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Abstract 

This study modelled the action potential firing rate of mouse bladder afferent nerves for an 

inflated bladder using a finite element analysis and a Hodgkin-Huxley model. Pressure curve 

data was captured for in vitro mouse bladders using a multistage volumetric inflation. A 3D 

model replicating mouse bladder dimensions was constructed for the finite element model. 

Material properties and boundary conditions for the finite element model were assigned to 

emulate the in vitro bladder properties. The finite element model was performed in two 

stages, with the first stage capturing the displacement coordinates for the final volume, and 

the second stage capturing the viscoelastic stress response and staged volumetric inflation. 

Stress and displacement data were combined to recreate the in vitro pressure curves for 

finite element analysis model validation. A stimulus in the form of stress values from 

multiple nodes on the finite element model was applied to a modified Hodgkin-Huxley 

model. The Hodgkin-Huxley model generates a series of action potentials from which the 

firing rate is calculated. The stimulus stress values were input to the Hodgkin-Huxley model 

using both a linear relation and an exponential relation. Single nodes were examined 

showing that firing rate changes as a function of position for models where the stiffness 

changes as a function of position. Multiple node outputs were combined to simulate a 

receptor field, showing that firing rate increases as node count increases. Model validation 

was performed against existing firing rate data for a pressure volume curve. The 

exponentially modelled input was found to be a better fit for firing rate data validation. 
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1. Introduction

Computer modelling of neural outputs, which can be considered a subset of biological tissue 

modelling since neural outputs are a property of the material, is a relatively new field of 

study. The seminal work on modelling neural outputs was the research by Alan Hodgkin and 

Andrew Huxley in 1952. They performed research on squid giant axons using voltage clamp 

experiments and developed a model, now known as the Hodgkin-Huxley model, for action 

potentials as a function of the cumulative ion flux and capacitance across the cell membrane 

of the nerve. Their results garnered a Nobel prize. 

Hodgkin and Huxley’s model left room for future work with additional inputs (i.e. cell 

stimulus) to be modelled, including heat, chemical and mechanical inputs. Xu et al. (2008) 

used the work of Hodgkin and Huxley with good success modelling neural outputs for 

transdermal nociceptors (i.e. skin pain) as a function of thermal inputs. Xu and colleagues’ 

research left significant work to be done for modelling nerve inputs as mechanical events. 

This thesis aims to model the action potential firing rate of mouse bladder afferent nerves 

for an inflated bladder using finite element analysis and a modified Hodgkin-Huxley model. 

This research fills a gap in the field by modelling nerve mechanical events as a stimulus into 

a modified Hodgkin-Huxley model. Mouse bladders were chosen as the tissue type to be 

studied because of the readily available pressure volume curve experimental data and the 

simple mechanical environment that could be modelled from it. Neural output firing rate 

data of the distended mouse bladder is available from related previous research conducted 

on mice for model validation. A literature review is provided to give a broader 

understanding of the relevant research and how this research fits into that framework. 

This research can be broadly divided into two parts. The first part models the mouse bladder 

undergoing volumetric inflation using the finite element method (FEM). The second part 

takes the stress values from the inflated bladder and feeds these values into a modified 

Hodgkin-Huxley model to model mouse bladder afferent nerve action potentials. 

For the FEM model, preliminary pressure curve data was captured by Wade (Flinders 

University, 2019) for in vitro mouse bladders using a multistage volumetric inflation. A 3D 

model replicating mouse bladder dimensions was constructed and a FEM analysis was 

performed using this model. In the FEM model, material properties and boundary 



10 

conditions were assigned to emulate the in vitro bladder properties. The FEM model was 

performed in two stages, with the first stage capturing the displacement coordinates for the 

final volume, and the second stage capturing the viscoelastic stress response and staged 

volumetric inflation. Stress and displacement data were combined to recreate the in vitro 

pressure curves for FEM analysis model validation. Stress data was captured at multiple 

time points from discrete positions on the bladder to be fed into the Hodgkin-Huxley model. 

For the Hodgkin-Huxley model, stress values from multiple nodes on the FEM model were 

input to the Hodgkin-Huxley model. The results section of this research tests for firing rate 

against several variables. The output of the Hodgkin-Huxley model is the action potential 

firing rate as a function of stress. Stress values were input using both a linear relation and an 

exponential relation. Firing rate was tested against stress input for single nodes as a 

function of position. Firing rate was tested against stress input with increasing node counts. 

Model validation was performed against existing firing rate data for a pressure volume 

curve found in Daly (2014). A discussion of the results and conclusion is included at the end 

of the paper. 
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2. Literature Review

2.1 Bladder, Ureter, Urethra and Support Structures Anatomy 

The bladder is a pressure vessel that stores urine ready for micturition at a later point in 

time. The gross anatomy of the bladder in mammals comprises the bladder with two 

ureters, which originate from the kidneys, emptying urine into the bladder. Inferior to the 

ureters is the urethra, which acts as the bladder outlet, emptying urine outside the body. 

The ureters and urethra enter the bladder close together in an area called the trigone. The 

urethra has an internal and external urethral sphincter to maintain bladder pressure 

(Marieb, 2012; Silverthorn, 2016; Widmaier, 2016). A diagram of the human bladder is 

shown in Figure 1. 

Figure 1 – (a) Human bladder anatomy and (b) histology of the bladder wall (Open Stax 

College, 2013) 

The wall of the bladder consists mainly of the detrusor muscle. The bladder wall is 

composed of four layers; the urothelium, lamina propria, muscularis propria, and serosal 

layer. The urothelium is divided into three layers: the basal, intermediate, and superficial 
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layers. The basal layer is comprised of small cuboidal cells. The intermediate layer cells are 

polygonal and can stretch and flatten. The superficial layer has large multinucleated cells 

that forms a protective layer for the bladder mucosa (Marieb, 2012). 

The lamina propria has a basement membrane, which is a single layer of cells separating the 

epithelial layer from the lamina propria and which acts as a filtration barrier and supporting 

structure for the mucosal layer and separates it from the urothelium. It contains nerves, 

lymphatics, capillaries, elastic fibres, and a thin layer of smooth muscle called the muscularis 

mucosae. It has been suggested that the lamina propria acts as a capacitance layer for the 

bladder, signalling bladder compliance and enabling changes to the volume of bladder 

(Marieb, 2012). 

The bladder wall contains interstitial cells of Cajal-like cells. It has been suggested that these 

cells may act as intermediary cells transducing nerve signals to detrusor smooth muscle cells 

(Drumm, 2014). 

The detrusor muscle is the muscularis propria. It has three layers of muscles lying transverse 

to each other; the inner and outer longitudinal layers, and the intermediate circular layer. 

The layers consist of large, well defined bundles of muscle. The serosa covers the bladder 

with mesothelium (Marieb, 2012). 

Innervation of the urinary bladder occurs from afferent and efferent nerves as shown in 

Figure 2. Sympathetic innervation of the bladder starts from spinal cord segments T10-L2, 

with preganglionic axons passing into primary sympathetic neurons in the inferior 

mesenteric ganglion and the ganglia of the pelvic plexus. The ganglia have postganglionic 

fibres that travel in the hypogastric and pelvic nerves of the bladder, where it is believed 

that the sympathetic activity relaxes the smooth muscle of the bladder (allowing urine 

accommodation) and causes the internal urethral sphincter to close (Purves, 2017). 
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Figure 2 – Innervation to the bladder, afferent nerves in green (Purves, 2017) 

The afferent nerves’ reflexes are supplied by mechanoreceptors in the bladder wall. These 

mechanoreceptors convey visceral afferent information to second order neurons in the 

dorsal horn of the spinal cord. These neurons also project into higher integrative centres in 

the periaqueductal grey of the midbrain (Purves, 2017).  

The main function of the bladder afferent nerves is to signal bladder fullness to the brain. 

Fluid accumulation slowly stretches the bladder to a larger volume and applies pressure to 

the bladder wall (Marieb, 2012; Purves, 2017). The level of bladder fullness sensation is 

conveyed to the brain by tension-sensitive afferent nerves in the bladder wall (Morrison, 

1999). 

Image removed due to copyright restriction.
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As the bladder nears capacity, sacral visceral motor outflow increases and thoraco-lumbar 

motor outflow decreases, which causes the bladder to contract and the internal sphincter to 

relax. Voluntary somatic motor innervation of the external urethral sphincter muscle holds 

urine in place ready for voluntary release (Purves, 2017). 

Nerves transfer and store information across the body. Nerves consist of multiple neurons. 

The structure of a typical neuron, see Figure 3, is comprised of the presynaptic cell which 

has an axon (the signal conduction path) leading to the dendrite of a postsynaptic cell. The 

axon synapses onto a dendrite and conducts the signal (Purves, 2017; Reece, 2014). 

Figure 3 – Nerve neurons and synapse (Reece, 2014) 

Nerves transmit signals using action potentials. The neuron cell has a voltage potential 

across its membrane, known as the resting membrane potential; see Figure 4. The resting 

membrane potential is when the cell is at electrical rest, with no net movement of ions 

across the cell membrane, and is approximately -70 mV for neural cells. Neurons have gated 

channels in the membrane wall which can open or close in response to a stimulus (e.g. 

stretch) which can elicit changes in the membrane potential. When the stimulus raises the 

voltage high enough that it reaches the depolarisation threshold, many voltage gated ion 

channels open, triggering a large inflow of 𝑁𝑎+ that rapidly increases the voltage potential. 

The return of the cell’s voltage to the resting membrane potential occurs by inactivation of 

Image removed due to copyright restriction.
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the 𝑁𝑎+ channels and the opening of many 𝐾+ channels, which increase 𝐾+ efflux (Purves, 

2017; Reece, 2014). 

The nerve impulse (the action potential) travels from the axon hillock, along the axon to the 

synaptic terminal. The action impulse from the synapse signals the next synaptic cell to 

depolarise and continue the signal in a signalling cascade to the brain (Purves, 2017; Reece, 

2014). The Hodgkin-Huxley model in this research models action potentials as a result of the 

bladder wall stress stimulus from the FEM model. 

Figure 4 – Cell action potential (Reece, 2014) 

There are multiple nerve types present in the bladder. Zagorodnyuk et al. (2007) classified 

the properties of major classes of mechano-sensory neurons projecting to the bladder by 

examining the effects of mechanical and chemical stimuli on guinea pig bladder afferents. 

They classified four types of bladder sensory neurons based on the difference in reaction to 

the stimuli and concluded that each functional class was likely to convey different types of 

information to the central nervous system. The different types of receptor are found in 

Table 1. 

Image removed due to copyright restriction.
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Table 1 – Summary table for properties of major classes of mechano-sensory neurons into 

bladder 

Receptor Type Activation Stimulus Removal of Urothelium 

Muscle mechanoreceptors Stretch but not mucosal stroking 

with von Frey hairs, hypertonic 

saline, 𝛼, 𝛽-methylene ATP or 

capsaicin 

No effect on stretch-

induced firing 

Muscle mechanoreceptors Stretch, mucosal stroking with von 

Frey hairs, hypertonic saline, 𝛼, 𝛽-

methylene ATP but not capsaicin 

Reduction of stretch 

and stroking induced 

firing 

Mucosal high-responding 

mechanoreceptors 

Stretch-insensitive and activated 

by mucosal stroking with von Frey 

hairs, hypertonic saline, 𝛼, 𝛽-

methylene ATP and capsaicin 

Stroking induced firing 

significantly reduced 

Mucosal low-responding 

mechanoreceptors 

Stretch-insensitive and weakly 

activated by mucosal stroking with 

von Frey hairs, but not hypertonic 

saline, 𝛼, 𝛽-methylene ATP and 

capsaicin 

Stroking induced firing 

reduced 

Zagorodnyuk et al. showed that receptor types changed, both in what stimulus they were 

sensitive to, and their level of stimulus (i.e. low-responding versus high-responding). There 

were one to nine nerve receptor hotspots within a nerve field of  2.5 ± 0.6 𝑚𝑚2. This 

research represents the hotspots in a nerve field as multiple nodes on the bladder model, 

using the average of the numbers from Zagorodnyuk. The mucosal high and low-responding 

mechanoreceptors can be considered nociceptors (Zagorodnyjk 2008, Kendroud 2019). 

Similar research was conducted by Xu and Gebhart (2008) on mouse bladders. They 

subjected an in vitro mouse bladder preparation to mechanical stimuli and found four 

different classes of afferent nerve: serosal, muscular, muscular/urothelial, and urothelial, 

with similar categorisations of activation stimulus as Zagorodnyuk. They found the lumbar 
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splanchnic nerve contained mainly serosal and muscular afferents, while the pelvic nerve 

had all four classes. They found that these mechanosensitive afferents could detect a range 

of mechanical stimuli and each nerve class was tuned to detect a different type, magnitude 

and duration of stimulus. They classified the distribution of the classified nerve types which 

is reproduced in Figure 5. 

Figure 5 – Nerve type and distribution on mouse bladder (Xu 2007) 

De Wachter found that bladder sensations are not only the result of bladder distension and 

that other factors inside the bladder or bladder wall, e.g. central processing and/or cognitive 

manipulation, may have an important role. De Wachter also found that current methods to 

measure bladder sensations such as urodynamics, voiding diaries, forced diuresis, electrical 

stimulation and brain imaging may be sub‐optimal since each factor is considered in 

isolation (De Wachter et al., 2012). 

Zeng et al. found changes in mechanoreceptor afferent activity changed as a function of 

whether the bladder was obstructed or not, with peak contraction force and volume at peak 

contraction force both increasing dramatically but with the tension sensitivity of bladder 

Image removed due to copyright restriction.
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mechanoreceptors and normalised pressure response much lower, resulting in a weaker 

afferent drive in adverse pathologies. 

2.2 Bladder Mechanics and Models 

Whole bladder properties during filling were examined by Damaser (1999, pp. 51-58). 

Damaser related bladder pressure volume filling to properties of the bladder that include 

elasticity, viscoelasticity, plastic deformation, bladder shape, mass and distension. The 

author modelled bladders as spheroids finding a small difference in the pressure-volume 

curve between it and a similarly modelled spherical bladder (i.e. a change in compliance was 

observed). It is shown that in most bladder models the viscous (rate dependent) properties 

of the bladder can be ignored in situations that mimic the physiological filling rate of the 

bladder, which is very slow. Conversely it is shown that studies that use medium and fast fill 

cystometry have pressure-dependent filling rates. Damaser made assumptions to simplify 

the bladder wall mechanical properties. The bladder was considered isotropic and 

homogenous in its wall material properties. Damaser used stress as a measure in place of 

force. 

A spherical bladder shape has been assumed in many studies (Le Feber et al., 2004; Reigner, 

1983; Tozeren, 1986; Watanabe et al., 1981). 

Watanabe et al. (1981) used the law of Laplace (𝑝 =
2𝑇

𝑟
, where 𝑝 = intravesical pressure, 𝑇 = 

the mural tension and 𝑟 = the radius of the spherical bladder) as a starting point to derive a 

new pressure volume equation. It was found when making use of the Mooney-Rivlin model 

that the Mooney-Rivlin material properties 𝑐1 and 𝑐2 are not constant.  

Lotz et al. (2004) produced a model to predict the bladder shape based on changes in rectal 

and bladder filling. The model used CT scan data to produce the model mesh shapes. They 

used the assumption that for each domain of the bladder wall, the distance to a reference 

point, r, could be described as a linear function of two variables, the bladder and rectal 

volumes. 

Argungu et al. (2015) developed three different models, each approaching a different aspect 

of the bladder. They modelled the mechano-sensitive response in afferent nerves by 
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altering McKean’s model of an excitable system and adding a stretch activated current. They 

made a quasi-linear viscoelastic model of the bladder wall. This model was successful in 

describing pressure as a function of time for increasing bladder volume. Lastly, they made a 

finite element method (FEM) model of the filling and emptying of a bladder. The model was 

limited in scope, being two dimensional only, but modelled the force during the filling and 

emptying phase. They identified a need to make a smooth walled bladder FEM model with 

forces on the bladder wall dependent on the nerve response. 

A simple geometrical shape to represent the bladder geometry was used in other studies on 

the topic (El Sayed et al. 2007; Massey & Abrams 1985; Hilton & Stanton 1983; Reigner et al. 

1983). Mouse bladders have very simple geometry and the elongated spheroid 

representation of the model geometry is closer to the tissue sample in shape than the 

spherical representation of a human bladder in other studies (Reis et al. 2011). 

2.3 Bladder Elasticity and Viscoelasticity Models and Material Properties 

The viscoelastic response of the bladder has been modelled in multiple studies as a function 

of strain. 

Regneir et al. (1983) investigated the pressure-volume behaviour of the urinary bladder. 

They were able to model the viscoelastic properties by using a more complex strain-energy 

function, first used by Mooney (1940) and Rivlin (1948), and adding an exponential. They 

noted that voiding dynamics were likely related to some aspect of the filling phase and 

strain energy function but that had not been investigated at the time. 

Fry (1999) found the extracellular matrix greatly influences the viscoelastic properties of the 

detrusor muscle and bladder. This work focused on obstructed bladder outflow to 

understand changes in contractile function of the bladder. 

Van Mastrigt et al. (1978) found agreeance between a viscoelastic model that used three 

Maxwell elements (a spring and dashpot combination) with another purely elastic element 

in parallel. This related the viscoelastic response of the bladder wall with strain rate data 

obtained from pig urinary bladder strips. The expression they derived was based on a non-
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linear viscoelastic model with the elastic moduli depending exponentially on strain. The 

model incorporated three exponentials and a constant. 

Barnes et al. (2015) measured the viscoelastic properties of porcine bladder tissue. Dynamic 

Mechanical Analysis was used on strips of tissue to test in the frequency range up to 10 𝐻𝑧. 

Storage stiffness was found to be higher than loss stiffness. The results were tabulated for 

later use in computational modelling studies like this one. 

The inflation of thick-walled, nonlinear viscoelastic spherical shells was examined by De 

Pascalis et al. (2015). Their model fit experimental data of the volumetric inflation of mouse 

bladders with a strain energy function. They developed a numerical technique to solve the 

nonlinear Volterra integral equation for a viscoelastic Mooney-Rivlin material, applying it to 

the inflation and deflation of a finite-thickness shell for a range of pressures. 

Tozeren (1986) developed an analytical method to find the constitutive equations of the 

fibre material properties in a thick shell from the pressure volume curves obtained from 

experimental data. 

2.4 Summary of key points and assumptions made for FEM and bladder models 

• The bladder is assumed to be a prolate spheroid.

• Mechanoreceptor nerve distribution is evenly spaced over the bladder.

• Nerve type represented is simplified to a single universal mechanoreceptor.

• Analysis is performed on groups of nodes, representing the multiple hotspot inputs

into a nerve.

• The input to the bladder is the volumetric displacement caused by urine influx.

• The Hodgkin-Huxley stimulus is the stress measured from the FEM bladder wall.

• Bladder material properties can be tuned to the model by starting with similar

material properties and then holding all other model variables constant (tables of

the material properties generated are listed in the methods section).
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2.5 Finite Element Method 

This is a short overview of the finite element method (FEM) as used in this research. Finite 

element method is a thoroughly researched topic and there are many good resources that 

expand on the topic (Logan, 2012; Kattan, 2008; etc.). These steps require significant effort 

on behalf of the researcher with a substantial proportion of time spent defining and 

troubleshooting each iteration of the problem (Spirka, 2010, p. 36). 

The finite element method is a way to quantize a system and, using numerical techniques, 

give an approximate solution using simultaneous algebraic equations rather than solving 

using differential equations that an analytical model would give (Logan, 2012, p. 1; Pepper & 

Heinrich, 2017, p. 1). The FEM finds solutions to problems defined in geometrical space by 

dividing the geometrical domain into small elements with a central node (Pepper & 

Heinrich, 2017, p. 1) and finding approximate values to any unknowns at a discrete (finite) 

number set of points in the model continuum (Logan, 2012, p. 1). 

The FEM can be divided into seven primary steps, according to Logan (2012, p. 8). 

One, divide (discretise) the domain and select the element type and associated nodes. If the 

system is already discrete, like a frame or truss, then further division may not be needed, 

and the solution will be exact. If the system is continuous, like biological matter is, then the 

discretisation technique will become important and the solution will only be approximate 

(Kattan, 2008, p. 1). Modern FEM solvers represent the elements as triangles, tetrahedra, 

quadrilaterals or other more complex polygons (Pepper & Heinrich, 2017, p. 31), which can 

be used to build a three-dimensional mesh, which represents the physical geometry and 

some other aspects in the domain like fluids. A trade-off must be made between making the 

element small enough to give usable results and large enough to reduce the computational 

burden (Logan, 2012, p. 9). 

Two, choose a displacement function for each element. This is defined using the nodal 

values of the element and can be a linear, quadratic, or cubic polynomial. These 

displacement functions are expressed in terms of nodal unknowns and are generally 

repeated for each element (Logan, 2012, p. 11). 
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Three, define the strain/displacement and stress/strain relationship equations necessary for 

deriving the equations for each element. E.g. for small strains we may relate strain 휀𝑥and 

displacement 𝑢 by 휀𝑥 =
𝑑𝑢

𝑑𝑥
.

For defining material properties accurately, Hooke’s law is often used to relate stress to 

strain, i.e. where stress = 𝜎𝑥  and the modulus of elasticity = 𝐸 (Logan, 2012, p. 11) 

𝜎𝑥 = 𝐸휀𝑥. 

Four, the element stiffness equations are written for each element in the domain (Kattan, 

2008, p. 1) using either the work or energy method or alternatively using the method of 

weighted residuals (Logan, 2012, p. 12).  These methods will produce the equations needed 

to describe the behaviour of each element. The element equations are written in matrix 

form as {𝑓} = [𝑘]{𝑑} 

where {𝑓} is the vector of element nodal forces, [𝑘] is the element stiffness matrix, and {𝑑} 

is the vector of unknown element nodal degrees of freedom or generalised displacements, 

𝑛 (Logan, 2012, p. 13). 

Five, assemble the global stiffness matrix and apply boundary conditions to the system. The 

element nodal equations generated in step four are assembled into a global stiffness matrix 

in the form {𝐹} = [𝐾]{𝑑}, which is a static solution where forces and displacements do not 

vary with time, where {𝐹} is the vector of global nodal forces, [𝐾] is the global stiffness 

matrix, and {𝑑} is the vector of known and unknown structure nodal degrees of freedom or 

generalised displacements (Logan, 2012, p. 14). To simplify the matrix, boundary conditions 

are applied (Logan, 2012, p. 14). 

Six, solve the system of equations by partitioning the global stiffness matrix. This gives rise 

to further equations which are solved by Gaussian elimination (Kattan, 2008, p. 1). This gives 

solutions for the displacement of the nodes (Logan, 2012, p. 8). 

Seven, solve for information like element forces, stresses, and strains (Kattan, 2008, p. 1; 

Logan, 2012, p. 14). These can be derived from the displacement solutions previously 

obtained in step six using assigned material properties. 
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Lastly, the results are interpreted. Troubleshooting and reiteration of the problem are 

performed after results are obtained. 

2.6 Hodgkin-Huxley Model 

The original Hodgkin-Huxley model describes the nerve impulse moving in a squid giant 

axon. Hodgkin and Huxley modelled the action potential of the nerve as a series of currents 

moving across the cell membrane. 

A very brief description of the Hodgkin-Huxley model follows, as described by Cronin (1987). 

The Hodgkin-Huxley equations describe the action potentials along the axon by modelling 

variations of the cell membrane potentials and ion currents. The model is a quantitative 

description of the data gained from initial experimentation, which was obtained by voltage-

clamp experiments. These experiments provide a set of conditions that are not an exact 

replica of in-vivo conditions. In the experiments the membrane potential is constant and the 

ionic currents are a function of time only, which is a simplification of in-vivo conditions. 

The voltage-clamp experiments can determine the capacitance of the membrane per unit 

area (𝐶𝑀) by the following equation: (Cronin, 1987, p. 23) 

𝐼 = 𝐶𝑀

𝛿𝑉

𝛿𝑡
+ 𝐼𝑖  (1) 

Where 𝐼 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝐶𝑚 = 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 

𝛿𝑉

𝛿𝑡
= 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑉 𝑤. 𝑟. 𝑡. 𝑡𝑖𝑚𝑒 

𝐼𝑖 = 𝑖𝑜𝑛𝑖𝑐 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

The voltage-clamp experiment allows for 𝑉 to be held constant and when this condition is 

met, 
𝛿𝑉

𝛿𝑡
= 0. This gives a capacitance current of zero and the total current across the 

membrane, 𝐼 will equal the ionic current 𝐼𝑖. I.e. 

𝐼 = 𝐼𝑖  
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Since 𝐼 can be measured in the voltage-clamp experiment then the ionic current can also be 

measured. 

The contribution of different ions to the current across the membrane can be measured 

with the Nernst equation and further experimentation. A nerve cell (axon) has intracellular 

fluid that consists of sodium (Na), chloride (Cl), and potassium (K). The concentration of Na 

inside the axon is approximately 1/10 the concentration of Na outside the axon. The 

concentration of K outside the axon is approximately 1/5 the concentration inside the axon. 

The differences in concentration provide an electromotive force (emf) equivalent to the 

Nernst formula: 

𝐸𝑖𝑜𝑛 =
𝑅𝑇

𝐹
ln

𝐶𝑖

𝐶𝑜

where 𝐶𝑖 and 𝐶𝑜 are the inside and outside of the axon ionic concentrations, 𝑅 is the gas 

constant (𝑅 = 8.31432 ×
107𝑒𝑟𝑔

°𝐶
 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒), 𝑇 is the temperature in Kelvin, and 𝐹 is

Avogadro’s number (𝐹 = 6.022 × 1023 𝑚𝑜𝑙−1). This is used to verify the influx and efflux of 

Na and K currents across the membrane. Further experiments are performed to show that 

𝐼𝑖(𝑡) = 𝐼𝑁𝑎(𝑡) + 𝐼𝐾(𝑡) 

and 

𝐼𝑖′(𝑡) = 𝐼′𝑁𝑎(𝑡) + 𝐼′𝐾(𝑡) 

where 𝐼𝑁𝑎(𝑡) and 𝐼′𝑁𝑎(𝑡) are the Na currents and 𝐼𝐾(𝑡) and 𝐼′𝐾(𝑡) are the K currents. More 

data and assumptions are collected and made respectively to show the permeability of the 

membrane to Na and K. 

𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑔𝑖𝑜𝑛 =
𝐼𝑖𝑜𝑛

𝐸 − 𝐸𝑖𝑜𝑛

where 𝐸 is the equilibrium potential and −𝐸𝑖𝑜𝑛 is the emf of the ions. 

After considerable further work Hodgkin and Huxley deduced that the final equations would 

take the form: 

𝑑𝑉

𝑑𝑡
= 𝐹(𝑡, 𝑉, 𝑔𝑁𝑎, 𝑔𝐾) 
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𝑑𝑔𝑁𝑎

𝑑𝑡
= 𝐺(𝑡, 𝑉, 𝑔𝑁𝑎, 𝑔𝐾) 

𝑑𝑔𝐾

𝑑𝑡
= 𝐻(𝑡, 𝑉, 𝑔𝑁𝑎, 𝑔𝐾) 

The final Hodgkin-Huxley equations start with the summation of the Na and K currents and 

add a leakage current. 

𝐼𝑖 = 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑙  (2) 

Equation 2 is substituted into equation 1. 

𝐼 = 𝐶𝑀

𝑑𝑉

𝑑𝑡
+ 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑙  (3) 

In words, the total current is equal to the sum of the capacitance current and ionic currents. 

The currents are considered separately and have no influence on each other. 

𝐼𝑁𝑎 = 𝑔𝑁𝑎(𝐸 − 𝐸𝑁𝑎)  (4) 

𝐼𝐾 = 𝑔𝐾(𝐸 − 𝐸𝐾)  (5) 

which are the sodium and potassium currents respectively. 

The leakage current can be represented by a positive constant, �̅�𝑙, and 𝐸 the equilibrium 

potential for the ions. 

𝐼𝑙 = �̅�𝑙(𝐸 − 𝐸𝑙)  (6) 

Substituting equations 4, 5 and 6 into equation 3. 

𝐼 = 𝐶𝑀

𝑑𝑉

𝑑𝑡
+ 𝑔𝑁𝑎(𝐸 − 𝐸𝑁𝑎) + 𝑔𝐾(𝐸 − 𝐸𝐾) + �̅�𝑙(𝐸 − 𝐸𝑙)  (7) 

Rewriting the electromotive forces in terms of voltage. 

𝐸 − 𝐸𝑁𝑎 = 𝑉 − 𝑉𝑁𝑎  (8) 

𝐸 − 𝐸𝐾 = 𝑉 − 𝑉𝐾  (9) 

𝐸 − 𝐸𝑙 = 𝑉 − 𝑉𝑙   (10)
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Substituting equations 8, 9 and 10 into equation 7 and solving for 
𝑑𝑉

𝑑𝑡
. 

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑀

[𝐼 − 𝑔𝑁𝑎(𝑉 − 𝑉𝑁𝑎) − 𝑔𝐾(𝑉 − 𝑉𝐾) − �̅�𝑙(𝑉 − 𝑉𝑙)]          (11) 

Equation 11 is the first version of the Hodgkin-Huxley equations. Equations 12, 13, 14 and 

15 are the final versions of the Hodgkin-Huxley equations, which take into account other 

factors: 

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑀

[𝐼 − �̅�𝑁𝑎𝑚3(𝑉 − 𝑉𝑁𝑎) − �̅�𝐾𝑛4(𝑉 − 𝑉𝐾) − �̅�𝑙(𝑉 − 𝑉𝑙)]          (12) 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚          (13) 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ          (14) 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛          (15) 

where 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, 𝛽ℎ are non-negative functions of V, and dependent variables 𝑚 and ℎ are 

the activation and inactivation variables. 

The Hodgkin-Huxley model used in this research is a derivative of equations 12 through 15. 

Xu et al. (2008) modelled the stimulation current as the summation of currents due to heat, 

chemical and mechanical events. I.e. 

𝐼𝑠𝑡 = 𝐼ℎ𝑒𝑎𝑡 + 𝐼𝑐ℎ𝑒𝑚 + 𝐼𝑚𝑒𝑐ℎ 

The current for the mechanically gated channel was modelled as a function of the stress at 

the nociceptor, 𝜎𝑛, and a mechanical pain threshold, 𝜎𝑡 = 0.2 𝑀𝑃𝑎. 

𝐼𝑚𝑒𝑐ℎ = 𝑓𝑚(𝜎𝑛, 𝜎𝑡) 

In this research both heat and chemical stimuli are ignored, reducing the stimulation current 

to  

𝐼𝑠𝑡 = 𝐼𝑚𝑒𝑐ℎ 
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Xu assumed the mechanical currents were modelled with a linear relationship between the 

stimuli and the generated currents. 

𝐼𝑚𝑒𝑐ℎ =
𝐶𝑚(𝜎𝑛 − 𝜎𝑡)

𝜎𝑡

where 𝐶𝑚 = 20𝜇𝐴/𝑐𝑚2.

The mechanical currents in this research are modelled with both a direct linear relationship, 

𝐼𝑚𝑒𝑐ℎ = 𝑐𝜎𝑛, and an exponential relationship, 𝐼𝑚𝑒𝑐ℎ = 𝑐(e𝜎𝑛), where c is a constant.

Modelling the mechanical current relationship as an exponential is similar to Xu’s approach 

to modelling the heat currents, which were modelled as 

𝐼ℎ𝑒𝑎𝑡 = 𝐶ℎ1 (e
(𝑇𝑛−𝑇𝑡)/𝑇𝑡

𝐶ℎ2 + 𝐶ℎ3) + 𝐼𝑠ℎ𝑖𝑓𝑡 × 𝐻(𝑇𝑛 − 𝑇𝑡)

which in simplified form is 𝐼ℎ𝑒𝑎𝑡 = 𝑐1(e𝑇𝑛) + 𝑐2,

Additional changes were incorporated from Shapiro and Lenherr (1972, p. 1147) who 

improved low frequency neuron firing by determining the rate of repolarisation as a 

function of a time constant for potassium activity, 𝑇𝑛. The time constant was multiplied by a 

voltage dependent function. 

𝑇𝑛
∗ = 1/𝛾𝑇𝑛

Where 𝑇𝑛
∗ is the new Hodgkin-Huxley function and 𝛾 is a function of voltage and varies

linearly with voltage such that 

𝛾 =
1

𝛾0
−

(1 −
1
𝛾0

) 𝑉

115

When 𝑉 = 0, 𝛾 = 1/𝛾0 and when 𝑉 = 𝑉𝑁𝑎 = −115𝑚𝑣, 𝛾 = 1. For 𝛾0 = 1, the equations 

revert back to the unmodified Hodgkin-Huxley equations. 
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2.7 Further research on Hodgkin-Huxley model 

The original Hodgkin-Huxley (1952) paper described the action potential of a squid giant 

neuron by modelling the ionic current flux and capacitance of the cell membrane. Several 

authors have extended research in this field. 

Xu et al. (2008) modelled skin thermal pain using the Hodgkin-Huxley model. Thermal pain 

was modelled as an exponential plus constant input, while mechanical pain stimulus was 

assumed to be a direct linear relation. 

Other papers have modelled sensory information using the Hodgkin-Huxley model 

(Miftakhov and Wingate, 1996; Nemoto et al., 1975; Takeuchi et al., 2001; Torkkeli and 

French, 2002). 

Pawluk and Howe (1997) used the mechanical displacement of the skin as the input to the 

Hodgkin-Huxley model, with a skin displacement function modelled as first and second 

order differentials.  



29 

3. Methodology and Experiment Details

3.1 In vitro pressure data from mouse bladder 

The volume pressure data was obtained from Tracy Wade (personal communication, June 

2019). Four sets of data were obtained that show the multistage inflation of a mouse 

bladder with isotonic solution while measuring the pressure response. Each bladder 

undergoes an initial basal infusion of 100 𝜇𝐿 of isotonic solution at a rate of 30 𝜇𝐿/𝑚𝑖𝑛 

followed by a 10 𝑚𝑖𝑛 rest period. This is followed by a 50 𝜇𝐿 infusion at a rate of 

30 𝜇𝐿/𝑚𝑖𝑛 followed by a 10 𝑚𝑖𝑛 rest period. This is repeated until the experiment ends. 

This bladder inflation had 18 infusions and a final infusion until the bladder burst. A 

graphical depiction of the data set used is shown in Figure 6. 

Figure 6 – LabView pressure curve for mouse bladder inflation 

The initial bladder volume and subsequent bladder volumes after each infusion is shown in 

Table 7 (see Appendix 4). 

The peak pressure value was taken as 63.7 𝑐𝑚𝐻2𝑂 = 0.00637 𝑀𝑃𝑎 𝑎𝑡 1026 𝜇𝐿. This data 

was used for the load source and defines the volume and its pressure at that volume. Later, 

the stress data is read from the final FEM analysis and, using a thin wall pressure vessel 
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analysis, is matched back against this initial pressure curve to confirm that the pressure 

curves match. 

A second source of in vitro data was taken from Daly et al. (2014), who inflated mouse 

bladders with saline and measured the volume of fluid injected in a ramp distension while 

measuring the pressure response up to a maximum of 50 𝑚𝑚𝐻𝑔 =

0.00667 𝑀𝑃𝑎 𝑎𝑡 420 𝜇𝐿. The Daly experiment also measured the neuronal firing rate of the 

mechanoreceptors of the bladder while undergoing inflation. These results are shown in 

Figure 7. Of note is the much smaller time frame over which the total volume was injected 

which leads to a higher pressure for a smaller volume due to the viscoelastic response of the 

bladder material. A model was made to match the properties of these data as a validation of 

the firing rate for the pressure volume relationship recorded in Daly’s research. 

Figure 7 – Ramp distension to 50 mmHg (Daly 2014) 

3.2 Modelling mouse bladder geometry 

The mouse bladder is a symmetrical prolate spheroid with two entering ureters and one 

exiting urethra. The 3D bladder model was generated using measurement data for partially 

empty (residual fluid is present) bladders taken from a cohort of 4 mice (3 male, 1 female). 

Image removed due to copyright restriction.
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The bladders were excised and measured. Both the external dimensions and the wall 

thickness were measured. The results are tabulated in Table 2. The tabulated results are 

similar to dimensions found by Reis et al. (2011).

Table 2 – tabulated dimensions for 4 adult mice 

Bladder Number Sex Major Axis (mm) Minor Axis (mm) Wall Thickness (mm)

1 M 6.40 4.60 0.026

2 M 6.60 4.42 0.027

3 F 7.25 4.96 0.021

4 M 6.71 4.58 0.040

Mean Diameters 6.74 4.64

Mean Radius 3.37 2.32

Mean Wall Thickness (mm) 0.027

The initial 3D model was made to the mean dimensions. The model was constructed in 

Autodesk Inventor Professional and saved as a parametric file. Simplifications were made to 

reduce model complexity, with the ureters and urethra being removed for the analysis. This 

file was then opened in the open source meshing software Gmsh for meshing. The mesh 

element type chosen used the default surface type of tet4. The mesh density was chosen so 

that it was high enough that later node selection had enough node points to choose from. 

The bladder mesh is shown in Figure 8. This bladder has 958 faces and 481 nodes.  
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Figure 8 – Mouse bladder meshing as shown in GMSH 

In a mouse bladder there are ureterovesical valves on the ureters to prevent vesicoureteral 

reflux (backflow) and a urethral sphincter to control micturition events. The ureters and 

urethra were excluded from the model geometry because they undergo no pressure 

changes from the contraction of the detrusor muscle during micturition due to the valves. 

3.3 Finite Element Analysis Software - FEBio 

The software used for the FEM section of this research is the open source package FEBio. 

The FEBio software suite is used for the processes described henceforth. FEBio consists of 

three different programs: PreView, FEBio, and PostView. The researcher needs to generate 

the geometry and FEM mesh, define the material properties and other boundary conditions, 

then use FEBio to solve for the given parameters. 

PreView is a graphical user interface (GUI) used to generate geometry and meshes, and set 

up the boundary conditions, and which generates an input file that is processed in the FEBio 

program. 

FEBio is the FEM solver and takes either a hand coded file or a file output from PreView 

which contains code that describes the model geometry (mesh), all boundary conditions, 

material properties, forces, displacements, etc., and processes this code using the FEM to 
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generate an output file. The output file can then be opened in the third binary, called 

PostView. 

Postview is a GUI that allows the user to visualise the final FEM model, inspect the data, and 

output the final data ready for further analysis. This stage is often used to feedback changes 

into the original PreView model to move the iterated output data closer to the desired 

result. 

Within FEBio there are two approaches to the problem: using either a dynamic model with 

fluid structure interactions to solve for stress; or using a static model, with pressure and 

displacement to solve for stress. 

The aim of the FEM model is to create a simulation that closely replicates the inputs, which 

are the injected fluid volumes, and output, which is the pressure curve, of the in vitro 

experiment. The model must closely replicate the staged filling of the in vitro experiment, 

with model parameters that replicate the properties of the mouse bladder and give a final 

pressure output with a close match to the data from Figure 6. 

During the research project, considerable time was spent on a dynamic model with fluid 

structure interactions. A dynamic FEM model uses equations relating force and 

displacement that vary with time. The equation in step five in the FEM explanation is 

replaced with {𝐹(𝑡)} = [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝛿}, where [𝑀] is the global mass matrix, [𝐶] 

is the global damping matrix, �̈� is the second derivative of the nodal displacement vector 

with respect to time, and �̇� is the first derivative of the nodal displacement vector with 

respect to time (Logan, 2012, p. 14).  

The bladder model was inflated by a fluid domain; see Figure 9. The model was constructed 

as a single stage FEM analysis. The model consisted of a bladder with urine inlet and exit. In 

the model constructed, model boundary conditions represented the urethra as the bladder 

inlet and the ureters as blocked from flow (by increasing the exit flow resistance to a very 

high level). The model was fixed in space at the rim of the urethra, allowing the whole 

model to react as a result of the fluid influx. The material properties were approximately the 

same starting values as presented later in this research. The model solved for bladder wall 

displacement as a function of the fluid accumulation, with stress readings taken directly 

from the bladder wall. 
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Figure 9 – Fluid structure interaction bladder model, fluid domain shown in yellow. The cross-

section bisects the urethra in the centre and a ureter to its right. 

This model presented too many complexities to be completed on time and took up too 

much computing resources. On a 4 GHz quad core PC with 32 GB of system memory and a 

fast SSD drive, the computation times were in the order of days. When performing iterative 

changes each full FEM computation would take up to 48 hours, restricting iterative changes 

to that time interval. The dynamic model did allow a stress and pressure solution to be read 

directly from the single model. With some optimisations (e.g. computing on a small slice of a 

symmetric model) the model may have come down in computation time. In the end it was a 

non-trivial problem that would have taken far too much time to continue on that path. 



35 

The dynamic model was abandoned in favour of a two part linear and dynamic model, 

respectively. The aim of the first part of the static FEM model was to replicate the bladder 

properties and to expand it by an internal fixed pressure equivalent to the end pressure on 

the in vitro model, to the maximum volume of the in vitro model. The final displacement of 

the bladder wall from the first part is then fed into the second part of the model. This 

replicates the filling and rest periods of the in vitro model by inflating the model using a load 

curve to control the rate of inflation to the fixed volumes represented in the in vitro model. 

Lastly, the stress relaxation response of the bladder wall is measured from the bladder 

model wall 

This second method represented a considerable simplification of the FEM model, saving 

substantial time. 

3.4 FEBio model loading and boundary conditions 

The bladder stress data is generated from the finite element method model. The method to 

generate the FEM model followed a series of steps in two distinct stages. The first stage 

used a linear model with pressure input on the interior surface of the mesh to inflate the 

bladder to the same volume as the volume pressure data in Table 7 (see Appendix 4). 

The in vitro data from Wade gives two pieces of information; the volume injected into the 

bladder and the bladder pressure associated with the fluid injection, i.e. a volume pressure 

curve. Using the predefined volume pressure curve with the model geometry defined from 

measurements, the only variables are material properties. 

The steps used to inflate the bladder to the final volume were as follows: import the 

geometry mesh, extrude the mesh to the desired bladder thickness, apply a pressure 

displacement to the inner bladder surface, apply material properties to the mesh, check the 

final volume of the mesh, and make changes to the material properties of the model to get 

closer to the final in vitro volume. The last two steps form a recursive loop with material 

properties adjusted until the FEM model volume matches the final in vitro volume. 

The algorithm for volume matching is: 

1. Run the initial FEM analysis.
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2. Check the FEM model final volume against the in vitro final volume.

3. Alter the material variables to adjust the FEM model final volume.

5. Repeat from step 2 until the volumes for each of the data sets are within 0.1% of the final

in vitro volume. 

The final target volume for the Wade data is 1026 𝜇𝐿 at 63.7 𝑐𝑚𝐻2𝑂 = 0.00637 𝑀𝑃𝑎. 

The final target volume for the Daly data is 420 𝜇𝐿 at 50 𝑚𝑚𝐻𝑔 = 0.00667 𝑀𝑃𝑎. 

The mesh generated by Gmsh is imported into PreView and structural analysis is chosen. 

This is a static analysis. At this point the mesh has no thickness and is selected and extruded 

to the measured wall thickness of a mouse bladder, 0.27 𝑚𝑚 from Table 1. 

Using the peak pressure value from the in vitro data, a linear pressure load of 0.00637 𝑀𝑃𝑎 

for the Wade model and 0.00667 𝑀𝑃𝑎 for the Daly model was applied to the inner surface 

of the mesh; see Figure 10.  

Figure 10 – Inner bladder surface pressure assignment in PreView. 
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The boundary conditions for the movement of the mesh in space were defined by restricting 

two points on the mesh. This uses the Fixed Displacement function. Nodes on the centre top 

and bottom of the mesh were chosen.  

To isolate the elastic pressure response from inflating the bladder, an appropriate time 

frame was chosen that removes any influence of the viscoelastic response on the tissue. The 

minimum step size chosen was 1 𝑠 and the time steps chosen was 100000, giving a total 

time of 100000 𝑠, which is several orders of magnitude outside of the relaxation response 

properties (the maximum relaxation time is variable <t3> = 100 s, shown in Table 6 below). 

The maximum step size chosen was 500 𝑠 to reduce the calculation burden. This allows 

FEBio to dynamically change the calculation interval up to 500 s based how large the 

previous changes in the model were, i.e. if the changes in the model between calculations 

are very small, it increases the time step size. Run time for this part of the model was 

approximately 10 minutes. Excluding the viscoelastic response is not strictly necessary since 

the static nature of the model should remove the inertial effects of the material, i.e. the 

viscoelastic properties, and the end goal is finding the displacement of each node for a fixed 

volume. 

Part of the research aims to model the viscoelastic properties of the mouse bladder in the 

FEM model. To achieve this the FEM analysis was divided into two stages. In the first stage, 

the model undergoes a fixed pressure inflation to a finite volume, matching the model to 

the in vitro bladder maximum pressure and final volume. With a fixed pressure inflation, 

FEM analysis cannot capture the viscoelastic response since the pressure on the material is 

constant and the model slowly increases volume. The second stage measures the 

viscoelastic response from a fixed volume. By using the same material properties and using 

a fixed displacement of the bladder to the same final volume (using the data from the final 

model coordinates from the first stage of the analysis) the viscoelastic response is 

measured. 

3.5 Material Properties 

Material properties were applied to the bladder. The main material in the bladder is the 

detrusor muscle. The detrusor muscle displays viscoelastic properties. The elastic and 
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viscoelastic material properties are separately defined within PreView. The elastic 

properties were defined as a Mooney-Rivlin material. The viscoelastic properties were 

defined as an uncoupled viscoelastic material. This is consistent with other studies that have 

used these properties (Spirka, 2010). 

3.5.1 Elastic Material Definition 

The Mooney-Rivlin material is a hyperelastic material type with uncoupled deviatoric and 

volumetric behaviour. FEBio variable descriptions are shown in Table 3. 

Table 3 – FEBio Mooney-Rivlin elastic material variables 

Variable name Variable description 

<density> Density of rigid body 

<c1> Coefficient of first invariant term 

<c2> Coefficient of second invariant term 

<k> Bulk modulus 

The initial density, c1, c2 and bulk modulus were taken from a similar tissue definition (UCL 

Medical Physics and Biomedical Engineering, 2015, September 23) and are seen in Table 4, 

second column. The final properties after fitting are seen in Table 4, third column. 

Table 4 – FEBio Mooney-Rivlin elastic material variables. Column 2 shows the values before 

fitting. Columns 3 and 4 shows the values after fitting for the two different models. 

Variable name Variable initial value Wade variable value 

after fitting 

Daly variable value 

after fitting 

<density> 1.002e-06 1.002e-06 1.002e-06 

<c1> 0.165 0.0656 0.0697 

<c2> 0 0 0 

<k> 16.39 16.39 16.39 
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3.5.2 Uncoupled Viscoelastic Material Definition 

The uncoupled viscoelastic material produces a viscoelastic response for the deviatoric 

stress response. The FEBio variable descriptions are shown in Table 5. 

Table 5 – FEBio uncoupled viscoelastic material variables 

Variable name Variable description 

<t1>-<t6> Relaxation times 

<g1>-<g6> Viscoelastic coefficients 

<elastic> Elastic component (must be an uncoupled 

elastic solid) 

The viscoelastic response is defined by the relaxation time variables. These were modelled 

in accordance with models by van Mastrigt et al. (1978) with three exponential values and a 

constant. The viscoelastic portion of the material was initially defined with properties as 

seen in Table 6 second column, and final properties after fitting as seen in Table 6, third 

column. 

Table 6 – FEBio uncoupled viscoelastic material variables 

Variable name Wade and Daly variables initial 

value 

Wade and Daly variables value after 

fitting 

<t1> 1 1 

<t2> 10 10 

<t3> 100 100 

<g1>-<g3> 0.18 0.9 
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These material properties represent the initial loading conditions. They are variables and 

their values changed as the model is fit to the in vitro data. The material properties were 

tuned for both the Wade model and for the Daly model. The material properties stayed 

largely the same, with only the 𝑐1 variable from the elastic property in Table 4, differing by 

approximately 6% between the models. The 𝑐1 variable has a direct correlation to the 

overall stress within the material and changing this value adjusts the magnitude of the final 

pressure curve. 

3.6 First Stage FEM Analysis 

The first stage analysis was run, and the results were obtained from this stage. The 

previously mentioned loop was iterated through, with the value of 𝑐1 altered to change the 

inflation volume to match the infusion volume. The bladder inflation from pressure for the 

Wade model is shown at the initial and final time steps in Figures 11 and 12, respectively. 

Figure 11 – Bladder mesh with no inflation at time t = 0 s 



41 

Figure 12 – Bladder mesh with maximum inflation at time t = 12700 s 

3.7 Second Stage FEM Analysis 

The second stage of the analysis uses a hand coded file and several code portions generated 

using MATLAB. This stage of the analysis uses a fixed displacement to the previously 

calculated final volumes instead of a pressure displacement. This allows the FEM software 

to calculate the viscoelastic pressure response for each stage of the inflation. 

The setup of this file started by replicating all the previous properties and boundary 

conditions but replacing the singular fixed pressure inflation with a fixed displacement using 

the final displacement values (at the final volumes) taken from the previous stage. A load 

curve was then applied to control the volume displacements to match the total volume for 

each subsequent stage as shown in Table 7 (see Appendix 4). The injection period, total 

time, volume injected and total volume for each fixed displacement load curve point is 

shown in Table 7. 

MATLAB scripts were coded to generate the data that defined the load curves and the fixed 

displacements for each node for FEBio input file. The initial load curve was a simple 

exponential curve following 𝑦 = 1 − 2𝑡6 where 𝑡 = 𝑡𝑖𝑚𝑒. This curve was later altered 
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through feedback to match the volume of the bladder after each injection of fluid at the 

relevant time points. 

The algorithm for volume time matching is: 

1. Run the initial FEM analysis.

2. Check the first FEM load curve volume against the injected volume at the same time.

3. Perform a linear interpolation on the difference between the target volume and the

volume for the previous injection time. Perform the same for the load curve values. 

4. Use linear interpolation to recalculate the load curve value change.

5. Enter the new load curve value and re-run the FEM analysis.

6. Repeat from step 2 until the volumes are within 0.1% of the target volume.

The step size chosen was 1 𝑠 and the time steps chosen was 12700, which is the same total 

time as the in vivo data. The maximum and minimum step size chosen was 10 𝑠 to reduce 

the calculation burden but yield a fine enough sample resolution. Although a larger 

maximum step size would reduce the calculation time at this stage, it would also produce 

uneven time intervals in the data, leaving gaps in the stress data that is fed into the H-H 

model. After code optimisations, this model had a run time of approximately 50 minutes for 

a full calculation, versus 48 hours for the fluid-structure interaction model. 

The stress and pressure data were checked to see that they matched the experimental data. 

The method for this check was an empirical comparison of the pressure curves. If each 

subsequent volume and the final volumes match, the geometry matches, and the time steps 

match, adjusting the material properties until the pressure curve matches gives a 

reasonable approximation of correct material properties. Figure 13 shows the stress curve 

for a node taken around the short axis centre of the bladder model at node c, shown in 

Figure 18. This curve matches the expectations of the viscoelastic stress response, which 

should bear a linear relation with the experimental pressure data. 
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Figure 13 – Stress curve for node c for time t = 0 s to t = 12700 s. Each spike in bladder wall 

stress is caused by a bladder volume increase. The first volume increase is 100 𝜇𝐿, and each 

subsequent volume increase is 50 𝜇𝐿. 

The pressure was calculated using the stress curve. In PostView, the “effective stress” is 

selected and output for selected nodes. The effective stress is the Von Mises stresses. 

PostView cannot calculate the pressure directly on the nodes. Instead the stress curve for 

node c is turned into a pressure curve using a thin wall pressure vessel analysis. 

𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑝 =
2𝑡𝜎

𝑟

Where 𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝜎 = 𝑠𝑡𝑟𝑒𝑠𝑠, and 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠. 

The thin wall pressure vessel analysis was formulated for cylindrical vessels. This presents 

limitations in the accuracy of using thin wall pressure vessel formulation for an prolate 

spheroid. Other studies have used this approach to calculate pressure in the bladder 

(Watanabe et al. 1981). 

The outer and inner displacement positions are taken and fed into a MATLAB script (see 

Appendix 3), which converts the stress into pressure at each time step. Figure 14 shows the 

pressure curve for the node stress curve shown in Figure 13. 
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Figure 14 – Calculated pressure curve for node c for time t = 0 s to t = 12700 s. Each spike in 

bladder wall pressure is caused by a bladder volume increase. The first volume increase is 

100 𝜇𝐿, and each subsequent volume increase is 50 𝜇𝐿. Peak pressure at t = 12700 s is 

0.0068 MPa = 51 mmHg. 

The pressure curve for the Wade model is a close fit to the pressure curve data shown in 

Figure 6, reaching a peak pressure of 0.0068 MPa = 51 mmHg at t = 12700 s at a volume of 

1026 𝜇𝐿, in comparison to the peak pressure of 0.00637 𝑀𝑃𝑎 at the same time and volume 

in Figure 6. 

The FEM model stress data is passed to the Hodgkin-Huxley model. 

3.8 Using the Hodgkin-Huxley Model to generate neural impulse (action potential) 

frequency 

In this model, the nodes within the FEM mesh are each assumed to represent a 

mechanoreceptor in the bladder wall. Within Xu’s (2007) data in the mechanosensitive 
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pelvic pathway nerves, the muscular and muscular/urothelial receptor fields are shown to 

be evenly distributed across the bladder and are sensitive to stretch. The nodes in the FEM 

model will represent a simplified combined model of these nerves. The aim of the Hodgkin-

Huxley model is to take the stress output from the FEM model nerves and use it as the input 

stimulus to the Hodgkin-Huxley model to generate a voltage output. The voltage output 

models the neural response (action potentials) of the bladder to the stretch of the bladder 

wall from its volumetric displacement. 

A neuron’s action potential firing rate is often referred to in the literature as the “impulse 

rate”, i.e. nerve impulses per second. In this research the rate of neuronal action potentials 

measured per second will be measured and referred to as the firing rate, in 𝐻𝑧. 

The firing rate of the action potentials over time can be measured and compared to existing 

data for mouse neural response to bladder stretch on filling. 

Starting with base Hodgkin-Huxley code provided by Professor Mark Taylor (personal 

communication, April 2019), the code was altered to two sets of code to respectively add 

both a linear relationship, 𝐼𝑚𝑒𝑐ℎ = 𝑐𝜎𝑛, and an exponential relationship, 𝐼𝑚𝑒𝑐ℎ = 𝑐(e𝜎𝑛),

where c is a constant, between the current stimulus and the stress values. Constants, 

variables and functions for modelling the basic action potential were assigned in accordance 

with Xu et al. (2008) and Shapiro and Lenherr (1972) papers. A function to read in the stress 

values and store these values to an array was added. The stress value from the FEM model 

is evaluated every 10 seconds. The Hodgkin-Huxley code evaluates the inputs at a frequency 

of 20000 𝐻𝑧. The Hodgkin-Huxley code needs a stress value for every 𝑑𝑡 = 0.05 𝑚𝑠. A 

function was added to interpolate the stress values with 𝑑𝑡 = 0.05 𝑚𝑠 intervals between 

values. The interpolation type chosen was MATLAB’s Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP), which avoids interpolation curve overshoot. 

The Hodgkin-Huxley model generates action potentials for the neural output given an input, 

in this research it is stress values. A 0.5 second segment of stress input from a single node 

on the bladder model generates action potentials from the Hodgkin-Huxley model as shown 

in Figure 15. 
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Figure 15 – Action potentials generated by the Hodgkin-Huxley model for node c given a 0.5 

s stress input.  

The nerves combine signals from multiple points on the bladder from a small receptor field. 

The stress values feeding into the model replicate several receptors on a receptor field 

and/or multiple overlapping receptor fields. The research tests for increased node count 

until a representative output is found. An assumption is made that each receptor does not 

activate at the same time. The stress values from the FEM model, when taken from node 

positions that simulate a receptor field, have very little variance. 

When the receptors fire in unison, the voltage changes nearly proportionally to how many 

receptors are chosen, and the firing rate stays the same as for a single node.  Figure 16 

shows the combined voltage output from a 0.5 second segment of nearly coincident stress 

input for two nodes.  
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Figure 16 – Combined neural output from two nodes in a small receptor field result in added 

voltages and no change in firing rate. 

Firing in complete unison as shown in Figure 16 above is not supported by data shown in Xu 

et al. (2008) and Daly et al. (2014), which shows substantial greater variation in firing rate. 

To simulate different firing times, the stress values from subsequent bladder nodes are 

forward offset in time. Random time offsets, fixed time offsets as a function of how many 

nodes were input, and a fixed time offset regardless of how many nodes were input were 

tried. A fixed time offset was selected for repeatability in the results. When the receptors 

fire in an offset fashion, the voltages only increase when the waves randomly coincide, 

which more closely matches the data. Figure 17 shows the same 0.5 𝑠𝑒𝑐𝑜𝑛𝑑 segment of 

offset stress inputs for two nodes. The time offset is 0.025 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Figure 17 shows that 

the stress values offset in time before being fed into the Hodgkin-Huxley model give an 

increase in firing rate for the model and no increase in voltage response. 
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Figure 17 - Two almost identical stress values offset in time result in distinct voltage 

waveforms and increased firing rate. 

The values of 𝑘, which is a constant that alters the model’s action potential firing rate 

sensitivity, and 𝛾, which can improve very low frequency firing, were altered during multiple 

runs of the code to move the firing rate up or down to produce firing rates that matched the 

in vitro data. 

The stress value range (minimum to maximum) from the FEM model did not correlate with 

the input range for 𝐼𝑠𝑡  in the H-H model, and were input as either a linear or exponential 

function of the FEM model stress output values. The input range of the Hodgkin-Huxley 

model is scaled between values of 𝐼𝑠𝑡 = −3.25 and 𝐼𝑠𝑡 = 150.0 which produces firing rates 

in the range of 0.3 𝐻𝑧 to approximately 50 𝐻𝑧.  

For the total time evaluated, 12700 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the Hodgkin-Huxley model code is very 

memory intensive, utilising > 30 𝐺𝐵 of system memory at times in the calculation. To 

reduce the memory footprint, almost all variables are cleared at the end of calculating the 
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voltages for each node’s code loop. At the end of calculation the final voltages for each node 

are stored in an array. These voltages are added into a new array with the principal of 

superposition. 

The firing rate for the nodes examined are calculated using MATLAB’s findpeaks function. 

Findpeaks finds peaks within the signal within user defined limits. The number of peaks 

found is divided by the time length examined, in this research for periods of 10  seconds, 

which gives the firing rate for that time period. 

The calculated Hodgkin-Huxley values are displayed as firing rate graphs with results 

displayed in the results section. 
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4. Results

This section shows the results obtained and is followed by a discussion of the results. The 

results from the Hodgkin-Huxley model using data output from the FEM model are shown 

below with an analysis of each sub-section made in the discussion. 

4.1 Node position on a simplified prolate spheroid bladder 

Single nodes at different positions were tested for firing rate. Due to the symmetrical nature 

of the bladder model, data from a 90° segment of the bladder is replicated in all other 

segments of the bladder, removing the need to analyse more than a 90° arc. The position of 

the nodes tested are shown in Figure 18.  

Figure 18 – Positions of node a (at bottom), node b (at 45°), and node c at (90°) on the 

bladder wall. 
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The stress output for the three nodes are shown in Figure 19. 

Figure 19 – Stress curves for node a (turquoise), node b (orange), and node c (bright green). 

This shows the stress measured simultaneously at nodes a, b, and c for t = 0 s to t = 12700 s. 

Each spike in bladder wall stress is caused by a bladder volume increase. The first volume 

increase is 100 𝜇𝐿, and each subsequent volume increase is 50 𝜇𝐿. Peak pressure at t = 

12700 s is 0.0068 MPa = 51 mmHg. 

4.2 Linear Stress Input Function Results 

Firing rate results modelled from a linear input function with changes in node position are 

shown in Figures 20, 21 and 22 for nodes a, b, and c, respectively. 
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Figure 20 – Firing rate for single node a for t = 0 s to t = 12700 s. The firing rate starts at 

approximately 10 Hz and peaks at approximately 35 Hz.  
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Figure 21 – Firing rate for single node b for t = 0 s to t = 12700 s. The firing rate starts at 

approximately 10 Hz and peaks at approximately 37 Hz. 
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Figure 22 – Firing rate for single node c for t = 0 s to t = 12700 s. The firing rate starts at 

approximately 10 Hz and peaks at approximately 45 Hz. The peak firing rate changes with 

the node position. 

To simulate a multi-receptor field, groups of three to five nodes in clusters were tested for 

firing rate in the same position as the previous single node analysis, node cluster positions 

are shown in Figure 23.  
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Figure 23 - Positions of node clusters: node cluster A (at bottom), node cluster B (at 45°), and 

node cluster C at (90°). This bladder is rotated towards the viewer to show the node clusters. 

The multi-receptor stress output for the three node clusters are shown in Figure 24. 

Figure 24 - Stress curves for all nodes in clusters around nodes A, B, and C. This shows the 

stress measured simultaneously for node clusters A, B, and C for t = 0 s to t = 12700 s. Each 

spike in bladder wall stress is caused by a bladder volume increase. The first volume increase 

is 100 𝜇𝐿, and each subsequent volume increase is 50 𝜇𝐿. Peak pressure at t = 12700 s is 

0.0068 MPa = 51 mmHg. 
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Increasing the node count at node cluster C from one node to three, then five nodes, are 

shown in Figures 22, 25, and 28, respectively. 

Figure 25 – Firing rate for node cluster C, 3 nodes selected, for t = 0 s to t = 12700 s. The 

firing rate starts at approximately 20 Hz and peaks at approximately 90 Hz. 

Firing rate for the multi-node cluster as a function of position, with five nodes selected in 

each cluster, are shown in Figures 26, 27 and 28.  
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Figure 26 – Firing rate for node cluster A, 5 nodes selected, for t = 0 s to t = 12700 s. The 

firing rate starts at approximately 40 Hz and peaks at approximately 100 Hz. 
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Figure 27 – Firing rate for node cluster B, 5 nodes selected, for t = 0 s to t = 12700 s. The 

firing rate starts at approximately 40 Hz and peaks at approximately 120 Hz. 



59 

Figure 28 – Firing rate for node cluster C, 5 nodes selected, for t = 0 s to t = 12700 s. The 

firing rate starts at approximately 40 Hz and peaks at approximately 130 Hz. 

The multi node cluster firing rate and stress values for node cluster C are shown in Figure 

29.
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Figure 29 – Stress input and firing rate for node cluster C modelled with a linear input 

function. 



61 

4.3 Exponential Stress Input Function Results 

Firing rate results modelled from an exponential input function for single node c are shown 

in Figure 30.  

Figure 30 – Firing rate for single node c for t = 0 s to t = 12700 s. The firing rate starts at 

approximately 7 Hz and peaks at approximately 50 Hz. 

The firing rate results modelled from an exponential input function of node cluster C, with 5 

nodes selected, are shown in Figure 31. 
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Figure 31 – Firing rate for node cluster C, 5 nodes selected, for t = 0 s to t = 12700 s. The 

firing rate starts at approximately 35 Hz and peaks at approximately 130 Hz. 

The multi node cluster firing rate and stress values for node cluster C are shown in Figure 

32.
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Figure 32 – Stress input and firing rate for node cluster C modelled with an exponential input 

function.

4.4 Model Validation 

A data validation is performed using the data from Daly et al. (2014). The multi-node cluster 

firing rate modelled as a linear and exponential input are compared to the results from a 

similar nerve response frequency analysis in Daly et al. (2014), shown in Figures 33, 34 and 

35. This model performs a single volumetric inflation over a shorter period of time. Node

cluster C, which represents the most compliant part of the bladder and captures the most 

data, was selected for the analysis. 
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Figure 33 – Firing rate and pressure curve reproduced from Daly (2014). 

Image removed due to copyright restriction.
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Figure 34 – Multi-node firing rate modelled as a linear input (bottom) and its pressure curve 

(top). The firing rate starts at approximately 20 Hz and peaks at approximately 180 Hz. 



66 

Figure 35 – Multi-node firing rate modelled as an exponential input (bottom) and its pressure 

curve (top). The firing rate starts at approximately 20 Hz and peaks at approximately 225 Hz. 
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5. Discussion

5.1 Single node receptor analysis. 

The single node results, shown in Figures 20, 21 and 22, for nodes a (bottom of model), b 

(offset 45°), and c (offset 90°), respectively, show the firing rate of each node as a function 

of both the stress input from the FEM model and the relative position on the model. 

When examining the linearly modelled firing rate, node a shows a neural output firing rate 

starting at approximately 10 𝐻𝑧 which increases to approximately 35 𝐻𝑧. The firing rate 

increases non-linearly with the increase in stress in the bladder wall. Nodes b and c show a 

similar increase in firing rate, with a non-linear relationship to the increase in stress in the 

bladder wall. Nodes b and c show increasing magnitude of firing rate from the increased 

stress magnitude for each subsequent node as a function of its position on the bladder, with 

the upper frequency limit of node c increasing to approximately 45 𝐻𝑧. 

When examining the exponentially modelled firing rate, node c shows a neural output firing 

rate starting at approximately 7 𝐻𝑧 which increases to approximately 50 𝐻𝑧, increasing 

non-linearly with the increase in stress in the bladder wall. The exponentially modelled firing 

rate displayed a larger frequency range than the linearly modelled firing rate. 

Each node displays a stress relaxation decrease in firing rate as a function of the viscoelastic 

behaviour of the bladder. 

The geometry of the bladder is seen to affect the firing rate of the nodes, where the smaller 

radius at the tip of the prolate spheroid bladder presents a stiffer material response, as seen 

in the lower firing rate of node a compared to node c. 

The prolate spheroid bladder is symmetrical, and it is expected that the firing rate for the 

top of the bladder will mirror the bottom of the bladder at the same relative node positions. 

The results from the single node analyses support the aim of the thesis in modelling firing 

rate as a function of the stress response output from the FEM model of a bladder. These 

results represent a single receptor in a receptor field and do not adequately show a 

response that correlates well with the magnitude of in vitro measurements of bladder firing 

rate from multiple receptors in a receptor field. 



68 

5.2 Multi Node Receptor Analysis 

The multi node receptor field results, shown in Figures 26, 27, and 28 for node clusters A 

(bottom of model), B (offset 45°), and C (offset 90°) respectively, show the multi-node firing 

rate of each node as a function of both the linearly modelled stress input from the FEM 

model and the relative position on the model. 

When examining the linearly modelled firing rate, node cluster A shows a neural output 

firing rate starting at approximately 40 𝐻𝑧 which increases to approximately 100 𝐻𝑧, 

increasing non-linearly with the increase in stress in the bladder wall. Node cluster B and 

node cluster C show the same increase in firing rate, with a non-linear relationship to the 

increase in stress in the bladder wall. 

When examining the exponentially modelled firing rate, node cluster C shows a neural 

output firing rate starting at approximately 35 𝐻𝑧 which increases to approximately 130 𝐻𝑧, 

increasing non-linearly with the increase in stress in the bladder wall. The exponentially 

modelled firing rate displayed a larger frequency range than the linearly modelled firing 

rate. 

The multi node clusters show a change in firing rate as a function of the position and 

viscoelastic behaviour of the bladder. As the node clusters move towards the most 

compliant section of the bladder the viscoelastic response can be more readily seen in the 

waveform. The lower firing rate in less compliant areas of the bladder, such as the lower 

compliancy around apex of the prolate bladder, which coincides with the position of the 

trigone area of the bladder (the area that is encompassed by the urethra and two ureters), 

corresponds with higher nerve density as per Figure 5. The higher nerve density in less 

compliant areas may be an evolution to maintain firing rate similar to the more compliant 

areas with lower nerve density. 

The geometry of the bladder affects the firing rate of the node clusters, where the smaller 

radius at the tip of the prolate spheroid bladder presents a stiffer material response. 

The prolate spheroid bladder is symmetrical, and it is expected that the multi-node firing 

rate for the top of the bladder will mirror the bottom of the bladder at the same relative 

node positions. 
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The multi-node clusters show a higher firing rate from the bladder wall stress than a single 

node nerve as can be seen by comparing the single node c firing rate in Figure 22 and the 

node cluster C firing rate in the same position in Figure 28. 

When the stress input is linear, and firing rate and stress values are plotted against each 

other, it can be seen there is a non-linear relationship between the stress input and the 

node cluster firing rate.  

When the stress input is non-linear, and the firing rate and stress values are plotted against 

each other, it can be seen there is a close to linear relationship between the stress input and 

the firing rate.  

The results from the multi node cluster analysis using an exponential function for the stress 

input support the aim of the thesis in modelling firing rate as a function of the stress 

response output from the FEM model of a bladder. Moreover, these results model multiple 

nerve receptors in a receptor field and show a firing rate that correlates with in vitro 

measurements of bladder response from multiple receptors in a receptor field. 

5.3 Model Validation 

The results from the Daly model show a higher frequency output which corresponds to the 

much higher stress induced from inflating the bladder to full distention over a much shorter 

time period, approximately 90 𝑠 versus 1900 𝑠. The exponentially modelled stress input to 

the Hodgkin-Huxley model gives an output that closely matches the data in Figure 33. The 

linearly modelled stress input to the Hodgkin-Huxley model does not give an output that 

matches the data in Figure 33.  

5.4 Significance, limitations, and future work. 

This research is significant in several ways. The crux of the research lies in taking an in vitro 

dataset, modelling the properties of the dataset’s original system (i.e. a bladder) as a FEM 

model, volumetrically inflating the FEM model in line with the in vitro volumetric bladder 

inflation data and using the output from the stress values of this inflation as the stimulus to 

a modified Hodgkin-Huxley model. The Hodgkin-Huxley model outputs the neural response 
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(action potentials) as a function of the FEM model stress. The firing rates of the action 

potentials are measured. A successful model of this sort can partially remove the need for 

future in vitro or in vivo animal testing for measurements in the same model domain. 

This model can alternatively be used to model different biological tissues that have stress 

and strain in a similar manner and measure their neural output, which in other cases would 

be analogous to the pain sensation from stretching a tissue, e.g. pain from hyperextension 

of a joint. 

This research has limitations. There was a lack of freely available data on neural output for 

stretching bladder tissues for mice. The studies available have data in the form of graphs in 

papers but the primary data sources were not readily available. More bladder pressure 

volume curve data and neural output data is available for other similar small mammals. The 

material data for mouse bladder tissue was limited. The geometry data for mouse bladders 

was limited. The open source nature of the software presented numerous roadblocks. 

Documentation, software features, and general usability were sometimes greatly lacking. 

This became most apparent when trying to extend the research to more complex 

geometries and the difficulties in getting multiple open source software packages to work 

with each other prevented the completion of this aspect of the research. 

The starting code was not designed for very large arrays of input and consequently suffered 

performance issues. During the research, significant speed and memory requirement 

improvements were made to the code. The memory footprint was reduced by many 

gigabytes and the speed was increased by a factor of approximately 2. The original fluid 

structure interaction dynamic model suffered from severe performance penalties, needing 

computing resources far beyond what was available. 

This work can now be extended with models that present more complex and accurate 

geometry and focussing on human bladders versus mouse bladders. The much more readily 

available data on all material properties and geometry (from CT scans and similar) will 

enhance the accuracy of the model. 



71 

6. Conclusion

The action potential firing rate of mouse bladder afferent nerves was modelled using the 

stress values from a finite element model as a stimulus into a modified Hodgkin-Huxley 

model. A FEM model replicating in vivo mouse bladder dimensions and material properties 

was constructed and used a two stage finite element analysis to replicate in vivo volumetric 

filling of the bladder. The FEM model was validated against in vitro pressure curve data. 

Stress values from multiple nodes on the finite element model were used as a stimulus into 

a modified Hodgkin-Huxley model which output the nerves’ action potentials as a function 

of stress. The firing rate of the action potentials was measured. Stress values were input 

using both a linear relation and an exponential relation. Single nodes were examined 

showing that firing rate changes as a function of position for models where the stiffness 

changes as a function of position. A stepped increase in node count stimulus into the 

Hodgkin-Huxley model was performed showing that combined multiple node inputs 

simulate a receptor field, with firing rate increasing as node count increases. The FEM into 

Hodgkin-Huxley model was validated against existing firing rate data for a pressure volume 

curve. The exponentially modelled input was found to be a better fit for data validation. The 

FEM into Hodgkin-Huxley model approach successfully output an action potential neural 

response using stress values from the FEM model input as a stimulus into a modified 

Hodgkin-Huxley model and is a novel approach within the field. 

The model is limited in scope, making several simplifying assumptions that could be 

addressed in future research. More complex geometry, more accurate material properties, 

better validation data and a dynamic fluid-structure interaction FEM model are areas that 

can be addressed. 
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Appendix 1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 
% 
% Harley Ewing 9704959 
% Hodgkin-Huxley linear input model to calculate firing rate of action 

potentials 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

clear all; 
clc; 
close all; 
format long; 
profile on; % Initialise profiler to indentify where code execution is 

slowest 

%First step - Replicate the work of Xu et al on nociception of skin 

filename = 'bladder_18_N583_cluster_stress.txt'; 
opts = detectImportOptions(filename); 
preview(filename, opts); 
t1 = readtable(filename, opts); 
stress = table2array(t1(:,:)); 
sz = size(stress); %Find size of array reported as "rows, columns". 
C = 5; % How many stress columns 
stress(:,1) = stress(:,1)*1000; 

stress_node = zeros(254000000,C); 
for j_loop = 1:C 

x_int = stress(:,1); 
v_int = stress(:,j_loop+1); 
xq = 0.05:0.05:12700000; 
stress_node(:,j_loop) = interp1(x_int,v_int,xq,'pchip'); 

end 

stress_node_shifted = zeros(254000000,C-1); 
shift = 2000; % fixed offset initialisation 

if C >= 2 
for i_node = 2:C

stress_node_shifted((shift+1):end,i_node-1) = stress_node(1:(end-

shift),i_node); 
stress_node(:,i_node) = stress_node_shifted(:,i_node-1); 
shift = shift + 2000; % fixed offset initialisation 

end 
end 

M = max(stress_node, [], 'all'); 

dt=0.05; % Time Step ms 
t=0:dt:12700000; %Time Array ms 
% t=0:dt:5000000; %Time Array ms 
t_on_dt = t(1,end)/dt; 

V_f = zeros(C, t_on_dt+1); 
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for I_ST_loop = 1:C 

% Constants and definitions 

% Hogdkin Huxley constants 
% Original Constants set for all Methods 

Cnst_Cm= 1; % Membrane Capcitance uF/cm^2 Cm=0.01 

VA = -50; 
Cnst_ENa=55; % mv Na reversal potential 
Cnst_EK=-72; % mv K reversal potential 
Cnst_El=10; % mv Leakage reversal potential 
Cnst_gbarNa=120; % mS/cm^2 Na conductance gbar Na=1.2 
Cnst_gbarK=36; % mS/cm^2 K conductance gbar 
Cnst_gbarl=0.3; % mS/cm^2 Leakage conductance gbarl 
epsilon = 1.0;% from Shapiro and Lenherr 1972 epsilon varies between 1 and 

10 

V(1)= -60; % Initial Membrane voltage 
REF_I=0.00; %External Current Applied 

% parameters as per squid axon, taken from (Connor et al., 1977;Hille, 

1992), Xu p227 
GL = 0.3; 
A_fac = 7; 
B_fac = 7; 
Cnst_gbarA = 47.7; 
m_fac = 0.263; 
h_fac = 0.263; 
n_fac = 2.63; 

% Declare variable arrays to save time 
alpha_A = zeros(1,t_on_dt); 
alpha_B = zeros(1,t_on_dt); 
alpha_h = zeros(1,t_on_dt); 
alpha_m = zeros(1,t_on_dt); 
alpha_n = zeros(1,t_on_dt); 

beta_A = zeros(1,t_on_dt); 
beta_B = zeros(1,t_on_dt); 
beta_h = zeros(1,t_on_dt); 
beta_m = zeros(1,t_on_dt); 
beta_n = zeros(1,t_on_dt); 

A = zeros(1,t_on_dt+1); 
B = zeros(1,t_on_dt+1); 
h = zeros(1,t_on_dt+1); 
m = zeros(1,t_on_dt+1); 
n = zeros(1,t_on_dt+1); 

%Variables 
%===set the initial states===% 
%V=-0; %Baseline voltage 
alpha_n(1) = (1/n_fac) * (epsilon*(-.01 * ( (50+V) / (exp(-(V+50)/10)-1) 

))); %Equation 12 
beta_n(1) = (1/n_fac) * (epsilon*(.125*exp((-(V+60)/80)))); %Equation 13 
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alpha_m(1) = (1/m_fac) * (-0.1*( (V+35) / (exp(-(V+35)/10)-1))); %Equation 

20 
beta_m(1) = (1/m_fac) * (4*exp(-(V+60)/18)); %Equation 21 
alpha_h(1) = (1/h_fac) * (0.07*exp(-(V+60)/20)); %Equation 23 
beta_h(1) = (1/h_fac) * (1/(exp(-(V+30)/10)+1)); %Equation 24 

  
%------------for Ik2------------------------------ Currents for 2nd 

potassium channel, Xu p227 
A_inf = ((0.0761*exp((V+94.22)/31.84))/(1+exp((V+1.17)/28.93)))^(1/3); 
Ta_A = A_fac*(0.3632+(1.158/(1+exp((V+55.96)/20.12)))); 
alpha_A(1) = A_inf/Ta_A; 
beta_A(1) = (1-A_inf)/Ta_A; 

  
B_inf = (1/(1+exp((V+53.3)/14.54)))^4; 
Ta_B = B_fac*(1.24+(2.678/(1+exp((V+50)/16.027)))); 
alpha_B(1) = B_inf/Ta_B; 
beta_B(1) = (1-B_inf)/Ta_B; 

  

  
A(1) = alpha_A/(alpha_A+beta_A); 
B(1) = alpha_B/(alpha_B+beta_B); 
%----------------------------------------------- 

  
n(1) = alpha_n/(alpha_n+beta_n); %Equation 9 
m(1) = alpha_m/(alpha_m+beta_m); %Equation 18 
h(1) = alpha_h/(alpha_h+beta_h); %Equation 18 

  

  
%Temperature related inputs for the Xu paper 
Temp_noci = 55; % nociceptor temperature 
Temp_thres = 43; % thermal pain threshold temperature 
I_shift = -4; % -4 fudge factor introduced Xu to stop firing below 

threshold value This influences the threshold of firing 

  
Ch1 = 0.382; % constant for I_ST, frequency is proportional to this value 
Ch2 = 0.064; % constant for I_ST, frequency is inversely proportional to 

this value 
Ch3 = 0.355; 

  
Tn=[]; 
f =[]; 
f2=[]; 
f3=[]; 

  
k_temp = 3^((Temp_noci-6.3)/10); 
k = 0.15; %This influences the rate of firing Range 0.03 to 0.15 is 

reasonable 

  
% I_ST = (Ch1*exp(((Temp_noci-Temp_thres)/Temp_thres)/Ch2)+Ch3)+ I_shift; 

%Xu p231, I_st = stimulation current, eq 36 
% as per Xu, I_ST = I_heat + I_chem + I_mech, where chem and mech are 

assumed linear variables, p234 

  
I_ST = zeros(t_on_dt,1); 
time = zeros(1,t_on_dt); 

  
    for i=1:t_on_dt % = t/dt = total amount of time steps 
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I_ST = stress_node(i,I_ST_loop) * (83.25/M) - 3.25; % node constant 

multiplier 

time(i) = i; 
alpha_n(i) =  (1/n_fac) * (epsilon*(-.01 * ( (50+V(i)) / (exp(-

(V(i)+50)/10)-1) ))); 
beta_n(i) = (1/n_fac) * ( epsilon*(.125*exp((-(V(i)+60)/80)))); 
alpha_m(i) = (1/m_fac) * (-0.1*( (V(i)+35) / (exp(-(V(i)+35)/10)-1) 

)); 
beta_m(i) = (1/m_fac) * (4*exp(-(V(i)+60)/18)); 
alpha_h(i) = (1/h_fac) * (0.07*exp(-(V(i)+60)/20)); 
beta_h(i) = (1/h_fac) * (1/(exp(-(V(i)+30)/10)+1)); 

%-----------------------------for Ik2------------------- 
A_inf = 

((0.0761*exp((V(i)+94.22)/31.84))/(1+exp((V(i)+1.17)/28.93)))^(1/3); 
Ta_A = A_fac*(0.3632+(1.158/(1+exp((V(i)+55.96)/20.12)))); 
alpha_A(i) = A_inf/Ta_A; 
beta_A(i) = (1-A_inf)/Ta_A; 

B_inf = (1/(1+exp((V(i)+53.3)/14.54)))^4; 
Ta_B = B_fac*(1.24+(2.678/(1+exp((V(i)+50)/16.027)))); 
alpha_B(i) = B_inf/Ta_B; 
beta_B(i) = (1-B_inf)/Ta_B; 
%----------------------------------------------------- 

%---calculate the currents---% 
I_Na = (m(i)^3) * Cnst_gbarNa * h(i) * (V(i)-Cnst_ENa); %Equations 

3 and 14 
I_K = (n(i)^4) * Cnst_gbarK * (V(i)-Cnst_EK); %Equations 4 and 6 
I_L = Cnst_gbarl *(V(i)-Cnst_El); %Equation 5 
I_k2 = Cnst_gbarA * (A(i)^3)* B(i) * (V(i) - VA); % not sure about 

VA 
I_ion = I_ST - I_K - I_Na - I_L - I_k2; 

%---calculate the derivatives using Euler first order 

approximation---% 
V(i+1) = V(i) + dt*I_ion/Cnst_Cm; 
n(i+1) = n(i) + dt*((alpha_n(i) *(1-n(i)) - beta_n(i) * n(i))*k); 

%Equation 7 
m(i+1) = m(i) + dt*((alpha_m(i) *(1-m(i)) - beta_m(i) * m(i))*k); 

%Equation 15 
h(i+1) = h(i) + dt*((alpha_h(i) *(1-h(i)) - beta_h(i) * h(i))*k); 

%Equation 16 

A(i+1) = A(i) + dt*(alpha_A(i) *(1-A(i)) - beta_A(i) * A(i)); %for 

Ik2 
B(i+1) = B(i) + dt*(alpha_B(i) *(1-B(i)) - beta_B(i) * B(i)); %for 

Ik2 
end 

V_f(I_ST_loop,:) = V(1,:); 
f3 = f2; 

clearvars -except V_f f3 t dt t_on_dt M stress_node C 
end 
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% V_f_added = (V_f(1,:) + V_f(2,:)); % Choose this for 2 nodes, etc. 
% V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:)); 
V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:) + V_f(4,:) + V_f(5,:)); 
% V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:) + V_f(4,:) + V_f(5,:) + 

V_f(6,:) + V_f(7,:));   

  
for i = 200000:200000:t_on_dt   %multi node voltage  
    temp_peaks = findpeaks(V_f_added(1,i-199999:i),'MinPeakProminence',20); 
    freq = (numel(temp_peaks)-1)/(10.0); 
    f3 = [f3, freq]; 
end 

  
% for i = 200000:200000:t_on_dt   %single node voltage 
%     temp_peaks = findpeaks(V_f(1,i-199999:i),'MinPeakProminence',20); 
%     freq = (numel(temp_peaks)-1)/(10.0); 
%     f3 = [f3, freq]; 
% end 

  
x_axis = 1: t(1,end)/10000; 

  
x1 = 12:12:1270;    %rms calcs 
index = 12; 
for i = 1:105 
   y1(1,i) = rms(f3(1,index-11:index)); 
   index = index+12; 
end 

  
sample_index = 1;   %stress calcs 
for i=1:105 
stress_sample(1,i) = stress_node(sample_index,1); 
sample_index = sample_index + 2419000; 
end 
stress_sample = stress_sample*400; %stress multiplier for display only 

  
%% 
% Plot the functions 
figure; 
hold on 
a1 = plot(x_axis, f3); M1 = 'Node cluster C, f(Hz)'; 
a2 = plot(x1, stress_sample); M3 = 'Stress (400x)'; 
% ylim([0 140]) 
xlabel('time (10^1 seconds)'); 
ylabel('f(Hz)'); 
legend([a1;a2], M1, M3, 'Location','northwest') 
hold off 

  
figure; 
plot(x_axis, f3); 
ylim([0 45]) 
xlabel('time (10^1 seconds)'); 
ylabel('f(Hz)'); 

  
% figure(2) 
% plot(t,V_f(1,:)); 
% legend('Forward Euler'); 
% xlabel('Time (seconds)'); 
% ylabel('Voltage (mV)'); 
% title('Voltage Change for Hodgkin-Huxley Model'); 
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figure(2) 
plot(t,V_f_added(1,:)); 
legend('Forward Euler'); 
xlabel('Time (ms)'); 
ylabel('Voltage (mV)'); 
title('Voltage Change for Hodgkin-Huxley Model'); 

profile off; % Terminate profiler 
profile viewer; % Display profiler data to indentify where code execution 

is slowest 
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Appendix 2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 
% 
% Harley Ewing 9704959 
% Hodgkin-Huxley exponential input model to calculate firing rate of action 

potentials 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

clear all; 
clc; 
close all; 
format long; 
profile on; % Initialise profiler to indentify where code execution is 

slowest 

%First step - Replicate the work of Xu et al on nociception of skin 

filename = 'bladder_18_N583_cluster_stress.txt'; 
opts = detectImportOptions(filename); 
preview(filename, opts); 
t1 = readtable(filename, opts); 
stress = table2array(t1(:,:)); 
sz = size(stress); %Find size of array reported as "rows, columns". 
C = 5; % How many stress columns 
stress(:,1) = stress(:,1)*1000; 

stress_node = zeros(254000000,C); 
for j_loop = 1:C 

x_int = stress(:,1); 
v_int = stress(:,j_loop+1); 
xq = 0.05:0.05:12700000; 
stress_node(:,j_loop) = interp1(x_int,v_int,xq,'pchip'); 

end 

stress_node_shifted = zeros(254000000,C-1); 
shift = 2000; % fixed offset initialisation 

stress_node(:,:) = exp(stress_node(:,:)*8.25); % exponential transform and 

constant multiplier 
if C >= 2 

for i_node = 2:C

stress_node_shifted((shift+1):end,i_node-1) = stress_node(1:(end-

shift),i_node); 
stress_node(:,i_node) = stress_node_shifted(:,i_node-1); 
shift = shift + 2000; % fixed offset 

end 
end 

M = max(stress_node, [], 'all'); 

dt=0.05; % Time Step ms 
t=0:dt:12700000; %Time Array ms 
t_on_dt = t(1,end)/dt; 
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V_f = zeros(C, t_on_dt+1); 

for I_ST_loop = 1:C 

% Constants and definitions 

% Hogdkin Huxley constants 
% Original Constants set for all Methods 

Cnst_Cm= 1; % Membrane Capcitance uF/cm^2 Cm=0.01 

VA = -50; 
Cnst_ENa=55; % mv Na reversal potential 
Cnst_EK=-72; % mv K reversal potential 
Cnst_El=10; % mv Leakage reversal potential 
Cnst_gbarNa=120; % mS/cm^2 Na conductance gbar Na=1.2 
Cnst_gbarK=36; % mS/cm^2 K conductance gbar 
Cnst_gbarl=0.3; % mS/cm^2 Leakage conductance gbarl 
epsilon = 1.0;% from Shapiro and Lenherr 1972 epsilon varies between 1 and 

10 

V(1)= -60; % Initial Membrane voltage 
REF_I=0.00; %External Current Applied 

% parameters as per squid axon, taken from (Connor et al., 1977;Hille, 

1992), Xu p227 
GL = 0.3; 
A_fac = 7; 
B_fac = 7; 
Cnst_gbarA = 47.7; 
m_fac = 0.263; 
h_fac = 0.263; 
n_fac = 2.63; 

% Declare variable arrays to save time 
alpha_A = zeros(1,t_on_dt); 
alpha_B = zeros(1,t_on_dt); 
alpha_h = zeros(1,t_on_dt); 
alpha_m = zeros(1,t_on_dt); 
alpha_n = zeros(1,t_on_dt); 

beta_A = zeros(1,t_on_dt); 
beta_B = zeros(1,t_on_dt); 
beta_h = zeros(1,t_on_dt); 
beta_m = zeros(1,t_on_dt); 
beta_n = zeros(1,t_on_dt); 

A = zeros(1,t_on_dt+1); 
B = zeros(1,t_on_dt+1); 
h = zeros(1,t_on_dt+1); 
m = zeros(1,t_on_dt+1); 
n = zeros(1,t_on_dt+1); 

%Variables 
%===set the initial states===% 
%V=-0; %Baseline voltage 
alpha_n(1) = (1/n_fac) * (epsilon*(-.01 * ( (50+V) / (exp(-(V+50)/10)-1) 

))); %Equation 12 
beta_n(1) = (1/n_fac) * (epsilon*(.125*exp((-(V+60)/80)))); %Equation 13 
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alpha_m(1) = (1/m_fac) * (-0.1*( (V+35) / (exp(-(V+35)/10)-1))); %Equation 

20 
beta_m(1) = (1/m_fac) * (4*exp(-(V+60)/18)); %Equation 21 
alpha_h(1) = (1/h_fac) * (0.07*exp(-(V+60)/20)); %Equation 23 
beta_h(1) = (1/h_fac) * (1/(exp(-(V+30)/10)+1)); %Equation 24 

  
%------------for Ik2------------------------------ Currents for 2nd 

potassium channel, Xu p227 
A_inf = ((0.0761*exp((V+94.22)/31.84))/(1+exp((V+1.17)/28.93)))^(1/3); 
Ta_A = A_fac*(0.3632+(1.158/(1+exp((V+55.96)/20.12)))); 
alpha_A(1) = A_inf/Ta_A; 
beta_A(1) = (1-A_inf)/Ta_A; 

  
B_inf = (1/(1+exp((V+53.3)/14.54)))^4; 
Ta_B = B_fac*(1.24+(2.678/(1+exp((V+50)/16.027)))); 
alpha_B(1) = B_inf/Ta_B; 
beta_B(1) = (1-B_inf)/Ta_B; 

  

  
A(1) = alpha_A/(alpha_A+beta_A); 
B(1) = alpha_B/(alpha_B+beta_B); 
%----------------------------------------------- 

  
n(1) = alpha_n/(alpha_n+beta_n); %Equation 9 
m(1) = alpha_m/(alpha_m+beta_m); %Equation 18 
h(1) = alpha_h/(alpha_h+beta_h); %Equation 18 

  

  
%Temperature related inputs for the Xu paper 
Temp_noci = 55; % nociceptor temperature 
Temp_thres = 43; % thermal pain threshold temperature 
I_shift = -4; % -4 fudge factor introduced Xu to stop firing below 

threshold value This influences the threshold of firing 

  
Ch1 = 0.382; % constant for I_ST, frequency is proportional to this value 
Ch2 = 0.064; % constant for I_ST, frequency is inversely proportional to 

this value 
Ch3 = 0.355; 

  
Tn=[]; 
f =[]; 
f2=[]; 
f3=[]; 

  
k_temp = 3^((Temp_noci-6.3)/10); 
k = 0.175; %This influences the rate of firing Range 0.03 to 0.15 is 

reasonable 

  
% I_ST = (Ch1*exp(((Temp_noci-Temp_thres)/Temp_thres)/Ch2)+Ch3)+ I_shift; 

%Xu p231, I_st = stimulation current, eq 36 
% as per Xu, I_ST = I_heat + I_chem + I_mech, where chem and mech are 

assumed linear variables, p234 

  
I_ST = zeros(t_on_dt,1); 
time = zeros(1,t_on_dt); 

  
    for i=1:t_on_dt % = t/dt = total amount of time steps 
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I_ST = stress_node(i,I_ST_loop); 

time(i) = i; 
alpha_n(i) =  (1/n_fac) * (epsilon*(-.01 * ( (50+V(i)) / (exp(-

(V(i)+50)/10)-1) ))); 
beta_n(i) = (1/n_fac) * ( epsilon*(.125*exp((-(V(i)+60)/80)))); 
alpha_m(i) = (1/m_fac) * (-0.1*( (V(i)+35) / (exp(-(V(i)+35)/10)-1) 

)); 
beta_m(i) = (1/m_fac) * (4*exp(-(V(i)+60)/18)); 
alpha_h(i) = (1/h_fac) * (0.07*exp(-(V(i)+60)/20)); 
beta_h(i) = (1/h_fac) * (1/(exp(-(V(i)+30)/10)+1)); 

%-----------------------------for Ik2------------------- 
A_inf = 

((0.0761*exp((V(i)+94.22)/31.84))/(1+exp((V(i)+1.17)/28.93)))^(1/3); 
Ta_A = A_fac*(0.3632+(1.158/(1+exp((V(i)+55.96)/20.12)))); 
alpha_A(i) = A_inf/Ta_A; 
beta_A(i) = (1-A_inf)/Ta_A; 

B_inf = (1/(1+exp((V(i)+53.3)/14.54)))^4; 
Ta_B = B_fac*(1.24+(2.678/(1+exp((V(i)+50)/16.027)))); 
alpha_B(i) = B_inf/Ta_B; 
beta_B(i) = (1-B_inf)/Ta_B; 
%----------------------------------------------------- 

%---calculate the currents---% 
I_Na = (m(i)^3) * Cnst_gbarNa * h(i) * (V(i)-Cnst_ENa); %Equations 

3 and 14 
I_K = (n(i)^4) * Cnst_gbarK * (V(i)-Cnst_EK); %Equations 4 and 6 
I_L = Cnst_gbarl *(V(i)-Cnst_El); %Equation 5 
I_k2 = Cnst_gbarA * (A(i)^3)* B(i) * (V(i) - VA); % not sure about 

VA 
I_ion = I_ST - I_K - I_Na - I_L - I_k2; 

%---calculate the derivatives using Euler first order 

approximation---% 
V(i+1) = V(i) + dt*I_ion/Cnst_Cm; 
n(i+1) = n(i) + dt*((alpha_n(i) *(1-n(i)) - beta_n(i) * n(i))*k); 

%Equation 7 
m(i+1) = m(i) + dt*((alpha_m(i) *(1-m(i)) - beta_m(i) * m(i))*k); 

%Equation 15 
  h(i+1) = h(i) + dt*((alpha_h(i) *(1-h(i)) - beta_h(i) * h(i))*k); 

%Equation 16 

A(i+1) = A(i) + dt*(alpha_A(i) *(1-A(i)) - beta_A(i) * A(i)); %for 

Ik2 
B(i+1) = B(i) + dt*(alpha_B(i) *(1-B(i)) - beta_B(i) * B(i)); %for 

Ik2 
end 

V_f(I_ST_loop,:) = V(1,:); 
f3 = f2; 

clearvars -except V_f f3 t dt t_on_dt M stress_node C 
end 
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% V_f_added = (V_f(1,:) + V_f(2,:)); % Choose this for 2 nodes, etc. 
% V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:)); 
V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:) + V_f(4,:) + V_f(5,:)); 
% V_f_added = (V_f(1,:) + V_f(2,:) + V_f(3,:) + V_f(4,:) + V_f(5,:) + 

V_f(6,:) + V_f(7,:));   

  
for i = 200000:200000:t_on_dt   %multi node voltage  
    temp_peaks = findpeaks(V_f_added(1,i-199999:i),'MinPeakProminence',20); 
    freq = (numel(temp_peaks)-1)/(10.0); 
    f3 = [f3, freq]; 
end 

  
% for i = 200000:200000:t_on_dt  %single node voltage 
%     temp_peaks = findpeaks(V_f(1,i-199999:i),'MinPeakProminence',20); 
%     freq = (numel(temp_peaks)-1)/(10.0); 
%     f3 = [f3, freq]; 
% end 

  
x_axis = 1: t(1,end)/10000; 

  
x1 = 12:12:1270; %rms calcs 
index = 12; 
for i = 1:105 
   y1(1,i) = rms(f3(1,index-11:index)); 
   index = index+12; 
end 

  
sample_index = 1; %stress calcs 
for i=1:105 
stress_sample(1,i) = stress_node(sample_index,1); 
sample_index = sample_index + 2419000; 
end 

  
%% 
% Plot the functions 
figure; 
hold on 
a1 = plot(x_axis, f3); M1 = 'Node cluster A, f(Hz)'; 
a2 = plot(x1, y1); M2 = 'Node cluster A rms, f(Hz)'; 
a3 = plot(x1, stress_sample); M3 = 'Stress'; 
% ylim([0 60]) 
xlabel('time (10^1 seconds)'); 
ylabel('f(Hz)'); 
legend([a1;a2;a3], M1, M2, M3, 'Location','northwest') 
hold off 

  
figure; 
plot(x_axis, f3); 
% ylim([0 60]) 
xlabel('time (10^1 seconds)'); 
ylabel('f(Hz)'); 

  
% figure(2) 
% plot(t,V_f(1,:)); 
% legend('Forward Euler'); 
% xlabel('Time (seconds)'); 
% ylabel('Voltage (mV)'); 
% title('Voltage Change for Hodgkin-Huxley Model'); 

  



88 
 

figure; 
plot(t,V_f_added(1,:)); 
legend('Forward Euler'); 
xlabel('Time (ms)'); 
ylabel('Voltage (mV)'); 
title('Voltage Change for Hodgkin-Huxley Model'); 

  
profile off; % Terminate profiler 
profile viewer; % Display profiler data to indentify where code execution 

is slowest 
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Appendix 3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 
% 
% Harley Ewing 9704959 
% Code to read FEBio stress vectors and plot them as pressure curves using 

thin wall pressure vessel analysis 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

% Close and clear everything 
clear; 
clc; 
close all; 

profile on; % Initialise profiler to indentify where code execution is 

slowest 

%initialise constants 
i = 0; 
r = 2.88; 

%initialise variables 
pressure = zeros(100,1); 
thickness = zeros(100,1); 
time = 1:100; 

filename = '50mmhg_stress_01.txt'; 
%filename = 'm_bladder_07_multistep_stress_N956.txt'; 

opts = detectImportOptions(filename); 

preview(filename, opts); 

t1 = readtable(filename, opts); 

stress = table2array(t1(:,2)); 

filename = '50mmhg_displacement_01.txt'; 
%filename = 'm_bladder_07_multistep_disp_N956.txt'; 

opts = detectImportOptions(filename); 

preview(filename, opts); 

t2 = readtable(filename, opts); 

displacement = table2array(t2(:,2:3)); 
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% format long; 

  
sz = size(stress); %Find size of array reported as "rows, columns". 

  
C = sz(1,1); 

  
%%%%% Use thin walled pressure vessel theory for inner pressure 2*t*sigma / 

r = p 
% t = thickness 
% sigma = stress 
% r = radius 
% p = pressure 

  

  
for i = 1 : C 
    thickness (i,1) = displacement(i,1) - displacement(i,2); 
end 

  
for i = 1 : C 
    radius (i,1) = (displacement(i,2) + displacement(i,1))/2; 
end 

  

  
for i = 1 : C 
    pressure (i,1) = (2 * thickness(i,1) * stress(i,1)) / 

((displacement(i,2) + r)); 
end 

  
figure; 
plot (time, pressure(:,1)) 
xlim([0 100]) 
xlabel('time (10^1 seconds)'); 
ylabel('Pressure (MPa)'); 

  
% fclose(fileID); 

  
profile off; % Terminate profiler 
%profile viewer; % Display profiler data to indentify where code execution 

is slowest 
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Appendix 4 
Table 7 – Bladder Inflation Data Wade Model 

time at end of inflation (s) infusion # volume injected (uL) total volume (uL)

0 76

200 1 100 176

800

900 2 50 226

1500

1600 3 50 276

2200

2300 4 50 326

2900

3000 5 50 376

3600

3700 6 50 426

4300

4400 7 50 476

5000

5100 8 50 526

5700

5800 9 50 576

6400

6500 10 50 626

7100

7200 11 50 676

7800

7900 12 50 726

8500

8600 13 50 776

9200

9300 14 50 826

9900

10000 15 50 876

10600

10700 16 50 926

11300

11400 17 50 976

12000

12100 18 50 1026

12700
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Appendix 5 
Secondary more complex mouse bladder mesh not incorporated into final research is shown 

in Figure 36. The more complex geometry of the second mesh was assigned a higher mesh 

density, and urethra and ureters. 

Figure 36 – Bladder mesh with ureters and urethra 




