoptosis counts per crypt
Table 3:	Summary of acute homeostatic responses in colonic epithelium over
	time in response an insult of AOM
Table 4:	MX Study groups
Table 5:	MX Study apoptotic counts

CHAPTER 5

Table 6:	Diet Composition for acute fish oil experiment
Table 7:	Caecal SCFA data
Table 8:	Faecal SCFA data
Table 9:	Faecal pH
Table 10:	Fatty acid Profile from phospholipid of heart in rats fed different
	experimental diets.
Table 11:	Fatty acid Profile from phospholipid of liver in rats fed different
	experimental diets.
Table 12:	Fatty acid Profile from phospholipid of kidney in rats fed different
	experimental diets.
Table 13:	Fatty acid Profile from adipose tissue in rats fed different experimental
	diets.
Table 14:	Fatty acid Profile from phospholipid of small intestine in rats fed
	different experimental diets
Table 15:	Fatty acid Profile from the phospholipid of proximal colon tissue in rats
	fed different experimental diets.
Table 16:	Fatty acid Profile from phospholipid of distal colon in rats fed different
	experimental diets.
Table 17:	Fatty acid Profile from plasma in rats fed different experimental diets.
Table 18:	Fatty acid Profile from faecal matter in rats fed different experimental
	diets

Table 20:	Diet compositions for ACF study
Table 21:	pH levels in caecal and faecal samples
Table 22:	Butyrate levels in caecal and faecal samples
Table 23:	Analysis of Colonic ACF Counts

LIST OF ABBREVIATIONS

0 OX 10	
8-OH-dG	8 – hydroxy-2-deoxy Guanosine
AA	Arachnidonic Acid
AARGC	Acute Apoptotic Response to Genotoxic Carcinogen
ACF	Aberrant Crypt Foci
AOM	Azoxymethane
APC	Adenomatous Poliposis Coli
BER	Base Excision Repair
BNF	Beta - naphthoflavone
CRC	Colorectal cancer
CSIRO	Commenwealth Scientific Industrial Research Organisation
DAB	3,3° Diaminobenzidine
DHA	Docosahexaenoic acid
DHM	Dimethylhydrazine
ENU	N-ethyl-N-nitrosourea
EPA	Eicosapentaenoic acid
FAP	Familial Adenomatous Polyposis
FIT	Faecal Immunohistochemical Test
FOBT	Faecal Occult Blood Test
FSA	Food Sciences Australia
GC	Gas Chromatography
HNPCC	Hereditary Non-Polyposis Colorectal Cancer
LA	Linoleic Acid
LCFA	Long Chain Fatty Acid
LNA	Linolenic Acid
LOH	Loss of Heterozygosity
MAM	Methylazoxymethanol
MBN	Methylbenzylnitrosamine
MCFA	Medium Chain Fatty Acids
ME	Microencapsulated
MEMO	Microencapsulated menhaden oil
MESO	Microencapsulated sunflower oil
METO	Microencapsulated tuna oil
МО	Menhaden oil
MGMT	O ⁶ -methylguanine-DNA methyltransferase
MMR	Mismatch Repair
	L

MMS	Methyl methane-sulfonate
MNU	N-Nitroso-N-methylurea
MUFA	Monounsaturated fatty acid
N7meG	N7methyldeoxyGuanosine
O ⁶ medG	O ⁶ methyldeoxyGuanosine
PCNA	Proliferating nuclear cell antigen
PICR	Patterson Institute of Cancer Research
PPAR	Peroxisome Proliferators Activated Receptors
PUFA	Polyunsaturated Fatty Acid
ROI	Reactive Oxygen Intermediates
SCFA	Short Chain Fatty Acid
SFA	Saturated fatty acid
SO	Sunflower oil
ТО	Tuna oil

LIST OF ABSTRACTS AND PUBLICATIONS

Nyskohus LS, Hu Y, LeLeu RK, Young GP (2008) A comparison of the effects of free and microencapsulated omega-3 PUFAs on early colorectal cancer biomarkers in the azoxymethane animal model. Abstract only. *Asia Pacific Journal of Clinical Nutrition*. V17-s3 S79.

Nyskohus LS, Hu Y, LeLeu RK, Young GP (2007) Relationship between genotoxininduced DNA damage and homeostatic responses in rat colonic epithelium. Abstract only. *Journal of Gastroenterology and Hepatology*. V22-s3 A316.

Nyskohus LS, Hu Y, LeLeu RK, Young GP (2007) Encapsulated omega-3 fatty acids regulate azoxymethane (AOM)-induced DNA damage in the rat. Abstract only. *Journal of Gastroenterology and Hepatology*. V22-s3 A405.

Young GP, Hu Y, Le Leu RK, **Nyskohus LS** (2005) Dietary fibre and colorectal cancer: a model for environment--gene interactions. *Molecular nutrition and food research*. Jun: 49:571-84.

Nyskohus LS, Hu Y, LeLeu RK, Young GP (2005) Azoxymethane induced detection of *O*⁶methylguanine DNA adducts in rat colon. Abstract only. *Journal of Gastroenterology and Hepatology*. V20-s A17.