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Abstract 

This study investigates the upper ocean circulation along the west Australian coast, based 
on recent observations (WOCE ICM6, 1994/96) and numerical output from the 1⁄6° Parallel Ocean 
Program model (POP11B 1993/97). Particularly, we identify the source regions of the Leeuwin 
Current, quantify its mean and seasonal variability in terms of volume, heat and salt transports, 
and examine its heat balance (cooling mechanism). This also leads to further understanding of the 
regional circulation associated with the Leeuwin Undercurrent, the Eastern Gyral Current and the 
southeast Indian Subtropical Gyre. 

The tropical and subtropical sources of the Leeuwin Current are understood from an 
online numerical particle tracking. Some of the new findings are the Tropical Indian Ocean source 
of the Leeuwin Current (in addition to the Indonesian Throughflow/Pacific); the Eastern Gyral 
Current as a recirculation of the South Equatorial Current; the subtropical source of the Leeuwin 
Current fed by relatively narrow subsurface–intensified eastward jets in the Subtropical Gyre, which 
are also a major source for the Subtropical Water (salinity maximum) as observed in the Leeuwin 
Undercurrent along the ICM6 section at 22°S. 

The ICM6 current meter array reveals a rich vertical current structure near North West 
Cape (22°S). The coastal part of the Leeuwin Current has dominant synoptic variability and 
occasionally contains large spikes in its transport time series arising from the passage of tropical 
cyclones. On the mean, it is weaker and shallower compared to further downstream, and it only 
transports Tropical Water, of a variable content. The Leeuwin Undercurrent carries Subtropical 
Water, South Indian Central Water and Antarctic Intermediate Water equatorward between 
150/250 to 500/750 m. There is a poleward flow just below the undercurrent which advects a 
mixed Intermediate Water, partially associated with outflows from the Red Sea and Persian Gulf. 
Narrow bottom–intensified currents are also observed. 

The 5–year mean model Leeuwin Current is a year–round poleward flow between 22°S and 
34°S. It progressively deepens, from 150 to 300 m depth. Latitudinal variations in its volume 
transport are a response to lateral inflows/outflows. It has double the transport at 34°S (–2.2 Sv) 
compared to at 22°S (–1.2 Sv). These model estimates, however, may underestimate the transport 
of the Leeuwin Current by 50%. Along its path, the current becomes cooler (6°C), saltier (0.6 psu) 
and denser (2 kg m–3). At seasonal scales, a stronger poleward flow in May–June advects the 
warmest and freshest waters along the west Australian coast. This advection is apparently spun up 
by the arrival of a poleward Kelvin wave in April, and reinforced by a minimum in the equatorward 
wind stress during July. 

In the model heat balance, the Leeuwin Current is significantly cooled by the eddy heat 
flux divergence (4°C out of 6°C), associated with mechanisms operating at submonthly time scales. 
However, exactly which mechanisms it is not yet clear. Air–sea fluxes only account for ~30% of the 
cooling and seasonal rectification is negligible. The eddy heat divergence, originating over a narrow 
region along the outer edge of the Leeuwin Current, is responsible for a considerable warming of a 
vast area of the adjacent ocean interior, which is then associated with strong heat losses to the 
atmosphere. The model westward eddy heat flux estimates are considerably larger than those 
associated with long lived warm core eddies detaching from the Leeuwin Current and moving 
offshore. This suggests that these mesoscale features are not the main mechanism responsible for 
the cooling of the Leeuwin Current. We suspect instead that short lived warm core eddies might 
play an important role. 
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