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Abstract

Recently discovered is a natural decomposition of the Lifshitz-Krĕın spec-
tral shift function (SSF) à la Lebesgue into the sum of absolutely continuous
and singular SSF’s. The latter part represents the flow of singular spectrum
and takes integer values even within the essential spectrum. The singular
SSF may be alternatively characterised as the either of the so-called total
resonance index or singular µ-invariant. The first of these measures the total
number of poles of the sandwiched resolvent, considered as a function of
the coupling parameter, which split from the unit interval as the spectral
parameter is perturbed off of the real axis, counting the poles that move into
the upper half-plane with a positive sign and those that move to the lower
half-plane with a negative sign. The second measures the sum of winding
numbers of the eigenvalues of the scattering matrix as it is continuously
deformed to the identity in two different ways: by shrinking the coupling
parameter to 0 and by sending the imaginary part of the spectral parameter
to ∞. This document is in part a review of these facts, which were first
established by N. Azamov under the assumption of a trace class perturb-
ation, and also generalises their proofs to the case of relatively trace class
perturbations, thereby making them applicable for instance to Schrödinger
operators with bounded potentials undergoing integrable perturbations.

v



Declaration

I certify that this thesis does not incorporate without acknowledgement
any material previously submitted for a degree or diploma in any university;
and that to the best of my knowledge and belief it does not contain any
material previously published or written by another person except where
due reference is made in the text.

Tom Daniels

vi



Acknowledgements

I would like to thank Flinders University and everyone who contributed
to provide me with the opportunity to undertake this research. I thank my
friend Yohei Tanaka for his advice and many useful discussions and also for
translating parts of some modern Japanese textbooks for me. My greatest
thanks goes to my supervisor Nurulla Azamov whose creative ideas form a
basis of the results presented here and without whose generous and patient
guidance this would certainly not have been possible.

vii





CHAPTER 1

Introduction

The major themes of this document belong to the broad subject of
perturbation theory for self-adjoint operators on a Hilbert space H, in which
the general scheme is to relate the spectral properties of two self-adjoint
operators H0 and H1. The operator H1 is considered to be the result of
a slight perturbation of the ‘initial’ operator H0 and the theory makes
requirements on the ‘size’ of the perturbation V := H1−H0. Two important
examples of this type of condition which appear regularly herein are for V to
be ‘relatively compact,’ and further ‘relatively trace class,’ with respect to H0.
Exactly what is meant here will be clarified later; still the latter is a significant
restriction of the former. Also important for the purposes of this introduction
is the even more stringent condition that the perturbation V belongs to the
trace class L1(H) of compact operators with summable s-numbers.

The key theorems presented here are generalisations of recently discovered
results from the case of trace class perturbations to the case of relatively trace
class perturbations. This widening of the allowable size of a perturbation
passes a threshold in the applicability of the theory to physics. In the
context of quantum mechanics the operators H0 and H1 are Schrödinger
operators. For example, on the Hilbert space L2(R3), consider the initial
Hamiltonain H0 = −∆ + V0, where ∆ is the Laplacian and V0 is an operator
of multiplication by a bounded function V0 ∈ L∞(R3) (denoted by the same
symbol). Then a perturbation of multiplication by some other function V
can never be trace class or even compact, but it is relatively trace class if it
is integrable V ∈ L1(R3).

The closed subset σ(H) of the real line R forming the spectrum of an
arbitrary self-adjoint operator H can be deconstructed in a few different
ways. One is to separate the discrete spectrum σd(H), consisting of isolated
eigenvalues of finite multiplicity, from its closed complement the essential
spectrum σess(H). There is also the measure-theoretic (non-disjoint) decom-
position into absolutely continuous σac(H) and singular σs(H) spectra, the
latter admitting further decomposition into pure-point σpp(H) and singular
continuous σsc(H) parts. This describes the finer structure of the essential
spectrum, since the simpler discrete spectrum is entirely pure-point. The
discrete spectrum is rarely stable under small perturbations; the eigenvalues
can shift around and trace out continuous, possibly overlapping paths (see
e.g. [Kat84, Chapter II]). (Although the perturbation of isolated eigenvalues
is essentially a finite dimensional problem described by linear algebra, it is
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2 1. INTRODUCTION

hardly a trivial problem on which the last words have been said.) On the
other hand, it is a classical result of perturbation theory due to H. Weyl
(Theorem 2.18) that the essential spectrum as a whole is left unchanged
by relatively compact perturbations. Another finer classical result due to
T. Kato and M. Rosenblum (Theorem 7.24) assures a similar stability of the
absolutely continuous spectrum under trace class perturbations. This result
has since been generalised with the help of M. Sh. Birman and M. G. Krĕın
to the relatively trace class case and much weaker conditions of trace class
type. Nevertheless it depends crucially on a condition ‘of trace class type’
in the sense that it fails for a perturbation of arbitrarily small norm taken
from any larger Schatten class of compact operators (see e.g. [Yaf92, Part 2
of §6.2] and references therein). These two stability theorems are global in
the sense that there is still likely to be turbulent movement within these
masses of spectra.

Under a condition of trace class type an important object of perturbation
theory can be defined, namely the spectral shift function (SSF), which is
denoted by the symbol ξ and is uniquely associated to a pair of self-adjoint
operators H0 and H1. The SSF ξ(H1, H0) (by convention the order of the
operators is reversed to match the trace formula (1.2) below) is a locally
integrable real-valued function of the spectral parameter λ ∈ R and its
value ξ(λ) = ξ(λ;H1, H0) indicates the shift which is undergone at the
point λ as the spectrum of H0 is perturbed to that of H1. In this sense the
SSF extends the intuitive idea of the flow of discrete spectrum through the
point λ. Indeed if λ is outside of the essential spectrum, then ξ(λ) is the net
number of eigenvalues which cross λ in the positive direction. (The flow of
isolated eigenvalues, usually called ‘spectral flow,’ has many guises and has
been studied extensively from a geometric perspective. For information about
the connection between the SSF and some common definitions of spectral
flow see e.g. [Aza17].) Although the SSF is naturally integer-valued outside
of the essential spectrum, it may otherwise take any real value. (In fact
any real-valued integrable function is the SSF of some pair of self-adjoint
operators with trace class difference, see e.g. [BY93, §3.6].)

The SSF first appeared in the work of I. M. Lifshitz ([Lif52]), where it is
formally defined by the heuristic

(1.1) ξ(λ;H1, H0) = Tr (E0(λ)− E1(λ)) ,

where Ej , j = 0, 1, denotes the spectral measure of Hj . This makes sense in
the special case that the Hilbert space H has finite dimension, but requires
some regularisation before it makes sense in much more generality. Lifshitz
also noticed that the SSF should satisfy the trace formula

(1.2) Tr (ϕ(H1)− ϕ(H0)) =

∫
R
ϕ′(λ)ξ(λ;H1, H0) dλ,

which for test functions ϕ ∈ C∞c (R) determines the generalised derivative of
the SSF.
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For a trace class perturbation V ∈ L1(H), the SSF was famously made
rigorous in [Kre53] by M. G. Krĕın. He showed that in this case there is a
unique integrable function ξ which satisfies (1.2) for all functions ϕ from
a large class including the test functions C∞c (R). A necessary condition
and a sufficient condition on ϕ, which ensure the validity of the trace for-
mula (1.2) for all trace class perturbations, were later obtained by V. V. Peller
in [Pel85]. What’s more, Peller’s recent work [Pel16] provides a condition
both necessary and sufficient, clarifying this class as the operator Lipschitz
functions. We won’t in any case pay much attention to the extent of the class
of functions ϕ for which (1.2) holds; it should at least include test functions
and as a rule of thumb it shrinks as the size of the perturbation grows.

As an aside, when V ∈ L1(H) the formula (1.1) can be seen as an instance
of (1.2) for the step function ϕ for which ϕ(x) = −1 or ϕ(x) = 0 accordingly
if x < λ or x ≥ λ and whose generalised derivative is the delta function δλ
at λ. Although this step function does not belong to the class of functions for
which (1.2) holds, it can be approximated by such functions and a rigorous
interpretation of (1.1) can thus be attained ([BP98]).

Using a limiting argument, Krĕın built up the SSF for a trace class
perturbation from the simpler case of finite rank perturbations, beginning
with the rank-one case. In essence his method (reviewed in Section 5.1) was
to investigate the SSF through its Cauchy-Stieltjes transform

(1.3) ξ(Rz) =

∫
R

ξ(λ)

λ− z
dλ, z ∈ C \ R,

where Rz(λ) := (λ− z)−1 is the resolvent function. He found an alternative
definition of this function (via its exponential, the so-called perturbation
determinant) and was able to show that it satisfies certain conditions (The-
orem 2.9) which ensure it to be the Cauchy-Stieltjes transform of a unique
function ξ. Although this method is effective in the case of trace class
perturbations, it begins to break down under ‘larger’ perturbations in which
case the SSF is no longer integrable and the integral (1.3) might be divergent.
Despite this, Krĕın later established the existence of the SSF for relatively
trace class perturbations too ([Kre62]), which he achieved by transformation
from the case of unitary pairs of operators with trace class differences. In this
context the SSF is integrable with the weight (1+λ2)−1 and only determined
up to an additive constant (which can usually be adequately specified by a
normalisation condition). Note that the trace formula (1.2) can in general
only specify a locally integrable function ξ up to an additive constant.

Krĕın’s paper [Kre53] brought a lot of attention to the SSF and before
long it found a surprising connection to scattering theory. If perturbation
theory is divided in accordance with the structure of the spectrum of a
self-adjoint operator, then to a reasonable approximation scattering theory is
the subdivision concerned with the perturbation of the absolutely continuous
part. It is from another point of view the mathematical framework for
quantum physical scattering phenomena and is concerned with the behaviour



4 1. INTRODUCTION

at large times t of solutions u(t) = e−itH1f of the time-dependent Schrödinger
equation

i
∂

∂t
u(t) = H1u(t), u(0) = f ∈ H.

With a trace class type restriction on the size of the perturbation, solu-
tions for f from the absolutely continuous subspace H(a)(H1) asymptotic-
ally approach solutions to the Schrödinger equation for the initial or ‘free’
operator H0, which are explicitly known in many applications. That is,
u(t) = e−itH1f → e−itH0f± for some free states f± ∈ H(a)(H0) as t→ ±∞.
Of course in an experimental setting, information about the initial f− and
final f+ free states is available while very little is known about the scattering
state f . One of the key objects in scattering theory is the scattering mat-
rix S(λ;H1, H0), which is a unitary operator relating the initial and final
free eigenstates with energy λ.

In [BK62], assuming V ∈ L1(H), M. Sh. Birman and M. G. Krĕın prove
the following elegant formula which expresses the SSF as the scattering phase
shift. For almost every λ ∈ R,

(1.4) detS(λ;H1, H0) = e−2πiξ(λ;H1,H0),

where the scattering matrix belongs to 1 + L1(H) and the determinant
calculates the product of its eigenvalues. This deep result is now known to
hold under much broader assumptions of trace class type (see e.g. [Yaf92,
Chapter 8]). Note that the scattering matrix is related only to the absolutely
continuous spectrum, while the SSF also detects singular spectrum. Quoting
the survey paper [BP98], “this is reflected in the fact that the SSF can be
determined from (1.4) only up to a singular term which takes integer values
almost everywhere.” The nature of this missing singular term is a focus of
this document.

Serving to further illuminate the connection between the SSF and the
scattering matrix is a new proof of the Birman-Krĕın formula (1.4) due to
my supervisor N. A. Azamov ([Aza11a]). Its generalisation to relatively trace
class perturbations will be presented in Chapter 8. The proof turns on a
representation of the scattering matrix as a type of exponential and while
its method is fairly simple, its justification takes some work (undertaken
in Chapter 7). Before discussing these matters further let’s return to the
history of the SSF.

Another celebrated development in the theory of the SSF appeared
in [BS75]. There, M. Sh. Birman and M. Z. Solomyak prove that if V ∈ L1(H)
then the SSF is the density of an absolutely continuous measure, the spectral
shift measure (for which we use the same symbol ξ), given by the formula

(1.5) ξ(ϕ;H1, H0) =

∫ 1

0
Tr (V ϕ(Hr)) dr, ϕ ∈ Cc(R),

where Hr = H0 + rV . (Here and in what follows we are identifying locally
finite Borel measures with continuous linear functionals on Cc(R), as discussed
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in Section 2.1). This is achieved using their theory of double operator integrals
(see e.g. [BS03] where the original Russian references can also be found),
which allows a proof of a version of the trace formula:

Tr(ϕ(H1)− ϕ(H0)) =

∫
R
ϕ′(λ) dξ(λ),

where ξ is the measure defined by (1.5). By comparison with Krĕın’s for-
mula (1.2) they conclude that dξ(λ) = ξ(λ)dλ, i.e. the measure ξ is absolutely
continuous and can be identified with the SSF.

Of the formulas involving the SSF mentioned so far, we give logical
precedence to the Birman-Solomyak formula (1.5). Although ξ appears in
isolation, this formula does not yet define the SSF, since the measure ξ
is not a priori absolutely continuous. Nevertheless, Krĕın’s result can be
considered as a proof of the absolute continuity and we adopt this point of
view. In this regard we mention the recent work [MNP18] which proves the
absolute continuity by means of double operator integrals.

An indication of the fundamental nature of the Birman-Solomyak for-
mula is that it represents the spectral shift measure as an integral of the
generalised 1-form

(1.6) V 7→ ΦH(V )(ϕ) := Tr(V ϕ(H)), ϕ ∈ Cc(R),

on some real affine space A of self-adjoint operators. This 1-form Φ is
called the infinitesimal spectral shift measure. In the paper [AS08] (set in an
abstract semifinite von-Neumann algebra), Φ is shown using double operator
integral techniques to be exact on the corresponding affine space A as long
as V ϕ(H) ∈ L1(H) for test functions ϕ. Then the independence of the
spectral shift measure ξ =

∫
Hr

Φ from the path Hr is used (via the so-

called invariance principle) to reduce its absolute continuity to the case of
a trace class perturbation. This method defines the SSF uniquely (unlike
the trace formula; there is no uncertain additive constant here) and quite
comprehensively and it is adapted in Chapter 5.

Although the spectral shift measure ξ is absolutely continuous, the same
cannot be said of the infinitesimal spectral shift measure Φ. It turns out that
its Lebesgue decomposition Φ = Φ(a)+Φ(s) results in a natural decomposition
of the SSF, which was studied in [Aza11a] under the assumption of a trace
class perturbation and appears here in the relatively trace class case.

The absolutely continuous Φ(a) and singular Φ(s) parts are given by the
formula

Φ
(·)
H (V )(ϕ) = Tr

(
V ϕ(H)P (·)(H)

)
, ϕ ∈ Cc(R),

where (·) stands for (a) or (s) and P (·)(H) denotes the orthogonal projection

onto the absolutely continuous or singular subspaceH(·)(H) of the self-adjoint

operator H. The absolutely continuous component Φ(a) can only be nonzero
in the presence of absolutely continuous spectrum, where in general Φ(a)

and Φ(s) individually fail to be exact (see Section 5.6). Still, their integrals
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along a piecewise analytic path Hr in the affine space A, chosen for now to
be a straight line Hr = H0 + rV, give rise to absolutely continuous measures

(1.7) ξ(·)(ϕ;H1, H0) :=

∫ 1

0
Tr
(
V ϕ(Hr)P

(·)(Hr)
)
dr, ϕ ∈ Cc(R),

whose sum is the spectral shift measure ξ = ξ(a) + ξ(s). Since both meas-
ures (1.7) are absolutely continuous, they can be identified with their density

functions; ξ(a) is the absolutely continuous SSF and ξ(s) is the singular SSF.
As proved in [Aza11a] for trace class perturbations and in Chapter 8 for
relatively trace class perturbations, it is the absolutely continuous SSF which
is responsible for the Birman-Krĕın formula.

N. Azamov noticed that the combination of (1.4) and (1.5), which looks
something like

(1.8) detS(λ;H1, H0) = exp

(
−2πi

∫ 1

0
Tr(V δλ(Hr)) dr

)
,

suggests an exponential form of the scattering matrix. This is made clear
by comparing (1.8) with the formula det(eA) = exp Tr(A), or rather with
the formula (2.34) below, in which A is replaced by a noncommutative
integral

∫
A(r) dr. Proving such an ‘ordered exponential representation’

of the scattering matrix reduces to showing that it satisfies a differential
equation of the form

(1.9)
d

dr
S(r) = A(r)S(r),

where A(r) takes values in the trace class. In this case r should be the
path variable, or coupling parameter, of Hr = H0 + rV . That is, we need
to consider the scattering matrix S(λ;Hr, H0) as a function of r for fixed λ,
which seems to be a new idea; the scattering matrix is only defined for almost
every spectral value λ and the null set of exceptional values is often not
specified, let alone tracked as r varies, no doubt because there is usually little
reason to consider more than a fixed pair of operators H0 and H1. This poses
a problem, since a continuous collection of these null sets might accumulate
significantly. Apart from this problem, it happens that an equation (1.9) can
be quite easily obtained by formally differentiating the well-known stationary
formula for the scattering matrix ((1.13) below). In order to properly discuss
the resulting equation and its implications for the SSF, we digress into
stationary scattering theory and related topics.

Instead of large time limits, the ‘stationary’ approach to scattering
theory involves limits with respect to the off-axis spectral parameter λ+ iy
as y → 0+. The absolutely continuous part µ(a) of a real-valued measure µ
on R is expressible in terms of such limits, or boundary values, of its Cauchy-
Stieltjes transform

µ(Rλ+iy) =

∫
R

1

x− λ− iy
dµ(x).



1. INTRODUCTION 7

In particular, as y → 0+,

(1.10) π−1 Imµ(Rλ+iy) =
1

π

∫
R

y

(x− λ)2 + y2
dµ(x) → µ(a)(λ)

for a.e. λ ∈ R (Theorem 2.4). To some extent, the same analysis can be
applied to the spectral measure of a self-adjoint operator H. The resolvent
Rλ+iy(H) itself cannot be expected to converge as y → 0+ when λ is
within the spectrum σ(H), but suppose that for some closed operator F, the
sandwiched resolvent

(1.11) Tz(H) := FRz(H)F ∗

is bounded for z = λ+iy, y > 0, and let Λ(H,F ) denote the set of points λ ∈ R
at which the limit Tλ+i0(H) exists as a bounded operator. It is important
that the boundary values of the imaginary part ImTz(H) often exist in a
stronger topology than those of Tz(H). The fact that for an appropriate
choice of F the set Λ(H,F ) has full measure is known as the (abstract)
Limiting Absorption Principle (LAP).

The LAP, in its connection with the investigation of the absolutely
continuous part of a self-adjoint operator, is the key to stationary scattering
theory and plays a significant role in this document. (Worth mentioning in
this regard is Corollary 7.13, which derives from the LAP a diagonalisation
of the absolutely continuous part of the self-adjoint operator H. This result
and its importance for the approach we will take to stationary scattering
theory is discussed in the introduction to Chapter 7, which can be read in
conjunction with this digression for a more detailed account.) Given that the
resolvents of two self-adjoint operators H0 and H1 = H0 + V are formally
related by the identity

(1.12) Rz(H0)−Rz(H1) = Rz(H0)V Rz(H1),

we might hope that the operator F is related to the perturbation V . In fact
it is a common technique in perturbation theory to suppose that V can be
factorised as V = F ∗JF for some bounded self-adjoint operator J . We will
assume in addition that either the closed operator F is bounded or the
initial operator H0 is bounded below. Then if F is relatively compact with
respect to |H0|1/2, one of the famous Kato-Rellich or KLMN Theorems on
the stability of self-adjointness (numbered 2.28 and 2.29 below) can be used
to interpret the perturbed operator H1 = H0 + V .

For our purposes the premise that F is relatively compact with respect
to |H0|1/2 (in the usual sense reviewed in Section 2.8) defines the ‘relative
compactness’ of the perturbation V = F ∗JF with respect to H0. An affine
space of self-adjoint operators, over the real vector space of such relatively
compact perturbations, can be defined by

A = {H0 + V : V = F ∗JF, J = J∗, ‖J‖ <∞}
(see Section 3.3) and will be called a rigged affine space. It happens that
for any H ∈ A and z ∈ C \ R the sandwiched resolvent Tz(H) is compact.
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A perturbation V = F ∗JF will be considered ‘relatively trace class’ with
respect to H0, if, in addition to being relatively compact, it happens that
the imaginary part ImTz(H0) belongs to the trace class (which holds for
any z ∈ C \ R as long as it holds for one). The same is then true for
any H ∈ A. Under this assumption the rigged affine space A will be called
resolvent comparable. This terminology comes from the fact that the difference
of resolvents Rz(H1) − Rz(H0) belongs to L1(H) for any H0, H1 ∈ A and
such a pair of operators is called resolvent comparable following [Yaf92].

A resolvent comparable rigged affine space A is the basic context for
the main results presented in this document. The setting is conducive to
the (trace class) techniques of stationary scattering theory, which will be
discussed in more detail in Chapter 7. For now we state two important
results, both of which can be found in the paper [BE67] (also see [Yaf92,
Section 6.1 and Theorem 5.7.1′]). First, for any self-adjoint operator H from
such an affine space A, the LAP holds in the sense that the set Λ(H,F ) has
full measure. Moreover, by omitting a null set it can be assumed that for
any λ ∈ Λ(H,F ) the limit ImTλ+i0(H) exists in the trace class. Second,
for any pair of self-adjoint operators H0 and H1 = H0 + V from A, where
V = F ∗JF, and for a.e. λ ∈ R, the scattering matrix S(λ;H1, H0) has the
‘stationary’ representation

(1.13) S(λ;H1, H0) = 1− 2πiZ(λ;H0)(1 + JTλ+i0(H0))−1JZ∗(λ;H0),

where the operator Z(λ;H0) is such that

(1.14) Z∗(λ;H0)Z(λ;H0) =
1

π
ImTλ+i0(H0).

A standard proof of the stationary formula (1.13) leaves significant
uncertainty in the set of exceptional points λ for which it fails. Assuming
the scattering matrix is defined by (1.13), the uncertainty is mainly the
fault of the operator Z(λ;H0), which also depends on F and is usually
denoted Z0(λ, F ) but the change of notation indicates our change of focus;
for a fixed F we wish to consider its dependence on H0. The problem is
in the definition of this operator (see Chapter 7); it is defined for every λ
from some set of full measure, but nothing much is certain about this set
apart from its existence. The point is that it’s difficult to say which values
of λ satisfy the stationary formula and their dependence on H0 is completely
obscured.

In the case of trace class perturbations, this uncertainty was overcome in
[Aza11a] by a new constructive approach. N. Azamov later generalised and
simplified this approach, which appears with some minor tweaks in Chapter 7
(an overview is provided in the beginning of the chapter, but also see the
introduction to [Aza16]). It turns out that we can simply define

(1.15) Z(λ,H0) :=
√
π−1 ImTλ+i0(H0),

for any λ from the full set Λ(H0, F ), and the stationary formula can be
shown to hold for any λ from the intersection Λ(H0, F ) ∩ Λ(H1, F ). Then
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the question of its dependence on the operators H0, H1 ∈ A can be reduced
to a consideration of the sandwiched resolvent (1.11) and found to be quite
simple thanks to the resolvent identity (1.12).

In fact in the framework of the affine space A, with Hr = H0 + rV
and V = F ∗JF, there is a sandwiched version of (1.12) which implies

(1.16) Tz(Hr) = Tz(H0)(1 + rJTz(H0))−1.

Then as a result of the analytic Fredholm alternative (Theorem 2.17), the
inverted factor on the right hand side must depend meromorphically on
the coupling parameter r. In this way the sandwiched resolvent Tz(Hr)
can be considered as a meromorphic function of r. Its poles, which will be
called resonance points corresponding to z and are usually denoted rz, occur
when −r−1

z is an eigenvalue of the compact operator JTz(H0). Moreover,
by considering the limit z = λ+ i0, it can be inferred from (1.16) that if λ
belongs to Λ(H0, F ), then it also belongs to Λ(Hr, F ) for all real numbers r
except the discrete set of real resonance points rλ corresponding to λ. These
facts appear in more detail in Chapter 4. The phenomenon of real resonance
points is intimately connected with the singular SSF and will be revisited in
that context at the end of this introduction. Given the stationary formula,
the scattering matrix S(λ;Hr, H0) can also be considered as a meromorphic
function of r, which looks like it might have poles at real resonance points.
However, since it is unitary and thus bounded for any non-resonant real r,
it must admit analytic continuation to all of R.

Returning to the exponential representation of the scattering matrix, the
plan for obtaining a differential equation (1.9) is to use the stationary formula
to differentiate S(r) := S(λ;Hr, H0) with respect to r, where Hr = H0 + rV,
V = F ∗JF, and r ∈ R. Formally, the derivative of (1.13) at the initial
operator H0 can be easily calculated to be

S′(0) = −2πiZ(λ;H0)JZ∗(λ;H0),

and this calculation can be conveniently combined with a well-known multi-
plicative identity for the scattering matrix (specifically (7.37)) to obtain the
desired differential equation (1.9), in which the L1-valued function A(r) is
unitarily equivalent (pointwise, via a wave matrix w+(λ;Hr, H0)) to

(1.17) Ã(r) := −2πiZ(λ;Hr)JZ
∗(λ;Hr).

Therefore, specifying the initial condition S(0) = 1, the scattering matrix
must coincide with the unique ordered exponential solution to the resulting
initial value problem (see Section 8.1).

From this result, suppose we attempt to recover the Birman-Krĕın for-
mula (1.4). Applying the determinant to the unique ordered exponential S(r)
which satisfies (1.9) with the initial condition S(0) = 1 returns the formula
(see Proposition 2.22)

detS(r) = exp

∫ r

0
Tr(A(s)) ds.
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In this case with A(r) unitarily equivalent to Ã(r) given by (1.17), after
using the cyclic property of the trace and the equality (1.14), we find that

(1.18) detS(λ;H1, H0) = exp

(
−2i

∫ 1

0
Tr(J ImTλ+i0(Hr)) dr

)
.

Interestingly, it is not the SSF which appears in the exponent on the right
hand side, but instead the absolutely continuous SSF.

Indeed, by expressing the absolutely continuous part Φ(a) of the infinites-
imal spectral shift measure in terms of the boundary values of its Poisson
integral according to (1.10) (Theorem 2.4), it is shown in Section 5.5 that

the absolutely continuous SSF ξ(a) defined by (1.7) can be represented as

(1.19) ξ(a)(λ;H1, H0) =
1

π

∫ 1

0
Tr(J ImTλ+i0(Hr)) dr.

From (1.18) and (1.19) we conclude that the Birman-Krĕın formula (1.4)
holds if the SSF is replaced by the absolutely continuous SSF:

(1.20) detS(λ;H1, H0) = e−2πiξ(a)(λ;H1,H0).

It turns out that it is also possible to express the so-called off-axis scattering
matrix S(λ+ iy;H1, H0) as an ordered exponential, from which the Birman-
Krein formula itself can be recovered in the limit y → 0+ (see Chapter 8).
Comparing the original Birman-Krĕın formula (1.4) with its variant (1.20),

it follows that the singular SSF ξ(s) must be an integer-valued function.
Assume for simplicity that the perturbation V belongs to the trace class,

in which case the singular SSF is integrable. Then since its values ξ(s)(λ)
can be obtained by differentiating the measure (1.7) (see e.g. [Rud87, The-
orem 7.11]), for almost every λ it must be that

(1.21) ξ(s)(λ;H1, H0) =
d

dλ

∫ 1

0
Tr
(
V E(s)

r (λ)
)
dr ∈ Z.

It is a remarkable fact that this complicated formula should result in an
integer, even when λ is within the essential spectrum. At a point λ outside
of the essential spectrum, the absolutely continuous SSF ξ(a)(λ) is zero and

the singular SSF ξ(s)(λ) = ξ(λ) is understood to be the integer number of
discrete eigenvalues which flow through the point λ. The singular SSF is
naturally interpreted as measuring this flow of singular spectrum within the
essential spectrum as well.

Through the application of this result to a pair of Schrödinger operators
of the form H0 = −∆+V0, where V0 ∈ L∞(Rν), and H1 = H0 +V, where V ∈
L1(Rν), we believe we are observing a novel property of Schrödinger operators
in physical dimensions ν = 1, 2, or 3. If it is assumed that the initial
operator H0 has no absolutely continuous spectrum in an interval I, then
the integrality of the singular SSF ξ(s)(λ) in I follows easily from two
powerful results: the stability of the absolutely continuous spectrum (Kato-
Rosenblum Theorem) and the Birman-Krĕın formula (1.4). Indeed if the
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absolutely continuous spectrum is absent, then its stability implies that the
singular SSF is equal to the SSF itself, while the Birman-Krein formula
implies that the SSF is integer-valued since in this case the scattering matrix
reduces to the identity. For example this situation can occur for Schrödinger
operators H0 = −∆+V0, with random bounded potentials V0 (a phenomenon
known as Anderson localisation, see e.g. [Pas80; Kir08; AW15], and references
therein) and integrable perturbations V . However, if H0 does have absolutely
continuous spectrum, then the integrality of the singular SSF does not that
easily follow from any known results.

There is more to say about the singular SSF than just the fact that it
takes integer values. Like the SSF itself, it is multifaceted. In particular, there
are at least two other spectral invariants which can be associated to a path of
operators Hr in the affine space A, whose definitions are quite independent
and yet both of which coincide with the singular SSF. These are namely the
singular µ-invariant [Aza11a] and the total resonance index [Aza16], which
are discussed in turn below.

Additional light was shed on the connection between the SSF and the
scattering matrix by A. B. Pushnitski in [Pus01], where her presents yet
another representation of the SSF. Because the (off-axis) scattering matrix
S(λ + iy;H1, H0), y ≥ 0, is unitary and differs from the identity by a
compact operator, its spectrum lies on the unit circle T with essential
spectrum concentrated at 1. Moreover, by sending the imaginary part of
the spectral parameter y from 0 to ∞, the scattering matrix is continuously
deformed to the identity and therefore all of its eigenvalues converge to 1.
In [Pus01], Pushnitski proves that the SSF is equal to the average flow of
these eigenvalues: for a.e. λ,

(1.22) ξ(λ;H1, H0) = − 1

2π

∫ 2π

0
µ(θ, λ;H1, H0) dθ,

where the so-called µ-invariant µ(θ, λ;H1, H0) is defined as the spectral flow
of the path

t 7→ S(λ+ iy(t);H1, H0), y(t) := (1− t)t−1,

that is, the net number of eigenvalues which cross a point eiθ ∈ T, θ ∈ (0, 2π),
in the anticlockwise direction as the path is traversed. In Section 8.2 this
fact is derived from the ordered exponential representation of the off-axis
scattering matrix mentioned above (thereby avoiding the transition to a
modified scattering matrix with identical spectrum).

Another natural way to connect the scattering matrix with the identity,
which is considered in [Aza11a], is to send H1 to H0 along the path Hr =
H0 + rV in the affine space A. It turns out that the absolutely continuous
SSF is for a.e. λ given by the average

(1.23) ξ(a)(λ;H1, H0) = − 1

2π

∫ 2π

0
µ(a)(θ, λ;H1, H0) dθ,



12 1. INTRODUCTION

where µ(a)(θ, λ;H1, H0), the absolutely continuous µ-invariant, denotes the
spectral flow of the path r 7→ S(λ;Hr, H0). This fact is derived from the
ordered exponential representation of the scattering matrix itself and also
appears in Section 8.2.

The singular µ-invariant is by definition the difference

µ(s)(λ;H1, H0) := µ(θ, λ;H1, H0)− µ(a)(θ, λ;H1, H0),

which is the spectral flow of a loop based at 1 and hence does not depend on
the angle θ. It follows from the equalities (1.22) and (1.23) that the singular
SSF and the singular µ-invariant are negatives of one another:

ξ(s)(λ;H1, H0) = −µ(s)(λ;H1, H0), for a.e. λ ∈ R.

In other words, the singular SSF can be realised as the (necessarily finite)
sum of winding numbers of the eigenvalues of the scattering matrix S(y, r) :=
S(λ+ iy;Hr, H0) as it is deformed along the path which results as (y, r) goes
from (0, 0) to (0, 1) to (∞, 1). Note that unlike the singular SSF itself, the
singular µ-invariant is clearly an integer-valued function.

The spectral flow is well-known to be homotopically invariant and this
property can be used to obtain some insight into the behaviour of the
singular SSF ξ(s)(λ;Hr, H0) as a function of the coupling parameter r. The
notion of a resonant value of the coupling parameter was briefly mentioned
above; a resonance point rz is a pole of the meromorphic function r 7→
(1 + rJTz(H0))−1 and corresponds to an eigenvalue −r−1

z of the compact
operator JTz(H0). It can be deduced from the stationary formula that
S(y, r) is continuous on compact subsets of [0,∞]× C which do not contain
pairs (y, rz) where rz is a resonance point corresponding to z = λ + iy.
Since it happens that rz cannot be real if y > 0, it follows that for any
interval [0, r] which does not contain real resonance points, there exists a
homotopy between the paths formed as (0, 0)→ (0, r) and (0, r)→ (∞, r).
Thus in this case by the homotopy invariance of spectral flow, the µ-invariant
and absolutely continuous µ-invariant coincide and hence ξ(s)(λ;Hr, H0) = 0.
Although the singular SSF is path-dependent, it is additive along a given
path Hr in the sense that

ξ(s)(λ;Hr, Ht) = ξ(s)(λ;Hr, Hs) + ξ(s)(λ;Hs, Ht), r > s > t,

and we therefore conclude that the singular SSF is a locally constant function
of the coupling parameter whose points of discontinuity are resonance points.

By analysing the definition of a resonance point, it can be determined
that each integer jump of the singular SSF should only depend on the
triple (λ,Hrλ , V ) consisting of a point λ which belongs to the set Λ(H,F ) for
some H ∈ A; a self-adjoint operator Hrλ ∈ A such that λ /∈ Λ(Hrλ , F ); and
a perturbation V such that λ ∈ Λ(Hr, F ) for some Hr on the line determined
by Hrλ and V . In [Aza16] it is shown that this integer, called the resonance
index and denoted by indres(λ,Hrλ , V ), can be quite easily calculated.
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Suppose the spectral parameter λ is perturbed to λ+iy for small y. Then
the real resonance point rλ must move of off the real axis. In general it may
have a multiplicity greater than one in which case it may split into finitely

many resonance points rjλ+iy, j = 1, 2 . . . , N, none of which can remain on

the real axis. If N+ is the number of resonance points counting multiplicities
which move into the upper complex half-plane C+ and likewise N− is the
number which move into the lower half-plane C−, then the resonance index
is their difference

indres(λ,Hrλ , V ) = N+ −N−.
This definition is reviewed in more detail in Chapter 4 and in Chapter 6 it is
confirmed to be the integer jump of the singular SSF. Further information
about the resonance index can be found in the detailed study [Aza16] (also
see [Aza17]).

The singular SSF ξ(s)(λ;H1, H0) is in other words equal to the finite sum
of resonance indices at those resonance points rλ from the interval [0, 1]. This
total resonance index is a surprisingly tangible characterisation of the singu-
lar SSF. It generalises a simple representation of the SSF valid outside of the
essential spectrum, which is closely related to the so-called Birman-Schwinger
principle (see e.g. [Sim05, Proposition 7.9; Sim79, Theorem 8.1]). Specifically,
if the perturbation V is assumed to have a definite sign – suppose V ≥ 0,
F = V 1/2, and H± = H0 ± V, then for any λ outside of the spectra of H0

and H±, the SSF is given by (see e.g. [BP98])

ξ(λ;H±, H0) = ±n(1,∓FRλ(H0)F ),

where n(1, T ) denotes the total number of eigenvalues of a self-adjoint oper-
ator T which are greater than 1. It is shown in [Pus11] that this principle
can be extended into the essential spectrum under the assumption that
there is an interval within which λ 7→ Tλ+i0(H0) is continuous. The total
resonance index is another extension in the same spirit, which makes use
of the regularity of the sandwiched resolvent as a function of the coupling
parameter and requires only for the limit Tλ+i0(H0) to exist at a single
point λ.

To summarise, we present what can be considered as the main theorem to
be found within the following pages. (The case that the rigging operator F is
bounded can be found in the paper [AD18], which is in essence a condensed
version of this document.)

Theorem 1.1. Let H0 and H1 = H0 + V be self-adjoint operators and
suppose that the perturbation admits a decomposition V = F ∗JF for some
closed operator F for which the products F (|H0|+ 1)−1/2 and F (|H0|+ 1)−1

respectively belong to the compact and Hilbert-Schmidt classes. Suppose in
addition that either F is bounded or H0 is bounded below. Let Hr = H0 + rV,
r ∈ [0, 1]. Then the formula

ξ(s)(ϕ;H1, H0) =

∫ 1

0
Tr
(
ϕ(Hr)V P

(s)
r

)
dr, ϕ ∈ Cc(R),
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where P
(s)
r denotes the projection onto the singular subspace of Hr, defines

an absolutely continuous real measure whose density function, namely the
singular SSF ξ(s)(λ;H1, H0), is integer-valued for a.e. λ ∈ R.

Moreover, for a.e. λ the singular SSF coincides with the total resonance
index

ξ(s)(ϕ;H1, H0) =
∑

rλ∈[0,1]

indres(λ;Hrλ , V ),

which is by definition the integer N
[0,1]
+ − N [0,1]

− , where N
[0,1]
± is the total

number of poles of the sandwiched resolvent

Tλ+iy(Hr) = FRλ+iy(Hr)F
∗,

considered as a function of the coupling parameter r, which converge to the
unit interval [0, 1] from the half-plane C± as y → 0+.

It also coincides with (the negative of) the singular µ-invariant

ξ(s)(ϕ;H1, H0) = −µ(s)(λ;H1, H0), ∀ a.e. λ ∈ R,
which is by definition (the negative of) the sum of winding numbers of
the eigenvalues of the (off-axis) scattering matrix S(λ+ iy;Hr, H0) as it is
continuously deformed along the loop

1
r=0→ r=1−−−−−−−→

y=0
S(λ;H1, H0)

r=1−−−−−−−→
y=0→ y=∞

1.

Proof. The premise is expanded on in Chapter 3 (also see Section 5.2),
while the conclusion can be broken into the following three main parts.
The singular spectral shift measure is absolutely continuous, by Corollary 5.32.
The singular SSF coincides with the total resonance index, by Theorem 6.1.
The singular SSF coincides with the singular µ-invariant, by Theorem 8.11.

�



CHAPTER 2

Preliminaries

Some relevant preliminary material is collected here, with selected proofs.
Most of what appears here can be found in standard books from the appro-
priate literature. A reference to a proof should be found wherever one is
omitted.

2.1. Measures

Let X be a locally compact Hausdorff space. A positive measure µ
defined on the Borel σ-algebra generated by the topology of X will be called
locally finite if µ(K) <∞ for any compact K ⊂ X. For our purposes X will
usually be a Euclidean space, most often X = R, so it is safe to assume there
is a countable base for the topology of X. In this context a locally finite
Borel measure is automatically regular in the sense that it is approximable
from within by compact sets and from without by open sets (see e.g. [Rud87,
Theorem 2.18]). Such measures are also known as Radon measures and the
Riesz representation theorem characterises them as linear functionals on the
space Cc(X) of compactly supported continuous functions X → C ([Rud87,
Theorem 2.14; BC10, Theorem 7.3.4]).

Theorem 2.1. Let X be a second countable locally compact Hausdorff
space. To any linear functional µ on Cc(X) which is positive in the sense
that f ≥ 0 =⇒ µ(f) ≥ 0, there corresponds a locally finite positive Borel
measure (which we denote by the same symbol) µ, such that

µ(f) =

∫
R
f dµ ∀f ∈ Cc(X).

We equip the compactly supported continuous functions Cc(X) with the
standard inductive-limit topology, which is the finest locally convex topology
making the inclusions of the sup-normed spaces (Cc(K), ‖ · ‖∞) ↪→ Cc(X)
continuous for any compact K ⊂ X. This topology is finer than the one
induced by the supremum norm and with it Cc(X) is a complete locally
convex Hausdorff space. As a subspace Cc(K) retains the topology given by
the supremum norm. The convergence of a sequence of functions ϕn → ϕ
in Cc(X) is characterised by its uniform convergence plus the existence of a
compact K containing the support of each ϕn. Proofs of these facts can be
found in [Hor66, 2,§12] (also see [RS72, Section V.4]).

The theorem below appears as Theorem 7.3.8 in [BC10].

15
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Theorem 2.2. With X as in Theorem 2.1, any positive linear functional
on Cc(X) is continuous and any continuous linear functional µ ∈ (Cc(X))′

can be decomposed into a linear combination µ = µ1 − µ2 + iµ3 − iµ4 of
positive linear functionals µj , j = 1, . . . , 4.

Any element of the dual space (Cc(X))′ will be referred to as a (complex
valued, possibly unbounded) measure. Although locally finite, these measures
may not be defined on unbounded sets. An example of such an unbounded
measure on R is dµ = sinx dx.

For a brief note on generalised functions, we put X = R. This information
can be found in most standard texts, e.g. [Rud91]. The space of smooth
functions R→ C with compact support, i.e. test functions, is denoted C∞c (R).
This complete locally convex space has the inductive-limit topology coming
from the subspaces C∞c (K) for compact K ⊂ R, which themselves have the
Fréchet topology induced by the norms

‖ϕ‖N,K = max
x∈K

{∣∣ϕ(n)(x)
∣∣ : n ≤ N

}
, N = 1, 2, . . . .

Convergence of a sequence of functions ϕn → ϕ in C∞c (R) is characterised by
the existence of a compact set K such that the convergence ϕn → ϕ holds
in C∞c (K). Distributions are by definition continuous linear functionals on
C∞c (R). The space of test functions C∞c (R) is continuously and densely
embedded in the space Cc(R) of compactly supported continuous functions.
Therefore their dual spaces are also continuously and densely embedded
(Cc(R))′ ↪→ (C∞c (R))′ and measures can be seen as those distributions which
continuously extend to Cc(R). Positive distributions and positive measures
are in fact the same things, yet the derivative of the delta function is an
example of a non-positive distribution which is not a measure.

Lebesgue measure is the unique translation invariant measure on Rn
which assigns 1 to the unit cube. We denote the Lebesgue measure of a
Borel set X ⊂ R by |X|. Null sets and full sets always refer to Lebesgue
measure, as do absolute continuity, singularity, and the abbreviation a.e.
A support of a measure µ is any Borel set whose complement has zero µ-
measure. A support X is called minimal if for any other support X ′ the
difference X \X ′ is a null set.

2.2. Cauchy-Stieltjes and Poisson transforms

Suppose that µ is a positive measure (not necessarily finite) on R, which
satisfies the condition

(2.1)

∫
R

(1 + x2)−1 dµ(x) <∞.

Then for z = λ+ iy, y > 0, the Poisson integral (or Poisson transform) of µ
is defined by the formula

(2.2) Pµ(z) =
1

π

∫
R

y

(x− λ)2 + y2
dµ(x),
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which is the convolution µ ∗ Py(λ) of the measure µ with the Poisson kernel
Py(λ) = y(π(λ2 + y2))−1. Since the Poisson kernel converges in the sense of
distributions to the delta function as y → 0+, the Poisson integral µ ∗ Py
converges in the sense of distributions to µ :

µ(ϕ) = lim
y→0+

µ ∗ Py(ϕ) = lim
y→0+

∫
R
ϕ(λ)Pµ(λ+ iy) dλ, ϕ ∈ C∞c (R).

In the case that the measure is finite and absolutely continuous, this
convergence holds in L1(R) as well (see e.g. [Rud87, Theorem 9.10; BC10,
Theorem B.3.5]).

Theorem 2.3. The Poisson kernel is an approximate identity in L1(R).
In other words, the Poisson integral f ∗ Py of any f ∈ L1(R) converges to f
in L1(R) as y → 0+.

On the other hand, taking the pointwise limit of the Poisson integral as
y → 0+ recovers the absolutely continuous part of the measure, according to
the following theorem.

Theorem 2.4. Let µ be a positive measure on R such that (1 + x2)−1 ∈
L1(µ) and let µ = µ(a) + µ(s) be its Lebesgue decomposition, where dµ(a) =
fdλ. Then the density (Radon-Nikodym derivative) f of its absolutely con-
tinuous part is equal a.e. to the limit of its Poisson integral:

f(λ) = lim
y→0+

Pµ(λ+ iy), for a.e λ ∈ R.

In other words,

µ(a)(ϕ) =

∫
R
ϕ(λ) lim

y→0+
Pµ(λ+ iy) dλ, ϕ ∈ C∞c (R).

In particular, the Poisson integral of µ has a finite limit at a.e. λ ∈ R.
Moreover, the set of points where the limit fails to exist is a minimal support
of the singular part µ(s).

Proof. This theorem can be seen to follow from two facts. Firstly, the
density f is equal a.e. to the symmetric derivative

(Dµ)(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε
,

and the sets

{λ : 0 < (Dµ)(λ) <∞} and {λ : (Dµ)(λ) =∞}

are minimal supports of the absolutely continuous µ(a) and singular µ(s)

parts respectively (a summary of this material can be found in [Sch12,
Appendix B]). Secondly, the limit limy→0+ Pµ(λ+ iy) exists and is finite if
and only if the same is true of the symmetric derivative (Dµ)(λ), in which
case these numbers are equal (see e.g. [Don63])

(Dµ)(λ) = lim
y→0+

Pµ(λ+ iy).
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Also, if (Dµ)(λ) =∞, then limy→0+ Pµ(λ+ iy) =∞, although the converse
does not hold in general ([Don63]). �

Theorem 2.4 can be refined. Let C± denote the open complex half-planes

C± = {z = λ± iy ∈ C : λ ∈ R, y ∈ (0,∞)}.
Holomorphic functions C+ → C+ are variously known by the names Herglotz,
Nevanlinna, Pick, and R–functions. For no special reason we choose the
second one. Although it is relevant we only scratch the surface of the rich
theory of these functions. For proofs of following results and much more,
see e.g. [DK05, Section 1.4; Don74, Chapters II and IV; Sim15a, Chapter 5].
Further information can also be found in the comprehensive paper [GT00]
with many more references therein. Finally, alternative summaries of those
results we need can be found e.g. in [Sch12, Appendix F; Yaf92, §1.2].

The Poisson transform v = Pµ given by (2.2) is a positive harmonic
function on C+ and it turns out that any such function v can be uniquely
represented as v(z) = ay + Pµ(z) for some a ≥ 0 and some positive meas-
ure µ satisfying (2.1). These are exactly the imaginary parts of Nevanlinna
functions and there is the corresponding (and equivalent) representation
theorem:

Theorem 2.5. Any Nevanlinna function f can be uniquely written as

(2.3) f(z) = az + b+

∫
R

(
1

x− z
+

x

1 + x2

)
dµ(x),

for some numbers a ≥ 0, b ∈ R, and some positive measure µ on R satisfying
the condition (2.1).

The Cauchy-Stieltjes transform of a measure µ on R is by definition

Cµ(z) =

∫
R

1

x− z
dµ(x).

Suppose µ is finite and positive. Then it is easy to see that its Cauchy-
Stieltjes transform f = Cµ is a Nevanlinna function whose imaginary part is
(π times) the Poisson integral of µ

1

π
Im Cµ(z) = Pµ(z).

The following properties of an arbitrary Nevanlinna function will only be
needed in this special case f = Cµ (in which case a proof of the next theorem
can be found e.g. in [Rud87, Theorem 11.32]).

Theorem 2.6. Suppose f is a Nevanlinna function. Then:

(i) the boundary values f(λ+ i0) := limy→0+ f(λ+ iy) exist for a.e. λ ∈ R;
(ii) if the boundary values are equal to zero on a set of positive Lebesgue

measure, then f is identically zero.

The following theorem complements Theorem 2.4. (See [Sch12, The-
orem F.6] for a proof just for Cauchy-Stieltjes transforms.)
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Theorem 2.7. Suppose f is a Nevanlinna function with the representa-
tion (2.3). Then its boundary values are related to the measure µ as follows.

The absolutely continuous part µ(a) is given by

dµ(a)(λ) =
1

π
Im f(λ+ i0) dλ,

whereas the singular part µ(s) is supported by the set

{λ ∈ R : Im f(λ+ i0) =∞}.

A point mass is given by µ{λ} = limy→0+ y Im f(λ+ iy).

The Cauchy-Stieltjes transforms of finite positive measures are charac-
terised among Nevanlinna functions by the following criterion.

Theorem 2.8. A Nevanlinna function f is the Cauchy-Stieltjes transform
of a finite positive Borel measure on R if and only if

(2.4) sup{|yf(iy)| : y ≥ 1} <∞.

It is apparent from Theorem 2.7 that a sufficient condition for the absolute
continuity of the measure µ is for the imaginary part Im f to be bounded
in C+. Combining this with the previous theorem:

Theorem 2.9. Let f be a Nevanlinna function satisfying (2.4) and
suppose in addition that its imaginary part Im f(z) is bounded for z ∈ C+.
Then the function Im f(λ+ i0) is integrable and

f(z) =
1

π

∫
R

Im f(λ+ i0)

λ− z
dλ, z ∈ C+.

2.3. Decomposition of spectrum

The material in this section can be found in books on operator theory
such as [Sch12; RS72; Kat84].

By a Hilbert space we will mean a complex separable Hilbert space with
scalar product 〈· , ·〉 linear in the second argument. The symbols H and K
will be reserved for Hilbert spaces throughout. As a rule the vectors of H
will be denoted by Roman letters (f, g, etc.) while Greek letters (ϕ, ψ, etc.)
are reserved for the vectors of K. This is in contrast to the use of these
letters to denote functions, in which case we use both Roman and Greek
letters with the choice usually meaning little or nothing.

Unless otherwise specified, an operator is a densely defined linear operator
acting between Hilbert spaces. The domain and range of an operator F : H →
K are denoted respectively by domF and ranF . Since F is assumed to be
densely defined, its adjoint F ∗ : K → H is well-defined. The adjoint F ∗,
which is automatically closed, has a dense domain domF ∗ if and only if F is
closable. In this case the closure of F satisfies F = F ∗∗ and (F )∗ = F ∗.

The letter H is reserved for a self-adjoint operator H∗ = H, while the
letter E is reserved for an (orthogonal projection valued) spectral measure.
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A version of the spectral theorem (e.g. [Sch12, Theorem 5.7; RS72, The-
orem VIII.6]): To any self-adjoint operator H, there uniquely corresponds a
spectral measure E such that

H =

∫
R
λ dE(λ).

Suppose H is a self-adjoint operator on a Hilbert space H. Let E be
its spectral measure and let µf,g(·) := 〈f,E(·)g〉 , f, g ∈ H. The abso-

lutely continuous subspace H(a) of H with respect to H consists of those
vectors f for which µf := µf,f is absolutely continuous. The singular sub-

space H(s) is defined similarly. The Hilbert space H decomposes into the
direct sum H(a) ⊕ H(s) of subspaces invariant under H. The absolutely
continuous H(a) and singular H(s) parts of the operator H are its restrictions
to H(a) and H(s) respectively. The absolutely continuous spectrum of H,
denoted σac(H), is the spectrum of H(a). The singular spectrum σs(H) is

that of H(s). The projections P (a) and P (s) onto H(a) and H(s) respectively
can be expressed as P (a) = E(Za) and P (s) = E(Zs) for some (non-unique)
Borel sets Za and Zs. Such a Borel set Za is called a support of σac(H) and
likewise for Zs and the singular spectrum. If Za is minimal, in the sense that
|Za\Z ′a| = 0 for any other such Z ′a, it is called a core of the absolutely continu-

ous spectrum. Likewise a minimal Zs is a core of σs(H). E(a) = P (a)E and

E(s) = P (s)E are respectively called the absolutely continuous and singular
parts of the spectral measure E.

The resolvent of H is the Cauchy-Stieltjes transform of its spectral
measure: For any z from the resolvent set ρ(H) = C \ σ(H) and any
f, g ∈ H,

〈f,Rz(H)g〉 =

∫
R

1

λ− z
d〈f,E(λ)g〉 .

The imaginary part of the resolvent is the Poisson integral〈
f, π−1 ImRz(H)g

〉
=

1

π

∫
R

y

(λ− x)2 + y2
d〈f,E(λ)g〉 ,

where z = x+ iy. Theorem 2.4 gives

Corollary 2.10. For any f, g ∈ H the set of points λ where there exists
a finite limit

lim
y→0+

〈
f, π−1 ImRλ+iy(H)g

〉
is a full set and a support of µ

(a)
f,g, whose complement is a minimal support

of µ
(s)
f,g. For any bounded Borel function ϕ, we have〈

f, ϕ(H)P (a)(H)g
〉

=
1

π

∫
R
ϕ(λ) lim

y→0+
〈f, ImRλ+iy(H)g〉 dλ.
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2.4. Direct integrals of Hilbert spaces

Direct integrals were introduced by J. von Neumann in his work on (what
are now called) von Neumann algebras. On this topic we follow [BS87, §7.1],
referring there for all of the proofs (but the same material can be found in
books on von Neumann algebras, e.g. [Tak79, Section IV.8]).

A direct integral, for which we will use the notation

(2.5) H =

∫ ⊕
Λ

hλ dµ(λ),

is roughly speaking a Hilbert space of vector-valued functions (sections)
Λ 3 λ 7→ f(λ) ∈ hλ which take values in a ‘field’ of Hilbert spaces {hλ}λ∈Λ

and are square-integrable with respect to a measure µ on Λ. If Λ is discrete
and µ is counting measure, then this notion reduces to that of a direct sum.

For our purposes it is really only necessary to consider the following case
of a direct integral. Let Λ be a Borel subset of R and let µ be Lebesgue
measure. For a.e. λ ∈ Λ, suppose that hλ is a closed subspace of a Hilbert
space K. Let Pλ be the orthogonal projection onto hλ and suppose the
field of fibre Hilbert spaces {hλ}λ∈Λ is measurable in the sense that λ 7→ Pλ
is weakly measurable. In this case, the direct integral (2.5) is the closed
subspace of L2(Λ,K), which consists of those square-integrable functions f
such that f(λ) ∈ hλ for a.e. λ ∈ Λ.

In general a direct integral is allowed to have unrelated fibre Hilbert
spaces hλ over an arbitrary measure space (Λ, µ), but we might as well
assume µ to be a locally finite Borel measure on Λ ⊂ R. The definition pro-
ceeds with a collection of Hilbert spaces {hλ}λ∈Λ exhibiting a µ-measurable
dimension function, or multiplicity function,

(2.6) N(λ) := dim hλ.

A base of measurability is a countable set {fk}k∈N of hλ-valued functions
(sections) whose values span the fibres:

span{fk(λ)}k∈N = hλ for µ-a.e. λ ∈ Λ,

and whose pairwise scalar products λ 7→ 〈fj(λ), fk(λ)〉hλ , j, k ∈ N, are µ-

measurable. In the above example with Lebesgue measure and hλ ⊂ K, a
base of measurability is obtained by setting fk(λ) = Pλψk, where {ψk}k∈N
is an orthonormal basis of K. Then an arbitrary hλ-valued function f
is defined to be measurable with respect to the base {fk} if the function
λ 7→ 〈f(λ), fk(λ)〉hλ is µ-measurable for each k. The resulting collection of
measurable functions can always be generated by a base of measurability
{fk} which is orthonormal in the sense that {fk(λ)}k is an orthonormal basis
of hλ for µ-a.e. λ (see [BS87, Lemma 7.1.1]). A field of fibre Hilbert spaces
is called µ-measurable once it is equipped with a base of measurability.

Suppose that {hλ(j)}λ∈Λ, j = 0, 1, are two µ-measurable fields of fibre

Hilbert spaces over Λ, with bases of measurability {f jk}k∈N, and that a
function λ 7→ T (λ) takes values in the bounded operators B(hλ(0), hλ(1))
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for µ-a.e. λ. Such a function is called measurable provided that the scalar
functions

λ 7→
〈
f1
k (λ), T (λ)f0

k (λ)
〉

are measurable for k ∈ N.
Given a µ-measurable field of fibre Hilbert spaces {hλ}λ∈Λ, a direct

integral (2.5) is defined to be the set of measurable hλ-valued functions f
(up to equality µ-a.e.) which satisfy

‖f‖2H :=

∫
Λ
‖f(λ)‖2hλ dµ(λ) <∞

and the scalar product on H is defined by

〈f, g〉H =

∫
Λ
〈f(λ), g(λ)〉hλ dµ(λ).

Proof that this defines a Hilbert space can be found in [BS87, §7.1 Sub-§§1-4].
The following theorem is numbered 7.1.4 in [BS87].

Theorem 2.11. Suppose {hλ(j) : λ ∈ Λ}, j = 0, 1, are two µ-measurable
fields of fibre Hilbert spaces whose multiplicity functions coincide for µ-
a.e. λ ∈ Λ. If w is a measurable unitary-valued function w(λ) : hλ(0)→ hλ(1),
then the operator

W =

∫ ⊕
Λ
w(λ) dµ(λ) :

∫ ⊕
Λ

hλ(0) dµ(λ)→
∫ ⊕

Λ
hλ(1) dµ(λ),

defined by W : f(λ) 7→ w(λ)f(λ), is a unitary operator.

Let H = (2.5) be a direct integral. Of utmost importance are operators
on H of multiplication by a Borel function ϕ, denoted

Mϕf := ϕf, f ∈ H.

In particular, for any indicator function χ∆ of a Borel set ∆ ⊂ Λ, the
multiplication operator E(∆) := Mχ∆ is an orthogonal projection onto
the subspace consisting of those hλ-valued functions which are zero for µ-
a.e. λ /∈ ∆. This defines the spectral measure E of H. The operator Mϕ for
any Borel function ϕ can then be written as Mϕ =

∫
Λ ϕ(λ) dE(λ).

It happens that under the premise of Theorem 2.11, the operators Mϕ(j),
j = 0, 1, of multiplication by ϕ in the corresponding direct integrals satisfy
the equality Mϕ(1)W = WMϕ(0) ([BS87, Theorem 7.2.2]). This gives a
reason why the particular choice of a base of measurability is not so important
and goes toward explaining its absence from the notation.

Theorem 2.12. Let (2.5) be a direct integral. A measurable function λ 7→
T (λ) which takes values in the bounded operators B(hλ) and satisfies

(2.7) µ- sup
λ∈Λ
‖T (λ)‖hλ <∞,

defines a bounded operator T on H by

(2.8) (Tf)(λ) := T (λ)f(λ), f ∈ H.
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The operator T has norm given by (2.7) and commutes with the spectral
measure E of H.

Conversely, any bounded operator T on H which commutes with E can
be represented by (2.8) for some bounded operators T (λ) ∈ B(hλ) defined for
µ-a.e. λ ∈ Λ.

Moreover, such a decomposable operator T is self-adjoint, normal, unitary,
or a projection, if and only if the same is true of T (λ) for µ-a.e. λ.

The above theorem is a combination of Theorems 7.2.3 and 7.2.5 in
[BS87]. For such a decomposable operator T as it describes, we will use the
notation

T =

∫ ⊕
Λ
T (λ) dµ(λ).

This section is concluded with a version of the spectral theorem ([BS87,
Theorem 7.5.1]).

Theorem 2.13. Any self-adjoint operator H on a Hilbert space H can be
diagonalised in a direct integral (2.5), in the sense that there exists a unitary
operator F : H → H such that

(FHf)(λ) = λ(Ff)(λ),

for any f ∈ domH and µ-a.e. λ ∈ Λ. Moreover, Fϕ(H) = MϕF for any
Borel function ϕ, in particular F transforms the spectral measure of H into
that of H.

We note that the direct integral (2.5) which appears in this version
of the spectral theorem is determined uniquely only in the sense that the
multiplicity function (2.6) and the spectral type of the measure µ are uniquely
determined. In fact, the spectral type and multiplicity are unitary invariants
of the self-adjoint operator H which together uniquely determine it up to
unitary equivalence ([BS87, Theorem 7.5.2]).

2.5. The Helffer-Sjöstrand formula

Let ϕ be a bounded Borel function on the spectrum of a self-adjoint
operator H. In this section we will consider a useful representation of the
bounded operator ϕ(H). Suppose that each function ϕ from some class of
functions on the spectrum of H has an integral representation

(2.9) ϕ(λ) =

∫
S
K(λ, s) dνϕ(s),

where (S, νϕ) is a measure space depending on ϕ and the kernel K is a
measurable function on R× S. Suppose in addition that for whatever reason
it is known what is meant by the expression K(H, s) for s ∈ S. Then it is
natural to consider the formula

(2.10) ϕ(H) =

∫
S
K(H, s) dνϕ(s).
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One example of (2.9) is the Cauchy integral formula for holomorphic (analytic)
functions, which has the resolvent kernel K(λ, s) = Rs(λ). Provided that the
contour of integration S is within the resolvent set of H, the formula (2.10)
makes sense and is of course the Riesz-Dunford holomorphic functional
calculus. Another example is given by the Fourier transform, where the
unitary group K(H, s) = eisH appears. Or assuming H is semibounded,
another example is given by the Laplace transform, where K(H, s) = e−sH .
As an aside, if the class of functions ϕ is large enough (for example if it
includes all polynomials, or all test functions), then it is possible to recover
the full functional calculus for H by a limiting procedure. For our purposes
the resolvent kernel is a practical choice and it happens to be available for a
much wider class than the holomorphic functions.

The Helffer-Sjöstrand formula is an instance of (2.10) with the resolvent
kernel, which is based on the Cauchy-Green (or Cauchy-Pompeiu) formula.
It was initially constructed by E. M. Dyn’kin [Dyn75] and is based on the
notion of almost analytic extension introduced by L. Hörmander. For a test
function ϕ ∈ C∞c (R) and a self-adjoint operator H, the Helffer-Sjöstrand
formula is:

(2.11) ϕ(H) =
1

π

∫
R2

∂̄ϕ̃(z)Rz(H) dxdy,

where z = x + iy, ∂̄ = 1
2(∂x + i∂y), and ϕ̃ is an almost analytic extension

of ϕ. Although it will not be needed, we note that (2.11) can be shown to
hold for any smooth function ϕ which vanishes at infinity sufficiently quickly,
such as Schwartz functions (see e.g. [Yaj14; DG97, Section C.2]). One of the
main advantages of the Helffer-Sjöstrand formula, quoting [DS99], “is that
it allows us to pass easily from resolvent estimates to estimates of other
functions of H.” This section is devoted to its proof.

Theorem 2.14. Let ϕ ∈ C1
c (C), by which we mean ϕ : C→ C such that

ϕ(x, y) := ϕ(x+ iy) ∈ C1
c (R2). Put z = x+ iy and ∂̄ = (∂x + i∂y)/2. Then

(2.12) ϕ(ζ) =
1

π

∫
R2

∂̄ϕ(z)(ζ − z)−1 dxdy.

This theorem can be concisely restated: The function f(z) = (πz)−1 is a
fundamental solution for the operator ∂̄. In other words, as a generalised
function ∂̄f is equal to the Dirac measure δ.

Proof. This can be seen from the Cauchy-Pompeiu formula:

(2.13) ϕ(ζ) =
−1

2πi

∫
∂D

ϕ(z)(ζ − z)−1 dz +
1

π

∫
D
∂̄ϕ(z)(ζ − z)−1 dxdy

(which holds for example if ϕ ∈ C1(C) and D is a disk with ζ in its interior),
by taking D large enough to contain the support of ϕ. The Cauchy-Pompeiu
formula itself can be derived form Green’s theorem as follows. For the
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complex plane, Green’s theorem says∫
∂D

ϕ(z) dz = 2i

∫
D
∂̄ϕ(z) dxdy.

Then applying Green’s theorem to the function ϕ(z)(ζ − z)−1 within the
region Dε = {z ∈ D : |ζ − z| > ε}, and noting that the resolvent function is
analytic (i.e. ∂̄(ζ − z)−1 = 0) in Dε, we get∫
∂D

ϕ(z)(ζ − z)−1 dz + i

∫ 2π

0
ϕ(ζ + εeiθ) dθ = 2i

∫
Dε

∂̄ϕ(z)(ζ − z)−1 dxdy.

Since the resolvent function is integrable in C and ϕ is continuous at ζ,
sending ε→ 0 gives (2.13).

We now give another proof, simple and direct, and lifted from Rudin’s
book [Rud87]. Put ϕ(r, θ) := ϕ(ζ+reiθ), for r > 0 and θ ∈ R. If z = ζ+reiθ,
the chain rule gives

∂̄ϕ(z) =
eiθ

2

(
∂r +

i

r
∂θ

)
ϕ(r, θ).

The right hand side of (2.12) is therefore equal to the limit as ε→ 0 of

(2.14) − 1

2π

∫ ∞
ε

∫ 2π

0

(
∂r +

i

r
∂θ

)
ϕ(r, θ) dθdr.

The integral of ∂θ ϕ(r, θ) is zero, since ϕ(r, θ) is 2π-periodic in θ. So (2.14)
becomes

− 1

2π

∫ 2π

0

∫ ∞
ε

∂r ϕ(r, θ) dθdr =
1

2π

∫ 2π

0
ϕ(ε, θ) dθ.

As ε→ 0, ϕ(ε, θ)→ ϕ(ζ) uniformly. This gives (2.12). �

Let ϕ ∈ Cp+1
c (R) for 1 ≤ p <∞. We will say a function ϕ̃ ∈ C1

c (C) is an
almost analytic extension of ϕ if:

· it is almost analytic near the real axis, by which we will mean

(2.15) |∂̄ϕ̃(z)| = O(|y|p)

as |y| → 0, and
· it extends ϕ, i.e. ϕ̃|R = ϕ.

Examples of almost analytic extensions of a test function ϕ can be constructed
using the formula

ϕ̃(z) =
∞∑
n=0

1

n!
ϕ(n)(x)(iy)nχ(any),

where χ ∈ C∞c (R) is equal to 1 in a neighbourhood of 0, and an → ∞
sufficiently quickly. Another construction is

ϕ̃(z) =
ψ(x)√

2π

∫
R
eiztχ(yt)ϕ̂(t) dt,
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where χ is as above, ψ ∈ C∞c (R) is equal to 1 in a neighbourhood of the
support of ϕ, and ϕ̂ is the Fourier transform of ϕ. These examples are given
in [DS99, Chapter 8] where more information can be found. They rapidly
become analytic in the sense that |∂̄ϕ̃(z)| = O(|y|n) as |y| → 0 for all n ∈ N.

Lemma 2.15. For any ϕ ∈ Cp+1
c (R), 1 ≤ p <∞, there exists an almost

analytic extension ϕ̃.

Proof. Put

(2.16) ϕ̃(z) = χ(y)

p∑
k=0

1

k!
(iy)kϕ(k)(x),

where χ is a test function equal to 1 in a neighbourhood of 0. Clearly, the
function ϕ̃ is of class C1

c (C) and it extends ϕ. Further,

∂̄ϕ̃(z) =
χ(y)

2

1

p!
(iy)pϕ(p+1)(x) +

iχ′(y)

2

p∑
k=0

1

k!
(iy)kϕ(k)(x)

which implies that |∂̄ϕ̃(z)| ≤ const.|y|p for small |y|. �

Theorem 2.16. Let H be a self-adjoint operator on a Hilbert space H
and let ϕ ∈ C2

c (R), then (2.11) holds for any almost analytic extension ϕ̃.

Proof. This proof is taken from [DS99, Chapter 8]. Note that the
integrand on the right hand side of (2.11) is compactly supported and is
continuous in the open set y 6= 0. The condition (2.15) combined with the
estimate ‖Rz(H)‖ ≤ |y|−1 implies that it is also bounded:

‖∂̄ϕ̃(z)Rz(H)‖ ≤ |∂̄ϕ̃(z)||y|−1 ≤ const. as |y| → 0.

Denoting the right hand side of (2.11) by Q, for any two vectors f, g ∈ H
we get

〈f,Qg〉 =
1

π

∫
R2

∂̄ϕ̃(z) 〈f,Rz(H)g〉 dxdy

=
1

π

∫
R2

∂̄ϕ̃(z)

∫
R

(λ− z)−1 d〈f,E(λ)g〉 dxdy,

where E is the spectral measure of H. Fubini’s theorem gives

〈f,Qg〉 =

∫
R

1

π

∫
R2

∂̄ϕ̃(z)(λ− z)−1 dxdy d〈f,E(λ)g〉 .

Combining this with (2.12) gives

〈f,Qg〉 =

∫
R
ϕ(λ) d〈f,E(λ)g〉 = 〈f, ϕ(H)g〉

and this implies (2.11).
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We now give another proof. Using the almost analyticity of ϕ̃, the family
of complex-valued functions z 7→ ∂̄ϕ̃(z)(λ− z)−1, for λ ∈ R, can be shown to
be uniformly integrable. By this we mean that for any ε > 0 and any λ ∈ R,∣∣∣∣∫

E
∂̄ϕ̃(z)(λ− z)−1 dxdy

∣∣∣∣ < ε

whenever |E| is small enough. This follows from the fact that we can find an
integrable function which dominates the entire family. Such a dominating
function exists because these functions share a compact support and are
uniformly bounded:

|∂̄ϕ̃(z)(λ− z)−1| ≤ |∂̄ϕ̃(z)||y|−1 ≤ const. as |y| → 0,

thanks to (2.15). We can therefore conclude that the convergence

1

π

∫
|y|≥ε

∂̄ϕ̃(z)(λ− z)−1 dxdy → ϕ(λ) as ε→ 0

is uniform in λ. Then we can conclude (2.11) using the functional calculus and
the absolute continuity of the (operator-valued) integral as a set function. �

With some straightforward changes the same reasoning proves the equality

(2.17) ϕ′(H) = − 1

π

∫
R2

∂̄ϕ̃(z)R2
z(H) dxdy,

provided ϕ belongs to the class C3
c (R). This ensures, by Lemma 2.15

and (2.15), that the mapping z 7→ ∂̄ϕ̃(z)R2
z(H) is bounded. The number

version of (2.17) follows easily from (2.12):

ϕ′(λ) = lim
µ→λ

ϕ(λ)− ϕ(µ)

λ− µ

= lim
µ→λ

1

π

∫
R2

∂̄ϕ̃(z)
(λ− z)−1 − (µ− z)−1

λ− µ
dxdy

= lim
µ→λ

−1

π

∫
R2

∂̄ϕ̃(z)(λ− z)−1(µ− z)−1 dxdy

= − 1

π

∫
R2

∂̄ϕ̃(z)(λ− z)−2 dxdy.

Other details are omitted.

2.6. Schatten ideals of compact operators

A standard reference for this section is I. C. Gohberg and M. G. Krein’s
famous book [GK69]. We recall that any compact operator T : H → K can
be written in its Schmidt representation as

T =
∞∑
n=1

sn(T ) 〈fn, ·〉ϕn,

where {fn} and {ϕn} are orthonormal sets inH and K respectively and sn(T ),
the so-called s-numbers, are the eigenvalues of |T | written in decreasing order.
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For compact operators we will need the analytic Fredholm alternative
(see e.g. [RS72, Theorem VI.14]):

Theorem 2.17. Let G be an open connected subset of C and let T : G→
L∞(K) be a holomorphic family of compact operators on K. Then −1 ∈
σ(T (z)) either for all z ∈ G, or for only those z from the discrete set

R := {z ∈ G : ∃ϕ 6= 0 (1 + T (z))ϕ = 0}.
Further, in the latter case, the operator valued function z 7→ (1 + T (z))−1 is
meromorphic in G with finite rank residues and the set of its poles is R.

We also state Weyl’s classical theorem on the stability of essential spec-
trum (see e.g. [RS78, Theorem XIII.14; Sch12, Theorem 8.12]):

Theorem 2.18. Let H0 and H1 be self-adjoint operators such that the
difference of their resolvents Rz(H0) − Rz(H1) is compact for some (and
hence all) z ∈ ρ(H0) ∩ ρ(H1). Then σess(H0) = σess(H1).

Within the Banach space of bounded operators B(H,K) are the Schatten
ideals Lp(H,K), 1 ≤ p ≤ ∞, of compact operators T such that

‖T‖p :=

( ∞∑
n=1

spn(T )

)1/p

<∞.

When p = ∞ this coincides with the norm of B(H,K) and we drop the
subscript. Each Lp is a Banach space with the above norm, which for
any T ∈ Lp satisfies ‖T‖p ≥ ‖T‖, ‖T ∗‖p = ‖T‖p, and for any bounded
operators A,B,

(2.18) ‖ATB‖p ≤ ‖A‖‖T‖p‖B‖.
This implies that the multiplication

(2.19) B × Lp × B 3 (A, T,B) 7→ ATB ∈ Lp
is continuous. In fact (2.19) is still continuous with the so∗-topology on B,
which follows from

Lemma 2.19. Let 1 ≤ p ≤ ∞. Suppose A ∈ Lp and Tn → 0 in the
so∗-topology as n→∞. Then ‖TnA‖p → 0 and ‖ATn‖p → 0.

Proof. Here we follow [Yaf92, Lemma 6.1.3]. For any ε > 0 there exists
a finite-rank operator Aε such that ‖A−Aε‖p < ε. Since ‖Tn‖ ≤ C for some
C > 0, it follows that

‖ATn‖p ≤ εC + ‖AεTn‖p.
Hence, it suffices to consider finite-rank or even rank-one operators. For
A = 〈f, ·〉ϕ,

‖ATn‖p = ‖T ∗nA∗‖p = |〈ϕ, T ∗nf〉| ≤ ‖ϕ‖‖T ∗nf‖ → 0,

by hypothesis. Similarly, ‖TnA‖p → 0. �
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Of the Schatten ideals, apart from compact operators L∞, we are mainly
concerned with trace class operators L1 and Hilbert-Schmidt operators L2.

If A and B are Hilbert-Schmidt operators, then the product AB is trace
class and

‖AB‖1 ≤ ‖A‖2‖B‖2.

This is (a special case of) Hölder’s inequality.
The square root of a positive trace class operator is Hilbert-Schmidt.

Further, if (An) is a sequence of positive trace class operators and An → A

in L1, then
√
An →

√
A in L2, which follows from the Birman-Koplienko-

Solomyak inequality ([BKS75]):

(2.20)
∥∥√A−√B∥∥

2
≤
∥∥√|A−B|∥∥

2
,

for nonnegative trace class operators A and B.
The following material can be found e.g. in [GK69; BS87; Sim05].

The trace of an operator T from L1(K) = L1(K,K) is defined by

(2.21) Tr(T ) =

∞∑
n=1

〈ϕn, Tϕn〉 ,

where (ϕn) is an orthonormal basis in K. Lidskii’s theorem asserts that the
trace Tr(T ) is equal to the sum of the eigenvalues of T counting multiplicities.
The trace is a continuous linear functional on L1(K) which satisfies the
equality Tr(AB) = Tr(BA) whenever both AB and BA are trace class.
The proof of this cyclic property is well known at least for bounded A and B,
in which case it follows from Lidskii’s Theorem and the fact that AB and BA
have common non-zero eigenvalues with coinciding algebraic multiplicities:

(2.22) σAB ∪ {0} = σBA ∪ {0}, including algebraic multiplicities.

If an operator T on K is trace class, then the infinite-dimensional de-
terminant, or Fredholm determinant, of 1 + T can be defined as the limit of
finite-dimensional determinants

(2.23) det(1 + T ) = lim
n→∞

det(δij + 〈ϕi, Tϕj〉)ni,j=1,

where {ϕk}k∈N is any orthonormal basis of K. (On this topic, see e.g. [Sch12,
Section 9.4; Sim05, Chapter 3; GK69, Chapter IV; BS87, Chapter IV, §1].)

As a consequence of Lidskii’s Theorem, the determinant is also given by
the product of eigenvalues

(2.24) det(1 + T ) =
∞∏
j=1

(1 + λj),

where λj are the eigenvalues of T counting multiplicities. The determin-
ant det(1 + T ) varies continuously, and also analytically, with T ∈ L1(K).
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Moreover, it has the following basic properties for A,B ∈ L1

|det(1 +A)| ≤ e‖A‖1 ,

det eA = eTr(A),

det(1 +A)∗ = det(1 +A),(2.25)

det(1 +A)(1 +B) = det(1 +A) det(1 +B),(2.26)

det(1 +AB) = det(1 +BA).

Further, if 0 ≤ A ≤ B then

Tr(A) ≤ det(1 +A),(2.27)

1 ≤ det(1 +A) ≤ det(1 +B).(2.28)

2.7. Ordered exponential

Here for convenience is a reproduction of the appendix to [Aza11a] on
ordered (or chronological) exponentials. Let 1 ≤ p ≤ ∞, a < b and consider
the initial value problem

(2.29)
d

dr
X(r) = A(r)X(r), X(a) = 1,

where A : [a, b]→ Lp(K) is a continuous path of p-Schatten class operators
on a Hilbert space H and the derivative is taken in Lp(K).

The (left) ordered exponential is by definition (cf. [DG97])

(2.30) Texp

(∫ r

a
A(s) ds

)
:=

1 +

∞∑
k=1

∫ r

a
dr1

∫ r1

a
dr2 . . .

∫ rk−1

a
drkA(r1)A(r2) . . . A(rk),

where r ≥ r1 ≥ . . . ≥ rk ≥ a. The series converges in Lp(K), since ‖A‖p,∞ :=
supr∈[a,b] ‖A(r)‖p <∞ and so∥∥∥∥∫ r

a
dr1

∫ r1

a
dr2 . . .

∫ rk−1

a
drk A(r1)A(r2) . . . A(rk)

∥∥∥∥
p

≤ (r − a)k

k!
‖A‖kp,∞.

Proposition 2.20. The initial value problem (2.29) has the unique
continuous solution

(2.31) X(r) = Texp

(∫ r

a
A(s) ds

)
.

Proof. Substitution shows that (2.31) is a solution. Supposing Y (r) is
another solution, integrating (2.29) gives

Y (r) = 1 +

∫ r

a
A(r1)Y (r1) dr1.

Iterating this, it can be seen that Y (r) = X(r). �
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Lemma 2.21. For r1 < r2 < r, the ordered exponential (2.30) satisfies
the identity

(2.32) Texp

(∫ r

r1

A(s) ds

)
= Texp

(∫ r

r2

A(s) ds

)
Texp

(∫ r2

r1

A(s) ds

)
.

Proof. A similar argument as in Proposition 2.20 shows that

X(r) = Texp

(∫ r

a
A(s) ds

)
Xa

is the unique continuous solution of the initial value problem

(2.33)
d

dr
X(r) = A(r)X(r), X(a) = Xa ∈ 1 + Lp(K).

Then the proof is completed by checking the fact that both sides of (2.32)

are solutions to (2.33) with a = r1 and Xr1 = Texp
(∫ r2

r1
A(s) ds

)
. �

The above lemma allows Proposition 2.20 to be generalised to any piece-
wise continuous path A. Combined with the multiplicative property of the
determinant (2.26), this generalisation can also be made for Proposition 2.22
below.

Proposition 2.22. If p = 1 then the Fredholm determinant of the ordered
exponential is given by the formula

(2.34) det Texp

(∫ r

a
A(s) ds

)
= exp

(∫ r

a
Tr(A(s)) ds

)
.

Proof. We show that both sides of (2.34) are solutions to the initial
value problem

x′(r) = Tr(A(r))x(r), x(a) = 1.

This is clearly true of the right hand side. Let x(r) be the left hand side. Then
from (2.32) and the product property of the determinant (2.26), we have

x′(r) = lim
h→0+

1

h

(
det Texp

(∫ r+h

r
A(s) ds

)
− 1

)
x(r)

= Tr(A(r))x(r),

where the last equality follows from a lengthy but straightforward calculation;
in brief, the definition of the determinant (2.23) and an interchange of limits
allows the calculation of the derivative to be reduced to the finite-dimensional
case, where the definition of the ordered exponential (2.30) and the continuity
of A(s) imply that the result is the finite-dimensional trace. �

2.8. Relative compactness of operators and forms

Let V and H be operators on a Hilbert space H. Suppose H is closed and
has nonempty resolvent set ρ(H). The operator V is relatively bounded with
respect to H, or H-bounded, if domH ⊂ domV and the following equivalent
conditions hold:



32 2. PRELIMINARIES

· There exist a, b ≥ 0 so that

(2.35) ‖V f‖ ≤ a‖Hf‖+ b‖f‖,

for all f ∈ domH.
· The operator V Rz(H) is bounded for some (hence any) complex

number z ∈ ρ(H).
· The operator V : domH → H is bounded.

In the last condition we are considering domH as a Hilbert space with the
graph scalar product 〈f, g〉H := 〈Hf,Hg〉+ 〈f, g〉. These equivalences are

not difficult to check, noting that the graph norm ‖f‖H := (‖Hf‖2 +‖f‖2)1/2

is equivalent to the norm f 7→ ‖Hf‖+ ‖f‖ and the operators Rz(H) : H →
domH and (H − z) : domH → H are bounded.

The infimum of constants a > 0 for which there exists b > 0 such
that (2.35) holds is called the H-bound of V . Relative compactness is nat-
urally defined by replacing ‘bounded’ by ‘compact’ in either of the last two
conditions, which remain equivalent. In the case that V is H-compact, its
H-bound is equal to 0 (see e.g. [Sch12, Proposition 8.14]).

Lemma 2.23. Suppose H is closed and V is closable. Then the inclusion
domH ⊂ domV already implies that V is H-bounded.

Proof of this lemma can be found e.g. in [Kat84, Remark IV-1.5; Sch12,
Lemma 8.4].

Occasionally, we identify a bounded operator A ∈ B(H,K) with its
continuous (sesquilinear) form

(2.36) (f, g) 7→ A[f, g] := 〈f,Ag〉

for f ∈ K and g ∈ H. In the case that K = H, the notation A[f ] := A[f, f ]
is used.

Below is the representation theorem for semibounded forms (see e.g.
[Sch12, Theorem 10.7; RS75; Kat84]). In the context of this theorem we will
use the same symbol to denote both a form and its corresponding operator,
distinguishing the form by the use of square brackets (as in [Sch12]).

Theorem 2.24. There is a one-to-one correspondence between lower-
bounded self-adjoint operators and lower-bounded closed forms on a Hilbert
space H. Given a self-adjoint operator H on H which is bounded below by m,
the corresponding closed form has the domain dom[H] := dom(H −m)1/2,
on which it is given by

(2.37) H[f, g] :=
〈

(H −m)1/2f, (H −m)1/2g
〉

+m 〈f, g〉 .

Given a lower-bounded closed form H[· , ·] on H, the corresponding self-adjoint
operator H has a domain consisting of those vectors g ∈ dom[H] for which
there exists a vector h such that H[f, g] = 〈f, h〉 for all f ∈ dom[H], on
which it acts by Hg = h.
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Suppose now that H is a lower-bounded self-adjoint operator on H.
A symmetric form V is relatively form-bounded with respect to H if its
domain includes the form domain of H, i.e. dom[H] ⊂ dom[V ], and the
following equivalent conditions hold:

· There exist a, b ≥ 0, such that

(2.38) |V [f ]| ≤ a|H[f ]|+ b‖f‖2,

for all f ∈ dom[H].

· The operator (H−m)−1/2V (H−m)−1/2 is bounded for some (hence
any) real number m such that H > m.

· The form V admits a decomposition V = F ∗JF, where J ∈ B(K)

and F : H → K is (H −m)1/2-bounded.

The second and third conditions should be clarified. What is meant by the
second condition (cf. [Sim15b, p. 662–663]) is that the form

(2.39) (f, g) 7→ V [(H −m)−1/2f, (H −m)−1/2g]

corresponds to a bounded operator, denoted

(2.40) (H −m)−1/2V (H −m)−1/2.

What is meant by the decomposition V = F ∗JF in the third condition is
that

(2.41) V [f, g] = 〈Ff, JFg〉 ,

for f ∈ dom[H]. Note that the operator associated to the form V may have
a small domain, which however includes any vector f ∈ dom[H] such that
JFf ∈ domF ∗, on which it acts as the operator F ∗JF .

The infimum of constants a > 0 for which there exists b > 0 such
that (2.38) holds is called the H-form-bound of V . The relative form-
compactness of V with respect to H is defined by replacing ‘bounded’ by
‘compact’ in either of the last two conditions, which remain equivalent.

Proposition 2.25. The defining conditions of relative form-boundedness
and form-compactness are equivalent. If V is H-form-compact, then its
H-form-bound is zero.

Since this information about relative form-boundedness is more difficult
to find in the literature than its operator counterpart, here is a proof:

Proof. Suppose that there are a, b ≥ 0 so that (2.38) holds. Since

dom[H] = ran(H−m)−1/2, we can use (2.37) to obtain for f = (H−m)−1/2g,∣∣V [(H −m)−1/2g]
∣∣ ≤ a|H[f ]|+ b‖f‖2

≤ a‖g‖2 + (|m|+ b)‖(H −m)−1/2g‖2

≤ const. ‖g‖2,

which implies that the form (2.39) is bounded.
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The corresponding bounded operator B := (2.40) we write as the product
of bounded operators B = X∗JX and if B is compact, this can be done in
such a way that X is compact. Then put F := X(H −m)1/2, to obtain a

decomposition (2.41) for which F is (H −m)1/2-bounded (compact).
Conversely, suppose that V = F ∗JF where F is relatively bounded

(compact) with respect to (H −m)1/2. Then the operator

(F (H −m)−1/2)∗JF (H −m)−1/2,

which corresponds to the form (2.39), must be bounded (compact).

Again supposing V = F ∗JF with C :=
∥∥F (H −m)−1/2

∥∥ <∞, for any

f = (H −m)−1/2g ∈ dom[H] we have

|V [f ]| =
∣∣∣〈F (H −m)−1/2g, JF (H −m)−1/2g

〉∣∣∣
≤ ‖J‖C2‖g‖2

= ‖J‖C2
(∥∥(H −m)1/2f

∥∥2
+m‖f‖2 −m‖f‖2

)
= ‖J‖C2

(
H[f ]−m‖f‖2

)
≤ ‖J‖C2

(
|H[f ]|+ |m|‖f‖2

)
.

Finally we show that if V is H-form-compact, then its H-form-bound
is zero. Assume the contrary, that is, there exists some a > 0 for which
there is no b such that (2.38) holds. Then we can find a sequence of vectors
fn ∈ dom[H] such that

|V [fn]| > a|H[fn]|+ n‖fn‖2 ≥ a‖(H −m)1/2fn‖2 + (n− a|m|)‖fn‖2

for any n ∈ N. Scaling each fn by |V [fn]|−1, we can assume that |V [fn]| = 1.

Then ‖fn‖2 < 1/(n− a|m|) and ‖(H −m)1/2fn‖2 < 1/a for any n. Thus fn
converges to 0 and the sequence (H −m)1/2fn is bounded, which must there-
fore have a weakly convergent subsequence. Passing to such a subsequence,
let g be the weak limit of gn := (H −m)1/2fn. Then for any h ∈ dom[H],
we have

〈gn, h〉 =
〈
fn, (H −m)1/2h

〉
→ 〈g, h〉 =

〈
0, (H −m)1/2h

〉
,

hence g = 0. Therefore fn is a weak null sequence in the Hilbert space(
dom[H], 〈· , ·〉[H]

)
:=
(

dom(H −m)1/2, 〈· , ·〉(H−m)1/2

)
. Yet by assumption

V = F ∗JF where J is bounded and F : dom[H]→ H is compact. Thus F
maps fn to a null sequence Ffn and we arrive at the contradiction

1 = |V [fn]| = 〈Ffn, JFfn〉 → 0. �

Proposition 2.26. Suppose H is a lower-bounded self-adjoint oper-
ator and V is a positive self-adjoint operator. Then V is H-form-bounded
(compact) if and only if V 1/2 is |H|1/2-bounded (compact). Further in the
‘bounded’ case, the inclusion dom[H] ⊂ dom[V ] (which is implicit in both
statements) is also equivalent.
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Proof. Since both V 1/2 and |H|1/2 are closed operators, the inclusion

of domains dom[H] ⊂ dom[V ] already implies that V 1/2 is |H|1/2 bounded

by Lemma 2.23. If V 1/2 is |H|1/2-bounded (compact), then it easily follows
that V is H-form-bounded (compact). As for the converse in the ‘compact’
case, its premise implies that the form (2.39) corresponds to a compact
operator. Using (2.37), this form corresponds to the operator

(V 1/2(H −m)−1/2)∗V 1/2(H −m)−1/2,

whose compactness implies that of V 1/2(H −m)−1/2 itself and the result
follows. �

We note that the correspondence between forms and operators given
by Theorem 2.24 extends to sectorial forms (see e.g. [Kat84, Theorem VI-
2.1]). Moreover, both notions of relative boundedness can be applied to
sectorial operators H, V, and Kato ([Kat84, VI-§1.7]) writes: “In general
it is not clear whether there is any relationship between these two kinds of
relative boundedness. If we restrict ourselves to considering only symmetric
operators however, form-relative boundedness is weaker than operator-relative
boundedness.”

Lemma 2.27. Let H and V be closed operators. Then the relative bounded-
ness (compactness) of V with respect to H implies the same of |V |1/2 with

respect to |H|1/2.

For a proof of this lemma see e.g. [Yaj14, Lemma 5.40; RS75, The-
orem X.18; Kat84, Theorem VI-1.38].

The following two theorems concern the stability of self-adjointness under
relatively bounded perturbations. The first is known as the Kato-Rellich
Theorem, see e.g. [RS78, Theorem X.12; Sch12, Theorem 8.5].

Theorem 2.28. Let H be a self-adjoint operator and let V be a symmetric
operator which is H-bounded with H-bound less than 1. Then the operator
sum H + V is self-adjoint with the same domain as H.

T. Kato famously applied Theorem 2.28 to atomic Hamiltonians. For
example the energy of the hydrogen atom is described (in atomic units)
by H = −∆ − 2/r, where −∆ is the Laplacian on L2(R3, dx) and r = |x|.
Indeed, the Kato-Rellich theorem can be applied to prove the self-adjointness
of the Schrödinger operator H = −∆ + V on L2(Rν) for any potential V of
the form V (x) = const. |x|−α, where 0 < α < min{ν/2, 2}. The condition
α < ν/2 for low-dimensional Schrödinger operators can be removed by
instead applying the so-called KLMN theorem below. For a proof see e.g.
[RS78, Theorem X.17; Sch12, Theorem 10.21].

Theorem 2.29. Let H be a lower-bounded self-adjoint operator and
let V be a symmetric form which is H-form-bounded with H-form-bound
less than 1. Then the form sum of H and V corresponds to a lower-bounded
self-adjoint operator, denoted H u V, with the same form domain as H.





CHAPTER 3

The rigging operator and the LAP

By a rigging operator we mean a closed operator F : H → K between
Hilbert spaces, which has trivial kernel and cokernel. In other words, F
is injective and K = ranF . We call H the main Hilbert space and K the
auxiliary Hilbert space.

As an aside, the partial isometry U : H → K in the polar decomposition
F = U |F | is unitary since ker(U) = ker(F ) = {0} and ranU = ranF = K,
so we may naturally identify H and K. It is for this reason technically
unnecessary to allow for F to be other than a positive self-adjoint operator.
However, we find the above definition to be convenient.

A rigging operator is closely related to the notion of rigged Hilbert space,
which usually refers to a triple of embedded spaces:

(3.1) H+ ⊂ H ⊂ H−.

In short, given a Banach space H+ which is continuously and densely embed-
ded via j : H+ → H, the space H− is introduced as the space of antilinear
functionals on H+. The adjoint map j∗ : H → H−, defined for f ∈ H and
g ∈ H+ by

(3.2) 〈g, j∗f〉 := 〈jg, f〉H = 〈g, f〉H ,

is then also a continuous embedding.
A rigging operator F : H → K gives rise to analogous spaces H±, which

instantiate the triple (3.1) in the case that F is bounded. We will now discuss
this connection, but it will not be logically required elsewhere.

The dense linear subspace ranF ∗ of H can be given the scalar product

〈F ∗ϕ, F ∗ψ〉+ := 〈ϕ,ψ〉K ,

which makes F ∗ isometric. If F is bounded, then H+ := (ranF ∗, 〈· , ·〉+) is
a Hilbert space and its inclusion H+ ⊂ H is continuous. Otherwise, let H+

denote the completion of the inner-product space (ranF ∗, 〈· , ·〉+). On the
other hand, the dense linear subspace domF of H can be given the scalar
product

〈f, g〉− = 〈Ff, Fg〉K ,

which makes F isometric. Let H− be the completion of (domF, 〈· , ·〉−) which
is generally not already complete even when F is bounded. If F is bounded,
then H is continuously included in H−. The spaces H± can be succinctly

37
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defined as the completions of the dense linear subspace ranF ∗ ∩ domF of H
in the inner products

〈f, g〉± =
〈
|F |∓1f, |F |∓1

〉
H .

The operator F ∗ can be considered as a unitary operator identifying K
and H+ while F can be considered as a unitary operator identifying H−
and K.

When F is bounded the spaces H± constitute a particular case of the
continuous inclusions (3.1). It has already been noted thatH+ is continuously
embedded in H and we will now check that the anti-dual space H×+ is in
fact H− (cf. [BS91, Proposition S1.2.6]). Since H+ is dense in H, it follows
that H (identified with H×) is dense in H×+. Therefore it suffices to see that
the norms ‖ · ‖− and ‖ · ‖H×+ agree on vectors f in H :

‖f‖H×+ = sup
‖g‖+=1

|〈f, g〉H| = sup
‖ϕ‖K=1

|〈f, F ∗ϕ〉H| = sup
‖ϕ‖K=1

|〈Ff, ϕ〉K| = ‖f‖−.

If a rigged Hilbert space arises from a rigging operator F, then statements
involving the spaces H± can as a rule be translated to instead involve F and
its adjoint F ∗. The latter language is systematically used from now on.

3.1. The sandwiched resolvent

Suppose H is a self-adjoint operator on H and F : H → K is a rigging
operator. For any z from the resolvent set ρ(H) of H, the sandwiched
resolvent is the operator

Tz(H) := FRz(H)F ∗ = F (H − z)−1F ∗.

The rigging operator doesn’t appear in the notation because it is considered
to be fixed. The operators H and F will be chosen so that the sandwiched
resolvent is a bounded operator on the auxiliary Hilbert space K, or more
precisely that it is bounded on a dense domain of definition and hence extends
continuously to a bounded operator on K. In such a situation, let it be this
bounded extension which is denoted by the symbol Tz(H). We will later
assume further that Tz(H) is compact.

Theorem 3.1. Let F : H → K be a rigging operator and let H be a self-
adjoint operator on H. If F is |H|1/2-bounded (compact) then the sandwiched
resolvent Tz(H) is bounded (compact) for any z ∈ ρ(H). The converse holds
under either of the following additional conditions.

· F is bounded.
· H is semibounded and domH ⊂ domF .

Also equivalent in the first case is for F to be H-bounded (compact). Also
equivalent in the second case is for the positive self-adjoint operator F ∗F to
be H-form-bounded (compact).

We work towards a proof of this theorem with the next few lemmas.
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Lemma 3.2. Let a self-adjoint operator H and a rigging operator F be
such that domH ⊂ domF . Suppose that for some nonreal z the sandwiched
resolvent Tz(H) is bounded (compact). Then F is H-bounded (compact) and
in addition Tw(H) is bounded (compact) for any w ∈ ρ(H).

Proof. Here we follow [Aza11a, Lemma 2.5.1]. The inclusion domH ⊂
domF implies that the product FRz(H)F ∗ is densely defined on the domain
of F ∗ and it is assumed that this product extends continuously to the bounded
(compact) operator Tz(H). The inclusion of domains also implies that F
is H-bounded by Lemma 2.23. Note that (Tz(H))∗ = (FRz(H)F ∗)∗ ⊃
FRz̄(H)F ∗, from which it follows that (Tz(H))∗ = Tz̄(H). Supposing that
Tz(H) is compact, then so is its adjoint, hence so is the difference

Tz(H)− Tz̄(H) = F (Rz(H)−Rz̄(H))F ∗

= 2i Im z FRz(H)Rz̄(H)F ∗

= 2i Im z FRz(H)(FRz(H))∗.

Strictly speaking, the intermediate equalities hold on domF ∗, but the final
equality can be taken literally, as an equality of bounded operators. From
this we see that the product of FRz(H) and its adjoint is compact, which
implies that FRz(H) itself is compact. Indeed, if A∗A = |A|2 is compact,
then so is |A|, hence so is A. So F is H-compact.

For the last part let w ∈ ρ(H). From the equality

(z − w)FRz(H)(FRw(H))∗ = Tz(H)− Tw(H),

(which holds a priori on domF ∗) we see that in either case the sandwiched
resolvent Tw(H) is bounded, and if Tz(H) is compact, then so is Tw(H). �

Lemma 3.3. If F is a closed operator and B is a bounded operator, then
FB is closed. Moreover, (B∗F ∗)∗ = FB. If in addition FB is densely
defined, then its adjoint (FB)∗ is the closure of B∗F ∗.

Proof. We prove these standard facts for completeness. Suppose
that fn, n = 1, 2, . . . , is a sequence from the domain of FB which converges
to f and also that FBfn converges to g. Then since B is continuous, Bfn is
a sequence from the domain of F which converges to Bf . By the closedness
of F, Bf belongs to domF, hence f ∈ domFB, and FBfn converges to
g = FBf . Therefore FB is closed.

To see that (B∗F ∗)∗ = FB we first consider their domains. From the
definition of the adjoint and the boundedness of B, the domain of (B∗F ∗)∗

is the set of those vectors f for which there exists a vector g satisfying the
equality

〈f,B∗F ∗h〉 = 〈Bf, F ∗h〉 = 〈g, h〉
for all vectors h from domB∗F ∗ = domF ∗. This is in other words the set of
those f for which Bf belongs to the domain of (F ∗)∗. And since F ∗∗ = F
by the closedness of F, this set coincides with the domain of FB. That these
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operators coincide on their common domain follows from the equality

〈(B∗F ∗)∗f, h〉 = 〈f,B∗F ∗h〉 = 〈Bf, F ∗h〉 = 〈FBf, h〉 ,

which holds for all h from the dense domain of F ∗.
What remains to be proved follows from the equality (B∗F ∗)∗ = FB

and the fact that if the adjoint of the operator B∗F ∗ is densely defined, then
its closure coincides with its double adjoint. �

Lemma 3.4. Let H be a self-adjoint operator and F a (densely defined)
closed operator on a Hilbert space H. Let ψ be a bounded Borel function which
is nonzero a.e. with respect to the spectral measure of H. Suppose that Fψ(H)
is densely defined. Then the following statements are equivalent, in which
(I1, I2) stands for one of the pairs of ideals of B(H) : either I1 = I2 = B(H),
I1 = I2 = L∞(H), or I1 = L1(H) and I2 = L2(H).

(i) The operator Fψ(H) belongs to I2.
(ii) The operator Fϕ(H) belongs to I2 for some function ϕ of the same

order as ψ in the sense that both ψ/ϕ and ϕ/ψ are bounded Borel
functions on σ(H).

(iii) The operator Fϕ(H) belongs to I2 for any Borel function ϕ which
for some C > 0 and a.e. x ∈ σ(H) satisfies |ϕ(x)| ≤ C|ψ(x)|.

(iv) For any Borel function ϕ which for some C > 0 and H-a.e. x ∈
σ(H) satisfies |ϕ(x)| ≤ C|ψ(x)|2, the operator Fϕ(H)F ∗ can be
continuously extended to an operator which belongs to I1.

(v) For some function ϕ of the same order as ψ (in the above sense),
the operator F |ϕ|2(H)F ∗ can be continuously extended to a positive
operator which belongs to I1.

(vi) The operator F |ψ|2(H)F ∗ can be continuously extended to a positive
operator which belongs to I1.

If the equivalent conditions of Lemma 3.4 hold, and if ϕ is as in condi-
tion (iv), then the bounded closure of the sandwiched operator Fϕ(H)F ∗ is
equal to

(3.3) Fϕ(H)F ∗ = Fψ1(H)
(
Fψ̄2(H)

)∗
,

for any two Borel functions ψj , j = 1, 2, such that ϕ(x) = ψ1(x)ψ2(x) and
|ψj(x)| ≤ Cj |ψ(x)| for some Cj > 0 and any x. Indeed, the operator on the
right hand side of (3.3) extends Fϕ(H)F ∗ by Lemma 3.3 and hence (3.3)
holds by the uniqueness of continuous extension. Following from this is the
intuitively obvious equality

(3.4)
(
Fϕ(H)F ∗

)∗
= Fϕ̄(H)F ∗.

Also note that if ϕ1 and ϕ2 are as in condition (iv), then so is their sum and
by the uniqueness of continuous extension we have

(3.5) F (ϕ1 + ϕ2)(H)F ∗ = Fϕ1(H)F ∗ + Fϕ2(H)F ∗.
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Proof. Clearly (iii) implies both (i) and (ii).
(i) implies (iii): For any Borel function ϕ which is dominated by C|ψ|,

the function ϕ/ψ is bounded and hence (ϕ/ψ)(H) is a bounded operator.
Then since Fψ(H) belongs to I2, so does Fϕ(H) = Fψ(H)(ϕ/ψ)(H).

(ii) implies (iii): This can be seen from the above argument by replacing ψ
by the function ϕ appearing in (ii).

(iii) implies (iv): Let ϕ be dominated by C|ψ|2. Then (ϕ/ψ) is domin-
ated by C|ψ| and both F (ϕ/ψ)(H) and Fψ(H) belong to I2 by (ii). Thus
F (ϕ/ψ)(H)(Fψ(H))∗ belongs to I1. Note that ψ(H)F ∗ ⊂ (Fψ(H))∗ and
the operator Fϕ(H)F ∗ = F (ϕ/ψ)(H)ψ(H)F ∗ is defined on the dense do-
main of F ∗, where it is equal to F (ϕ/ψ)(H)(Fψ(H))∗. (iv) follows by the
uniqueness of continuous extension.

Clearly (iv) implies both (v) and (vi).
(vi) implies (i): Since the operator Fψ(H) is densely defined and closed,

it follows that the operator Fψ(H)(Fψ(H))∗ is self-adjoint (see e.g. [Kat84,
Theorem V-3.24]). By Lemma 3.3 Fψ(H) = (ψ(H)F ∗)∗ and we have

(F |ψ|2(H)F ∗)∗ ⊃ (ψ(H)F ∗)∗(Fψ(H))∗ = Fψ(H)(Fψ(H))∗.

It follows that F |ψ|2(H)F ∗ continuously extends to Fψ(H)(Fψ(H))∗, which
must therefore belong to I1. From this it follows that Fψ(H) ∈ I2. Indeed,
if AA∗ = |A∗|2 ∈ I1, then |A∗| belongs to I2 hence so do A∗ and A.

(v) implies (ii): This can be seen from the above argument by replacing ψ
by the function ϕ appearing in (ii). �

Proof of Theorem 3.1. Consider the following statement: A self-
adjoint operator H and a rigging operator F are such that the equivalent
conditions of Lemma 3.4 hold with ψ(x) = (|x|1/2 + 1)−1 and I1 = I2 = B
(or L∞). Condition (i) is clearly equivalent to the condition that F is

|H|1/2-bounded (compact). While condition (iv) implies that the sandwiched
resolvent Tz(H) is bounded (or compact).

If H is bounded below then the boundedness (compactness) of the
sandwiched resolvent implies condition (v), since in this case the resolvent
function x 7→ (x + m)−1 is positive on σ(H) for large enough m. By
Proposition 2.26 also equivalent is for the operator F ∗F to be H-form-
bounded (compact).

In the case that the rigging operator F is bounded, the boundedness
(compactness) of the sandwiched resolvent is equivalent to the H-bounded-
ness (compactness) of F . One direction of this equivalence is obvious, while
the other follows from Lemma 3.2. �

Suppose H is a self-adjoint operator on H and F : H → K is a rigging
operator such that dom |H|1/2 ⊂ domF . Then F is |H|1/2-bounded by
Lemma 2.23 and it follows from Theorem 3.1 that the sandwiched resolvent
Tz(H) is bounded for any z ∈ ρ(H). A sandwiched version of the so-called
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first resolvent identity (see (3.17)) holds:

(3.6) Tz(H)− Tw(H) = (z − w)FRz(H)(FRw̄(H))∗

and in particular,

(3.7) ImTz(H) = Im z FRz(H)(FRz(H))∗.

These equalities follow from (3.3), (3.4), and (3.5). Also note that since
ImRz(x) = Im z Rz(x)Rz̄(x) for any x, the operator ImTz(H) is the closure
of F ImRz(H)F ∗.

The inclusion ImTz(H) ∈ L1(K) for z ∈ C \ R will be important later.
We note that it is equivalent to the inclusion FRz(H) ∈ L2(H,K) and holds
for any nonreal z as long as it holds for one.

Lemma 3.5. Suppose H, F, I1, I2, and ψ are as in Lemma 3.4 and its
equivalent conditions hold. Let C > 0. If ϕn, n = 1, 2, . . . , is a sequence of
Borel functions which are dominated by C|ψ|2 and converge pointwise to ϕ,
then the following convergence holds in I1.

Fϕn(H)F ∗ → Fϕ(H)F ∗ as n→∞.

Proof. Since ϕ is the pointwise limit of Borel functions which are
dominated by C|ψ|2, it is also a Borel function with the same dominating
function. By assumption Fψ(H) belongs to I2. Also, for any χ dominated
by C|ψ|2, F (χ/ψ)(H) belongs to I2 since χ/ψ is dominated by C|ψ|, and
the closure of Fχ(H)F ∗, equal to F (χ/ψ)(H)(Fψ(H))∗ by (3.3), belongs
to I1. The proof will be completed if we can ensure that the number

‖F (χn/ψ)(H)(Fψ(H))∗‖I1 ,
where χn := ϕ−ϕn, is arbitrarily small for large enough n. Note that χn/ψ

2

is a sequence of uniformly bounded Borel functions converging pointwise
to 0. It follows from the functional calculus that (χn/ψ

2)(H) converges to 0
in the so∗-topology. By Lemma 2.19, F (χn/ψ)(H) = (Fψ(H))(χn/ψ

2)(H)
converges to 0 in I2. Therefore, the result follows from the estimate

‖F (χn/ψ)(H)(Fψ(H))∗‖I1 ≤ ‖F (χn/ψ)(H)‖I2‖Fψ(H)‖I2 . �

Corollary 3.6. Let H be a self-adjoint operator on H and let F : H → K
be a rigging operator which is |H|1/2-bounded. Then the sandwiched resolvent
Tz(H) is norm-continuous as a function of z ∈ ρ(H). In fact it is analytic.
Moreover, it is continuous at z =∞ where it converges to 0.

In addition we note that if the imaginary part ImTz(H) belongs to the
trace class for some (hence any) nonreal z, then it is continuous there and
converges to 0 in the trace class norm as z → ∞. Further, for z ∈ C+ its

square root
√

ImTz(H) is continuous in the Hilbert-Schmidt class where it
converges to 0 as z →∞.

Proof. The norm-continuity of the sandwiched resolvent z → Tz(H) and
its convergence to 0 as z →∞ follows easily from Lemma 3.5. So too does the
continuity and convergence to 0 as z →∞ of z 7→ ImTz(H) in the L1-norm,
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if ImTz(H) ∈ L1(K). Therefore the same can be said of z 7→
√

ImTz(H) in
the L2-norm as a result of the Birman-Koplienko-Solomyak inequality (2.20).

The analyticity of Tz(H) can be seen as follows. Let ψ(x) = (|x|+ 1)−1/2.
For any ϕ1, ϕ2 ∈ K, consider the function

z 7→ 〈ϕ1, Tz(H)ϕ2〉 = 〈(Fψ(H))∗ϕ1, (Rz/ψ)(H)(Fψ(H))∗ϕ2〉 ,

=

∫
R

√
x+ 1

x− z
dµ(x),

where µ is a finite measure. This function is analytic on C \ R and therefore
so is z 7→ Tz(H) by the equivalence of weak and strong analyticity (see e.g.
[Yos80, Theorem V.3.1]). �

3.2. The abstract limiting absorption principle (LAP)

Let H be a self-adjoint operator on a Hilbert space H with spectral
measure E and suppose F : H → K is a rigging operator such that domF ⊃
dom |H|1/2. Then by Theorem 3.1 the sandwiched resolvent Tz(H) is bound-
ed. One of the main reasons for introducing a rigging operator is that the
sandwiched resolvent Tz(H) may have bounded limits as z approaches points
of the absolutely continuous spectrum of H. Indeed for the right choice
of rigging operator these limits exist for a.e. λ ∈ R. This is known as the
(abstract) Limiting Absorption Principle (LAP).

The LAP is intimately connected to stationary scattering theory and
is usually considered within the context of perturbation theory, where the
operator F is related to the perturbation: Let H0 and H1 = H0 + V be two
self-adjoint operators and suppose that the perturbation V is decomposed
as F ∗JF for bounded J . Then the LAP can be used to conclude that
for the right choice of F there exists a full set of values λ for which the
sandwiched resolvents Tλ+iy(H0) and Tλ+iy(H1) both have limits as y → 0+.
Proofs of the LAP can be divided into two methods: ‘smooth’ and ‘trace
class.’ The smooth method involves relatively strong conditions on the
initial operator H0, which allows a freer choice of the perturbation V, or
the rigging operator F . In contrast the trace class method involves stronger
assumptions on the rigging F, allowing a virtually arbitrary choice of H0.
These methods in their wider context of scattering theory are discussed
further in Section 7. The trace class method is the main focus here and
because of its importance we provide a proof (see Theorem 3.13), which is
lifted from [Yaf92]. A simple case of the LAP which is closer to the spirit of
the smooth method is considered at the beginning of Section 5.6.

We will use the notation

Tλ±i0(H) := lim
y→0+

Tλ±iy(H).

Unless otherwise specified these are to be considered as norm limits. Elements
of the set

Λ(H,F ) :=
{
λ ∈ R

∣∣ Tλ+i0(H) exists in B(K)
}
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will be called regular points of H. If λ ∈ Λ(H,F ) we say that H is regular
at λ, whereas if λ /∈ Λ(H,F ) then H is said to be resonant at λ.

Note that if Tλ±i0(H) exists, then so does Tλ∓i0(H) by continuity of the
adjoint operation, and hence

ImTλ±i0(H) = lim
y→0+

ImTλ±iy(H).

Being the set of points of convergence of a family of continuous functions,
Λ(H,F ) is a Borel set. It obviously contains ρ(H) ∩ R. As shown below, it
cannot contain any points of the singular spectrum of H, so any additional
regular points belong to the absolutely continuous spectrum.

Theorem 3.7. Let H be a self-adjoint operator on H with spectral
measure E and let F : H → K be a rigging operator with domF ⊃ dom |H|1/2.
Then the operator E(Λ(H,F )) is an orthogonal projection onto a linear

subspace of the absolutely continuous subspace H(a)(H).

Proof. Assume the contrary. Then there exists a null subset X of
Λ(H,F ) such that E(X) 6= 0. Since the range of F ∗ is dense in H, it follows
that there exists a vector F ∗ψ such that

(3.8) 〈F ∗ψ,E(X)F ∗ψ〉H 6= 0.

On the other hand, by definition of the set Λ(H,F ), for all λ ∈ X ⊂ Λ(H,F )
there exists the finite limit

1

π
lim
y→0+

〈ψ, F ImRλ+iy(H)F ∗ψ〉K .

By Theorem 2.4 the set of points λ where the above limit exists is a full set
whose complement is a support of the singular part of the measure µF ∗ψ(∆) =
〈F ∗ψ,E∆ F

∗ψ〉H , hence 〈F ∗ψ,E(X)F ∗ψ〉H = 0. This contradicts (3.8) and
completes the proof. �

Corollary 3.8. If Λ(H,F ) is a full set, then it supports the absolutely
continuous spectral measure of H. Moreover, its complement R \ Λ(H,F ) is
a minimal support of the singular spectral measure, i.e. a core of σs(H).

In the presence of a rigging operator, if the LAP holds in the sense that
Λ(H,F ) is a full set, then the complement R \ Λ(H,F ) can be considered
as the core of σs(H) since it is unambiguously determined by the rigging
operator F . Its elements might simply be called singular points of H and
are at least interpreted in that way. This leads into the topics of [Aza16]
surrounding the resonance index, which are discussed further in Section 4.

We will also be concerned with the existence of the limit ImTλ+i0(H)
in the stronger topology of the trace class. As well as regular points
Λ(H,F ), we identify a subset of trace-regular points ofH, denoted Λ(H,F ;L1).
By definition, a point λ belongs to Λ(H,F ;L1) if λ ∈ Λ(H,F ) and for some
bounded neighbourhood ∆ ⊂ R of λ the convergence

(3.9) FE(∆) ImRλ+iy(H)(FE(∆))∗ → ImTλ+i0(H) as y → 0+
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holds in the trace class norm.
Reviewed in detail below are two classical theorems on the abstract LAP,

numbered 3.11 and 3.13, which are due to M. Sh. Birman and S. B. Entina
[BE67] (they note that a similar result appears in [Bra62]). For the proofs
we will follow [Yaf92], where the corresponding theorems are numbered 6.1.5
and 6.1.9, including some supporting lemmas.

Lemma 3.9. Any operator A ∈ Lp can be represented in the form A = TB
(or A = BT ) where B ∈ Lp and T ∈ L∞.

On the other hand, if B is a bounded operator such that for some p <∞
and for any T ∈ L∞ the product TB (or BT ) belongs to Lp, then B necessarily
belongs to Lp.

Proof. This is a combination of Lemmas 6.1.1–2 from [Yaf92]. Through
the Schmidt representation of compact operators the first statement of
this lemma can be translated to sequences of s-numbers, where it becomes
equivalent to the fact that for any positive sequence (an) in `p there is always a
more slowly convergent positive sequence (bn) in `p such that tn = an/bn → 0
as n→∞.

For the second statement we first note that B must be compact, for
which it suffices to see that |B| is compact. If this were not the case then
with E denoting the spectral measure of |B|, we could find λ > 0 such that
the range Hλ of E(λ,∞) is infinite-dimensional. But then since |B| has
a bounded inverse on Hλ the premise implies the contradiction that every
compact operator T on Hλ belongs to the class Lp. Now again translating
the statement to one about s-numbers, it becomes equivalent to the fact that
if for any tn → 0 the sequence (bntn) belongs to `p then so must (bn). �

Lemma 3.10. Let 1 ≤ p ≤ ∞. If Tn ∈ Lp, ‖Tn‖p ≤ C < ∞, and Tn
converges weakly to T as n→∞, then T ∈ Lp and ATnB converges to ATB
in Lp for any compact operators A and B.

It is not necessary to assume the existence of the weak limit T as a
bounded operator in the following sense. Given the uniform boundedness of
the norms ‖Tn‖ ≤ C and the convergence as n→∞ for any vectors f and g
of the scalar product 〈f, Tng〉 , say to the number T [f, g], it follows that

|T [f, g]| ≤ C‖f‖‖g‖.

Therefore (f, g) 7→ T [f, g] defines a bounded linear form and hence corres-
ponds to a bounded operator T, for which Tn → T weakly.

Proof. Here we follow [Yaf92, Lemma 6.1.4] (although we don’t find
it necessary to appeal to the uniform boundedness principle). For A ∈ L∞,
consider the operators Γn which act from L∞ to Lp and are defined by
ΓnB = ATnB. From the estimate

(3.10) ‖ΓnB‖p = ‖ATnB‖p ≤ ‖A‖‖Tn‖p‖B‖ ≤ ‖A‖C‖B‖,
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it follows that the norms ‖Γn‖ are uniformly bounded. We will now show that
the sequence Γn, n = 1, 2, . . . , is strongly convergent, which is sufficiently
established on the set of finite rank operators F . Indeed, then the required
strong convergence can be obtained by a simple ε/3 argument using the
density of F in L∞ and the uniform boundedness of the norms ‖Γn‖. To prove
the strong convergence for B ∈ F , by linearity we can assume B has rank one,
say B = 〈f, ·〉 g, in which case ΓnB = 〈f, ·〉ATng. Then since Tng converges
weakly to Tg and A is compact, it follows that ATng → ATg. Therefore

‖ΓnB −ATB‖p ≤ ‖f‖‖ATng −ATg‖ → 0.

So Γn converges strongly on F to the operator Γ: L∞ → Lp defined by
ΓB = ATB. This operator Γ is a priori defined on the dense domain F ,
but since the strong limit of Γn is necessarily bounded, as can be inferred
from (3.10), it must be that Γ is bounded on all of L∞ and Γn converges
strongly to Γ. Therefore ATB ∈ Lp and the inclusion T ∈ Lp follows from
the second part of Lemma 3.9. Since the convergence of ATnB to ATB in Lp
for any A,B ∈ L∞ is equivalent to the strong convergence for any A ∈ L∞
of Γn → Γ as n→∞, the proof is complete. �

Theorem 3.11. If H is a self-adjoint operator on a Hilbert space H
and F : H → K is Hilbert-Schmidt, then for a.e. λ ∈ R the operator valued
function F ImRλ+iy(H)F ∗ has a limit in the trace class norm as y → 0+.

Proof. With the intention to use Lemma 3.10, we consider AF in place
of F where A is compact and F is Hilbert-Schmidt. This can be done without
loss of generality by the first part of Lemma 3.9. By Theorem 2.4, for any
ψ,ϕ ∈ K, the limit

(3.11) lim
y→0+

〈F ∗ψ, ImRλ+iy(H)F ∗ϕ〉

exists for a.e. λ. Let D, dense in H, be the linear span of some basis.
By excluding a countable family of null sets, we can find a common full set Λ
of values λ for which the limit (3.11) exists for any ψ,ϕ ∈ D. Applying
Theorem 2.4 to the measure Tr(FEF ∗), where E is the spectral measure
of H, the limit of

(3.12) Tr(F ImRλ+iy(H)F ∗) =
1

π

∫
R

ImRλ+iy(x) dTr(FE(x)F ∗),

as y → 0+, also exists for a.e. λ. Hence the trace class norm of the positive
operator F ImRλ+iy(H)F ∗, equal to (3.12), is bounded with respect to y for
a.e. λ. Deleting from Λ the null set of values for which this fails, we obtain
a full set of values λ for which ‖F ImRλ+iy(H)F ∗‖1 is bounded and the
limit (3.11) exists for any ψ,ϕ ∈ D. Hence for each such λ, the limit (3.11) ex-
ists for any ψ,ϕ ∈ H. Then Lemma 3.10 implies that AF ImRλ+iy(H)(AF )∗

converges in the trace class as y → 0+. �

Lemma 3.12. If f(z) is holomorphic in the upper half-plane and |f(z)| ≥ 1
for Im z > 0, then f(z) has limit values f(λ+ i0) at a.e. λ ∈ R.
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Proof. This is [Yaf92, Lemma 6.1.8] and we reproduce the proof for
convenience. We transfer attention to the function g(z) = 1/f(z). It is
holomorphic and bounded in C+, hence its limits g(λ + i0) exist at a.e. λ
by Theorem 2.6(i). Moreover, since it cannot be zero identically by The-
orem 2.6(ii), these limits must be nonzero on a full set. On this full set the
limits f(λ+ i0) also exist. �

Theorem 3.13. If H is a self-adjoint operator on a Hilbert space H
and F is a Hilbert-Schmidt operator from H to another Hilbert space K, then
for a.e. λ ∈ R the operator valued function FRλ+iy(H)F ∗ has a limit in the
Hilbert-Schmidt norm as y → 0.

It is shown in [Nab89] that for an arbitrary self-adjoint operator H this
result cannot be improved, in the sense that if F ∈ L2+ε with ε > 0, but
F /∈ L2, then for some H the LAP fails.

Proof. As in the proof of Theorem 3.11, we without loss of generality
replace F by AF where A is compact and F is Hilbert-Schmidt so that
by Lemma 3.10 it suffices to establish weak convergence and a bound on
the norm. Denoting FRz(H)F ∗ by Tz and using the property (2.27) of the
determinant, we have

(3.13) ‖Tz‖22 = Tr(Tz̄Tz) ≤ det(1 + Tz̄Tz),

Then from (2.26), (2.25), and (2.28) by means of the condition iTz̄ − iTz ≥ 0
(here we are assuming Im z = y > 0), we obtain

(3.14) 1 ≤ det(1 + Tz̄Tz) ≤ det(1 + iTz̄)(1− iTz) = |det(1− iTz)|2.
Combining (3.13) and (3.14),

(3.15) ‖Tz‖ ≤ |det(1− iTz)|.
The function f(z) = det(1− iTz) is holomorphic in the upper half-plane and
|f(z)| ≥ 1 by (3.14). Thus the limits f(λ+ i0) exist for a.e. λ by Lemma 3.12.
On this set of full measure, call it Λ, by (3.15) we have

(3.16) ‖Tλ+iy‖ ≤ C(λ)

for any y > 0. Applying the same reasoning as in the proof of Theorem 3.11,
we find a full set of values λ for which the limit 〈ψ, Tλ+i0ϕ〉 exists for any
ψ,ϕ ∈ D, where D is countable and dense. Then taking the intersection
with Λ, we find a full set for which (3.16) holds and the weak limit Tλ+i0

exists. �

Corollary 3.14. Let H be a self-adjoint operator and let E be its
spectral measure. If F : H → K is a rigging operator such that FE(∆) is
Hilbert-Schmidt for any bounded interval ∆, then the LAP holds for H.

Proof. This is a corollary of Theorem 3.13, which makes the same
conclusion – that Λ(H,F ) is a full set in R, in the case that F is itself
Hilbert-Schmidt. Let λ, y ∈ R with y > 0. For a bounded interval ∆, the
sandwiched resolvent Tλ+iy(H) can be split into the sum of two parts using
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the equality E(∆) + E(R \∆) = 1. Put ψ(x) := (|x| + 1)−1/2. Then the
sandwiched resolvent can be written as

Tλ+iy(H) = F (Rλ+iy/ψ)(H)(Fψ(H))∗

= F (Rλ+iy/ψ)(H)E(∆)(Fψ(H))∗

+ F (Rλ+iy/ψ)(H)E(R \∆)(Fψ(H))∗.

The first term can be rearranged to read

(FE(∆))Rλ+iy(H)(FE(∆))∗,

which converges as y → 0+ for a.e. λ by Theorem 3.13. The second term is
the closure of the operator

FRλ+iy(E(R \∆)H)E(R \∆)F ∗,

which converges by Lemma 3.5 for all λ in the interior of ∆ since λ ∈
ρ(E(R\∆)H). Therefore ∆\Λ(H,F ) is a null set for any bounded interval ∆
and hence Λ(H,F ) is a full set. �

Corollary 3.15. Let H be self-adjoint and let E be its spectral measure.
If F is a rigging operator such that FE(∆) is Hilbert-Schmidt for any
bounded interval ∆, then the set of trace-regular points Λ(H,F ;L1) is a
full set. Moreover, if F is such that for nonreal z the operator FRz(H)
belongs to the Hilbert-Schmidt class, then for any point λ from Λ(H,F ;L1)
the limit ImTλ+i0(H) exists in the trace class.

Proof. Let λ ∈ R, y > 0, and let ∆ be a bounded interval. Similarly to
the proof of Corollary 3.14, using equality (3.6) we write

ImTλ+iy(H) = yFRλ+iy(H)E(∆)(FRλ+iy(H))∗

+ yFRλ+iy(H)E(R \∆)(FRλ+iy(H))∗.

The first term can be written as (FE(∆)) ImRλ+iy(H)(FE(∆))∗ and con-
verges in the trace class norm as y → 0+ for a.e. λ by Theorem 3.11. The
second term is the closure of the operator

F ImRλ+iy(E(R \∆))E(R \∆)F ∗.

For any λ from the interior of ∆, it can be concluded from Lemma 3.5 that
this term converges to 0 in the usual norm as y → 0+ and moreover that the
same convergence holds in the trace class norm if FRz(H) is Hilbert-Schmidt.
Hence in the latter case ImTλ+iy(H) → ImTλ+i0(H) in the trace class.
Otherwise, it follows that (3.9) holds in the usual norm and therefore, since
(FE(∆)) ImRλ+iy(H)(FE(∆))∗ also converges in the trace class norm, the
limits must agree so that (3.9) holds in the trace class norm. It follows that
the set of points λ where the limit (3.9) exists is a full set in (arbitrary) ∆
and thus in R. Hence so is Λ(H,F ;L1) by Corollary 3.14. �
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3.3. Rigged affine spaces of self-adjoint operators

The first and second resolvent identities:

Rz(H)−Rw(H) = (z − w)Rz(H)Rw(H) = (z − w)Rw(H)Rz(H)(3.17)

Rz(H0)−Rz(H1) = Rz(H1)V Rz(H0) = Rz(H0)V Rz(H1)(3.18)

will be used many times in the coming pages. The first one, which is a special
case of the second (and has already been used a few times), holds for a closed
operator H and any z and w from its resolvent set ρ(H). In the second one,
z ∈ ρ(H1) ∩ ρ(H0) and the operator H1 is the sum of operators H0 and V .
It holds for example if H0 and V satisfy the premise of the Kato-Rellich
Theorem 2.28 and H1 is the operator sum H0 + V . The proof is a simple
algebraic manipulation.

Alternatively, suppose H0 and V satisfy the premise of the KLMN
Theorem 2.29 and H1 is the form sum H0 u V . In this case, the second
resolvent identity can be written as

〈f, (Rz(H0)−Rz(H1))g〉 = V [Rz̄(H0)f,Rz(H1)g](3.19)

= V [Rz̄(H1)f,Rz(H0)g]

for any vectors f and g. This can be established as follows. Note that
dom[V ] contains the form domains of H0 and H1 and hence also contains
their operator domains.

V [Rz̄(H0)f,Rz(H1)g] = (H1 − z −H0 + z)[Rz̄(H0)f,Rz(H1)g]

= 〈Rz̄(H0)f, (H1 − z)Rz(H1)g〉
− 〈(H0 − z̄)Rz̄(H0)f,Rz(H1)g〉

= 〈f, (Rz(H0)−Rz(H1))g〉 .
Given any rigging operator F : H → K, we consider the space of perturb-

ations

(3.20) A0 = A0(F ) := F ∗Bsa(K)F

with the norm
‖F ∗JF‖F := ‖J‖,

making it isomorphic to the real Banach space of bounded self-adjoint
operators on K. If F is bounded, then A0 consists of bounded self-adjoint
operators V = F ∗JF . But if F isn’t bounded, we interpret a perturbation
V = F ∗JF ∈ A0 as the form

(3.21) V [f, g] = 〈Ff, JFg〉 f, g ∈ domF.

Now suppose that H is a lower-bounded self-adjoint operator on H,
such that F is |H|1/2-compact. It follows that each perturbation V ∈ A0 is
H-form-compact. Therefore, by the KLMN Theorem each form sum H u V
is a lower-bounded self-adjoint operator with the same form domain as H.
Thus applying Proposition 2.26 and Theorem 3.1, we conclude that the
sandwiched resolvent Tz(H u V ) is bounded for any z ∈ ρ(H u V ).
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For H0 = H and H1 = H u V, where V = F ∗JF, the second resolvent
identity (3.19) holds and can be written as

(3.22) Rz(H1)−Rz(H0) = (FRz̄(H0))∗JFRz(H1).

It is natural to denote the right hand side by Rz(H0)V Rz(H1). In this regard
also see (3.27).

From (3.22) we also obtain a sandwiched version:

(3.23) Tz(H0)− Tz(H1) = Tz(H0)JTz(H1) = Tz(H1)JTz(H0),

which is justified first on the domain of F ∗ and then extended to the whole
auxiliary Hilbert space.

Recall that we are assuming F to be |H0|1/2-compact. Since the sand-
wiched resolvent Tz(H0) is compact by Theorem 3.1, the equality (3.23)
implies that Tz(H1) is also compact. Hence by Theorem 3.1, F is re-

latively compact with respect to |H1|1/2. Further, any other perturba-
tion from A0 is relatively form-compact with respect to H1. Note that
(H u V1)u V2 = H u (V1 + V2), since both of these operators correspond to
the form H + V1 + V2. We put

(3.24) A = A(H,F ) := H uA0,

which comprises a real affine space of self-adjoint operators over A0. Although
the operator H has been used in the construction of this affine space, it is
not a distinguished element; A can be reconstructed in the same way from
any other element.

Such an affine space of self-adjoint operators (3.24), which we will call a
rigged affine space, will form the basic setting herein. In its definition, we
have assumed the semiboundedness of the self-adjoint operator H, which is
reasonable given that Schrödinger operators are as a rule semibounded and
it is a primary aim to accommodate this application. However, restricting
to semibounded operators is not necessary in the case that the rigging
operator F is itself bounded. In this simpler situation each perturbation V
is H-compact by Theorem 3.1 and we may use the Kato-Rellich Theorem
instead of the KLMN Theorem. As a result the operators of the affine
space (3.24) not only share a form domain, but also an operator domain.

To reiterate and summarise:

Definition. Suppose F : H → K is a rigging operator. Define a real
Banach space of symmetric forms by

A0 = {V [f, g] = 〈Ff, JFg〉 f, g ∈ domF : J ∈ Bsa(K)}

and equip this space with the norm ‖V ‖F = ‖J‖. For convenience an
element of A0 is written as V = F ∗JF . Suppose further that H is a lower-
bounded self-adjoint operator on H, such that F is |H|1/2-compact. Then
each form in A0 is relatively form-compact with respect to H and we define
a rigged affine space of self-adjoint operators by (3.24). In the case that the
rigging operator F is bounded, the operator H need not be assumed to be
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semibounded and the form sum in (3.24) can be replaced by an operator
sum. As usual we often leave the rigging operator implicit in our notation.

Some basic properties of a rigged affine space A:

· Any V ∈ A0 is relatively form-compact with respect to any H ∈ A.
· All operators H ∈ A share a common form domain dom[A]. In the case

that F is bounded we can say further that each V ∈ A0 is relatively
compact with respect to any H ∈ A and all operators H ∈ A share a
common operator domain domA.

· The sandwiched resolvent Tz(H) is compact for any H ∈ A.
· For any two operators H0 and H1 from A(F ) there is a perturbation
V = F ∗JF ∈ A0 such that H1 = H0 u V . For these two operators, we
have the second resolvent identity (3.18), which is interpreted as (3.22), as
well as its sandwiched version (3.23).

Continuing the last item above, from (3.23) and the density of the range
of the operator F ∗, we obtain the equalities

(3.25) FRz(H0)− FRz(H1) = Tz(H0)JFRz(H1) = Tz(H1)JFRz(H0).

The difference of resolvents of any two operators from A(F ) is compact
by (3.22). Thus it follows from Weyl’s Theorem 2.18 that all operators in A
share a common essential spectrum, which we will denote by σess.

In the case of a rigged affine space A(F ) which consists of semibounded
self-adjoint operators, it will be assumed that the shared form domain
D = dom[A] is mapped to a dense set in the auxiliary Hilbert space K by
the rigging operator F, i.e.

(3.26) FD = K.

This is already true in the case that F is bounded, since with ψ(x) =

(|x|+1)−1/2 we have D = ranψ(H) and ran(Fψ(H))⊥ = ker(ψ(H)F ∗) = {0}.
In general, it is not restrictive to assume (3.26); if it were not true we could
simply redefine K by (3.26).

In defining a rigged affine space we have included only symmetric per-
turbations, but this is not necessary. If A(F ) is a rigged affine space of
self-adjoint operators, then any perturbation F ∗JF, where J is bounded but
not necessarily self-adjoint, is relatively form-compact with respect to any
H ∈ A and

Au F ∗B(K)F

defines a larger complex affine space of sectorial operators. However, we are
primarily interested in the real subspace A of self-adjoint operators.

Let A be a rigged affine space and let H0, H1 ∈ A and V ∈ A0. Suppose ϕ
and ψ are Borel functions satisfying |ϕ(x)|, |ψ(x)| ≤ const.(|x|+1)−1/2. Then
we will use the notation

(3.27) ϕ(H0)V ψ(H1)
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to refer to the compact operator corresponding to the form

(f, g) 7→ V [ϕ̄(H0)f, ψ(H1)g].

Note that this operator doesn’t depend on the rigging operator, in the sense
that if A(F1) and A(F2) are two rigged affine spaces such that H0, H1 ∈
A(F1)∩A(F2) and V ∈ A0(F1)∩A0(F2), then the result is the same. However,
if F is the rigging operator and V = F ∗JF then it can be practical to write

ϕ(H0)V ψ(H1) = (Fϕ̄(H0))∗JFψ(H1).

The following proposition shows a typical instance in which a rigged
affine space can arise – by perturbing a self-adjoint operator in a relatively
compact direction.

Proposition 3.16. Suppose we are a given an initial self-adjoint oper-
ator H0 and relatively compact self-adjoint perturbation V . If either V is
bounded or H0 is bounded below, then there exists a rigged affine space A,
with H0 ∈ A and V ∈ A0.

Proof. An essential requirement is to find a closed injective operator F
and a bounded operator J so that V = F ∗JF (understood in the sense

of (3.21)). One possibility is F =
√
|V | and J = sgnV . In order to ensure

that F is injective, let F0 be a positive injective operator on the kernel of V
which we chose to be Hilbert-Schmidt. Set F =

√
|V |+F0 and let K = ranF .

The real Banach space A0(F ) contains V by construction. In fact it contains
any operator ψ(V ), where ψ is a real-valued Borel function which is zero
at zero and satisfies |ψ(x)| ≤ C|x|, for some C > 0 and a.e. x with respect
to the spectral measure of V, e.g. the positive and negative parts V± of V .
Lemma 2.27 implies that F is |H0|1/2-compact and the rigged affine space
A = H0 uA0(F ) satisfies the requisite conditions. �



CHAPTER 4

The resonance index

The resonance index appeared in print in the paper [Aza16], where it
is studied in detail. It is a tangible realisation of the idea of (infinitesimal)
spectral flow, which unlike other definitions also makes sense within the
essential spectrum. Outside of the essential spectrum, spectral flow has been
variously studied in terms of concepts such as the intersection number and
the total Fredholm index. An axiomatic description is given by J. Robbin
and D. Salamon in [RS95]. Proof that the total resonance index satisfies
these axioms, as well as direct proofs of its coincidence with the intersection
number and total Fredholm index, can be found in the detailed study of
resonance index outside of the essential spectrum [Aza17].

In this chapter the resonance index will be considered on a rigged affine
space A(F ). While its spirit is the same, this is not exactly the setting
which appears in [Aza16]. One difference is that in [Aza16] the perturbations
V = F ∗JF are chosen so that

JF dom[A] ⊂ domF ∗,

which implies that they can be considered as operators, relatively bounded
with respect any self-adjoint operator in A. The situation is complicated
by the fact that in [Aza16] it is not assumed that the operators from A are
semibounded and instead the perturbations are assumed to be relatively
compact. However, there is no difference whatsoever in the case that the
rigging operator F is bounded. We claim that all of the important results
translate virtually unchanged and for the most part this is immediately
clear, mainly because the roles of the resolvent Rz(H) and the perturbation
V = F ∗JF are overshadowed by those of the sandwiched resolvent Tz(H)
and the bounded operator J . Some things less clear are confirmed to hold at
the end of Section 4.2.

4.1. Resonance points

Suppose that A(F ) is a rigged affine space of self-adjoint operators, which
will be fixed throughout this chapter. This section addresses questions about
the dependence of the regularity condition λ ∈ Λ(H,F ) on the operator
H ∈ A. Along the way some equalities are established which play a significant
role here as well as in later chapters.

The following convenient notation also appears in [Yaf92, p. 115]. For any
self-adjoint operator H ∈ A, attach one copy of Λ(H,F ) to each complex

53
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half-plane forming the sets

(4.1) Π±(H,F ) := C± ∪ Λ(H,F )

and then define

(4.2) Π(H,F ) := Π+(H,F ) tΠ−(H,F ).

Elements of Π±(H,F ) in the disjoint union Π(H,F ) can be distinguished by
their imaginary parts. That is, z ∈ Π(H,F ) can be written as λ± iy, where
λ = Re z and y = | Im z|, so that λ± i0 distinguishes between the two copies
of Λ(H,F ) when λ is a regular point of H. The set Π(H,F ;L1) is similarly
defined: just replace Λ(H,F ) by Λ(H,F ;L1) in the definition of Π(H,F ).

One reason for introducing the set Π(H,F ) is to index the operators
Tz(H) and there will be little need to distinguish λ+ i0 from λ− i0 if the
limits Tλ+i0(H) and Tλ−i0(H) are equal. In this regard, since z 7→ Tz(H)
is continuous on the resolvent set ρ(H), we can identify λ+ i0 and λ− i0
if λ ∈ Λ(H,F ) ∩ ρ(H) = Λ(H,F ) \ σess. What is important is that for a
regular point λ ∈ σess the operators Tλ±i0(H) may differ.

For any H ∈ A, the sandwiched resolvent Tz(H) is compact for any
nonreal z and for λ ∈ Λ(H,F ) the operators Tλ±i0(H) are compact as the
norm limits of compact operators. In other words, Tz(H) is compact for any
z ∈ Π(H,F ).

For any two operators H0 and H1 = H0 u V, V = F ∗JF, from the affine
space A, the sandwiched version of the second resolvent identity (3.23) holds
for any z from the intersection Π(H1, F )∩Π(H0, F ). Indeed since it holds for
any nonreal z = λ± iy, if λ belongs to the intersection Λ(H1, F ) ∩ Λ(H0, F )
then taking the limit as y → 0 shows that it holds for z = λ± i0 as well.

Lemma 4.1. Consider a straight line Hr = H0 u rV, V = F ∗JF, r ∈ R,
in the affine space A(F ). For any z ∈ Π(H0, F )∩Π(Hr, F ), the spectra of the
compact operators JTz(H0) and Tz(H0)J cannot contain the number −r−1.

Note that if z is nonreal, then the inclusion z ∈ Π(H0, F ) ∩ Π(Hr, F )
is automatic, so that this lemma implies that the operators JTz(H0) and
Tz(H0)J do not have nonzero real eigenvalues.

Proof. We can immediately dispense with the case r = 0. Since the
compact operators Tz(H0)J and JTz(H0) share the same nonzero eigenvalues
by (2.22), it suffices to consider one. Assume contrary to the claim, that −r−1

is an eigenvalue of JTz(H0). Letting ψ 6= 0 be a corresponding eigenvector,
we have

(1 + rJTz(H0))ψ = 0.

But since z ∈ Π(H0, F )∩Π(Hr, F ), the sandwiched second resolvent identity

Tz(H0) = Tz(Hr)(1 + rJTz(H0))

holds and implies the contradiction

0 6= −r−1ψ = JTz(H0)ψ = JTz(Hr)(1 + rJTz(H0))ψ = 0. �
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Corollary 4.2. Let V = F ∗JF be a perturbation from the real Banach
space A0(F ) and suppose that

(4.3) JF dom[A] ⊂ domF ∗.

Then as an operator V = F ∗JF is H-bounded for any self-adjoint operator
H ∈ A and for any nonreal z, the operators JTz(H), Tz(H)J, V Rz(H), and
the closure of Rz(H)V, all share the same nonzero eigenvalues (counting
multiplicities) none of which can be real.

Proof. The inclusion (4.3) implies that V is H-bounded by Lemma 2.23.
From Lemma 4.1 and (2.22) we know that Tz(H)J and JTz(H) share the

same nonzero eigenvalues and none are real. With ϕ(x) = (|x|+ 1)−1/2 and

ϕz(x) = (|x|+ 1)1/2(x− z)−1, from (3.3) we have

Tz(H)J = Fϕz(H)(Fϕ(H))∗J.

By (2.22), this operator therefore has the same nonzero eigenvalues as the
operators

(Fϕ(H))∗JFϕz(H) = ϕ(H)V ϕz(H),

V ϕz(H)ϕ(H) = V Rz(H).

Lemma 3.3 implies that Rz(H)V = (V Rz̄(H))∗. The nonzero eigenvalues of
this operator are the conjugates of those for V Rz̄(H), which are shared with
Tz̄(H)J and hence are the conjugates of those for JTz(H). �

We can now establish some important equalities. Let H0 and H1 =
H0 u V be any two operators from A(F ), where V = F ∗JF . Suppose
z ∈ Π(H0, F ) ∩ Π(H1, F ). Following from Lemma 4.1 and the sandwiched
second resolvent identity (3.23), we get

(4.4) Tz(H1) = (1 + Tz(H0)J)−1Tz(H0) = Tz(H0)(1 + JTz(H0))−1.

From the first of these equalities and the density of the range of F ∗, we also
obtain the equality

(4.5) FRz(H1) = (1 + Tz(H0)J)−1FRz(H0)

and by taking its adjoint

(4.6) (FRz(H1))∗ = (FRz(H0))∗(1 + JTz̄(H0))−1.

One more equality worth noting (cf. [KK71, p. 144; RS79, (99); Aza16,
(2.7.11)]):

(4.7) ImTz(H1) = (1 + Tz̄(H0)J)−1 ImTz(H0)(1 + JTz(H0))−1.

This is implied for z = λ± iy, y > 0, by (3.7), (4.5), and (4.6). Then the case
z = λ± i0, λ ∈ Λ(H0, F ) ∩ Λ(H1, F ), follows by taking the limit y → 0+.

By the continuity of the inverse and Lemma 4.1, the factor (1+Tz(H0)J)−1

is norm-continuous as a function of J . Therefore it follows from the above
equalities that the operators Tz(H) and FRz(H) vary norm-continuously
with H ∈ A. Moreover, these operator valued functions are continuous in
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the norm the Schatten ideal Lp if it is assumed that their value at some H0

belongs to Lp. This is one reason that these equalities will be important
later.

Proposition 4.3. Let H0 and H1 = H0uV, V = F ∗JF, be two operators
from the affine space A(F ). Suppose H0 is regular at λ. Then H1 is resonant
at λ if and only if the compact operator Tλ+i0(H0)J has −1 as an eigenvalue.

This proposition holds if the operator Tλ+i0(H)J is replaced by any one
of the operators JTλ±i0(H) or Tλ−i0(H)J, as is evident from its proof.

Proof. By the Fredholm alternative, −1 is an eigenvalue of Tλ+i0(H0)J
if and only if the operator 1 + Tλ+i0(H0)J is not invertible. Put z = λ+ iy
with y > 0 and consider the equality (4.4). By letting y → 0, it can be
inferred that if (1 + Tλ+i0(H0)J)−1 exists then so does Tλ+i0(H1). And by
Lemma 4.1, existence of the operator Tλ+i0(H1) implies invertibility of the
operator 1 + Tλ+i0(H0)J . �

The union of the sets Λ(H,F ) over a collection of operators {Hr}r∈I ⊂ A
will be denoted Λ({Hr}, F ). Its elements will be called essentially regular
points of the collection. Elements of Λ(A, F ) are just called essentially
regular. Similarly, we define

Λ({Hr}, F ;L1) :=
⋃
r∈I

Λ(Hr, F ;L1)

and call the elements essentially trace-regular points of {Hr}.
Let λ be essentially regular. The set of operators from the rigged affine

space A which are resonant at λ is called the resonance set at λ. It is
denoted by R(λ;A). In particular we will consider one-dimensional sections
of the resonance set. If Hr, r ∈ R, is a path in A, then its intersection
with the resonance set can be identified with those values of the coupling
parameter r at which the intersection occurs. This set of values r ∈ R such
that Hr ∈ R(λ;A) is denoted R(λ; {Hr}) and is called the resonance set of
the path.

Suppose that a path Hr in A(F ) depends on r analytically. By the
definition of the norm on A0(F ), this means that for any s ∈ R, Hr =
HsuVr−s, where Vr−s = F ∗Jr−sF and r 7→ Jr−s is an analytic path in B(K).
We consider the path Jr−s to be analytically extended to a neighbourhood of
the real axis. In this way Hr can be considered as an analytic function with
values in the larger affine space Au F ∗B(K)F . Let s ∈ R and z ∈ Π(Hs, F ).
Then the function r 7→ Tz(Hs)Jr−s (defined on a neighbourhood of R) is
an analytic compact operator valued function. It follows from the analytic
Fredholm alternative (Theorem 2.17), that the operator valued function

(4.8) r 7→ (1 + Tz(Hs)Jr−s)
−1

is meromorphic and its pole-set is the discrete set of points r for which −1 is
an eigenvalue of the compact operator Tz(Hs)Jr−s. These poles are called
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resonance points of the path Hr corresponding to z. A resonance point at z
is usually denoted by rz. Note that rz = rz̄. Points which are resonant at z̄
are called anti-resonance points at z.

The definition of resonance points doesn’t depend on the choice of
regular point s. Indeed, if s1 and s2 are two regular points at z, i.e. z ∈
Π(Hs1 , F ) ∩Π(Hs2 , F ), then the equality (4.4) applies and

1 + Tz(Hs1)Jr−s1 = 1 + (1 + Tz(Hs2)Js1−s2)−1Tz(Hs2)Jr−s1

= 1 + Tz(Hs2)Js1−s2 + Tz(Hs2)Jr−s1

= 1 + Tz(Hs2)Jr−s2 .

And of course this notion of resonance points agrees with the previous one,
in the sense that if λ ∈ Λ(Hs, F ), then by Proposition 4.3, the discrete set of
real resonance points corresponding to λ coincides with the resonance set
R(λ; {Hr}) defined above.

In the present context equality (4.4) reads

Tz(Hr) = (1 + Tz(Hs)Jr−s)
−1Tz(Hs)

and due to the meromorphicity of the factor (4.8), the left hand side can
be considered as a meromorphic compact operator valued function of the
coupling parameter r. With z = λ ± iy, y ≥ 0, resonance points rz of the
path Hr are thus poles of r 7→ Tz(Hr) and the resonance set R(λ; {Hr}) is
the intersection of the pole set of r 7→ Tλ+i0(Hr) with the real line.

Theorem 4.4. Let Hr be an analytic path in A(F ) and suppose λ is
essentially regular. Then either the resonance set R(λ; {Hr}) is the whole
real line, or it is discrete in which case it consists of the real poles of the
function r 7→ Tλ+i0(Hr).

4.2. Resonance index

Suppose a triple (λ,Hrλ , V ) is chosen as follows: the real number λ is
an essentially regular point; the operator Hrλ ∈ A is resonant at λ; and the
direction V = F ∗JF ∈ A0 is regularising, in the sense that λ is an essentially
regular point of the straight line Hr = Hrλ u (r − rλ)V . Or in other words
suppose that λ is an essentially regular point of a straight line Hr in the
direction V and rλ is a resonance point of this path.

Let s ∈ R be any regular point of the path Hr, i.e. s /∈ R(λ; {Hr}), and
put z = λ ± iy, y ≥ 0. Then from the previous section rz is a resonance
point if and only if one of the following equivalent conditions holds:

· rz is a pole of the compact operator valued function

r 7→ Tz(Hr) = (1 + (r − s)Tz(Hs)J)−1Tz(Hs),

which is meromorphic in C.
· the compact operator Tz(Hs)J has an eigenvalue at

(4.9) σz(s) := (s− rz)−1.
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Consider shifting the point λ slightly to λ + iy for small positive (or
negative) y. Note that the compact operator Tλ+iy(Hs)J is continuous
as a function of y ≥ 0 and depends analytically on y > 0. By a well
known result on the perturbation of isolated eigenvalues (see e.g. [Kat84])
the eigenvalue σλ(s) of Tλ+i0(Hs)J may in general split into finitely many
eigenvalues σ1

λ+iy(s), . . . , σ
N
λ+iy(s) of Tλ+iy(Hs)J . These N eigenvalues are

stable for small y and are collectively known as the σλ(s)-group. Via the
correspondence (4.9), we may alternatively consider the rλ-group of resonance

points rjλ+iy, j = 1, . . . , N, which split from rλ (see Figure 4.1 below). Note

that for each j, the resonance point rjλ+iy and the eigenvalue σjλ+iy lie in the

same complex half-plane. By Lemma 4.1, none of the resonance points of
the rλ-group are real. The number of resonance points counting multiplicities
which lie in the upper complex half-plane C+ is denoted N+. The number
lying in the lower half-plane C− is denoted N−. The difference N+ −N− is
the resonance index

indres(λ;Hrλ , V ) := N+ −N−.

Note that the resonance index doesn’t depend on the rigging operator, in
the sense that if λ is an essentially regular point of the path Hr with respect
to two different rigging operators, the resulting real resonance points and
corresponding resonance indices are equal. This is because both notions are
characterised in terms of the eigenvalues (4.9) for y > 0 which converge to
the real axis when y → 0+ and by (2.22) these eigenvalues are common to
the following compact operators, the second of which doesn’t depend on F
(see (3.27)).

Tλ+iy(Hs)J = Fϕλ+iy(Hs)(Fϕ(Hs))
∗J,

ϕ(Hs)V ϕλ+iy(Hs) = (Fϕ(Hs))
∗JFϕλ+iy(Hs),

where ϕ(x) = (|x|+ 1)−1/2 and ϕz(x) = (|x|+ 1)1/2(x− z)−1.

Again suppose λ is an essentially regular point of a straight line Hr in
the direction V = F ∗JF . Let z = λ± iy, y ≥ 0, and let rz be a resonance
point corresponding to z. By Pz(rz) we denote the Riesz idempotent

(4.10) Pz(rz) =
1

2πi

∮
C(σz(s))

(σ − Tz(Hs)J)−1 dσ,

where C(σz(s)) is a small positively oriented circle enclosing the eigenvalue
σz(s) = (rz − s)−1. Then Pz(rz) is a finite-rank (not necessarily orthogonal)
projection onto the generalised eigenspace of the compact operator Tz(Hs)J
at the isolated eigenvalue σz(s). The rank of Pz(rz) is called the multiplicity
of the resonance point rz, usually denoted by N .

The projection Pz(rz) is also the residue of the meromorphic function
r 7→ Tz(Hr)J at the pole rz. Hence it does not depend on the choice of
regular point s in (4.10).
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Proposition 4.5. The finite-rank projection Pz(rz) defined by (4.10)
satisfies the equality

(4.11) Pz(rz) =
1

2πi

∮
C(rz)

Tz(Hr)J dr,

where C(rz) is a small circle enclosing the resonance point rz.

This appears as Proposition 3.2.3 in [Aza16]. The proof is reproduced
here for convenience.

Proof. Put Az(r) = Tz(Hr)J . Let s be a non-resonant complex number
outside the circle C(rz). Using the sandwiched second resolvent identity (4.4),∮

C(rz)
Az(r) dr =

∮
C(rz)

(1 + (r − s)Az(s))−1Az(s) dr

=

∮
C(rz)

1

r − s
(
1− (1 + (r − s)Az(s))−1

)
dr

=

∮
C(rz)

1

s− r
(1 + (r − s)Az(s))−1 dr,

where in the last line we have used Cauchy’s theorem and the analyticity
of (r − s)−1 within C(rz). Let C(σz(s)) be the image of the contour C(rz)
under the mapping r 7→ σ(r) = (s− r)−1. Then C(σz(s)) winds once around
σz(s) = (s − rz)−1 and by making the change of variables r ↔ σ(r), we
obtain ∮

C(rz)
Az(r) dr =

∮
C(σz(s))

σ(1− σ−1Az(s))
−1σ−2 dσ

=

∮
C(σz(s))

(σ −Az(s))−1 dσ

= 2πiPz(rz). �

For small positive or negative y, we define

P ↑λ+iy(rλ) =
∑

rjλ+iy∈ C+

Pλ+iy(r
j
λ+iy),

where the sum is taken over those resonance points rjλ+iy of the rλ-group

which belong to the upper complex half-plane C+. Similarly, the idempotent

P ↓λ+iy(rλ) is defined as the sum of idempotents Pλ+iy(r
j
λ+iy) for resonance

points rjλ+iy of the rλ-group in the lower half-plane C−.

Since the trace of Pz(rz) is equal to the multiplicity of rz, for small
positive y the resonance index at rλ is given by

(4.12) indres(λ;Hrλ , V ) = Tr
(
P ↑λ+iy(rλ)

)
− Tr

(
P ↑λ−iy(rλ)

)
.

If C(rλ) is a small circle enclosing the resonance point rλ, then for small

positive y, it also encloses all resonance and anti-resonance points rjλ+iy
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of the rλ-group. Let C+(rλ) denote the positively oriented upper closed
semicircle formed by cutting C(rλ) at the real axis (see Figure 4.1). Then
from (4.11), we get∮

C+(rz)

1

π
ImTλ+iy(Hr)J dr = P ↑λ+iy(rλ)− P ↑λ−iy(rλ).

Combining this with (4.12) proves the proposition below, which is Proposi-
tion 5.3.2 in [Aza16].

C+(rλ)
R

C+

C−

rλr′λ

Figure 4.1. This picture shows a region of the complex
plane in the vicinity of two real resonance points rλ and r′λ.
The dotted trails show the splitting of these resonance points
into the rλ- and r′λ-groups. Solid dots stand for resonance
points corresponding to z = λ + iy, y > 0, whereas circles
stand for anti-resonance points of z (i.e. resonance points
of z̄). The positively oriented semicircle C+(rλ) encloses all
resonance and anti-resonance points of the rλ-group in the
upper half-plane. The distance between rλ and r′λ is likely
much larger than the diameter of C+(rλ). The multiplicity
of rλ is 3, the multiplicity of r′λ is 1, and their resonance
indices are respectively 1 and −1.

Proposition 4.6. Let λ be an essentially regular point of a straight
line Hr in a rigged affine space A(F ) in the direction V = F ∗JF . Suppose rλ
belongs to the resonance set R(λ; {Hr}). Let C(rλ) be a small positively
oriented circle enclosing rλ and no other resonance points and let C+(rλ) be
the positively oriented closed semicircle forming the boundary of the region
of C+ enclosed by C(rλ) (as in Figure 4.1). Then for any small enough
positive number y,

(4.13) indres(λ;Hrλ , V ) = Tr

(∫
C+(rλ)

1

π
ImTλ+iy(Hr)J dr

)
.

The characterisation of the resonance index given in Proposition 4.6 is
all that will be required in order to connect it to the singular SSF. The
information in the remainder of this section has more relevance to the
considerations of the paper [Aza16] than it does to the rest of this document.
It is included here because it supports the interpretation of the resonance
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index as the infinitesimal flow of singular spectrum and because the given
proofs have required some adjustment to the setting of a rigged affine space.

As above, suppose λ is an essentially regular point of the straight line Hr

in the direction V . Let rz be a resonance point corresponding to z = λ± iy
for y ≥ 0. The range of the projection Pz(rz) is denoted by Υz(rz) and its
elements are known as resonance vectors. Moreover, the vector spaces of
resonance vectors of order ≤ k are defined by

(4.14) Υk
z(rz) := ker(1 + (rz − s)Tz(Hs)J)k.

The increasing sequence of vector spaces

{0} = Υ0
z(rz) ⊂ Υ1

z(rz) ⊂ Υ2
z(rz) ⊂ . . .

stabilises and the union is Υz(rz). It can be shown ([Aza16, Proposition
3.1.2]) that the vector spaces (4.14) do not depend on the choice of regular
point s. The integer

(4.15) d = min{k ∈ N : Υk
z(rz) = Υz(rz)}

is called the order of the resonance point rz. Also, m = dim Υ1
z(rz) is called

the geometric multiplicity of rz.
The operator Az(rz) is defined by the formula

Az(rz) =
1

2πi

∫
Crz

(r − rz)Tz(Hr)J dr,

where C(rz) is a circle enclosing rz and no other resonance points. This
operator satisfies

Az(rz) = Az(rz)Pz(rz) = Pz(rz)Az(rz).

Moreover, while Pz(rz) is the residue of the meromorphic function r 7→
Az(r) := Tz(Hr)J at the pole rz, the powers of Az(rz) constitute the rest
of the principal part of the Laurent series of Az(r) at rz ([Aza16, Proposi-
tion 3.3.1]), that is, in a neighbourhood of rz,

Az(r) = Ãz(r)+(r−rz)−1Pz(rz)+(r−rz)−2Az(rz)+. . .+(r−rz)−dAd−1
z (rz),

where Ãz(r) is the holomorphic part and the positive integer d happens to be
the order of rz defined by (4.15). Further ([Aza16, Theorem 3.4.3]), Az(rz)
is nilpotent with Ad

z(rz) = 0 and it lowers the order of a resonance vector in
the sense that

Az(rz)Υ
k
z(rz) = Υk−1

z (rz),

for any k = 1, . . . , d.

Proposition 4.7. Let z be nonreal and let rz be a resonance point
corresponding to z. Then Υz(rz) ⊂ FD, where D = dom[A].

Proof. This is clear if F is bounded, so suppose otherwise. Since a
resonance vector u ∈ Υz(rz) is a solution of the resonance equation

(4.16) (1 + (rz − s)Tz(Hs)J)u = 0,
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for regular s, it belongs to the range of the operator Tz(Hs)J . Since z is
nonreal and thus belongs to the resolvent set of Hs,

Tz(Hs)J = Fψ(Hs)(Fψz̄(Hs))
∗J,

where ψ(x) = (|x| + 1)−1/2 and ψz(x) = (|x| + 1)1/2(x − z)−1. Since D =
ranψ(Hs), we see that Υz(rz) ⊂ FD. �

Lemma 4.8. Suppose F : H → K is an unbounded rigging operator and
A(F ) is a rigged affine space. Let Hs be semibounded operator from A and
let z be an element of its resolvent set ρ(H). Suppose Hs is bounded below
by m ∈ R and put

(4.17)
ψz(x) = (x−m)1/2(x− z)−1, ψ(x) = (x−m)−1/2,

f = ψz̄(Hs)f0, χ = ψ(Hs)χ0,

for some f0, χ0 ∈ H. Then there is the equality

(Hs − z)[f, χ] = 〈f0, χ0〉 .

Note that f and χ in this lemma belong to the form domain D = dom[A]
and the set of all such vectors exhausts D.

Proof. Using the representation theorem for semibounded operators
(Theorem 2.24),

(Hs − z)[f, χ] =
〈

(Hs −m)1/2f, (Hs −m)1/2χ
〉

+ (m− z) 〈f, χ〉

Then since (x−m)1/2ψz(x) = 1+(z−m)(x−z)−1 and ψ(x)ψz(x) = (x−z)−1,
by the definitions of f and χ, we get

(Hs − z)[f, χ] = 〈f0, (1 + (z −m)Rz(Hs))χ0〉+ (m− z) 〈f0, Rz(Hs)χ0〉
= 〈f0, χ0〉 .

�

Proposition 4.9. Let z be nonreal and let rz be a resonance point
corresponding to z. If Fχ(k) is a resonance vectors of order k, then for
any f ∈ D = dom[A],

(Hrz − z)
[
f, χ(1)

]
= 0,

(Hrz − z)
[
f, χ(2)

]
= −V

[
f, χ(1)

]
,

. . .

(Hrz − z)
[
f, χ(k)

]
= −V

[
f, χ(k−1)

]
,

where the vectors χ(j) satisfy Fχ(k−j) = Aj
z(rz)Fχ

(k).

Proof. This is a consequence of the equality

(1 + (rz − s)Az(s))Pz(rz) = −Az(s)Az(rz),
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which can be proved as in [Aza16, Proposition 3.4.6]. It implies that for any
j = 1, . . . , k,

(4.18) (1 + (rz − s)Az(s))Fχ(j) = −Az(s)Fχ(j−1).

To complete the proof, if F is bounded then the proof of [Aza16, Corol-
lary 3.4.7] applies. In the case F is unbounded and A(F ) consists of semi-
bounded operators, the same argument can be adjusted as follows.

Let s be a regular point and put Az(s) := Tz(Hs)J . Supposing m < Hs,

since χ(j) ∈ D we may use the notation (4.17) and write χ(j) = ψ(Hs)χ
(j)
0

for some χ
(j)
0 ∈ H. Then using the fact that Fψ(Hs) has trivial kernel,

we obtain

χ
(j)
0 + (rz − s)(Fψz̄(Hs))

∗JFχ(j) = −(Fψz̄(Hs))
∗JFχ(j−1),

where ψz is as in (4.17). For any other f = ψz̄(Hs)f0 ∈ D, making use of
Lemma 4.8,

(Hrz − z)
[
f, χ(j)

]
= (Hs − z)

[
f, χ(j)

]
+ (rz − s)V

[
f, χ(j)

]
=
〈
f0, χ

(j)
0

〉
+ (rz − s)

〈
f0, (Fψ(Hs))

∗JFχ(j)
〉

= −
〈
f0, (Fψ(Hs))

∗JFχ(j−1)
〉

= −V
[
f, χ(j−1)

]
. �

Theorem 4.10. Let λ be an essentially regular point of a straight line Hr

in the direction V = F ∗JF within a rigged affine space A(F ). Put z = λ±iy,
y ≥ 0. If z is an eigenvalue of the operator Hrz = Hr u (rz − r)V, then
the complex number rz is a resonant point of the path Hr corresponding
to z. If z is outside of σess, then the converse holds. Moreover, the rigging
operator F is an injection of the eigenspace of Hrz at z into Υ1

z(rz) and a
linear isomorphism if z /∈ σess.

This theorem is a combination of Theorems 4.1.1 and 4.3.2 in [Aza16].

Proof. In the case that F is bounded, the proofs in [Aza16] apply. If on
the other hand F is not bounded and A consists of semibounded operators,
we can modify the arguments as follows.

Suppose z is an eigenvalue of Hrz and let χ be a corresponding eigenvector.
Let s ∈ R be any regular point of the path. It follows that z can not be an
eigenvalue of Hs. We first consider the case that z is outside of σess and
hence belongs to the resolvent set ρ(Hs). For any f ∈ D = dom[A] there
holds the equality

(4.19) (Hs − z)[f, χ] = (s− rz)V [f, χ],

which is obtained by adding (s − rz)V to the eigenvalue equation for Hrz .
Supposing Hs > m, there exist f0, χ0 ∈ H so that we may again use the
notation (4.17) and by the lemma

(Hs − z)[f, χ] = 〈f0, χ0〉 .
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Combining this with (4.19) and factorising the perturbation V gives

〈f0, χ0〉 = (s− rz) 〈Ff, JFχ〉
= (s− rz) 〈f0, (Fψz(Hs))

∗JFχ〉 ,
which holds for any f0 ∈ H and hence implies the equality of vectors

(4.20) χ0 = (s− rz)(Fψz(Hs))
∗JFχ.

Therefore,

Fχ = Fψ(Hs)χ0

= (s− rz)Fψ(Hs)(Fψz(Hs))
∗JFχ

= (s− rz)Tz(Hs)JFχ,

showing that Fχ is a first order resonance vector.
For the case that z = λ is within σess, we will write λ instead of z and

allow z to refer to λ± iy for small positive y. Then we consider the modified
version of (4.19)

(Hs − z)[f, χ] + iy 〈f, χ〉 = (s− rλ)V [f, χ].

By applying the above argument we obtain the equality

Fχ+ iyFRz(Hs)χ = (s− rλ)Tz(Hs)JFχ.

Since the right hand side converges as y → 0+, so does the left hand side.
It remains to show that the limit g := limy→0+ iyFRz(Hs)χ is zero. Since λ
is not an eigenvalue of Hs, the operator yRz(Hs) converges weakly to zero.
Hence 〈ϕ, g〉 = 0 for any ϕ ∈ domF ∗, from which it follows that g = 0.

Now suppose rz is a resonance point of Hr corresponding to z = λ± iy,
y ≥ 0, with λ /∈ σess. Let u ∈ Υz(rz). From Proposition 4.7 it must be that
u ∈ FD, say u = Fχ. With s ∈ R again denoting a regular point and for
any f ∈ dom[A], we may again write (4.17). Since Fψ(Hs) has trivial kernel,
from the resonance equation (4.16) we obtain (4.20). Then combining this
with Lemma 4.8,

(Hs − z)[f, χ] = 〈f0, χ0〉
= 〈f0, (rz − s)(Fψz(Hs))

∗JFχ〉
= (rz − s)V [f, χ].

Thus Hrz [f, χ] = z 〈f, χ〉 for any f ∈ dom[Hrz ] from which it follows that
χ ∈ domHrz and Hrzχ = zχ as required. �



CHAPTER 5

The spectral shift function (SSF)

The majority of this chapter consists in an exposition of the SSF for
relatively trace class perturbations. This material is well-known. Indeed
M. G. Krĕın himself, having established the existence of the SSF assuming
a trace class difference V := H1 − H0 in [Kre53], later extended this to
resolvent comparable pairs by transformation from the case of unitary pairs
with trace class difference in [Kre62]. However, the point of view taken
here seems to be new. As discussed in the introduction, the approach is as
follows. The primitive object is considered to be the infinitesimal spectral
shift measure which takes the form

ΦH(V )(ϕ) = Tr(V ϕ(H)), ϕ ∈ Cc(R).

To define this object on a rigged affine space of self-adjoint operators A, it is
necessary to impose a condition of trace class type, which is the subject of
Section 5.2.

We will consider only ‘relatively trace class’ perturbations. More precisely
we assume that a rigged affine space A(F ) has a relatively Hilbert-Schmidt
rigging operator F, in the sense that FRz(H) ∈ L2(H,K), for z ∈ C \ R
and H ∈ A. This implies that any pair of self adjoint operators H0, H1 ∈ A
satisfies the condition

(5.1) Rz(H1)−Rz(H0) ∈ L1(H), z ∈ C \ R.
Adopting terminology which appears in [Yaf92], a pair H0, H1 of self-adjoint
operators satisfying (5.1) will be called resolvent comparable.

Assuming it is well defined, the infinitesimal spectral shift measure Φ
can be viewed as a generalised 1-form on the affine space A. Moreover,
by using double operator integral techniques it can be proved to be exact.
Therefore its integral along any path Hr in A depends only on the pair of
endpoints H0, H1. This defines the spectral shift measure in keeping with
the Birman-Solomyak formula:

ξ(ϕ;H1, H0) =

∫ 1

0
ΦHr

(
Ḣr

)
(ϕ) dr, ϕ ∈ Cc(R).

By reduction to the case of a trace class perturbation, the spectral shift
measure can be shown to be absolutely continuous. Hence it can be identified
with a locally integrable function, namely the SSF.

This material takes us to Section 5.4. In Section 5.5, the decomposition
of the SSF into absolutely continuous and singular parts is discussed. Finally

65
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in Section 5.6, a counterexample taken from [Aza11a] is reviewed, which
shows the path-dependence of the singular SSF.

5.1. SSF for trace class perturbations

This section consists of a review of Krĕın’s famous theorem on the
existence of the SSF for trace class perturbations. Other expositions can be
found e.g. in [Sch12, Chapter 9; BY93, §3; Yaf92, Chapter 8].

Theorem 5.1. Let H0 and H1 be self-adjoint operators on a Hilbert
space H with a trace class difference V := H1 −H0. Then there is a unique
integrable function ξ ∈ L1(R) which satisfies the trace formula

(5.2) Tr(ϕ(H1)− ϕ(H0)) =

∫
R
ϕ′(λ)ξ(λ) dλ

for all test functions ϕ ∈ C∞c (R).

As an aside, the premise of Theorem 5.1 is equivalent to the assumption
that H0 and H1 belong to a rigged affine space A(F ) with a Hilbert-Schmidt
rigging operator F .

Proof. It suffices to show that (5.2) holds when ϕ is the resolvent
function ϕ = Rz, z ∈ C \ R. This can be seen using the Helffer-Sjöstrand
formula, which for any test function ϕ implies the equality

(5.3) ϕ(H1)− ϕ(H0) =
1

π

∫
R2

∂̄ϕ̃(z) (Rz(H1)−Rz(H0)) dxdy,

where z = x+ iy, ∂̄ = 1
2∂x + i

2∂y, and ϕ̃ is an almost analytic extension of ϕ

(see Section 2.5). Since ‖Rz(H1) − Rz(H0)‖1 ≤ |y|−2‖V ‖1, which follows
from the second resolvent identity and the estimate ‖Rz(H)‖ ≤ |y|−1, and
since (2.15) holds with p = 2, the integrand on the right hand side of (5.3)
is a bounded and compactly supported L1-valued function. It follows that
the left hand side belongs to the trace class and

Tr (ϕ(H1)− ϕ(H0)) =
1

π

∫
R2

∂̄ϕ̃(z) Tr (Rz(H1)−Rz(H0)) dxdy.

Then after substituting the trace formula for Rz, an application of Fubini’s
theorem shows that the right hand side is equal to

1

π

∫
R2

∂̄ϕ̃(z)

(
−
∫
R
R2
z(λ)ξ(λ) dλ

)
dxdy

=

∫
R

(
− 1

π

∫
R2

∂̄ϕ̃(z)R2
z(λ) dxdy

)
ξ(λ) dλ

and the trace formula for the test function ϕ now follows from (2.17).
Suppose first that the perturbation V has rank one, in which case it

must be that V = α 〈v, ·〉 v for some α ∈ R and ‖v‖ = 1. For convenience
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suppose α > 0. (The case α < 0 can be reduced to an exchange of the roles
of H0 and H1.) Then put

(5.4) ∆(z) = ∆H1/H0
(z) := 1 + α 〈v,Rz(H0)v〉 .

This is a Nevanlinna function – it is holomorphic in the upper half-plane C+

where its imaginary part Im ∆(z) = α 〈v, ImRz(H0)v〉 is positive.
Hence the function f(z) := log ∆(z) (the principal branch) is also a

Nevanlinna function with Im f(z) = arg ∆(z) ∈ (0, π]. Moreover, |yf(iy)|
is bounded for large y > 0. To check this, we use the approximation
log(1+ w) ≈ w for small w to calculate

lim
y→∞

−iyf(iy) = lim
y→∞

−iy(∆(iy)− 1)

= lim
y→∞

α

∫
R

−iλy + y2

λ2 + y2
d〈v,E0(λ)v〉

= α

∫
R
d〈v,E0(λ)v〉 = α,(5.5)

where the dominated convergence theorem was used in the last line.
It can therefore be concluded from Theorem 2.9 that f(z) is the Cauchy-

Stieltjes transform

(5.6) f(z) = log ∆(z) =

∫
R

ξ(λ)

λ− z
dλ

of the function ξ ∈ L1(R) given by

(5.7) ξ(λ) := π−1 lim
y→0

arg ∆(λ+ iy) ∈ [0, 1].

Combining (5.6) and (5.5) shows that this function satisfies

(5.8) α = lim
y→∞

−iyf(iy) = lim
y→∞

∫
R

−iy ξ(λ)

λ− iy
dλ =

∫
R
ξ(λ) dλ,

where dominated convergence was again used to calculate the limit.
To show that the function ξ defined by (5.7) satisfies the trace formula,

we differentiate the formula (5.6) for nonreal z :

(5.9) (∆(z))−1α
〈
v,R2

z(H0)v
〉

= −
∫
R

ξ(λ)

(λ− z)2
dλ.

Since V = α 〈v, ·〉 v, the second resolvent identity takes the form

(5.10) Rz(H0)−Rz(H1) = α 〈Rz̄(H0)v, ·〉Rz(H1)v.

It follows that Rz(H1)v = (∆(z))−1Rz(H0)v, which upon insertion back
into (5.10) results in the equality

(5.11) Rz(H0)−Rz(H1) = (∆(z))−1α 〈Rz̄(H0)v, ·〉Rz(H0)v.

The trace of this rank one operator is given by the left hand side of (5.9).
Thus we have established the trace formula (5.2) in the case ϕ = Rz, for a
rank-one perturbation.
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For a pair H0, H1, of self-adjoint operators with trace class difference
V = H1 −H0, the perturbation determinant is defined for z ∈ ρ(H0) by

∆(z) = ∆H1/H0
(z) := det(1 + V Rz(H0)) = det((H1 − z)Rz(H0)),

which clearly generalises (5.4). Some of its relevant properties are collected
below, whose proofs can be found e.g. in [Sch12, Section 9.6; Yaf92, Part 1
of §8.1].

Let H0, H1 and H2 be self-adjoint operators such that their pairwise dif-
ferences are trace class. The perturbation determinant ∆(z) is a holomorphic
function, which for any nonreal z satisfies the equalities

∆H2/H0
(z) = ∆H2/H1

(z)∆H1/H0
(z),(5.12)

(∆H1/H0
(z))−1∆′H1/H0

(z) = Tr(Rz(H0)−Rz(H1)).(5.13)

Let H0 be self-adjoint. For an arbitrary self-adjoint and trace class
perturbation V, there is an orthonormal basis {vk} and summable sequence
{αk} ⊂ R so that V is the L1-limit of the following finite rank operators

Vn :=
n∑
k=1

αk 〈vk, ·〉 vk.

Moreover, we have ‖V ‖1 =
∑∞

k=1 |αk| and Tr(V ) =
∑∞

k=1 αk. Let Hn =
H0 +Vn and let ξn be the SSF for the pair Hn−1, Hn, which differ by the rank
one perturbation αn 〈vn, ·〉 vn. Then it can be shown using (5.8) that the
series

∑n
k=1 ξn converges in L1(R). Let ξ denote its limit, which therefore

satisfies the equalities∫
R
|ξ(λ)| dλ = ‖V ‖1,

∫
R
ξ(λ) dλ = Tr(V ).

Moreover, the multiplicative property (5.12) and the identity (5.6) imply

∆Hn/H0
(z) =

n∏
k=1

∆Hn/Hn−1
(z) = exp

(∫
R

∑n
k=1 ξk(λ)

λ− z
dλ

)
,

which in the limit n→∞ generalises (5.6):

log ∆H0+V/H0
(z) =

∫
R

ξ(λ)

λ− z
dλ.

Finally, differentiating this equality using (5.13) establishes the trace formula
in the case ϕ = Rz.

Finally to prove the uniqueness, it suffices to check that the trace for-
mula (5.2) defines a locally integrable function ξ up to an additive constant,
since only one such function can be integrable. We claim that the left hand
side of (5.2) defines a generalised function, which according to the right
hand side is equal to the (negative of the) generalised derivative of ξ. So
the difference of two locally integrable functions ξ1 and ξ2 which satisfy (5.2)
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has generalised derivative zero and is therefore constant (see e.g. [GS64,
Section 2.6]).

To check that the formula

(5.14) ξ′(ϕ) := Tr(ϕ(H0)− ϕ(H1))

defines a generalised function, suppose that ϕn, n = 1, 2, . . . , is a sequence of

test functions supported in a common compact set such that ‖ϕ(m)
n ‖∞ → 0

as n→∞ for m = 0, 1, . . .. It follows from the Helffer-Sjöstrand that

ξ′(ϕn) =
1

π

∫
R
∂̄ϕ̃n(z) Tr(Rz(H0)−Rz(H1)) dxdy

and it can be seen from (2.16) that the almost analytic extensions can
be chosen so that the integrand converges uniformly to zero as n → ∞.
Dominated convergence then implies that |ξ′(ϕn)| → 0. It follows that ξ′

(which is obviously linear) is continuous on C∞c (R) and hence a generalised
function. �

5.2. A trace condition

Following M. Sh. Birman and M. Z. Solomyak, the SSF corresponding to
a pair of self-adjoint operators H0 and H1 = H0 + V can be viewed as the
density of the measure

∆ 7→
∫ 1

0
Tr(V Er(∆)) dr,

where Er is the spectral measure of Hr = H0 + rV . To give this proper sense
in the setting of a rigged affine spaceA(F ) we require a condition of trace class
type. If Hr ∈ A, with V = F ∗JF ∈ A0, then for any bounded Borel set ∆,
the expression Tr(V Er(∆)) can be interpreted as Tr((FEr(∆))∗JFEr(∆))
provided the inclusion

(5.15) FEr(∆) ∈ L2(H,K)

holds. A trace condition should at least imply (5.15), which already implies
the LAP by Corollary 3.14. We will make a significantly stronger assumption
than (5.15):

Definition 5.2. Let A(F ) be a rigged affine space. We will say that A
is resolvent comparable if

(5.16) FRz(H) ∈ L2(H,K)

for any H ∈ A and any nonreal z.

For a rigged affine space to be resolvent comparable, it is enough for the
inclusion (5.16) to hold for some H0 ∈ A and some nonreal z. That it then
holds for any other nonreal w follows from the boundedness of the function
Rw/Rz and hence of the operator (H0 − z)Rw(H0). It holds for any other
H1 ∈ A due to the equality (4.5).
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This resolvent comparable assumption is well-known to hold for low-
dimensional Schrödinger operators. Proof can be derived from results which
address the following kind of questions. Let H be a Schrödinger operator
and let f and g be two functions. When is the operator

(5.17) g(x)f(H)

Hilbert-Schmidt? These kind of questions are discussed in B. Simon’s
book [Sim05] in the case of the free Hamiltonian H = −∆. For many
other Schrödinger operators H = −∆ + V, Schatten ideal properties of the
operator (5.17) can be reduced to the case of the free Hamiltonian with
the aid of the second resolvent identity; this is a well known method which
is also used in the proof of the LAP for Schrödinger operators with short
range potentials, see e.g. [Agm75]. For more general Schrödinger operators
of the form H = −∆ + V, Schatten ideal properties of the product (5.17) are
surveyed in [Sim82] (see in particular [Sim82, Theorem B.9.1]).

For now, we use the method involving the second resolvent identity,
beginning with the basic result:

Proposition 5.3. If f, g ∈ L2(Rν), then the operator g(x)f(−i∇) is
Hilbert-Schmidt.

Proof. This is a simple case of the more general result [Sim05, The-
orem 4.1]. With ∧ and ∨ referring respectively to the Fourier transform and
its inverse, the operator g(x)f(−i∇) is interpreted L2(Rν) 3 ϕ(x) 7→ g

(
fϕ̂
)∨

.
Since this is an integral operator(

g
(
fϕ̂
)∨)

(x) =
1

(2π)ν/2

∫
R
g(x)f̌(x− y)ϕ(y) dy,

whose kernel K(x, y) = (2π)−ν/2g(x)f̌(x− y) satisfies the inequality ‖K‖2 ≤
(2π)−ν/2‖g‖2‖f‖2, it is therefore Hilbert-Schmidt (see e.g. [Sim05, The-
orem 2.11; RS72, Theorem VI.23]). �

Applying Proposition 5.3 to the function f(x) = (x2 − z)−1, a function
which is square-integrable only when ν ≤ 3 (the same restriction on the
dimension appears in [Sim82, Theorem B.9.1]), gives

Corollary 5.4. If g ∈ L2(Rν), where ν = 1, 2, or 3, then the operator
g(x)Rz(−∆) is Hilbert-Schmidt.

Corollary 5.5. Let H0 = −∆+V0 be a Schrödinger operator on L2(Rν),
ν = 1, 2, or 3, where V0 ∈ L∞(Rν), and let V ∈ L1(Rν). Then there exists a
resolvent comparable rigged affine space A such that H0 ∈ A and V ∈ A0.

Proof. Since V ∈ L1(Rν), we have F :=
√
|V | ∈ L2(Rν). From Corol-

lary 5.4, it follows that the operator FRz(−∆) is Hilbert-Schmidt. Then
using the second resolvent identity (3.18), the operator

FRz(H0) = FRz(−∆)(1− V0Rz(H0))

is also Hilbert-Schmidt. Now Proposition 3.16 completes the proof. �
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The remainder of this section collects some properties of resolvent com-
parable rigged affine space which will be useful later. Firstly, for an analytic
path in such an affine space the property of regular points expressed in
Theorem 4.4 holds for trace-regular points as well:

Theorem 5.6. Let A(F ) be a resolvent comparable rigged affine space
and let Hr be an analytic path in A(F ). Suppose λ is an essentially regular
point of the path Hr. Then λ belongs to Λ(Hr, F ;L1) if and only if r does
not belong to the discrete resonance set R(λ; {Hr}).

Proof. By Theorem 4.4, the inclusion λ ∈ Λ(Hr, F ;L1) ⊂ Λ(Hr, F )
means that r /∈ R(λ; {Hr}). It remains to show that if λ belongs to Λ(Hr, F )
then it also belongs to Λ(Hr, F ;L1). Given that λ ∈ Λ(H0, F ;L1), this
follows from the equality (3.7). �

Proposition 5.7. Let A be a rigged affine space and let H be an arbitrary
fixed operator from A. Put p = 1 if A is resolvent comparable and p = ∞
otherwise. Then for z ∈ C \ R, the function

A0 3 V 7→ Rz(H u V )−Rz(H) ∈ Lp(H)

is continuously Fréchet differentiable with derivative at V0 given by

(5.18) V 7→ −Rz(H u V0)V Rz(H u V0).

Proof. Suppose F is the rigging operator. Let H0 = H u V0 and
H1 = H0uV, where V = F ∗JF . By the second resolvent identity (3.22) and
equality (4.5),

Rz(H1)−Rz(H0) = −(FRz̄(H0))∗JFRz(H1)

= −(FRz̄(H0))∗J(1 + Tz(H0)J)−1FRz(H0).

Therefore when ‖J‖ is small, so that (1 +Tz(H0)J)−1 =
∑∞

k=0(−Tz(H0)J)k,
we have

‖Rz(H1)−Rz(H0) + (FRz̄(H0))∗JFRz(H0)‖1 = O(‖J‖2).

The continuity of the derivative (5.18) as a function of H0 follows from the
L2-continuity of FRz(H0), which itself follows from (4.5). �

Corollary 5.8. The convergence Hn → H of a sequence {Hn}n∈N of
operators in a rigged affine space A implies its norm-resolvent convergence,
i.e. ‖Rz(Hn)−Rz(H)‖ → 0. Moreover, for any continuous function f which
vanishes at infinity, we have f(Hn)→ f(H) in B(H).

Proof. The norm-resolvent convergence follows directly from Propos-
ition 5.7 and implies the convergence f(Hn) → f(H). For proof we refer
to [RS72, Theorem VIII.20(a)]. We will later prove a stronger result, The-
orem 5.17, for test functions f using the Helffer-Sjöstrand formula. �
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Proposition 5.9. Let A(F ) be a rigged affine space and let H be an
arbitrary fixed operator from A. Put q = 2 if A is resolvent comparable and
q =∞ otherwise. Then for z ∈ C \ R, the function

A0 3 V 7→ FRz(H u V )− FRz(H) ∈ Lq(H,K)

is continuously Fréchet differentiable with derivative at V0 given by

(5.19) V 7→ −FRz(H u V0)V Rz(H u V0).

The proof is very similar to that of Proposition 5.7 and has been omitted.

5.3. Double operator integrals

For the basic theory of the SSF in resolvent comparable rigged affine
spaces we will need double operator integrals (DOI’s). The notion of a
multiple operator integral (MOI) was introduced by Y. L. Daletskĭı and
S. G. Krĕın ([DK56]) and further developed by M. Sh. Birman and M. Z. So-
lomyak (see e.g. [BS03]) and many others (e.g. [Pav71; Ste77]). MOI’s take
the form

(5.20) TH0,...,Hn
f (V1, . . . , Vn)

=

∫
R
. . .

∫
R
f(λ0, . . . , λn) dEH0(λ0)V1dEH1(λ1) . . . VndEHn(λn),

where f : Rn+1 → C is a Borel function, H0, H1, . . . ,Hn are self-adjoint
operators with spectral measures E0, E1, . . . , En, and V1, . . . , Vn, are some
perturbations. Such objects are ubiquitous, appearing for example in the
Taylor expansions of operator valued functions such as V 7→ ei(H+V ).

MOI’s were naturally defined by those mathematicians already mentioned
via operator valued measures. However we will take a convenient alternative
approach which appears in [ACDS09; Pel06]. In this approach an MOI is
defined as the integral of an operator valued function with respect to a scalar
valued measure. This is achieved through an integral representation of the
multi-variate function f : Rn+1 → C in which the integrand separates its
variables. This integral representation of f is otherwise quite arbitrary and
the resulting MOI is shown not to depend on the choice. In the context
of a resolvent comparable affine space we can get away with just one such
representation (see (5.27) below), but further generalisation no doubt requires
a different choice. We will follow the definition of MOI’s given in [ACDS09],
adapting it slightly for rigged affine spaces. Strictly speaking we only need
DOI’s, but we might as well include higher order operator integrals when it
doesn’t involve much additional work.

The following notation is used throughout this section. As usual A
denotes a rigged affine space. If it is resolvent comparable, then p = 1
and q = 2. Otherwise p = q =∞.
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Definition 5.10. For n ∈ N, suppose a complex valued function f
of n+ 1 real variables has a representation of the form

(5.21) f(λ0, . . . , λn) =

∫
S
α0(λ0, s) . . . αn(λn, s) dν(s),

called a Birman-Solomyak (BS) representation. For our purposes we can
assume S to be a subset of a Euclidean space, ν to be a finite measure, and
the functions αj , j = 0, . . . , n to be measurable functions on R× S, which
for ν-a.e. s ∈ S satisfy the estimate

(5.22) |αj(x, s)| ≤ C(|x|+ 1)−1,

for some C > 0 and a.e. x ∈ R.
Then for H0, . . . Hn ∈ A and V1, . . . , Vn ∈ A0, an (n+ 1)-tuple operator

integral is defined by the formula

(5.23) TH0,...,Hn
f (V1, . . . , Vn)

:=

∫
S
α0(H0, s)V1α1(H1, s)V2 . . . Vnαn(Hn, s) dν(s).

The requirement (5.22) does not appear in [ACDS09], since there the
perturbations Vj , j = 1, . . . , n, are bounded operators. It is included here
so that we may interpret the integrand of (5.23) as a compact operator
valued function using the notation (3.27) (a product of such operators).
The integral (5.23) can then be understood as a Bochner integral (see e.g.
[HP57, Section 3.7; Yos80, Section V.5]):

Lemma 5.11. In the context of Definition 5.10, the function

(5.24) S 3 s 7→ α0(H0, s)V1α1(H1, s)V2 . . . Vnαn(Hn, s) ∈ Lp(H)

is Bochner-integrable (where p = 1 or p = ∞ accordingly if A is resolvent
comparable or not).

Proof. Let β be a bounded measurable function on R × S. Then it
follows that for H ∈ A the function S 3 s 7→ β(H, ·) ∈ B(H) is bounded
and weakly measurable. Let F be the rigging operator and let Vn = F ∗JnF .
Since the functions αj satisfy (5.22), the integrand (5.24) can be written as
the product

(5.25) β0(H0, s)(Fψ
2(H0))∗J1Fψ(H1)β1(H1, s)(Fψ(H1))∗J2 . . .

. . . (Fψ(Hn−1))∗JnFψ
2(Hn)βn(Hn, s)

where ψ(x) := (|x| + 1)−1/2 and βj(x, s) = (|x| + 1)αj(x, s). Since each
function βj(Hj , ·) is bounded and weakly measurable, so is the function (5.24).
Since the weakly measurable function (5.24) takes values in the separable
space Lp(H), it follows from the Dunford-Pettis theorem on the equivalence
of weak and strong measurability (see e.g. [HP57, Theorem 3.5.5]) that it is
Bochner measurable. Since (S, ν) is assumed to be a finite measure space,
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the boundedness of this function implies its integrability (using Bochner’s
criterion for integrability e.g. [HP57, Theorem 3.7.4]). �

Lemma 5.12. The MOI TH0,...,Hn
f (V1, . . . , Vn) does not depend on the

BS representation (5.21) of the function f .

Proof. Here we follow [ACDS09, Lemma 4.3]. First suppose that
Vj = F ∗JjF, j = 1, . . . , n where Jj are the rank-one operators Jj = 〈ϕj , ·〉ψj
for some some vectors ϕj and ψj from the domain of the operator F ∗. In this
case Vj is the rank-one operator Vj = 〈F ∗ϕj , ·〉F ∗ψj .

Note that Vj does not belong to A0 unless Jj is self-adjoint, but this is
not important here; the expression (5.23) makes sense when Vj = F ∗JjF are
the forms defined by any bounded operators Jj ∈ B(K).

Also let V0 = 〈v, ·〉w be an arbitrary rank-one operator on the main
Hilbert space H. Then

E := Tr

(
V0

∫
S
α0(H0, s)V1 . . . Vnαn(Hn, s) dν(s)

)
= Tr

(∫
S
V0α0(H0, s)V1 . . . Vnαn(Hn, s) dν(s)

)
=

∫
S

Tr (V0α0(H0, s)V1 . . . Vnαn(Hn, s)) dν(s)

=

∫
S

Tr (α0(H0, s)V1 . . . Vnαn(Hn, s)V0) dν(s).

For rank-one operators θζ,ξ := 〈ζ, ·〉 ξ, we have the properties: Tr(θζ,ξ) =
〈ζ, ξ〉 , Aθζ,ξ = θζ,Aξ for any bounded operator A, and θζ1,ξ1 . . . θζn,ξn =
〈ζ1, ξ2〉 . . . 〈ζn−1, ξn〉 θζn,ξ1 . Hence the above expression becomes∫
S
〈F ∗ϕ1, α1(H1, s)F

∗ψ2〉 . . . 〈F ∗ϕn, αn(Hn, s)w〉 〈v, α0(H0, s)F
∗ψ1〉 dν(s).

If µjf,g := 〈f,Ejg〉 , where Ej is the spectral measure of Hj , the same expres-

sion can be written as∫
S

(∫
R
α1(λ1, s) dµ

1
F ∗ϕ1,F ∗ψ2

(λ1)

)
. . .

(∫
R
α0(λ0, s) dµ

0
v,F ∗ψ1

(λ0)

)
dν(s).

All of the measures appearing here have finite variation and Fubini’s theorem
implies

E =

∫
Rn+1

(∫
S
α0(λ0, s) . . . αn(λn, s) dν(s)

)
dµ0

v,F ∗ψ1
(λ0) . . . dµnF ∗ϕn,w(λn)

=

∫
Rn+1

f(λ0, . . . , λn) dµ0
v,F ∗ψ1

(λ0) . . . dµnF ∗ϕn,w(λn).

If A and B are bounded operators, then A = B if and only if Tr(V A) =
Tr(V B) for all rank-one operators V . Using this fact, the above argument
shows that the multiple operator integral (5.23) does not depend on the
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BS representation (5.21) in the case that the operators Jj are the rank-one
operators Jj = 〈ϕj , ·〉ψj .

For the general case we consider the bounded self-adjoint operators Jj
as the strong-limits of the finite rank operators

Jj,l :=
l∑

k=1

〈ϕk, ·〉ψj,k,l,

where {ϕk}k∈N is an orthonormal basis consisting of vectors from the dense
domain of the operator F ∗ and {ψj,k,l}l∈N is a sequence of vectors from
domF ∗ which converges to Jjϕk. By linearity, it follows that the defini-
tion (5.23) does not depend on the representation (5.21) in the case that Jj
are the finite-rank operators Jj,l for any l ∈ N. Then the general case follows
by a continuity argument. Specifically, since for any g ∈ H,

α0(H0, s)V1,l . . . Vn,lαn(Hn, s)g → α0(H0, s)V1 . . . Vnαn(Hn, s)g

as l → ∞, an application of the dominated convergence theorem for the

Bochner integral shows that the expression TH0,...,Hn
f (V1, . . . , Vn)g doesn’t

depend on the BS representation for any g ∈ H, completing the proof. �

The focus will herein be on double operator integrals. A simple example
of a DOI is a product such as

TH0,H1

f (V ) = ϕ(H0)V ψ(H1),

where f(λ0, λ1) = ϕ(λ0)ψ(λ1), plus we require that ϕ and ψ have the same
dominating function as (5.22). A familiar particular case is the operator
Rz(H0)V Rz(H1). Supposing H1 = H0 u V, the following important equality
generalises the second resolvent identity.

(5.26) TH1,H0

ϕ[1] (V ) = ϕ(H1)− ϕ(H0).

Here, the function of two variables ϕ[1] is the first divided difference of ϕ
defined by

ϕ[1](λ0, λ1) :=
ϕ(λ0)− ϕ(λ1)

λ0 − λ1
,

which if ϕ is smooth is naturally interpreted on the diagonal as the derivative
ϕ[1](λ, λ) := ϕ′(λ). Higher divided differences are defined recursively by

ϕ[n](λ0, . . . , λn) =
ϕ[n−1](λ0, . . . , λn−1)− ϕ[n−1](λ1, . . . , λn)

λ0 − λn
.

Other than the resolvent ϕ = Rz, the equality (5.26) holds for many func-
tions ϕ which fall off at infinity, for example test functions (see Proposi-
tion 5.14). An excellent tool for proving this is the Helffer-Sjöstrand formula,
since it expresses ϕ(H) in terms of Rz(H).
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Considering first the scalar version (2.12) of the Helffer-Sjöstrand formula,
for any ϕ ∈ C3

c (R) we obtain from it a BS representation of the first divided
difference:

(5.27) ϕ[1](λ0, λ1) = − 1

π

∫
R2

∂̄ϕ̃(z)(λ0 − z)−1(λ1 − z)−1 dxdy,

where ϕ̃ is an almost analytic extension of ϕ and z = x+ iy. That this is
a BS representation of the form (5.21) is confirmed by taking the measure
space (S, ν) to be the compact set S = supp ϕ̃ ⊂ C with the absolutely

continuous measure dν(z) = −π−1∂̄ψ̃(z) dxdy and defining the functions
αj(λj , z) = (λj − z)−1, j = 0, 1.

Although we will not technically require n-tuple operator integrals for
n ≥ 3, it seems natural to consider them in the next few propositions, which
also allows a slight shortening of the proofs of Theorem 5.17 and Lemma 5.20.

Proposition 5.13. For any ϕ ∈ Cn+2
c (R), its n-th divided difference has

the BS-representation

ϕ[n](λ0, . . . , λn) =
(−1)n

π

∫
R2

∂̄ϕ̃(z)(λ0 − z)−1 . . . (λn − z)−1 dxdy,

where ϕ̃ is an almost analytic extension of ϕ and z = x+ iy.

Proof. The case when n = 1 is of course (5.27). The BS-representations
of higher divided differences are easily established by induction. Note that
requiring the function ϕ to belong to Cn+2

c (R) ensures (by (2.15) and
Lemma 2.15) that an almost analytic extension ϕ̃ satisfies |∂̄ϕ̃(z)| = O(|y|n+1)
as y → 0, which counteracts the growth of n+ 1 resolvents. �

Suppose ϕ is as in Proposition 5.13. Then for any n + 1 self-adjoint
operators H0, . . . ,Hn from the affine space A and any n perturbations
V1, . . . , Vn from A0, we can write the (n+ 1)-tuple operator integral

(5.28) TH0,...,Hn
ϕ[n] (V1, . . . , Vn)

=
(−1)n

π

∫
R2

∂̄ϕ̃(z)Rz(H0)V1Rz(H1) . . . VnRz(Hn) dxdy.

For a positive function ϕ with square root ψ =
√
ϕ ∈ C3

c (R), the following
alteration of (5.27) will be also prove useful later on.

ϕ[1](λ0, λ1) = ψ[1](λ0, λ1)(ψ(λ0) + ψ(λ1))

= − 1

π

∫
R2

∂̄ψ̃(z)(λ0 − z)−1(ψ(λ0) + ψ(λ1))(λ1 − z)−1 dxdy.(5.29)

Note that the finite sum of BS representations can again be written as a
BS representation in which the integral is taken over a disjoint union of meas-
ure spaces. For example (5.29) can be written in the form (5.21), by taking
(S, ν) to be the disjoint union S = (suppϕ, k), k = 0, 1, with in this case the

same measure on each copy of suppϕ, namely dν(z, k) = −π−1∂̄ψ̃(z) dxdy,
and defining the functions αj(λj , z, k) = (λj − z)−1(ψ(λj))

δj,k .
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Proposition 5.14. For any ϕ ∈ C3
c (R) and for any two self-adjoint

operators H0 and H1 = H0 u V from the affine space A, there holds the
equality (5.26). More generally, for any ϕ ∈ Cn+2

c (R), any n+ 1 self-adjoint
operators H0, H1, . . . Hn ∈ A, and any n+ 1 perturbations V1, . . . , Vn and V
from A0, there is the equality

(5.30) TH0,...,HkuV,...,Hn
ϕ[n] (V1, . . . , Vn)− TH0,...,Hk,...,Hn

ϕ[n] (V1, . . . , Vn)

= TH0,...,HkuV,Hk,...,Hn
ϕ[n+1] (V1, . . . , Vk, V, Vk+1, . . . , Vn).

Proof. The equality (5.26), which can be considered as (5.30) in the

case that n = 0 by writing ϕ[0] := ϕ and TH0
ϕ := ϕ(H0), follows easily from

the Helffer-Sjöstrand formula (2.11), the second resolvent identity, and the
BS representation (5.27):

ϕ(H1)− ϕ(H0) =
1

π

∫
R2

∂̄ϕ̃(z)(Rz(H1)−Rz(H0)) dxdy

= − 1

π

∫
R2

∂̄ϕ̃(z)Rz(H1)V Rz(H0) dxdy

= TH1,H0

ϕ[1] (V ).

The general case is established in much the same way. Supposing F is
the rigging operator and using (5.28), the difference on the left hand side
of (5.30) can be rewritten as

(E) :=
(−1)n

π

∫
R2

∂̄ϕ̃(z)A(Tz(Hk u V )− Tz(Hk))B dxdy,

in which A and B are the bounded operators defined by

A = (FRz̄(H0))∗J1Tz(H1) . . . Tz(Hk−1)Jk,

B = Jk+1Tz(Hk+1) . . . JnFRz(Hn),

where Vj = F ∗JjF, j = 1, . . . , n. With V = F ∗JF, we now apply the second
resolvent identity in the form

Tz(Hk u V )− Tz(Hk) = −Tz(Hk u V )JTz(Hk)

(unless k = n or k = 0, in which case we instead use (3.25) or its adjoint
respectively), to obtain

(E) =
(−1)n+1

π

∫
R2

∂̄ϕ̃(z)ATz(Hk u V )JTz(Hk)B dxdy

=
(−1)n+1

π

∫
R2

∂̄ϕ̃(z)Rz(H0)V1 . . .

. . . VkRz(Hk u V )V Rz(Hk)Vk+1 . . . VnRz(Hn) dxdy,

which according to (5.28) is equal to the right hand side of (5.30). �
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Lemma 5.15. Let H be an operator from the affine space A and let
w ∈ C \ R. Then for any z ∈ K \ R, where K is a compact subset of C,
there exist positive constants which do not depend on H so that the following
estimates hold, in which y = Im z.

‖FRz(H)‖q ≤ const. |y|−1‖FRw(H)‖q,(5.31)

‖Tz(H)‖ ≤ ‖Tw(H)‖+ const. |y|−1‖FRw(H)‖2.(5.32)

Proof. Using the first resolvent identity (3.17) we have

FRz(H) = FRw(H)(1 + (z − w)Rz(H)).

Then the estimate ‖Rz(H)‖ ≤ |y|−1 gives

‖FRz(H)‖q ≤ ‖1 + (z − w)Rz(H)‖‖FRw(H0)‖q

≤
(

1 +
|z − w|
|y|

)
‖FRw(H0)‖q.

Since z belongs to the compact set K, there is a constant C1 > 0 such that
|z − w| < C1. There is also a constant C2 > 0 large enough so that |y| +
C1 < C2. Then 1+C1/|y| < C2/|y| and we obtain (5.31). The estimate (5.32)
now easily follows from (5.31) and the equality 3.6. �

Proposition 5.16. For any ϕ ∈ Cn+2
c (R), any n+1 self-adjoint operators

H0, H1, . . . Hn ∈ A, and any n perturbations V1, . . . , Vn ∈ A0, there is the
estimate∥∥∥TH0,...,Hn

ϕ[n] (V1, . . . , Vn)
∥∥∥
p

≤ const. ‖FRw(H0)‖q‖FRw(Hn)‖q‖V1‖F . . . ‖Vn‖F

×
n−1∏
k=1

(
const. ‖Tw(Hk)‖+ ‖FRw(Hk)‖2

)
,

where w is a fixed nonreal number and the unspecified constants depend only
on w and ϕ.

Proof. It follows from (5.28) that∥∥∥TH0,...,Hn
ϕ[n] (V1, . . . , Vn)

∥∥∥
p
≤

1

π

∫
R2

|∂̄ϕ̃(z)|‖FRz(H0)‖q

(
n−1∏
k=1

‖Vk‖F ‖Tz(Hk)‖

)
‖Vn‖F ‖FRz(Hn)‖q dxdy.

Then the proof is completed by applying Lemma 5.15 and using the fact
that ∂̄ϕ̃(z) is compactly supported and satisfies |∂̄ϕ̃(z)| = O(|y|n+1). �

Theorem 5.17. For any ϕ ∈ C4
c (R) and for any self-adjoint operator H0

from the affine space A, the function

A0 3 V 7→ ϕ(H0 u V )− ϕ(H0) ∈ Lp(H)
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is continuously Fréchet differentiable. Its derivative at V is the double

operator integral TH1,H1

ϕ[1] in which H1 := H0 u V .

Proof. For convenience we will calculate the derivative (and show it to
be continuous) at 0, which is not restrictive if we allow a conflict of notation
between the theorem’s statement and proof. Using Proposition 5.14 we
obtain the equalities

ϕ(H1)− ϕ(H0) = TH1,H0

ϕ[1] (V )

= TH0,H0

ϕ[1] (V ) + TH1,H0

ϕ[1] (V )− TH0,H0

ϕ[1] (V )

= TH0,H0

ϕ[1] (V ) + TH1,H0,H0

ϕ[2] (V, V ).

It is required to show that when the norm of V is small, the p-norm of the
last triple operator integral is negligible in comparison. Suppose V = F ∗JF
in which case ‖V ‖F = ‖J‖. Proposition 5.16 with n = 3 implies the following
estimate in which w ∈ C \ R is fixed and the constant doesn’t depend on V .∥∥∥TH0,H0,H1

ϕ[2] (V, V )
∥∥∥
p
≤ const. ‖J‖2‖FRw(H1)‖q

≤ const. ‖J‖2
∞∑
k=0

‖J‖k,

where the last inequality has an adjusted constant and holds if ‖J‖ is small
enough; in obtaining it we have used equality (4.5) and expressed the inverse
(1 + JTw(H0))−1 as a geometric series. Therefore, for small ‖V ‖F = ‖J‖ we
conclude that ∥∥∥ϕ(H1)− ϕ(H0)− TH0,H0

ϕ[1] (V )
∥∥∥
p

= O(‖V ‖2F ).

The continuity of the derivative employs a similar kind of argument.
With H0 and V as above, and for any other W ∈ A0, we get∥∥∥TH1,H1

ϕ[1] (W )− TH0,H0

ϕ[1] (W )
∥∥∥
p

≤
∥∥∥TH1,H1

ϕ[1] (W )− TH1,H0

ϕ[1] (W )
∥∥∥
p

+
∥∥∥TH1,H0

ϕ[1] (W )− TH0,H0

ϕ[1] (W )
∥∥∥
p

≤
∥∥∥TH1,H1,H0

ϕ[2] (W,V )
∥∥∥
p

+
∥∥∥TH1,H0,H0

ϕ[1] (V,W )
∥∥∥
p

≤ const. ‖W‖F f(‖V ‖F ),

where the unspecified constant doesn’t depend on V or W and the function

f on R is such that f(‖V ‖F ) = O(‖V ‖F ) as ‖V ‖F → 0. Considering TH0,H0

ϕ[1]

as an operator from A0 to Lp(H) this implies that∥∥∥TH1,H1

ϕ[1] − TH0,H0

ϕ[1]

∥∥∥ = O(‖V ‖F ) as ‖V ‖f → 0,

completing the proof. �
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Lemma 5.18. Let (S, ν) be a measure space and let α : S → B(H) be a
Bochner integrable, bounded operator valued function. Suppose F : H → K is
a closed operator such that Fα(s) ∈ B(H,K) for a.e. s ∈ S and the bounded
operator valued function Fα : S → B(H,K) is also Bochner integrable. Then

(5.33) F

∫
S
α(s) dν(s) =

∫
S
Fα(s) dν(s),

as an equality of bounded operators.

Proof. If a bounded operator valued function such as α is Bochner
integrable, then so is αf : s 7→ α(s)f for any f ∈ H as is easily checked. Hence
for any f ∈ H, the vector valued functions αf : S → H and Fαf : S → K
are Bochner integrable. Since F : H → K is closed, we can apply [HP57,
Theorem 3.7.12] to obtain

(5.34) F

∫
S
α(s)f dν(s) =

∫
S
Fα(s)f dν(s).

In particular, for any f ∈ H the vector
∫
S α(s)f dν(s) belongs to the domain

of F . It follows that the range of the bounded operator
∫
S α(s) dν(s) is

contained in domF . The operator on the left hand side of (5.33) is thus a
closed operator defined on all of H, hence a bounded operator by the closed
graph theorem. Therefore the equality (5.33) holds, since these operators
act in the same way by (5.34). �

Lemma 5.18 allows the interchange the rigging operator and the integral
of an MOI. Indeed, if α = (5.24) is the integrand of an MOI (5.23), then Fα
is also integrable by the argument of Lemma 5.11. Note that in the case that
the affine space A is resolvent comparable, Fα is integrable in L2 whereas α
is integrable in L1. In fact it is not necessary to use Lemma 5.18 to justify
this particular kind of interchange as shown by the next more specific lemma.

Lemma 5.19. The range of the MOI TH0,...,Hn
f (V1, . . . , Vn) belongs to the

domain of the rigging operator F and

FTH0,...,Hn
f (V1, . . . , Vn)

=

∫
S
Fα0(H0, s)V1α1(H1, s)V2 . . . Vnαn(Hn, s) dν(s),

where the integral on the right is taken in the topology of Lq(H,K).

Proof. Let the integrand of the MOI be denoted α = (5.24). Its rep-
resentation α(s) = (5.25) can be written as α(s) = ψ(H0)β(s), where

ψ(x) = (|x|+ 1)−1/2 and the function β is integrable in Lq by the argument
of Lemma 5.11. Therefore∫

S
α(s) dν(s) = ψ(H0)

∫
S
β(s) dν(s).



5.3. DOUBLE OPERATOR INTEGRALS 81

Since ranψ(H0) belongs to the domain of F it follows that so does the range
of the MOI. Then since Fψ(H0) is bounded,

F

∫
S
α(s) dν(s) = Fψ(H0)

∫
S
β(s) dν(s) =

∫
S
Fψ(H0)β(s) dν(s),

which completes the proof. �

As a particular example which will be used later, let H0 and H1 be self-
adjoint operators from a rigged affine space A(F ), let V = F ∗JF ∈ A0(F ),
and let ϕ ∈ C3

c (R). Then we have

(5.35) FTH0,H1

ϕ[1] (V ) = − 1

π

∫
R2

∂̄ϕ̃(z)Tz(H0)JFRz(H1) dxdy.

Since it will also be used later, we consider the adjoint of (5.35):

(5.36)
(
FTH0,H1

ϕ[1] (V )
)∗

= − 1

π

∫
R2

∂̄ ˜̄ϕ(z)(FRz̄(H1))∗JTz(H0) dxdy.

The right hand side needs some justification. As can be seen from (2.16),
we can choose almost analytic extensions ϕ̃, ˜̄ϕ, of ϕ and its conjugate ϕ̄ so
that ϕ̃(z) = ˜̄ϕ(z̄). In this way we have

∂̄ ˜̄ϕ(z̄) =
1

2
(∂x ˜̄ϕ) (z̄) +

i

2
(∂y ˜̄ϕ) (z̄)

=
1

2
∂x

(
ϕ̃(z)

)
− i

2
∂y

(
ϕ̃(z)

)
= ∂̄ϕ̃(z).

Therefore, (5.36) can be obtained from (5.35) by interchanging the adjoint
and integral and making the change of variables z ↔ z̄.

Lemma 5.20. Let H0 be any self-adjoint operator from the rigged affine
space A(F ). For any ϕ ∈ C4

c (R), the function

A0 3 V 7→ Fϕ(H0 u V )− Fϕ(H0) ∈ Lq(H,K)

is continuously Fréchet differentiable and with H1 := H0 u V its derivative

at V is equal to FTH1,H1

ϕ[1] .

Proof. The proof follows similar lines to that of Theorem 5.17 and
some details are omitted. From Lemma 5.19 and Proposition 5.14 it follows
that

(E) :=
∥∥∥Fϕ(H1)− Fϕ(H0)− FTH0,H0

ϕ[1] (V )
∥∥∥
q

=
∥∥∥FTH1,H0

ϕ[1] (V )− FTH0,H0

ϕ[1] (V )
∥∥∥
q

=
∥∥∥FTH1,H0,H0

ϕ[2] (V, V )
∥∥∥
q

≤ 1

π

∫
R2

|∂̄ϕ̃(z)|‖Tz(H1)‖‖V ‖F ‖Tz(H0)‖‖V ‖F ‖FRz(H0)‖q dxdy.
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Using Lemma 5.15 in an obvious modification of Proposition 5.16 then shows
that (E) ≤ const. ‖V ‖2F .

The continuity of the derivative is proved by making the appropriate
changes to the corresponding argument in the proof Theorem 5.17. �

5.4. Spectral averaging and the SSF

This section closely mimics the paper [AS08]. The infinitesimal spectral
shift measure is defined and proved to be exact, and then the SSF is defined
and proved to be absolutely continuous. The proofs of Theorem 5.23 and
Proposition 5.24 have undergone some adjustment due to the different setting,
but those of Corollaries 5.25 and 5.26 and Proposition 5.27 are virtually
unchanged. Throughout the remainder of this chapter, A(F ) will denote a
resolvent comparable rigged affine space.

For any H ∈ A, V ∈ A0, and Borel functions ϕ, ψ satisfying the estimate
|ϕ(x)|, |ψ(x)| ≤ const.(|x|+ 1)−1, the inclusion

(5.37) ϕ(H)V ψ(H) ∈ L1(H)

holds by the resolvent comparability of A.

Proposition 5.21. For any test functions ϕ and ψ and any self-adjoint
operator H from the affine space A, the map

(V1, V2, V3) 7→ ϕ(H u V1)V2ψ(H u V3) ∈ L1(H)

is continuously Fréchet differentiable.

Proof. By Lemma 5.20, both (Fϕ̄(H u V1))∗ and F1ψ(H u V3) are
smooth in the Hilbert-Schmidt norm. And obviously A0 3 V2 = F ∗J2F 7→
J2 ∈ B(K) is smooth. Therefore,

ϕ(H u V1)V2ψ(H u V3) = (Fϕ̄(H u V1))∗J2Fψ(H u V3)

is smooth in the trace class norm. �

Consider the trace of the operator (5.37) in the case that ϕ is a test
function and ψ is equal to 1 on the support of ϕ. By the cyclic property of the
trace, it is equal to Tr(V ϕ(H)) if V is trace class (i.e. the rigging operator F
is Hilbert Schmidt). Whether or not V is trace class, it is unaffected by the
values of ψ outside of the support of ϕ and offers a natural interpretation of
the expression Tr(V ϕ(H)) in the setting of a resolvent comparable rigged
affine space. Supposing V = F ∗JF, it is also equal to

Tr(ϕ(H)V ψ(H)) = Tr ((Fϕ̄(H)))∗JFψ(H)) = Tr (JFψ(H)(Fϕ̄(H)))∗) .

Note that the operator appearing alongside J on the far right is the closure
of the operator F (ϕ·ψ)(H)F ∗ = Fϕ(H)F ∗

The infinitesimal spectral shift measure is defined by the formula (which
is another way to write the trace discussed above)

(5.38) ΦH(V )(ϕ) := Tr (E(suppϕ)V ϕ(H)) , ϕ ∈ Cc(R),

for H ∈ H with spectral measure E, and V ∈ A0.
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The notation ΦH(V )(ϕ) is intended to suggest a generalised 1-form on
the affine space A. Indeed, for any test function ϕ, Φ(ϕ) is a 1-form on A,
while for any point H ∈ A and direction V ∈ A0, ΦH(V ) is a generalised
function, in particular a real measure. No deep theory of such objects is
required.

The fact that Φ(ϕ) is indeed a 1-form on the affine space A for any
ϕ ∈ C∞c (R) is not difficult to check. Its linearity is obvious and its smoothness
(C1 is enough here) follows from Proposition 5.21.

Before proving the exactness of the infinitesimal spectral shift measure as
a 1-form, let’s consider its most basic properties as a measure, beginning with
the fact that ΦH(V ) for fixed H and V is indeed a measure. If (ϕn) ⊂ Cc(R)
is a sequence of functions supported in a compact interval K such that
‖ϕn‖∞ → 0, i.e. ϕn → 0 in the inductive limit topology of Cc(R), then

(5.39) |ΦH(V )(ϕn)| ≤ ‖1K(H)V 1K(H)‖1 ‖ϕn‖∞ → 0,

where 1K ∈ Cc(R) is equal to 1 onK. This implies that ΦH(V ) is a continuous
linear functional on Cc(R), hence a (possibly unbounded) measure. It is real
valued, since for real valued ϕ = ϕ+−ϕ−, it is the difference of the traces of
self-adjoint operators

Tr(1ϕ(H)V ϕ(H)) = Tr (
√
ϕ+(H)V

√
ϕ+(H))− Tr (

√
ϕ−(H)V

√
ϕ−(H)) .

From this we also see that ΦH(V ) is positive if V is.
To prove the exactness of the infinitesimal spectral shift measure, we will

use the following

Lemma 5.22. Let V and W be directions in A0 and put Hr = H0 u rW .
Then for any test function ϕ, there holds the equality

(5.40)
d

ds
ΦHrursV (W )(ϕ)

∣∣∣
s=0

= r
d

dr
ΦHr(V )(ϕ).

Proof. Suppose that F is the rigging operator, V = F ∗JF, and W =
F ∗KF . Let 1ϕ be a test function equal to 1 on suppϕ. Then the left hand
side of (5.40) can be written as

(E) :=
d

ds
Tr
(
(F1ϕ(Hr u rsV ))∗KFϕ(Hr u rsV )

)∣∣∣
s=0

.

It follows from Lemma 5.20 that the operator valued function of s within
the trace is L1-differentiable. We get,

(E) = Tr

(
d

ds
(F1ϕ(Hr u rsV ))∗

∣∣∣
s=0

KFϕ(Hr)

)
+ Tr

(
(F1ϕ(Hr))

∗K
d

ds
Fϕ(Hr u rsV )

∣∣∣
s=0

)
=: (I) + (II).
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Consider the first term (I) on the right. Using Lemma 5.20 and the
equality (5.36), it is equal to

(I) = Tr

((
FTHr,Hr

1
[1]
ϕ

(V )

)∗
KFϕ(Hr)

)
= Tr

((
− r
π

∫
R2

∂̄1̃ϕ(z)(FRz̄(Hr))
∗JTz(Hr) dxdy

)
KFϕ(Hr)

)
.

By bringing the bounded operator KFϕ(Hr) within the integral, the integ-
rand becomes L1-valued and moreover the trace and integral can then be
interchanged. The result is

(I) = − r
π

∫
R2

∂̄1̃ϕ(z) Tr
(
(FRz̄(Hr))

∗JTz(Hr)KFϕ(Hr)
)
dxdy

= − r
π

∫
R2

∂̄1̃ϕ(z) Tr
(
(Fϕ̄(Hr))

∗JTz(Hr)KFRz(Hr)
)
dxdy,

where the second line follows from the cyclic property of the trace and the
equality Fϕ(Hr)(FRz̄(Hr))

∗ = FRz(Hr)(Fϕ̄(Hr))
∗. Now again interchan-

ging the trace and integral and unwinding through the previous steps,

(I) = rTr

(
(Fϕ̄(Hr))

∗J

(
− 1

π

∫
R2

∂̄1̃ϕ(z)Tz(Hr)KFRz(Hr) dxdy

))
= rTr

(
(Fϕ̄(Hr))

∗J

(
d

dr
F1ϕ(Hr)

))
.

Similarly, it can be shown that

(II) = rTr

((
d

dr
(Fϕ̄(Hr))

∗
)
JF1ϕ(Hr)

)
,

so by combining these expressions for (I) and (II), we see that

(E) = rTr

(
d

dr
(Fϕ̄(Hr))

∗JF1ϕ(Hr)

)
= r

d

dr
Tr(1ϕ(Hr)V ϕ(Hr)),

which is the right hand side of (5.40). �

Theorem 5.23. The 1-form Φ(ϕ) is exact for any test function ϕ.

Proof. For any H ∈ A and test function ϕ, we let θϕH denote the
integral of Φ(ϕ) along the line from some fixed H0 to H, with the aim to
show dθϕH(V ) = ΦH(V )(ϕ). That is, let Hr = H0 u rW where H1 = H and
put

θϕH =

∫ 1

0
ΦHr(W ) dr.
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The derivative of this 0-form is by definition

dθϕH(V ) =
d

ds
θϕHusV

∣∣∣
s=0

= lim
s→0

∫ 1

0

1

s

(
ΦHrursV (W + sV )(ϕ)− ΦHr(W )(ϕ)

)
dr

= lim
s→0

∫ 1

0

(
ΦHrursV (V )(ϕ) +

1

s

(
ΦHrursV (W )(ϕ)− ΦHr(W )(ϕ)

))
dr.

By the smoothness of H 7→ ΦH(V )(ϕ) (Proposition 5.21) and Lemma 5.22,
upon interchanging the limit and integral we get

dθϕH(V ) =

∫ 1

0
ΦHr(V )(ϕ) dr +

∫ 1

0

d

ds
ΦHrursV (W )(ϕ)

∣∣∣
s=0

dr

=

∫ 1

0
ΦHr(V )(ϕ) dr +

∫ 1

0
r
d

dr
ΦHr(V )(ϕ) dr.

Integrating the last term by parts gives the result. �

The spectral shift measure ξ(ϕ) = ξ(ϕ;H1, H0) is defined, in keeping with
the Birman-Solomyak formula, as the integral of Φ(ϕ) along a piecewise C1

path Hr from H0 to H1 in A. That is,

ξ(ϕ;H1, H0) :=

∫
Hr

Φ(ϕ)(5.41)

=

∫ 1

0
Tr
(
Er(suppϕ)Ḣrϕ(Hr)

)
dr,

where here and below, Er denotes the spectral measure of Hr and Ḣr denotes
its derivative. Theorem 5.23 implies that this definition does not depend on
the piecewise C1 path Hr.

Some basic properties of the spectral shift measure: First it is clearly
additive in the sense that ξ(H2, H0) = ξ(H2, H1) + ξ(H1, H0). To check
that ξ(ϕ) is a (possibly unbounded) measure, the same argument as for
the infinitesimal spectral shift measure applies, except this time we use the
fact that the convergence (5.39) is locally uniform on the affine space A,
which follows from Proposition 5.21. Also by the same reasoning as for the
infinitesimal spectral shift measure, it is a real measure, which is positive if
H1 = H0 u V with V ≥ 0.

The spectral shift function (SSF) is defined to be the locally integrable
density of the spectral shift measure. It is shown below (Proposition 5.27)
that the spectral shift measure is absolutely continuous and hence can be
identified with the SSF.

We need the following version of the chain rule (cf. [BS75; Sim98]).

Proposition 5.24. Let Hr be a C1 path in A and let ϕ be a test function.
Then, for the path r 7→ ϕ(Hr), the chain rule holds under the trace in the
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following sense. For any bounded Borel function f,

(5.42) Tr

(
dϕ(Hr)

dr
f(Hr)

)
= Tr

(
Er(suppϕ)Ḣrϕ

′(Hr)f(Hr)
)
.

Proof. By choosing a positive test function ϕ1 which dominates ϕ and
is such that

√
ϕ1 is smooth, ϕ = ϕ1 − (ϕ1 − ϕ) is the difference of positive

test functions with smooth square roots. It follows that we may assume
without loss of generality that ϕ ≥ 0 such that ψ :=

√
ϕ ∈ C∞c (R). In this

case by making use of the BS representation (5.29), Theorem 5.17 implies

dϕ(Hr)

dr
= THr,Hr

ϕ[1]

(
Ḣr

)
= − 1

π

∫
R2

∂̄ψ̃(z)Rz(Hr)ψ(Hr)ḢrRz(Hr) dxdy

− 1

π

∫
R2

∂̄ψ̃(z)Rz(Hr)Ḣrψ(Hr)Rz(Hr) dxdy.

Therefore after substituting this into the left hand side of (5.42) and then
interchanging the integral and trace, we obtain

(E) := Tr

(
dϕ(Hr)

dr
f(Hr)

)
= − 1

π

∫
R2

∂̄ψ̃(z) Tr(. . .) dxdy,

where the trace in the integrand on the right is equal to

Tr(. . .) = Tr
(
Rz(Hr)ψ(Hr)ḢrRz(Hr)f(Hr)

)
+ Tr

(
Rz(Hr)Ḣrψ(Hr)Rz(Hr)f(Hr)

)
= 2 Tr

(
ψ(Hr)ḢrR

2
z(Hr)f(Hr)

)
.

Supposing F is the rigging operator and Ḣr = F ∗J̇rF, it follows that

(E) = − 2

π

∫
R2

∂̄ψ̃(z) Tr
((
Fψ̄(Hr)

)∗
J̇rFR

2
z(Hr)f(Hr)

)
dxdy

= 2 Tr

((
Fψ̄(Hr)

)∗
J̇r

(
− 1

π

∫
R2

∂̄ψ̃(z)FR2
z(Hr) dxdy

)
f(Hr)

)
.

Consider the integral now isolated in brackets. Lemma 5.18 and the equal-
ity (2.17) imply that it is equal to the operator Fψ′(Hr). Therefore

(E) = 2 Tr
((
Fψ̄(Hr)

)∗
J̇rFψ

′(Hr)f(Hr)
)

= 2 Tr
(
ψ(Hr)Ḣrψ

′(Hr)f(Hr)
)
.

By cycling under the trace and using the fact that 2ψ′ψ = ϕ′, this can be
written as the right hand side of (5.42). �

Proposition 5.24 has two important corollaries below, namely the trace
formula and the invariance principle.
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Corollary 5.25. The spectral shift measure satisfies the trace formula

(5.43) Tr(ϕ(H1)− ϕ(H0)) = ξ(ϕ′;H1, H0),

for any H0, H1 ∈ A and test function ϕ.

Proof. Integrating (5.42) with f = 1 results in the equality∫ 1

0
Tr

(
d(ϕ(Hr)− ϕ(H0))

dr

)
dr = ξ(ϕ′;H1, H0)

and (5.43) follows by interchanging the trace and derivative, which is justified
by Theorem 5.17. �

Combining (5.43) with Krĕın’s classical result (Theorem 5.1) implies
that in the case of trace class perturbations, the spectral shift measure is
absolutely continuous and its density coincides with the SSF as defined by
the trace formula.

Corollary 5.26. Let H0, H1 ∈ A, let ϕ be a real-valued test function,
and let ξ and ξϕ be the spectral shift measures of the pairs H1, H0 and
ϕ(H1), ϕ(H0) respectively. Then for any bounded Borel function f,

(5.44) ξϕ(f) = ξ(f ◦ ϕ · ϕ′).

Proof. Integrating (5.42) with f = f ◦ ϕ gives∫ 1

0
Tr

(
dϕ(Hr)

dr
f(ϕ(Hr))

)
dr = ξ(f ◦ ϕ · ϕ′).

The left hand side is equal to ξϕ(f) by the path independence of the spectral
shift measure (Theorem 5.23). �

Proposition 5.27. On a resolvent comparable rigged affine space, the
spectral shift measure defined by (5.41) is absolutely continuous.

Proof. This neat proof essentially consists in the reduction to the case
of a trace class perturbation using the invariance principle (5.44).

Let µ be the singular part of the spectral shift measure. We will show
that µ is translation invariant. It therefore must be a multiple of Lebesgue
measure, leaving µ = 0 as the only possibility.

Fix 0 < ε << 1 and let E be a Borel subset of [ε, 1−ε] with zero Lebesgue
measure. To demonstrate translation invariance it is enough to show that
µ(E) = µ(a+ E) for any real a. For any a, b ∈ R with b− a > 2, consider a
test function ϕa,b whose graph looks like a smoothed isosceles trapezium with
height 1 which is stretched over the interval [a, b] and has slopes of the sides
equal to ±1. More precisely ϕa,b is subject to the constraints: ϕa,b(λ) = λ−a
on [a+ ε, a+ 1− ε], ϕa,b(λ) = b−λ on [b− 1 + ε, b− ε], and except as already
specified ϕa,b does not take values in [ε, 1− ε]. Let 1A denote the indicator
of a Borel set A. By construction, 1E ◦ ϕa,b · ϕ′a,b = 1a+E − 1b−E . Then by
Corollary 5.26,

ξϕa,b(E) = ξ(a+ E)− ξ(b− E) = µ(a+ E)− µ(b− E).
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The left hand side is zero, since ξϕa,b is absolutely continuous by Krĕın’s
result for trace class perturbations. Hence choosing b such that b > 2 and
b− a > 2, we conclude that µ(E) = µ(b− E) = µ(a+ E). �

5.5. The absolutely continuous and singular SSF’s

This section concerns the Lebesgue decomposition of the infinitesimal
spectral shift measure Φ and its implications for the SSF. Recall that we are
assuming A to be a resolvent comparable rigged affine space. For H ∈ A
and V ∈ A0, the absolutely continuous and singular parts are respectively
given by replacing (·) with (a) and (s) in the formula

(5.45) Φ
(·)
H (V )(ϕ) = Tr

(
E(·)(suppϕ)V ϕ(H)

)
, ϕ ∈ Cc(R),

where E(·) denotes the absolutely continuous or singular spectral measure of
the self-adjoint operator H.

Confirming these formulas (5.45) is easy given the properties of E(·).

A null support Zs of σs(H) is a support of Φ(s), since for any bounded Borel
set ∆ which does not intersect Zs we have

Φ
(s)
H (V )(∆) = Tr

(
E(s)(∆)V E(∆)

)
= 0.

Therefore Φ(s) is singular. On the other hand Φ(a) is absolutely continuous,
since if Z is any bounded null set then

Φ
(a)
H (V )(∆) = Tr

(
E(a)(Z)V E(Z)

)
= 0.

The absolutely continuous and singular parts of the infinitesimal spectral
shift measure are again 1-forms on A, but they may no longer be smooth.
Moreover, they may no longer be exact. A counterexample to the exactness
of the singular part is given in [Aza11a, §8.3] and will be reviewed in the next
section. However, their integrals along any piecewise C1 path in the affine
space A define absolutely continuous measures, which result in a natural
decomposition of the SSF. To show this is the aim of the present section.

Proposition 5.28. The Poisson kernel is integrable with respect to both
the infinitesimal spectral shift measure and the spectral shift measure itself.
Their Poisson integrals are respectively given by

ΦH(V )(z) :=
y

π
Tr(Rz(H)V Rz̄(H)),(5.46)

ξ(z;H1, H0) :=
y

π

∫ 1

0
Tr
(
Rz(Hr)ḢrRz̄(Hr)

)
dr,(5.47)

where y = Im z and Hr is any piecewise C1 path in A from H0 to H1.

The Poisson integral of the spectral shift measure will be called the
smoothed SSF.
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Proof. Since V 7→ ΦH(V ) is linear, we can assume without loss of
generality that V is positive so that ΦH(V ) is a positive measure. Let 1n
denote the indicator function for the interval [−n, n]. Then the monotone
convergence theorem implies that, whether or not the limit is finite,

ΦH(V )(ImRz) = lim
n→∞

ΦH(V )(1n · ImRz)

= y lim
n→∞

Tr (1n(H)Rz(H)V Rz̄(H)1n(H)) ,

where in the second line we have used the definition (5.38) and the equality
ImRz = yRzRz̄. Lemma 2.19 implies the L1-convergence

(5.48) 1n(H)Rz(H)V Rz̄(H)1n(H)→ Rz(H)V Rz̄(H)

and it follows that ImRz is integrable and (5.46) is the Poisson integral of Φ.
We use a similar argument to establish the fact that 5.47 is the Poisson

integral of the spectral shift measure ξ.

ξ(ImRz;H1, H0) = lim
n→∞

ξ(1n · ImRz;H1, H0)

= y lim
n→∞

∫ 1

0
Tr
(

1n(Hr)Rz(Hr)ḢrRz̄(Hr)1n(Hr)
)

and in this case the result follows by an application of the dominated
convergence theorem, which is justified by Proposition 5.21. �

Corollary 5.29. For any self-adjoint operator H ∈ A and perturbation
V ∈ A0, the density of the absolutely continuous part of the infinitesimal
spectral shift measure is for a.e. λ ∈ R equal to

(5.49) Φ
(a)
H (V )(λ) =

1

π
lim
y→0+

yTr(Rz̄(H)V Rz(H)).

Moreover, if H0 and H1 are two self-adjoint operators from A, then the
SSF ξ(λ;H1, H0) belongs to L1(R, (1 + λ2)−1 dλ) and for a.e. λ ∈ R satisfies

(5.50) ξ(λ;H1, H0) = lim
y→0+

ξ(λ+ iy;H1, H0).

Proof. This is a direct consequence of Theorem 2.4 �

Consider the function (5.49). Suppose F is the rigging operator, V =
F ∗JF, and put z = λ+ iy. Then there exists the limit

lim
y→0+

1

π
ΦH(V )(ImRz) = lim

y→0+

y

π
Tr(Rz(H)V Rz̄(H))

= lim
y→0+

1

π
Tr(J ImTz(H))

=
1

π
Tr(J ImTλ+i0(H)),

at every point λ from the set of trace-regular points Λ(H,F ;L1), which is
a full set by Corollary 3.15. Hence the density of the infinitesimal spectral
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shift measure is for a.e. λ equal to

(5.51) Φ
(a)
H (V )(λ) =

1

π
Tr(J ImTλ+i0(H)).

Lemma 5.30. Let Hr, r ∈ R, be a piecewise analytic path in the resolvent
comparable affine space A(F ). Then the set of points (λ, r) in the plane for
which λ is a trace-regular point of Hr,

Γ({Hr}, F ) := {(λ, r) ∈ R2 : λ ∈ Λ(Hr, F ;L1)},

has full measure in R2. Moreover a.e. cross section of Γ in either the r or λ
direction has full measure in R. In addition, the function defined on Γ by

(5.52) (λ, r) 7→ Tr
(
J̇r ImTλ+i0(Hr)

)
,

where Ḣr = F ∗J̇rF, is locally integrable.

Proof. We note that the set Γ is measurable as the set of convergence
points as y → 0+ of the two families of continuous functions Tλ+iy(Hr)
and ImTλ+iy(Hr) of the variables (λ, r). Further, the function (5.52) is
measurable as a limit of measurable functions.

Clearly at any r ∈ R the λ-cross section of Γ is the full set Λ(Hr, F ;L1)
of trace-regular points of Hr. On the other hand since the path Hr is
piecewise analytic, at any point λ from the full set

⋂
j Λ({Hrj}, F ;L1), where

the intersection is taken over the pieces Hrj of the path Hr, the r-cross
section of Γ is equal to the complement of the discrete set of resonance points⋃
j R(λ; {Hrj}). The Lebesgue measure of the complement R2 \ Γ can be

calculated using Fubini’s theorem and must be zero since its cross sections
are null sets.

We will now check that (5.52) is integrable over a bounded rectangle, for
which it suffices to show that as a function of λ on a bounded interval ∆ its
L1-norm is locally bounded with respect to r.

1

π

∫
∆

∣∣∣Tr
(
J̇r ImTλ+i0(Hr)

)∣∣∣ dλ ≤ 1

π

∫
∆

∥∥J̇r∥∥Tr (ImTλ+i0(Hr)) dλ

=
∥∥J̇r∥∥Φ

(a)
Hr

(F ∗F )(∆)

≤
∥∥J̇r∥∥ ‖F1∆(Hr)‖22 ,

where in the second to last line we have used (5.51) and in the last line 1∆

denotes a test function equal to 1 on ∆. Since the last expression is a locally
bounded function of r, the proof is complete. �

Let Hr be a piecewise analytic path in A. It follows from Lemma 5.30
that for any ϕ ∈ Cc(R), the absolutely continuous part Φ(a)(ϕ) of the
infinitesimal spectral shift measure is integrable along Hr. Therefore, the
same is true of the singular part. The absolutely continuous and singular
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spectral shift measures along Hr are respectively defined, as these (path-
dependent) integrals, by replacing (·) with (a) and (s) in the formula

(5.53) ξ(·)(ϕ; {Hr}) :=

∫ 1

0
Tr
(
E(·)
r (suppϕ)Ḣrϕ(Hr)

)
dr, ϕ ∈ Cc(R).

These are again real measures which are shown below to be absolutely
continuous. Hence they correspond to locally integrable functions, which are
known respectively as the absolutely continuous and singular SSF’s.

Note that although the absolutely continuous and singular spectral shift
measures in general depend on a curve {Hr} (see the next section), they are
path-additive in the sense that if γ1 t γ2 is the concatenation of two paths
γ1 and γ2 then

ξ(·)(ϕ; γ1 t γ2) = ξ(·)(ϕ; γ1) + ξ(·)(ϕ; γ2).

Theorem 5.31. Let Hr be a piecewise analytic path in A and put z =
λ + iy. The absolutely continuous spectral shift measure along Hr defined
by (5.53) is an absolutely continuous measure whose density, the absolutely
continuous SSF, is for a.e. λ ∈ R equal to

(5.54) ξ(a) (λ; {Hr}) =
1

π

∫ 1

0
lim
y→0+

yTr
(
Rz̄(Hr)ḢrRz(Hr)

)
dr.

Proof. It can be assumed without loss of generality that the path Hr

is analytic. Suppose F is the rigging operator. Then for any λ from the
full set Λ({Hr}, F ;L1), the integrand on the right hand side of (5.54) is

equal for a.e. r to the value of the function (5.52). We will show that ξ(a) is
absolutely continuous with density equal a.e. to the function

(5.55) ξ(a)(λ; {Hr}) =
1

π

∫ 1

0
Tr
(
J̇r ImTλ+i0(Hr)

)
dr,

which is defined on Λ({Hr}, F ;L1).
For any ϕ ∈ Cc(R), Lemma 5.30 justifies the following use of Fubini’s

theorem∫
R
ϕ(λ)

∫ 1

0

1

π
Tr
(
J̇r ImTλ+i0(Hr)

)
dr dλ

=

∫ 1

0

∫
R
ϕ(λ)

1

π
Tr
(
J̇r ImTλ+i0(Hr)

)
dλ dr.

The inner integral on the left hand side is equal to ξ(a)(λ; {Hr}) whereas

by (5.51) the inner integral on the right hand side is equal to Φ
(a)
Hr

(Ḣr)(ϕ).
Therefore, the same equality can be rewritten as∫

R
ϕ(λ)ξ(a)(λ; {Hr}) dλ = ξ(a)(ϕ; {Hr})

and the result follows. �
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Corollary 5.32. Let Hr be a piecewise analytic path in A. The singular
spectral shift measure along Hr defined by (5.53) is an absolutely continuous
measure whose density, the singular SSF, is for a.e. λ ∈ R equal to the
difference of the SSF and the absolutely continuous SSF

ξ(s)(λ; {Hr}) = ξ(λ;H1, H0)− ξ(a)(λ; {Hr}).

5.6. Path-dependence of the singular SSF

This section is a review of [Aza11a, §8.3] and is devoted to a proof of the
theorem below, which is achieved by presenting a counterexample.

Theorem 5.33. The singular part of the infinitesimal spectral shift
measure is not exact. That is, the singular SSF ξ(s)(λ; {Hr}) in general
depends on the path Hr connecting H0 and H1 in a resolvent comparable
rigged affine space. Therefore the absolutely continuous SSF ξ(a)(λ; {Hr}) is
also path-dependent.

This also provides an opportunity to review a version of the LAP for the
one-dimensional free Hamiltonian.

Theorem 5.34. Let H = −∆ be the Laplacian on L2(R). Let F be the

operator of multiplication by the function ψ(x) = (1 + x2)−1/2. Then the
LAP holds in the sense that Λ(H,F ) contains every nonzero real number.

A few notes: The operator F is a bounded self-adjoint rigging operator
on L2(R). It is also relatively Hilbert-Schmidt with respect to H = −∆,
i.e. FRz(H) is Hilbert-Schmidt, by Corollary 5.4. Thus the LAP in the form
of Corollary 3.14 is applicable here. However, the conclusion of this theorem
is more specific. In its proof we will use the following well-known lemma
(cf. [RS75, Example 1 in Section IX.7]).

Lemma 5.35. For nonreal z, let
√
z be chosen with Im

√
z > 0. Then the

resolvent of the Laplacian Rz(−∆) is an integral operator with the kernel

(5.56) K(x, y) =
i

2
√
z
ei
√
z|x−y|.

Proof. We will use properties of the Fourier transform (see e.g. [Rud91,

Chapter 7]). For f ∈ L2(R), its Fourier transform is denoted by f̂ and its
inverse Fourier transform by f̌ . Through the Fourier transform the operator
Rz(−∆) acts as multiplication by the function g(ξ) := (ξ2 − z)−1. For any
f ∈ L2(R), we obtain

Rz(−∆)f(x) =
(
gf̂
)∨

(x)

= (ǧ ∗ f)(x)

=
1√
2π

∫
R
ǧ(x− y)f(y) dy.
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It remains to see that the inverse Fourier transform ǧ is given by

(5.57)
1√
2π
ǧ(x) =

i

2
√
z
ei
√
z|x|.

To calculate the integral

1

2π

∫
R
eixξg(ξ) dξ =

1

2π

∫
R

eixξ

ξ2 − z
dξ

(except if x = 0 in which case it can be directly calculated by partial fractions
to be i(2

√
z)−1 as required), it is convenient to approximate by a contour

integral over a large closed rectangle. We distinguish two cases: x > 0
and x < 0. If x > 0, then let CR denote the positively-oriented rectangle
with vertices (−R, 0), (R, 0), (R,

√
R), and (−R,

√
R). It is not difficult to

check that the integrals along the top and vertical sides of CR can be made
arbitrarily small for large R. Therefore,

1√
2π
ǧ(x) = lim

R→∞

1

2π

∫
CR

eixξ

ξ2 − z
dξ.

The residue theorem can now be applied. Since

eixξ

ξ2 − z
=
eixξ

2
√
z

(
1

ξ −
√
z
− 1

ξ +
√
z

)
and the singularity ξ =

√
z is within CR, we get (5.57).

If x < 0, then let CR instead denote the negatively oriented rectangle
with vertices (−R, 0), (R, 0), (R,−

√
R), and (−R,−

√
R). Then a similar

argument, where now CR has winding number −1 around the singularity
ξ = −

√
z, completes the proof. �

Proof of Theorem 5.34. Here we will follow [Kur78, Example 4.1.4].
For nonreal z, by Lemma 5.35 the sandwiched resolvent Tz(H) = FRz(H)F
is an integral operator with kernel

K(z;x, y) =
i

2
√
z

(1 + x2)−1/2ei
√
z|x−y|(1 + y2)−1/2.

Then since

|K(z;x, y)| ≤ 1

2
√
|z|

(1 + x2)−1/2(1 + y2)−1/2

and the right hand side as a function of (x, y) belongs to L2(R2), it follows by
dominated convergence that K(λ+ iε;x, y), for λ 6= 0, converges in L2(R2)
as ε→ 0+ to the function

K(λ+ i0;x, y) =
i

2
√
λ

(1 + x2)−1/2ei
√
λ|x−y|(1 + y2)−1/2.

This implies (see e.g. [RS72, Theorem VI.23]) that the corresponding integral
operators converge (in the Hilbert-Schmidt class). That is, the limit Tλ+i0(H)
exists for any nonzero real λ. �
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To prove Theorem 5.33 it clearly suffices to present a pair of operators H0

and H1 which can be connected by two different piecewise analytic paths γ1

and γ2 in a resolvent comparable rigged affine space, so that

ξ(s)(λ; γ1) 6= ξ(s)(λ; γ2).

To construct this counterexample to exactness we will consider operators
acting on the Hilbert space H = L2(R)⊕ C. A bounded operator V ∈ B(H)
can be written in block matrix form as

(5.58) V =

(
V0 f
〈g, ·〉 α

)
,

where V0 is a bounded operator on L2(R), f, g ∈ L2(R), and α ∈ C. Here, f
and 〈g, ·〉 are being considered in the obvious way as operators acting C→
L2(R) and L2(R) → C respectively. In this sense, 〈f, ·〉 is the adjoint of f .
We will actually choose V0 to be rank one.

As a rigging we choose the rank-two operator F = 〈v, ·〉 ⊕ 1, where

v(x) = e−x
2/2. Then A0(F ) is isomorphic to the self-adjoint matrices on

K = C2 and a four dimensional resolvent comparable rigged affine space is
defined by

(5.59) A(F ) = −∆⊕ 0 +A0(F ).

For r, s ∈ R, we will focus in particular on those operators of the form

(5.60) Hr,s :=

(
−∆ + r 〈v, ·〉 v rv

r 〈v, ·〉 s

)
.

Lemma 5.36. If r 6= 0, then the operator Hr,s defined by (5.60) is abso-
lutely continuous.

Proof. We first check that there is no pure point spectrum. Suppose

(5.61) Hr,s

(
f
f0

)
=

(
−f ′′ + r 〈v, f〉 v + rf0v

r 〈v, f〉+ sf0

)
= λ

(
f
f0

)
.

Then −f ′′ = λf − r(〈v, f〉+ f0)v so that f ′′ ∈ L2(R). By taking the Fourier
transform of this equality and using the fact that v̂ = v, we get

f̂(ξ) = −r(〈v, f〉+ f0)
v(ξ)

ξ2 − λ
.

Since the function v(ξ)/(ξ2 − λ) does not belong to L2(R), it follows that
〈v, f〉 + f0 = 0. Then from (5.61) we see that f0 = 0 and 〈v, f〉 = 0. The
last equality implies f = 0.

Now we will show that the set R \ Λ(Hr,s, F ), which is a core of singular
spectrum by Corollary 3.8, can only contain 0 and hence there can be no
singular continuous spectrum either. Let Hr = −∆ + r 〈v, ·〉 v, r ∈ R, which
acts on L2(R) and should not be confused with the operator Hr,s on H.
The following two lengthy but straightforward calculations are omitted.
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For nonreal z, it can be shown using the second resolvent identity (as
in (5.11)) that

Rz(Hr) = Rz(H0)− (1 + r 〈v,Rz(H0)v〉)−1r 〈Rz̄(H0)v, ·〉Rz(H0)v.

Further, it can be checked that the resolvent of Hr,s is given by

Rz(Hr,s) =

(
Rz(Hr) + r2C 〈Rz̄(Hr)v, ·〉Rz(Hr)v −rCRz(Hr)v

−rC 〈Rz̄(Hr)v, ·〉 C

)
,

where C =
(
s− z − r2 〈v,Rz(Hr)v〉

)−1
. Since F = 〈v, ·〉 ⊕ 1, we obtain the

following sandwiched versions of these formulas

Tz(Hr) := 〈v,Rz(Hr)v〉 = Tz(H0)− (1 + rTz(H0))−1r(Tz(H0))2,

Tz(Hr,s) := FRz(Hr,s)F
∗ =

(
Tz(Hr) + r2C(Tz(Hr))

2 −rCTz(Hr)
−rCTz(Hr) C

)
.

For z = λ + iy, the limits as y → 0+ of Tz(H0) exist for any nonzero
λ ∈ R as a result of Theorem 5.34 and the fact that v ∈ L2(R, (1 + x2)dx).
Assuming that Tλ+i0(H0) has a nonzero imaginary part, it follows that the
limit Tλ+i0(Hr) must also exist and have nonzero imaginary part, which in
turn implies the existence of the limit Tλ+i0(Hr,s). The assumption can be
confirmed using the equality

ImTλ+i0(H0) = lim
y→0+

〈v, ImRλ+iy(H0)v〉 =
d

dλ
〈v,E0(λ)v〉 ,

which holds as long as the right hand side exists (as follows e.g. from the
proof of Theorem 2.4), as it indeed does and is nonzero:

d

dλ
〈v,E0(λ)v〉 =

d

dλ

∫ λ

−∞
|v̂(ξ)|2 dξ = |v̂(λ)|2 6= 0. �

Proof of Theorem 5.33. We present two paths with common end-
points in the affine space (5.59), for which the corresponding singular SSF’s
are not equal. Using the notation (5.60), let γ1 be the path connecting H0,0

and H0,1 via the straight line H0,r = −∆ ⊕ r, r ∈ R. Then the singular

SSF ξ(s)(λ; γ1) can be seen to be the characteristic function of the inter-
val [0, 1]. Indeed, since the singular spectral measure of H0,r is given by
E0,r(∆) = 0⊕ χ∆(r) and V := H0,1 −H0,0 = 0⊕ 1, we have

ξ(s)(λ; γ1) =
d

dλ

∫ 1

0
Tr(V E0,r(λ)) dr =

d

dλ

∫ 1

0
χ(−∞,λ](r) dr = χ[0,1](λ).

On the other hand let γ2 be a path which detours through Hr,s with
nonzero r. For example,

γ2 : r 7→

{
H2r,0, 0 ≤ r ≤ 1/2,

H2−2r,2r−1, 1/2 ≤ r ≤ 1.

Then by Lemma 5.36 the singular spectral measure of γ2(r) is zero for any
r ∈ (0, 1) and hence the singular SSF along γ2 must be zero. �





CHAPTER 6

The singular SSF and the resonance index

This chapter closely follows the preprint [Aza11b]. It consists of two
sections. Its main aim is to prove the equality of the singular SSF with the
total resonance index and this is achieved using an elegant argument in the
first section. Having done so allows the construction of a nontrivial example
of singular spectral shift which is reviewed in the second section.

6.1. Singular SSF as total resonance index

Throughout this section A again denotes a resolvent comparable rigged
affine affine space. We further restrict our attention to a straight line Hr in
A(F ) in the direction V = F ∗JF . For straight paths we modify previous
notation which indicates dependence on a piecewise analytic path by instead
writing a pair of endpoints H1, H0, e.g. ξ(s)(λ; {Hr})↔ ξ(s)(λ;H1, H0).

For a fixed essentially regular point λ of the path Hr, let rλ ∈ R(λ; {Hr})
be a fixed real resonance point. Let [a, b] be an interval containing rλ and
no other resonance points. In a neighbourhood of this interval, and for
z = λ+ iy, y ≥ 0, we consider the meromorphic function

(6.1) r 7→ 1

π
ImTz(Hr)J =

1

2πi
(Tz(Hr)J − Tz̄(Hr)J).

Its poles, namely the poles of Tz(Hr) and the poles of Tz̄(Hr), are the
resonance and anti-resonance points corresponding to z. As y = 0 is shifted
to small positive values, the resonance point rλ as a pole of Tλ+i0(Hr) splits
into a finite number of nonreal resonance points which constitute the rλ-
group. On the other hand as a pole of Tλ−i0(Hr), the same splitting occurs
for the anti-resonance points reflected about the real axis (see Figure 6.1).

Let 0 ≤ y << 1 and let L be a contour in C from a to b which circumvents
all resonance and anti-resonance points of the rλ-group in C+, as shown in
Figure 6.1. The resonance and anti-resonance points shown in Figure 6.1 rep-
resent all nearby poles of the function (6.1). Since A is resolvent comparable
and assuming λ is chosen from the full set Λ({Hr}, F ;L1), the function (6.1)
takes values in the trace class. Denoting its trace by

Fz(r) :=
1

π
Tr (ImTz(Hr)J) ,

suppose the integral of Fz(r) over [a, b] is decomposed into the sum of its
integrals over L and C+(rλ). Note that its integral over [a, b] is the smoothed
SSF ξ(λ + iy;Hb, Ha) given by (5.47). Moreover, Proposition 4.6 implies
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L

C+(rλ)a brλ

Figure 6.1. The coupling parameter plane in the region
of [a, b] for small y, showing the splitting of the resonance
point rλ and two contours. Resonance points are solid dots
and anti-resonance points are circles. The contour C+(rλ)
is the positively-oriented closed upper semicircle of a circle
enclosing the rλ-group. The contour L goes from a to b
circumventing resonance and anti-resonance points along the
upper rim of C+(rλ). Note that C+(rλ) may be tiny in
comparison to the interval [a, b].

that for small enough y its integral over C+(rλ) is equal to the resonance
index. Therefore we obtain the equality

(6.2) ξ(λ+ iy;Hb, Ha) =

∫
L
Fλ+iy(r) dr + indres(λ;Hrλ , V ).

The smoothed SSF converges for a.e. λ to the SSF ξ(λ;Hb, Ha) as y → 0+

(see (5.50)). So it remains to show that the first term on the right hand

side of (6.2) converges to the absolutely continuous SSF ξ(a)(λ;Hb, Ha). Due
to the absence of poles on the contour L, the function Fλ+iy(r) converges
uniformly on L to Fλ+i0(r) as y → 0+. Thus

(6.3) lim
y→0+

∫
L
Fλ+iy(r) dr =

∫
L
Fλ+i0(r) dr.

We will now use the fact, whose proof is relegated to the lemma below, that
the function Fλ+i0(r) admits analytic continuation to the real axis. This
means that it has no poles within a neighbourhood of C+(rλ). Therefore,
by Cauchy’s theorem the contour L of the integral on the right hand side
of (6.3) can be replaced by the interval [a, b]. By Theorem 5.31, the result

for a.e. λ is ξ(a)(λ;Hb, Ha).
For a.e. λ from the full set Λ({Hr}, F ;L1) and any interval [a, b] contain-

ing a single resonance point rλ, we have shown that

ξ(λ;Hb, Ha) = ξ(a)(λ;Hb, Ha) + indres(λ;Hrλ , V ).

Using additivity along the line Hr proves that for a.e. λ belonging to the
intersection Λ(H0, F ;L1) ∩ Λ(H1, F ;L1),

ξ(λ;H1, H0) = ξ(a)(λ;H1, H0) +
∑

rλ∈[0,1]

indres(λ;Hrλ , V ),
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where the sum, namely the total resonance index, is taken over the finite
number of resonance points rλ from the interval [0, 1].

Theorem 6.1. Let H0 and H1 = H0 u V be two self-adjoint operators
from a resolvent comparable rigged affine space A and let Hr = H0 u rV be
the straight path from H0 to H1. For a.e. λ from the full set Λ(H0, F ;L1) ∩
Λ(H1, F ;L1), the singular SSF coincides with the total resonance index:

ξ(s)(λ; {Hr}) =
∑

rλ∈[0,1]

indres(λ;Hrλ , V ),

where the sum is taken over the finite number of resonance points rλ from
the interval [0, 1].

The missing lemma which completes the proof:

Lemma 6.2. Let Hr be an analytic path in A. Then the meromorphic
function

r 7→ Tr
(

ImTλ+i0(Hr)J̇r

)
admits analytic continuation to the real axis, i.e. to real resonance points.

Proof. This lemma will be proved later using tools from stationary
scattering theory (see the note below Theorem 8.2), but a modified version
of the proof is sketched below. Let Hr = H0 u F ∗JrF and suppose λ ∈
Λ(H0, F ;L1). We will use properties of the operator (a modified scattering
matrix)

M(r) := (1 + Tλ−i0(H0)Jr)(1 + Tλ+i0(H0)Jr)
−1

= 1− 2i ImTλ+i0(H0)Jr(1 + Tλ+i0(H0)Jr)
−1.

In particular, when r is real and non-resonant this operator is unitary.
This can be shown algebraically by applying its adjoint and using the equal-
ity (4.7). It follows that except on the discrete resonance set M(r) is bounded
and hence admits analytic continuation to the real axis. Its derivative at any
non-resonant r can be calculated:

M ′(r) = −2i(1 + Tλ−i0(H0)Jr) ImTλ+i0(Hr)J̇r(1 + Tλ+i0(H0)Jr)
−1.

It follows that the function

r 7→ i

2
Tr(M ′(r)M∗(r))

= Tr
(

(1 + Tλ−i0(H0)Jr) ImTλ+i0(Hr)J̇r(1 + Tλ−i0(H0)Jr)
−1
)

= Tr
(

ImTλ+i0(Hr)J̇r

)
admits analytic continuation to R. �
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6.2. An example of singular SSF

In this section we will review a nontrivial example of the singular SSF
from the preprint [Aza11b], which is allowed by its characterisation as the
total resonance index. But let’s begin with a trivial example. Let H be the
Hilbert space of complex numbers C and let H0 and V be the self-adjoint
operators of multiplication by 0 and 1 respectively. A rigging operator is
unnecessary in the sense that F = 1 satisfies the requirements. Moreover,
the singular SSF ξ(s)(λ;H1, H0) can be calculated directly. For r ∈ R, put
Hr = H0 + rV = r. Its spectrum is {r} and its purely singular spectral
measure Er(∆) = χ∆(r) tests for the inclusion of r. Thus the (singular)
spectral shift measure is given by

ξ(s)(∆;H1, H0) =

∫ 1

0
Tr(V Er(∆)) dr =

∫ 1

0
χ∆(r) dr = |∆ ∩ [0, 1]|,

hence the singular SSF is equal to

ξ(s)(λ;H1, H0) =
d

dλ

∫ 1

0
Tr(V Er(λ)) dr =

d

dλ
|(−∞, λ] ∩ [0, 1]| = χ[0,1](λ).

From the perspective of resonance index, the same calculation proceeds as
follows. The operator V Rz(H0) = −z−1 has the single eigenvalue σz = −z−1.
So there is a single resonance function rz = z. Obviously to every λ ∈ R there
corresponds a real resonance point, which moves into the upper half-plane
as z = λ is perturbed to z = λ+ iy, y > 0. Hence the resonance index at λ
is equal to 1 and again we find that

ξ(s)(λ;H1, H0) =
∑

rλ∈[0,1]

indres(λ,Hrλ , V ) = χ[0,1](λ).

This example of a simple moving eigenvalue can be artificially embedded
into the essential spectrum of an operator on an infinite-dimensional Hilbert
space as follows. Suppose H is an absolutely continuous self-adjoint operator
on a Hilbert space H and let H0 and V be the operators acting on the Hilbert
space H⊕ C given in block matrix form by

H0 =

(
H 0
0 0

)
, V =

(
0 0
0 1

)
.

A rigging operator F⊕1 is obtained from one onH. Then for any λ ∈ Λ(H,F )

it is not difficult to see that again ξ(s)(λ;H1, H0) = χ[0,1](λ). In this case it
may happen that there is also absolutely continuous spectrum within the
interval [0, 1], but by construction it lies in a separate layer of the spectrum
and doesn’t really interact with the singular spectrum.

Two operators H0 and H1 on a Hilbert space H will be called irreducible
if the only nonempty closed subspace U ⊂ H which is invariant under both
operators is the whole space H, that is, if H0 U = H1 U = U implies U = H.
The next example is nontrivial in the sense that the pair of self-adjoint
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operators H0 and H1 are irreducible and yet the restriction of the singular
SSF ξ(s)(λ;H1, H0) to the essential spectrum is nonzero.

Let K be a Cantor subset of [−1, 1] which is symmetric with respect
to 0 and has Lebesgue measure equal to 1. We can construct such a K by
first removing an open interval of length 1/3 from the middle of [−1, 1],
then removing an open interval of length 1/9 from the middle of each of the
two remaining intervals, removing 1/27 from the remaining intervals, and
continuing ad infinitum. The Cantor set left over is K, while the removed
open set will be denoted U . Both K and U have Lebesgue measure 1.

Consider the operator of multiplication by λ on the space L2(U, dλ), which
is obviously an absolutely continuous self-adjoint operator and its spectrum
is [−1, 1]. This will be the initial operator H0. For the perturbation V
we choose the self-adjoint rank one operator 〈1, ·〉 1, where 1 denotes the
constant function λ 7→ 1.

Proposition 6.3. The operators H0 and V are irreducible.

Proof. Let U be a closed subspace which is invariant under both H0

and V and suppose f ∈ U is not zero. Since by the Stone-Weierstrass
Theorem the set of polynomials is dense in L2(U, dλ), it must be that for
some n = 0, 1, 2, . . . the scalar product 〈f, λn〉 is nonzero. Then

0 6= 〈f, λn〉 = 〈f,Hn
0 1〉 = 〈Hn

0 f, 1〉
and since Hn

0 f ∈ U for each n, this shows that U must not be orthogonal
to 1. Therefore it must contain 1, since it is invariant under V . Then by its
invariance under H0, it must also contain all polynomials. Hence the only
possibility is that U = H. �

Theorem 6.4. With H0 and V as above, put Hr = H0 + rV . For all
large enough r > 0 the singular SSF ξ(s)(Hr, H0) is nonzero on the essential
spectrum as an element of L1(R).

Note that in this example the essential spectrum σess = [−1, 1] coincides
with the absolutely continuous spectrum, which is also stable by the Kato-
Rosenblum Theorem (numbered 7.24 below).

Proof. By the equality of singular SSF and total resonance index, it
suffices to consider the resonance index. Since V has rank one, so does the
operator

Rz(H0)V = 〈1, ·〉 (λ− z)−1,

hence there can be only one resonance point rz = −σ−1
z . The eigenvalue σz

is given by

σz =
〈
1, (λ− z)−1

〉
=

∫ 1

−1
(λ− z)−1 dµ(λ),

where the spectral measure µ is the restriction of Lebesgue measure to U .
Denoting this Cauchy-Stieltjes transform by Cµ(z), we have rz = −1/Cµ(z).
We are interested in those points λ ∈ [−1, 1] to which there corresponds a
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(finite) real resonance point rλ and therefore those λ for which Cµ(λ+ i0) is
real and nonzero. It follows from Theorem 2.7 that for a.e. λ ∈ K,

Im C(λ+ i0) = πχU (λ) = 0.

Thus for a.e. λ ∈ K,

(6.4) Cµ(λ+ i0) = lim
y→0+

∫ 1

−1

x− λ
(x− λ)2 + y2

dµ(x).

Moreover, by part (ii) of Theorem 2.6 Cµ(λ+ i0) cannot be zero on a subset
of K of positive Lebesgue measure. Therefore, for a.e. λ ∈ K there is a real
resonance point rλ. Since V is positive and rank one, at any such λ the
resonance index indres(λ;Hrλ , V ) must be equal to 1. Further, since U was
chosen to be symmetric about 0, it is easy to check that the limit (6.4) is
an odd function of λ. Thus there are positive resonance points rλ for a set
of points λ ∈ K of Lebesgue measure |K|/2 = 1/2. It follows that for large

enough r the singular SSF ξ(s)(λ;Hr, H0) is equal to 1 on a set of positive
measure. �



CHAPTER 7

Constructive stationary scattering theory

Forming an important part of perturbation theory, scattering theory
is concerned with the perturbation of the absolutely continuous spectrum
of self-adjoint operators on a Hilert space H. It is also the mathematical
framework for quantum mechanical scattering and is of course a vast subject
most of which is beyond the scope of this document. The main sources used
here are the two comprehensive volumes [Yaf92; Yaf10] by D. R. Yafaev.

The basic idea of scattering theory is to investigate the asymptotic
behaviour of solutions

u(t) = e−itH1f

to the time-dependent Schrödinger equation

i
∂

∂t
u(t) = H1u(t), u(0) = f ∈ H,

for a self-adjoint operator H1, in terms of the solutions for another (presum-
ably simpler) self-adjoint operator H0 which is close to H1 in an appropriate
sense. (For example they might be assumed to be resolvent comparable.)

In physical terms H0 and H1 are the Hamiltonians respectively describing
an initial and a perturbed system. A motivating example is the Laplace oper-
ator H0 = −∆ on L2(Rν) considered as the momentum operator describing a
free particle, which is perturbed to H1 = −∆ + V by a localised potential V
whose influence on the particle (to reasonable approximation) occurs within
a finite duration of time. In this case the initial, or free, operator H0 is
well-known in the sense that solutions of its Schrödinger equation are known
explicitly. Moreover, it is expected that the solutions for the perturbed
operator H1 asymptotically approach those for H0.

It turns out that in many situations, including the above example if
the potential V decays sufficiently quickly at infinity (and is not otherwise
pathological, e.g. if V ∈ L1(Rν)), that for any vector f from the absolutely

continuous subspace H(a)(H1), there exist f± ∈ H(a)(H0) so that

lim
t→±∞

∥∥e−itH1f − e−itH0f±
∥∥ = 0.

Or equivalently,
lim

t→±∞
eitH1e−itH0f± = f.

The operators defined by the so-limits (assuming they exist)

(7.1) W±(H1, H0) := s-lim
t→±∞

eitH1e−itH0P (a)(H0),

103
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where P (a) is the projection onto the absolutely continuous subspace, are
called the (strong) wave operators. As long as they exist the wave operators

W±(H1, H0) are isometric on H(a)(H0), due to the continuity of the norm
with respect to the so-topology. Further, they automatically exhibit the
intertwining property (see e.g. [Yaf92, Theorem 2.1.4]):

(7.2) ϕ(H1)W±(H1, H0) = W±(H1, H0)ϕ(H0)

for any bounded Borel function ϕ. It follows that the range of W± belongs to
H(a)(H1). If ranW±(H1, H0) = H(a)(H1), then the wave operators establish
a unitary equivalence of the absolutely continuous parts of H0 and H1. In this
case they are said to be complete.

It is a central problem of scattering theory to determine the existence
and completeness of the wave operators. In essence there are two distinct
approaches to this problem known as the smooth method and the trace class
method. Quoting [Yaf10, p. 8], “the smooth method makes essential use of
an explicit spectral analysis of the unperturbed operator.” This generally
entails quite stringent assumptions on the form of the initial operator, for ex-
ample requiring it to have purely absolutely continuous spectrum of constant
multiplicity (in an interval). Whereas the trace class method avoids this
kind of assumption by instead making use of the fact that, again quoting
[Yaf10, p. 9], “in a weak sense an arbitrary Hilbert-Schmidt operator is
smooth with respect to an arbitrary self-adjoint operator.” This is meant
in the sense of Theorems 3.11 and 3.13 and for example, the requirement
that the pair of operators H0 and H1 belong to a resolvent comparable
affine space constitutes a typical assumption enabling the trace class method.
A unifying theory for the smooth and trace class methods remains elusive
([Yaf92; Yaf98]). However as noted in [Yaf92], they are to a certain extent
united within the framework of stationary scattering theory.

The stationary approach to scattering theory replaces the time para-
meter t with the spectral parameter z = λ+ iy by transitioning from unitary
groups e−itH to resolvents Rλ+iy(H). Then instead of limits as t approaches
infinity, there appear limits as y approaches zero. The LAP (see Section 3.2)
is the key to the stationary approach. In Section 7.4 it is shown that if H0

and H1 are two self-adjoint operators from a rigged affine space A(F ) and
the sets Λ(H0, F ) and Λ(H1, F ) have full measure, then the wave operators
exist and are complete. This is a well-known result, but the proof given
here has novel elements. In particular, it can be considered to take a further
step toward uniting the smooth and trace class methods in the sense that it
provides the trace class method with an explicit spectral representation and
‘evaluation operator’ Eλ, which is discussed further below.

If the wave operators are complete, then the scattering operator is defined
as the product

S(H1, H0) = W ∗+(H1, H0)W−(H1, H0).
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It is a partial isometry and unitary on the absolutely continuous subspace
H(a)(H0). The intertwining property of the wave operators (7.2) implies that

(7.3) ϕ(H0)S(H1, H0) = S(H1, H0)ϕ(H0)

for any bounded Borel function ϕ. From this it follows by Theorems 2.12
and 2.13 that the scattering operator S(H1, H0) acts as multiplication by
a measurable operator-valued function S(λ;H1, H0) in any direct integral
spectral representation of H0.

Since the scattering operator is zero on the singular subspace of H0,
we might as well restrict it to the absolutely continuous subspace and choose
a direct integral representation of the absolutely continuous part of H0, which
has the spectral type of Lebesgue measure. In this case by Theorem 2.13
there is a unitary operator

(7.4) F(H0) : H(a)(H0)→ H(H0) :=

∫ ⊕
σ̂(H0)

hλ(H0) dλ.

which diagonalises the absolutely continuous part of H0 in a direct integral.
Here, σ̂(H0) is any core of the absolutely continuous spectrum σac(H0)
and the fibre Hilbert spaces hλ(H0) are determined up to their dimension.

Assuming that F(H0) is extended as zero to the singular subspace H(s)(H0),
it follows from Theorem 2.12 and (7.3) that the scattering operator can be
decomposed as

(7.5) F(H0)S(H1, H0)F∗(H0) =

∫ ⊕
σ̂(H0)

S(λ;H1, H0) dλ.

The a.e. defined unitary operator S(λ;H1, H0) on the fibre Hilbert space
hλ(H0) is the scattering matrix.

One of the most important formulas within stationary scattering theory
is the stationary formula for the scattering matrix. For our purposes its main
import is in proving the ordered exponential representation of the scattering
matrix discussed in Chapter 1, which is the key to its connection with the SSF.
Supposing the operators H0 and H1 belong to a rigged affine space A(F ),
with the perturbation V := H1 −H0 factorised as V = F ∗JF, and assuming
the LAP holds in the sense that the sets Λ(H0, F ) and Λ(H1, F ) have full
measure, the stationary formula reads

(1.13) S(λ;H1, H0) = 1− 2πiZ(λ;H0)(1 + JTλ+i0(H0))−1JZ∗(λ;H0),

for a.e. λ ∈ R. The operator Z(λ;H0) is, at least intuitively, given by
Z(λ;H0) = Fλ(H0)F ∗, where

(7.6) Fλ(H0) : H 3 f 7→ (F(H0)f)(λ) ∈ hλ(H0)

is the ‘evaluation operator’ in the direct integral (7.4). This is not a rigorous
definition since the full set of values λ for which the right hand side of (7.6) is
defined depends on f (and a choice of representative within the equivalence
class of a.e. equal functions F(H0)f). Various precise definitions of this
operator are discussed below.
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A proof of (1.13) given the LAP can be found for example in [Yaf92,
Theorem 5.7.1′] (cf. the more specific formulation of [Yaf10, Theorem 0.8.12]).
However, since for fixed λ we are interested in its dependence on the normally
fixed pair of operators H0 and H1, a standard proof of the stationary formula
is not sufficient for our purposes. The main aim of this chapter is to rectify
the situation.

We begin with an overview of the problem and its solution (also see
the introduction of [Aza16]). In order to consider (1.13) for fixed value of
the spectral parameter λ as a function of the operators H0, H1 ∈ A, it is
necessary to ensure that the set of exceptional points λ can be contained;
although the union of a countable family of such null sets remains a null set,
the same can of course not be said of a continuous family of them. Apart
from its existence, the full set of values of λ for which (1.13) holds is usually
not of particular concern and as a result it is left in a very uncertain state.
Three questions can be singled out: for which λ is the left hand side of (1.13)
defined, for which λ is the right hand side defined, and when are they equal?

For a start, it won’t do to define either side as an equivalence class
of a.e. equal operator-valued functions on the direct integral (7.4) – we need
specific representatives in order to ask about their value at a point λ. Close
to the heart of the problem is for the direct integral decomposition (7.4)
itself to be chosen arbitrarily – a core of absolutely continuous spectrum and
the corresponding fibre Hilbert spaces need to be specified in such a way
that their dependence on H0 ∈ A(F ) becomes manageable. It turns out that
the presence of the rigging operator F allows these specifications to be made
naturally.

Let’s consider in some detail the question of exactly which values of λ the
right hand side of (1.13) can be defined. In this regard the inverted factor on
the right hand side of (1.13) has already been considered in Section 4.1. By
definition, the limit Tλ+i0(H0) exists for any λ from the set Λ(H0, F ), which
in this context has full measure by Corollary 3.14 and is therefore a core
of the absolutely continuous spectrum σac(H0) by Corollary 3.8. Then by
Proposition 4.3, the factor (1+JTλ+i0(H0))−1 exists as long as λ also belongs
to Λ(H1, F ). In other words, this factor exists as long neither the initial H0

nor the perturbed operator H1 is resonant at λ.
So it remains to decide for which values of λ the operator Z(λ;H0) is

defined. Unfortunately, this is not facilitated by its usual definition, which
we now briefly review following [Yaf92, Part 1 of Section 5.4]. Beginning with
an arbitrary spectral representation (7.4), Z(λ;H0) is built up from arbitrary
representatives of a countable collection of functions in the image of F(H0)F ∗

as follows. Suppose {ϕj}j∈N is a basis of the auxiliary Hilbert space K.
Then by excluding a countable union of null sets, we can for a.e. λ define

(7.7) Z(λ;H0)ϕ := (F(H0)F ∗ϕ)(λ),

for vectors ϕ which are linear combinations of the basis vectors ϕj . Then
Z(λ;H0) can be continuously extended to other vectors once it is shown to



7. CONSTRUCTIVE STATIONARY SCATTERING THEORY 107

be bounded using the fact that

(7.8) 〈(F(H0)F ∗ϕ)(λ), (F(H0)F ∗ϕ)(λ)〉hλ(H0) =
1

π
〈ϕ, ImTλ+i0(H0)ϕ〉K ,

for a.e. λ, which follows from Corollary 2.10 and the LAP. The point is that
it is difficult to say for which values of λ the operator Z(λ;H0) is defined,
let alone anything about their dependence on H0.

We now contrast the situation within the smooth approach to scattering
theory, where the definition of the operator Z(λ;H0) can be made much
more explicit. Suppose that the initial operator H0 has purely absolutely
continuous spectrum of constant multiplicity k in an interval I. In this
case, with E0 denoting the spectral measure of H0, the operator H0E0(I)
can be diagonalised in a direct integral (7.4) of the particularly simple form
H(H0E0(I)) = L2(I; h), where h is a fixed Hilbert space of dimension k. Then
F : H → K is called strongly H0-smooth on I if FI := FE0(I) is bounded and
the operator F(H0)F ∗I maps the auxiliary Hilbert space K continuously into
the linear subspace of Hölder continuous functions Cα(I; h), α ∈ (0, 1], i.e.

‖(F(H0)F ∗I ϕ)(λ)‖h ≤ const. ‖ϕ‖K,
‖(F(H0)F ∗I ϕ)(λ)− (F(H0)F ∗I ϕ)(µ)‖h ≤ const. |λ− µ|α‖ϕ‖K,

for any λ, µ ∈ I and ϕ ∈ K (see e.g. [Yaf10, Definition 0.5.6]). Under this
assumption, the operator Z(λ;H0) can be unproblematically defined for any
λ ∈ I and any ϕ ∈ K by the formula (7.7), since in this case the functions
on the right hand side can be canonically evaluated at λ. In this setting the
stationary formula (1.13) is known to hold for any λ from the intersection
Λ(H0, F ) ∩ Λ(H1, F ) (see e.g. [Yaf10, Theorem 0.7.1]).

Finally, we briefly describe how the problems above are overcome in the
constructive approach to stationary scattering theory due to N. Azamov.
It begins by defining an explicit spectral decomposition (7.4) as follows (the
details can be found in Section 7.2). Given the LAP there is an obvious choice
of a core of the absolutely continuous spectrum, namely Λ(H0, F ), and the
rest of the definition can be motivated by the formula (7.8); for λ ∈ Λ(H0, F ),
the evaluation operator (7.6) is defined on the range of F ∗ by the formula

Eλ(H0) =
√
π−1 ImTλ+i0(H0)(F ∗)−1,

in which case the operator Z(λ;H0) is simply
√
π−1 ImTλ+i0(H0). The clos-

ure of its range is by definition the fibre Hilbert space hλ(H0). Then (using
Corollary 2.10) it can be shown that the operator

E(H0) :=

∫ ⊕
Λ(H0,F )

Eλ(H0) dλ : ranF ∗ → H(H0) :=

∫ ⊕
Λ(H0,F )

hλ(H0) dλ

continuously extends to a unitary operator from H(a)(H0) to H(H0), which
diagonalises H0 (Theorem 7.12). Importantly, the dependence of this rep-
resentation on the operator H0 is accessible. This approach is constructive
in the sense that the wave matrices w±(λ;H1, H0) and scattering matrix
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S(λ;H1, H0) are able to be explicitly defined for every value of the spectral
parameter λ from a predefined full set Λ := Λ(H0, F )∩Λ(H1, F ). Their well-
known properties including the stationary formula (Theorem 7.21) can then
be established for every λ ∈ Λ without exception. To complete the pic-
ture the wave operators and scattering operator can be built up from their
fibres, for example considering the scattering operator to be defined by
the formula (7.5), and verified to coincide with their usual time-dependent
definitions.

Throughout this chapter we will make reference to a rigged affine space of
self-adjoint operators A(F ), but unlike other chapters the compactness of the
sandwiched resolvent doesn’t play a role here and it can be assumed instead
that what is meant by A(F ) is an affine space of self-adjoint operators
over some linear subspace of A0(F ) = F ∗Bsa(K)F such that the rigging

operator F is |H|1/2-bounded for any H ∈ A(F ).

7.1. Existence of the wave operators and the stationary approach

In this section some standard results are collected, mostly from [Yaf92].
Since in applications the initial operator H0 is much simpler than the

perturbed operator H1, establishing the existence of the wave operator
W±(H1, H0) can be much easier than the same problem for W±(H0, H1).
However in the trace class regime the initial assumptions are symmetric
in H0 and H1, so that the following proposition reduces the question of the
completeness of the wave operators to that of their existence.

Proposition 7.1. Suppose that the wave operator W±(H1, H0) exists.
Then it is complete if and only if the wave operator W±(H0, H1) exists.

For a proof, see e.g. [RS79, Proposition 3 of Section XI.3].
A step towards solving the existence problem for the (strong) wave

operators (7.1) is to show the existence of the weak wave operators defined by

(7.9) w-W±(H1, H0) := w-lim
t→±∞

P (a)(H1)eitH1e−itH0P (a)(H0).

Note that if the strong wave operators W± exist, then so do the weak wave
operators w-W± and w-W± = W±.

Theorem 7.2. The existence of the strong wave operators s-W±(H1, H0)
is equivalent to the existence of the weak wave operators w-W±(H1, H0) and
the equality

(7.10) w-W ∗±(H1, H0)w-W±(H1, H0) = P (a)(H0).

This theorem is numbered 2.2.1 in [Yaf92]. The proof is reproduced here
for convenience.

Proof. Since the existence of the strong wave operators clearly implies
the existence of the weak wave operators, it suffices to assume the existence
of the weak wave operators and show that the existence of the strong wave
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operators is equivalent to the equality (7.10). So we assume that the weak
wave operators w-W± := w-W±(H1, H0) exist. Consider the equality∥∥∥eitH1e−itH0P (a)(H0)f − w-W±f

∥∥∥2

= ‖P (a)(H0)f‖2 − 2 Re
〈
eitH1e−itH0P (a)(H0)f, w-W±f

〉
+ ‖w-W±f‖2.

Since w-W± = P (a)(H1)w-W±, the second term on the right hand side tends
to −2‖w-W±f‖2. Therefore the convergence to zero of the left hand side is

equivalent to the equality ‖P (a)(H0)f‖2 = ‖w-W±f‖2. For this to hold for
any f is equivalent to (7.10). �

The next two results are Lemma 5.3.1 and Theorem 5.3.2 in [Yaf92].
Their statements have been specialised to our needs, but the proofs are
almost unchanged.

Lemma 7.3. Let H be a self-adjoint operator belonging to a rigged affine
space A(F ) and suppose that the LAP holds in the sense that Λ(H,F ) is a
full set. Then ∫

R

∥∥Fe−itHg∥∥2
dt <∞,

for all g from some dense linear subspace D in H(a)(H) consisting of vectors
of compact support.

Proof. Let E denote the spectral measure of H and let P (a) denote the
projection onto the absolutely continuous subspace H(a). Set

Xn,N =
{
λ ∈ Λ(H,F ) : |λ| ≤ n,

∥∥π−1 ImTλ+i0(H)
∥∥ ≤ N}

and let D be the set of linear combinations of all elements of the form
E(Xn,N )F ∗ψ for all possible n,N, and ψ ∈ domF ∗. The sets Xn,N do
not support any singular spectrum (by Theorem 3.7), that is E(Xn,N ) =

E(Xn,N )P (a), and from the LAP it follows that

lim
N→∞

|(−n, n) \Xn,N | = 0.

Therefore for any g ∈ ranF ∗, the element P (a)g can be approximated by
elements E(Xn,N )g ∈ D. Since the range of F ∗ is dense in H, the linear

subspace D of H(a) is dense in H(a). (Note that while P (a) ranF ∗ is dense

in H(a), it is not necessarily true that H(a) ∩ ranF ∗ is dense in H(a).)
Let g = E(Xn,N )F ∗ψ ∈ D. Choose an orthonormal basis {ϕj}j∈N of

the auxiliary Hilbert space K from domF ∗ and consider the scalar products
(rewritten using Corollary 2.10)〈

ϕj , Fe
−itHg

〉
=
〈
F ∗ϕj , e

−itHE(Xn,N )F ∗ψ
〉

=

∫
Xn,N

e−itλ
〈
ϕj , π

−1 ImTλ+i0(H)ψ
〉
dλ.
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Note that this is
√

2π times the Fourier transform f̂j(t) of the function

fj(λ) := Xn,N (λ)
〈
ϕj , π

−1 ImTλ+i0(H)ψ
〉
,

which is compactly supported and bounded. Therefore by Parseval’s equality,∫
R

∣∣〈ϕj , F e−itHg〉∣∣2 dt = 2π

∫
R

∣∣f̂j(t)∣∣2 dt = 2π

∫
R
|fj(λ)|2 dλ

= 2π

∫
Xn,N

∣∣〈ϕj , π−1 ImTλ+i0(H)ψ
〉∣∣2 dλ.

Now summing over j we obtain∫
R

∥∥Fe−itHg∥∥2
dt = 2π

∫
Xn,N

∥∥π−1 ImTλ+i0(H)ψ
∥∥2

dλ.

Thus, by the construction of the set Xn,N , the integral converges (and does
not exceed 4πN2n‖ψ‖). �

Theorem 7.4. Let H0 and H1 = H0 u V be a self-adjoint operators
from a rigged affine space of self-adjoint operators A(F ). If Λ(H0, F ) and
Λ(H1, F ) are full sets, then the weak wave operators w-W±(H1, H0) exist.

Proof. Note first that for any f, g ∈ H,
d

dt

〈
e−itH1f, e−itH0g

〉
=
〈
−iH1e

−itH1f, e−itH0g
〉

+
〈
e−itH1f,−iH0e

−itH0g
〉

= −iV
[
e−itH1f, e−itH0g

]
= −i

〈
Fe−itH1f, JFe−itH0g

〉
,

where the decomposition V = F ∗JF was used in the last line. Therefore,〈
f, eit2H1e−it2H0g

〉
−
〈
f, eit1H1e−it1H0g

〉
= −i

∫ t2

t1

〈
Fe−itH1f, JFe−itH0g

〉
dt.

Using the Schwartz inequality, this implies that∣∣∣ 〈f, eit2H1e−it2H0g
〉
−
〈
f, eit1H1e−it1H0g

〉 ∣∣∣
≤ ‖J‖

∫ t2

t1

‖Fe−itH1f‖‖Fe−itH0g‖ dt

≤ ‖J‖
(∫ t2

t1

‖Fe−itH1f‖2 dt
)1/2(∫ t2

t1

‖Fe−itH0g‖2 dt
)1/2

.

By Lemma 7.3 the right hand side above tends to zero when t1, t2 → ±∞, for
a dense set of vectors f in H(a)(H1) and a dense set of vectors g in H(a)(H0).
Thus for f and g from these dense sets, there exist the limits

lim
t→±∞

〈
f, P (a)(H1)eitH1e−itH0P (a)(H0)g

〉
.

Hence the weak wave operators w-W±(H1, H0) exist. �
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Later it will be shown using techniques of stationary scattering theory that
the premise of Theorem 7.4 also implies the equality (7.10). Then Theorem 7.2
implies the existence of the strong wave operators.

The transition to the stationary scheme of scattering theory is achieved
via the relation (see e.g. [Yaf92, (1.4.4)])

(7.11) Rz(H) = ±i
∫ ∞

0
e∓it(H−z) dt,

where z = λ ± iy, y > 0. Or perhaps more to the point, the transition is
made through the lemma below.

Lemma 7.5. Let H0 and H1 be self-adjoint operators with P
(a)
0 and P

(a)
1

being the projections onto their absolutely continuous subspaces. For any
vectors f0 and f1 and any y > 0,

(7.12) 2y

∫ ∞
0

e−2yt
〈
e∓itH1P

(a)
1 f1, e

∓itH0P
(a)
0 f0

〉
dt

=
y

π

∫
R

〈
Rλ±iy(H1)P

(a)
1 f1, Rλ±iy(H0)P

(a)
0 f0

〉
dλ.

Proof. This is [Yaf92, Lemma 2.7.1] and we only sketch the proof.
We apply the vector-valued Parseval equalities∫

R
〈f1(t), f0(t)〉 dt =

∫
R

〈
f̂1(λ), f̂0(λ)

〉
dλ,

where f̂j(λ) = (2π)−1/2
∫
R e
±iλtfj(t) dt, j = 0, 1, to the functions

fj(t) = θ(t) e−yt∓itHjP
(a)
j fj ,

where θ denotes the Heaviside step function. Then it remains to use the
equality (7.11). �

The limits of (7.12) as y → 0+, if they exist, define the weak abelian
wave operators, which we will denote by W±(H1, H0). That is, the weak
abelian wave operators are defined by

W±(H1, H0) = w-lim
y→0+

2y

∫ ∞
0

e−2ytw-W±(H1, H0) dt.

If the weak wave operators w-W±(H1, H0) exist then so do the weak abelian
wave operators (which coincide), as a consequence of the following abelian
limit result.

Lemma 7.6. If f is a bounded function on R and f(∞) := limt→∞ f(t)
exists, then

f(∞) = lim
y→0+

2y

∫ ∞
0

e−2yf(t) dt.
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Proof. Let y > 0. Note that the integral of the function ωy(t) = ye−yt

over the positive real axis is equal to 1. Also, for N > 0 its integral over
[0, N ] converges to 0 as y → 0, while its integral over [N,∞) converges to 1.
Then the result follows from the estimate∣∣∣∣∫ ∞

0
ωy(t)f(t) dt− f(∞)

∣∣∣∣
≤
∫ N

0
ωy(t) |f(t)− f(∞)| dt+

∫ ∞
N

ωy(t) |f(t)− f(∞)| dt,

since both terms on the right converge to 0 as y → 0. �

The lemma below is [Yaf92, Lemma 5.2.1], whose proof is also reproduced
for convenience.

Lemma 7.7. Let H0, H1, be self-adjoint operators with spectral meas-
ures E0 and E1 respectively. For any vectors f0 and f1, and for any Borel
sets ∆0,∆1 ⊂ R, with intersection ∆ := ∆1 ∩∆0,

(7.13) lim
y→0+

y

π
〈Rλ±iy(H1)E1(∆1)f1, Rλ±iy(H0)E0(∆0)f0〉 = 0,

for a.e. λ ∈ R \∆. Moreover, if the limit

(7.14) lim
y→0+

y

π
〈Rλ±iy(H1)f1, Rλ±iy(H0)f0〉

exists for a.e. λ ∈ R, then there also exists for a.e. λ ∈ R the limit

(7.15) lim
y→0+

y

π
〈Rλ±iy(H1)E1(∆1)f1, Rλ±iy(H0)E0(∆0)f0〉

= ∆(λ) lim
y→0+

y

π
〈Rλ±iy(H1)f1, Rλ±iy(H0)f0〉 .

Proof. We begin with the inequality

(7.16)
∣∣∣ y
π
〈Rλ±iy(H1)f1, Rλ±iy(H0)f0〉

∣∣∣2
≤ y

π
‖Rλ±iy(H1)f1‖2

y

π
‖Rλ±iy(H0)f0‖2.

Consider for example

y

π
‖Rλ±iy(H0)f0‖2 =

1

π
〈f0, ImRλ+iy(H0)f0〉 ,

which is the Poisson integral of the measure 〈f0, E0f0〉 and hence has a limit
as y → 0+ for a.e. λ. Moreover, the set of its finite and nonzero limits is
a minimal support of the absolutely continuous part of the measure (The-
orem 2.7). Putting f0 equal to E0(∆0)f0, we see that since the measure is
supported within ∆0, the limit of its Poisson integral must be zero a.e. outside
of ∆0. Therefore, with f0 = E0(∆0)f0 and f1 = E1(∆1)f1, the right hand
side and hence the left hand side of inequality (7.16) is zero for a.e. λ ∈ R\∆.
This proves (7.13).
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Using (7.13), it suffices to verify relation (7.15) on the set ∆. For this,
denoting the limit (7.14) by a±(f1, f0;λ), we note that

a±(E1(R \∆1)f1, E0(∆0)f0;λ) = a±(f1, E0(R \∆0)f0;λ) = 0

for a.e. λ from the set ∆ by (7.13). Thus for a.e. λ ∈ ∆,

a±(f1, f0;λ) = a±(E1(∆1)f1, E0(∆0)f0;λ)

+ a±(E1(R \∆1)f1, E0(∆0)f0;λ)

+ a±(f1, E0(R \∆0)f0;λ)

= a±(E1(∆1)f1, E0(∆0)f0;λ),

which establishes (7.15). �

Theorem 7.8. Assuming the weak abelian wave operators exist, the fol-
lowing equality holds for any vectors f0 and f1.

(7.17) 〈f1,W±(H1, H0)f0〉 =
1

π

∫
R

lim
y→0+

y 〈Rλ±iy(H1)f1, Rλ±iy(H0)f0〉 dλ.

Proof. By Lemma 7.5 we have

〈f1,W±(H1, H0)f0〉 = lim
y→0+

y

π

∫
R

〈
Rλ±iy(H1)P

(a)
1 f1, Rλ±iy(H0)P

(a)
0 f0

〉
dλ.

Following [Yaf92, Lemma 5.2.2], we will show that the limit and integral
on the right hand side can be interchanged. Then Lemma 7.7 implies that
the projections onto the absolutely continuous subspaces can be removed
resulting in the right hand side of (7.17).

For brevity we put

gj(λ± iy) := Rλ±iy(Hj)P
(a)
j fj , j = 0, 1.

Let Y be any Borel subset of R. The Schwartz inequality implies

y

π

∫
Y

∣∣〈g1(λ± iy), g0(λ± iy)〉
∣∣ dλ(7.18)

≤ y

π

∫
Y
‖g1(λ± iy)‖‖g0(λ± iy)‖ dλ

≤
(
y

π

∫
Y
‖g1(λ± iy)‖2 dλ

)1/2( y
π

∫
Y
‖g0(λ± iy)‖2 dλ

)1/2

.

By the Vitali convergence theorem, the interchange of limit and integral
will be justified if we show that the integral on the left hand side of (7.18)
tends to zero uniformly with respect to y ∈ (0, 1) when |Y | → 0 and when
Y = (−∞,−N)∪(N,∞) and N →∞. Observe that this property is satisfied
if y ≥ ε for any fixed positive ε. Therefore it suffices to show that two the
integrands on the right hand side of (7.18) have limits in L1(R) as y → 0+.
But for j = 0, 1, the function

y

π
‖gj(λ± iy)‖2 =

1

π

〈
P

(a)
j fj , ImRλ+iy(Hj)P

(a)
j fj

〉
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is the Poisson integral of the finite measure 〈fj , E(a)
j fj〉 and since this meas-

ure is absolutely continuous, its Poisson integral converges in L1(R) by
Theorem 2.3. �

7.2. The evaluation operator

In this section we define the explicit spectral decomposition of the ab-
solutely continuous part of H which was discussed at the beginning of the
chapter. Throughout this section, H is a self-adjoint operator and F is a rig-
ging operator which is relatively bounded with respect to the operator |H|1/2.

Proposition 7.9. Let H be a self-adjoint operator from a rigged affine
space A(F ). Then for any nonreal z, the operator FRz(H) has trivial kernel
and cokernel.

Proof. The operator FRz(H) has trivial kernel, since this is true of
both F and Rz(H). If F is bounded then (FRz(H))∗ = Rz̄(H)F ∗ also has
trivial kernel. In the case that F is unbounded, we check that the range of
FRz(H) is dense in K = F dom[H] (see the discussion surrounding (3.26)).

Let ψ(x) = (|x| + 1)−1/2 so that ranψ(H) = dom[H] and ranψ2(H) =
domH = ranRz(H). To any ϕ ∈ K there is an arbitrarily close vector
Fψ(H)f belonging to the dense set F dom[H]. Then there exists a vector
ψ(H)g ∈ dom[H] arbitrarily close to f by the density of dom[H] in H. Hence

‖ϕ− Fψ2(H)g‖ ≤ ‖ϕ+ Fψ(H)f‖+ ‖Fψ(H)f − Fψ2(H)g‖
≤ ‖ϕ+ Fψ(H)f‖+ ‖Fψ(H)‖‖f − ψ(H)g‖

can be made arbitrarily small. �

For y > 0, the range of the operator
√

ImTλ+iy(H) is dense in the
auxiliary Hilbert space K. Indeed, with z = λ + iy, this can be seen from
the equality

(7.19)
√

ImTz(H) =
√
yFRz(H)(FRz(H))∗ =

√
y|(FRz(H))∗|,

since the range of the operator |(FRz(H))∗| coincides with that of FRz(H)
and (ranFRz(H))⊥ = ker(FRz(H))∗ = {0}. However, for λ ∈ Λ(H,F ) the

range of
√

ImTλ+i0(H) may no longer be dense and we define

hλ(H) = hλ(H,F ) = ran
√

ImTλ+i0(H).

Lemma 7.10. The field of fibre Hilbert spaces

(7.20) {hλ(H) : λ ∈ Λ(H,F )}

is measurable, in the sense that the orthogonal projections onto hλ are weakly
measurable.
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Proof. Let Pλ be the projection onto hλ. For any ϕ,ψ ∈ K, we check
that the function

(7.21) Λ(H,F ) 3 λ 7→ 〈ϕ, Pλψ〉 = 〈Pλϕ, Pλψ〉

is measurable as the limit of measurable functions. Since any vector in the
range of Pλ by definition belongs to the closure of the range of the operator√

ImTλ+i0(H), there exist sequences ηn, χn, n = 1, 2, . . . , from K such that√
ImTλ+i0(H) ηn → Pλϕ, and

√
ImTλ+i0(H)χn → Pλψ.

Further, for any fixed n ∈ N, we can find convergent sequences ηn,k → ηn
and χn,k → χn in K, whose terms belong to the dense set domF ∗. For any
n, k ∈ N, the function

λ 7→
〈√

ImTλ+i0(H) ηn,k,
√

ImTλ+i0(H)χn,k

〉
= lim

y→0+
〈F ∗ηn,k, ImRλ+iy(H)F ∗χn,k〉

is measurable as the limit of measurable functions. Hence for any n ∈ N the
limit as k →∞ is a measurable function. Finally, taking the limit as n→∞
shows that the function (7.21) is measurable. �

It follows from Lemma 7.10 (see Section 2.4) that the field (7.20) defines
a direct integral of Hilbert spaces

(7.22) H(H) = H(H,F ) :=

∫ ⊕
Λ(H,F )

hλ(H,F ) dλ,

which can be viewed as the closed subspace of L2(Λ,K) consisting of those
functions f such that f(λ) ∈ hλ(H) for a.e. λ ∈ Λ(H,F ).

For any λ ∈ Λ(H,F ), let the evaluation operator Eλ(H) = Eλ(H,F ) be
defined on the range of F ∗ by the formula

(7.23) Eλ(H) =
1√
π

√
ImTλ+i0(H)(F ∗)−1.

Lemma 7.11. The family of operators {Eλ(H) : λ ∈ Λ(H,F )} defines a
bounded operator E(H) = E(H,F ) : H → H(H), which is given for any f ∈
ranF ∗ by (E(H)f)(λ) := Eλ(H)f and has norm ≤ 1. Moreover, the equality

(7.24) ‖E(H,F )f‖2H(H) = ‖E(Λ(H,F ))f‖H

holds for any f ∈ H.

Proof. For any f from ranF ∗, the function λ 7→ Eλ(H)f obviously
takes values in hλ(H) and we will show that it is square integrable and hence
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belongs to H(H). Indeed,

‖E(H,F )f‖2H(H) =

∫
Λ(H,F )

〈(E(H)f)(λ), (E(H)f)(λ)〉hλ dλ

=
1

π

∫
Λ(H,F )

lim
y→0+

〈f, ImRλ+iy(H)f〉H dλ

= ‖E(Λ(H,F ))f‖2H.

The first equality is the definition of the norm on H(H) and since f ∈ ranF ∗,
the second equality is a consequence of the definition (7.23). The third,
in which E denotes the spectral measure of H, holds due to properties of the
Poisson integral (see Corollary 2.10 and Theorem 3.7): the measure 〈f,Ef〉
is purely absolutely continuous on the set Λ(H,F ), since its Poisson integral
π−1 〈f, ImRλ+iy(H)f〉 has finite limits there, and its density is a.e. equal to
the limit of its Poisson integral. It follows that E(H,F ) : ranF ∗ → H(H) is
a bounded operator whose norm is ≤ 1. Therefore by the density of the range
of F ∗ in H, this operator extends to a bounded operator E(H) : H → H(H)
with norm ≤ 1. The equality (7.24) extends by continuity from f ∈ ranF ∗

to any f ∈ H. In fact this implies all equalities in the above chain remain
valid for any f ∈ H. �

Theorem 7.12. Let H be a self-adjoint operator on a Hilbert space H
and let E be its spectral measure. Suppose F is a rigging operator which is
relatively bounded with respect to |H|1/2. The operator E(H) : H → H(H)
defined above is a partial isometry with initial space E(Λ(H,F ))H and final
space H(H). Moreover, E(H) diagonalises the operator E(Λ(H,F ))H in the
sense that for all f ∈ domH

(7.25) (E(H)Hf)(λ) = λ(E(H)f)(λ) ∀ a.e. λ ∈ Λ(H,F )

and if h is a bounded Borel function whose minimal support is a subset of
Λ(H,F ), then for all f ∈ H

(7.26) (E(H)h(H)f)(λ) = h(λ)(E(H)f)(λ) ∀ a.e. λ ∈ Λ(H,F ).

Proof. The equality (7.24) implies that E(H) is a partial isometry with
initial space E(Λ(H,F ))H.

We will now show, for any Borel subset ∆ ⊂ Λ(H,F ), that if E(∆)f = 0
then (E(H)f)(λ) = 0 for a.e. λ ∈ ∆. Let fn be a sequence from the dense
range of F ∗ converging to f . Then∫

∆
‖(E(H)f)(λ)− Eλ(H)fn‖2 dλ =

∫
∆
‖(E(H)(f − fn))(λ)‖2 dλ

≤
∫

Λ(H,F )
‖(E(H)(f − fn))(λ)‖2 dλ

= ‖E(H)(f − fn)‖2

≤ ‖f − fn‖2 → 0.
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Moreover, since fn ∈ ranF ∗, for any n we have∫
∆
‖Eλ(H)fn‖2 dλ =

1

π

∫
∆

lim
y→0+

〈fn, ImRλ+iyfn〉 dλ = ‖E(∆)fn‖2.

Therefore, if E(∆)f = 0, then in the limit the above equality becomes∫
∆
‖(E(H)f)(λ)‖2 dλ = 0,

which implies that (E(H)f)(λ) = 0 for a.e. λ ∈ ∆.
Let ∆ be a Borel subset of Λ(H,F ) and let f ∈ H. From above it follows

that (E(H)E(∆)f)(λ) = 0 for a.e. λ /∈ ∆ and also that for a.e. λ ∈ ∆,

(E(H)E(∆)f)(λ) = (E(H)f)(λ)− (E(H)E(R \∆)f)(λ) = (E(H)f)(λ).

Therefore,

(E(H)E(∆)f)(λ) = ∆(λ)(E(H)f)(λ), ∀ a.e. λ ∈ Λ(H,F ),

where ∆(λ) denotes the indicator of ∆. This equality implies that (7.26)
holds for step functions h(λ), hence by continuity it holds for all bounded
Borel functions h. And with hn(λ)→ λ continuity implies (7.25).

It remains to show that H(H) is the final space, for which it is enough
to show that the range of E(H) is dense in H(H). Let g(λ) be an element
of H(H) which is orthogonal to the range of E(H). The equality (7.26) implies
that if the range of E(H) contains a function f(λ), then it also contains all
functions of the form h(λ)f(λ), where h is a scalar-valued bounded Borel
function. Hence for any f ∈ H, g(λ) must be orthogonal to h(λ)(E(H)f)(λ)
for any bounded Borel h. It follows that g(λ) ⊥ (E(H)f)(λ) in hλ(H) for
a.e. λ ∈ Λ(H,F ). Considering f from the range of F ∗, it must be that g(λ)

is orthogonal to the range of
√

ImTλ+i0(H) and hence to the whole fibre
Hilbert space hλ(H). Therefore g(λ) = 0 for a.e. λ ∈ Λ(H,F ). �

Corollary 7.13. Let H be a self-adjoint operator and let F be a |H|1/2-
bounded rigging operator such that Λ(H,F ) is a full set. Then the operator
E(H,F ) : H → H(H,F ) diagonalises the absolutely continuous part of H.

The strength of this corollary, which gives an explicit diagonalisation of
the absolutely continuous part of an arbitrary self-adjoint operator, is due to
its strong premise: the LAP.

7.3. The wave and scattering matrices

Throughout this section and for the remainder of this chapter A(F )
denotes a fixed rigged affine space (however see the remark on p. 108).
For any H ∈ A(F ) and any nonreal z, consider the polar decomposition:

(FRz̄(H))∗ = Uz(H,F )|(FRz̄(H))∗|.

Since (FRz̄(H))∗ has trivial kernel and cokernel by Proposition 7.9, the op-
erator Uz(H,F ) : K → H is unitary. For any two self-adjoint operators H0
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and H1 from A(F ) and for any nonreal z, the operator w(z;H1, H0) on the
auxiliary Hilbert space K defined by

(7.27) w(z;H1, H0) = U∗z (H1, F )Uz(H0, F )

will be called an off-axis wave matrix. Some immediate properties are
collected in the proposition below.

Proposition 7.14. The off-axis wave matrices are unitary, satisfy the
multiplicative property w(z;H2, H0) = w(z;H2, H1)w(z;H1, H0), as well as
the equalities w(z;H0, H0) = 1 and w∗(z;H1, H0) = w(z;H0, H1).

Lemma 7.15. Suppose H0 and H1 = H0 u V, where V = F ∗JF, are two
operators from the affine space A(F ). Then with z = λ ± iy, y > 0, and
z+ = λ+ iy, the off-axis wave matrices satisfy the equalities√

ImTz+(H1)w(z;H1, H0)
√

ImTz+(H0) = yFRz̄(H1)(FRz̄(H0))∗,(7.28) √
ImTz+(H1)w(z;H1, H0) = (1− Tz̄(H1)J)

√
ImTz+(H0),(7.29)

w(z;H1, H0)
√

ImTz+(H0) =
√

ImTz+(H1)(1 + JTz(H0)).(7.30)

Proof. These equalities follow easily from the resolvent identities. For
example, from the equality (7.19) and the definition (7.27) of the off-axis
wave matrix, we obtain

w(z;H1, H0)
√

ImTz+(H0) =
√
y U∗z (H1)(FRz̄(H0))∗.

Now using the second resolvent identity and then again (7.19),

w(z;H1, H0)
√

ImTz+(H0) =
√
y U∗z (H1)(FRz̄(H1))∗(1 + JTz(H0))

=
√

ImTz+(H1)(1 + JTz(H0)).

Equalities (7.28) and (7.29) are obtained similarly. �

Now we consider what happens as the off-axis spectral parameter z =
λ± iy approaches the real axis. For this purpose we reintroduce the set of
regular points Π(H,F ), defined by (4.2) – in short it consists of all z = λ± iy
for y ≥ 0, where it is assumed that λ ∈ Λ(H,F ) if y = 0. As in Lemma 7.15,
for any z = λ± iy ∈ Π(H,F ), let z+ = λ+ iy denote its projection onto the
upper half-plane Π+(H,F ).

Proposition 7.16. Let p = 1 and q = 2, or p = q = ∞, accordingly
if the rigged affine space A(F ) is resolvent comparable or not. Then for

any z ∈ Π(H,F ;Lp), the operator
√

ImTz+(H) belongs to Lq(K). Moreover,
if λ ∈ Λ(H,F ;Lp) then in the norm of Lq(K),

√
ImTλ+iy(H)→

√
ImTλ+i0(H) as y → 0 + .

Proof. Since ImTz+(H) belongs to Lp(K), its square root belongs
to Lq(K). The convergence in Lp(K) of ImTλ+iy(H) → ImTλ+i0(H) as
y → 0+ follows from Corollary 3.15. Therefore its square root converges in
Lq(K) as a result of the Birman-Koplienko-Solomyak inequality (2.20). �
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If λ belongs to the intersection Λ(H0, F ) ∩ Λ(H1, F ) then each of the
operators (7.28), (7.29), and (7.30) exists as a bounded operator in the limit
as y → 0+. This is clear for (7.29) and (7.30) given Proposition 7.16, while
either one of these equalities implies the existence of the limit of (7.28),
which is equal to

lim
y→0+

y

π
FRλ∓iy(H1)(FRλ∓iy(H0))∗ = (1− Tλ∓i0(H1)J)

1

π
ImTλ+i0(H0)

=
1

π
ImTλ+i0(H1)(1 + JTλ±i0(H0)).

(In [Aza11a, Definition 5.1.4], also cf. [Yaf92, (2.7.4)], this operator is referred
to by the notation a±(λ;H1, H0).)

For convenience, for any z ∈ Π(H,F ) we put

Ez(H) :=
√
π−1 ImTz+(H)(F ∗)−1.

Then Proposition 7.16 implies that for any z = λ ± iy with λ ∈ Λ(H,F )
and any f ∈ ranF ∗, Ez(H)f converges to Eλ(H)f as y → 0+. Suppose z
is nonreal, in which case we note that the range of Ez(H) is dense in the
auxiliary Hilbert space K. This fact and the equality (7.28) imply that the
off-axis wave matrices are determined by the numbers

〈Ez(H1)f, w(z;H1, H0)Ez(H0)g〉 =
y

π
〈Rz(H1)f,Rz(H0)g〉 , f, g ∈ ranF ∗.

Proposition 7.17. Suppose that H0 and H1 are self-adjoint operators
from the affine space A(F ). Then for any λ ∈ Λ(H0, F )∩Λ(H1, F ), there exist
bounded operators

(7.31) w(λ± i0;H1, H0) = w±(λ;H1, H0) : hλ(H0, F )→ hλ(H1, F ),

namely the wave matrices, which have norm ≤ 1 and are uniquely determined
by the numbers

(7.32) w±(λ;H1, H0)[Eλ(H1)f,Eλ(H0)g]

:= lim
y→0+

y

π
〈Rλ±iy(H1)f,Rλ±iy(H0)g〉 , f, g ∈ ranF ∗.

Proof. This proof follows a standard method (cf. [Yaf92, §5.2]). The
formula (7.32) defines a form on ranEλ(H1)×ranEλ(H0), which we will show
is bounded, with bound ≤ 1, and hence defines a bounded operator (7.31)
from the closure of ranEλ(H0) to the closure of ranEλ(H1). For y > 0 and
any f = F ∗ϕ, g = F ∗ψ ∈ ranF ∗,

y

π
| 〈Rλ±iy(H1)f,Rλ±iy(H0)g〉 | ≤ y

π
‖Rλ±iy(H1)F ∗ϕ‖‖Rλ±iy(H0)F ∗ψ‖

=
1

π
〈ϕ, ImTλ+iy(H1)ϕ〉1/2 〈ψ, ImTλ+iy(H0)ψ〉1/2

= ‖Eλ+iy(H1)f‖‖Eλ+iy(H0)g‖
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Then since λ ∈ Λ(H0, F ) ∩ Λ(H1, F ), by taking the limit y → 0+ we obtain

| 〈Eλ(H1)f, w±(λ;H1, H0)Eλ(H0)g〉 | ≤ ‖Eλ(H1)f‖‖Eλ(H0)g‖.
Therefore by continuous linear extension, (7.32) determines a bounded form
on hλ(H1)× hλ(H0), which corresponds to the bounded operator (7.31) with
the same bound. �

The next lemma establishes the equalities of Lemma 7.15 in the case
that z = λ± i0.

Lemma 7.18. For λ ∈ Λ(H0, F ) ∩ Λ(H1, F ), the wave matrices satisfy
the equalities√

ImTλ+i0(H1)w±(λ;H1, H0)
√

ImTλ+i0(H0)

= lim
y→0+

y

π
FRλ∓iy(H1)(FRλ∓iy(H0))∗,

(7.33)

√
ImTλ+i0(H1)w±(λ;H1, H0) = (1− Tλ∓i0(H1)J)

√
ImTλ+i0(H0),(7.34)

w±(λ;H1, H0)
√

ImTλ+i0(H0) =
√

ImTλ+i0(H1)(1 + JTλ±i0(H0)),(7.35)

which are interpreted as equalities of bounded operators acting K → K,
hλ(H0)→ K, and K → hλ(H1), respectively.

Proof. For any ϕ,ψ ∈ domF ∗, the definition (7.32) and the equal-
ity (7.28) imply

(E) :=
〈√

ImTλ+i0(H1)ϕ,w±(λ;H1, H0)
√

ImTλ+i0(H0)ψ
〉

= lim
y→0+

〈√
ImTλ+iy(H1)ϕ,w(λ± iy;H1, H0)

√
ImTλ±iy(H0)ψ

〉
.

By applying each of (7.28), (7.29), and (7.30) and then moving the limit
back within the scalar product, we obtain

(E) =

〈
ϕ, lim

y→0+

y

π
FRλ∓iy(H1)(FRλ∓iy(H0))∗ψ

〉
=
〈
ϕ, (1− Tλ−i0(H1)J)

√
ImTλ+i0(H0)

√
ImTλ+i0(H0)ψ

〉
=
〈√

ImTλ+i0(H1)ϕ,
√

ImTλ+i0(H1)(1 + JTλ+i0(H0))ψ
〉
.

By the density of domF ∗, the first equality implies (7.33). Similarly, now
also using the density of the range of ranEλ(H) in hλ(H), the second equality
implies (7.34) and the third implies (7.35). �

As an aside, the equalities (7.34) can be identified with equations for
the stationary scattering states which appear in physics books, in particular
[Tay72, (10.8)]. (There are two sign disagreements with [Tay72]; one comes
from the traditional difference between physics and mathematics when it
comes to the choice of sign for the definition of the wave operators, while
the other comes from a difference in sign convention for the resolvent.)
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From (7.34) and the second resolvent identity we can easily obtain a version
of the Lippman-Schwinger equation ([Tay72, (10.12)])√

π−1 ImTλ+i0(H1)w±(λ;H1, H0)

=
√
π−1 ImTλ+i0(H0)− Tλ∓i0(H0)J

√
π−1 ImTλ+i0(H1)w±(λ;H1, H0).

For a given state ϕ this equation can be suggestively rewritten as

ϕ(±)(λ) = ϕ(λ)− Tλ∓i0(H0)Jϕ(±)(λ),

where ϕ(±)(λ) =
√
δλ(H1)w±(λ;H1, H0)

√
δλ(H0)ϕ, ϕ(λ) = δλ(H0)ϕ and

δλ(H) = π−1 ImTλ+i0(H).

Theorem 7.19. Let H0, H1 and H2 be self-adjoint operators from a
rigged affine space A(F ). Then the wave matrices satisfy the multiplicative
property

(7.36) w±(λ;H2, H0) = w±(λ;H2, H1)w±(λ;H1, H0),

for any λ ∈
⋂
j Λ(Hj , F ), j = 0, 1, 2. In addition, the wave matrices are

unitary and satisfy the equalities w(λ;H0, H0) = 1 and w∗±(λ;H1, H0) =
w±(λ;H0, H1).

Proof. To prove (7.36) it is enough to show that for any f, g ∈ ranF ∗

〈Eλ(H2)f, w±(λ;H2, H0)Eλ(H0)g〉
= 〈Eλ(H2)f, w±(λ;H2, H1)w±(λ;H1, H0)Eλ(H0)g〉 .

This can be inferred from the following equality of bounded operators on the
auxiliary Hilbert space K.√

ImTλ+i0(H2)w±(λ;H2, H0)
√

ImTλ+i0(H0)

= lim
y→0+

√
ImTλ+iy(H2)w(λ± iy;H2, H0)

√
ImTλ+iy(H0)

= lim
y→0+

√
ImTλ+iy(H2)w(λ± iy;H2, H1)w(λ± iy;H1, H0)

√
ImTλ+iy(H0)

=
√

ImTλ+i0(H2)w±(λ;H2, H1)w±(λ;H1, H0)
√

ImTλ+i0(H0).

Here, the first equality follows from (7.28) and its analogue (7.33) in the case
y = 0, the second equality uses the multiplicative property of the off-axis
wave matrix, while the final equality follows from (7.29) and (7.30) and their
analogues (7.34) and (7.35).

The multiplicative property can now be used to prove the remaining prop-
erties. Firstly, it follows easily from the definition of the wave matrices (7.32)
that w±(λ;H0, H0) = 1. Combining this with the multiplicative property,
we have

w±(λ;H1, H0)w±(λ;H0, H1) = w±(λ;H1, H1) = 1,

w±(λ;H0, H1)w±(λ;H1, H0) = w±(λ;H0, H0) = 1.
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From these equalities and the fact that ‖w±(λ;H1, H0)‖ ≤ 1, it follows that
the wave matrices have norm 1 and are invertible with norm 1 inverses, from
which it can be inferred that they are unitary and hence satisfy the equalities
w∗±(λ;H1, H0) = w±(λ;H0, H1). �

For any two self-adjoint operators H0 and H1 from A(F ) and for any
z ∈ Π(H0, F ) ∩Π(H1, F ) the (off-axis) scattering matrix is defined by

S(z;H1, H0) := w∗(z;H1, H0)w(z̄;H1, H0),

The theorem below collects properties of the scattering matrix which follow
immediately from its definition and the properties of the wave matrices
established in Theorem 7.19.

Theorem 7.20. Let Hj , j = 0, 1, 2, be self-adjoint operators from the
rigged affine space A and let z ∈

⋂
j Π(Hj , F ) where j varies through {0, 1}

or {0, 1, 2} as appropriate. Then the operator S(z;H1, H0) is unitary and
satisfies the multiplicative identities

S∗(z;H1, H0) = S(z̄;H1, H0)

S(z;H2, H0) = w∗(z;H1, H0)S(z;H2, H1)w(z̄;H1, H0),

S(z;H2, H0) = w∗(z;H1, H0)S(z;H2, H1)w(z;H1, H0)S(z;H1, H0),(7.37)

Considering the symmetry of the scattering matrix expressed in the
first equality above, there is little need to consider z in the lower half-plane
Π−(H0, F )∩Π−(H1, F ) and we write S(λ;H1, H0) and S∗(λ;H1, H0) instead
of S(λ+ i0;H1, H0) and S(λ− i0;H1, H0).

The equality (7.37) (cf. [Yaf92, (7.1.5)+]) will be useful in the next
chapter.

Theorem 7.21. Let H0 and H1 = H0 u V, V = F ∗JF, be two self-
adjoint operators from a rigged affine space A(F ). For any z ∈ Π±(H0, F ) ∩
Π±(H1, F ), the (off-axis) scattering matrix satisfies the formula

(7.38) S(z;H1, H0) = 1∓ 2i
√

ImTz(H0)J(1− Tz(H1)J)
√

ImTz(H0).

Note that the off-axis scattering matrix is a unitary operator on the
auxiliary Hilbert space K, while the scattering matrix S(λ;H1, H0) itself is a
unitary operator on the fibre Hilbert space hλ(H0). However as a consequence
of (7.38), if λ belongs to the intersection Λ(H0, F )∩Λ(H1, F ), then the limit
S(λ+ i0;H1, H0) of the off-axis scattering matrix is equal to S(λ;H1, H0)⊕1
acting on K = hλ(H0)⊕ hλ(H0)⊥.

Also note that using the second resolvent identity the factor 1−Tz(H1)J
can be written as

1− Tz(H1)J = (1 + Tz(H0)J)−1(1 + Tz(H0)J − (1 + Tz(H0)J)Tz(H1)J)

= (1 + Tz(H0)J)−1.
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(Here we are assuming Tz(H0) is compact so that the proof of Lemma 4.1
implies the existence of the inverted factor.) Similarly, we could instead
write J(1− Tz(H1)J) = (1− JTz(H1))J = (1 + JTz(H0))−1J .

With such an alteration so that only the operator H0 and not H1 appears
on the right hand side, the equality (7.38) is known as the stationary formula
for the scattering matrix.

Proof. Let z = λ+iy, y ≥ 0, where we assume λ ∈ Λ(H0, F )∩Λ(H1, F )
if y = 0. Using (7.29) and (7.30), or (7.34) and (7.35), we obtain√

ImTz(H0)S(z;H1, H0)
√

ImTz(H0)

= (1 + Tz̄(H0)J) ImTz(H1)(1 + JTz̄(H0))

= ImTz(H0)(1− JTz(H1))(1 + JTz̄(H0)).

While it follows from the second resolvent identity that

(1− JTz(H1))(1 + JTz̄(H0))

= 1− JTz(H1) + J(1− Tz(H1)J)Tz̄(H0)

= 1− J(1− Tz(H1)J)Tz(H0) + J(1− Tz(H1)J)Tz̄(H0)

= 1− 2iJ(1− Tz(H1)J) ImTz(H0).

Therefore, for any f = F ∗ϕ, g = F ∗ψ ∈ ranF ∗ we get

〈Ez(H0)f,S(z;H1, H0)Ez(H0)g〉
= 〈ϕ, ImTz(H0) [1− 2iJ(1− Tz(H1)J) ImTz(H0)]ψ〉
= 〈Ez(H0)f, (. . .)Ez(H0)g〉 ,

where (. . .) stands for the right hand side of (7.38). This implies (7.38) by
the density of the range of Ez(H0), which is dense in K in the case that y > 0
and dense in hλ(H0) in the case that y = 0. �

7.4. Connection to the time-dependent approach

In this section we show how the wave operators and the scattering operator
can be built up from the wave matrices and scattering matrix. Let H0 and H1

be two self-adjoint operators from the rigged affine space A(F ). Then with
Λ := Λ(H0, F ) ∩ Λ(H1, F ), the (partial) wave operators W±(H1, H0; Λ) are
defined by

(7.39) E(H1)W±(H1, H0; Λ)E∗(H0) =

∫ ⊕
Λ
w±(λ;H1, H0) dλ.

Let Ej , j = 0, 1, denote the spectral measure of Hj . Since E(Hj) is an

isomorphism of the subspace Ej(Λ)H ⊂ H(a)(Hj) and the direct integral
H(Hj) by Theorem 7.12, the partial wave operators act

(7.40) W±(H1, H0; Λ) : E0(Λ)H → E1(Λ)H,
but of course we can always extend them as zero on E0(R \ Λ)H in order to
consider them acting on the main Hilbert space H.
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Theorem 7.22. Let H0, H1, and H2 be self-adjoint operators from a
rigged affine space A(F ) and let Λ :=

⋂
j Λ(Hj , F ), where j varies through

{0, 1} or {0, 1, 2} as appropriate. Then the (partial) wave operators are
unitary and satisfy the equalities W±(H0, H0; Λ) = 1, W ∗±(H1, H0; Λ) =
W±(H0, H1; Λ), and the multiplicative property

W±(H2, H0; Λ) = W±(H2, H1; Λ)W±(H1, H0; Λ).

Proof. This is a direct result of Theorem 7.19 and the properties of
decomposable operators on direct integrals discussed in Section 2.4. �

Theorem 7.23. Let H0, H1, and Λ be as in Theorem 7.22. For any
bounded Borel function ϕ on R whose support is a subset of Λ, there holds
the intertwining property

ϕ(H1)W±(H1, H0; Λ) = W±(H1, H0; Λ)ϕ(H0).

Moreover, the wave operators establish a unitary equivalence of the self-
adjoint operators Ej(Λ)Hj , j = 0, 1, and if they are extended as 0 to the
whole Hilbert space H, then

H1W±(H1, H0; Λ) = W±(H1, H0; Λ)H0.

Proof. This result easily follows from the definition (7.39) and The-
orem 7.12. For example, the first equality is established via

ϕ(H1)W±(H1, H0; Λ) = ϕ(H1)E∗(H1)E(H1)W±(H1, H0; Λ)E∗(H0)E(H0)

= E∗(H1)

(∫ ⊕
Λ
ϕ(λ)w±(λ;H1, H0) dλ

)
E(H0)

= E∗(H1)

(∫ ⊕
Λ
w±(λ;H1, H0) dλ

)
E(H0)ϕ(H0)

= W±(H1, H0; Λ)ϕ(H0).

For the last part, we note that the domain of E0(Λ)H0, which is equal to{
f ∈ H :

∫
Λ
|λ|2‖(E(H0)f)(λ)‖2 dλ <∞

}
,

is mapped by W±(H1, H0) to the domain of E1(Λ)H1 and use the strong
convergence of E(Λn)H → E(Λ)H for bounded subsets Λn → Λ. �

Now we will assume that the LAP holds in the sense that Λ is a full set,
in which case we write

W±(H1, H0) := W±(H1, H0; Λ).

In this case the following version of the Kato-Rosenblum Theorem is an
immediate consequence of Theorem 7.23.

Theorem 7.24. Let H0 and H1 be self-adjoint operators from a rigged
affine space A(F ). Suppose Λ(H0, F ) and Λ(H1, F ) are full sets. Then the
absolutely continuous parts of H0 and H1 are unitarily equivalent.
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Note that it follows from Theorem 7.24 and the LAP in the form of
Corollary 3.14 that all operators from a resolvent comparable rigged affine
space share a common absolutely continuous spectrum.

The next theorem confirms that the wave operators as defined by (7.39)
agree with their usual time-dependent definition (7.1).

Theorem 7.25. Under the premise of Theorem 7.24, the wave operat-
ors (7.40) satisfy the equality

W±(H1, H0) = s-lim
t→±∞

eitH1e−itH0P (a)(H0),

where P (a)(H0) projects onto the absolutely continuous subspace H(a)(H0).

Proof. The proof employs a standard method, which proceeds as follows.
We first check that the weak wave operators, which exist by Theorem 7.4,
coincide with the constructive wave operators (7.40). Let Λ := Λ(H0, F ) ∩
Λ(H1, F ). It follows from the definition (7.39) of the constructive wave
operators W±(H1, H0) that for any f = F ∗ϕ and g = F ∗ψ from the dense
range of F ∗,

〈f,W±(H1, H0)g〉 =

∫
Λ
〈Eλ(H1)f, w±(λ;H1, H0)Eλ(H0)g〉 dλ

=

∫
Λ

lim
y→0+

y

π
〈Rλ±iy(H1)f,Rλ±iy(H0)g〉 dλ.

So by Theorem 7.8 the constructive wave operators coincide with the weak
abelian wave operators and hence the weak wave operators. Theorem 7.2
now implies the existence of the strong wave operators, since the constructive
wave operators satisfy the required multiplicative property by Theorem 7.22.
Moreover, the strong wave operators must coincide with the weak and hence
also the constructive wave operators. �

We conclude this section with a brief mention of the scattering operator
S(H1, H0), which can be defined constructively by

E(H0)S(H1, H0)E∗(H0) =

∫ ⊕
Λ
S(λ;H1, H0) dλ,

where Λ = Λ(H0, F )∩Λ(H1, F ). The proof of the next theorem follows easily
from the results already established and has been omitted.

Theorem 7.26. The scattering operator is unitary and satisfies the
equality

S(H1, H0) = W ∗+(H1, H0)W−(H1, H0),

as well as properties analogous to those of the scattering matrix given in
Theorem 7.20. Also, the scattering operator commutes with H0.





CHAPTER 8

The SSF and the scattering matrix

The first aim of this chapter is to establish the ordered exponential
representation of the scattering matrix, which can be written as

(8.1) S(λ;H1, H0) =

Texp

(
−2πi

∫ 1

0
w+(λ;H0, Hr)Eλ(Hr)V̇rE

∗
λ(Hr)w+(λ;Hr, H0) dr

)
,

where Hr = H0 u Vr is a piecewise analytic path connecting the self-adjoint
operators H0 and H1 in a rigged affine space A(F ) and λ belongs to the
intersection Λ(H0, F ) ∩ Λ(H1, F ). This representation is a little formal,
because the adjoint E∗λ(Hr) : hλ(Hr)→ H of the evaluation operator is not

well-defined and V̇r is strictly speaking not an operator on H, but it is
clarified by means of the decomposition Vr = F ∗JrF via

Eλ(Hr)V̇rE
∗
λ(Hr) :=

1

π

√
ImTλ+i0(Hr)J̇r

√
ImTλ+i0(Hr).

By Proposition 2.20, the ordered exponential (8.1) is the unique solution
to the ordinary differential equation

(8.2)
d

dr
S(λ;Hr, H0) =

− 2πiw+(λ;H0, Hr)Eλ(Hr)V̇rE
∗
λ(Hr)w+(λ;Hr, H0)S(λ;Hr, H0),

with the initial condition S(λ;H0, H0) = 1. Given the results of Chapter 7,
proving (8.2) is quite straightforward as outlined in Chapter 1. The proof and
its implications for the SSF are the topic of the upcoming section. Finally,
in Section 8.2 we will see how the singular SSF can be represented as the
singular µ-invariant.

In this final chapter the trace condition introduced in Section 5.2 is
reinstated; throughout, A(F ) will denote a resolvent comparable rigged
affine space. However we note that if it is merely assumed that A(F ) is a
rigged affine space, then Theorems 8.2 and 8.3 can be confirmed to hold
when L1 is replaced with L∞, by making obvious modifications to their
proofs.

127
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8.1. Scattering matrix as an ordered exponential

The group of unitary operators differing from 1 by a trace class operator
will be denoted by

U1(K) :=
{
U ∈ 1 + L1(K) : U∗ = U−1

}
and equipped with the complete metric (U, V ) 7→ ‖U − V ‖1.

Suppose Hr = H0uF ∗JrF is an analytic path in the resolvent comparable
rigged affine space A(F ). Let z = λ+ iy, y ≥ 0, where if y = 0 we assume
that λ belongs to the full set Λ(H0, F ;L1). For r ∈ R such that z ∈ Π(Hr, F ),
consider the stationary formula

(8.3) S(z;Hr, H0) = 1− 2i
√

ImTz(H0)Jr(1 + Tz(H0)Jr)
−1
√

ImTz(H0),

which follows from Theorem 7.21 and the second resolvent identity. By the
resolvent comparability ofA, the operator

√
ImTz(H0) belongs to the Hilbert-

Schmidt class L2(K) and hence S(z;Hr, H0) belongs to U1(K), provided
that (8.3) holds. If y > 0, then it holds for all r. On the other hand if y = 0,
then it holds as long as r is not a resonance point of the path Hr.

The stationary formula (8.3) allows us to consider the scattering matrix
as a function of the coupling parameter

(8.4) r 7→ S(z;Hr, H0) ∈ U1(K).

Since Hr is analytic, the analytic Fredholm alternative implies that the
factor (1 + Tz(H0)Jr)

−1 is meromorphic. Hence in a neighbourhood of the
real axis (8.4) is a meromorphic function. If y > 0 then (8.4) is in fact
holomorphic in a neighbourhood of R, since (1 + Tz(H0)Jr)

−1 has no poles
there by Lemma 4.1. If y = 0 then although the factor (1 + Tλ+i0(H0)Jr)

−1

has poles at real resonance points from the discrete set R(λ; {Hr}), the
scattering matrix is unitary and hence bounded for all non-resonant real r.
Therefore (8.4) must admit analytic continuation to each real resonance point
and thus the entire real axis.

Proposition 8.1. Let Hr be a piecewise analytic path in the resolvent
comparable rigged affine space A(F ), whose pieces have endpoints which
are non-resonant at λ ∈ Λ(H0, F ;L1). Then with z = λ + iy, y ≥ 0, the
scattering matrix S(z;Hr, H0) is a piecewise analytic function of the coupling
parameter r, with corresponding pieces.

Theorem 8.2. Let Hr = H0uF ∗JrF be a piecewise analytic path in A(F )
whose pieces have endpoints at rj , j = 1, . . . , n. Let z = λ+ iy, y ≥ 0, where
in the case that y = 0 it is assumed that λ ∈

⋂n
j=1 Λ(Hrj , F ;L1). Then at

any non-resonant real r,

(8.5)
d

dr
S(z;Hr, H0) =

− 2iw(z;H0, Hr)
√

ImTz(Hr)J̇r
√

ImTz(Hr)w(z;Hr, H0)S(z;Hr, H0),

where the derivative is taken in the norm of L1(K).
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Proof. We consider the case when y = 0; in case y > 0, the formula (8.5)
holds for any real r and the calculation is identical. Note that if r is non-
resonant, then since the resonance set R(λ; {Hr}) is discrete, so is r + h for
small h. The derivative of the meromorphic function r 7→ Jr(1+Tz(H0)Jr)

−1

appearing in the stationary formula (8.3) can be calculated for any non-
resonant r to be

J̇r(1 + Tz(H0)Jr)
−1 − Jr(1 + Tz(H0)Jr)

−1Tz(H0)J̇r(1 + Tz(H0)Jr)
−1,

yet since J0 = 0 its derivative at 0 is simply J̇0. Hence it follows from the
stationary formula that

(8.6)
d

dr

∣∣∣
r=0

S(λ;Hr, H0) = −2i
√

ImTλ+i0(H0)J̇0

√
ImTλ+i0(H0).

By the identity (7.37), the scattering matrix satisfies

S(λ;Hr+h, H0) = w+(λ;H0, Hr)S(λ;Hr+h, Hr)w+(λ;Hr, H0)S(λ;Hr, H0)

for any non-resonant r and r + h. Thus

d

dr
S(λ;Hr, H0) =

w+(λ;H0, Hr)
d

dh
S(λ;Hr+h, Hr)

∣∣∣
h=0

w+(λ;Hr, H0)S(λ;Hr, H0)

and the proof is completed by substituting (8.6). �

Using the notation of Theorem 8.2, consider the L1-valued function of
the coupling parameter

(8.7) A(z; r) := w(z;H0, Hr)
√

ImTz(Hr)J̇r
√

ImTz(Hr)w(z;Hr, H0).

It follows from (8.5) and the unitarity of the scattering matrix that this
function, although only defined for non-resonant values of r in the case that
y = 0, admits analytic continuation to real resonance points. Thus by taking
its trace and using the fact that w+(λ;Hr, H0)w+(λ;H0, Hr) = 1 we obtain
another proof of Lemma 6.2, which was used to show the equality of the
singular SSF with the total resonance index.

Theorem 8.2 along with Proposition 2.20 imply an ordered exponential
representation of the scattering matrix.

Theorem 8.3. Let Hr and z = λ+ iy be as in Theorem 8.2. For non-
resonant r,

S(z;Hr, H0) = Texp

(
−2i

∫ r

0
A(z; s) ds

)
,

where the L1-valued integrand is given by (8.7).

Because the derivative (8.5) is considered in the trace class norm, we also
obtain the following theorem from Proposition 2.22 and the cyclic property
of the trace.



130 8. THE SSF AND THE SCATTERING MATRIX

Theorem 8.4. Let Hr and z = λ+ iy be as in Theorem 8.2. For non-
resonant r there is the formula

(8.8) detS(z;Hr, H0) = exp

(
−2i

∫ r

0
Tr
(
J̇s ImTz(Hs)

)
ds

)
.

This theorem can be interpreted as a variant of the Birman-Krĕın formula.
The original formula can be recovered as follows. For y > 0, the formula (8.8)
can be rewritten as

(8.9) detS(z;H1, H0) = e−2πi ξ(z;H1,H0),

where ξ(z;H1, H0) is the smoothed SSF (5.47), whose limit as y → 0+ is a.e.
equal to the SSF ξ(λ;H1, H0). On the other hand, it follows from the station-
ary formula that for any λ from the set Λ(H0, F ;L1) ∩ Λ(H1, F ;L1), the off-
axis scattering matrix S(λ+iy;H1, H0) converges in U1(K) to S(λ;H1, H0)⊕1
as y → 0+. Therefore, taking the limit of (8.9) as y → 0+ proves

Corollary 8.5. For any two operators H0 and H1 from a resolvent
comparable rigged affine space A and for a.e. λ ∈ R, the SSF is and the
scattering matrix are related by the formula

(8.10) detS(λ;H1, H0) = e−2πiξ(λ;H1,H0).

In addition to the classical Birman-Krĕın formula (8.10), Theorem 8.4
explicitly gives the formula

detS(λ;H1, H0) = exp

(
−2i

∫ 1

0
Tr(J̇r ImTλ+i0(Hr)) dr

)
.

for any λ ∈
⋂n
j=1 Λ(Hrj , F ;L1). In view of Theorem 5.31, we obtain

Corollary 8.6. For any piecewise analytic path Hr in resolvent com-
parable rigged affine space A and a.e. λ ∈ R, the absolutely continuous SSF
and the scattering matrix are related by the formula

(8.11) detS(λ;H1, H0) = e−2πiξ(a)(λ;{Hr}).

Combining (8.10) and (8.11) gives the equality

e−2πi ξ(s)(λ;{Hr}) = 1.

Thus we have again proved the integer-valuedness of the singular SSF, this
time along any piecewise analytic path Hr.

Corollary 8.7. For any piecewise analytic path Hr in a resolvent
comparable rigged affine space A and for a.e. λ ∈ R, the value of the singular
SSF ξ(s)(λ; {Hr}) belongs to Z.
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8.2. Singular SSF as singular µ-invariant

The ordered exponential representation of the scattering matrix allows
the equality of the singular SSF and the so called singular µ-invariant to be
proved using (a simplified version of) the argument appearing in [Aza11a].
We conclude this document by sketching the proof, which relies on properties
of the spectral flow of unitary operators in U1(K).

Note that any unitary operator S ∈ U1(K) has its spectrum lying on the
unit circle T and by Weyl’s theorem (Theorem 2.18) its essential spectrum
is the singleton {1}. The countable set of isolated eigenvalues of finite
multiplicity forming its discrete spectrum can thus only accumulate at 1.
Intuitively, if S varies continuously then its eigenvalues should trace out
continuous but possibly overlapping paths. This is supported by the theorem
below, which provides a convenient approach to the definition of spectral
flow.

Theorem 8.8. Suppose S = S(r) is a continuous path of operators
in U1(K). Then the eigenvalues of S can be continuously enumerated in the
sense that there exists a (non-unique) sequence of continuous functions zj ,
j = 1, 2, . . . , such that for all r the multiset {z1(r), z2(r), . . .}∗ coincides with
the spectrum of S(r), counting multiplicities of all points except 1.

A multiset is in essence a set allowing repetitions or multiplicities of its
elements, in this case equivalent to an unordered sequence. The multiplicity
of the point 1 is assumed to be infinite. The spectra of operators in U1(K)
can obviously be modelled by such multisets.

Theorem 8.8 can be divided into two parts, one of which can be seen
as an infinite-dimensional analogue of Theorem II-5.2 in [Kat84] on the
continuous enumeration of paths in the space Cnsym of unordered n-tuples
of complex numbers. For a detailed proof of this result see e.g. [ADT15]
(also [Aza10]). The proof is not as straightforward as its statement might
suggest, nevertheless the problem can be reduced to the finite-rank case
by focusing first on those eigenvalues outside of a neighbourhood of the
accumulation point. The argument applies to continuous paths in the space
Sp(X, x0), which consists of countable multi-subsets of a metric space X, each
of which is assumed to contain the fixed point x0 with infinite multiplicity
while all other multiplicities are finite. Moreover, each multiset S ∈ Sp(X, x0)
is required to be p-summable in the sense that∥∥∥{d(x0, zj)}j∈N

∥∥∥
p

:=

 ∞∑
j=1

d(x0, zj)
p

1/p

<∞,

where d is the metric of X and {zj} is some enumeration of S. (In fact
the p-norm can be replaced by any symmetric norm, see e.g. [GK69] for a
definition.) The space Sp(X, x0) is equipped with the metric given by

dp(S1, S2) = inf
∥∥∥{d(z1

j , z
2
j )
}
j∈N

∥∥∥
p
,
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where the infimum is taken of all enumerations {z1
j } and {z2

j } of the multis-
ets S1 and S2.

The continuity of a path S = {z1, z2, . . .}∗ in Sp(X, x0) implies the uniform
convergence

(8.12)
∥∥∥{d(x0, zn+j)}j∈N

∥∥∥
p
→ 0, as n→∞.

Briefly, the continuity of S implies that of Sn = {zn+1, zn+2, . . .}∗ which
in turn implies that of each function of the sequence (8.12). Hence this
decreasing sequence of continuous functions, which converges to 0 pointwise,
must converge uniformly by Dini’s Theorem. (Assuming the symmetric norm
is regular, as e.g. are the p-norms, then the converse also holds; see [ADT15]
for details.) Since ‖ · ‖∞ ≤ ‖ · ‖p, it follows from (8.12) that all but finitely
many of the paths zj have their images contained in an arbitrarily small
neighbourhood of the fixed point x0.

In obvious analogy to the case when p = 1 we can define the space of
unitary operators Up(K). The remaining part of Theorem 8.8 is the fact that
for any two operators S1 and S2 from Up(K), there exist enumerations {z1

j }
and {z2

j } of their eigenvalues, such that∥∥∥{|z1
j − z2

j |
}
j∈N

∥∥∥
p
≤ const. ‖S1 − S2‖p.

For a proof of this inequality see e.g. [BS88] (also [Aza10]). It follows that
as S varies continuously in the space of unitary operators Up(K), its spectrum
σ(S) varies continuously in the multiset space Sp(T, 1).

Suppose that S is a continuous path in Up(K). The functions zj from a
continuous enumeration of S can be used to define the spectral flow. We will
only need to consider paths which begin at 1, so suppose S(0) = 1. It is
convenient to lift the functions zj on T to the functions θj on R which are
chosen so that θj(0) = 0. Let dxe denote the smallest integer greater or
equal to x ∈ R. Then for θ ∈ (0, 2π) the spectral flow can be defined by the
formula

(8.13) µ(θ;S) :=
∞∑
j=1

⌈
θj(1)− θ

2π

⌉
,

which counts the number of times the eigenvalues zj(r) of S(r) cross a given

point eiθ ∈ T as the path is traversed. This definition is correct in the sense
that the sum is finite, as implied by (8.12), and therefore it does not depend
on the continuous enumeration. Note also that if S(0) = S(1) = 1, then
µ(θ;S) does not depend on the angle θ.

As an aside, it is of course unnecessary to assume that S(0) = 1 in order
to define the spectral flow. For the formula (8.13) to be valid it must be
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assumed that θj(0) ∈ (θ − 2π, θ], but an alternative description is

µ(θ;S) =
∞∑
j=1

(
# {k ∈ Z : θj(0) < θ + 2kπ ≤ θj(1)}

−# {k ∈ Z : θj(1) ≤ θ + 2kπ < θj(0)}

)
,

where # denotes cardinality. The spectral flow of a continuous path S
in Up(K) has the following properties (for proof see e.g. [ADT15; Aza10]).
It is path additive: if S1tS2 is the concatenation of two paths S1 and S2, then
µ(θ;S1tS2) = µ(θ;S1)+µ(θ;S2). It is a homotopy invariant: if two paths S1

and S2 are homotopic relative to their endpoints, then µ(θ;S1) = µ(θ;S2).
(In fact it can be shown to define a group isomorphism, under appropriate
assumptions on X, from the fundamental group π1(Sp(X, x0), {x0}∗) to the
first singular homology group H1(X).)

Our focus will now be on a continuous path S in the space U1(K). In this
case the series

∑
j |zj − 1|, is uniformly convergent. Indeed, it is continuous

due to the continuity of {z1, z2, . . .}∗ in S1(T, 1) and the inequality∣∣∣∣∣∣
∞∑
j=1

|zj(r)− 1| −
∞∑
j=1

|zj(s)− 1|

∣∣∣∣∣∣ ≤
∞∑
j=1

|zj(r)− zj(s)|,

and therefore its sequence of partial sums converges uniformly by Dini’s The-
orem. Because only finitely many eigenpaths zj may leave a neighbourhood

of 1 and since |θ| ≤ |eiθ − 1| for small enough θ, it follows that the series∑
j θj is uniformly absolutely-convergent and hence continuous.

The average spectral flow ξ(S) of the path S will be denoted

ξ(S) = − 1

2π

∫ 2π

0
µ(θ;S) dθ.

Proposition 8.9. Let S be a path in U1(K) with S(0) = 1 and let
zj = eiθj , with θj(0) = 0, j = 1, 2, . . . , be a continuous enumeration of the
eigenvalues of S. Then the average spectral flow of S can be written as

(8.14) ξ(S) = − 1

2π

∞∑
j=1

θj(1).

Let Sr denote the restriction of the path S in U1(K) to the interval [0, r].
Then it follows that the function r 7→ ξ(Sr) is continuous.

Proof. In this proof we follow [Aza10, Lemma 5.10]. For any j, suppose
αj ∈ [0, 2π) and k ∈ Z are such that θj(1) = αj + 2kπ, in which case θj
makes k windings around T as the path is traversed. Then we find that

(8.15)

∫ 2π

0

⌈
θj(1)− θ

2π

⌉
dθ = αj(k + 1) + (2π − αj)k = θj(1),

since the integrand is equal to k + 1 if θ < αj and k otherwise. Note that
the series

∑
j θj(1) is absolutely convergent and further that the absolute
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value of (8.15) can be moved inside the integral. Therefore, an interchange
of sum and integral is justified and the result is∫ 2π

0
µ(θ;S) dθ =

∫ 2π

0

∞∑
j=1

⌈
θj(1)− θ

2π

⌉
dθ =

∞∑
j=1

θj(1). �

By the equality (2.24), the determinant of any S(r) ∈ U1(K) with eigen-

values zj(r) = eiθj(r), j = 1, 2, . . . , is given by

detS(r) =
∞∏
j=1

eiθj(r) = exp

i ∞∑
j=1

θj(r)

 .

Therefore by combining this with equality (8.14), we arrive at another
representation of the average spectral flow.

Lemma 8.10. Let S be a continuous path in U1(K) with S(0) = 1 and
let Sr be its restriction to [0, r]. Then its average spectral flow is given by
the formula

(8.16) ξ(Sr) = − 1

2πi
log detS(r),

where the branch of the logarithm is chosen so that the right hand side is
continuous.

Returning now to the scattering matrix, suppose H0 and H1 are two
self-adjoint operators from the resolvent comparable rigged affine space A(F ).
For any λ from the full set Λ(H0, F ;L1)∩Λ(H1, F ;L1), the scattering matrix
S(λ;H1, H0) can be naturally connected with the identity in two different
ways. One way is to send the imaginary part of the spectral parameter λ
from 0 to +∞. Let S1 denote the path

S1 : [0, 1] 3 t 7→ S(λ+ iy(t);H1, H0) ∈ U1(K), y(t) = (1− t)t−1.

Note that the stationary formula (7.38) and Corollary 3.6 imply that this
path is indeed continuous at t = 0, where its value is the identity. Following
A. B. Pushnitski ([Pus01]), we define the µ-invariant as the spectral flow

µ(θ, λ;H1, H0) := µ(θ;S1).

Consider applying the formula (8.16) to the path S1. Let z = λ+ iy for
y > 0 and let µ(θ, z;H1, H0) denote the spectral flow of the path S1 restricted
to the interval [0, r] with r = (y + 1)−1. In other words, µ(θ, z;H1, H0) is
the spectral flow of the off-axis scattering matrix as the spectral parameter
changes from ∞ to z. Then from Theorem 8.4 and Lemma 8.10 we obtain a
formula for the smoothed SSF:

ξ(z;H1, H0) = − 1

2πi
log detS(z;H1, H0)

= − 1

2π

∫ 2π

0
µ(θ, z;H1, H0) dθ.
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Moreover, since the smoothed SSF converges a.e. to the SSF ξ(λ;H1, H0)
by (5.50), it follows that for a.e. λ ∈ R

(8.17) ξ(λ;H1, H0) = − 1

2π

∫ 2π

0
µ(θ, λ;H1, H0) dθ.

Since the right hand side of the equality (8.17) is defined for any λ from
the full set Λ(H0, F ;L1) ∩ Λ(H1, F ;L1), it can be considered as an explicit
representation of the SSF.

Another way to connect S(λ;H1, H0) with 1 is to send H1 to H0 along a
piecewise analytic path Hr in the affine space A(F ), whose endpoints are
not resonant at λ. Let S2 = S2({Hr}) be the path

S2 : [0, 1] 3 r 7→ S(λ;Hr, H0) ∈ U1(K),

which is continuous by Proposition 8.1. As in [Aza11a], we define the
absolutely continuous µ-invariant as the spectral flow

µ(a)(θ, λ; {Hr}) := µ(θ;S2).

The difference µ(s)(λ; {Hr}) := µ(θ;S1)− µ(θ;S2), which does not depend
on θ, is by definition the singular µ-invariant.

By applying formula (8.16) to the path S2 and using Theorem 8.4,
we arrive at the equality

(8.18) ξ(a)(λ; {Hr}) = − 1

2π

∫ 2π

0
µ(a)(θ, λ; {Hr}) dθ,

which holds for any λ ∈
⋂n
j=1 Λ(Hrj , F ;L1), where the intersection is taken

over the endpoints Hrj of the pieces of the path Hr. This can be considered
as an explicit representation of the absolutely continuous SSF. Combining it
with (8.17) also provides an explicit representation of the singular SSF.

Theorem 8.11. Let Hr be a piecewise analytic path of self-adjoint oper-
ators from a resolvent comparable rigged affine space A. Then for a.e. λ ∈ R
the singular SSF coincides with (the negative of) the singular µ-invariant

ξ(s)(λ; {Hr}) = −µ(s)(λ; {Hr}).
Proof. Suppose the SSF and the absolutely continuous SSF are expli-

citly represented by (8.17) and (8.18) for λ from the full set
⋂
j Λ(Hrj , F ;L1),

where Hrj , j = 1, . . . , n, are the endpoints of the pieces of the path Hr. Com-
bining these equalities, we find that

ξ(s)(λ; {Hr}) = − 1

2π

∫ 2π

0

(
µ(θ, λ;H1, H0)− µ(a)(θ, λ; {Hr})

)
dθ

= − 1

2π

∫ 2π

0
µ(s)(λ; {Hr}) dθ

= −µ(s)(λ; {Hr}),
which completes the proof not only this last theorem, but also of Theorem 1.1.

�
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A0 real Banach space of perturbations of the form V = F ∗JF
associated with A

49

A rigged affine space of self-adjoint operators over A0 49

Cc(R) space of compactly-supported continuous functions with in-
ductive limit topology
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C∞c (R) space of test functions 16

C field of complex numbers

C+ open upper half-plane
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E (with possible subindices) spectral measure of H
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∫ ⊕

Λ Eλ(H) dλ unitary operator H → H(H) which diagonal-
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115
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F rigging operator H → K 37

H (with possible subindices) self-adjoint operator on H
Hr path of self-adjoint operators

H main Hilbert space

H(H) =
∫ ⊕

Λ hλ(H) dλ direct integral in which the absolutely con-
tinuous part of H acts as multiplication by λ

115

hλ(H) fibre Hilbert space of H(H) 114

indres resonance index 58

J bounded self-adjoint operator on K
K auxiliary Hilbert space

Lp space of p-integrable functions

Lp p-th Schatten ideal of compact operators 28

r coupling parameter of Hr = H0 + rV (or a more general
path Hr)

rz resonance point corresponding to z 57

Rz(H) = (H − z)−1 resolvent of H

R field of real numbers
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S(z) (off-axis) scattering matrix 122

Tz(H) = FRz(H)F ∗ sandwiched resolvent 38

Uz(H) unitary operator in the polar decomposition of Rz(H)F ∗ 117

U1 group of unitary operators from 1 + L1 128

V symmetric perturbation

w(z) (off-axis) wave matrix 118

y imaginary part of the spectral parameter z

z spectral parameter z = λ± iy

λ real part of the spectral parameter z

Λ set of regular points λ 43

µ(θ;S) spectral flow on U1 132

µ(s) singular µ-invariant 135

ξ(λ) spectral shift function 85

ξ(ϕ) spectral shift measure 85

ξ(z) smoothed spectral shift function 88

ξ(a)(λ) absolutely continuous spectral shift function 90

ξ(a)(ϕ) absolutely continuous spectral shift measure 90

ξ(s)(λ) singular spectral shift function 90

ξ(s)(ϕ) singular spectral shift measure 90

Π domain of the spectral parameter z; union of C \ R with two
copies of the set of regular points Λ

54

Π+ union of C+ and Λ 54

Π− union of C− and Λ 54

ρ(H) resolvent set of H

σ(H) spectrum of H

σess common essential spectrum of operators from A 50

Φ infinitesimal spectral shift measure Φ 82

Φ(a) absolutely continuous part of Φ 88

Φ(s) singular part of Φ 88
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