Solutions to Blistering: Modification of a Poly(urea-*co*urethane) Coating Applied to Concrete Surfaces

Eleni Papadopoulos (BE. Hons, BSc.)

Thesis submitted to the faculty of Science and Engineering of Flinders University in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

Dr Stephen Clarke Dr Milena Ginic-Markovic

December 2008 Adelaide, South Australia Dedicated to my mum, dad, sisters, papou and yiayia

Table of Contents

Summaryvi
Declarationviii
Acknowledgementsix
List of Figuresx
List of Schemesxvi
List of Tablesxvii
Glossaryxix
•
Chapter 1 – Introduction1
1.1 Background
1.2 Literature Review
1.2.1Polyurethane and polyurea reaction chemistry4
1.2.2 Isocyanates 8
1.2.3 Polyols
1.2.4Emulsion technology
1.2.5 Kinetics of competing reactions: Presence of Water and the production of Carbon dioxide
1.2.6 Catalysts
1.2.7 Theory of Reaction Kinetics
1.2.7.1 Thermal techniques
1.2.7.2 Rheological techniques
1.2.7.3 Spectroscopic techniques
1.2.8 Fillers
1.3 Aim and Scope
1.4 Thesis outline
1.4.1Publications40
1.4.2 Conference Presentations
1.5 References
Chapter 2–Characterisation Techniques52
2.1 Fourier Transform Infrared (FTIR)
2.2 Differential Scanning Calorimetry (DSC)

2.3 Thermogravimetric Analysis (TGA)	56
2.4 Dynamic Mechanical Analysis (DMA)	56
2.5 Rheology	58
2.6 Carbon Dioxide Test Method	59
2.6.1 Establishing the test method	60
2.7 Error analysis	63
2.8 References	64
Chapter 3- Investigation into the main reactions in the product	66
3.1 Part 1: Kinetic study of the Polyurethane reaction between Castor Oil and	PMDI.
3.1.1 Introduction	67 67
3.1.2 Experimental	
3.1.2.1 Materials and sample preparation	
3.1.2.2 Methods	70
3.1.2.2.1 DSC Measurement	70
3.1.2.2.2 Rheological Measurement	71
3.1.2.2.3 Infrared Spectroscopy	71
3.1.2.2.4 Dynamic Mechanical Analysis (DMA)	72
3.1.3 Results and Discussion	73
3.1.3.1 Investigation of the reaction kinetics through DSC	73
3.1.3.2 Investigation of the castor oil and PMDI reaction through r	heology
3.1.3.2.1 Kinetic Analysis through the point of gelation	76
3.1.3.2.2 Kinetic Analysis from Viscosity data	84
3.1.3.2.3 Kinetics of complex viscosity during the initial stages of	cure86
3.1.3.3 Kinetic studies through FTIR	91
3.1.4 Conclusions	95
3.2 Part 2: Investigation into the curing kinetics of the Polyurea reaction	between
Water and Isocyanate	96
3.2.1 Introduction	96
3.2.2 Materials and Methods	96
3.2.2.1 Materials and sample preparation	96
3.2.2.2 Methods	98
3.2.2.2.1 Blister Simulation Experiment	98

	3.2.2.	2.2 PDSC measurements- Water and PMDI	98
	3.2.2.	2.3 Carbon dioxide Measurements	98
	3.2.2.	2.4 FTIR Analysis	98
3.2.3	Res	sults and Discussion	100
	3.2.3.1	Blister Simulation	
	3.2.3.2	Curing Kinetics of the water and isocyanate reaction throug	gh PDSC 102
	3.2.3.3	Volumetric Analysis of Carbon Dioxide Evolution	110
	3.2.3.4	Cure Kinetics through FTIR	115
3.2.4	Cor	nclusions	117
3.2.5	Reference	ces	118
comm	ter 4 - Inv ercial dii	socyanate resin	121
4.1 Int	troduction	L	
4.2 M	aterials an	d Methods	124
4.2.1	Ma	terials and sample preparation	
4.2.2	Me	thods	
	4.2.2.1	DSC Measurement	125
	4.2.2.2	Rheological Measurement	126
	4.2.2.3	Mid and Near Infrared Spectroscopic Analysis	126
	4.2.2.4	Dynamic Mechanical Analysis	128
4.3 Re	esults and	Discussion	
4.3.1 ratio	Inv 	estigation of reaction kinetics through DSC for the stoich	niometric
	4.3.1.1	Applicability of kinetic models	132
	4.3.1.2	Isoconversional methods	138
	4.3.1.3	Kinetic differences of the primary and secondary hydroxyls	s141
4.3.2 PMDI	Rhe	eological investigation of the stoichiometric ratio of Gly	cerol to
4.3.3	Inv	estigation of the critical ratio of glycerol to PMDI	149
4.3.4 DSC o	Kir lata	netic analysis of the critical ratio using isconversional met	hods for 152
4.4 Co	onclusions	s	157
4.5 Re	eferences .		

Chapter 5- Po	lyol Emulsion	161
5.1 Introduction	n	
5 2 Experiment	tal	165
5.2.1 Ma	aterials	
5.2.1.1	Emulsion preparation	165
5.2.2 Ex	sperimental techniques	168
5.2.2.1	Rheological characterisation	
5.2.2.2	Conductivity measurements	
5.2.2.3	Carbon Dioxide measurements	169
5.3 Results and	Discussion	
5.3.1 Ch	nanges in the emulsion structure	
5.3.1.1	Effect on carbon dioxide production	173
5.3.2 Va	ariations to the simple emulsion	174
5.3.2.1	Emulsion stability	175
5.3.2.2 evolutio	The effect of varying emulsion composition on car on and the crosslinking reaction during the reaction with F	rbon dioxide MDI179
5.3.3 Ef emulsion and it	fect of various emulsion components on the stability o ts subsequent effect on carbon dioxide evolution	f the control
5.3.3.1	Effect of the non-curing components on carbon diox	ide evolution
5.3.4 Ac	ldition of a second polyol	
5.3.4.1	Straight addition of glycerol to emulsion	
5.3.4	.1.1 Flow properties	
5.3.4	.1.2 Carbon dioxide tests	
5.3.4.2 castor c	Fractionating the control emulsion with glycerol l	oy removing
5.3.4	.2.1 Flow properties	
5.3.4	.2.2 Carbon dioxide tests	193
5.3.4.3	Addition of glycerol to the control polyol emulsion at 4	4% w/w195
5.3.4 PMD	.3.1 Rheological investigation of the reaction between e	mulsions and 195
5.3.4	.3.2 Carbon dioxide rate analysis	198
5.4 Conclusion 5.5 References	IS	
Chapter 6 - Ro	eactive Aggregate and Combined Solutions	202
6.1 Introduction	n	

6.2 M	aterials and	d Methods	
6.2.1	Ma	aterials and sample preparation	
6.2.2	Me	ethods	
	6.2.2.1	TGA	
	6.2.2.2	Carbon dioxide Measurement	
	6.2.2.3	DMA	
	6.2.2.4	Ageing tests	
6.3 Re	esults and I	Discussion	
6.3.1	Ch	aracterisation of the current industry ratio and improveme	nts 208
6.3.2	Ag	eing of cement	
	6.3.2.1	Carbon dioxide environment	
	6.3.2.2	Relative humidity environment	
6.3.3 variou	Ch is proposed	aracterisation of the cured material using DMA for con a solutions	parison of
6.4 Co	onclusions		
6.5 Re	eferences		
Chap	ter 7 – Co	nclusions and Recommendations	221
Appe	ndix A – N	Iaterial Characterisation	
1 PI	MDI		229
2 A	nalysis of r	aw materials	232

Summary

Blistering, during cure, resulting in subsequent coating delamination has been found to occur in a poly (urea-*co*-urethane) cement composite coating used for the protection of new and existing industrial concrete surfaces. Refurbishment of the blistered material, leads to time delays and increased costs.

The reaction kinetics within this product is complex due to one of the reactants being water dispersed. The presence of water causes carbon dioxide evolution during cure through the decomposition of carbamic acid formed from the reaction between water and isocyanate functional groups of the resin. Water also reacts with cement and lime in the reactive aggregate, thus a multitude of reactions occurs, during cure of these complex materials. Due to the complexity of the composite coating, the cure chemistry for the polyurea and polyurethane reactions were investigated individually, with reference to the reactant ratios used by the industry. Although the competing reactions between isocyanate and hydroxyl groups and isocyanate and water molecules has been studied extensively for monomeric systems, carbon dioxide reduction in these systems has resided in the use of catalysts to increase the rate of the preferred reaction. This solution was not economically viable nor was it practical for the industry partners. Solutions were therefore aimed at the reduction or elimination of carbon dioxide in the coating formulation through the addition of a slower reacting polyol. Glycerol was chosen as the slower reacting polyol, because of its ability to reduce the viscosity of the polyol emulsion as well as increase gel times, improving the coating's pot-life and application ability.

The relative rates of cure of the polyurethane/polyurea reactions have not previously been attempted for oligomeric isocyanates with tri-functional polyols, such as castor oil and glycerol dispersed in water. There was a lack of literature describing cure of oligomeric isocyanates and polyol emulsions and the rate of carbon dioxide evolution from these systems. A novel Pressure Differential Scanning Calorimetry (PDSC) technique was used to understand the cure of the polyurea reaction as well as the carbon dioxide evolved from this system and was compared to volumetric tests for this system. The effect of changing the ratios of isocyanate and the reactive components of the polyol emulsion on carbon dioxide evolution was therefore investigated. Understanding how these changes affect the application of the coating system was also taken into consideration through rheological assessment of the polyol formulation. Hydrated lime or quicklime, added to polyurethane coatings was found to aid in the absorption of carbon dioxide, therefore improvements to the cement aggregate by the addition of hydrated lime or quicklime was also considered. The curing mechanism for the composite coating containing the cement and inert fillers was out of the scope of this thesis.

'I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.'

.....

Eleni Papadopoulos

Acknowledgements

I would like to thank Flinders University, the Australian Research Council (ARC) Linkage grant scheme, Prestige Concreting Additives and Baker Technical Services for funding and sponsoring the industry research project.

Thank you to my supervisors; Stephen Clarke and Milena Ginic-Markovic for their support and encouragement throughout the last few years.

There have also been a multitude of people in these last few years who have brightened my days at Flinders University and who I consider to be good friends. Thank you to people past and present: Durkhanai, Elda, Tony, Tricia, Rachel, Dave C., Paul, Ian, Pamela, Simon, Taryn, Dave V., Andrew, Kim, Dee and Kristina.

I would like to give a special mention to all my friends who have endured having me as their "I can't...I need to study" friend, over these few years. I have been extremely lucky to have such a great support group, who have given me so much.

I wish to express my most heart-felt gratitude to my family, especially my beautiful mum, Toula Papadopoulos, who has given me all the love and support I have needed to go on this journey. Thank you to my beautiful sisters, Athanasia, Penny and Christina, and to my dad, who although is not here at present, has given me the strength, character and support throughout my life and will be remembered in all my achievements. I would also like to thank the newest additions to my family, Martin, my brother-in-law and finally, Theodore!! My gorgeous little nephew, who has brought me the greatest joy in this past year and has made my journey so much easier.

List of Figures

Figure 1.1 Blister formation during cure of the poly (urea-co-urethane) floor screed.3
Figure 1.2 Common isocyanates used in polymeric materials ^[25]
Figure 1.3 Typical structure of castor oil ^[69]
Figure 1.4 Surfactant stabilisation of oil in water droplets through A) solubilisation
and B) polymer adsorption ^[80] 11
Figure 1.5 Representation of emulsion stability ^[80]
Figure 1.6 Approach to solving blistering in the coating during curing
Figure 2.1 Heat flux DSC schematic ^[12]
Figure 2.2 F_d represents the applied oscillatory force, while F_s is the clamping force,
showing the phase angle $\delta \ produced^{[22]}57$
Figure 2.3 Relationship between the complex, storage and loss moduli ^[21] 57
Figure 2.4 CO ₂ measurement apparatus
Figure 2.5 The amount of CO_2 evolved (from Figure 2.4) from the reaction of the
simple polyol emulsion and PMDI61
Figure 2.6 Remixing reacting mixture evolved more carbon dioxide that was
entrapped in the polymer matrix61
Figure 2.7 Carbon dioxide evolved by varying the mass of sample in the reaction
jar62
Figure 3.1 Representation of baseline determined for 12.5 °C min ⁻¹ 70
Figure 3.2 Heat flow profile for castor oil with PMDI at equal stoichiometry73
Figure 3.3 The advanced integral isoconversional analysis of activation energy with
extent of conversion for two different ratios of hydroxyl groups to isocyanate groups.
Figure 3.4 G', G" and tan δ versus cure time for the castor oil and PMDI
stoichiometric system at 70 °C77
Figure 3.5 Multiple frequency plot of tan δ at 70 °C
Figure 3.6 linear relationship of gel time obtained through the maximum in tan $\delta 80$
Figure 3.7 G' and G" versus cure time for the castor oil and PMDI with an excess of
-
isocyanate at 70 °C
isocyanate at 70 °C

Figure 3.9 Correlation between G' and the time it occurs
Figure 3.10 Viscosity build up of castor oil and PMDI and the stoichiometric ratio 84
Figure 3.11 Viscosity build up of castor oil and PMDI with excess isocyanate84
Figure 3.12 Viscosity build up follows an exponential function before the gel point
for the equal stoichiometric system at A) lower isothermal temperatures and B)
higher temperatures
Figure 3.13 Linearity observed for the natural log of complex viscosity versus time
profiles for the castor oil and PMDI system at A) equal stoichiometry and B) excess
isocyanate
Figure 3.14 Rate of viscosity increase shows discontinuity at lower isothermal
temperatures for the stoichiometric system
Figure 3.15 Activation energy obtained for the equal stoichiometric system of Castor
oil and PMDI using the apparent kinetic constant established from viscosity profiles
Figure 3.16 Conversion profile of the isocyanate peak at ~2270 $\rm cm^{-1}$ during
polyurethane cure at 60 $^{\circ}\mathrm{C}$ using FTIR for stoichiometric and excess isocyanate
systems91
Figure 3.17 A second order rate model fit for the rate of reaction before and after
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR93
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR
Figure 3.17 A second order rate model fit for the rate of reaction before and after gelation for the polyurethane system at 60 °C using FTIR

Figure 3.25 Change in the pressure difference with conversion for the polyurea
system
Figure 3.26 Change in the pressure difference profile with temperature, while
varying the mole ratio of water to isocyanate107
Figure 3.27 Change in Pressure and heat flow data for increased water content108
Figure 3.28 Isothermally obtained master curve for the polyurea reaction at
H ₂ O/NCO=1.65 also displaying pressure evolution during cure109
Figure 3.29 Carbon dioxide evolution from the PMDI-water reaction111
Figure 3.30 Rate of CO ₂ evolution for the PMDI-water reaction111
Figure 3.31 Rate of CO_2 evolution with respect to water consumption assuming a
first order process
Figure 3.32 First order process for the rate of carbon dioxide evolution114
Figure 3.33 Second order process for the rate of carbon dioxide evolution114
Figure 3.34 Conversion versus time for the consumption of Isocyanate groups at 60
$^{\circ}C$ for the H2O/NCO mole ratio= 1.65115
Figure 3.35 Second order rate equation describes the rate of consumption of
isocyanate groups for the polyurea reaction at the mole ratio of $H_2O/NCO=1.65$ at 60
isocyanate groups for the polyurea reaction at the mole ratio of $H_2O/NCO=1.65$ at 60 °C
^o C
^o C
[°] C
isocyanate groups for the polyurea reaction at the mole ratio of $H_2O/NCO=1.65$ at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of $H_2O/NCO=1.65$ at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of $H_2O/NCO=1.65$ at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C
isocyanate groups for the polyurea reaction at the mole ratio of H ₂ O/NCO=1.65 at 60 °C

Figure 4.9 Variation of activation energy with conversion for isothermal DSC cure
139
Figure 4.10 variation of activation energy with conversion for non-isothermal data
Figure 4.11 A) Gaussian fit of heat flow curve during isothermal cure at 70 °C: 2
peaks fitted pertaining to primary and secondary hydroxyls and B) Rate of cure
pertaining to primary and secondary hydroxyls in glycerol
Figure 4.12 Viscosity build up of the polyurethane system at various isothermal
temperatures at 0.1% strain and inset at 10% strain showing initial viscosity build up
Figure 4.13 Evolution of G', G" and tan δ at various isothermal cure temperatures at
0.1% strain, 1Hz
Figure 4.14 Dependence of the gel point on the isothermal curing temperature for the
polyurethane system
Figure 4.15 Extent of reaction for varying mole ratios of OH/NCO149
Figure 4.16 Conversion of isocyanate peak intensity for increasing hydroxyl content
Figure 4.17 Overlap of the DSC and ATR-FTIR data for the conversion of
isocyanate groups with an increasing hydroxyl concentration150
Figure 4.18 Heat of reaction in kJ mol ⁻¹ equivalent isocyanate versus %conversion
determined by the reduction in intensity of the isocyanate peak using ATR-FTIR.151
Figure 4.19 Heat flow profiles in A) non-isothermal and B) isothermal mode for the
critical mole ratio of OH/NCO152
Figure 4.20 Non-isothermal dependence of activation energy on conversion for
differing mole ratios of OH/NCO
Figure 4.21 Isothermally determined activation energy dependence on conversion for
an excess in hydroxyl mole ratio of OH/NCO=1.5 determined using absolute extents
of cure
Figure 5.1 Steric stabilisation of oil-in-water forming an emulsion ^[6] 162
Figure 5.2 Structure of the nonyl-phenol ethoxylate
Figure 5.3 Differences in viscosity behaviour through changes in the emulsion
structure
Figure 5.4 Conductivity measurements for changes in emulsification procedures 172

Figure 5.5 Storage modulus behaviour of variations in the emulsification procedure
Figure 5.6 Effect of emulsion structure on carbon dioxide levels173
Figure 5.7 Viscosity profiles for emulsion series with increasing levels of A:
surfactant, B: water and C: castor oil concentrations176
Figure 5.8 Storage modulus profiles for emulsion series with increasing levels of A:
surfactant, B: water and C: castor oil concentrations178
Figure 5.9 Carbon dioxide evolution for increasing concentrations of surfactant,
water and castor oil concentrations in the simple emulsion180
Figure 5.10 A) Viscosity profiles and B) Storage modulus profiles for variations in
the emulsion composition184
Figure 5.11 Levels of carbon dioxide evolution while varying the polyol emulsion to
determine the effect of formulation components
Figure 5.12 Viscosity profiles for increases in glycerol concentration188
Figure 5.13 Storage modulus and loss modulus changes with 4% w/w glycerol
addition
Figure 5.14 Carbon dioxide evolution for increasing glycerol concentration190
Figure 5.15 Viscosity profiles for increasing fractions of glycerol in the control
emulsion
Figure 5.16 Storage and loss modulus profiles for 4% w/w and 8% w/w fractions of
glycerol in the control emulsion
Figure 5.17 Carbon dioxide evolution for varying weight fractions of glycerol194
Figure 5.18 Comparison of the extent of the crosslinking reaction between polyol
emulsions and PMDI197
Figure 5.19 Carbon dioxide evolution with time for the reaction between the polyol
emulsion and PMDI and the polyol emulsion with glycerol and PMDI198
Figure 6.1 Comparison of current industry fillers with an increased level of calcium
hydroxide
Figure 6.2 Reduction in carbon dioxide evolution through the addition of calcium
hydroxide
Figure 6.3 Reduction in carbon dioxide evolution through the addition of calcium
oxide
Figure 6.4 TGA results for carbon dioxide exposed Portland cement

Figure 6.5 Reduction in carbon dioxide levels in the reaction of PMDI with polyol
emulsion using carbon dioxide exposed cement at varying time intervals212
Figure 6.6 Efficacy of Portland cement exposed to a high relative humidity
environment over 172 hours
Figure 6.7 TGA analysis of the hydration reaction over time for Portland cement
exposed to a high humidity environment
Figure 6.8 Correlation of the calcium hydroxide levels present in Portland cement at
varying exposure times to a high humidity environment with its ability to reduce
carbon dioxide evolution in the coating formulation
Figure 1.A Typical composition of PMDI ^[1] 229
Figure 1.B Typical ¹ H-NMR spectrum with peaks representing for A) aromatic and
B) alkyl protons ^[2] 230
Figure 1.C General structure of PMDI ^[4] 230
Figure 2.A IR spectra for A) PMDI obtained by ATR-FTIR compared to B) MDI
spectra obtained from SDBS ^[2]
Figure 2.B IR spectra for A) castor oil obtained by ATR-FTIR compared to B) castor
oil spectra obtained from SDBS ^[2] 234
Figure 2.C IR spectra for A) glycerol obtained by ATR-FTIR compared to B)
glycerol spectra obtained from SDBS ^[2] 235
Figure 2.D IR spectra for A) dioctyl phthalate obtained by ATR-FTIR compared to
B) dioctylphalate spectra obtained from SDBS ^[2]

List of Schemes

Scheme 1.1 Polyurethane reaction	4
Scheme 1.2 Reaction between an isocyanate group and hydroxyl group resulting	g in
urethane bond formation	4
Scheme 1.3 Reaction between an isocyanate group and water resulting in a hig	ghly
reactive amine and carbon dioxide	5
Scheme 1.4 Reaction between a highly reactive amine and isocyanate group result	ting
in a urea bond formation	5
Scheme 1.5 Urethane bond formation: reaction of polyol with isocyanate	5
Scheme 1.6 Urea bond formation: reaction of water with isocyanate	6
Scheme 1.7 Carbon dioxide formation resulting from the reaction of a free fatty a	acid
and an isocyanate group	7
Scheme 1.8 Formation of carbodiimide ^[25]	7
Scheme 1.9 Secondary polyurethane reactions	8
Scheme 1.10 Calcium carbonate formation	.32
Scheme 1.11 Calcium hydroxide formation from calcium oxide	32
Scheme 1.12 Hydration of calcium oxide silicates in cement	.33
Scheme1.13 Reacting components, PMDI and castor oil	69
Scheme1.14Reaction between glycerol and PMDI	124
Scheme 6.1 Absorption of carbon dioxide by lime in the fillers	204

List of Tables

Table 1-1 Cement/Aggregate Filler for Polyurethanes ^[27] 31
Table 1-2 Portland cement molecular composition [194, 195]
Table 1-3 Portland cement Silicate Compositions ^[194] 33
Table 3-1 Non-isothermal data for peak temperatures and corresponding conversions
obtained for the castor oil- PMDI reaction at equal stoichiometry74
Table 3-2 Gel times (minutes) observed for the stoichiometric system of castor oil
and PMDI using uni-frequencey and multiple frequency mode78
Table 3-3 Activation Energies determined by various criteria for the stoichiometric
system
Table 3-4 Values for k_{η} for equal stoichiometry and excess isocyanate ratios of
Castor oil and PMDI
Table 3-5 Comparison of Activation Energy obtained through various methods91
Table 3-6 Summary of non-isothermal PDSC data for the polyurea reaction103
Table 4-1 Total heat flow and ultimate extents of cure for two time intervals at
varying isothermal cure temperatures
Table 4-2 Peak temperatures for non-isothermal heating rates 131
Table 4-3 Autocatalytic model parameters 135
Table 4-4 Critical rheological times obtained using the crossover of G' and G'' and
the frequency independence of tan δ 147
Table 4-5 Summary of varying activation energies obtained for the complex
polyurethane reaction between glycerol and PMDI
Table 4-6 Reaction data for non-isothermal DSC analysis with an excess in hydroxyl
groups153
Table 5-1 Emulsion composition for the change in variable concentrations %w/w 166
Table 5-2 Condition A: Composition of polyol emulsions 167
Table 5-3 Condition B: Series of polyol emulsions formed by adding glycerol to
control polyol emulsion168
Table 5-4 Condition C: Increasing glycerol composition in control emulsion by
removing castor oil
Table 5-5 Conductivity measurements for emulsion series with increasing levels of
surfactant, water and castor oil concentrations

Table 5-6 Rheological gel times achieved for increasing surfactant, water and castor
oil concentrations
Table 5-7 Storage modulus obtained at the gel times for increasing surfactant, water
and castor oil concentrations
Table 5-8 Conductivity measurements for changes in the control polyol emulsion 187
Table 5-9 Isocyanate to total hydroxyl mole ratio in mixture and reduction in carbon
dioxide with increasing glycerol concentration191
Table 5-10 Isocyanate to total hydroxyl mole ratio in mixture and reduction in carbon
dioxide with increasing fraction of glycerol showing total replacement of castor oil at
49% w/w
Table 5-11 Gel times and magnitude of the storage modulus at the gel point
Table 6-1 Polyol emulsion compositions for coating
variations
Table 6-2 Filler compositions for coating variations 205
Table 6-3 Comparison of T_g and storage modulus for various coating compositions
Table 6-4 Viscosity variations of polyol emulsions and oligomeric isocyanates
investigated
Table 1-A Summary of TGA parameters for raw materials 232

Glossary

Abbreviations

A(0)	Area underneath peak in FTIR spectra at zero time		
A(t)	Area underneath peak in FTIR spectra at time t		
A _p	Partial area underneath exothermic peak from DSC curves		
A _t	Total area underneath exothermic peak from DSC curves		
ATR	Attenuated Total Reflectance		
COn	Castor Oil fraction in emulsion series with total number of		
	emulsions equal to n		
COD	Coefficient of Distinction		
DEG	Diethylene Glycol		
DMA	Dynamic Mechanical Analysis		
DOF	Degrees of Freedom		
DOP	Dioctyl Phthalate		
DSC	Differential Scanning Calorimetry		
DTGS	Deuterated Triglycine Sulfate		
DVLR10	Commercial name for oligomeric diphenylmethane		
	diisocyanate obtained from Bayer Chemicals		
Ea	Apparent activation energy		
Fn	Fillers formulation with total number of formulations equal to		
	n		
FTIR	Fourier Transform Infrared		
G′	Storage modulus/elastic modulus		
G″	Loss modulus/viscous modulus		
H _{iso}	Isothermal heat of reaction from DSC exotherms		
HLB	Hydrophilic-Lipophilic Balance		
H _{res}	Residual heat of reaction from DSC exotherms		
H _{rxn}	Heat of reaction		
H _T	Total heat of reaction from DSC exotherms		
k	reaction rate constant		
KBr	potassium bromide		
NCO	Isocyanate functional groups		

NIR	Near Infrared		
NMR	Nuclear magnetic Resonance		
ОН	Hydroxyl functional groups		
Р	Pressure		
Pn	Polyol emulsion formulation with total number of		
	formulations equal to <i>n</i>		
PDSC	Pressure Differential Scanning Calorimetry		
PMDI	oligomeric diphenylmethane diisocyanate		
РО	Pine Oil		
R	Universal gas constant		
RH	Relative Humidity		
Sn	Surfactant fraction in emulsion series with total number of		
	emulsions equal to n		
SO	Silicone Oil		
tan δ	tan of the Loss angle δ		
TDI	toluene diisocyanate		
TGA	Thermogravimetric Analysis		
t _g	gel time		
T_{g}	Glass transition temperature		
T _p	Peak temperature obtained in DSC exotherms		
VOC	Volatile Organic Compound		
Wn	Water fraction in emulsion series with total number of emulsions equal to n		

Greek alphabet

α	conversion
β	heating rate in non-isothermal DSC
γ*	complex shear rate
Δ	represents change in a value
δ	loss angle in rheological analysis
3	extinction coefficient in Beer-lambert's law
η	viscosity obtained by rheological analysis
σ*	complex shear stress

Terminology

Carbon dioxide evolution. Evolution of carbon dioxide specifically from the reaction between isocyanate and water in the coating measured through volumetric tests.

Diffusion control. Also known as vitrification, used to describe kinetics of cure when the material is cured below the glass transition temperature and there is a change from a chemically controlled system.

Gel time. The gel time is the time at which the reaction has reached a constant conversion, when an infinite molecular crosslinked network has formed.

Pot-life. The pot-life is considered as the time at which the mixed coating formulation is workable before application and is dependent on the gel time of the reactions.

%Reduction in CO₂. This is a measure of the change in carbon dioxide levels between the control sample and that which is being compared. These values are specifically obtained from the volumetric tests performed.

Viscosity build-up. The build up in viscosity represents the molecular weight growth of the polymer during rheological analysis.

Volumetric analysis. This term is used for all tests which measures the amount of carbon dioxide evolved from the coating mixture using the apparatus described in Chapter 2.